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ABSTRACT

The deformation mechanics of multi-walled carbon nanotubes (MWCNT) and vertically aligned
carbon nanotube (VACNT) arrays were studied using analytical and numerical methods. An
equivalent orthotropic representation (EOR) of the mechanical properties of MWCNTs was
developed to model the anisotropic mechanical behavior of these tubes during various types of
deformation. Analytical models of the micro-mechanical contact and deformation during nano-
indentation and scratching of VACNTSs were developed. The EOR model was developed based on
finite element (FE) nested shell structural representation of MWCNTs. The EOR was used
together with the FE method to simulate bending, axial compression and lateral compression.
Results were compared with those of the nested shell model for 4-, 8-, 9-, 14-, and 19-walled
carbon nanotubes. The comparison of axial and lateral compression results indicated that
although MWCNTs have high strength and stiffness in the axial direction, they can exhibit
significant radial deformability owing to their relatively compliant interwall normal and shear
behaviors. The EOR results provide an improvement in computational efficiency as well as a
successful replication of the overall deformation behavior including the initial linear elastic
behavior and the onset of buckling of MWCNTSs and the post-buckling compliance. The post-
buckling progression in wavelength (a doubling of wavelength as deformation progresses) was
not captured by the EOR model. Analytical predictions of the force-penetration depth during
nano-indentation with a three-sided pyramidal shaped indentor tip were compared with results
from macro-scale experiments, FE simulations and nano-indentation of VACNT forests. These
comparisons indicated that the proposed nano-indentation micro-mechanical contact model
captures effectively both the nonlinear deformation mechanics and buckling effects of MWCNTs.
The effective bending modulus of two VACNT forest samples was found to be 1.10 7Pq and 1.08
TPa. Similarly, results from the micro-mechanical contact model for nano-scratching were
compared with the results from macro-scale experiments with a sharp tip and FE simulations with
both sharp and Bekovich tips. The comparison of these results indicated that the proposed contact
model is able to capture remarkably well the variation in vertical force with lateral indentor tip
displacement. The proposed FE and analytical models offer computationally efficient methods for
simulating large and complex systems of MWCNTSs with a small penalty in precision.
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Chapter 1

In 1985, Kroto et al., (2005) discovered the Cgy molecule known as fullerene,
Buckminsterfullerene, or buckyball, as shown in Figure 1.1. Subsequently, lijima (1991)
discovered carbon nanotubes, CNT, as shown in Figure 1.2. Ever since the discovery of
CNTs, researchers throughout the scientific community have been investigating the
nearly perfect structure and properties of this one-dimensional structure. CNTs are
usually classified into two main categories: single-walled carbon nanotubes (SWCNT)
and multi-walled carbon nanotubes (MWCNT), as shown in Figure 1.2. A SWCNT is
composed of a single tubular structure formed by rolling a graphene sheet, whereas a
MWCNT is comprised of concentric nested tubes of different radii separated by an
interwall distance controlled by van der Waal interactions between the atoms. The
diameter of CNTs is anywhere from 0.3 nm (Zhao et al., 2004) for the smallest SWCNT
to 200 nm for the largest MWCNT.

4
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Figure 1.2: Schematic diagram showing how a hexagonal graphite sheet (Dresselhaus et al., 2000)
(a) is rolled to form a SWCNT (Tserpes and Papanikos, 2005) (b) and a MWCNT (Liew et al.,
2004) ().



