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ABSTRACT

The deformation mechanics of multi-walled carbon nanotubes (MWCNT) and vertically aligned
carbon nanotube (VACNT) arrays were studied using analytical and numerical methods. An
equivalent orthotropic representation (EOR) of the mechanical properties of MWCNTs was
developed to model the anisotropic mechanical behavior of these tubes during various types of
deformation. Analytical models of the micro-mechanical contact and deformation during nano-
indentation and scratching of VACNTs were developed. The EOR model was developed based on
finite element (FE) nested shell structural representation of MWCNTs. The EOR was used
together with the FE method to simulate bending, axial compression and lateral compression.
Results were compared with those of the nested shell model for 4-, 8-, 9-, 14-, and 19-walled
carbon nanotubes. The comparison of axial and lateral compression results indicated that
although MWCNTs have high strength and stiffness in the axial direction, they can exhibit
significant radial deformability owing to their relatively compliant interwall normal and shear
behaviors. The EOR results provide an improvement in computational efficiency as well as a
successful replication of the overall deformation behavior including the initial linear elastic
behavior and the onset of buckling of MWCNTs and the post-buckling compliance. The post-
buckling progression in wavelength (a doubling of wavelength as deformation progresses) was
not captured by the EOR model. Analytical predictions of the force-penetration depth during
nano-indentation with a three-sided pyramidal shaped indentor tip were compared with results
from macro-scale experiments, FE simulations and nano-indentation of VACNT forests. These
comparisons indicated that the proposed nano-indentation micro-mechanical contact model
captures effectively both the nonlinear deformation mechanics and buckling effects of MWCNTs.
The effective bending modulus of two VACNT forest samples was found to be 1.10 TPa and 1.08
TPa. Similarly, results from the micro-mechanical contact model for nano-scratching were
compared with the results from macro-scale experiments with a sharp tip and FE simulations with
both sharp and Bekovich tips. The comparison of these results indicated that the proposed contact
model is able to capture remarkably well the variation in vertical force with lateral indentor tip
displacement. The proposed FE and analytical models offer computationally efficient methods for
simulating large and complex systems of MWCNTs with a small penalty in precision.

Thesis Supervisor: Dr. Mary C. Boyce
Title: Kendall Family Professor of Mechanical Engineering
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Chapter 1

In 1985, Kroto et al., (2005) discovered the C60 molecule known as fullerene,

Buckminsterfullerene, or buckyball, as shown in Figure 1.1. Subsequently, Iijima (1991)

discovered carbon nanotubes, CNT, as shown in Figure 1.2. Ever since the discovery of

CNTs, researchers throughout the scientific community have been investigating the

nearly perfect structure and properties of this one-dimensional structure. CNTs are

usually classified into two main categories: single-walled carbon nanotubes (SWCNT)

and multi-walled carbon nanotubes (MWCNT), as shown in Figure 1.2. A SWCNT is

composed of a single tubular structure formed by rolling a graphene sheet, whereas a

MWCNT is comprised of concentric nested tubes of different radii separated by an

interwall distance controlled by van der Waal interactions between the atoms. The

diameter of CNTs is anywhere from 0.3 nm (Zhao et al., 2004) for the smallest SWCNT

to 200 nm for the largest MWCNT.

Figure 1.1: Schematic diagram of a C60 fullerene (Cui et al., 2004).

(a) (b) (c)

Figure 1.2: Schematic diagram showing how a hexagonal graphite sheet (Dresselhaus et al., 2000)

(a) is rolled to form a SWCNT (Tserpes and Papanikos, 2005) (b) and a MWCNT (Liew et al.,

2004) (c).
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Performing experiments on such nano-scale structures is extremely challenging.

Therefore, researchers have been working to develop experimental techniques to

quantitatively measure properties and to predict the properties of CNTs with theoretical

models. Assuming a perfect atomic structure, theoretical and computational studies have

found CNTs to possess favorable mechanical, electric, thermal and chemical properties.

These properties make them attractive for many applications in nano-electro-mechanical

systems (NEMS) (e.g., Ke et al., 2005; Kang et al., 2005), micro-electro-mechanical

systems (MEMS) devices (e.g., Kang et al., 2005) and even in material reinforcements

for fiber composites. Theoretical and experimental results both indicate that

mechanically, CNTs have high strength and stiffness in the axial direction and are

resilient. Electronically, CNTs can be metallic or semiconducting depending on the

chirality (see Section 1.1) of their structure and show remarkable logic and amplification

functions (Qian et al., 2002). Thermally, CNTs are highly conductive while chemically,

they resist degradation in many chemicals. These properties have led researchers to find

biomedical applications in addition to the more obvious NEMS, MEMS, and composite

material uses. Researchers believe that these properties can be tailored according to the

required application.

In this introductory chapter, a discussion of the molecular structure of CNTs is

first reviewed followed by the synthesis of SWCNTs and MWCNTs and investigation of

elastic properties of CNTs via experimental, theoretical, and computational analyses.

1.1 Molecular Structure

In general, a SWCNT is a cylindrical structure that can be formed conceptually by

rolling a graphene sheet. This graphene sheet consists of a periodically repeating

hexagonal pattern in space, as shown in Figure 1.2. The planar hexagonal pattern is

composed of carbon atoms bonded together with strong in-plane sigma bonds. On the

other hand, MWCNT consists of several concentric SWCNTs where each wall interacts

with its neighboring walls through weak van der Waals forces (Qian et al., 2002). In the
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following two sub-sections, we first look at the basic bond structure of the graphene sheet

and subsequently, the SWCNT and MWCNT structures.

1.1.1 Bond Structure

The planar hexagonal pattern consists of six carbon atoms that interact with one

another through strong in-plane covalent sigma bonds to form graphite. Because of

periodicity, each carbon atom is bonded in a plane to three neighboring carbon atoms and

separated by a C-C bond (le,-) length or sigma bond length of 0.1421 nm and by an

angular separation of 1200, as shown in Figure 1.3. The final width of the hexagonal

pattern is about 0.246 nm (Harik, 2001). These in-plane sigma bonds result in the CNT's

extraordinary stiffness and strength in the axial direction.

Figure 1.3: Carbon atom (sphere) with in-plane sigma-bonds (oval) and out-of-plane pi-bonds

(triangular) (a). Carbon atom attachment in a graphene sheet (b). The black dots are the carbon

atoms, dotted circles are the sigma bonds and solid line shows the hexagonal pattern (Harik,

2001).
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The additional out-of-plane pi-bonds that result because of sp2 hybridization

interact with adjacent carbon atoms on a separate sheet to form the interlayer force in

MWCNTs. The sp2 hybridization occurs when carbon atoms come together to form

graphite (Qian et al., 2002). The interaction between the out-of-plane pi-bonds (also

known as van der Waals force) result in an equilibrium separation of -0.34 nm between

the nested shell (coaxial cylindrical geometry) structure of the MWCNTs (Saito and

Yoshikawa, 1993; Qian et al., 2002). Contrary to sigma-bonds, the pi-bonds make the

CNT radial direction relatively compliant compared to the axial and tangential direction.

1.1.2 Single- and Multi-Walled Carbon Nanotube Structure

As shown in Figures 1.2 and 1.3, the hexagonal lattice structure forms a graphene

sheet. This graphene sheet can be rolled in different directions to form the cylindrical

tube known as SWCNT. The direction of the CNT axis is the defined as the translational

vector T, and the direction perpendicular to vector T or the roll-up direction of the

graphene sheet is defined as the roll-up or chiral vector Ch, as shown in Figure 1.4. The

vector Ch can be defined as a linear combination of base vectors al and a2 (Figure 1.4) of

the hexagonal lattice as,

Ch=nal+ma 2  (1.1)

Ch *T0 (1.2)

with n and m being integers. A particular SWCNT is thus described to fall into one out of

three categories which are associated with an integer pair (n, m),

0 = 0 or m=0 --- (n,0) -- Zigzag (1.3a)

0 < 9< 30' or other --- (n,m) -- Chiral (1.3b)

0 = 30' or n=m --- (n,n) -- Arm Chair (1.3c)

where the diameter d and the chiral angle 6 of the CNT can be found from (Saito et al.,

2001)
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d =0.0783 n2 + n.m+m2 nanometer

= sinI[ v+m radians.
2n+nm+ m9_

(1.4)

(1.5)

When several concentric SWCNTs of increasing radius form a nested shell

structure, they form a MWCNT, as shown in Figure 1.2. The separation between the

concentric walls can vary from 0.34 nm to 0.39 nm and is inversely proportional to the

number of layers and directly proportional to the curvature (Kiang et al., 1998).

Figure 1.4: Schematic diagram showing how a hexagonal graphite sheet is rolled to form a carbon

nanotube (a). The atomic structure of an armchair (n, n) (b) and a zig-zag (n, 0) nanotube (c)

(Thostenson et al., 2001).

The closed shell cylinder configuration in a SWCNT or MWCNT is more stable

than the flat graphene sheet because of the total energy reduction due to the elimination

of the dangling-bonds at the edge of the sheet. However, the energy per carbon atom

within a closed shell increases as tube radius decreases, and is found to increase in

proportion to the curvature of the tube wall (Ebbesen, 1997). Many researchers use this

notion of energy in their analysis in order to estimate the elastic properties of CNTs.
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1.2 Synthesis of Carbon Nanotubes

The possible applications of carbon nanotubes in various fields demand tailoring

of CNTs, and have consequently sparked research in the synthesis of these nano-wonders.

In the following subsections, the reader will find a brief summary of the main synthesis

techniques used in the production of CNTs.

1.2.1 Electric-Arc-Discharge Technique

The CNTs discovered by lijima (1991) were in the soot of an arc-discharge

generator (Dresselhaus et al., 2000). The Electric-arc-discharge technique is used to

process high quality SWCNTs and MWCNTs in gram quantities; see Figure 1.5.

iF Cathode

t~e Anode

Figure 1.5: Schematic illustration of Electric-Arc-Discharge generator (Dresselhaus et al., 2000).

Usually two high purity graphite rod electrodes of 5-20 mm diameter separated by

about 1 mm are used as cathode and anode. The synthesis of CNTs requires a direct

current (DC) of about 50-120 A and a voltage difference of about 20-25 V across the

electrodes. Stable arcing occurs in a helium atmosphere at approximately 500 torr

flowing at a rate of 5-15 ml.s-' (Saito et al., 2001). A carbon deposit forms on the cathode

as the anode is consumed during arcing. Throughout the arcing process, the gap between

the electrodes is maintained at the initial value. The CNTs form near the center region of

the cathode where the temperature is about 2500-3000 'C and aligned in the direction of

the current flow. To synthesize isolated SWCNTs, the electrodes are doped with a small
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amount of a transition metal such as Co or Ni, whereas processing of MWCNTs, in the

form of bundles bound together by van der Waals force, does not require any catalyst.

The growth mechanism in this technique is believed to occur at the open ends of the

CNTs (Saito et al., 2001).

The average SWCNT synthesized in an arc-discharge technique has an average

diameter of <1.5 nm and a length of about 1 um. On the other hand, the MWCNT

diameter ranges from 5-30 nm with a length of about 10 pm. The CNTs processed from

this technique have fewer structural defects that give them their exceptional properties

and makes them highly desirable for various applications. Since the fullerenes and other

graphite particles form along with the CNTs, a purification process is required to isolate

the nanotubes from other by-products (impurities) (Dresselhaus et al., 2000).

1.2.2 Laser-Ablation Technique

Thess et al., (1997) synthesized SWCNTs of high purity at a 1-10 g scale and with

a high yield of about 70% with a Laser-Ablation Technique. In this processing technique,

a graphite target doped with the catalyst Ni and Co is ablated (vaporized) with laser

pulses in a growth chamber. The ablation of the target is performed inside a furnace,

which is maintained at about 1200 'C and in the presence of a flowing inert gas such as

argon. Thereafter, the condensed material from the ablation is collected downstream of

the gas flow on a water cooled surface known as cold finger, see Figure 1.6.

hation of" graphin trec

Figure 1.6: Schematic illustration of Laser-A blation technique (Thostenson et al., 2001).
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The laser-ablation technique allows the growth of SWCNTs with remarkably

uniform diameters and hundreds of pm length. However, these SWCNTs are found in

bundles (ropes) bound together with van der Waals forces and are highly tangled. Like

the electric-arc-discharge technique, a purification process is required to isolate the

tangled SWCNTs from other by products from the process (Popov et al., 2000).

1.2.3 Chemical Vapor Deposition (CVD) Technique

Another promising CNT synthesis method is the chemical vapor deposition

(CVD) technique. High quality MWCNTs as well as SWCNTs can be processed by

CVD. Here a catalyst material such as Ni in the form of a thin film on a substrate is

heated to high temperatures in a tube furnace with a flowing hydrocarbon gas (usually

ethylene or acetylene) as the carbon feedstock that remains in the tube reactor for a

period of time; see Figure 1.7. The hydrocarbon gas, catalyst and growth temperatures are

the key parameters that control the growth process. An optimum set of these parameters

can synthesize a vertical array of CNTs with controlled diameter and length.

11Oven temperature 500-1000 0Cg

Figure 1.7: Schematic illustration of Chemical Vapor Deposition (CVD) technique (Dresselhaus

et al., 2000).

Such optimization has been achieved by Plasma Enhanced Chemical Vapor

Deposition (PECVD) where plasma is excited by a DC or microwave source. In this

process, the diameter of the CNTs can be adjusted by controlling the thickness of the

catalyst on the sample surface; the length can be controlled by regulating vaporization

time or the temperature inside the oven; and the direction of the CNTs is controlled by

the DC plasma (Saito et al., 2001).
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The drawback of the CVD technique when compared to the previous techniques is

that the CNTs may have defects on their surface. However, a nearly continuous supply of

CNTs in prescribed patterns and uniform distribution over a surface is possible without

any purification process. Moreover, if needed, tangled, spaghetti-like CNTs with little

length, diameter, and structure consistency can be produced in large quantities and low

cost by a regular CVD process (Thostenson et al., 2001).

1.3 Elastic Properties

Before elastic properties of CNTs are discussed, it is important to note that the

concept of Young's modulus and elastic constants belong to the framework of continuum

elasticity, and that an estimate of these material parameters for CNTs requires a

continuum assumption. The thickness of a SWCNT is valid only when it is given on the

continuum assumption (Qian et al., 2002). There is no direct technique to measure the

elastic properties of CNTs and as a result, most experimentalists estimate the effective

elastic properties of the CNT by comparing experimental data with simple dynamic and

static solid beam models. Theorists on the other hand, estimate the effective elastic

properties of the CNT by applying atomistic, molecular, or continuum mechanics models.

1.3.1 Experimental Analysis

A first attempt to experimentally measure the mechanical properties of CNTs was

made by Treacy et al., (1996). In the experiment, they measured the amplitude of thermal

vibrations induced on anchored isolated MWCNTs within a Transmission Electron

Microscopy (TEM). Assuming a solid homogenous cylindrical beam and using classical

vibration theory for elastic rods, an effective Young's modulus value was found to range

between 0.4 - 4.15 TPa with 1.8 TPa as an average value. Krishnan et al., (1998)

conducted similar experiments on SWCNTs and found the effective Young's modulus of

the tube to be 1.3 ± 0.5 TPa. In a different experimental attempt, Wong et al., (1997) used

an Atomic Force Microscope (AFM) tip to laterally deflect MWCNTs at were fixed on
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one end to square pads of SiO. Thereafter, by assuming a solid beam and applying simple

beam theory to reduce the lateral force-displacement data, an effective Young's modulus

was found to be 1.28 ± 0.59 TPa. Recently, Qi et al., (2003) used classic beam theory and

applied it to indentation of vertically aligned carbon nantoube (VACNT) forests to

estimate the statistical effective bending, axial, and wall modulus of the CNTs. In another

experiment, Salvetat et al., (1999) deposited MWCNTs on a polished ultra-filtration

membrane containing pores. On CNTs that would occasionally land over and across these

pores, nano-indentations with an AFM tip revealed the effective bending modulus to be

0.81 ± 0.41 TPa. In a similar experiment, Tombler et al., (2000) found the effective

bending modulus of SWCNTs to be -1.2 TPa. Lourie et al., (1998) used Raman

spectroscopy to measure the compressive deformation of a CNT embedded in an epoxy

matrix. The effective Young's modulus for a SWCNT was found to be in the range 2.8 -

3.6 TPa, while for a MWCNT, in the range of 1.7 - 2.4 TPa. Poncharal et al., (1999) in a

test simlar to that of Treacy et al., (1996) induced vibrations using electromechanical

excitation instead of thermal effects to probe the resonant frequencies of MWCNTs.

CNTs of less then 12 nm diameter were found to have a Young's modulus - 1.0 TPa.

However, for larger MWCNTs, the effective bending modulus was found to drop from 1

to 0.1 TPa with increases in the CNT's diameter from 8 to 40 nm.

While performing the above bending experiments, Poncharal et al., (1999) noticed

the reversible wavelike distortion (rippling) of the MWCNTs on the compressive side of

the bend. These ripples were further studied by Falvo et al., (1997) and Hertel et al.,

(1998). They used an AFM tip to bend MWCNTs through large angles repeatedly

without causing any permanent damage. This local elastic buckling occurs in both

SWCNTs and MWCNTs in a rippling bending mode. The ripple pattern penetrates to the

inner walls while maintaining the inter-wall spacing, see Figure 1.8.

Figure 1.8: Characteristic wave like distortion on the bent side of a MWCNT was observed in

HRTEM image (Poncharal et al., 1999).
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Iijima et al., (1996) conducted both experimental and theoretical analysis of

SWCNT and double-walled CNTs (DWCNT) and found that CNTs can be bent to about

1200 without causing any permanent structure damage (bond breakings). They also

reported that the kinking or local bucklings seem to become more complex as the number

of concentric tube walls in a CNT increases. The buckling occurs not only upon the

bending of a CNT, but also upon compression and twisting. When a CNT is twisted, a

flattening or collapse of the cross-section occurs (Yakobson et al., 1996).

In addition to axial and bending deformations, researchers have also studied the

lateral or radial deformation of CNTs. Ruoff et al., (2003) were among the first to study

the radial deformability of CNTs. CNTs (MWCNTs) were aligned to be adjacent to one

another and the deformation was subsequently observed under a TEM. The partially

deformed MWCNTs suggested the presence of van der Waals forces along the contact

region of the two CNTs (Qian et al., 2002) causing distortion of the tube cross-section.

Later, in a different experiment, Lordi and Yao (1998) used High-Resolution TEM

(HRTEM), in tandem with molecular dynamics simulations to study the response of tubes

to asymmetrical radial compressive forces. They related the elasticity and resilience of

the walls directly to the tube radius and indirectly to the number of layers in a CNT, as

shown in Figure 1.9.

2rrn

Figure 1.9: Reverse-contrast HRTEM images of asymmetrical radial compression of a MWCNT.

A five-layered CNT is essentially experiencing a point force at Y (Lordi and Yao, 1998).

Shen et al., (2000) took a different approach in their experiment. They performed

radial indentation of a -10 nm diameter MWCNT with Scanning Probe Microscopy

(SPM) in the indentation / scratch mode. They were able to estimate the radial
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compressive elastic modulus of an MWCNT by subjecting it to radial compression

(asymmetric radial compression). The radial compressive strength thus found was well

beyond 5.3 GPa. In a separate experiment, Yu et al., (2000-a) indented an MWCNT with

an AFM tip after scanning it in tapping mode. They were able to show the reversible

radial deformability to be up to 40%. The MWCNTs were indented at five different

locations along the length, and the data for force versus strain were obtained. The

estimated effective elastic modulus of several sections of the MWCNTs in the radial

direction ranged between 0.3 - 4.0 GPa.

1.3.2 Theoretical Analysis

In addition to the experimental investigations, the discovery of CNTs has also

motivated numerous theoretical and numerical studies in order to better understand the

physics and to validate experimental results. Xiao et al., (2005) splits the modeling

studies into two categories: bottom up and top down. The bottom up is based on atomistic

(or ab initio), classical molecular dynamics (MD) analysis and the top down covers the

structural, continuum mechanics, and Finite Element (FE) analyses. Researchers mainly

focus on one of the two categories. A brief description of different modeling approaches

are explained in the following sub-sections.

1.3.2.1 Quantum Mechanics (ab initio) Analysis

Generally, to understand the physics of a system, atomistic or ab initio analyses

provide the most detailed results when compared to other methods. However, this

approach is computationally very expensive. Because of the computational expense,

atomistic analysis is used when experimental data are either unavailable or very difficult

to obtain - for example, when the characterization of electronic properties of CNTs is

required (e.g., Ghosh et al., 2005).

In this analysis, the state of a particle is defined by a wave function in which the

energy associated with each electron (particle) in an atom comprising the CNT is added

together. Thereafter, using either the Hartree-Fock (e.g., Ghosh et al., 2005), local density
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approximation (LDA), or Tight-Binding (TB) (e.g., Hernandez et al., 1998) methods, an

approximate solution is obtained to solve the Schrodinger equation

Hyf = E /, (1.6)

where H is the Hamiltonian operator of the quantum mechanical system, and Vi is the

energy eigenfunction corresponding to the energy eigenvalue E (Qian et al., 2002).

1.3.2.2 Classical Molecular Dynamics (MD) Analysis

Following ab initio analyses, MD analyses are the next most widely used method

in the theoretical study of the physical behavior of CNTs. Applying MD mechanics, the

physical as well as the chemical properties of CNTs at the atomic-scale can be simulated

quite precisely. Though computationally more efficient than atomistic analysis, a

maximum number of about 10 9 atoms (Wang and Wang, 2004) and 1-5 second time step

(Lau et al., 2004) still limits MD simulation capabilities.

CNTs can be thought of as a single large molecule consisting of carbon atoms

(Tserpes and Papanikos, 2005). Analytically, in this approach Newton's second law is

applied to solve the governing equations of particle dynamics, i.e.,

d 2r
d - ' = -VV, (1.7)Midt2

where mi and ri are the mass and spatial coordinates of the ith atom, respectively. V is the

empirical potential for the system, and V denotes the spatial gradient (Qian et al., 2002).

The several methods by which the empirical potential for the system is calculated falls

under one of the three categories in the literature and are explained briefly.

a. Force field Method

The force field method provides a simple and effective approach for describing

the atomic potential of interacting atoms in a system. The force field is calculated by

summing the individual energy contributions from each degree of freedom (bond

19



stretching, bond angle bending, bond torsion, and non-bonded interactions) of the

individual carbon atoms in a CNT (Valavala and Odegard, 2005). Allinger et al., (1977)

developed molecular mechanics force field models, MM2 and MM3, that can be used for

both organic and inorganic systems. The MM2 force field is based on bond stretching and

angle bending that has "catastrophic" bond lengthening and angle-bending. In the MM3

force field version, Allinger et al., (1989) fixed the bond lengthening and the angle

bending issues by including a quartic term in his formulations. Sears and Batra (2004)

recently used the MM3 model and compared results with the other bond order methods in

deriving macroscopic properties of SWCNTs. In an another generic force field model by

Mayo et al., (1990), bond length, angle bend, and torsion terms are considered in the

formulation of the potential function.

b. Bond Order Method

Abell (1985) originally introduced the Morse pair potential where universality in

bonding of similar elements was explored. Tersoff and Ruoff (1994) modified the Morse

type potential for carbon atoms. The subsequent Abell-Tersoff method is another

improvement where the energy of each bond and the angular dependency due to the bond

angles is considered in the formulation of the potential. Brenner later modified the

Tersoff potential by including formation and breaking of the bonds (Qian et al., 2002).

An improved version, the Tersoff-Brenner potential, is now available where the analytic

functions for the intra-molecular interactions and an expanded fitting database are

included in the previous version (Brenner et al., 2002).

c. Semi-Empirical Method

Pettifor and Oleinik (1999) have proposed an analytical form derived directly

from a TB model and successfully modeled the structural differentiation and radical

formation. Since this method includes explicit angular interactions and is somewhat less

empirical then the empirical bond-order form proposed by Tersoff in the previous

section. Qian et al., (2002) referred it as semi-empirical method. This method was used

by Zhou et al., (2000).
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Besides the above potential functions in the study of CNTs, another important

aspect is the interlayer interaction. A widely used form of the inverse power model - the

Lennard-Jones (U) potential for atomic interactions - was modified by Zhao and Spain

(1989) as a pressure/inter-layer-distance relation

P='C 0 _ CO)1. (1.8)
6 c) C)

In Equation 1.8, P is the pressure, c is inter-layer distance, co = 0.341 nm is the

equilibrium distance, and F = 36.5 GPa. Zhao and Spain (1989) obtained the relation in

Equation 1.8 by modifying the U potential energy relation in Equation 1.9 for a carbon

system modified by Girifalco and Lad (1956)

# = A[ 6 1 ] (1.9)
G-" _ 2 0 (r, / 0-)12 (r, / 0-)6

In Equation 1.9 the C-C bond length o- = 0.142 nm, A and yo are 24.3E-79 J.m6 and 2.7,

respectively, and ri is the distance between the ith atom pair. Recently, Pantano et al.,

(2003, 2004-a, 2004-b) and Guo et al., (2004) used this interlayer relation in their

continuum shell model and MD simulations, respectively.

The other functional form of the interlayer interaction is the Morse function

model. Based on Local Density Approximations (LDA), Wang et al., (1991) derived the

Morse potential function for carbon systems; it is given by

U(r) = D [(1 - e-- - 1+ Ere-fl', (1.10)

where De = 6.50E-3 eV is the equilibrium binding energy, Er = 6.94E-3 eV is the hard-

core repulsion energy, re = 4.05 A is the equilibrium distance between two carbon atoms,

8 = 1.00 41 and f'= 4.00 A" (Qian et al., 2002). Recently, a modified form of the Morse
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potential has been used by Xiao et al., (2005) in their analytical molecular structural

model and by Sun and Zhao (2005) to model the breakage of a C-C chemical bond.

1.3.2.3 Structural Mechanics Analysis

Odegard et al., (2002) have used a truss model as a bridge between the molecular

and continuum models in a manner analogous to a TB model that acts as a bridge

between the ab initio and MD analysis. Li and Chou (2003a, 2003b), Shen and Li (2004),

Tserpes and Papanikos (2005), and Xiao et al., (2005) later used the equivalent truss

model to study the mechanical behavior of CNTs having different diameters and

chiralities.

Here, the geometry of the molecular structure is used to define an equivalent truss

structure. The stiffness (El) of the truss elements is determined such that the total

potential energy of the molecular model and the strain energy of the equivalent truss are

equal for the same loading (Odegard et al., 2002). The three dimensional members in a

truss structure are pin-jointed with three displacement degrees of freedom at each end.

The nodes (pin-joints) represent the location of the carbon atoms in a CNT; see Figure

1.10.

C-C bond -> Truss member C-atom -> pin joint

(a) (b)

Figure 1.10: Equivalent truss structure of a CNT (a). Hexagonal pattern made of carbon atoms

and truss members that make the molecular structure of a CNT (b) (Tserpes and Papanikos 2005;

Xiao et al., 2005).
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Besides the truss elements to model the sigma bonds, Li and Chou (2003b) used

nonlinear truss rod elements to take into consideration the van der Waals interactions that

act between individual carbon atoms located on the neighboring layers in an MWCNT.

The equivalent truss structure approach seems to work well in visualizing and finding

differences in elastic properties of CNTs having different chiralities.

1.3.2.4 Continuum Mechanics Analysis

Theoretical analysis using ab initio or MD methods give extremely good results

for the study of the physics behind SWCNT and MWCNT, but are typically limited to the

simulation of four concentric CNTs (Liew et al., 2004). However, if the purpose of the

theoretical analysis is to investigate the global responses of individual SWCNTs or

MWCNTs or CNT-based composites, such as deformations, effective stiffness, or load

transfer mechanisms in the nanocomposites, then the continuum mechanics approach can

be applied safely to provide needed results effectively and efficiently (Liu and Chen,

2003). Solid and nested shell models have been used as equivalent continuum models

with average material properties of CNTs to study their mechanics. Harik (2001) adopted

an approach using non-dimensional ratios of geometric parameters to find ranges of

validity for the continuum beam model. To check the applicability of the beam

assumption for CNTs, he laid the following three criteria for a continuum beam,

* homogenization criteria - LNT Ia1 > 10

* aspect ratio criteria - LNT /dNT >10

linearity of strains criteria (LNT L NT ) LNTO

In Equation 1.11. LNT, LNTO and dNT are the final length, initial length and diameter of the

CNT, respectively, and al is the width of the carbon ring - about 0.24 nm.