Performing experiments on such nano-scale structures is extremely challenging.
Therefore, researchers have been working to develop experimental techniques to
quantitatively measure properties and to predict the properties of CNTs with theoretical
models. Assuming a perfect atomic structure, theoretical and computational studies have
found CNTs to possess favorable mechanical, electric, thermal and chemical properties.
These properties make them attractive for many applications in nano-electro-mechanical
systems (NEMS) (e.g., Ke et al., 2005; Kang et al., 2005), micro-electro-mechanical
systems (MEMS) devices (e.g., Kang et al., 2005) and even in material reinforcements
for fiber composites. Theoretical and experimental results both indicate that
mechanically, CNTs have high strength and stiffness in the axial direction and are
resilient. Electronically, CNTs can be metallic or semiconducting depending on the
chirality (see Section 1.1) of their structure and show remarkable logic and amplification
functions (Qian et al., 2002). Thermally, CNTs are highly conductive while chemically,
they resist degradation in many chemicals. These properties have led researchers to find
biomedical applications in addition to the more obvious NEMS, MEMS, and composite
material uses. Researchers believe that these properties can be tailored according to the
required application.

In this introductory chapter, a discussion of the molecular structure of CNTs is
first reviewed followed by the synthesis of SWCNTs and MWCNTSs and investigation of

elastic properties of CNTs via experimental, theoretical, and computational analyses.

1.1 Molecular Structure

In general, a SWCNT is a cylindrical structure that can be formed conceptually by
rolling a graphene sheet. This graphene sheet consists of a periodically repeating
hexagonal pattern in space, as shown in Figure 1.2. The planar hexagonal pattern is
composed of carbon atoms bonded together with strong in-plane sigma bonds. On the
other hand, MWCNT consists of several concentric SWCNTs where each wall interacts

with its neighboring walls through weak van der Waals forces (Qian et al., 2002). In the



following two sub-sections, we first look at the basic bond structure of the graphene sheet

and subsequently, the SWCNT and MWCNT structures.

1.1.1 Bond Structure

The planar hexagonal pattern consists of six carbon atoms that interact with one
another through strong in-plane covalent sigma bonds to form graphite. Because of
periodicity, each carbon atom is bonded in a plane to three neighboring carbon atoms and
separated by a C-C bond (/...) length or sigma bond length of 0.1421 nm and by an
angular separation of 120°, as shown in Figure 1.3. The final width of the hexagonal
pattern is about 0.246 nm (Harik, 2001). These in-plane sigma bonds result in the CNT’s

extraordinary stiffness and strength in the axial direction.

-----------------------------------

X
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...................................
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Figure 1.3: Carbon atom (sphere) with in-plane sigma-bonds (oval) and out-of-plane pi-bonds
(triangular) (a). Carbon atom attachment in a graphene sheet (b). The black dots are the carbon
atoms, dotted circles are the sigma bonds and solid line shows the hexagonal pattern (Harik,
2001).



The additional out-of-plane pi-bonds that result because of sp’ hybridization
interact with adjacent carbon atoms on a separate sheet to form the interlayer force in
MWCNTs. The sp’ hybridization occurs when carbon atoms come together to form
graphite (Qian et al., 2002). The interaction between the out-of-plane pi-bonds (also
known as van der Waals force) result in an equilibrium separation of ~0.34 nm between
the nested shell (coaxial cylindrical geometry) structure of the MWCNTs (Saito and
Yoshikawa, 1993; Qian et al., 2002). Contrary to sigma-bonds, the pi-bonds make the

CNT radial direction relatively compliant compared to the axial and tangential direction.

1.1.2 Single- and Multi-Walled Carbon Nanotube Structure

As shown in Figures 1.2 and 1.3, the hexagonal lattice structure forms a graphene
sheet. This graphene sheet can be rolled in different directions to form the cylindrical
tube known as SWCNT. The direction of the CNT axis is the defined as the translational
vector T, and the direction perpendicular to vector T or the roll-up direction of the
graphene sheet is defined as the roll-up or chiral vector Cp, as shown in Figure 1.4. The
vector C can be defined as a linear combination of base vectors a; and a; (Figure 1.4) of

the hexagonal lattice as,

C, =na, + ma, (1.1)

C, T=0 (1.2)

with # and m being integers. A particular SWCNT is thus described to fall into one out of

three categories which are associated with an integer pair (1, m),

0=0° orm=0 --- (n,0) -- Zigzag (1.3a)
0°< @ <30° orother --- (n,m) -- Chiral (1.3b)
6 =30° orn=m --- (n,n) -- Arm Chair (1.3¢)

where the diameter d and the chiral angle 8 of the CNT can be found from (Saito et al.,
2001)
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d =0.0783Vn* + n.m+m*® nanometer (1.4)
\B3m

el
¢ =sin [2(n2+nm+m2)

} radians. (1.5)

When several concentric SWCNTs of increasing radius form a nested shell
structure, they form a MWCNT, as shown in Figure 1.2. The separation between the
concentric walls can vary from 0.34 nm to 0.39 nm and is inversely proportional to the

number of layers and directly proportional to the curvature (Kiang et al., 1998).

(a) (b) (c)

Figure 1.4: Schematic diagram showing how a hexagonal graphite sheet is rolled to form a carbon
nanotube (a). The atomic structure of an armchair (n, #) (b) and a zig-zag (n, 0) nanotube (c)

(Thostenson et al., 2001).

The closed shell cylinder configuration in a SWCNT or MWCNT is more stable
than the flat graphene sheet because of the total energy reduction due to the elimination
of the dangling-bonds at the edge of the sheet. However, the energy per carbon atom
within a closed shell increases as tube radius decreases, and is found to increase in
proportion to the curvature of the tube wall (Ebbesen, 1997). Many researchers use this

notion of energy in their analysis in order to estimate the elastic properties of CNTs.
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1.2 Synthesis of Carbon Nanotubes

The possible applications of carbon nanotubes in various fields demand tailoring
of CNTs, and have consequently sparked research in the synthesis of these nano-wonders.
In the following subsections, the reader will find a brief summary of the main synthesis

techniques used in the production of CNTs.

1.2.1 Electric-Arc-Discharge Technique
The CNTs discovered by lijima (1991) were in the soot of an arc-discharge
generator (Dresselhaus et al., 2000). The Electric-arc-discharge technique is used to

process high quality SWCNTs and MWCNTSs in gram quantities; see Figure 1.5.

¥ Cathode

Figure 1.5: Schematic illustration of Electric-Arc-Discharge generator (Dresselhaus et al., 2000).

Usually two high purity graphite rod electrodes of 5-20 mm diameter separated by
about 1 mm are used as cathode and anode. The synthesis of CNTs requires a direct
current (DC) of about 50-120 A4 and a voltage difference of about 20-25 V across the
electrodes. Stable arcing occurs in a helium atmosphere at approximately 500 torr
flowing at a rate of 5-15 ml.s™ (Saito et al., 2001). A carbon deposit forms on the cathode
as the anode is consumed during arcing. Throughout the arcing process, the gap between
the electrodes is maintained at the initial value. The CNTs form near the center region of
the cathode where the temperature is about 2500-3000 °C and aligned in the direction of

the current flow. To synthesize isolated SWCNTs, the electrodes are doped with a small
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amount of a transition metal such as Co or Ni, whereas processing of MWCNTs, in the
form of bundles bound together by van der Waals force, does not require any catalyst.
The growth mechanism in this technique is believed to occur at the open ends of the
CNTs (Saito et al., 2001).

The average SWCNT synthesized in an arc-discharge technique has an average
diameter of <1.5 mm and a length of about 1 um. On the other hand, the MWCNT
diameter ranges from 5-30 nm with a length of about 10 um. The CNTs processed from
this technique have fewer structural defects that give them their exceptional properties
and makes them highly desirable for various applications. Since the fullerenes and other
graphite particles form along with the CNTs, a purification process is required to isolate

the nanotubes from other by-products (impurities) (Dresselhaus et al., 2000).