Large ambiguities in the properties of CNTs exist as a result of the application of

continuum models. Nonetheless, high computational efficiency at the cost of this

ambiguity and loss of accuracy seems to be accepted by the researchers.
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a. Equivalent Solid model

Treacy et al., (1996), Wong et al., (1997), Krishnan et al., (1998), Poncharal et

al.,(1999), Salvetat et al., (1999), and Qi et al. and many others applied beam theory to

isotropic solid cylindrical beam models to estimate the effective mechanical properties of

individual CNTs. The application of the solid beam model has been somewhat successful

for calculating the static and dynamic responses of the CNTs. However, the ambiguity in

the estimated properties such as effective bending modulus (0.81 - 1.8 TPa) can be seen

when Euler beam theory is applied to analyze the experimental data. Recent

investigations by Liu et al., (2001, 2003), Wang and Wang (2004), Wang et al., (2004),

and Wang et al., (2005) have taken the anisotropic nature of CNT into account in their 2D

(e.g., Liu et al., 2001, 2003) and 3D (e.g., Wang and Wang, 2004; Wang et al, 2004;

Wang et al., 2005) solid beam models. Using FE techniques, they were able to capture

both pre- and post-buckling effects of a CNT assuming small-strains and large-

deflections, and found a highly nonlinear moment-curvature relation; in addition they

found a non-dimensional critical curvature for the onset of the rippling bending mode in a

CNT. The material properties of basal graphene sheet were adopted to model the

anisotropic nature of MWCNTs.

b. Equivalent Shell Model

Yakobson et al., (1996) first compared the results of atomistic modeling for

axially compressed buckling of single-walled nanotubes with a simple continuum shell

tube that mimics the SWCNT wall. They found that the buckling patterns displayed by

MD simulations can also be predicted by the continuum shell. Thereafter, Ru (2000a,

2000b, 2000c, 2001), Wang et al., (2003), He et al., (2005), and others used analytic shell

models to capture the nonlinear mechanical behavior of both SWCNTs as well as

MWCNTs very well. Researchers however, are not consistent in their effective shell

thickness and Young's modulus in that they range from 0.066 - 3.4 nm and 1.0 - 5.5

TPa, respectively. The properties are usually found by equating the total strain energies

of the system with that obtained from ab initio or MD analysis under identical loading

conditions. Later Pantano et al., (2003, 2004a, 2004b) used Yakobson et al.'s, (1996)
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insight to propose a continuum nested structural shell method for modeling CNTs; this

method will be discussed in detail in the next chapter.

1.3.2.5 Finite Element (FE) Analysis

Much like MD simulations, FE analyses help researchers verify the analytical

solutions and to visualize the experiments that are hard to see at nano scale levels. All

continuum models: solid, truss and shell have been used to study CNTs. Liu et al., (2001,

2003), Wang and Wang (2004), Wang et al., (2004), Wang et al., (2005), and current

authors have modeled the anisotropic solid beam model using the solid elements (Figure

1.11-a), Tserpes and Papanikos (2005), Li and Chou, (2003 a, 2003b) developed a Truss

model using beam elements; see Figure 1.11-c. Pantano et al., (2003, 2004a, 2004b), and

Arroyo and Belytschko (2003) modeled MWCNTs with the LJ potential as the interlayer

force while Sears and Batra (2004) modeled SWCNTs with thin shell elements, see

Figure 1.11-b.

(a) (b) (c)

Figure 1.11: Finite Element analysis of CNT using orthotropic solid model (a) (Liu et al., 2001),
equivalent nested shell model (b) (Pantano et al., 2003), and truss model (c) (Tserpes and

Papanikos, 2005).

The FE-based orthotropic solid models, Liu et al., (2001, 2003), Wang and Wang

(2004), Wang et al., (2004), and Wang et al., (2005) adopted basal graphite plane elastic

properties to simulate MWCNTs subjected to bending. All the orthotropic solid FE-based

models were simulated in a commercial FE software package, ABAQUS. The FE-based

truss models are usually modeled with beam elements. Li and Chou (2003b) treated
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MWCNTs as a single-walled frame like structure and used a nonlinear truss rod model to

simulate the LJ potential and represent the interlayer van der Waals forces. The properties

were derived in an approach similar to that suggested by Odegard et al., (2002) in Section

1.3.2.3. Lastly, as mentioned in the previous section, Pantano et al., (2004b) modeled the

nested shell structure by assuming shell elements to be isotropic having Young's modulus

and mechanical wall thickness pair of 4.84 TPa and 0.075 nm, respectively. The

interlayer van der Waals force was also included in the nested shell FE-based model of

MWCNTs subjected to bending and axial compression (e.g., Pantano et al., 2003). Using

the nested shell FE-based model, Pantano et al., (2003, 2004a, 2004b) were able to study

the effect of van der Waals forces on the rippling behavior on MWCNTs subjected to

bending (e.g., Pantano et al., 2003) and axial compression (e.g., Pantano et al., 2004a).

In this chapter, we presented a detailed description of the nearly defect-free

carbon nanotube structure, and a brief overview of their potential applications.

Thereafter, we discussed techniques researchers are currently using to synthesize high

quality carbon nanotubes, and also to measure their mechanical properties. Measuring the

mechanical properties experimentally is a challenge due to exceptionally small

dimensions of the nanotubes; therefore, researchers must simulate the mechanical

behavior of these nanotubes using computational techniques, such as MD and FE

simulations. Recently, most experimental investigations point to a unified

characterization of the mechanical properties of carbon nanotubes; however, theoretical

investigations differ in their approach in estimating these properties. MD simulations

being the most precise, lack in computational efficiency in modeling multi-walled carbon

nanotubes. On the other hand, the less precise FE simulations are more computationally

efficient. Theorists have used beam, truss, solid, and shell elements to model carbon

nanotubes. Recently, Pantano et al., (2003, 2004a, 2004b) developed the nested shell

model in which they used shell elements to model MWCNTs, and user defined

interference elements to model interlayer van der Waals forces. With this technique, they

were able to successfully capture the complex nonlinear deformation mechanics of both

single and multi-wall carbon nanotubes; however, they used small-sized elements that

make their model computationally inefficient for large MWCNTs. For FE simulations,
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modeling nanotubes with solid elements is the most efficient approach; however, they

either fail to capture the complex buckling behavior of MWCNTs or fail to account for

the van der Waals force. This motivated us to develop a new FE approach, presented in

Chapter 2, which uses computationally efficient solid elements whose properties are

derived from nested shell theory (Pantano et al., 2003).

4 Indentor tip --

Carbon nanotubes -+

/ /////////////
(a) (b)

Figure 1.12: Two-dimensional schematic of nano-indentation (a) and nano-scratching (b).

Thereafter in Chapter 3, we will apply the developed FE approach to an analytical

contact model first proposed by Qi et al. (2003). The contact model simulates the nano-

indentation of vertically aligned carbon nanotube (VACNT) forests, whereby nanotubes

are consecutively bent during the penetration of the indentor (AFM tip), as shown in

Figure 1.12-a. Using the simulation results obtained from the FE approach in Chapter 2,

the contact model will be modified to include the buckling effect observed in MWCNTs.

Thereafter, the nano-indentation contact model will be further modified to simulate nano-

scratching of beams, as shown in Figure 1.12-b. Finally, Chapter 4 concludes the thesis.
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Chapter 2

This chapter proposes a method for the representation of the mechanical behavior

of an MWCNT by building a linear elastic representation based on the local orthotropy of

its nested tube microstructure. We will refer to this as an "equivalent orthotropic

representation" (EOR) with the caveat that the tube as a whole is not orthotropic but its

microstructure is locally orthotropic. The effectiveness of the EOR model in predicting

nonlinear deformations is examined via comparison with the results of the nested

structural shell representation (NSSR) developed by Pantano et al., (2004b). The

proposed method when applied to the Finite Element Method (FEM) MWCNT models

replicates the bending, axial compression and radial compression phenomenon seen in the

NSSR model and several experimental investigations. The proposed model was observed

to capture the pre- as well as post-buckling, nonlinear structural behavior of MWCNTs

within a reasonable amount of deviation from previous predictions. The proposed method

is able to provide excellent predictions of such complex deformations, since it directly

accounts for the stiff axial behavior of the shell and the compliant radial and shear

behavior of the interlayer van der Waals interactions. The proposed model is time

efficient and works well for a complicated system of MWCNTs in FEM which is

currently impractical if not impossible with Molecular Dynamics (MD) or NSSR

techniques.

2.1 Introduction

Investigators have been able to successfully use MD simulations (e.g., Yakobson

et al., 1996, Lijima et al., 1996, Tserpes and Papanikos, 2005, Sun and Zhao, 2005, Xiao

et al., 2005, Liew et al., 2004) and NSSR modeling (e.g., Pantano et al., 2003, 2004a,

2004b) to simulate the tension, compression and bending of MWCNTs thereby capturing

the initial linear elastic behavior of the tube as well as the buckling instabilities and

resulting nonlinear behavior. Liew and Wong et al. modeled a maximum of four
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concentric tubes with MD simulations, while Pantano et al., (2003) modeled a maximum

of nineteen concentric tubes with NSSR technique in FEM including interlayer

interactions. Although with the nested shell model approach, Pantano et al., (2003, 2004a,

2004b) are able to simulate a higher number of walls in the MWCNTs, it still becomes

impractical for very large MWCNTs containing over 100 walls.

Many of the potential applications for CNTs will utilize MWCNTs (VACNT,

CNT-based composites, MEMS devices, and others). Current atomistic modeling and

FEM nested structural shell models, while providing detailed insights into the tube

structure and deformation, are computationally burdensome for use in actual composite

material simulations. This chapter presents an alternative continuum solid model

approach that preserves the structural features governing the tube mechanical behavior

while offering tremendous improvements in computational cost. The new model takes

into account the nested tube structure, the stiff inter-wall van der Waals normal

interactions, and the compliant shear interactions between walls that give carbon

nanotubes their unique mechanical behavior. The proposed EOR model has the potential

to construct several MWCNTs that include the internal van der Waals interactions

between walls and external interactions between individual tubes.

This chapter first reviews past models of CNT structure and then presents the new

approach. Axial compression, bending and radial compression behaviors from the new

model are then presented and compared for different models.

2.2 Review of Prior Modeling Approaches

This section reviews models of the structural and mechanical behavior of

nanotubes, including Molecular Dynamics, isotropic continuum solid, and nested

structural shell representations.
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2.2.1 Molecular Dynamics Model

Molecular Dynamics simulations of defect free cylindrical carbon nanotubes have

been performed by several research groups (Yakobson et al., 1996, Iijima et al., 1996,

Tserpes and Poponikos, 2005, Xiao et al., 2005, Sun and Zhao, 2005, Liew et al., 2004).

MD simulation models can predict CNT behavior at small linear deformations and also

beyond the linear response. An analytic approach uses Newton's second law to solve the

governing equations of particle dynamics:

d 2r,
d 2-- = -VV, (2.1)

Midt2

where mi and r, are the mass and spatial coordinates of the ith atom, respectively. V is the

empirical potential for the system, and Vdenotes the spatial gradient (Qian et al., 2002).

The empirical potential for the system is defined by one of force field, bond-order or

semi-empirical methods, as discussed earlier in Chapter 1. The interlayer interactions in

MWCNT are usually taken into account by either of two available potentials: Lennard-

Jones (U) (Girifalco and Lad, 1956) or Morse potential (Wang et al., 1991).

Yakobson et al., (1996) used the Tersoff-Brenner potential in their MD

simulations of SWCNTs for modeling interactions between carbon atoms (bond-order

empirical potential); the SWCNTs modeled had different diameters, helicities and

lengths. They subjected these SWCNTs to axial compression, bending and torsion in their

simulations. The results thus obtained were plotted as strain energy of deformation versus

axial compression strain, bending angle or torsion angle. A sudden drop in strain energy

was observed in simulations upon the initiation of buckling. In a separate research, Iijima

et al., (1996) carried out similar MD simulations in bending. Here several SWCNTs and

DWCNTs of different diameters and helicities were modeled by applying the Tersoff-

Brenner potential. For DWCNTs, the compliant van der Waals interaction between the

layers was also taken into account.

In their MD simulations for SWCNT and DWCNT, both Yakobson et al., (1996)

and lijima et al., (1996) found that the strain energy of nanotubes increase quadratically

with the bending angle until the onset of buckling and subsequently linearly thereafter.
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The quadratic behavior implies that the bending response of a nanotube can be treated as

some effective linear elastic continuum beam. However, quadratic behavior appears only

before buckling implying that the effective linear elastic beam assumption is valid only

prior to the onset of local instabilities, as shown in Figure 2.1.

Figure 2.1: Molecular Dynamics simulation of a SWCNT subjected to bending (Iijima et al.,
1996). Single kink is visible, which results in the drop in the strain energy curve when plotted

with respect to bending angle.

Robertson et al., (1992) found that unloaded SWCNTs possess an internal strain

energy per carbon atom that exhibits a J/R 2 relationship, where R is the radius of the tube

wall. The inverse square relationship in comparison with continuum-level elastic

structural mechanics predictions indicated that the single-atom thick tube-wall behaved in

a manner mechanically equivalent to that of a thin shell. In classic elasticity theory, the

internal energy per unit area or rolling energy, UR, in a cylindrical tube is given by UR

2(D/R2), where D is the bending stiffness of the sheet. (Yakobson et al., 1996) supports

the Robertson et al., (1992) argument by comparing the internal energy of a SWCNT

obtained from ab initio or semi-empirical studies with the energy of a shell. Considering

the two-dimensional hexagonal structure of graphite as an isotropic material implies that

only two elastic parameters C (the membrane stretching stiffness) and D (the bending

stiffness) are required to define the equivalent shell. Taking the data from Robertson et

al., (1992), Yakobson et al., (1996) obtained C= 59 e V/atom and D = 0.85 e V (= 2.23 e V

A2/atom [assuming the occupied area per carbon atom to be Q = 2.62 A2/atom]). They

also reported the Poisson ratio as 0.19 for the shell, obtained by estimating the reduction
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in diameter of a tube subjected to uniaxial tension in a simulation. This value of Poisson

ratio also happens to be the value obtained from experimental results for single crystal

graphite by Kelly et al., (1981). Then applying classical shell theory, where C = Yh and D

= Yh 3/12(1 - v2), they obtained E = 5.5 TPa and h = 0.066 nm, where E and h are the

Young's modulus and the thickness of the shell, respectively. Later, Pantano et al., (2003,

2004a, 2004b) used classical shell theory, and the above C and D values to find an

equivalent Young's modulus and mechanical wall thickness pair of 4.84 TPa and 0.075

nm, respectively.

2.2.2 Linear Elastic Beam Model

MD simulation is an excellent technique for capturing CNT mechanics; however,

it is computationally expensive. For example, the model of DWCNT is a challenge when

simulating from initial small-strain, small-deformation behavior through the structural

instabilities. Therefore, linear elasticity theory in various forms has been employed by

many investigators to study and interpret various CNT deformations. As mentioned in the

previous section, Yakobson et al., (1996) and Iijima et al., (1996) indicated that a CNT

can be treated as an effective solid beam because the strain energy of the tube shows a

quadratic behavior as a function of curvature for bending simulations before buckling

initiates. Harik (2001) using a non-dimensional approach, also supported the Yakobson et

al., (1996) theory of treating CNTs of large aspect ratio as nanobeams. Many

experimentalists (Wong et al., 1997, Qi et al., 2003, and more) performed bending on

CNTs using AFM tips; thereafter, they reduced the data assuming an effective linear

elastic beam to find the effective mechanical properties of the tube, such as a bending

modulus of CNTs. The bending is limited to small angles prior to any onset of buckling.

Here the effective bending stiffness, (EI)Eff, of a CNT is given by the classic formula,

EIff = EbIube Eb (R - R) (2.2)
4
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where Eb, Iube, R,, R are the effective bending modulus, moment of inertia, outermost

and innermost radius of the effective linear elastic beam, respectively. The Eb found by

reducing it from the experimental results usually varies between 0.8 tol.8 TPa (Treacy et

al., 1996, Wong et al., 1997, Krishnan et al., 1998, Qi et al., 2003). The continuum elastic

solid beam is considered to have homogenous isotropic properties.

2.2.3 Discrete Nested Shell Model

A linear elastic isotropic beam model provides an adequate representation of the

mechanical behavior of SWCNTs and MWCNTs for small strain deformation behavior

prior to any buckling and is time efficient for producing results for even large radius

MWCNTs. However, this technique cannot predict the buckling and post-buckling

behavior of a CNT. The experimental observations of internal structures during bending,

buckling, and telescopic sliding (Cummings and Zettl, 2000) indicate that specific

structural features of CNTs make important contributions to nanotube deformation

response during some cases of mechanical loading; therefore, such features should be

accounted for in any model of a nanotube. Pantano et al., (2004b) used the insights

derived from experimental work and atomistic simulations to develop an FEM-based

elastic nested shell model approach that considers the internal structural features of a

tube. The nested shell model can predict the pre-buckling (linear) mechanics, onset of

local versus global buckling and the post-buckling (nonlinear) mechanics of both

SWCNTs and MWCNTs, as shown in Figure 2.2.

(a) (b)

Figure 2.2: Finite Element bending simulation of a 14-walled CNT using nested shell model (a)

(Pantano et al., 2004b). Complex rippling mode is apparent in the figure (b) which is remarkably

similar to the HRTEM image taken by Poncharal et al., (1999).
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Pantano et al., (2004b) specified four key aspects for modeling a CNT as a

continuum shell. First, a Poisson ratio of 0.19 and a specific paring of elastic constants

(Ewall = 4.84 TPa, twall = 0.075 nm) must be assigned to each tube wall such that both the

membrane stretching and bending behavior of the wall are captured. Second, an initial

stress state that corresponds to the curvature of the tube wall must be assigned. The initial

stress state develops because the stress-free planar hexagonal structure wraps into a

tubular structure. The initial stress state in the tangential direction, C-oo, is inversely

proportional to the radius of the tube and can be calculated from the following equation

derived using classic elasticity theory,

E= 1w'l r-R] (2.3)

where, R is the mean radius of the shell tube, and r is the radial location of a point in the

tube. Clearly from Equation 2.3, the magnitude of the initial stress state diminishes as the

radius of the MWCNT increases. Third, a strong normal force interaction between the

adjacent walls, with other portions of itself, and with like substrates must be incorporated.

Pantano et al., (2003, 2004a, 2004b) used the pressure/inter-layer-distance relation which

Zhao and Spain (1989) derived from Girifalco and Lad (1956) LJ potential energy model.

The pressure/inter-layer-distance relation that Pantano et al., (2004b) used to model the

van der Waals interaction pressure-separation behavior is given below:

( 10 4

P = T c C ,I (2.4)
6 c C

where, P is the interlayer pressure, c is the inter-layer distance, co = 0.34 nm is the

interlayer equilibrium separation distance, and q' = 36.5 GPa. Fourth, the wall-to-wall

shear resistance, taken to be negligible, was observed experimentally to be very

compliant and an order of magnitude weaker when compared to the stiff normal wall-to-

wall resistance provided by van der Waals interaction. Blakslee et al., (1970) found the

shear modulus for Pyrolytic Graphite to be 0.18 to 0.35 GPa. In addition, Yu et al.,
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(2000b) and Cummings and Zettl (2000) made measurements of tube pull-out force as a

function of overlap length between shells, and controlled and reversible telescopic

extensions of MWCNTs within a TEM and found average sliding resistance strength of

0.48 MPa. The sliding resistance strength thus found for CNTs matches the experimental

mean value of the inter-layer sliding resistance strength for crystalline graphite found by

Kelly (1981).

In addition to the four key aspects, Pantano et al., (2004b) concluded that the most

accurate mechanical behavior for predicting structural instabilities was obtained when

with square individual shell elements discretizing the SWCNT, and with a side length of

0.24 nm, which is the same as the height of the hexagonal lattice cell. They (Pantano et

al., 2004b) found that smaller elements might erroneously capture a wavelength that

cannot be accommodated by the carbon lattice structure and too large an element

dimension might miss the buckling wavelength.

The interlayer potential between nested shell structures have been successfully

modeled with nonlinear FE method in Pantano et al., (2003, 2004a, 2004b). Results

obtained by compressing and bending the FE-based nested elastic shell model for

SWCNTs and MWCNTs were compared with MD simulations of SWCNT deformations

(Yakobson et al., 1996) and with high-resolution images of bent MWCNTs (e.g., Falvo et

al., 1997, Poncharal et al., 1999, Bower et al., 1999). In their simulations with the FE

nested shell model, Pantano et al., (2003, 2004a, 2004b) were able to successfully capture

the pre- and post-buckling behavior of the CNTs. By setting the square shell element size

to that of the carbon lattice spacing (0.24 nm) and applying van der Waals interaction

within the tube, a single kink similar to that of MD simulations developed in the

SWCNTs. However, due to lack of numerical simulation results for MWCNTs, Pantano

et al., (2004b) compared the results from the nested shell model with the experimental

observations of Lourie et al., 1998, Poncharal et al., 1999, and Bower et al., 1999.

MWCNTs develop a multiple kink pattern (rippling or wrinkling) in the post-

buckling regime, as shown in Figure 2.2. From their NSSR model, Pantano et al., (2003)

showed this rippling pattern to progress from a shorter initial wavelength (1) to a "steady-

state" longer wavelength as macroscopic loading increased. The predicted steady-state

buckling wavelengths were computed for several MWCNTs and compared with the
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experimental observations of Lourie et al., 1998 and Bower et al., 1999; the nested shell

model showed remarkably good agreement with the experimental observations (Pantano

et al., 2003, 2004b). The initial buckling wavelength for the outermost tube in an

MWCNT was found to match the value predicted by thin shell theory (Timoshenko,

1936) that not only accounts for the outer wall stress, but also thickness.

A= 3.4 R h , (2.5a)

here R, and h are the outermost radius and the CNT outer wall thickness (= 0.075 nm) of

the nanotube, respectively. In addition, Pantano et al., (2003, 2004b) showed that the

steady state longer wavelength in an MWCNT can be predicted from Equation 2.5b.

A = Rh, , (2.5b)

where h, = (R, - R1) is the total tube thickness and R is the innermost tube radius,

following that observed by Bower et al., (1999).

2.3 Present Model Design

Here, we propose a new FE-based equivalent orthotropic representation (EOR)

model for an MWCNT based upon the nested shell structure of similar CNTs. The EOR

model uses a micro-mechanical representation, where the "plane" of orthotropy is aligned

with the radial (r), the tangential (0), and the axial (z) directions of the tube, as shown in

Figure 2.3-a and 2.3-b. Unwrapping a local point (Figure 2.3-c), we construct a

representative volume element (RVE) of a material point, a radially symmetric layered

structure, to predict the equivalent mechanical properties. The EOR model can be thought

of as transversely isotropic in nature because of the radially symmetric nature, and

therefore requires five independent effective elastic constants to fully define its

equivalent mechanical properties. The required five constants that fully capture the
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locally transverse isotropic nature of the layered material are determined by the

axial/tangential modulus (EzzEff = EooEff), the radial modulus (ErrEff), the Poisson ratios

VozEff (= vzoEgff) and VroEff ( VrzEff), and the shear modulus (GroEff = GrzEff). Note that the

Poisson ratio notation used, for example is vo= -z / coo for axial loading in the 6-

direction.

In the following sections, starting with simple rule of mixture (ROM) method, we

subject the RVE to four uniform loading conditions: in-plane stress (q,, or coo), transverse

stress (rr), transverse shearing (aro = arz) and in-plane shearing (aoz). The loading

conditions are chosen such as to determine the five constants in terms of the tube wall

properties, the interlayer potential and the RVE geometry (interlayer spacing) listed

earlier.

Figure 2.3: N-walled CNT with a representative volume element (RVE) (a) at a material point

with inset (b). The gray layers represent the graphene sheets and the spaces between the sheets

are the spaces where interlayer interactions exist. Top-view of the N-walled CNT with cylindrical

coordinate system (c).

The condition that oo: 0 and all other ai = 0 will determine EooEff and v&Eff, the

condition that qrr # 0 and all other uy = 0 will determine ErEff and vroEff, the condition that

aro # 0 and all other ou = 0 will determine GroEff and finally, the condition that ao& # 0 and
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all other oy = 0 will determine GoZEff. The different loadings are applied on an N-layered

composite RVE taken from an MWCNT wall, as shown in Figures 2.3-a and 2.4-b.

Tangential (0) Radial (r)

-Graphene Layer

- Layer

Radius at
- midpoint of the

layer
Axial (z) (a) (b)

Figure 2.4: Iso-view of the representative volume element for an MWCNT from Figure2.3.

Notice the Graphene layers and the Space layers that constitute the RVE in cylindrical coordinate

system (a). The N-layered planar RVE at a material point used in the analysis along with

cylindrical coordinate system (b).

2.3.1 Effective Elastic Orthotropic Properties

The EOR material can be treated as a micro-laminate composite made of

alternating layers of graphene sheets and empty space, as shown Figure 2.4-b. Applying

the ROM for composites, we can analytically determine the equivalent effective

properties for our layered EOR structure. Enforcement of compatibility and equilibrium

during the previously stated loading conditions enables us to determine the effective

composite properties based on the layer properties and their volume fraction. The volume

fraction of a constituent in the RVE is defined as the ratio of the volume of the

constituent, V (i = g for graphene, i = s for space) to the total volume of the structure, V:
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V =Vg +V, (2.6a)

V V
f f S - 1-fg (2.6b)g V fS V

t

fg = g (2.6c)
t9 +ts

N

2tg *LR'

fg(N)= t ()2 ± ff2 (2.6d)

RO+ - R, - t

2tg * R' (2.6e)
fg(R')= ,R +4Jj 2  (2.6e)

R' + tg)2-(R' -t s+ t)2

wherefg andfs are the volume fractions of graphene and space layer, respectively; tg is the

thickness of the graphene layer; t, (= co) is the interlayer equilibrium spacing; RO and R

are the outermost and innermost tube radius. In addition, R' and N in Equations 2.6d and

2.6e are the mean radius of the ith tube and the number of concentric tubes, respectively.

Equations 2.6c to 2.6e represent three forms of fg: constant global fg, global fg(N) as a

function of N, and localfg(R) as a function of R'. The basic difference in the three forms

offg is that the fg(N) and fg(R) takes the curvature of the CNTs into account, while the

constant global form assumes layered planar structure. In addition to the curvature of the

layers, fg(R) accounts for the variation in volume fraction based on the variation in

curvature of the layers within an MWCNT. Therefore,fg(R') obtained from Equation 2.6e

offers the most precise value out of the three forms.
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Figure 2.5: Variation of the volume fraction of graphene (fg(N)) with number of layers in an

MWCNT (tg = 0.075 nm, t=0.34 nm). The inset view shows the top-view of MWCNT with

specific parameters used in the determination of global volume fraction.

Figures 2.5 and 2.6 are graphical representations of Equations 2.6d and 2.6e

obtained by substituting tg = 0.075 nm and t, = 0.34 nm. Similarly, substituting values for

tg and t, in Equation 2.6c, we find that fg is a constant value of 0.181 that does not vary

with either N or R', and represented by a straight dash-line in Figures 2.5 and 2.6.

However, substituting similar values of tg and Gs in Equations 2.6d and 2.6e, we observe

that fg varies with N or R', as shown in Figures 2.5 and 2.6, respectively. Simulation

results indicated that Equation 2.6d give better results for higher number of coaxial tubes

in a MWCNT is considered - higher than 20 concentric tubes, as shown by dash line in

Figure 2.5. For MWCNTs having more than five concentric tubes, the right hand term in

the denominator can be ignored when compared to that of the left hand term in the

denominator in Equation 2.6d and 2.6e. Figure 2.6 shows the variation of the volume

fraction of the graphene layer and the adjacent space layer as a function of tubes radial

location R'. We expect to get better simulations results, if in future, material properties
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within a MWCNT model can be made to vary as a function of element's location with

respect to the axis of the CNT with the help offg(R).

0.36
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0.26
40

t5 0.24-
U
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> 0.2-
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0.18 -------------------- -----------------------------------

0.16 III

0 10 20 30 40 50 60 70
i th Tube Radius in MWCNT, R (nm)

Figure 2.6: Variation of the volume fraction (fg(R')) for an individual graphene layer with radial

position in an MWCNT (tg = 0.075 nm and t,=0.34 nm). The inset view shows the top-view of

MWCNT with specific parameters used in the determination of local volume fraction.

In the subsequent sections, we will revisit the volume fraction issue and its

possible role in the in the formulation or the EOR model. Next, we subject the RVE at a

material point to each of the four aforementioned uniform stress conditions in order to

determine the effective independent elastic constants for the EOR model material. Each

constituent layer is taken to be linearly elastic with properties Eg, Gg, vg and Es, Gs, v,

defining the effective Young's modulus, shear modulus and Poisson ratio for the

graphene and space layers, respectively. By satisfying the equilibrium and compatibility

conditions, we can derive the equations that govern the overall composite behavior for

each loading condition.
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A. R VE Subjected to Macroscopic Normal Stress (0 - direction) (eo # 0 with all other

ai = 0)

The effective in-plane Young's modulus (EoEff and EzzEff) and Poisson ratio (vozEff)

of the RVE are calculated by applying a macroscopic stress, coo, as shown in Figure 2.7.

The main assumption in this formulation is that the strains in the 0- and z-directions in the

symmetry plane are the same in the graphene (g) and the space (s) layers. This implies

that the graphene-space layer bond is perfect.

Ar

Figure 2.7: Representative volume element from a N-walled CNT is subjected to macroscale

normal stress in 0-direction.