1.2.2 Laser-Ablation Technique

Thess et al., (1997) synthesized SWCNTs of high purity at a 1-10 g scale and with
a high yield of about 70% with a Laser-Ablation Technique. In this processing technique,
a graphite target doped with the catalyst Ni and Co is ablated (vaporized) with laser
pulses in a growth chamber. The ablation of the target is performed inside a furnace,
which is maintained at about 1200 °C and in the presence of a flowing inert gas such as
argon. Thereafter, the condensed material from the ablation is collected downstream of

the gas flow on a water cooled surface known as cold finger, see Figure 1.6.

laner heam grewing nanciubes Sapper

angom g graphite farget

Figure 1.6: Schematic illustration of Laser-Ablation technique (Thostenson et al., 2001).
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The laser-ablation technique allows the growth of SWCNTs with remarkably
uniform diameters and hundreds of um length. However, these SWCNTSs are found in
bundles (ropes) bound together with van der Waals forces and are highly tangled. Like
the electric-arc-discharge technique, a purification process is required to isolate the

tangled SWCNTSs from other by products from the process (Popov et al., 2000).

1.2.3 Chemical Vapor Deposition (CVD) Technique

Another promising CNT synthesis method is the chemical vapor deposition
(CVD) technique. High quality MWCNTs as well as SWCNTs can be processed by
CVD. Here a catalyst material such as Ni in the form of a thin film on a substrate is
heated to high temperatures in a tube furnace with a flowing hydrocarbon gas (usually
ethylene or acetylene) as the carbon feedstock that remains in the tube reactor for a
period of time; see Figure 1.7. The hydrocarbon gas, catalyst and growth temperatures are
the key parameters that control the growth process. An optimum set of these parameters

can synthesize a vertical array of CNTs with controlled diameter and length.

v

\ 4

: CoHn

g Catalyst

Oven temperature 500-1000 °C

Figure 1.7: Schematic illustration of Chemical Vapor Deposition (CVD) technique (Dresselhaus
et al., 2000).

Such optimization has been achieved by Plasma Enhanced Chemical Vapor
Deposition (PECVD) where plasma is excited by a DC or microwave source. In this
process, the diameter of the CNTs can be adjusted by controlling the thickness of the
catalyst on the sample surface; the length can be controlled by regulating vaporization
time or the temperature inside the oven; and the direction of the CNTs is controlled by

the DC plasma (Saito et al., 2001).
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The drawback of the CVD technique when compared to the previous techniques is
that the CNTs may have defects on their surface. However, a nearly continuous supply of
CNTs in prescribed patterns and uniform distribution over a surface is possible without
any purification process. Moreover, if needed, tangled, spaghetti-like CNTs with little
length, diameter, and structure consistency can be produced in large quantities and low

cost by a regular CVD process (Thostenson et al., 2001).

1.3 Elastic Properties

Before elastic properties of CNTs are discussed, it is important to note that the
concept of Young’s modulus and elastic constants belong to the framework of continuum
elasticity, and that an estimate of these material parameters for CNTs requires a
continuum assumption. The thickness of a SWCNT is valid only when it is given on the
continuum assumption (Qian et al., 2002). There is no direct technique to measure the
elastic properties of CNTs and as a result, most experimentalists estimate the effective
elastic properties of the CNT by comparing experimental data with simple dynamic and
static solid beam models. Theorists on the other hand, estimate the effective elastic

properties of the CNT by applying atomistic, molecular, or continuum mechanics models.

1.3.1 Experimental Analysis

A first attempt to experimentally measure the mechanical properties of CNTs was
made by Treacy et al., (1996). In the experiment, they measured the amplitude of thermal
vibrations induced on anchored isolated MWCNTs within a Transmission Electron
Microscopy (TEM). Assuming a solid homogenous cylindrical beam and using classical
vibration theory for elastic rods, an effective Young’s modulus value was found to range
between 0.4 - 4.15 TPa with 1.8 TPa as an average value. Krishnan et al., (1998)
conducted similar experiments on SWCNTs and found the effective Young’s modulus of
the tube to be 1.3 + 0.5 TPa. In a different experimental attempt, Wong et al., (1997) used
an Atomic Force Microscope (AFM) tip to laterally deflect MWCNTSs at were fixed on

15



one end to square pads of SiO. Thereafter, by assuming a solid beam and applying simple
beam theory to reduce the lateral force-displacement data, an effective Young’s modulus
was found to be 1.28 + 0.59 TPa. Recently, Qi et al., (2003) used classic beam theory and
applied it to indentation of vertically aligned carbon nantoube (VACNT) forests to
estimate the statistical effective bending, axial, and wall modulus of the CNTs. In another
experiment, Salvetat et al., (1999) deposited MWCNTSs on a polished ultra-filtration
membrane containing pores. On CNTs that would occasionally land over and across these
pores, nano-indentations with an AFM tip revealed the effective bending modulus to be
0.81 + 0.41 TPa. In a similar experiment, Tombler et al., (2000) found the effective
bending modulus of SWCNTs to be ~1.2 TPa. Lourie et al., (1998) used Raman
spectroscopy to measure the compressive deformation of a CNT embedded in an epoxy
matrix. The effective Young’s modulus for a SWCNT was found to be in the range 2.8 —
3.6 TPa, while for a MWCNT, in the range of 1.7 — 2.4 TPa. Poncharal et al., (1999) in a
test simlar to that of Treacy et al., (1996) induced vibrations using electromechanical
excitation instead of thermal effects to probe the resonant frequencies of MWCNTs.
CNTs of less then 12 nm diameter were found to have a Young’s modulus ~ 1.0 TPa.
However, for larger MWCNTs, the effective bending modulus was found to drop from 1
to 0.1 TPa with increases in the CNT’s diameter from 8 to 40 nm.

While performing the above bending experiments, Poncharal et al., (1999) noticed
the reversible wavelike distortion (rippling) of the MWCNTSs on the compressive side of
the bend. These ripples were further studied by Falvo et al., (1997) and Hertel et al.,
(1998). They used an AFM tip to bend MWCNTs through large angles repeatedly
without causing any permanent damage. This local elastic buckling occurs in both
SWCNTs and MWCNTs in a rippling bending mode. The ripple pattern penetrates to the

inner walls while maintaining the inter-wall spacing, see Figure 1.8.

Figure 1.8: Characteristic wave like distortion on the bent side of a MWCNT was observed in
HRTEM image (Poncharal et al., 1999).
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lijima et al., (1996) conducted both experimental and theoretical analysis of
SWCNT and double-walled CNTs (DWCNT) and found that CNTs can be bent to about
120° without causing any permanent structure damage (bond breakings). They also
reported that the kinking or local bucklings seem to become more complex as the number
of concentric tube walls in a CNT increases. The buckling occurs not only upon the
bending of a CNT, but also upon compression and twisting. When a CNT is twisted, a
flattening or collapse of the cross-section occurs (Yakobson et al., 1996).

In addition to axial and bending deformations, researchers have also studied the
lateral or radial deformation of CNTs. Ruoff et al., (2003) were among the first to study
the radial deformability of CNTs. CNTs (MWCNTs) were aligned to be adjacent to one
another and the deformation was subsequently observed under a TEM. The partially
deformed MWCNTs suggested the presence of van der Waals forces along the contact
region of the two CNTs (Qian et al., 2002) causing distortion of the tube cross-section.
Later, in a different experiment, Lordi and Yao (1998) used High-Resolution TEM
(HRTEM), in tandem with molecular dynamics simulations to study the response of tubes
to asymmetrical radial compressive forces. They related the elasticity and resilience of
the walls directly to the tube radius and indirectly to the number of layers in a CNT, as

shown in Figure 1.9.

Figure 1.9: Reverse-contrast HRTEM images of asymmetrical radial compression of a MWCNT.

A five-layered CNT is essentially experiencing a point force at Y (Lordi and Yao, 1998).