1. Equilibrium Equations

,rrg = rrs a rr 0

0_oog fg + OOfs = 0'

OY22gfg + 0-zss = 0zz = 0

2. Compatibility Equations

(2.7a)

(2.7b)

(2.7c)

(2.8a)1rrgfg + ,,,fs = rr
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Co9g = C 00,' = 0 (2.8b)

Ezzg =6 =6S Z (2.8c)
zg zzs zz ( '

3. Stress-strain Equations

.
6

. V g 0- + -Vzrg 0 (2.9a)
rr E09g Ezzg _

[1 Vz~
1600g = E 0 E ; vz = 6 V (2.9b)

_ 1 Vg 1
Ezzg = a zzg - E099 (2.9c)

_ zzg J9

A similar set of equations are obtained for the s-layer in the composite (switch the

subscripts 'g' in Equations 2.9a to 2.9c by 's'). Next, multiplying Equation 2.9c by V6Zg

and adding the result to Equation 2.9b, we get

- 11 + V zszzg (2.1Oa)
(1- 2V6Jg

Similarly, multiplying Equation 2.9b by vag and adding the result to Equation 2.9c gives

a -ZZ9 = Ef g [Czzg + V 6  g 1. (2.1Gb)

Similar equations for stresses in the s-layer are obtained (switch the subscript 'g' by 's' in

Equations 2.1 Ga and 2.1 Gb). Next, combining stress-strain equations with the equilibrium

and compatibility equations and rearranging, we get
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E9gfg + E9 Of% 1 E fgV&zg + E9 %fsv 16
0 --12 V 1- V 1- v On1- v

Similarly,

o- =
Ezzg V g fg

1- VIg )

(2.11 a)

(2.11 b)+E(z-lfV 1699 + Ezzgfg + E-,fS 16J [ 1 V zg &sa

Note that o-z =0, we solve for5,6 in terms ofe., from Equation 2.1lb and the substitute

the result into Equation 2.11a and rearrange then gives the required effective Young's

modulus in axial and tangential direction as

096-99
E99g fg E 9g f E,, fgV , E 9,Jffvj
S 1-2 s 1-v (+ i- v

EZ9V~zg fg (I - V . ) +E (izv f,-.

E f _V2,)Ez., f, (1-V2,

Now, comparing z from Equation 2.11 b and Equation 2.11 d below,

and comparing ezz from Equation 2.11 b and Equation 2.11 d, we get

(2.11 c)

(2.1 Id)

VzEff =L EzzgvOg fg (1
Ezzfg(I

- v' )+ E.,v z f,(1

+ Ezzfs(1 VIg )

2z )]
(2.11 e)

Substituting Equation 2.1le back into Equation 2.11 c, we get
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OO Eog fg E0,s f1 E9 fgV6zg E 00 fSv 1E9 =Eff = - V + () I V Ef g + (2.1lIf)

B. RVE Subjected to Macroscopic Normal Stress (r - direction) (rU, # 0 with all other

aij = 0)

The effective transverse Young's modulus (ErEff) and Poisson ratio (vroEff) of the

RVE are calculated by applying a macroscopic transverse stress in the radial-direction, as

shown in Figure 2.8. Equilibrium provides the condition that stress in the r-direction is

the same in the graphene and the space layers.

Figure 2.8: Representative volume element

normal stress in r-direction.

from N-walled CNT is subjected to macro-scale

Urrg arrs arr

0T 0gfg + 010f,= fS = 0 -> = f C
f,

-zzgfg + -,f= a- = 0

ZZ= ,g, isotropic plane

arr

1. Equilibrium Equations

(2.12a)

(2.12b)

(2.12c)

(2.12d)
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2. Compatibility Equations

Errgfg + C,,f =E rr

Cog = &1 = 899

8 = 82Z =8 zz

3. Stress-Strain Equations

V rg a
E 00 o

V9g
-zrg

E zzg zzg

rrg = - -
Errg tE00

v1
+ zrg

Ezzg
U. Z-, = a- 00

Similarly,

rrg E V g
9~[ Errg tr + 00 E Ezzg J0 9j

Similar strain equations are obtained for the s-layer (switch the subscript 'g' with 's' in

Equations 2.14b and 2.14c). Next, combining the stress-strain equations with the

equilibrium and compatibility equations and rearranging, we get

=rr + ; -1'0 [

Err E,.,. " E0gg

+ Vzrg

Ezzg
E- , + (I I-{Effi, Ez Jj

Note that 6,, = CO& and substitute Equations 2.12b and 2.14c in the above equation

(similarly for the s-layer); then rearrange to get
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(2.13a)

(2.13b)

(2.13c)

Errg 
rrg

Errg
(2.14a)

(2.14b)

(2.14c)

(2.15a)



[og + } = Err (2.15b)
EE E E, E ,, Err fEErE

Rearrange the above equation to get

Vr~g vr&s

Err Err

_E Ezz LE E~5 J If)

After substituting Equation 2.1 5c into Equation 2.1 5a and E,. = rr, we get
"rr

E = + 
z 9rry E E E E E

E_ _ _ _ + f_ _ _ r g V 1g V o , + V z ' f
Err'ff =[{f Errs t Eg Ezzg E 00 Ezz

Vrog Vr~s

x { {L>rrs (2.16a)

E zzE E00s Ez f )00_ +_ VZ if9

Substituting Equations 2.12a, 2.14c, and 2.15c into Equation 2.13b, we get

Vrsg Vr 1

99 =- - {E - -E, 1 r Errs - E,. ,, (2.16b)
Erg E109 E,g ___ V { +rr ffSr

E00 t E I E9 , Es f,)

c.'oop = -V,. tgf Er-r (2.16c )
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Vreg Vr 1
VrEff =E Vrg 1 V9 L Errg Errs

EE., 9 Ezzg 1EOc E., f,)

(2.16d)

C. R VE Subjected to Macroscopic Shear Stress (rO - plane) (are # 0 with all other aij =

0)

The effective shear modulus (GroEff) of the RVE is calculated by applying a

macroscopic shear stress in the radial-tangential-direction, as shown in Figure 2.9.

Equilibrium gives the shear stress in the r-0-plane to be equal in the graphene and the

space layers.

Figure 2.9: Representative volume element from N-walled CNT is subjected to macro-scale shear

stress in r-O-plane.

1. Equilibrium Equation

(2.17)-,rOg = 0-,., = 0-r

2. Compatibility Equation

(2.18)ErOg fg + .6rsf, = -r
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3. Stress-Strain Equations

1
r2G rOg

1
ro 2 G r9

(2.19a)

(2.19b)

Next, combining stress-strain equations with equilibrium and compatibility equations, we

get

(2.20a)C,.g = f9 a-,r + rs .- s
2GO, 2Grs

Rearranging Equation 2.20a

1 f f2 Gr G,.k

OrO
2Gr-E

Gr -Efj 
9  G f._ rOg Gr~s

(2.20b)

(2.20c)

(2.20d)

D. R VE Subjected to Macroscopic Shear Stress (Oz - plane) (U'ez # 0 with all other ai =

0)

The effective shear modulus (GzEff) of the RVE is calculated by applying a

macroscopic shear stress in tangential-axial-direction, shown in Figure 2.10. Here

equilibrium condition gives the shear strain in the 0-z-plane to be equal in the g- and the

s-layers.
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Figure 2.10: Representative

shear stress in 6-z-plane.

CNT is subjected to macro-scale

1. Equilibrium Equation

a = 0-0g f, +0.& f, (2.21)

2. Compatibility Equation

(2.22)6zz = 6 sn = 6

3. Stress-Strain Equations

'oz = 2G6zgczg

o-, = 2GOSEtZs

(2.23a)

(2.23b)

Combining the stress-strain equations with the equilibrium and compatibility equations,

we get

o = 2(Gg,, fg +Gz f )e, (2.24a)

50

- a8z
of

a0z

a6z

volume element from N-walled



1
2 Geff

GEff = G6,fg + Gz, f,

(2.24b)

(2.24c)

We can simplify the effective material constant equations (Equations 2.11 c, 2.11 f,

2.16a, 2.16d, 2.20d and 2.24c) by substituting the conditions satisfied by the isotropic

(graphene) and transversely isotropic layers (space). For the isotropic layers, we can use

the conditions given in Equations 2.25a to 2.25c, and for the transversely isotropic layers

we can use the supplementary conditions given in Equations 2.26a to 2.26d (Solecki and

Conant, 2003). Recall that the isotropic and transversely isotropic layer assumption is

based on nested shell model (Pantano et al, 2004b).

Isotropic Material

V U = V

G =
2(1+ v)

(2.25a)

(2.25b)

(2.25c)

Transversely Isotropic Material

-"- =E--, for i = r andj = 0 and z
E, E 1

voz = V.,

G90 =

2(1+ va )

(2.26a)

(2.26b)

(2.26c)

(2.26d)
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Final Material Constant Equations for the EOR model

___~~ E__ ___ (~ O~Err, Vg ~EgV
ErrEff - + - 2f 9 v E 0 E - Erv

Eg E,., * )E Err.{(1-v fEc +(1 -v z)fg Eg

(2.27a)

EogE f Elf Eoogfgvag EOa fsv ozsE O9fff = E z E 99gf + 2 ~ f ] V6Eff[ 1 ) + sIzs]

1 -vE 1 -v -vivg(1 -

rE E 1-V Errg -EV,.) 
r =v E E 1- V)fOEf +(1-Vs)fgEg

g v Evf _1V2 ) + Eosvz, fs V2)

E f (1 -vi s) +E= g,(1 - )

(2.27b)

(2.27c)

(2.27d)

(2.27e)GrOff G ff f+ f

G = Gg fg + G G (2.27f)

Equations 2.27a to 2.27f give the necessary equivalent material constants for the

EOR model; in the following sections, we apply these equations to model MWCNTs with

an advanced Finite Element commercial software.
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2.3.2 Finite Element Effective Orthotropic Solid Beam Model

The EOR model uses a micro-mechanical representation of the radially symmetric

layered structure to predict the equivalent mechanical properties for an effective elastic

orthotropic continuum solid; these effective elastic properties were derived in the

previous section (Equations 2.27a to 2.27f).

Since the EOR model is based upon the NSSR model, the material properties for

the graphene layers are directly adopted from (Pantano et al., 2004b), and are listed in

Table 2.1. Recall that MWCNTs consist of layers of graphene sheets with a well-defined

inter-sheet equilibrium spacing of 0.34 nm - where van der Waals interactions occur; we

define this interlayer separation as the thickness of the space layer in our layered

structured EOR model. Since the van der Waals interaction can be thought of as effective

interlayer space radial modulus Errs(rr) that depend on interlayer separation, we derive

the interlayer space modulus from the U potential (Equation 2.4). Substituting Equation

2.28 into Equation 2.4 and then taking the derivative of both sides with respect to radial

normal strain (Err), we get

_rr (c - cO)
CO

C C= (1+ E,), (2.28)

E, (E,. )= 10 4 (2.29)
6 (1 + rr)" {(1 + (2.29

where c and c0 are the current and the equilibrium inter-layer spacing, respectively. The

values of constants co and Yf are 0.34 nm and 36.5 GPa, respectively. Figure 2.11 is the

graphical representation of Equation 2.29 where Er, ranges between -0.5 to 0.15. In Figure

2.11, zero strain refers to the equilibrium separation distance of 0.34 nm.
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Figure 2.11: Radial modulus versus compressive strain for the s-layer derived from LJ potential.

Since the Poisson ratio is undefined for the space layer, we assume it to be same

as that of graphene layer (= 0.19). In addition, the effective shear modulus of the space

layer is taken to be 0.48 MPa, a negligible value; we assumed a negligible shear modulus

value since Pantano et al., (2004b) assumed the shear stiffness and strength to be zero for

their NSSR model. The shear modulus values reported in literature ranges from 70 MPa

to 4.5 GPa (e.g., Blakslee et al., 1970; Zhao and Spain, 1989). Pantano et al., (2004b)

made the zero shear stiffness assumption based on the experimental studies of Cummings

and Zettl (2000) and Yu et al., (2000b). The effective Young's modulus (Eoo = Ezz) for

the space layer is then calculated via Equaion 2.25c. The final properties thus taken for

the layered structured EOR model in the local material coordinate system are listed in

Table 2.1.
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Table 2.1: Elastic properties used for Equivalent Orthotropic Solid model represented in

cylindrical coordinate system. The thickness of the graphene layer tg = 0.075 nm and that for

space layer t, =0.34 nm.

Mechanical Properties Graphene Layer Empty Space Layer

Constants (Isotropic) (Transversely Isotropic)

Err 4.84 TPat Err(E) * *

E00 4.84 TPat  1.14 MPa*

Ezz 4.84 TPat  1.14 MPa*

VrO 0.19 , 0.19

Vrz 0.19t 0.19

voz 0.19' 0.19

Gr 2.03 TPa* 0.48 MPatt

Gr, 2.03 TPa* 0.48 MPat t

GOz 2.03 TPa* 0.48 MPa t

SPantano et al., (2003, 2004a, 2004b).

* Cummings and Zettl (2000).

* substitute E and v for g-layer and G and v for s-layer in Equation 2.25c

** see Equation 2.29

Next, we plot several curves (Figures 2.12 to 2.17) by substituting the elastic

properties for the graphene and the space layers into the final material constant equations

(Equations 2.27a to 2.27f). Figures 2.12 to 2.14 show the variation of the global elastic

properties as a function of number of concentric shell tubes, where fg assumes the global

form, fg(N). Figures 2.15 to 2.17, on the other hand, show the variation of the elastic

properties of individual set of layers as a function of radial location (R') within an

MWCNT, where fg assumes the local form fg(R); the individual set of layers includes a

single space and its adjacent graphene layer. All the shell tubes in Figures 2.12 to 2.17

have armchair (n, n) chirality with the innermost radius of 0.34 nm and n = 5, 10, ...
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Figure 2.12: Variation of ErrEf, EOEJ, and EzEgff of the representative volume element of the

equivalent orthotropic representation model with number of concentric tubes in an MWCNT,

Rinnermos, 0.34 nm.
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Figure 2.13: Variation of vroEgf, vrzEff, and VOzEff of the representative volume element of the

equivalent orthotropic representation model with number of concentric tubes in an MWCNT,

Rinnermos, = 0.34 nm.

56



0.8

0.75-

0.7-
CD

u. 0.65-

0.6-
0 10 20 30 40 50 60 70 80 90 100

Number of Concentric tubes

0.75

0.7

0.65-

0.6-

0' 0.55-

0.5-

0.45-
0 10 20 30 40 50 60 70 80 90 100

Number of Concentric tubes

Figure 2.14: Variation of GoEI, GrzEff, and G63zEff of the representative volume element of the

equivalent orthotropic representation model with number of concentric tubes in an MWCNT,

Rinnermost = 0.34 nm.

Figures 2.12 to 2.14 show that the global elastic properties for the RVE of the

EOR model assumes constant values for more than 10 walls; conversely the EOR-based

MWCNT models may not be able to capture the nonlinear behavior for less than 10

walls. However, for CNTs having more than 10 walls, the EOR model based on the

global form of volume fraction may capture the nonlinear mechanics of MWCNT

deformation. The global elastic properties of the MWCNT can be treated as constant for

higher number of concentric tubes where the influence of the inner layers diminishes. For

CNTs with less than 10 walls we can consider the local form of fg, which allows the

elastic properties of the individual layer to vary with its location inside the MWCNT, as

shown in Figures 2.15 to 2.17.
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single layer of graphene and space layer of the EOR model with radial location in an MWCNT, R,

= 0.34 nm.
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single layer of graphene and space layer of the EOR model with radial location in an MWCNT, R,
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Figure 2.17: Variation of Gr6Eff, Grzgff, and GoEff of the representative volume element consisting

of single layer of graphene and space layer of the BOR model with radial location in an MWCNT,

Rj =0.34 nm.

Figures 2.13 and 2.16 show that vrO (= vrz) is negligible for any number of

concentric tubes when compared to voz, which is constant (= 0.19) and independent of the

number of tubes or the location. The reason voz is independent of the number of

concentric tubes is because the EOR model has locally transverse symmetry. Contrary to

VrO (= vrz), strain in the axial or the tangential direction results in strain in the radial

direction of MWCNTs. Yakobson et al., (1996) concluded from their MD simulation

results for SWCNT subjected to tension that the Poisson ratio is equal to 0.19.

Next, we write the constitutive equations in the matrix form for a material point

with locally transverse isotropy with the axis of symmetry in the r-direction and in terms

of engineering normal and shear strains. Notice that the coordinate system used

throughout our analysis is cylindrical.
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The stiffness matrix in Equation 2.30 is symmetric and requires only five

independent elastic constants (C 1 , C22, C44, C12 and C23) as is required for transversely

isotropic materials.

Since from Figures 2.12 to 2.14, the effective engineering constant values

stabilize for more than 10 walls, we extrapolated the asymptotic effective engineering

constant values from Equations 2.27a to 2.27f and substituted them into Equations in 2.30

to find the elastic constants (C 1 , C22 , C44, C12 and C 23). These elastic constants are then

compared with those for graphite (e.g., Blakslee et al., 1970, Zhao and Spain, 1989) and

used by (Liu et al., 2001, 2003, Wang and Wang, 2004, Wang et al., 2004, and Wang et

al., 2005) in their orthotropic solid beam model. Elastic constants for both the graphite

and 100-walled CNT are listed and compared in Table 2.2.

60



Table 2.2: Elastic constants of graphite and 100-walled CNT using current EOR model,

represented in cylindrical coordinate system at equilibrium.

Elastic Constant Basal Plane of Graphite* EOR Model

C11  36.50±0.1 GPa 46.88 GPa

C2 = Cs3 1.06±0.02 TPa 1.12 TPa

C12 = C13  15±5 GPa 2.45 GPa

C23  180±20 GPa 212.80 GPa

C44  4.5±0.05 GPa 0.62 MPa

C66  440 GPa 453.40 GPa

* (Blakslee et al., 1970; Zhao and Spain, 1998).

Values of C 22 and C33 are 1.12 TPa which agrees well with the planar Young's

modulus of graphene sheet (1.06±0.02 TPa). Both simulations and research indicate

similar values for C 22 and C33 as discussed earlier in Chapter 1. Similarly, elastic

constants C1 1, C 12 , C13 , C23 , and C66 for the EOR model are also close to the graphite

elastic constants. However, C44 for the layered structure vary from bulk graphite

primarily because of the shear modulus, Goz, value assumed in Table 2.1. Recall that

Pantano et al., (2004b) assumed zero shear modulus in their NSSR model so that the

adoption of actual C 44 value in our EOR model will result in difference between the two

models. Adopting the higher value of shear modulus, Go, (= 4.5 GPa), will result in

graphite property-based EOR model to deviate from the NSSR model; to support the

argument, we have compared the simulation results obtained from the two approaches

towards the end of this chapter.

Next, we will see how the U potential's (Equation 2.29) dependence on radial

normal strain is manifested in the stiffness matrix components for a 100-walled CNT; this

is done by varying the radial normal strain, as shown in Figures 2.18 to 2.20. The tubes in

Figures 2.18 to 2.20 have an innermost radius and an outermost radius of 0.34 nm and 34

nm, respectively and have armchair chirality (n, n), where n = 5, 10, ... The variations in

stiffness matrix components show that assuming a constant value for the U potential like

Liu et al., (2001, 2003), Wang and Wang (2004), Wang et al., (2004), and Wang et al.,

(2005) yields unsatisfactory results. This is especially the case in the post-buckling
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regime where radial strain could increase significantly or when the MWCNT is subjected

to lateral compression, as will be discussed in the subsequent sections.
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Figure 2.18: Variation of C11, C22 and C33 material constants with radial

representative volume element of the EOR model.
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representative volume element of the EOR model.
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representative volume element of the EOR model.

Figures 2.18 and 2.19 show that material constants in the transverse direction (C]1

and C 12 = C13 ) change drastically as compared to the in-plane material constants (C22 =

C 33 and C23). Figure 2.20, on the other hand, shows that elastic constants (C 44 and C 66)

affecting the shear properties of the RVE remain constant with the incremental strain.

Hence, we can conclude that taking into account the U potential's dependence on strain

is critical in the modeling of MWCNT for simulations where strain in the radial direction

might be expected, as is the case of lateral compression.

Based on the effective equivalent engineering constants in Table 2.1, the EOR

model will be shown to provide good predictions of the elastic behavior in a variety of

loading situations prior to any instabilities such as buckling. For predicting the buckling

and post-buckling regime, the element size in the FE simulations will be shown to play a

major role. Finally, a commercially available advanced finite element software package

(ABAQUS) was used to model several MWCNTs. The solid elements were assigned a

local cylindrical material coordinate system, as shown in Figure 2.21; the user defined

material properties were solved in terms of the stiffness matrix components in Equations

2.30.
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r

Figure 2.21: MWCNT model using EOR model divided into small 8-node solid elements along

with global cylindrical coordinate system (a). Local cylindrical material coordinate system

assigned to solid element in an MWCNT (b).

2.4 Results and Discussion

In this section, we will apply the new FE-based modeling approach to simulate

the nonlinear mechanical behavior of MWCNTs of various aspect ratios subjected to

bending, axial compression, and lateral compression. We have used the finite element

software package, ABAQUS, for modeling and simulating MWCNTs. The results

obtained from simulation of the above three loading conditions are then verified by

comparing them to those of the nested structural shell representation (NSSR) (Pantano et

al., 2003, 2004a). The lateral compression simulation results are also compared with the

MD simulations and experimental results (e.g., Palaci et al., 2005, Guo et al., 2004, Yu et

al., 2000a, Shen et al., 2000, Hertel et al., 1998, and Lordi and Yao, 1998).

This section is divided into three main subsections and begins with the study of

mesh sensitivity for the EOR model for simulating MWCNTs subjected to bending, axial

compression and lateral compression. Thereafter in the second subsection, FE simulation

results using the EOR and the NSSR models are compared for MWCNTs of different
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aspect ratios subjected to the above loading conditions. Finally in the last subsection, the

EOR model elastic properties will be replaced with the bulk graphite elastic properties to

monitor how the graphite assumption affects the simulation results.

2.4.1 Mesh (element size) Sensitivity Study

According to the shell theory, in a thin cylindrical shell tube, the onset of buckling

is determined by the shell diameter, thickness and Young's modulus. Using the EOR

model without the outer shell discretely modeled, the onset of buckling is difficult to

predict when compared to the nested shell model in which buckling propagates from the

outermost shell to the innermost. In their FE-based nested shell model, Pantano et al.,

(2004b) noticed that the MWCNT model depends on the mesh size and agrees well if an

element size of 0.24 nm is used - the dimension equivalent to the hexagonal lattice.

Similarly, for the EOR model, smaller elements might erroneously capture a rippling

wavelength that cannot be accommodated by the carbon lattice structure; too large an

element dimension might miss the buckling wavelength. This introduces a mesh

sensitivity issue in the EOR model, which we investigate by subjecting FE-based EOR

model of a 14-walled CNT to bending, axial compression, and lateral compression.

2.4.1.1 Bending

Here we repeat the bending simulations by Pantano et al., (2003) by constructing

a 14-walled CNT of length (L) 15 nm of the armchair (n, n) type MWCNT and with n =

5, 10, ... , 70, which gives an outer tube radius R, of 4.76 nm. The CNT is then rigidly

fixed at one end (symmetry plane) and rotated at the other end where the radial and

circumferential displacements are constrained. The free end is rotated by 0.2 radians

imposing a bending angle 0 of 0.4 radians for an equivalent beam length L of 30 nm. The

0 and the L yields a maximum global curvature K (= O/L) of 0.0133 nm- . The bending

moment versus the global curvature diagram from the NSSR model, along with the EOR

model of different element sizes, are shown in Figure 2.24. Figures 2.22 and 2.23 show

the initial and the final deformed 14-walled CNT model from the NSSR and EOR

models, respectively. Figure 2.24 shows that regardless of the element size, the EOR
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model captures the pre-buckling behavior of the 14-walled NSSR CNT model. However,

the buckling initiation point and the post-buckling behavior are strongly dependent on

element size and are only properly captured when the element size is specifically set to a

proper initial wavelength (5*0.24 nm = 1.2 nm) of ~2.15 nm, predicted by the NSSR

model of a similar MWCNT (Pantano et al., 2003). The buckling point and post-buckling

behavior is different for both small- (0.96 nm) and large- (1.44 nm) mesh linear 8-node

solid elements. The EOR model fails to capture the steady state buckling wavelength of

-4.80 nm shown by the NSSR model; the wavelength for the EOR model decreases as

the amplitude increases.

(a) (b)
2.15 nm % .0i

Figure 2.22: FE bending simulation of a 14-walled CNT nested shell model (a) (Pantano et al.,

2003) and EOR model (b). L = 30 nm and 15 nm for nested shell and EOR models, respectively.

Initial wavelength for the nested shell and EOR models are -2.15 nm.

66



K = 0.00296 nm'

K = 0.01331

(b)

(m

(c)

K = 0.00336 nm 1

K = 0.0 nm~

(e)

j K = 0.0133 nm'

(f)

K = 0.00589 nm~

K = 0.0133 nm'

(h)

Figure 2.23: FE bending simulation of EOR-based 14-walled CNT with different element size of

L=15 nm R, = 4.76 nm, showing the initial, buckling point, and final configuration of the

MWCNT. Element size = 0.96 nm (a, b, and c), = 1.2 nm (d, e, and f), and = 1.44 nm (g, h, and i).

The initial buckling wavelength is ~1.92 nm (b), -2.4 nm (e), and ~2.88 nm (h).
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Figure 2.24: FE bending simulation of 14-walled CNT of L = 15 nm and outer radius of R. = 4.76

nm. The tube is armchair type (n, n) with n = 70 (Pantano et al., 2003).

From results presented in Figure 2.24, we reach a conclusion that the pre-buckling

behavior is insensitive to mesh size; mesh sizes other than 1.2 nm for a 14-walled CNT

results in a different initial buckling ).. However, for a mesh size of 1.2 nm, the initial

buckling wavelength is very close to the approximate value of 2.15 nm, and the

corresponding moment-curvature plot in Figure 2.24 is in agreement with the results

presented by Pantano et al., (2003).

2.4.1.2 Axial Compression

Next, the effect of mesh size on the axial compression behavior a 14-walled CNT

is studied using the EOR model. The MWCNT FE-based model here is similar to the one

constructed in the bending simulation earlier. To our advantage, Pantano et al., (2003)

presented NSSR FE-based simulation results for a 14-walled CNT under axial
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compression, as shown in Figures 2.25 and 2.27. Here one end of the MWCNT is fully

constrained, while only radial and circumferential displacements are constrained on the

other. The free end is then gradually displaced (6) by a distance of 1 nm in the axial

direction towards the fixed end to give a macroscopic axial compressive strain (C, = 6/L)

of 0.666 nm. The axial force versus the compressive strain diagram computed from the

NSSR model and EOR model of different element sizes, are shown in Figure 2.27.

Similar to bending simulations earlier, EOR-based FE models are also simulated for

mesh sizes of 0.96 nm, 1.2 nm, and 1.44 nm; Figure 2.26 shows snapshots taken from the

FE simulations before, during, and after buckling occurs in the FE-based MWCNT.

Figure 2.25: Axial compression of a 14-walled CNT; the nested shell model (Pantano et al.,

2003). The mesh size for the nested shell model is 0.24 nm x 0.24 nm. Maximum compressive

strain of 0.04 was applied by displacing one end by 0.6 nm.
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Figure 2.26: FE compression simulation of EOR-based 14-walled CNT with different element

size of L=15 nm R, = 4.76 nm, showing the initial, buckling point, and final configuration of the

MWCNT. Element size = 0.96 nm (a, b, and c), = 1.2 nm (d, e, and f), and = 1.44 nm (g, h, and i).

The initial buckling wavelength is ~1.92 nm (b), ~2.4 nm (e), and ~2.88 nm (h).
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Figure 2.27: Axial compression of 14-walled CNT of L = 15 nm and outer radius of R, = 4.76 nm.

The tube is armchair type (n, n) with n = 70 (Pantano et al., 2003).

Similar to the bending simulation results in Figure 2.24, the axial force versus

strain curves for different mesh sizes show that the EOR model captures the pre-buckling

behavior of the 14-walled CNT modeled using the NSSR model, as shown in Figure 2.27.

Also, similar to the bending simulations, the proper buckling initiation point is only

captured when element size is 1.2 nm - buckling being sooner for smaller elements (0.96

nm) and delayed for larger (1.44 nm) element sizes. Therefore, both the buckling point

and the post-buckling behavior are sensitive to mesh size in axial compression FE

simulations.

Results from Figure 2.24 and 2.27 show that the bending and compressive

behavior of an MWCNT can only be captured if the proper element size is selected, based

on the initial buckling wavelength. Pantano et al., (2003) reported that buckling

progression under axial compression and bending is similar for MWCNTs of the same
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size. However, Figure 2.26 shows that the EOR models again fails to capture the steady

state buckling of the MWCNT for all element sizes. The EOR model only captures the

initial buckling wavelength, thereafter, only the amplitude of the buckling wavelength

increases with further compression.

Unlike the NSSR model, where Pantano et al., (2003, 2004a) reported that the

buckling wavelength doubles as the MWCNT is further bent or compressed without any

significant change in amplitude; on the contrary, the EOR model simulation shows a

decrease in buckling wavelength with increases in amplitude. Therefore, the EOR based

FE models cannot be used for simulating situations where precise surface deformation

studies are important.

2.4.1.3 Lateral Compression

Next, the effect of mesh size on the lateral compression behavior is studied for a

10-walled CNT (armchair type (n, n); n = 25, 30,..., 70). The EOR based FE model of

CNT has L of 1.2 nm, inner radius R, of 1.7 nm, and outer radius R, of 4.76 nm. A hollow

tube is chosen because the van der Waals forces can be extremely high when the

interlayer spacing decreases upon lateral compression of the MWCNT; this often leads to

convergence problems in achieving a solution for FE models in ABAQUS. To our

knowledge there is no data available in the literature for lateral compression of a NSSR

based FE model for large MWCNTs; Pantano et al., (2003, 2004b) did not present any

results for three-dimenstional lateral compression of large MWCNTs. Therefore, we

simulated a lateral compression of a MWCNT using the NSSR model. We constructed a

10-walled CNT of L = 1.2 nm, R, of 1.7 nm, and R, of 4.76 nm with linear 4-node shell

elements (S4 in ABAQUS), as shown in Figure 2.28. Here, taking advantage of the

symmetry conditions, only one-half of the CNT is constructed. The element size for the

NSSR model is taken to be 0.24 nm and the user defined interlayer interactions elements

were modeled according to Pantano et al., (2004b). Figures 2.28-a, -b, and -c show

snapshots at 0 nm, 1.0 nm, and 2.0 nm lateral displacements, respectively.

Two 2-dimensional rigid planar plates are placed on the outermost shell

diagonally opposite to each other, as shown in Figure 2.28. The lower rigid plate is fully

constrained while the upper plate is gradually displaced towards the other plate by a
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distance of 2.0 nm. The contacts between the plates and the outermost surface of the

MWCNT are modeled to be frictionless. Except for the direction perpendicular to the

two-dimensional rigid plane and rotation about the axial direction, all degrees of freedom

are constrained for the nodes that constitute the symmetry plane for the shell elements.

Similarly, FE models of EOR based 10-walled CNT are constructed for different

mesh sizes and from linear 8-node solid elements (C3D8 in ABAQUS) in order to

compare the EOR and NSSR models for lateral compression. The CNTs have length, L of

1.2 nm, inner radius R, of 1.7 nm, and outer radius R, of 4.76 nm, as shown in Figures

2.29. The interlayer van der Waals force is modeled within the inner surface with the

same user defined elements that were used to model the interlayer force in the nested

shell model. The lateral force versus lateral displacement results thus obtained from the

NSSR and EOR based FE models are shown in Figure 2.30. Mesh sizes of 0.14 nm, 0.24

nm, and 0.34 nm were used in the EOR based FE simulations.

The deformations under the NSSR and EOR models in Figure 2.28 and 2.29 do

not indicate any kind of buckling pattern. Figure 2.30 indicate that lateral compressions

of MWCNTs are also sensitive to mesh size, with the best element size for lateral

compression being 0.24 nm - again, equivalent to the height of the hexagonal lattice cell.

(a) (b) (c)

Figure 2.28: Lateral compression of NSSR based 10-walled CNT of L = 1.2 nm, inner radius R =

1.7 nm, and outer radius of R, = 4.76 nm (mesh size = 0.24 nm). The tubes are armchair type (n,

n) with n = 25,..,70. Snapshots of the FE simulations at lateral displacements of 0 nm (a), 1.0 nm

(b), 2.0 nm (c).
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Figure 2.29: FE simulation snapshots where a 10-walled CNT of L = 1.2 nm, inner radius R, = 1.7

nm, and outer radius of R, = 4.76 nm is subjected to lateral compression. The tubes are armchair

type (n, n) with n = 25,..,70. Element size = 0.14 nm (a, b, and c), = 0.24 nm (d, e, and f), and =

0.34 nm (g, h, and i). The FE simulation snapshots are taken at lateral displacement of 0.0 nm (a,

d, and g), 1.0 nm (b, e, and h), and 2.0 nm (c, f, and i).
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Figure 2.30: Lateral compression of 10-walled CNT of L = 1.2 nm R, = 1.7 nm, and R = 4.76 nm.

From the above simulation results, we see that the period and uniformity of the

rippling pattern is affected by the mesh size; therefore, a proper mesh size is very

important in EOR-based FE modeling of MWCNTs. For example, a mesh size of 1.2 nm

(5*0.24 nm) is necessary for the 14-walled CNT for simulating bending and axial

compression, while that number is 0.24 nm for lateral compressions.

Next, since many applications in electric field require the knowledge of how the

outermost layer deforms (Pantano et al., 2004c), we next create a 14-walled CNT model

with a single discrete shell tube (0.24 nm x 0.24 nm) around the EOR model (element size

0.24 nm x 0.24 nm and 1.2 nm x 1.2 nm), as shown in Figures 2.31, 2.32, 2.34, 2.35, and

2.37. As before, the FE model is then subjected to bending, axial compression, and lateral

compression, the results of which are shown in Figures 2.33, 2.36, and 2.38. In all the

simulations, the interlayer van der Waals force is incorporated in between the shell tube
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and the solid element surfaces incorporating the user defined interaction elements

designed by Pantano et al., (2004b).

(a) (b) (c)

Figure 2.31: Bending of combined EOR model with a discrete outer shell model. Mesh size of

0.24 nm for the EOR model and 0.24 nm for the shell model was chosen for 14 -walled CNT. At k

= 0 nm-' (a) k= 0.00401 nm-' (b), and k= 0.0134 nm-1 (c).
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Figure 2.32: Bending of combined EOR model with a discrete outer shell model. Mesh size of 1.2

nm for the EOR model and 0.24 nm for the shell model was chosen for 14 -walled CNT. At k = 0

nm-' (a) k = 0.00456 nm-1 (b), and k = 0.0134 nm-1 (c).
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Figure 2.33: FE simulation of 14-walled CNT (EOR model) subjected to bending. The three

curves are for the EOR model, nested shell, and a combination of the EOR and nested shell

model.
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Figure 2.34: Axial compression of combined EOR model with a discrete outer shell model. Mesh

size of 0.24 nm for the EOR model and 0.24 nm for the shell model was chosen for 14-walled

CNT. At e = 0 (a) c = 0.0176 (b), and c = 0.0202 (c).
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Figure 2.35: Axial compression of combined EOR model with a discrete outer shell model. Mesh

size of 1.2 nm for the EOR model and 0.24 nm for the shell model was chosen for 14-walled

CNT. At e = 0 (a) e = 0.0213 (b), and e = 0.0535 (c).
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Figure 2.36: FE simulation of 14-walled CNT (EOR model) subjected to axial compression. The

three curves are for the EOR model, nested shell, and a combination of the EOR and nested shell

model.
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Figure 2.37: Lateral compression of combined EOR and NSSR model. Mesh size of 0.24 nm for

both the EOR and NSSR model for 14-walled CNT at lateral compression (6) of 0.0 nm (a), 1.0

nm (b), and 2.0 nm (c).
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Figure 2.38: FE simulation of 14-walled CNT (EOR model) subjected to lateral compression. The

three curves are for the EOR model, nested shell, and a combination of the EOR and nested shell

model.

Clearly, Figures 2.33 to 2.37 show that EOR-NSSR combined element model

results agree well with the nested shell model results if a proper element size is chosen.

The EOR-NSSR based FE model results agree well for the pre-buckling and the buckling

initiation regimes, but not the post-buckling in Figure 2.33. Figures 2.31-b, 2.32-b, 2.34-

b, and 2.35-b visually show that combined EOR-NSSR models are able to capture the

initial buckling wavelength and the rippling pattern irrespective of the element size

chosen for the EOR model; the initial buckling wavelength predicted by the NSSR model

is ~2.15 nm. However, Figures 2.33 and 2.36 show that selecting an element size equal to

0.24 nm x 0.24 nm results in premature buckling. Figure 2.36 indicate that the combined

model under axial compression gives reasonable results for pre- and post-buckling and

even the buckling point. Although the initial buckling wavelength of the combined model
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is similar to the nested shell and the EOR models, the steady state buckling wavelength

did not increase with deformation, as was reported by Pantano et al., (2003); the

wavelength was observed to decrease and amplitude to increase with further deformation.

The difference in the mesh sizes of the solid and shell elements in the combined FE

model is the major source of difference in the post-buckling behavior. The difference in

mesh size magnifies the errors for this highly nonlinear deformation mechanics and

geometry of the CNT. For lateral compression simulations for the combined EOR-NSSR

model show a slight increase in the lateral compression force with lateral displacement,

as shown in Figure 2.38. Nonetheless, the difference is negligible and therefore can be

applied to model MWCNTs in the FE analysis.

Next, we apply our observations from the above simulations to model MWCNTs

of different aspect ratios. We subject these CNTs to bending, axial compression and

lateral compression.

2.4.2 Comparison of EOR Model to NSSR Model and Experiments

We found from the FE simulation results presented in the previous section that in

order to properly capture the deformation behavior of MWCNTs, a proper element size

needs to be assigned to the EOR-based FE models. Before we simulate the EOR-based

MWCNT models of different aspect ratios under different loading conditions, there is a

need for an adequate method that estimates the proper element sizes. Recall that for a 14-

walled CNT, the best simulation results were obtained when an element size of 1.2 nm

was used. This element size is approximately half of the initial buckling wavelength

predicted by the NSSR-based MWCNT model and thin shell theory. Therefore, in the

subsequent subsections, we will estimate the element size based on thin shell theory

(Equation 2.5) and round the result to an integer multiple of 0.24 nm.

2.4.2.1 Bending

EOR based FE bending simulations are performed on MWCNTs of L = 15 nm

and for 4-, 8-, 14-, and 19-walled CNTs. All of the tubes in the MWCNT are of armchair

(n, n) chirality, with n = 5, 10,..., 95, and with R, = 1.36 nm, 2.72 nm, 4.76 nm, and 6.46
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nm, respectively, for 4-, 8-, 14-, and 19-walled CNTs. The bending simulation procedures

for these MWCNTs are the same as that for the14-walled CNT, modeled earlier. The

bending moment versus global curvature results obtained by simulating MWCNTs are

shown in Figure 2.39. In Figure 2.40 we compare the total simulation time versus the

number of walls for the EOR and the NSSR FE models.

3000
- NSSR

n= 19 ---- EOR model

n = 14
2500 -

E 200
2000-

z 4

' f V 50 -------
1 0

1500-

0.02 01.4 0.06 0.08 0.1

1000 --

n=8

500 ----

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Global Curvature, K = O/L (nm 1)

Figure 2.39: Comparison of the EOR model with the nested shell model. Comparison of bending

moment of 4, 8, 14 and 19-walled CNT of L = 15 nm for the EOR and the nested shell models

(Pantano et al., 2003).
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Figure 2.40: Simulation time comparison of Nested shell and EOR model to run a job in

ABAQUS for Bending of different MWCNTs.

The best fit with the nested shell model was obtained by using element sizes of

0.72 nm (3*0.24 nm), 0.96 nm (4*0.24 nm), 1.2 nm (5*0.24 nm), and 1.44 nm (6*0.24

nm) for 4-, 8-, 14-, and 19-walled CNTs, respectively. Recall that we estimated the

element size for the EOR-based FE simulations as half the initial buckling wavelength

predicted by thin shell theory (Equation 2.5a) and as an integer multiple of 0.24 nm, as

shown below:

element size = 1.7 R.t nm; (2.31)

where, R, is outermost radius of the MWCNT and tg = 0.075 nm is the shell tube

thickness. If the solution from Equation 2.31 is not a multiple of 0.24, then the element

size is rounded to a higher multiple of 0.24 as follows:

element size
element size = round . (2.32)

0.24
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Figure 2.39 shows how the EOR model is able to satisfactorily capture the

nonlinear mechanics of the pre- and the post-buckling including the buckling point of the

MWCNTs. For the 4- and 8-walled CNT, the difference in the slopes of bending moment

versus global curvature between the two models can be attributed to the use of global

volume fraction fg(N) by the EOR model. We found earlier in Section 2.3.1 that for

MWCNT with less than 10 walls, the properties for the concentric layers vary

significantly with radial location; the differences in mechanical properties become

negligible as the number of walls increases in an MWCNT. Figure 2.40, on the other

hand, highlights the computational advantage of FE simulation with the EOR model over

the nested shell model.

2.4.2.2 Axial Compression

0.01 0.02 0.03 0.04 0.05
Axial Strain, sz

0.06 0.07 0.08 0.09

Figure 2.41: Comparison of the results from the EOR model and the nested shell model.

Comparison of axial compression of 4, 9 and 14-walled CNT of L = 15 nm fixed at one end and

compressed at the other with the nested shell model results (Pantano et al., 2003).
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We next repeat the EOR-based FE simulations for MWCNTs of 4-, 9-, and 14

walls in a manner similar to the axial compression simulations presented earlier in

Section 2.4.1.2. The mesh sizes are same as those found earlier for MWCNTs in the

previous section. Applying Equations 2.31 and 2.32, the element size for the 9-walled

CNT was found to be the same as that for the 8-walled CNT. The results of axial

compressive force versus strain are shown in Figure 2.41 and simulation time for the

EOR and the nested shell models in Figure 2.42, respectively.

Figure 2.41 shows that the EOR model of MWCNTs capture remarkably the

nonlinear mechanics of pre- and post-buckling including the buckling point. Similar to

the bending simulations, a slight deviation from the NSSR model is visible in the pre-

buckling regime for the 4-wall CNT. The deviation again becomes negligible as the

number of walls increases in the MWCNT. Again the axial compression simulations with

the EOR model are also computationally efficient, much like in the bending simulations

(Figure 2.42).
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Figure 2.42: Simulation time comparison of Nested shell and EOR model to run a job in

ABAQUS for compression of different MWCNTs.
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2.4.2.3 Lateral Compression

Lateral compression of a MWCNT is now examined. Although little simulation

data exist for large MWCNTs subjected to lateral compression, the availability of some

experimental data by Shen et al., (2000) allows us to check the applicability of the EOR

model. In their experiment, MWCNTs were indented from above with a tetrahedron-

shaped diamond tip with an apex radius of about 25 nm. They suggested that the major

mechanics of deformation comes from changes in the cross-section from a circular one to

an elliptic one, with the innermost shell deforming the most. The average R, for their

MWCNTs is approximately10 nm; however, the number of shell tubes, the innermost

radius, and the length are unknown. Using the MD simulations of 2- and 4-walled CNTs

by Guo et al., (2004) as a guideline, we estimated the innermost radius to be

approximately 1.7 nm.

We next simulate the lateral compression of a 10-walled CNT with a rigid sphere

of radius 25 nm, as shown in Figure 2.43. The MWCNT FE model constructed from both

linear 4-node shell (0.24 nm x 0.24 nm) and linear 8-node solid (0.72 nm x 0.72 nm)

elements has dimensions as follows: R = 1.7 nm, R0 = 5.1 nm and L = 50 nm. A large

length of 50 nm was chosen to minimize the end effects. The tangential and the axial

displacements were constrained on both ends while the rigid tip is gradually compress the

MWCNT laterally. The van der Waals interlayer interactions were applied at two

locations - between the shell and the solid elements, and within the inner surface of the

shell tube.

Figure 2.43: Lateral compression of the combined EOR model with a discrete inner shell model.

Mesh size of 0.72 nm for the EOR model and 0.24 nm for the shell model was chosen for 14-

walled CNT. R, = 1.7 nm, R, = 5.1 nm and L = 50 nm. The radius of the rigid spherical tip (not

shown) is 25 nm.
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Figure 2.44: Lateral compression of the FE-based model of MWCNT

shell elements (Shen et al., 2000).

using combined solid and

Figure 2.43 shows how the combined EOR-NSSR model of a 10-walled CNT is

able to capture the lateral compression of an MWCNT. The initial slope of the combined

FE MWCNT model in Figure 2.44 matches with that of the experimental curve.

However, as suggested by the MD simulation results (Guo et al., 2004), the steep slope

beyond a lateral displacement of ~2.5 nm is due to the interlayer separation decreasing

below the equilibrium spacing.

2.4.3 Comparison of EOR properties with Bulk Graphite Properties

Liu et al., (2001, 2003), Wang and Wang (2004), Wang et al., (2004), and Wang

et al., (2005) performed FE simulations in which a two- and three-dimensional MWCNT

beam model was subjected to bending; the solid beam FE model had bulk graphite

properties listed in Table 2.2. The bending moment-curvature results were presented in a

diagram as normalized quantities. In order to study the difference, if any, between the

two approaches, we simulated the bending, axial and lateral compression of a 14-walled

CNT modeled using the bulk graphite elastic constants listed in Table 2.2. The
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simulations conditions are the same as those in Subsections 2.4.1.1 to 2.4.1.3 with the

exception of element sizes - 0.96 nm and 1.2 nm. The results thus obtained from the

simulations are compared with the results from the NSSR and the EOR models in Figures

2.45 to 2.47. For simulations using graphite elastic constants, an element size of 0.96 nm,

different than that of the EOR model was required in order to match the results from the

NSSR model.

Figure 2.45 shows that only the pre-buckling deformation behavior is matched by

the 1.2 nm case, whereas both the pre- and post buckling are matched reasonably well by

the 0.96 nm element size case. However, when FE models of MWCNTs are constructed

from linear 8-node solid elements of size 0.96 nm, the initial buckling wavelength is

constrained to less than 1.92 nm (2*0.96 nm) as opposed to the 2.15 nm wavelength as

predicted by the NSSR model.
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Figure 2.46: Axial compression of 14-walled CNT. The three curves are from the nested shell, the

EOR, and graphite properties in the EOR of the FE-based MWCNT model.

For the compressive simulations, Figure 2.46 also shows that only the pre-

buckling deformation behavior is matched by the 1.2 nm case, whereas both the pre- and

post buckling are matched reasonably well by the 0.96 nm element size case. However,

by the same argument provided earlier, a smaller element size of 0.96 nm limits the initial

buckling wavelength to less than 1.92 nm.
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Figure 2.47: Lateral compression of 10-walled CNT. The three curves are for nested shell, EOR,

and graphite of the FE-based MWCNT model.

Figure 2.47 shows the lateral compression simulation results of a 10-walled CNT

with R = 1.7 nm, R, = 4.76 nm, and L = 1.2 nm; with the graphite elastic constants listed

in Table 2.2; and element sizes of 0.24 nm and 0.14 nm. Unlike the EOR-based MWCNT

model, element size does not affect appreciably MWCNT models that are based on the

graphite properties. Figure 2.53 also shows that the lateral compression behavior

predicted by the MWCNT model with graphite properties does not match the behavior

predicted by the NSSR model. In fact, for lateral compression simulations, the results

obtained using graphite properties fail to match the results from the nested shell or the

EOR models by an order of magnitude.

Based on Figures 2.45 to 2.47, graphite properties-based MWCNT FE models

seem to capture the complete deformation behavior for bending and axial compression

simulations; the model, however, fails to capture the deformation behavior in lateral

90



compression simulations. In addition, the model fails to capture the initial buckling

wavelength when the MWCNT is subjected to bending and axial compression.

Before we conclude this chapter, in order to verify the Poisson ratio trend in

MWCNTs, we conducted FE-based compression and tension simulations for 4- and 14-

walled CNTs. The FE-based MWCNTs were costructed from the EOR and NSSR

models. The NSSR-based 4-walled model had an innermost tube radius R, of 0.34 nm, an

outermost tube radius R0 of 1.36 nm and a length L of 15 nm, while the 14-walled CNT

model had R, of 0.34 nm, R, of 4.76 nm and L of 15 nm. The tubes modeled are of

armchair (n, n) chirality, i.e., n = 5, 10, ...70. The EOR-based 4-walled model had similar

dimensions as their NSSR-based CNT counterparts; the innermost radius is zero for the

EOR-based MWCNT models. During the simulation, one end was fully constrained,

while the other end was gradually displaced axially to simulate compression and tension,

accordingly. The results obtained from the compression and tension of 4- and 14-walled

CNTs are shown in Figures 2.48 to 2.53.

FE simulation results in Figures 2.48 and 2.49 show that the EOR model captures

remarkably the deformation mechanics of the MWCNTs under axial compression and

tension. In addition to the compressive and tensile forces, Poisson ratio vzo (= -(R/R)/(

L/L)) versus strain was calculated as shown in Figures 2.50 and 2.51. According to both

figures, the Poisson ratio obtained from the EOR model is approximately 0.17 while that

from the NSSR model is 0.19. The compression simulations of 4-walled FE-based CNTs

(Figure 2.50) indicate that Poisson ratio is more or less invariant of axial strain for both

the NSSR and EOR models. However, for the EOR-based 14-walled CNT, the Poisson

ratio varies nonlinear behavior with respect to axial strain as can be seen in Figures 2.50

and 2.51; this effect does not have any appreciable consequences, as suggested by the

overlapping force versus strain curves from the two models in Figures 2.48 and 2.49. We

expected the Poisson ratio to drop with the increase in number of concentric tubes and

van der Waals forces; however, the results in Figure

91



1400

1200

1000

800

600

400

200

n4

- NSSR:4-wa
-.------- NSSR:14-w

....---. ---- EOR:4-wall
x EOR:14-wa

.4'-X

4'

- .

'''

.4'

I

Ill

,al

ll -

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Axial Strain (sz)

Figure 2.48: Compressive force versus axial strain for 4- and 14-walled nested shell and EOR

model.
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Figure 2.49: Tension force versus axial strain for 4- and 14-walled nested shell and EOR model

used to derive Poisson curves.
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We expected the Poisson ratio to drop with the increase in number of concentric

tubes; however, the results for NSSR-based MWCNTs in Figures 2.50 and 2.51 show that

the Poisson ratio is same for both 4- and 14-walled CNTs. This suggests that the

interlayer spacing change linearly with axial strain, which is verified from the curves in

Figures 2.51 and 2.52 for the 14-walled CNT. The interlayer spacing between the

adjacent shell tubes changes linearly and similarly for all tubes within the 14-walled

CNT.

2.5 Conclusions

In dealing with FE simulations of layered carbon nanotubes, a novel and time-

efficient equivalent orthotropic solid model has been suggested. The proposed model is a

compromise between computational efficiency and accuracy, and can be used for any

number of concentric tubes in an MWCNT. The equivalent orthotropic material

properties were derived from the material properties of the individual layers in the nested

shell model (Pantano et al., 2004b). The properties for the isotropic graphene layer are

taken to be E = 4.84 TPa and v = 0.19. On the other hand, the space layer, whose

effective modulus in the radial direction is derived from the U potential, is assumed to be

anisotropic. Since the EOR model is based on the layered nested structure of thin shells,

we assumed a negligible but finite shear modulus for the space layer of 0.48 MPa and V =

0.19 - same as the graphite sheet. When actual shear modulus values (4.5 GPa) of

graphite were used, the EOR model was observed to fail for the post buckling regime

under buckling and bending. Because of the difference in the solid and shell elements

used in FE simulations, the mesh size for the EOR model varies from that suggested by

Pantano et al., (2004b) - 0.24 nm; as a result, the EOR model fails to predict the buckling

of MWCNTs. However, when an appropriate element size is chosen based on thin shell

theory, the EOR model is able to capture the complete deformation of the MWCNT.

When compared with the nested shell models, the results indicated that the EOR models

can be used to successfully simulate large MWCNTs subjected to bending, axial, and

lateral compressions. Although the initial buckling wavelength was found to be

95



equivalent to that predicted by the nested shell model and experimental observations, the

EOR model fails to capture the steady state buckling wavelength. For the EOR model, the

buckling wavelength and amplitude were found to decrease and increase, respectively

with deformation; Pantano et al., (2004b) reported otherwise. Since the steady state

buckling of the EOR model is different than that of the NSSR model, the EOR model is

inadequate when deformation of external surface features is important such as in electron

transport theory in carbon nanotubes Pantano et al., (2004c). However, the proposed

model could work very well in modeling such processes as nano-indentation and nano-

scratching of vertically aligned carbon nanotubes (VACNT) forests with an AFM tip.

In brief, the equivalent orthotropic solid MWCNT model is a compromise

between the computational efficiency and the accuracy of the results. The model is

reliable when a quick structural behavioral study of MWCNTs is required.
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Chapter 3

Vertically aligned carbon nanotubes (VACNT) have been a recent subject of

intense investigation due to the numerous potential applications of VACNTs ranging

from field emission and vacuum microelectronic devices, to the creation of super-

hydrophobic surfaces, and as a source of well defined CNTs. Qi et al., (2003) suggested

the nano-indentation process to estimate the effective mechanical properties of VACNTs

and their constituent CNTs. The study of nano-indentation reveals a process whereby

nanotubes are consecutively bent during the penetration of the indentor. Therefore, the

resistance of a VACNT forest to penetration comes from the successive bending of

nanotubes as the indentor encounters nanotubes. Qi et al., (2003) first proposed a micro-

mechanical model that captures the nano-indentation process; using their model, the

effective bending stiffness of the constituent nanotubes in the VACNT array was deduced

from nano-indentation force-penetration depth curves. In this chapter, we propose a

similar analytical method for nano-indentation tests to determine the mechanical

properties of VACNTs and their constituent nanotubes. We proposed two micro-

mechanical contact models: one that accounts for large deformations and another that

simulates the buckling of nanotubes. The effectiveness of the analytical model of the

MWCNT in predicting nonlinear deformations is then examined by comparing the results

with nano- and macro-scale experiments and EOR-based finite element (FE) simulations

of the previous chapter. Macro-scale experiments and FE-based models are used to check

whether the proposed model captures the nonlinear deformation of MWCNTs.

Thereafter, EOR-based FE models are used to include the buckling of nanotubes in the

proposed micro-mechanical model. After including the critical observations from other

researchers (e.g., Yakobson et al., 1996; Wong et al., 1997; and Pantano et al., 2003,

2004a, 2004b) and the FE-based models to the contact model, it was found that the

micro-mechanical model adequately captures the buckling effects in the nano-indentation

process. The proposed model was observed to capture the force-penetration curve of the

constituent nanotubes in a VACNT sample obtained via nano-indentation. The proposed

contact models are able to provide excellent predictions of such complex deformations,

since it accounts for the nonlinear deformation and buckling of the MWCNTs. This new
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technique requires no special treatment of the samples, making it possible to apply this

method to a large number of tests to determine the statistical properties of CNTs, and as a

potential quality control method in mass production (Qi et al., 2003).

3.1 Introduction

Currently the process of nano-indentation is being explored as a reliable means of

determining the mechanical properties of carbon nanotubes and the constituent tubes of

vertically aligned carbon nanotubes forests. Under indentation, each nanotube can be

modeled as a cantilevered beam subjected to deflection from the penetration of the

indentor. The resistance to indentation is the result of the cumulative bending of the

VACNTs. Using beam theory, the effective bending stiffness is determined by fitting the

mechanical model to the indentation force-penetration curves. Qi et al., (2003) used a

sharp tip AFM tip to perform several nano-indentations on the VACNT forests and large-

deflection beam theory to analytically model the nano-indentation process. In the past,

many experimentalists (Wong et al., 1997, Salvetat et al., 1999) used the classic beam

theory approach to determine mechanical properties of carbon nanotubes despite the fact

that most experiments deflect the cantilevered CNTs to large deflections. On the other

hand, Qi et al., (2003) in their nano-indentation contact model used large deformation

beam theory that accounted for both the axial and lateral components of the load applied

via the indentor tip; however, the second order curvature effects were ignored. The

absence of any standardization in the use of various beam theories in the study of carbon

nanotube mechanics motivated us to check the applicability of theory in the nano-

indentation process.

This chapter first reviews beam theories including theoretical analysis of linear

and of nonlinear deflections of cantilevered beams. Second, the analytical results from

linear and nonlinear deflection theories are compared to experimental results for an

MWCNT fixed at one end and deflected to large angles. Third, the appropriate beam

theory is applied to nano-indentation of VACNT arrays, forest-like samples, as shown in
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Figure 3.1. A discussion of the relevance of large deflection theory of cantilevered beams

then concludes the chapter.

Figure 3.1: Indentor tip nano-indenting (down arrow) and nano-scratching (right arrow) in a

vertically aligned carbon nanotubes (VACNT) sample (Qi et al., 2003).

3.2 Theoretical Analysis of Beam Bending

When investigating the deflections of a beam of bending stiffness (El), an

analysis usually begins with the Bernoulli-Euler law. According to this law, the curvature

(1/p) at any point x along the length of the beam is proportional to the bending moment

(Mb) at that section.

Undeformed
Lp

T x

Y Deformed

Figure 3.2: Cantilever beam loaded with an external concentrated load at the free end and

parameters used for small deflections of the beam.
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The mathematical representation

1 Mb do
p EI ds

is immediately applicable when the equation of the deflection curve is given in the

intrinsic form s =f(p) where s is measured along the length of the arc and O is the slope

at s, as shown in Figure 3.2. In rectangular coordinates, the curvature is expressed as

1 = - 2 ydX 2  
(3.2)

P 1 (dy/dx)2 ]3/2

The negative sign can be explained by the fact that in assuming downward deflections as

positive, an increase in x means a decrease in p. The combination of Equations 3.1 and

3.2 results in a second order nonlinear differential equation when solved for the

deflection y as a function of bending moment

d 2yldx2  Mb (33)

[1+(dy/dx)2 2 EI

In classic beam theory, which assumes small deflections, the relationship between

bending moment and curvature is linearized by neglecting the square of the slope,

(dy/dx), in comparison with unity in Equation 3.2. The governing linear equation that

relates the M to the transverse displacement then takes the following form:

d2y _Mb- = - . (3.4)
dx2 EI

Neglecting (dy/dx) , however, is not permissible for slender beams when the deflections

are appreciable compared to the length. The second order term allows for the shortening

of the lever arm during the deflection when a load is applied at the free end of a
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cantilever beam. The classic theory is therefore not applicable for the calculation of large

deflections. Moreover, the classic beam theory gives no solution for deflections in any

direction other than the one normal to the original shape of the beam.

For the case of inclined load, P, applied to a cantilevered beam of length L at the

free end such that tip deflection 5 << L, the moment contribution due to the horizontal

component of the load (Ps) is ignored, as shown in Figure 3.3. This is because the

equations are formulated considering fixed geometry (i.e., the moments are determined

with respect to the original geometry and thus the moment from P, is zero. However, as

the beam deflects due to the bending moment at any x induced by P,, the lateral

deflection then also provides a moment contribution from P, (Equation 3.5). Therefore, in

the case of large deflection, two nonlinearities arise, one due to the curvature-deflection

relation (Equation 3.2) and another due to the additional moment due to

P(Mb -P (5 - y)), as well as that due to P, (Mb - -P,(L - x)). (3.5)

Undeformed
L P

LA

PyP
s Q(x,y P 1K dlP

YY Deformed

Figure 3.3: Cantilever beam loaded with an external concentrated load at the free end and

parameters used for small deflections of the beam.

In this section, we compare and contrast linear versus nonlinear analysis of beam

bending for the case of a cantilevered beam subjected to an inclined point load at the free

end. Figure 3.4 shows a cantilever beam of length L with a concentrated load P inclined

at an angle a, applied at the free end of the beam in undeformed and deformed

configurations. In this figure 6, and 6y are the horizontal and vertical displacements at the

free end, respectively, and VIo is the maximum slope of the beam at the free end. Also in
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Figure 3.4, 6 is the sum of V and a. Let the origin of the Cartesian coordinate system be

at the fixed end of the beam, and let (x, y) be the coordinates of point Q, and s the arc

length. Next, we present four cases where a concentrated load is applied normal or

inclined at the free end of the cantilever beam considering small and large tip deflection.

Undeformed L

sa 0 P
S 6

Y= Yc

Q(x,y) 01

Deformed -:----

Indentor Profile -

Figure 3.4: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for large deflections.

3.2.1 Equations for Small Deformation of A Cantilevered Beam with A

Concentrated Normal Load Applied at The Free End

For the case of small deformation, lateral tip deflection, bending moment, and

stored strain energy (U) for a cantilever beam are derived by integrating the governing

linear relationship, Equation 3.4, and geometric boundary conditions (Crandall et al.,

1976). The load considered here is applied normal to the neutral axis (a = 900), as shown

in Figure 3.2. The geometric boundary condition for the cantilevered beam are given by

the following two conditions

y= = 0

dy =0. (3.6)
x 0
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The bending moment as a function of x is:

Mb = -P(L - x), (3.7)

and then integrating Equation 3.4 and applying the boundary conditions in Equation 3.6

gives the following relationship for vertical tip deflection and slope:

9 PL (3.8)
3EI

1 PL (39)
p EI

Since the bending energy in a beam is given as

L 2

U = xb .

0 2EI
(3.10)

Substituting Equation 3.7 in Equation 3.10 and solving the integral gives the required

bending energy relation as follows:

P 2 L3
U = .E

6EI
(3.11)

3.2.2 Equations for Large Deflection of A Cantilever Beam with A

Concentrated Normal Load Applied at The Free End

The relevant equations for this case can be obtained by considering first a

situation where a concentrated inclined load is applied at an angle a to the axis of the

beam, as shown in Figure 3.5, and then substituting a = 900 (Fay, 1962).
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Undeformed L a

P
s ---..... - 6

y = yc

Q(x,y) - - a

D eform ed -:----- --------------- -----------

Indentor Profile /

xc
y

Figure 3.5: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for large deflections; for normal load a = 900 in the above figure.

The Bending Moment at Q(xy)

Mb = EI = P sin a(xc -x)+ Pcosa(y, -y). (3.12)
ds

Let,

0 = V/+ a. (3.13)

Differentiating Equation 3.12 with respect to s and substituting Equation 3.13, we get

E d f = -P sin a cos V/ - P cos a sin /' = -P sin 0 (3.14)
ds

sin 0 = sin(qf + a) = sin a cos Vf + cos a sin V/

Now let,

S
U = - (3.15)

L
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ds
.. du= , and dO = dV1

L

dO dy1
du ds

d dyl d dy] ds d2 yL 2L_ =_ L-=--IL2
du _LdsJ ds ds du ds2

d 2yi 1 d 20

ds2  l du2

Substituting Equation 3.19 into Equation 3.14 gives

EI d 20

L 2 du2

Next let

P
k 2 = , and

EI

PL 2

c -=L 2 k 2 .
EI

Rearranging Equation 3.20 and substituting into Equations 3.21 and 3.22 gives

d 2 + c sin 0 = 0.
dU 2

(or)

(or)

Boundary Conditions

(O)U0O = a

EdO
du)

= 0

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(y/)S=o = 0

dj, = 0
ds )s=

(3.24)

(3.25)
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Multiplying both sides of Equation 3.23 by 2d0 and integrating, we get

12d2 dO + 2c sin 9.d1 =0
dU 2

dO _2

du
= 2c[cos0 - cos(y/O + a)]

(3.26)

(3.27)

(3.28). d = [2c{cos0 - cos(/O + a)}].

Now solving for du in Equation 3.17 and equating to Equation 3.16, and then

substituting Equation 3.28 gives

(3.29)d ds d yqidO

L / du [2c{cos0-cos(yvo +a)}]

Solving Equation 18 fords, we get

ds = Ld[ .o
[2clcos 0 - cos(V/0 + a)}]2'

Integrating both sides of Equation 3.30 and taking limits from a to (VO + a), we get

(yo+a) L (V( fa) dOJds = f
a a [cos 0 - cos(y/f + a)]2

Solving the above equation, we get

L (/ofa) dO

2c a [cos0 - cos(y 0f + a)]2

(3.30)

(3.31)

(3.32)
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Applying integration limit property, we write Equation 3.32 as

I " dO ("+a) dO

o [cos - cos(V/0 + a)]1 o [cos 0- cos(V/0 + a)]2

Next, using trigonometric identities, we rewrite the above equation as,

" dO

0 [sin2{(V/ 0 + a)/2}- sin2{9 /2}12 0 [sin2{(y/0 +a

dO

)/2}-sin2{ /2]

(3.34)

Next let,

p = sin{(V/O + a)/2}, and

p sin 0 = sin({ /2}.

Now differentiating both sides of Equation 3.36, we get

p cos d# = I cos(O/2)dO.
2

Rearranging Equation 3.37 and using trigonometric identities, we get

dO = 2pcos d#
cos(O/2)

2pcos d# _ 2pcos 5d#

1-sin2 (O/2) 1-p 2 sin 2
0

Since,

0|= = a

(3.33)

1
1 =

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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else,

x=L = VO +a, (3.40)

substituting Equation 3.39 into Equation 3.36, and assuming it to be equal to a variable

m, we get

m = 0 = sin~1 sin(a /2) ; for x = 0. (3.41)
p _

Alternatively, substituting Equations 3.35 and 3.40 yields

# = sin~[in((/o + a)/2} = (3.42)
[ P ] 2

Next, substituting Equations 3.35, 3.36, 3.38, 3.41, and 3.42 in Equation 3.34, we get

2pcos d# 2pcos d l
1 "1 -p 2 sin 2 _P 2 sin20 (3.43)f = + >.(.3

2c [2 _ 2sin 2  _ 0 2 p 2 sin 2 1 2

Simplifying Equation 3.43 further gives

N o d _ " d# a.3.44)
_P -p sin 2 _]2 2 1- sin2 ]

Now applying trigonometric identity and Equation 3.38, we write Equation 3.30 as
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L 2pcos id]

ds = - - , .2 (3.45)
2-v sin 2{( 0 + a)! 2}- sin 2 {0 / 2}1

Substitute Equations 3.35 and 3.36 in Equation 3.45 to get

L 2p cos Od#

-psin20
ds = - -# . (3.46)

p2 -p 2 sin 2

Substituting Equation 3.22 into Equation 3.46 and simplifying, we write ds as

ds = d . (3.47)
k1-p2sin2 5]'

From Figure 3.4,

dx dy=cos ,and =sin Vf . (3.48)
ds ds

Substitute Equations 3.13 and 3.47 in left equation in Equation 3.48 to get

dx = cos(O-a)d . (3.49)
k 1- p 2 sin 2

Recall the trigonometric identity,

cos(O - a) = cos 0 cos a + sin 0 sin a. (3.50)

109



Then, using Equations 3.35 and 3.36, we get

sin 0= 2sin(9/2)cos(O/2)= 2sin(O/2)I 1-sin 2(O/2) = 2psin 1- p 2 sin 2 #,

cos = 1-2sin2 (9 /2)= 1 - 2p 2 sin 2 
0.

Now, substitute Equations 3.50, 3.51, and 3.52 in Equation 3.49 to get

(cosOcosa +sin Osina)d#

k 1 -p 2 sin 2

1 - 2p2 sin 20 )cos ad#

k 1- p 2 sin 2
05

+
2p sin #1- p 2 sin 2 o sin ado

k 1- p 2 sin 2

Simplifying Equation 3.54 further, we get

cos a d_2 2p sind .sina

k l- _ p 2 sin 20 1_p 2 sin 2  k

Integrating both sides of the above equation and taking the limit from m

(3.54)

(3.55)

to n, we get

x=[cos aF(p, m)- F(p,n)+ 2E(p,n)-2E(p, m)}+ 2pnsn a(cos m - cos n
k

where, m is from Equation 3.41, and

n = sin 1sin{(;/+a)/21

Fp 
_o

F(p, M)= df,
[1 p sin 2

(3.56)

(3.57)

(3.58)
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(3.52)

(3.53)

dx =

x =



F(p,n)= I d#
-psin 2

E(p, m)= [ _p2 sin 2 4d$,
0

E(p,n)f j[I _P 2 sin 2
0 4do.

0

Since at the free end of the cantilever beam, V/ = y => n
7Zr
2 , Equation
2

3.56 becomes,

= -[cos a(F(p, m)- K(p)+ 2E(p)- 2E(p, m)}+
k

2p sin a cos m]

where,

K(p)= d ,

1p2sin2

E )

E(p)= f[ psin 2do,
0

Note: F(p, m), F(p, n), K(p) are 'complete elliptic integrals of the first kind,' whereas,

E(p,m), E(p,n), E(p) are the 'complete elliptic integrals of the second kind.'

Next, using Equations 3.48 and 3.50 to 3.52 and simplifying, we get

(sin 0 cos a - cos 0 sin a)d# (3.65)
k 1- p2 sin 2
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(3.60)

(3.61)

x = L -8 9 (3.62)

(3.63)

(3.64)

dy =



(3.66)dy = 2p sin # 1-p 2 sin2 0 cos a.d# _ (I- 2p 2 sin 2 0)sin a.d#

k 1-p 2 sin 2 # kj1 -p 2 sin 20

dy= cos a 2p sin #d# - sin a do
k k [1 1-p 2 sin 2 0

_2p 2 sin2 Odo

-p 2 sin 2 0

Integrating both sides of Equation 3.67 and taking the limit from m to n as in Equation

3.56, we get

y = ![2p cos a(cosm - cos n)- sin a{F(p,m)- F(p,n)+ 2E(p,n)- 2E(p, m)}].
k

(3.68)

Again for the free end of the cantilever beam, V/ = VfO -> n = I; therefore, Equation 3.68
2

becomes

YC = , = I[2pcoscacosm -sin a{F(p,m)-K(p)+2E(p)-2E(p,m)}]. (3.69)

Rearranging Equations 3.22, 3.44, 3.58, and 3.63, we get the following relation,

L = [K(p)- F(p,m)]. (3.70)

Bending Moment and Curvature at the fixed end

We can solve for bending moment at any point Q in the beam by first solving for (d//ds)

from Equations 3.17 and 3.28, and then substituting the result into Equation 3.12

M=EI =_2c(cos0 - cos(V/,t + a)).
L

(3.71)
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Next, bending moment at the fixed end of the beam can be evaluated by substituting

Equation 3.13 in the above equation as

El
Mb x=o = L 2c(cos a - cos(/,, + a)). (3.7:V/=0 L

Also substituting Equation 3.72 in Equation 3.1, we get the curvature at the fixed end as

I = I j2c(cos a - cos(y/, + a)). (3.73
p x=o L

yI=o

Next, substitute Equations 3.21 and 3.22 into both Equations 3.72 and 3.73, to get

/ XO =EI2P
MAo blx=O= EI (Cos a - cos(Vf, + a)) (3.74

1

px=o
(3.75)

2P
=l -(Cos a - cos(vf,, + a)).

Strain Energy due to Bending

Substitute Mb = (EI)/ p from Equation 3.1 into Equation 3.10, to get

El
dU = ds .

2p 2

Substitute Equations 3.21, 3.70 and 3.75 into 3.76 and rewrite as follows

dU = P{cos0 - cos( 0 + a)ds

(,,+a)

U = P J(cos 0 - cos(V/t + a)}ds.
a

(3.76)

(3.77)

(3.78)
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Thereafter, substituting Equations 3.20, 3.21, and 3.30 into Equation 3.78, we get

U=P(v,+a)J- fcos 0- cos(Y/' 0+a dO
a

U P -Y,+a) 
-

U = (cosO-cos(yVI +a)do-f cosO-cos(yI +a)dol.
k r d0

Applying trigonometry identity, Equation 3.52 into Equation 3.80, we get

P (V. a) 2 _____+a)

U {sin ('' - Js in 2 ( a )
- sin 2

0}dO -sin2 d .(2}d1.
(3.81)

Substituting Equations 3.35, 3.36, 3.38, 3.41, and 3.42 into Equation 3.81, gives

U = _2pcos# d#- p 2 __2 sin 2  2pcos#
k-s 2  1-p 2 sin 0 sin 2

Simplifying using basic trigonometric identity sin 2 0 + cos 2 0 =1, we get

p2 ( 2 2 2 d -

0 1-p 2sin2 0

p 2 sin 2 0 )9-1+

1- p 2 sin 2

(t2 _ p2sin2 20)
p 41pSin2

p d#- 0

U = 2P " 1_p2 sin2#d#-(1-p2) f
k -

-1-p 2 si

p 2 sin 2
0) -1+

1-p 2 sin 2
0

p 2 d#

d#

I - p2 sin 20

2 d+±(1-p2)f do 1
0 1p2sin2

(3.79)

(3.80)

d#o.

(3.82)

U 2PF
k

U= 2 P 7 (-
k J

(3.83)

(3.84)

(3.85)
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Next, substituting Equations 3.58, 3.60, 3.63, and 3.64 in Equation 3.85, we get

U = 2P [E(p)- E(p, m)}- (I - p2')K(p)- F(p, m)}].
k

(3.86)

Finally, substitute a = 90 in Equations 3.41, we get the required equations for a

cantilever beam subjected to large deflection on applying a transverse load at the free end

m = sin-j
1 .1*

From Equation 3.87 and trigonometric identity sin 2 0+ cos 2 0 = 1, we get

cos m = 2p 2 -1 ,
2p

and substituting Equation 3.88 and a = 900 into Equation 3.62, to get

(3.87)

(3.88)

x =L-gx = [2E1(2p2 -)P

Similarly, substituting a = 90' in Equation 3.69 gives

yC = 9, = I[K(p)- F(p, m)- 2E(p)+ 2E(p,m)]. (3.

Now, using trigonometric identity sin(a + b) = sin a cos b + cos a sin b in Equation 3.35

p = sin ( + a) = sinV. +cos . (3.

90)

91)
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Squaring both sides of Equation 3.91, then using trig. identity sin 2 0 + cos2 0 = 1, we get

1+ sin y/,)

2
(3.92)

The bending moment (Mb), the curvature (1/p), and the corresponding strain energy (U)

can also be solved for the case where load is applied normally at the end of the beam by

substituting a = 90' in Equations 3.74, 3.85, and 3.86 as

M X=O = EIL 2P"snVI (3.93)
biV=O EI

1

p x=oPX=0

2P sin /

EI ]

U = 2P [E(p)- E(p,m)}-(1
k

- p)K(p)- F(p,m)}].

Next, we will show that Equations 3.93 and 3.94 reduce to Equations 3.7 and 3.9

at x = 0, respectively, when we assume small tip deflections (6, ~ 0). First Equation 3.93

can be written as

(3.96)Mbx=o = P[2EIsinq 0 ]2
b I/= L P

Equation 3.96 then can be written as

MbX=O = PL2EI 2 1+ sin w o
bIV=O P 2

2

19] (3.97)

Thereafter, substitute Equation 3.92 in Equation 3.97 and simplifying gives
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M X=O = P 2 (2P2 -) 2. (3.98)

Substituting Equation 3.89 in Equation 3.98, we get

M x=o = PL. (3.99)
y /=0

Equation 3.99 is same as Equation 3.7 for zero axial deflection (, ~Z 0). Now, since

Equation 3.94 is obtained by dividing Equation 3.93 by EI, we obtain Equation 3.9 by

dividing Equation 3.99 by EI, we get

1 = PL (3.100)
p x=O EIY/=O

Next, we compare the linear and nonlinear numerical solutions of a cantilever

beam with a concentrated load applied normal to the beam in order to determine whether

the difference is appreciable.

The difference between the analytical solutions of linear and nonlinear deflection

equations for concentrated load applied normal to the axis of the beam is presented

graphically in non-dimensional terms as PL2/EI as a function of (6/L), as shown in

Figure 3.5. In order to present the non-dimensionalized diagrams, linear and nonlinear

equations are rearranged as follows:

PL2 (s
EL 3 for the linear case and (3.101)
EI L

PL2  ( -
EL ' [K(p)- F(p,m)- 2E(p)+ 2E(p,m)] 2 for the nonlinear case. (3.102)
EI L
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Figure 3.6: Non-dimensional load versus non-dimensional lateral tip displacement for

cantilevered beam loaded with an external concentrated normal load at the free end.

Figure 3.6 clearly show the difference between the results of the classic beam

theory for small deformation of a cantilevered beam to the large deformation, where a

concentrated normal load is applied at the free end; the classic beam theory show linear

behavior even for large deflections while the nonlinear curve starts to deviate for lateral

tip deflection, 6y, is greater than 0.6*L.

We next present the nonlinear large deflection equations one that accounts both

the axial and vertical components of load in the deformed configuration (Qi et al., 2003)

and the other that also accounts for the nonlinear differential relationship between

curvature and deflection (Fay, 1962).
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3.2.3 Equations for Large Deformation of A Cantilevered Beam with A

Concentrated Inclined Load at The Free End - (Qi et al., 2003)

Qi et al. (2003) solved the governing differential equation (Equation 3.4) of the

beam theory and related the bending deflection to the axial and lateral force components

of the inclined load applied by the indentor tip, as shown in Figure 3.7. In Qi et al.,

(2003), the applied load is always normal to the indentor surface since there is no friction

between the CNT and the indentor. Therefore, the relationship between the x and y load

components is develop: F, /Fy = P.tan(indentor)- Qi et al., (2003) applied this relation in

their derivation of the nonlinear equations, as shown below.

8Y

1% Ondentor

F,, 4 %
4P

P
4%

4%
4%

4%

4%4~*

a = 900 - Oindentor

(b)

Figure 3.7: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for small deflections (a) (Qi et al., 2003). To be consistent with the previous

notation, applied inclined load can be represented as shown in (b).

The bending moment at any point x along the beam in Figure 3.7-a is

Mb =-Fx - Fj,( -y) (3.103)

Now substitute Equation 3.103 in Equation 3.4, to obtain the relationship between

moment and curvature as follows
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(EI) = Fx+F(,-y). 
(3dx2g 

-)

This differential equation is thus formulated in the deformed configuration and thus

accounts for the effect of large deflections on the bending moment represented by the

beam; however, it does not account for the nonlinear differential relationship between

curvature and deflection.

YLL = 0 and dy
dix x=L

=0. (3.105)

Next, assuming k2 = F /(EI)and Y = 9, -y , Equations 3.104 and 3.105 can be written

as

d2 y +k 2 y - F X (3.106)
dx2 EIl

with boundary conditions

YjX = 0 and dY= 0
dxx=L

The general solution to Equation 3.106 is

F
Y =Acoskx+ Bsin kx- 'x,

where A and B are constants determined from Equation 3.108 as follows

F
A = 0 and B = ' .

FxkcoskL

(3.107)

(3.108)

(3.109)
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F F

Therefore,

y = , - c sinkx+'x.
Fk coskL F

Since y L = 0,

F, tankL
an = -t , i r as

and Equation 3.110 is rewritten as

Fy = ' (sin kL
Fxk cos kL

F
- sin kx)--' (L -x). (3.112)

The slope of the beam deformation is - y', and

y F, COSkx
y = -.

F, COS kL
(3.113)

The fact that the slope y'cannot exceed the slope of the indentor's side surface (Figure

3.10-a), or

- y' < tan 0 indentor (3.114)

Since there is no friction between the CNT and the indentor, the horizontal and vertical

components of the inclined load P can be written as

F = Psinndn,,r = P cos a (3.115)
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F, = P cosOindentor = Psina. 
(1

Therefore, Equation 3.104 can be written as

i = tan atanU - L , (3.117)
(k

where k then becomes

k Pcosa (3.118)
EI

Next, the expression for strain energy due to bending is obtained by substituting the

bending moment equation (Equation 3.103) into the integral bending energy formula

U = sin a kL - sin(kL)cos(kL)] (3.119)
4kL COSa cos2(kL) _

Recall that this approach accounts for the axial component of the inclined load P;

however, the higher order term in Equation 3.2 is assumed negligible. Therefore, there is

a need for a set of nonlinear equations that takes both the axial component of the applied

load P and the second order term in Equation 3.2 into account.

3.2.4 Equations for Large Deformation of A Cantilevered Beam with A

Concentrated Inclined Load at The Free End - (Fay, 1962)

For large cantilevered beam deflections with an inclined load P, as shown in

Figure 3.8, the differential equations can be solved and expressed in terms of elliptic

integrals. The required expressions were derived earlier in Section 3.2.2, where Equations

3.62 and 3.69 are solved for the axial (6,) and lateral tip deflections (6y), respectively, and
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Equations 3.70, 3.21, 3.35, and 3.41 are other relevant parameters required in solving

Equations 3.62 and 3.69 (Fay, 1962).

L = [K(p)- F(p, m)], (3.120)
k

9, = L -- [cos a{F(p, m)- K(p)+ 2E(p)- 2E(p, m)}+ 2p sin a cos m], (3.121)k

1
9Y = -[2p cos a cos m -sin aF(p, m)- K(p)+ 2E(p)-2E(p, m)], (3.122)

k

where

k == [K(p)- F(p, m) (3.123)

p = sin((/O + a)/2}, (3.124)

m = sin-' sin(a /2)]. (3.125)

The bending moment at the fixed end, the curvature, and the strain energy stored in the

beam is given by Equations 3.74, 3.75, and 3.86

MbIX=O = EI 2P(Cos a - cos(V/, + a)), (3.126)
I 2P

M x= =EI (os a - cos(q/, + a)), (3.127)
p=0 EI

U = 2P [{E(p)- E(p, m))- (I - p K(p)- F(p, m))]. (3.128)
k

The horizontal and vertical components of load P are given by Equations 3.115 and

3.116, respectively.
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Figure 3.8: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for large deflections; for normal load a = 900 in the above figure.

Now, the difference between the analytical solutions from nonlinear deflection

equations is presented graphically in non-dimensional terms as PL2/EI as a function of

(45/L), as shown in Figure 3.9. In order to present the non-dimensionalized diagrams,

nonlinear equations from both theories are rearranged as follows:

= tan a -a , (3.129)
L k

where

PL2

kL = cosa Qi et al., (2003). (3.130)
EL

The current nonlinear approach can be rewritten as,

P2 cso )-2

[2p cos a cos m - sin a{F(p, m)- K(p)+ 2E(p)- 2E(p, M))]2. (3.131)
EI L
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Figure 3.9 was plotted assuming the inclined load is applied with an indentor tip

similar to the one Qi et al., (2003) used that had a semi-apex angle or face angle, 0 indentor,

of 21.60 that implies a = 68.4' (a = 90' - Qindentor). A similar process was repeated for

Oindentor, of 65.350 that implies a = 24.65' and the results were plotted in Figure 3.10. Both

Figures 3.9 and 3.10 clearly show that the two approaches start to deviate considerably

beyond the tip deflection to length ratio (6/1L) of 0.6. The difference between the two

approaches is because Qi et al., (2003) ignored the higher second order term in the

bending curvature (Equation 3.2); this limits their (Qi et al., 2003) the lateral tip

deflections, 3, to less than 0.6*L, or for approximate tip deflection angle, yo, < 310.

4.5

4

3.5

3

wj
2.5

2

1.5~

1~

0.5-

0.1 0.2 0.3 0.4 0.5
6 Y/L

0.6 0.7 0.8 0.9 1

Figure 3.9: Non-dimensional load versus non-dimensional lateral tip displacement for

cantilevered beam loaded with an external concentrated inclined load at the free end (a = 68.40;

sharp indentor tips).
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Figure 3.10: Non-dimensional load versus non-dimensional lateral tip displacement for

cantilevered beam loaded with an external concentrated inclined load at the free end (a = 24.65*;

wide indentor tips).

After comparing the analytical solutions for large deflection of a cantilevered

beam in Figures 3.9 and 3.10, we next compare the analytical solutions from all four

beam theories with experimental data from Wong et al., (1997), Ebeling, (2004), and Qi

et al., (2003). We first compare the linear and nonlinear beam theories from Sections

3.2.1 and 3.2.2 with the experimental results from Wong et al., (1997) and thereafter,

beam theories from Sections 3.2.3 and 3.2.4 with macro-scale experiments (Ebeling,

2004). In order to compare the nonlinear beam theories in Sections 3.2.3 and 3.2.4, we

will first present and formulate a micro-mechanical contact model similar to the contact

model presented by Qi et al., (2003) for simulating the indentation process. The contact

model will be based on the nano-indentation of VACNT forest-like samples, and will

then be applied to macro-scale beam experiments performed by Ebeling (2004).
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3.3 Mechanics of Experiment - Wong et al., (1997)

Comparing the analytical solutions for small and large deflection of the tip of a

cantilevered beam in Figure 3.6, we next compare the analytical solutions from both

theories with the experimental results of Wong et al., (1997). In order to compare the

analytical solutions with the experimental data, two plots with lateral force and strain

energy are plotted against the lateral tip displacement.

y

Lateral force (a) (b)

Figure 3.11: A schematic of the experiment where a MWCNT was fixed at one end and bent at

the free end with an AFM tip moved laterally (Wong et al., 1997). Schematic of the top-view of

the experimental setup (a); schematic that shows forces acting on the beam. Notice that the AFM

tip here applies a lateral load and not an inclined load relative to the beam longitudinal axis (b).

Wong et al., (1997) used an AFM tip to locate and characterize the dimensions of

the MWCNT to be 32.9 nm in diameter and nearly 1000 nm in length. Thereafter, we

assumed that they applied a lateral force at a distance of 813 nm from the fixed end with

the AFM tip. Since the AFM tip touches the nanotube at a point along the longitudinal

axis before the free end, we assume a point contact between the nanotube and the AFM

tip. The assumption of point contact leads us to believe that load applied by the AFM tip

was normal to the axis of the beam. A schematic of their experiment is shown in Figure

3.11. Three different sets of data were recorded: force versus lateral tip displacement

data, strain energy versus lateral tip displacement data, and force constant (K) versus

distance data. The distance in the last data set is the distance of the tip from the fixed end

of the MWCNT. A curve obtained from classical beam theory was then curved fitted to

the last to estimate effective bending modulus Eb from the experimental data set (Wong et

al., 1997):
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K P 37rr 4
K=--= 4 3 Eb,

ay 4a'

where ;rr 4 / 4 is I (moment of inertia) for a solid cylinder of radius r, and a is the distance

between the fixed end and the applied lateral load, as shown in Figure 3.11-b. The

friction forces were assumed negligible and the effective bending modulus was thus

approximated to be 1.26 TPa (Wong et al., 1997).

Based on linear and nonlinear beam theories, the lateral force and the stored strain

energy versus lateral displacement curves were plotted in Figures 3.12-a and 3.12-b,

respectively. In order to match the analytical results with the experimental results, the

beam in both beam theories is taken to have a cylindrical shape with length of 813 nm,

diameter of 32.9 nm, and effective bending modulus of 1.26 TPa.

100111111
- Nonlinear Deflection

z 80 - Linear Deflection - ..-
Experimental ...... ... , **-

20 60-

40-

-20-

0:0
0 50 100 150 200 250 300 350

(a) Lateral Displacment (nm)

100
- Nonlinear Deflection

> 80 . ........ Linear Deflection
. Experimental

>,60 - ,.
C

w 40-

N 20-

00 50 100 150 200 250 300 350

(b) Lateral Displacement (nm)

Figure 3.12: Comparison of lateral force versus lateral tip displacement for linear and nonlinear

beam theories, and experimental data (Wong et al., 1997) (a). Comparison of strain energy versus

lateral tip displacement for linear and nonlinear beam theories, and experimental data (b). The

graphs were obtained for MWCNT of L = 813 nm, D = 32.9 nm and effective Eb = 1.26 TPa.
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(a) (b)

Figure 3.13: Local buckling in a MWCNT (a) (Poncharal et al., 1999). Periodic buckling (bumps

on the far right figure) observed while bending MWCNT to undergo large deflections with an

AFM tip (b) (Wong et al., 1997).

Figure 3.12 show that both beam theories match the experimental results up until

where there is a sudden drop in the slope at a lateral displacement of approximately 170

nm. Wong et al., (1997) reported that the sudden drop in the curves is because the

MWCNT underwent buckling at approximately deflection angle of 100, as shown in

Figures 3.13. The process of buckling was first observed by Lijima et al., (1996) and later

by Poncharal et al., (1999) and Falvo et al., (1997); the MWCNTs were observed to

regain their original shape even after large deformations. Both beam theories are able to

capture the quadratic behavior of the experimental energy curve in Figure 3.12-b before

the CNT buckles; thereafter the experimental curve shows a linear behavior.

Both beam theories show similar behavior when compared with the experimental

data. The beam in Wong et al., (1997) buckles beyond the tip deflection of approximately

170 nm, and from the analytical comparison earlier we showed that the two beam theories

deviate beyond tip deflection of 0.6*L (approx. 0.6*813.0 nm= 487.8 nm), renders the

comparison of the analytical results with the experimental results inconclusive.

3.4 Mechanics of Nano-Indentation of Nanotube Arrays

Qi et al., (2003) probed the mechanical behavior of Vertically Aligned Carbon

Nanotube (VACNT) arrays, also known as nano grass and nano forests via nano-

indentation, as shown in Figure 3.14. Thereafter, they used the force-penetration results

to determine the effective mechanical properties of the constituent CNTs, including
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bending stiffness and effective bending modulus. The key structural features of the

VACNT are CNT diameter, length and areal density. Observation of nano-indentation

reveals a process whereby nanotubes are consecutively bent during the penetration of the

indentor. In the micro-mechanical model of the indentation process (Qi et al., 2003), the

effective bending stiffness (EI),ff of constituent CNTs in the VACNT array is deduced

from nano-indentation force-penetration depth curves. The obtained average (EI),ff of

CNTs is then used to interpret an average effective bending modulus Eb, effective axial

modulus Ea, and a wall modulus E, of an MWCNT. The Eb, the Ea, and the E" of

MWCNTs reported by Qi et al., (2003) ranged between 0.91 and 1.24 TPa, 0.90 and 1.23

TPa, and 4.14 and 5.61 TPa, respectively. The MWCNT walls were each assumed to

have a mechanical shell thickness of 0.075 nm and shell spacing of 0.34 nm.

Figure 3.14: A SEM image of a 250 tilted view of a Vertically Aligned Carbon Nanotubes sample

reveals the forest like landscape (Qi et al., 2003).

This section presents micro-mechanical models of the nano-indentation process

for two indentor geometries, a sharp tip with a semi-apex angle or face angle of 21.60 and

a Berkovich tip with face angle of 65.35'. The micro-mechanical model presented here

includes various stages of CNT indentor interaction and also includes CNT buckling

during indentation.
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Figure 3.15: A schematic of indentor tip.

Qi et al., (2003) used an AFM diamond tip for nano-indentations on the VACNT

sample; the AFM tip had an apex angle, p, of 600 and a semi-apex angle, 6 indentor, Of

21.60, as shown in Figure 3.15. Deep indentation of a VACNT sample with this AFM tip

results in large deflection of the nanotubes; a two-dimensional representation of nano-

indentation is shown in Figure 3.16. Qi et al., (2003) used the nonlinear beam theory

presented in Section 3.2.3 to formulate the mechanical contact model to simulate nano-

indentation that accounted for the lateral and axial components of load by the AFM tip

formulated in the deformed configuration. When the contact model results were

compared with the experimental data, the average effective bending modulus values (0.91

TPa to 1.24 TPa) agreed well with other experimental values found for CNTs in

literature.

The nonlinear contact model that Qi et al., (2003) presented is expected to agree

well for modest indentations upto 0.6 or so of the average height of the VACNT array, as

was concluded from Figures 3.9 and 3.10. The results however are not expected to

capture the entire force-penetration curve behavior for deep indentations with CNT

deflections beyond 0.6 *LCNT, and also will not capture buckling of CNTs. Wong et al.,

(1997) reported that the CNT in their experiment buckled at a lateral tip deflection of

approximately 170 nm. The flatness of the Berkovich tip increases the ratio of axial to

lateral loading of the CNT, decreasing the overall deflection and load at which the CNT

will buckles during indentation. In addition, Qi et al. (2003) noted that CNTs transition

from making a point contact to a line contact with the AFM tip. The line contact occurs
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when a CNT tip deflection reaches indentor of the AFM tip and this changes the end

loading conditions for the CNT from there on. Figures 3.16-c and 3.16-d show a two-

dimensional schematic representation of the point contact and the line contact of a CNT

with an indentor tip, respectively.

In the following sections, we propose two micro-mechanical contact models for

nano-indentation with a pyramidal shape indentor tip that build upon the model presented

by Qi et al., (2003); both sharp and Berkovich tips are considered. The first proposed

micro-mechanical contact model considers only the large deflection problem associated

with deep indentations or Berkovich tips. The second model uses an approximate

approach for capturing the influence of buckling of CNTs on indentation force-

displacement curves. Both of these models apply the more complete nonlinear analysis

presented in Section 3.2.4.

Ha

(a) 0 (b)

F
F

h h

Pi Pline

() (d

(C) (d)

Figure 3.16: Schematic of nano-indentation of a VACNT forest (a). The indentor tip is about to

make contact with the CNT (b). The tip and CNT make a point contact (c). The tip and the CNT

make a line contact (d). The point contact load and the line contact load are normal to the

indentor's face (b and c).
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3.4.1 Micro-Mechanical Contact Model (without buckling)

The proposed three-dimensional micro-mechanical contact model is based on the

large deflection nonlinear equations. The model is divided into two phases: point contact

between CNT and indentor, and line contact between CNT and indentor. The point

contact phase indicates the regime of deformation where the load is applied as an inclined

point force at the free end of the nanotube; the line contact phase indicates the regime of

deformation where the load is distributed nonuniformly over the line segment of the

nanotube, as shown in Figures 3.16-c and 3.16-d, respectively. The contact between the

CNTs and the indentor face is assumed frictionless. In addition, any interaction between

the CNTs is ignored in our contact model.

In the following subsections, we first formulate the theoretical contact model for

each phase without including the buckling effect. Second, the micro-mechanical contact

model is then verified against the results from macro-scale experimentation (Ebeling,

2004) and finite element models based on the macro-scale experimentation.

3.4.1.1 Point Contact Phase (XVwi< Oindentor)

In the point contact phase, a point load Pi is applied to the free end of a nanotube

of length Li and diameter Di at an angle a with the vertical (normal to the indentor's face).

Here the slope of the CNT at the free end, Vi, remains less than the indentor semi-apex

angle 6 indentor, as shown in Figure 3.17-b. When the slope equals Oindentor, the CNT enters

the line contact phase, discussed in the next subsection.

The model in this phase begins with the indentor tip initially located at a height, H

above the VACNT forest, as shown in Figures 3.16-a and 3.17-a. The VACNT forest is

generated randomly using a Gaussian distribution for CNT locations and heights. During

the nano-indentation simulation, the indentor tip sequentially encounters and bends

nanotubes as the depth of penetration, h, is increased, as shown in Figure 3.16.

Considering an ith nanotube encountered as, CNT; the indentor touches CNT and subjects

it to a point load Pi. The load Pi is applied normal to the indentor face, as shown in Figure

3.17-b.
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Figure 3.17: Schematic to find the relation between h, and h (a). Point contact between a

an indentor profile at the free end (b).

CNT and

Unlike the contact model presented by Qi et al., (2003), nonlinear equations

(Section 3.2.4) used in our contact model cannot be arranged to find a direct reintion

between Pi and h. For clarity, the nonlinear equations are given as (see Section 3.2.2 for

the formulation):

9_, =Li - [cosa(F(p, m)- K(p)+ 2E(p)- 2E(p, m)}+2psin a cosm]
k

9, [2p cos a cos m - sin a(F(p,m)- K(p)+ 2E(p)- 2E(p, m))]

(3.132)

(3.133)

where
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k = E [K(p) - F(p, m)] (3.134)

p = sin((y0 + a)/ 2} (3.135)

m = Sin 1 sin(a /2)] (3.136)

Rearranging Equation 3.134, we get

P = (EI)ff {K(p)-L(p m)) . (3.137)

(EI)Eff in Equations 3.134 and 3.137 is the average effective bending stiffness of a CNT in

the VACNT forest. Also, in Equations 3.132 to 3.134 and 3.137, K(p) and F(p, m) are the

complete elliptic integrals of the first kind, while E(p) and E(p, m) are the complete

elliptic integrals of the second kind; the expanded form of these first and second kind

elliptic integrals are given as

K(p)= d F(p,m)= do
0 IP2 sin20 2 0 [_P2 sin 2 0]

IT

E(p)= 1-p2sin2  d#; E(p,m)= 1-p2sin 2  d#.
0 0

Because no direct relation between Pi and h exists, we use geometry and an iterative

method to approach a solution. First, 6, and 6y in Equations 3.132 and 3.133 are solved

for a particular ygw; here the deflection angle varies as 00 < < Oindentor. Thereafter, h, is

solved by substituting 6, and 5, in Equation 3.138; the relation in Equation 3.138 is found

by relating the deflection of CNT to the geometry of the indentor, as shown in Figure

3.17-b; it is given by
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L, ( =(L h, )+ytan 2- Oindenor 1

(or) h, =5, + , tan(a), (3.138)

where a = - - ,indentor (3.139)
2

The process is repeated for several Vog ranging from 0' to Oindentor, which gives

several discrete points (Voi, hi). A sixth order polynomial is then curve fitted on these

discrete points; the polynomial thus obtained, Vj, is a function of hi, where hi is found by

sequentially increasing the h (hi = h - h01; h0i = H - L1), as shown in Figure 3.17-a.

Thereafter, simply substituting Voi into Equation 3.137, gives the required load P that the

indentor tip applies upon reaching an indention depth, hi.

For all the nanotubes that come into contact with the indentor tip at a given

particular indentation depth h, values of Pi are found and then added together; thereafter,

the net indentation force F (see Figure 3.16) is expressed as

n

F = IyP cosa (3.140)
i=1

wherey, = 0 when CNT is not in contact, andy,= 1 otherwise. The value ofycan be

determined from geometry inequality as follows (see Figure 3.17-a):

(H - h)+ x tan - 0indentor L, , (3.141)

where x is the known relative distance between CNT and the indentor tip that comes into

contact when the inequality in Equation 3.141 is satisfied. The value of hi (= h - h01) for

an individual nanotube sequentially increases once CNT makes contact with one of the

faces of the indentor tip.

136



On continuing the indentation, the deflection angle increases as the indentation

depth increases, and some of the CNTs reach the 6 indentor of the tip. The CNT closest to

the center or peak point of the inverted pyramid tip reaches the line contact phase before

the other outer CNTs come into contact. The inclined force Pi is calculated for CNT until

it reaches the equal angle condition. Once CNTi reaches the line contact phase, it goes

through a different iterative process discussed in the next section.

3.4.1.2 Line Contact Phase (VW= Oindentor)

Once the CNT deflection angle reaches the Oindentor of the indentor, it enters the

line contact phase. Here the load at an angle a with the vertical is distributed

nonuniformly over the contact length near the free end of the CNT, as shown in Figures

3.18 and 3.19-a by the curved dotted lines. Unlike the point contact phase, here Voi

remains constant and is equal to Oindentor. As a result, p and m become constants in

Equations 3.135 and 3.136, respectively, and ki, 6, 6y, Pi, and hi, functions of Li rather

than Yoi. Here, Li is defined as the length of CNT from the fixed end to the point of

application of Pi.

An iterative method, similar to the one in the point contact phase, is then used to

find a solution. First, for an initial L equal to Loi, we solve for 6, and ', from Equations

3.132 and 3.133 and substitute the values in Equation 3.1382 to solve for corresponding

hi. Notice that the point of application of the equivalent load Pi on CNT, continually

changes as indentation progresses; this results in the shortening of the effective length Li

of the beam, as shown in Figure 3.18. Li decreases by about 1/3 of the line contact

length (Loi - L1) with each incremental increase in hi (Figure 3.19-b) and is used to repeat

the iterative process for the next indentation depth. Several discrete points (Li, hi) are

found on which a sixth order polynomial is curve fitted; the polynomial is then a direct

relation between hi and Li. Finally, hi is solved from the known indentation depth h of the

indentor tip by subtracting the initial separation distance hoi (= H - Li) between CNT and

the indentor (hi = h - h01). Thereafter, by substituting hi in the polynomial, we solve for L;

this Li gives the required equivalent load Pi when substituted in Equation 3.137. Pi is then

the required 'equivalent load' that the indentor tip applies to CNT in line contact with the

indentor surface at a relative indentation depth hi.
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Figure 3.18: Line contact between a CNT and an

shown in figure, an equivalent concentrated load

(curved dotted line).
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Figure 3.19: Expected nonuniform load distribution pattern with approximate location of the

equivalent load (a). Assumed linearly varying uniformly distributed load pattern with the location

of equivalent load (b). The thick solid line represents the region of CNT that makes line contact

with the indentor surface.
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A similar process is repeated for all the CNTs that make a line contact with the

indentor tip; the sum of all the equivalent inclined loads for a particular indentation depth

h is then added to the inclined loads of the CNTs still in the point contact phase. The sum

is finally substituted in Equation 3.140 to get the net indentation force F at h, as shown in

Figure 3.16-d.

Next, numerical solutions obtained from the above micro-mechanical contact

model are compared with macro-scale experimental (Ebeling, 2004) and finite element

simulation data for a single Teflon beam subjected to indentation. Thereafter, we will

attempt to capture the complete deformation behavior with buckling of CNTs in our

micro-mechanical model.

3.4.2 Results (without buckling)

In order to verify the model, theoretical results are first compared to macro-scale

indentation experiments on a single Teflon cylinder (Ebeling, 2004). Theoretical results

are then compared to finite element indentation simulations. Both a sharp (6 indentor -

21.60) and a Berkovich (Oindentor = 65.350) indentor tips are examined.

3.4.2.1 Macro-Scale Experiments

In order to verify the micro-mechanical contact model, two macro-scale

experiments were performed. First, a Teflon solid cylindrical tube having a diameter of

9.53 mm and length of 124.0 mm was indented with a large scale sharp indentor tip, as

shown Figure 3.20-a. Second, a similar Teflon solid cylindrical tube having a diameter of

9.53 mm and length of 184.0 mm was indented with a large scale Berkovich indentor tip,

as shown in Figure 3.20-d. The factory-rated Young's modulus of Teflon is -0.7 GPa.

The solid tubes were threaded on one end and were fitted on an Aluminum base plate, as

shown in Figure 3.20. The indentor tips were made of Aluminum sheet metal, as shown

in Figure 3.20. The contact between the Teflon cylinder and the indentor surface was

assumed frictionless; to minimize the effect further, a fine layer of lubricant was applied

on the indentor surface.
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Figure 3.20: Macro-scale experimental setup for indentation of solid Teflon tube rigidly fixed at

one end. Sharp indentor tip deflecting a single solid Teflon tube of L = 124.0 mm and D = 9.53

mm, shown in initial position, 3 = 0 mm (a), point contact phase, 6 = 50 mm (b), and line contact

phase, 3 =110 mm (c). Berkovich indentor tip deflecting solid Teflon tube of L = 184 mm and D =

9.53 mm, shown in initial position, 3 = 0 mm (d), point contact phase, 3 = 10 mm (c), and line

contact phase, 3= 140 mm (f).
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A texture analyzer (see Figure 3.20-a) from Stable Micro Systems (Model #

TA.XT.plus) was then used to deflect the Teflon cylinder via an Aluminum indentor. Here

the indentor tip was displaced by 115.0 mm downwards for the sharp tip and 21.0 mm for

the Berkovich tip at the rate of 6.0 mm/sec. Because of the limitation imposed by the

texture analyzer, the Aluminum Berkovich tip was designed to be smaller in dimension,

which limited the indentation depth in our experiment. Figures 3.20-a, b and c, and d, e

and f show three snapshots at the initial, the point contact, and the line contact phases,

respectively, for both types of indentor tips. The vertical component of the indentation

force and the penetration depth was directly obtained from the texture analyzer software;

the data was then compared with the results from our theoretical and finite element

simulations, as will be discussed next.

3.4.2.2 Macro-Scale Finite Element Simulations

Next, two three-dimensional Finite Element (FE) contact models were constructed

and their solutions compared to those of the micro-mechanical model and experiments

from the previous section. A commercial FE software package, ABAQUS, was used to

model the experiments in the previous section. The FE-based models consist of a

deformable solid cylindrical beam rigidly fixed at one end and displaced at the other by

an indentor tip, modeled as a rigid body. In the first FE simulation, the cylindrical beam

has a diameter of 9.53 mm and length of 124.0 mm with indentor tip having an apex angle

p of 600 and a semi-apex angle indentor of 21.60 (sharp tip), as shown in Figure 3.21-a. In

the second FE simulation, the cylindrical beam has a diameter of 9.53 mm and length of

184.0 mm with indenter tip having p of 142.40 and Oindentor of 65.350 (Berkovich tip), as

shown in Figure 3.21-d. The cylindrical beam was assigned 0.24 x 0.24 nm linear 8-node

solid elements (C3D8) with linear elastic material properties of Teflon (Young's modulus

of 0.7 GPa and Poisson ratio of 0.46). Initially the free end of the cylindrical beam FE

model is in contact with the indentor tip. In both simulations, all degrees of freedom for

the indentor tip except the vertical displacement were fixed. During the simulation, the

indentor tip was displaced such that it deflects the Teflon tube on indentation. The

indentor tip is displaced enough to make a point contact and a line contact during the

simulation, as shown in Figures 3.21. Figures 3.21-b and 3.21-e show the beams making
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a point contact with the indentor surface for the sharp and the Berkovich tips,

respectively. On the other hand, Figures 3.21-c and 3.21-f show the snapshots of the FE

simulation where the beams make a line contact with the sharp and the Berkovich tips,

respectively. The indentation force and vertical displacement were measured at a

reference point on the tip. Similar to the experiment, the tips were specified to displace

downwards by 115.0 mm and 180.0 mm for the sharp and the Berkovich tip simulations,

respectively.

Figure 3.21: Macro-scale finite element simulation for indentation of solid Teflon tube rigidly

fixed at one end. Sharp indentor tip deflecting a single Teflon solid tube of L = 124.0 mm and D =

9.53 mm shown in initial position, 3 = 0 mm (a), point contact phase, 3 = 60 mm (b), and line

contact phase, 3 = 110 mm (c). Berkovich indentor tip deflecting solid Teflon solid tube of L =

184.0 mm and D = 9.53 mm shown in initial position, 3 = 0 mm (d), point contact phase, 3 = 30

mm (e), and line contact phase, 3 = 140 mm (f).
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Next, the experimental, FE simulation and contact model results are compared

together in Figures 3.22 and 3.23 for sharp and Berkovich tips, respectively. Figure 3.22,

in addition to the results from our contact model, shows the results from contact model

proposed by Qi et al., (2003). The numerical solutions from FE and mechanical contact

model are in excellent agreement throughout the force-displacement curve, while they

both differ slightly from the experimental results (see Figures 3.22 and 3.23). Results

from the FE and contact model match and show linear behavior for initial indentation, as

shown in the Figure 3.22 inset view. The initial linear behavior is observed until an

indentation depth of 80 mm where the Teflon beam and the indentor tip surface make a

point contact; thereafter, the beam makes line contact with the indentor, as shown in

Figure 3.21-c and by black arrow in Figure 3.22. The initial linear segment is the small

deflection region where linear beam theory can be applied with reasonably good

approximation to the experimental data. The f-p results from Qi et al., (2003) contact

model shows remarkably good fit to the experimental data throughout the point contact

phase. Figure 3.23 inset view, on the other hand, shows that for indentation with the

Berkovich tip, the initial force-displacement curve is not linear. The initial curve behavior

in Figure 3.21-e is nonlinear because even the small indentation results in large deflection

of the beam. In addition, the results for the Berkovich tip in Figure 3.23 shows that

transition from point contact to line contact phase occurs at an indentation depth of

approximately 120 mm.

Even though the contact model and the FE simulations capture the force-

displacement behavior from the experimental results in Figures 3.22 and 3.23, they

deviate slightly in the inset views and they transition to the line contact phase sooner (see

Figure 3.22). The inset views differ mainly because of the machining error of the

Aluminum indentor tips. The edges of the indentor tips used in the experiment have

chamfer because of the folding of Aluminum sheets, while the contact and the FE models

have sharp edges. In addition, the actual Oindentor for the experimental sharp and Berkovich

tips are approximately 230 and 66', respectively.

The Teflon beams deflect more with small indentation because of chamfer on the

edges; this results in a change in slope of the experimental curve in the inset view of

Figure 3.22. The slope of the curve outside of the chamfer region is similar to the
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simulation results. In addition, the force values in Figure 3.22 are slightly higher than the

simulation results mainly because of the higher Oindentor, which also results in the delay in

transition of the beam from point contact to line contact.

Because of the size limitation of the Texture Analyzer instrument, complete

indentation of the Teflon beam with the macro-scale Berkovich tip was not possible;

therefore, data showing the transition from point to line contact is missing in Figure 3.23.

120 1 1 1 1 1
- ABAQUS

Contact Model: Current Authors
.-.----- Contact Model: Qi et al. (2004)

100 -. Experiment

2
80-

Z

S - 1.5

60 --

2040 0 0 6 0 21

0
0 20 00 6 1010 1520

Indentation Depth (mm)

Figure 3.22: Force versus penetration depth curves from finite element, contact model, and

experimentation of macro scale model. Single Teflon solid tube (L = 124.0 mm, D = 9.53 mm, E =

0.7 GPa, v = 0.46) indented with a sharp indentor tip (indentor = 21.60). The inset picture is the

close-up view of the beginning portion of the curves showing the linear relation between force

and penetration depth. The black-arrow indicates the end of the point contact phase.
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Figure 3.23: Force versus penetration depth curves from finite element, contact model, and

experimentation of macro scale model. Single Teflon solid tube (L = 184.0 mm, D = 9.53 mm, E =

0.7 GPa, v = 0.46) was indented with a Berkovich indentor tip (Gindentor = 65.350). The inset

picture is the close-up view of the beginning portion of the curves showing the linear relation

between force and penetration depth. The black-arrow indicates the end of the point contact

phase.

3.4.3 Micro-Mechanical Contact Model (with buckling)

The three-dimensional micro-mechanical contact model based on large

deformation was proposed earlier. The micro-mechanical model was found to be in good

agreement with the experimental and FE model results. The contact model, however,

does not account for the local buckling observed on the compressive side of the bend in

CNTs subjected to bending.
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In this section, we will incorporate the local buckling phenomenon in our contact

model and attempt to approximate the penetration force-displacement curve behavior by

comparing the results obtained from nano-indentation FE simulations of EOR-based

MWCNT models. But first, we will show how equations presented by Timoshenko

(1936) and later used by Yakobson et al., (1996) for buckling phenomenon in thin shell

tubes could be used in our contact model for adequately predicting the onset of rippling

in MWCNTs.

Onset of Rippling

The CNTs that are bent to large curvatures undergo local elastic buckling as was

observed experimentally by Poncharal et al., (1993), and Falvo et al., (1997) and in

numerical simulations by lijima et al., (1996), Yakobson et al., (1996), Liu et al., (2001,

2003), Wang and Wang (2004), Wang et al., (2004), and Wang et al., (2005), Pantano et

al., (2003, 2004a, 2004b), and others. The effective bending modulus of the CNT

decreases with the emergence of a local rippling mode - a mode where local buckling

initiates on the compressive side of the bend. In the case of nano-indentation, the rippling

occurs locally and gives a hinge-like effect that results in an overall reduced stiffness of

the CNT. To simplify this complex problem, we will attempt to capture a critical

load/displacement at which localized buckling occurs and a subsequent reduction in

effective tube stiffness post-buckling.

Buckling of MWCNTs is a complex problem where interlayer van der Waals

forces play a major role as shown by Pantano et al., (2004a). However, the initiation of

the buckling during bending of an MWCNT can be approximated from the buckling of

the outermost shell, as shown in Pantano et al., (2003). In Chapter 2, we estimated the

element size of an MWCNT, based on the initial buckling wavelength of the outermost

shell predicted by thin shell theory (see Equation 2.5) (Timoshenko, 1936); here we also

propose to use thin shell theory to predict the critical buckling point for a MWCNT

subjected to bending. To estimate the critical point for the emergence of the rippling

bending mode for a MWCNT, the local critical curvature Kcr is estimated from the

equation suggested by Timoshenko (1936) and later used by Yakobson et al., (1996):
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2ecr(
Kccr - E- 3142)

D

where

Ecr 2 (3.143)
D3 I3 -

In Equation 3.143, Ecr, t, D, and v are the critical strain, shell wall thickness, outermost

diameter of the shell tube, and Poisson ratio, respectively. Substituting t" = 0.075 nm and

v = 0.19 into Equation 3.143 and then result into Equation 3.142, we get the required

approximate critical curvature for the outermost shell wall in a MWCNT as

Kcr 0.1764 nm-. (3.144)
D2

We will next incorporate Equations 3.144 in our contact model and later verify the results

with FE models.

In our micro-mechanical contact model for nano-indentation, we calculate the

curvature at the fixed end of CNT where it is highest and is given by the following

relation (see Section 3.2.2 for the formulation):

1 I FP- = -(cos a - cos(v/. + a)). (3.145)
p x=0 EIV/=0

The curvature is calculated for every CNT that comes in contact with the indentor tip and

is deflected from 00 to 6 indentor.

3.4.3.1 Point Contact Phase

During the nano-indentation, the curvature of CNT can exceed the expected

critical curvature calculated from Equation 3.144. Since, Yakobson et al., (1996) and
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Iijima et al., (1996) in their MD simulations for SWCNT and DWCNT and Wong et al.,

(1997) in their experimental result for MWCNT observed that the bending force

decreases significantly once buckling occurs, we assume the load P, stays constant after

the beam deflects beyond the critical curvature and until CNT transitions to the line

contact phase. The constant force assumption can be inappropriate for cases when the

deflection is small - indentation with sharp tip, for example; Wong et al., (1997) reported

a 30% drop in force that nearly remained constant after buckling. However, for large

deflections (indentation with sharp tips) nanotubes can buckle sideways to result in a

hinge-like effect and show greater drop in bending force. We will verify the constant load

approximation later from finite element simulations of an MWCNT. Next, rearranging

Equation 3.134 as

(EI) = PL 2 (3.146)
F-EJ [K(p)- F(p,m)]2

shows that the effective bending stiffness (EI)Eff decreases for larger denominators, with

Pi and Li being constants in the point contact phase. This behavior supports the argument

that the effective bending modulus decreases at the onset of the rippling bending mode.

3.4.3.2 Line Contact Phase

Once the slope Vri of CNT at the tip reaches 0 indentor, Vfoi remains constant

throughout the line contact phase and produces negligible change in the curvature of the

nanotube. Thus the effective stiffness (EI)eff of CNTi can be assumed to remain constant

and equal to the last (EI)eff value solved for at the end of the point contact phase

(Equation 3.146). The process then can be thought to be similar to the one discussed

earlier in Section 3.4.1.2.

Next, we verify if the proposed changes in the micro-mechanical contact model

capture the indentation force-displacement curve behavior when beams buckle. We will

verify the validity of the modified contact model by comparing the results from EOR-

based MWCNT FE models and experimental data obtained from a VACNT sample

indentation.
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3.4.4 Results (with buckling)

Here, we first compare the indentation force-displacement results from two FE-

based models of a MWCNT; one is able to capture only the pre-buckling behavior, while

the other the pre-buckling, the buckling point, and the post-buckling behavior of

MWCNTs. Thereafter, we compare the FE model results with our proposed contact

models. Lastly, the numerical solutions obtained from nano-indentation of randomly

generated MWCNTs are compared with the experimental results obtained from nano-

indentation of VACNT samples. The experiments were carried out with both a sharp and

a Berkovich AFM tip.

3.4.4.1 Nano-Scale Finite Element Contact Model: Single MWCNT

In this section, we present two FE models simulating the nano-indentation

process. In the first model, a MWCNT is constructed from 8-node solid elements (mesh

size = 20x20 nm) assigned isotropic material properties (Eb = 1.127 TPa and v = 0.19);

the second model is also constructed in a similar fashion (mesh size = 1.68 nm x 1.68

nm), but assigned locally orthotropic material properties. The material properties for the

second FE model were found via the EOR method proposed in Chapter 2. The MWCNTs

constructed in both FE models have length L = 204.96 nm and diameter D = 20.4 nm and

are indented 180.0 nm with sharp and Berkovich indentor tips, as shown in Figures 3.24

and 3.25, respectively. The indentor tips in both FE simulations are modeled using rigid

elements. The contact between the MWCNT and the indentor is modeled to be

frictionless. Next, the boundary conditions are defined to be similar to those applied

earlier for macro-scale Teflon tube FE models in Section 3.4.2.2.

The local isotropic material properties for the MWCNT (Eb = 1.127 TPa and v =

0.19) in our model were estimated from beam theory. Here an effective bending stiffness

(EI)Eff is measured and the bending modulus Eb is determined by assuming an effective

moment of inertia IEf = ;(D)/64, where D is the outer diameter. Eb is then computed

to be (Qi et al., 2003),

(EI)Eff
E ,Eff (3.147)
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where (EI)Eff is estimated from

(EI), = E,, = Ii,

Ii = i R+ -) -(R, _ .(3.148)
4 ( 2) 2)

In Equation 3.1481, E, is the effective wall modulus of the graphite sheet and is taken to

be 4.84 TPa (Pantano et al., 2004b), and in Equation 3.1482, It, Ri, and t are the moment

of inertia, radius and thickness of the wall of the ith tube, respectively; the thickness =

0.075 nm. Considering the shear interactions/stiffness between walls to be very low as

observed by Cummings and Zettl (2000) and Yu et al., (2000c), we can approximate

(EI)Eff of the MWCNT through the sum of the bending stiffness of each tube with

Equation 3.148, (e.g., Govindjee and Sackman 1999 and Qi et al., 2003).

Figures 3.24 and 3.25 show the FE indentation simulation snapshots at three

stages (initial, point contact, and line contact) for MWCNTs having isotropic and locally

orthotropic properties for sharp and Berkovich indentor tips, respectively. The

corresponding indentation force-displacement results from both FE models are shown in

Figures 3.26 to 3.29.
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(b)

(e)

(c)

4

(f)

Figure 3.24: Nano-scale finite element simulation for indentation of a MWCNT rigidly fixed at

one end. Sharp indentor tip deflecting a single MWCNT beam with isotropic properties (E =

1.127 TPa, v = 0.19) of L = 204.96 nm and D = 20.4 nm shown in initial position, 3 = 0 mm (a),

point contact phase, 3 = 155 mm (b), and line contact phase, 3 = 180 mm (c). Sharp indentor tip

deflecting a single MWCNT beam with orthotropic properties of L = 204.96 nm and D = 20.4 nm

shown in initial position, 3 = 0 mm (d), point contact phase, 3 = 127 mm (e), and line contact

phase, 3 = 158 mm (f). The inset view in Figures b, c, e, and f show the rippling occurring in

orthotropic model and missing in isotropic model.
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(a) (b) (c)

(d) (e) (f)

Figure 3.25: Nano-scale finite element simulation for indentation of a MWCNT rigidly fixed at

one end. Berkovich indentor tip deflecting single MWCNT beam with isotropic properties of L =

204.96 nm and D = 20.4 nm shown in initial position, 5 = 0 mm (a), point contact phase, 6 = 50

mm (b), and line contact phase, 3 = 140 mm (c). Berkovich indentor tip deflecting a single

MWCNT beam with orthotropic properties of L = 204.96 nm and D = 20.4 nm shown in initial

position, 6 = 0 mm (d), point contact phase, 5 = 50 mm (e), and line contact phase, 6 = 160 mm (f).

The inset view in Figures b, c, e, and f show the rippling occurring in orthotropic model and

missing in isotropic model.

Figures 3.24 and 3.25 show that the net macroscopic deformations of EOR-based

beams as a whole (a, b, c in Figures 3.24 and 3.25), do not differ when compared with

their isotropic counterparts (d, e, f in Figures 3.24 and 3.25). However, the inset views in

Figures 3.24 (e and f) and 3.26 (e and f) clearly show both models to differ, in that the

EOR-based FE model of the MWCNT is able to capture the buckling of the MWCNT on

indenting, while the isotropic version of a similar beam fails to do so, as shown in Figures

3.24 (b and c) and 3.25 (b and c).
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Figure 3.26: Force versus penetration depth curves from finite element and contact models of

nano-scale model. Single MWCNT tube (L = 204.96 nm, D = 20.4 nm, E = 1. 127 TPa, V = 0. 19)

was indented with a sharp indentor tip (0indentor 21.6'). The inset picture is the close-up view of

the beginning portion of the curves. The solid- and dotted-arrows indicate the beginning of the

line contact phase for isotropic and EOR models, respectively. The dotted black circle in the inset

view represents the buckling point.

Figures 3.26 and 3.27, and Figures 3.28 and 3.29 respectively show the

indentation force-penetration (f-p) depth results obtained from the FE nano- indentation

simulations for both tips. Figures 3.26 to 3.29 show that the proposed contact model

captures remarkably the f-p curve behavior for the MWCNT constructed from elements

with isotropic material properties; however, that is not the case for the EOR-based model.

The first change in slope of thef-p curves obtained from EOR FE models in Figures 3.26

and 3.29 suggest that the overall load for buckling is higher than that predicted from outer

wall only and is affected by the inner walls; the sudden change in slope indicates the

point when the innermost tube buckles. Applying thin shell theory buckling criteria
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(Equation 3.144), the modified contact model is able to predict the pre-buckling behavior

as well as the buckling initiation point, as shown in the inset views in Figures 3.26 and

3.28. When the buckling initiates, several kinks occur at discrete locations on the

compressive side of the MWCNT, as shown in Figure 3.30-a; this is equivalent to the

formation of a single kink in a SWCNT, as shown in the FE simulations by Pantano et al.,

(2004b). On further indenting, the kinks propagate and become distributed on the entire

compressive side of the MWCNT, as shown in Figure 3.30-b; this is equivalent to the

propagation and the development of multiple kinks due to van der Waals forces when a

SWCNT is bent further (Pantano et al., 2004b). For actual MWCNTs we suggest that the
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Figure 3.27: Force versus penetration depth curves from finite element and contact models of

nano-scale model. Single EOR-based MWCNT tube (L = 204.96 nm, D = 20.4 nm ) was indented

with a sharp indentor tip (Oindentor= 21.60). The dotted-arrow indicates the beginning of the line

contact phase.
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Figure 3.28: Force versus penetration depth curves from finite element and contact models of

nano-scale model. Single MWCNT tube (L = 204.96 nm, D = 20.4 nm, E = 1.127 TPa, V = 0.19)

was indented with a Berkovich indentor tip (0indeno, = 65.350). The inset picture is the close-up

view of the beginning portion of the curves. The solid- and dotted-arrows indicate the beginning

of the line contact phase for isotropic and EOR models, respectively. The dotted black circle in

the inset view represents the buckling point.

Unlike the pre-buckling and buckling point behavior, the post-buckling behavior

of thef-p curves differ widely throughout for the sharp tip case and initially for the wide

tip case. The dotted arrows in Figures 3.28 and 3.30 indicate the transition point during

the indentation when the MWCNT transitions from point contact to line contact phase for

EOR-based and isotropic-based MWCNT models, respectively. The arrows reveal that

buckling in the EOR-based MWCNT model causes the transition to the line contact phase

to lead for the sharp tip (by approx. 40 nm), and lag (by approx. 10 nm) for the Berkovich

tip when compared to their respective isotropic-material MWCNT models. The transition

point, however, remains unchanged in the f-p curves from the modified contact model.
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The change in transition point depends on the occurrence of the hinge effect, which takes

place when buckling is distributed everywhere. The hinge effect occurs because the local

nanotube flattening causes a sudden change in the curvature of the nanotube, further

resulting in a sudden collapse in indentation force. Recall that the plateau region of thef-

p curve is the regime where the effective bending stiffness of MWCNT decreases with

the emergence of the rippling bending mode.
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Figure 3.29: Force versus penetration depth curves from finite element and contact models of

nano-scale model. Single EOR-based MWCNT tube (L = 204.96 nm, D = 20.4 nm) was indented

with a Berkovich indentor tip (Omndenor = 65.350). The dotted -arrows indicates the beginning of

the line contact phase.

The plateau region in Figure 3.30 is larger than in Figure 3.28; this indicates that

the constant force assumption after buckling in our modified contact model for the sharp

tip case is not valid, and better results may be expected with our unmodified contact
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model. For the Berkovich tip, our proposed modified contact model seems to reasonably

capture the overall f-p curve behavior obtained from simulating the indentation of the

EOR-based MWCNT model.

Buckling is
distributed
uniformly

(b)

Figure 3.30: Enlarged snapshot view of the EOR-based FE model of MWCNT in rippling

bending mode from Figure 3.25-e and -f. Buckling occurs at discrete location when buckling

initiates (6 = 40 nm) (a). Buckling progresses and is distributed uniformly (6 = 70 nm) (b).
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Based on comparison of the two contact models with FE simulations, we propose

to use the contact model (without buckling) for sharp tips and the modified contact model

(with buckling) for the Berkovich tips. However, ignoring the buckling in simulations

with a sharp tip will result in a slight over-estimation of the effective bending stiffness for

VACNTs having high areal density. The error will be small for low density VACNT

samples because of the shape of the indentor tip; only a few of the CNTs will deflect to

extreme angles. Similarly, ignoring the complex buckling mechanics in our modified

contact model for the Berkovich tip will result in a slight over-estimation of the effective

bending stiffness. Using a better set of equations that capture the proper buckling

mechanics can fix this problem in future.

By modeling the mechanics of MWCNTs subjected to large deflections and

buckling, we compare the modified contact model for randomly generated VACNT with

experimental data.

3.4.4.2 Nano-Scale Contact Model: VACNT Forests

In order to check the validity of our modified contact model, we conducted nano-

indentations experimentally on two VACNT samples and compared the results with our

numerical solutions.

Experimentations

Two VACNT forest samples were prepared at the University of Cambridge with

the PECVD (Plasma Enhanced Chemical Vapor Deposition) method (Chhowalla et al.,

2001) with different nickel catalyst thicknesses (ranging from 3.5 to 7 nm) and growth

time. The samples were then studied under a JOEL SEM, with the samples tilted at 0'

(observed from top), 150, and 25' relative to the vertical. Figure 3.31 shows images of the

samples tilted at 250 clearly revealing the forest-like landscapes of the VACNTs (Qi et

al., 2003).
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Figure 3.31: Vertically aligned carbon nanotubes: sample A (a); sample B (b). The samples are

tilted by 250 to reveal the forest-like landscapes.

The areal density (number of tubes per pm2 of substrate) measurement for each

sample was measured by counting the number of nanotubes in the image, then dividing

the total number of nanotubes by the total area of the image. Measurements were made

on images with the sample tilted at 250. The diameter and the length were measured from

images with the samples tilted at 0' (for diameter only), 15*, and 25*, respectively. For

each image, at least 30 nanotubes were randomly selected for measurements. The length

and diameter measurements were further verified by measuring nanotubes that had been

laid flat on the substrate. The average and deviation of diameter and length, and the areal

density for each of the two samples are listed in Table 1.

Table 1: Dimensions of the two VACNT samples (Qi et al., 2003).

Sample Outer diameter Length Areal density

Average Deviation Average Deviation m (Um 2 ) Percentage of area covered by

D0 (nm) UD (nm) L (nm) uL (nm)

90 15 1100 160

139 38 1380 233

CNTs (%)

26 17

19 15

Nano-indentation tests on VACNT forests with a sharp tip were conducted with

Digital Instrument Dimension 3100 SPM (Scanning Probe Microscopy), while a Hysitron

TriboIndenter was used for the Berkovich tip. The sharp diamond tip cantilever in

Dimension 3100 SPM is made of stainless steel. The working resonant frequency is about
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55 to 60 kHz in the tapping mode. According to the specification from the sharp tip

supplier, the radius of the diamond tip is less than 25 nm. The TriboIndenter uses a

diamond Berkovich tip with a half angle reported to be 65.350 by the supplier. The

unique design of the TriboIndenter does not require a cantilever beam design.

The standard procedure for nano-indentation tests within an AFM was followed.

The tapping mode is first engaged to scan the surface and the area of interest is located.

When nano-indentation is initiated, the tip is lifted slightly (typically about 100-300 nm)

above the surface. As the nano-indentation is executed, the tip is driven by the piezo-

scanner toward the surface until a pre-set reaction force is reached. The tip is then

retracted back to its initial position. The procedure for the TriboIndentor is similar,

except that the area of interest is located visually by avoiding any scratches on the sample

surface. Thereafter, indentation force versus indentor tip displacement data points are

collected by nano-indenting the VACNT sample; each indentation was performed at a

different location, separated by nearly 800 nm. For better quality of results, 30

indentations on each sample, andf-p curve data were collected; the data obtained from 10

such nano-indentations on a VACNT with the both tips are shown in Figures 3.32 and

3.33, respectively.
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Figure 3.32: The indentation force-displacement curves obtained on random nano-indentations on

a VACNT forest with a sharp tip. The inset view shows the SEM image of sample A along with a

schematic of a sharp tip indentor.

The inset views in Figures 3.32 and 3.33 show the SEM image of the respective

samples with a schematic of the two indentor tips. The data taken via AFM is noisy

compared to that taken from TriboIndenter. Inset-B view in Figure 3.33 show a sudden

rise and then drop in the indentation force in the beginning of the curves; this sudden

drop behavior is expected due to the buckling of CNTs on indenting with a virtually flat

Berkovich indentor tip, as was observed from finite element simulations earlier.

161

I I I (YII/~k#N



x 10
12

10-

Inset-A
8-z

C

Uoo Inset-B

0

2000

4 - 1ooo-

011 .0 0 60 8o .0 100

2-

0 100 200 300 400 500 600 700 800 900 1000
Indentation Depth (nm)

Figure 3.33: Random nano-indentation on a VACNT forest with a Berkovich tip. The

corresponding indentation force-displacement curves. Inset-A shows the SEM image of sample B

along with a schematic of a Berkovich tip indentor. Inset-B shows the closeup-view of the

indentation force-displacement curves.

Simulations

Here we applied the modified micro-mechanical contact model to randomly

generated MWCNTs of various length and diameter; a Gaussian distribution method is

applied in conjunction with the data in Table 1 to generate the MWCNTs (Qi et al.,

2003). The randomly generated MWCNTs mimic the VACNT samples used for nano-

indentation experimentation (see the inset views of Figures 3.34 and 3.35). Several f-p

curves similar to the experimental ones are obtained from the simulations (Figures 3.34

and 3.35). An average of several f-p curves from the simulations and the
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experimentations are then compared. The nano-indentation simulations were repeated by

changing the average effective bending stiffness until the two average f-p curves match.

The process is completed twice: first with a sharp tip and second with a Berkovich tip;

the final averagef-p curves are shown in Figures 3.36 and 3.37.

0

C
0

0)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0 100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600

Indentation Depth (nm)

Figure 3.34: Random nano-indentation with sharp tip on a VACNT forest. Nanotubes are

randomly distributed using Gaussian distribution method. The corresponding indentation force-

displacement curves. Inset view shows the simulated sample A.

Indentation force-penetration data in Figures 3.34 and 3.35 obtained from the

simulations show behaviors similar to their experimental counterparts in Figures 3.32 and

3.33, respectively. The curves in Figure 3.34 are somewhat linear during the initial

indentation depth while that in Inset-B in Figure 3.35 show a sudden drop due to

buckling, observed earlier in Inset-B in Figure 3.33. Recall that in our modified contact

model for simulating nano-indentations with a Berkovich tip, we ignored the real
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buckling phenomenon in which buckling gradually propagates inwards; on the other

hand, the modified contact model captures it in a more abrupt way because the buckling

of all the inner tubes coincides with the buckling of the outermost tube.
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Figure 3.35: Random nano-indentation with Berkovich tip on a VACNT forest. Nanotubes are

randomly distributed using Gaussian distribution method. The corresponding indentation force-

displacement curves. Inset-A shows the SEM image of simulated sample B along with a

schematic of a Berkovich tip indentor. Inset-B shows the closeup-view of the indentation force-

displacement curves.

To our surprise, the average simulation curve in Figure 3.36 is able to capture the

average experimental curve behavior to higher indentation load values; the average

effective bending stiffness (EI)Eff thus found was approximately 4.4 N.nm2. Thereafter,

substituting the average length and diameter values of sample A CNTs along with the

average (EI)Eff into Equation 3.147, we get the effective bending modulus EbEff to be 1.1
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TPa. The predicted average EbEff of approximately 1.1 TPa matches the average reported

value of CNTs in the literature. Similarly, the average simulation curve in Figure 3.37 is

able to capture the average experimental f-p curve to extremely high load values and

indentation depth; the average (EI)Eff for Sample B was found to be approximately 25.7
2N.nm . Repeating the above calculations, the average EbEff was found to be

approximately 1.08 TPa. Because of the inability of our modified contact model to

completely capture the buckling mechanics, the average EbEff value of 1.08 TPa can be

slightly overestimated. Nonetheless, both micro-mechanical contact models seem to

provide reasonable average EbEff values, while capturing thef-p curve behavior.
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Figure 3.36: Average force versus penetration depth curves from modified micro-mechanical

contact model and experimentation using sharp AFM tip. The average tube length and diameter

are 1100.0 nm and 90.0 nm, respectively. VACNT sample of average tube L = 1100.0 nm, D =

90.0 nm was indented with a sharp tip indentor (semi-apex angle = 21.60). EI= 4.4 N.nm2 and Eb

= 1.1 TPa.
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Figure 3.37: Force versus penetration depth curves from modified micro-mechanical contact

model and experiment using Berkovich AFM tip. VACNT sample of average tube L = 1380.0

nm, D = 139.5 nm was indented with a Berkovich tip indentor (semi-apex angle = 65.350). EI

25.7 N.nm2 and Eb = 1.08 TPa.

3.5 Mechanics of Nano-Scratching of Nanotube Arrays

In the preceding section, we proposed two micro-mechanical contact models: one

accounting for large nonlinear deformation of MWCNTs, and another, for the initial

buckling of the MWCNTs. Here, we propose a process, nano-scratching, whereby

nanotubes are bent to extremely large deflections by laterally displacing an AFM indentor

tip perpendicular to the longitudinal axis of the nanotube. A schematic diagram of nano-

scratching on a VACNT sample is shown in Figure 3.38. In addition to the same

flexibilities provided by nano-indentation, including adaptable three-sided pyramidal
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indentor tips and variable indentation depths, nano-scratching also provides the benefit of

reducing experimental effort. Whereas several nano-indentations are necessary to acquire

a statistical average of mechanical properties, such may not the case for nano-scratching,

whereby local averages can be obtained via a single experiment. The challenge involved

in formulating such a complex model was another impetus for pursuing nano-scratching.

Because of this complexity, and in order to capture the basic physics of the model, we

ignored the interactions between the nanotubes (Figure 3.38) and assume negligible

friction between the nanotubes and the indentor.

Figure 3.38: Schematic of nano-scratching of a VACNT sample with an AFM tip.

In the following sections, we propose two micro-mechanical contact models for

the nano-scratching with a sharp and Berkovich shaped indentor tips. The first proposed

contact model considers only large deflections resulting from the lateral displacement of

the indentor tip. The second model incorporates an approximate approach for capturing

the influence of buckling of CNTs on vertical force-lateral displacement (f-d) curves.
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3.5.1 Micro-Mechanical Contact Model (without buckling)

We propose a micro-mechanical contact model by extending the three-

dimensional contact model for nano-indentation and dividing the scratching contact

model into three phases: end-point contact, line contact and point contact. The end-point

contact phase indicates the regime where the indentor makes a point contact with the free

end of the CNT to apply a point load on the nanotube, as shown in Figure 3.39-a. The

line contact phase indicates the regime where the indentor makes a line contact with the

CNT to apply a nonuniform distributed load, as shown in Figure 3.39-b. Lastly, the point

contact phase indicates the regime of deformation where a point load is applied at a point

somewhere perpendicular on the longitudinal axis of the CNT, as shown in Figure 3.39-c.

In the last phase, only the edge of the indentor tip comes in contact with a point on the

axis of the CNT. Notice that the end-point contact and line contact phases in the nano-

scratching process, with the exception of the tip displacement direction, appear similar to

the nano-indentation process.

P34

H,(

(a)

Line

AL

H,

(b)
____________________________________________ JJ ____________________________________________ LI

Figure 3.39: Schematic reveals three phases of nano-scratching

(a), line contact phase (b), and point contact phase (c).

P1

H,

(c)

process: end-point contact phase

Although a typical scratching experiment initiates with the vertical displacement

of the indentor tip, which is followed by lateral displacement, we ignore the nano-

indentation part in our contact model. If desired, both nano-indentation and nano-
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scratching contact models could be combined with ease in the end to capture the

complete scratching process. Here it should be noted that upon indentation, the CNTs

initially come into contact on all three indentor tip surfaces, i.e., two sides and the back,

as shown in Figure 3.40. Upon lateral displacement, the CNTs in contact with the back

surface start to unbend, after which, only the side surfaces of the indentor make contact

with the CNTs.

In the following two subsections, we first formulate the theoretical contact model

for each phase. Second, the micro-mechanical contact model is verified against the results

from macro-scale experiments (Ebeling, 2004) and finite element models based on the

macro-scale experiments.

3.5.1.1 End-Point Contact Phase (yoi < Oindentor)

Figure 3.39-a shows that, at any given instance, the end point contact phase in

nano-scratching is similar to the point contact phase for nano-indentation. See Section

3.4.1.1. Because in nano-scratching, the indentor tip displaces laterally rather than

vertically, the lateral motion can be transformed into an equivalent vertical displacement,

such that the existing point contact phase of the nano-indentation model can be adopted.

Ax~f r-.-------------
AXeff tI y

(a (b).

FTA x S e a 0 dentor

AhI

/ BackAXeff

V (a) .(b)

Figure 3.40: Two-dimensional geometrical representation of the indentor tip used to convert the

lateral increment into the vertical depth increment; top-view (a), side-view (b). Red dash line

indicates direction of the view for side view.
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The difference in the direction of the indentor displacement is accounted for with

the help of a conversion factor found from geometry, as shown in Figure 3.40; this factor

converts the lateral scratch increment (Ax) into a vertical depth increment (Ah) and is

given by

Axeff= Axsin(30 0), (3.149)

Ahsides =Axe ItanOindentor , (3.150)

Ahback =Ax / tan 0 indentor ' (3.151)

Equations 3.150 and 3.151 are applied to the side and the back surfaces of the

indentor tip, respectively. Thereafter, applying the conversion factor to the nano-

indentation contact model at a known lateral displacement XLateral yields the point load Pi

applied by the indentor to CNT; XLateral is the sum of all lateral displacement increments

Ax. Similarly Pi is found for all CNTs that come in contact with the indentor tip. Then, Pi

values for all CNTs are added together and substituted into Equation 3.140 to solve for

the net vertical component of the force F, applied by the indentor located at XLateral. The

value for y in Equation 3.140 is still found from the inequality in Equation 3.141.

Substituting the separation distance between the indentor tip and the base of the VACNT

sample, Hs for H - h in Equation 3.141 changes the inequality and yields (see Figure

3.39):

HS +x tan( ji - 0
mndentor L1. (3.152)

When Voi is equal to Oindentor, CNT transitions to the line contact phase.

3.5.1.2 Line Contact Phase ('o;= Oindentor)

Like the previous phase, the line contact phase in the nano-scratching model is

also similar to the line contact phase in nano-indentation; a two-dimensional

representation of the line contact phase in nano-scratching is shown in Figure 3.39-b. In
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this phase, yi, equals 6 indentor. Because of the similarity between the two line contact

phases in nano-indentation and scratching, we apply Equations 3.150 and 3.151 to the

theoretical model formulated in Section 3.4.1.2 to convert the horizontal increment of the

indentor tip into the vertical increment in the nano-indentation contact model. Thereafter,

the load Pi for CNT is added to the load values for CNTs in the point and line contact

phase, and substituted into Equation 3.141 to obtain the net vertical force F.

3.5.1.3 Point Contact Phase ('i > Oindentor)

The point contact phase in nano-scratching refers to the regime where CNT

makes a point contact with the indentor edge, rather than the indentor surface; a two-

dimensional schematic of the point contact phase is shown in Figure 3.39-c. In addition,

the resisting concentrated load on the indentor as a result of deflecting CNT acts in such

a way that it is always perpendicular to the edge of the indentor and the longitudinal axis

of the CNT; this point contact between the CNT and the indentor edge results in a to

vary, as shown in Figure 3.41. Notice that in this phase, the V,, a, and the effective

length Li of CNT are all variables and that the sum of a and Voj is always fixed at 90';

this means that while the tip moves laterally, if angle a decreases then Voi increases. The

effective length of CNT increases because the contact point between the indentor's edge

and CNT moves closer to the free end continuously until it detaches from CNT, as shown

in Figure 3.41.

To deal with a number of unknowns in this phase, we first find a relation between

the inclination angle a and scratch location Ax in terms of Ah in Equation 3.154. The

relation is found by first solving for discrete points (Ah, a) based on the last known Li

from the previous line contact phase, and then increasing Vo, beyond 0 zndentor to

approximately 1450 in beam theory equations listed in Section 3.2.4. Thereafter, a sixth

order polynomial is fitted through the discrete points to obtain the required relation

between a and Ah. The iterative process is repeated whenever Li changes. In this phase,

we approximate the incremental change in Li, (6L) by using the following relation

derived from the two-dimensional geometry shown in Figures 3.42-a and 3.42-b.
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Figure 3.41: Two-dimensional geometrical representation of the indentor tip used to convert the

lateral increment into the vertical depth increment; top-view (a), side-view (b). Red dash line

indicates direction of the view for side view.
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Figure 3.42: Two dimensional geometrical representation of the indentor tip used to find

approximate effective length increment of the CNT in point contact phase. Top view of

indentor tip (a) and side of the indentor tip with CNT in point contact phase (b, c, and d).

L = Ax

cos a

Ah
Axx = Axcos(600)= .a

tan (#)

the

the

(3.153)

(3.154)

In Equation 3.154, 8 (= (9 - Qindentor) is 38.40 and 77.080 for sharp and Berkovich indentor

tips, respectively (Figures 3.42-c and 3.42-d). Since CNT comes into contact with the

edge of the indentor tip in this phase, the point load (P) components are calculated from

the following equations (Figure 3.42-d).
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F = P cos(P) (3.155)

F, =Psin(#) (3.156)

A similar process is repeated at each lateral displacement of the indentor tip and

for every CNT that makes a point contact with the indentor edge. Then, the vertical

component of force is calculated from Equation 3.156 and added to the vertical

component of loads from other CNTs in Equation 3.140; subsequently, the net vertical

force F on the indentor at XLateral is obtained.

Next, numerical solutions obtained from the above micro-mechanical contact

model are compared with macro-scale experimental (Ebeling, 2004) and FE simulation

data for a single Teflon beam subjected to scratching.

3.5.2 Results (without Buckling)

In order to verify the model, theoretical results are first compared to macro-scale

scratching experiments on a single Teflon cylinder; a sharp tip is used for the process

(Ebeling, 2004). Theoretical results are then compared to finite element scratching

simulations using both a sharp and a Berkovich indentor tip.

3.5.2.1 Macro-Scale Experiments

To verify the contact model, a single macro-scale experiment was performed. A

Teflon solid cylindrical tube having a diameter of 9.53 mm and length of 124.0 mm was

scratched with a large scale sharp indentor tip, as shown in Figure 3.43. The experimental

setup is similar to the setup of macro-scale indentation discussed earlier in Section

3.4.2.1. Since the texture analyzer can only displace the indentor tip in the vertical

direction, a linear translational stage and a motion controller were added to the

experimental setup to displace the Teflon tube laterally. The lateral motion of the Teflon

tube helped us replicate the lateral motion of the indentor. The linear translational stage is

a Servo Systems model # LPS-8-20-0.5 and the motion controller is an IMS model #

MDrive23.
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Figure 3.43: Macro scale experimental setup for sharp tip and solid Teflon Tube. The Teflon solid

tube dimensions are L = 124 mm and D = 9.53 mm. The three figures show the end-point contact

phase (a), line contact phase (b), and the point contact phase (c).

The experiment begins with the indentor tip displacing 70 mm downwards

without making contact with the Teflon tube. Then, the stage is moved laterally at a

constant rate of 10 mm/s; Figures 3.43-a, b, and c show three snapshots at the end-point

contact, line contact, and point contact phases, respectively. The vertical component of

the scratch force and the time interval data are directly obtained from the texture analyzer

software; the time interval is then multiplied by the rate of motion to convert it into

lateral displacement. Lastly, the vertical force versus lateral displacement data are

compared with the results from our theoretical and finite element simulations.

3.5.2.2 Macro-Scale Finite Element Simulations

Next, two three-dimensional FE contact models were constructed, and their

solutions compared to those of the micro-mechanical model and experiment from the

previous section. The FE models were constructed in a method similar to the macro-scale

FE models for the indentation earlier in Section 3.4.2.2. During the simulations, the

indentor tip was displaced laterally, while keeping the vertical separation between the

base of the Teflon tube and the tip of the indentor at 54 mm. Figure 3.44-a and d, b and e,

and c and f show snapshots of the model beams making an end-point contact, line

contact, and point contact with the indentor tips, respectively.
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Figure 3.44: Macro-scale finite element simulation for scratching of solid Teflon tube rigidly

fixed at one end. Sharp indentor tip deflecting a single Teflon solid tube of L = 124.0 mm and D =

9.53 mm shown in end-point contact phase, 5 = 28.3 mm (a), line contact phase, 5 = 80.2 mm (b),

and point contact phase, 5 = 90.8 mm (c). Berkovich indentor tip deflecting solid Teflon solid

tube of L = 184.0 mm and D = 9.53 mm shown in end-point contat phase, 6 = 104.9 mm (d), line

contact phase, 6 = 630 mm (e), and point contact phase, 6 = 646.2 mm (f). Vertical separation

from the base of the fixed end of the tube and the indentor tip is 54 mm.

Next, the experimental, FE simulation and contact model results for a sharp

indentor tip are compared together in Figure 3.45, and FE simulation and contact model

results for the Berkovich indentor tip in Figure 3.46. These figures show that results from

the contact model and FE simulations are in reasonably good agreement throughout the
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force-displacement curve, with the exception of the peak heights which differ in

magnitude along certain portions of the curve. Roman numerals I, II, III, and IV in Figure

3.45 represent the end-point contact, line contact, transition, and point contact phases,

respectively. Notice the similarity of the curve represented in I and II in Figures 3.45 and

3.46 with those obtained from nano-indentation.
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Figure 3.45: Force versus penetration depth curves from mechanical contact, FE and

experimentation of macro scale model. Single Teflon solid tube (L = 124 mm, D = 9.53 mm, E =

0.7 GPa, v = 0.46) was indented with a sharp tip indentor (semi-apex angle = 21.60). (1) refer to

the end-point contact phase, (II) refers to the line contact phase, (III) refers to the transition from

line contact to point contact phase and lastly, (IV) refers to the point contact phase.

From Figure 3.45, the results from FE and contact model simulations, and the

experimental data are in general agreement. It is clear from Figure 3.45 that the contact

and FE-based models are able to capture the overall physical behavior of the scratching

procedure described in the earlier sections. The main source for the visible difference in
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the curves in Figure 3.45 is the chamfered edges of the indentor tip in the experimental

setup and in the FE-based model - the chamfer radius is larger in the experimental setup

(-40 mm) than in the FE-based model (20 mm) and zero in the contact model. The higher

the chamfer radius, the smaller the deflection of the CNT is; this results in the attenuation

of the highest peak in the FE-based and experimental nano-scratching curves. A

correlation between the peak height and the chamfer radius can be observed in Figure

3.45; as the chamfer radius decreases, the sharpness and the magnitude of the peak

increases, and the slope of the curve in section IV increases. Chamfer in the indentor tips

also causes the beam to deflect more in a shorter period of time and accounts for the

bump in the beginning in both the experimental and FE-based curves. In addition, the

slightly higher face angle of the Aluminum indentor (~23o) in the experiment causes the

cylindrical tube to transition from the end-point to line contact phase slightly earlier than

in the contact model curve. Also, the sudden rise in section III of the curve obtained from

the contact model in Figure 3.45 can be attributed to the vertical component of the force

found from Equation 3.156. In addition, the change in slope from section II to III in the

FE simulation is gradual because of the chamfer. The sudden drop towards the end of the

curve corresponds to the point where the beam detaches itself from the indentor tip.

Figure 3.46 on the other hand, shows results obtained from the contact model and

FE simulations with the Berkovich indentor tip. Here the chamfer radius of the edge of

the Berkovich tip was set to be 10 mm and as a result, the bump in section IV is very

small. As was mentioned in the previous paragraph, the smaller chamfer radius causes the

beam to deflect an amount close to that of the contact model. Notice that section III of the

curve obtained from the contact model shows a drop instead of the rise in Figure 3.45,

and it can be attributed to the alternate equation used to find the vertical component of

force. The crude method used to approximate the change in length 6L in the iterations

(Section 3.5.1.3) explains the visible difference of the two curves in section III and IV.

Again, the sudden drop after section IV for both curves in Figure 3.46 corresponds to the

location where the beam detaches from the indentor tip.
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Figure 3.46: Force versus penetration depth curves from mechanical contact, FE and

experimentation of macro scale model. Single Teflon solid tube (L = 184 mm, D = 9.53 mm, E =

0.7 GPa, v = 0.46) was indented with a Berkovich tip indentor. (I) refer to the end-point contact

phase, (Ii) refers to the line contact phase, (III) refers to the transition from line contact to point

contact phase and lastly, (IV) refers to the point contact phase.

3.6 Conclusions

Nano-indentation tests have been used to determine the mechanical properties of

vertically aligned carbon nanotube (VACNT) forests and constituent carbon nanotubes

(Qi et al., 2003). A study of the physical process of nano-indentation on VACNT forests

reveals a process where nanotubes are consecutively bent during the penetration of the

indentor. The resistance of VACNT forests to penetration is a result of superposition of

the bending responses of several nanotubes as the indentor successively encounters them.
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Qi et al., (2003) first presented nano-indentation tests together with a micro-mechanical

contact model that determines the effective bending stiffness of the MWCNT of the

VACNT forest. Qi et al., (2003) used nonlinear beam theory to formulate their contact

model; in their nonlinear beam theory, both the lateral and axial components of the load

from the indentor are considered; however, it does not account for the nonlinear

differential elasticity between curvature and deflection. In addition, their model did not

include the buckling effects for MWCNTs subjected to bending. Based upon their model,

we proposed two models: one that accounts for the nonlinear elasticity between the

curvature and the deflection, and another for accounting the buckling phenomenon. The

indentation process was divided into two phases: point contact and line contact phases.

The two contact models were then compared with nano- and macro-scale experimental

and finite element simulation results. We observed from our EOR-based FE simulations

that nanotubes buckle when indented with both sharp and Berkovich tips, resulting in a

gradual change in slope followed by an abrupt drop in the force-penetration depth curve.

The change in slope is gradual because the buckling cascades from the outermost shell

tube inwards. This buckling is what results in an order of magnitude lower penetration

force when compared with the results from the contact models. In order to capture the

reduction in penetration force, we attempted to account for the buckling effect in our

contact model using thin shell theory. The results thus obtained from the modified contact

model showed reasonable agreement with the simulation results for nano-indentation

with Berkovich tips. However, for indentations with a sharp tip, the modified contact

model failed to capture most of the force-penetration depth curve behavior; the true

behavior of the force-penetration depth curve was better captured by the unmodified

contact model.

The contact and the modified contact models were verified against two nano-

indentation experiments - one with a sharp tip and another with Berkovich tip. The

effective bending modulus obtained from both contact models upon curve fitting the

experimental data were found to be 1.10 TPa and 1.08 TPa for the sharp and Berkovich

tips, respectively. These effective bending modulus values matched well with other

experimental data available in the literature. We next extended our contact model for

nano-indentation to simulate nano-scratching process. In nano-scratching, the indentor tip
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is displaced laterally while keeping the vertical distance constant; this results in the

loading conditions to change from concentrated to distributed and then back to

concentrated while CNTs are subjected to large deflections. In this chapter, we compared

results from scratching contact model with those of macro-scale experiment and FE

simulations and showed that we were able to capture remarkably the deformation

mechanics of a macro-scale beam model. Currently, the proposed scratching model is

being worked upon for including buckling in MWCNTs and to collect experimental data

similar to that of nano-indentation of VACNT forests.
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Chapter 4

Realizing the need to model large multi-walled carbon nanotubes (MWCNTs)

with a finite element method (FEM), a computationally efficient model was proposed in

Chapter 2. The proposed model is built upon the nested structural shell representation

(NSSR) model proposed by Pantano et al., (2004b) - a linear elastic representation based

on the orthotropy of the nested tube microstructure. We referred to the new model as an

equivalent orthotropic representation (EOR) model where the microstructure is locally

orthotropic. The effectiveness of the EOR model in predicting the nonlinear deformation

was then examined via comparison with the results of the NSSR model. The EOR

method when applied to the FE MWCNT models, replicates the bending, axial and radial

compression phenomena seen in the NSSR model and several experimental

investigations. In the proposed new model, linear 8-node solid elements are used in the

construction of MWCNT models in a commercially available advanced finite element

software, ABAQUS. The simulation results showed that the EOR-based FE models are

able to predict the pre-buckling behavior of MWCNTs irrespective of the element size;

however, the model fails to predict the buckling point and post buckling behavior of

MWCNTs unless the proper element size is chosen in the construction of the MWCNT

models. Fortunately, by using the thin shell theory results for predicting the initial

buckling wavelength (Timoshenko,1936), we were able to estimate the required element

size and thus predict the buckling and post buckling behavior of MWCNTs. Even with a

proper solid element size, the MWCNT models were observed to capture only the initial

buckling wavelength but not the steady state buckling wavelength, as predicted by the

NSSR model in Pantano et al., (2003, 2004a). Thereafter, we proposed a technique where

both the EOR and the NSSR models were combined to model MWCNTs; here the

discrete outermost tube and the remaining inner tubes are constructed using the NSSR

and the EOR models, respectively. Although less precise, the new combined technique

gave results similar to that of EOR models when compared with the NSSR results for the

three different loading conditions. After successfully capturing the deformation behavior

of MWCNTs with a compromise between the accuracy and computational efficiency of
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the NSSR models, we applied the EOR model to formulate an analytical model that

simulates the nano-indentation of vertically aligned carbon nanotube (VACNT) forests.

A micro-mechanical contact model for simulating the nano-indentation process

was first proposed by Qi et al., (2003). The model, however, did not account for the

nonlinear differential relationship between curvature and deflection, and the buckling of

MWCNTs at large deflection angles; these two conditions limited their contact model to

only simulations with sharp indentor tips. In chapter 3, we proposed a modified contact

model based on the one proposed by Qi et al., (2003) where we accounted for the

nonlinear differential relationship between curvature and deflection in our beam theory,

and also the critical conditions that adequately capture the buckling effects of MWCNTs.

Thereafter, numerically and experimentally comparing the proposed beam theory with

the one formulated by Qi et al., (2003), we found that their theory is only valid for CNT

lateral tip deflections less than approximately 0.6 times the length of the CNT. Next,

when comparing the results of EOR-based MWCNT FE models, we realized that the

bucking behavior is quite complex as it propagates from the outermost shell to the

innermost gradually, and that it is not an instantaneous process as modeled in our

modified contact model. On comparing the solutions obtained from the modified contact

model to that of FE simulations for sharp and Berkovich tips, we concluded that at the

present, our contact model without the buckling effects similar to that of Qi et al., (2003)

works well for simulating sharp tip indentations. However, for simulating Berkovich tip

indentation, our modified contact model works well. This was verified by comparing the

simulation results with experimental force-penetration (f-p) results obtained from nano-

indentions of two separate VACNT samples with a sharp and a Berkovich tip. An

average effective bending stiffness (EI)Eff was deduced by fitting the average simulation

curve to the average experimental f-p curve. Thereafter, a simple method that accounts

for the multi-walled structure of MWCNT was used to interpret the (EI)Eff in terms of the

effective bending modulus Eb of the average CNT in the VACNT forests. The Eb values

of 1.1 TPa and 1.08 TPa thus found agree well with the bending modulus value of -1

TPa, which is accepted by most researchers. Thereafter, we extended the nano-

indentation micro-mechanical contact model to simulate nano-scratching.
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Nano-scratching is a process in which an AFM tip displaces laterally and

perpendicular to the nanotube's longitudinal axis, and deflect them to extremely large

angles. We realized the similarity between the nano-indentation and nano-scratching

processes, and extended our micro-mechanical contact model to simulate nano-

scratching. We added another phase in our nano-indentation contact model to account for

the complex regime in nano-scratching where the longitudinal axis of the CNT comes

into a point contact with indentor tip's edge. At the present in our contact model for

nano-scratching, we accounted only for the large deflections of the nanotube and

compared the results with those of a macro-scale experiment and FE simulations. The

proposed model was found to capture the deformation behavior of beams well when

subjected to lateral deflection by scratching. The proposed analytical model, however

does not account for buckling in nanotubes.

The new proposed contact models for simulating nano-indentations and nano-

scratching, and methods for modeling EOR-based FE simulations of MWCNTs are build

on the previous work of Pantano et al., (2004b) and Qi et al., (2003). Both methods are

time efficient and are able to capture the nonlinear mechanics of MWCNTs with

reasonably good approximations. We suggest future work that accounts for the radial

variation of the effective MWCNT material properties in the EOR model, and analytical

methods that include the complete complex buckling phenomenon in the modified

contact models for nano-indentation and nano-scratching. By inferring from results of the

EOR model, the current contact models can be extended to include the external

interactions of CNTs with each other.

184



References

Abell, G. C., 1985. Empirical chemical pseudopotential theory of molecular and metallic
bonding. Phys Rev. B., 3 1(10), pp. 6184-6196.

Allinger, N. L., 1977. Conformational-analysis. 130. MM2-Hydrocarbon force-field
utilizing vI and v2 torsional terms. J. Am. Chem. Soc., 99(25), pp. 8127-8134.

Allinger, N. L., Yuh, Y. H., and Lii, J. H., 1989. Molecular mechanics-The MM3 force-
field for hydrocarbons. J. Am. Chem. Soc., 111(23), pp. 8551-8566.

Arroyo, M., and Belytschko, T., 2003. Nonlinear mechanical response and rippling of
thick multi-walled carbon nanotubes. Phys. Rev. Lett., 91, pp. 215505.

Blakslee, 0. L., Proctor, D. G., Seldin, E. J., Spence, G. B., and Weng, T., 1970. Elastic
constants of compression-annealed pyrolytic graphite. J. App. Phys., 41(8), pp.
3373-3382.

Bower, C., Rosen, R., Jin, L., Han, J., and Zhou, 0., 1999. Deformation of carbon
nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74, 3317-3319.

Brenner, D. W., Shenderova, 0. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S.B.,
2002. A second-generation reactive empirical bond order (REBO) potential
energy expression for hydrocarbons. J. Phys.: Condens. Matter, 14, pp. 783-802.

Chhowalla, M., Teo, K. B. K., Ducati, C., Rupesinghe, N. L., Amaratunga, G. A. J.,
Ferrari, A. C., Roy, D., Robertson, J., Milne, W. I., 2001. Growth process
conditions of vertically aligned carbon nanotubes using plasma enhanced
chemical vapor deposition. J. Appl. Phys., 90, pp. 5308-5317.

Crandall, S. H., Dahl, N. C., and Lardner, T. J., 1976. An introduction to the mechanics
of solids. McGraw-Hill, New York.

Cui, F., Luo, C., and Dong, 2004. J., Dimerization of C60 molecules within the single-
walled carbon nanotube. Phys. Lett. A, 327, pp. 55-60.

Cummings, J., and Zettl, A., 2000. Low friction nanoscale linear bearing realized from
multiwall carbon nanotubes. Science, 289, pp. 602-604.

Dresselhaus, M.S., Dresselhaus, G., and Avouris, P., 2000. Carbon Nanotubes Synthesis,
Structure, Properties, and Applications, Springer, New York.

Ebbesen, T. W., 1997. Carbon Nanotubes Preparation and Properties, CRC Press Inc.,.

185



Ebeling, G. F., 2004. Macro scale physical model of nanoindentation on vertically
aligned carbon nanotube forests. SB Thesis, MIT.

Falvo, M. R., Clary, G. J., Taylor, R. M. II, Chi, V., Brooks, F.P., Washburn, S., and
Superfine, R., 1997. Bending and buckling of carbon nanotubes under large strain.
Nature, 389 (6651), pp. 582-584.

Fay, F. R., 1962. Flexible bars. Butterworths Inc., London.

Ghosh, S., Gadagkar, V., and Sood, A. K., 2005. Strains induced in carbon nanotubes due
to the presence of ions: Ab initio restricted Hatree-Fock calculations. Chem. Phys.
Lett., 406, pp. 10-14.

Girifalco, L. A., and Lad, R. A., 1956. Energy of cohesion, compressibility and the
potential energy functions of the graphite system. J. Chem. Phys., 25(4), pp. 693-
697.

Govindjee, S., and Sackman, J. L., 1999. On the use of continuum mechanics to estimate
the properties of nanotubes. Solid State Commun., 110, pp. 227-230.

Guo, W., Zhu., C. Z., Yu, T. X., Woo, C.H., Zhang., B., and Dai, Y.T., 2004. Formation
of sp 3 Bonding in Nanoindented Carbon Nanotubes and Graphite. Phys. Rev.
Lett., 93, 245502.

Harik, V. M., 2001. Ranges of applicability for the continuum beam model in the
mechanics of carbon nanotubes and nanorods. Solid State Comm., 120, pp. 331-
335.

He, X. Q., Kitipornchai, S., and Liew, K. M., 2005. Buckling analysis of multi-walled
carbon nanotubes: a continuum model accounting for van der Waals interaction. J.
Mech. and Phys. of Solids, 53, pp. 303-326.

Hernandez, E., Goze, C., Bernier, P., and Rubio, A., 1998. Elastic Properties of C and
BxCyNz Composite Nanotubes. Phys. Rev. Lett., 80, pp. 4502-4505.

Hertel, T., Walkup, R. E., and Avouris, P., 1998. Deformation of carbon nanotubes by
surface van der Waals forces. Phys. Rev. B., 58(20), pp. 13870-13873.

lijima, S., 1991. Helical microtubules of graphitics carbon. Nature (London), 354, pp. 56-
58.

Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., 1996. Structural flexibility of carbon
nanotubes. J. Chem. Phy., 104, pp. 2089-2092.

186



Kang, W. P., Davidson, J. L., Wisitsora-at, A., Wong, Y. M., Takalkar, R., Subramania,
K., Kerns, D. V., and Hofmeister, W. H., 2005. Diamond and carbon-derived
vacuum micro- and nano-electronic devices. Diamond and Related Materials,
14(3-7), pp. 685-691.

Ke, C. -H., Pugno, N., Peng, B., and Espinosa, H. D., 2005. Experiments and modeling
of carbon nanotube-based NEMS devices. J. Mech. Phys. of Solids, 53(6), pp.
1314-1333.

Kelly, B., 1981. Physics of Graphite. Applied Science Publishers, London.

Kiang, C. -H., Endo. M., Ajayan, P. M., Dresselhaus, G., and Dresselhaus, M. S., 1998.
Size Effects in Carbon Nanotubes. Phys., Rev. Lett., 81, pp. 1869-1872.

Krishnan A., Dujardin, E., Ebbesen T. W., Yianilos P. N, and Treacy MMJ., 1998.
Young's modulus of single-walled nanotubes. Phys. Rev. Lett., 58(20), pp.
14013-14019.

Kroto, H. W., Heath, J. R., O'Brien, S. C., Curland, R. F., and Smalley, R. E., 1985. C60:

Buckminsterfullerene. Nature, 318, pp. 162.

Lau, K. T., Chipara, M., Ling, H., and Hui, D., 2004. On the effective elastic moduli of
carbon nanotubes for nanocomposite structures. Compos.: Part B, 35, pp. 95-101.

Li, C., and Chou, T. W., 2003-a. A structural mechanics approach for the analysis of
carbon nanotubes. International Journal of Solids and Structures, 40, pp. 2487-
2499.

Li, C., and Chou, T. W., 2003-b. Elastic moduli of multi-walled carbon nanotubes and the
effect of van der Waals forces. Composites Science and Technology, 63, pp.
1517-1524.

Liew, K. M., Wong, C. H., He, X.Q., Tan, M. J., and Meguid, S.A., 2004.
Nanomechanics of single and multiwalled carbon nanotubes. Phys. Rev. B, 69,
113429.

Liu, Y. J., and Chen, X. L., 2003. Continuum Models of Carbon Nanotubes-Based
Composites Using the Boundary Element Method. Electronic Journal of
Boundary Elements, 1(2), pp. 316-335.

Liu, J. Z., Zheng, Q., and Jiang, Q., 2001. Effect of a Rippling Mode on Resonances of
Carbon Nanotubes. Phys. Rev. Lett., 86, pp. 4843-4846.

187



Liu, J. Z., Zheng, Q., and Jiang, Q., 2003. Effect of bending instabilities on the
measurements of mechanical properties of multiwalled carbon nanotubes. Phys.
Rev. B., 67, 075414.

Lordi, V., and Yao, N., 1998. Radial compression and controlled cutting of carbon
nanotubes. J. Chem. Phys., 109(6), pp. 2509-2512.

Lourie, 0., Cox, D.M., Wagner, H.D., 1998. Buckling and collapse of embedded carbon
nanotubes. Phys. Rev. Lett. 81 (8), pp. 16 3 8 -16 4 1.

Mayo, S. L., Olafson, B. D., and Goddard, W. A., 1990. Dreiding-A generic force-field
for molecular simulations, J. Phys. Chem., 94(26), pp. 8897-8909.

Odegard, G. M., Gates, T. S., Nicholson, L. M., and Wise, K. E., 2002. Equivalent
continuum modeling of nano-structured materials. Comp Sci. Technol., 62, pp.
1869-1880.

Palaci, I., Fedrigo, S., Brune, H., Klinke, C., Chen, M., and Riedo, E., 2005. Radial
elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett., 94, 175502.

Pantano, A., Boyce, M. C., and Parks, D. M., 2004-a. Mechanics of Axial Compression
of Single and Multi-Wall Carbon Nanotubes. J. Eng. Mat. Tech., 126, pp. 279-
284.

Pantano, A., Parks, D.M., and Boyce, M.C., 2003. Nonlinear structural mechanics based
modeling of carbon nanotube deformation. Phys. Rev. Lett., 91(14), 145504.

Pantano, A., Parks, D. M., and Boyce M. C., 2004-b. Mechanics of deformation of
single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids, 52, pp. 789-821.

Pantano, A., Parks, D. M., Boyce, M. C., and Nardelli, M. B., 2004-c. Mixed finite
element-tight-binding electromechanical analysis of carbon nanotubes. J. App.
Phys., 96(11), pp. 6756-6760.

Pettifor, D. G., and Oleinik, I. I., 1999. Analytic bond-order potentials beyond Tersoff-
Brenner. I. Theory. Phys. Rev. B, 59(13), pp. 8487-8499.

Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A., 1999. Electrostatic
deflections and electromechanical resonances of carbon nanotubes. Science,
283(5407), pp. 1513-1516.

Popov, V. N., Van Doren, V. E., and Balkanski, M., 2000. Elastic properties of crystals
of single-walled carbon nanotubes. Solid State Commun., 114, pp. 395-339.

188



Qi, H. J., Teo, K. B. K., Lau, K., Boyce, M. C., Milne, W. I ., Robertson, J., and Gleason,
K. K., 2003. Determination of mechanical properties of carbon nanotubes and
vertical aligned carbon nanotubes forests using nanoindentation. J. Mech. Phys.
Solids, 51, pp. 2213-2237.

Qian, D., Wagner, G.J., Liu, W.K., Yu, M.-F., and Ruoff, R.S., 2002. Mechanics of
carbon nanotubes. Appl. Mech. Rev., 55, pp. 495-532.

Robertson, D. H., Brenner, D. W., and Mintmire, J. W., 1992. Energetics of nanoscale
graphitic tubules. Phys. Rev. B, 45(21), pp. 12592-12595.

Ru, C. Q., 2000-a. Column buckling of multiwalled carbon nanotubes with interlayer
radial displacements. Phy. Rev. B., 62(24), pp. 16962-16967.

Ru, C. Q., 2001. Degraded axial buckling strain of multiwalled carbon nanotubes due to
interlayer slips. J. App. Phys., 89(6), pp. 3426-3433.

Ru, C. Q., 2000-b. Effective Bending Stiffness of Carbon Nanotubes, Phy. Rev. B,
62(15), pp. 9973-9976.

Ru, C. Q., 2000-c. Effect of Van der Waals Forces on Axial Buckling of a Double-
Walled Carbon Nanotbue. J. App. Phys., 87(10), pp. 7227-723 1.

Ruoff, R. S., Qian, D., and Liu, W. K., 2003. Mechanical properties of carbon nanotubes:
theoretical predictions and experimental measurements., C. R. Physique, 4, pp.
993-1008.

Saito, Y., and Yoshikawa, T., 1993. Bamboo-shaped carbon tube filled partially with
nickel, J. Cryst. Growth, 134(1-2), pp. 154-156.

Saito, R., Dresselhaus, G., and Dresselhaus, M.S., 2001. Physical Properties of Carbon
Nanotubes, Imperial College Press, London.

Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., and
Zuppiroli, L., 1999. Mechanical properties of carbon nanotubes. Appl. Phys. A,
69, pp. 225-260.

Sears, A., and Batra, R. C., 2004. Macroscopic properties of carbon nanotubes from
molecular-mechanics simulations. Phys. Rev. B., (69), 235406.

Shen, L., and Li, J., 2004. Transversely isotropic elastic properties of single-walled
carbon nanotubes. Phys. Rev. B., 69, 045414.

Shen, W., Jiang, B., Han, B. S., and Xie, S., 2000. Investigation of the Radial
Compression of Carbon Nanotubes with a Scanning Probe Microscope. Phys.
Rev. Lett., 84(16), pp. 3634-3637.

189



Solecki, R., and Conant, R. J., 2003. Advanced mechanics of materials. Oxford
University Press, New York.

Sun, X., and Zhao, W., 2005. Prediction of stiffness and strength of single-walled carbon
nanotubes by molecular-mechanics based finite element approach. Materials
Science and Engineering A, 390, pp. 366-371.

Tersoff, J., and Ruoff, R. S., 1994. Structural Properties of a Carbon-Nanotube Crystal,
Phys.Rev. Lett., 73, pp. 676-679.

Thess, A., Lee, R., Nikolaev, P., Hongje, D., Pierre, P., Robert, J., Chunhui, X., Lee, Y.
H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D.,
Fischer, J. E., and Smalley, R. E., 1997. Crystalline ropes of metallic carbon
nanotubes. Science, 273(5274), pp. 483-487.

Thostenson, E. T., Ren, Z., and Chou, T. W., 2001. Advances in the science and
technology of carbon nanotubes and their composites: a review, Composites
Science and Technology, 61, pp. 1899-1912.

Timoshenko, S., 1936. Theory of Elastic Stability. McGraw-Hill, New York.

Tombler, T. W., Zhou, C. W., Alexseyev, L., Kong J., Dai, H. J., Lei, L., Jayanthi, C. S.,
Tang, M. J., and Wu, S-Y., 2000. Reversible electromechanical characteristics of
carbon nanotubes under local-probe manipulation. Nature (London), 405(6788),
pp.769-772.

Treacy, M.M., Ebbesen, T.W., and Gibson, J.M., 1996. Exceptionally high Young's
modulus observed for individual carbon nanotubes. Nature, 381, pp. 678-680.

Tserpes, K. I., and Papanikos, P., 2005. Finite element modeling of single-walled carbon
nanotubes, Composites: Part B, 36, pp. 468-477.

Valavala, P. K., and Odegard, G. M., 2005. Modeling Techniques for Determination of
Mechanical Properties of Polymer Nanocomposites. Rev. Adv. Mater. Sci., 9, pp.
34-44.

Wang, C. Y., Ru, C. Q., and Mioduchowski, A., 2003. Axially compressed buckling of
pressured multiwall carbon nanotubes. International J. Solids and Structures, 40,
pp. 3893-3911.

Wang, X. Y., and Wang, X., 2004. Numerical simulation for bending modulus of carbon
nanotubes and some explanations for experiment. Compos. Part B, 35, pp. 79-86.

Wang, X., Wang, X. Y., and Xiao, J., 2005. A non-linear analysis of the bending modulus
of carbon nanotubes with rippling deformations. Compos. Struct., 69, pp. 315-
321.

190



Wang, X., Zhang, Y. C., Xia, X. H., and Huang, C. H., 2004. Effective bending modulus
of carbon nanotubes with rippling deformation. J. Solids and Structures, 41, pp.
6429-6439.

Wang, Y., Tomanek, D., and Bertsch, G. F., 1991. Stiffness of a solid composed of c60
clusters. Phys. Rev. B, 44(12), pp. 6562-6565.

Wong, E. W., Sheehan, P. E., and Lieber, C. M., 1997. Nanobeam mechanics: Elasticity,
strength, and toughness of nanorods and nanotubes. Science, 277(5334), pp.
1971-1997.

Xiao, J. R., Gama, B. A., and Gillespie, J. W. Jr., 2005. An analytical molecular
structural mechanics model for the mechanical properties of carbon nanotubes.
International Journal of Solids and Structures, 42, pp. 3075-3092.

Yakobson, B. I., Brabec, C. J., and Bernholc, J., 1996. Nanomechanics of carbon tubes:
instabilities beyond linear range. Phys. Rev. Lett., 76, pp. 2511-2514.

Yu, M. F., Kowalewski, T., and Ruoff, R., 2000-a. Investigation of the Radial
Deformability of Individual Carbon Nanotubes under Controlled Indentation
Force. Phys. Rev. Lett., 85(7), pp. 1456-1459.

Yu, M. F., Yakobson, B. I., and Ruoff, R. S., 2000-b. Controlled sliding and pullout of
nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B, 104,
pp. 8764-8767.

Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R. 0., and Ando, Y., 2004. Smallest
Carbon Nanotube is 3 4 in Diameter. Phys. Rev. Lett., 92(12), pp. 122502.

Zhao, Y. X., and Spain, I. L., 1989. X-ray-differection data for graphite to 20 GPa. Phys.
Rev. B, 40(2), pp. 993-997.

Zhou, X., Zhou, J. J., and Ou- Yang, Z. C., 2000. Strain energy and Young's modulus of
single-wall carbon nanotubes caculated from electronic energy-band theory. Phys.
Rev. B, 62(20), pp. 13692-13696.

191