Shen et al., (2000) took a different approach in their experiment. They performed
radial indentation of a ~10 nm diameter MWCNT with Scanning Probe Microscopy

(SPM) in the indentation / scratch mode. They were able to estimate the radial

17



compressive elastic modulus of an MWCNT by subjecting it to radial compression
(asymmetric radial compression). The radial compressive strength thus found was well
beyond 5.3 GPa. In a separate experiment, Yu et al., (2000-a) indented an MWCNT with
an AFM tip after scanning it in tapping mode. They were able to show the reversible
radial deformability to be up to 40%. The MWCNTSs were indented at five different
locations along the length, and the data for force versus strain were obtained. The
estimated effective elastic modulus of several sections of the MWCNTs in the radial

direction ranged between 0.3 — 4.0 GPa.

1.3.2 Theoretical Analysis

In addition to the experimental investigations, the discovery of CNTs has also
motivated numerous theoretical and numerical studies in order to better understand the
physics and to validate experimental results. Xiao et al., (2005) splits the modeling
studies into two categories: bottom up and top down. The bottom up is based on atomistic
(or ab initio), classical molecular dynamics (MD) analysis and the top down covers the
structural, continuum mechanics, and Finite Element (FE) analyses. Researchers mainly
focus on one of the two categories. A brief description of different modeling approaches

are explained in the following sub-sections.

1.3.2.1 Quantum Mechanics (ab initio) Analysis

Generally, to understand the physics of a system, atomistic or ab initio analyses
provide the most detailed results when compared to other methods. However, this
approach is computationally very expensive. Because of the computational expense,
atomistic analysis is used when experimental data are either unavailable or very difficult
to obtain — for example, when the characterization of electronic properties of CNTs is
required (e.g., Ghosh et al., 2005).

In this analysis, the state of a particle is defined by a wave function in which the
energy associated with each electron (particle) in an atom comprising the CNT is added

together. Thereafter, using either the Hartree-Fock (e.g., Ghosh et al., 2005), local density
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approximation (LDA), or Tight-Binding (TB) (e.g., Hernandez et al., 1998) methods, an

approximate solution is obtained to solve the Schrodinger equation

Hy =Ey, (1.6)

where H is the Hamiltonian operator of the quantum mechanical system, and y is the

energy eigenfunction corresponding to the energy eigenvalue E (Qian et al., 2002).

1.3.2.2 Classical Molecular Dynamics (MD) Analysis

Following ab initio analyses, MD analyses are the next most widely used method
in the theoretical study of the physical behavior of CNTs. Applying MD mechanics, the
physical as well as the chemical properties of CNTs at the atomic-scale can be simulated
quite precisely. Though computationally more efficient than atomistic analysis, a
maximum number of about 10’ atoms (Wang and Wang, 2004) and 1" second time step
(Lau et al., 2004) still limits MD simulation capabilities.

CNTs can be thought of as a single large molecule consisting of carbon atoms
(Tserpes and Papanikos, 2005). Analytically, in this approach Newton’s second law is

applied to solve the governing equations of particle dynamics, i.e.,

A (1.7)

where m; and r; are the mass and spatial coordinates of the i atom, respectively. V' is the
empirical potential for the system, and V denotes the spatial gradient (Qian et al., 2002).
The several methods by which the empirical potential for the system is calculated falls

under one of the three categories in the literature and are explained briefly.

a. Force field Method

The force field method provides a simple and effective approach for describing

the atomic potential of interacting atoms in a system. The force field is calculated by

summing the individual energy contributions from each degree of freedom (bond
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stretching, bond angle bending, bond torsion, and non-bonded interactions) of the
individual carbon atoms in a CNT (Valavala and Odegard, 2005). Allinger et al., (1977)
developed molecular mechanics force field models, MM2 and MM3, that can be used for
both organic and inorganic systems. The MM?2 force field is based on bond stretching and
angle bending that has “catastrophic” bond lengthening and angle-bending. In the MAM3
force field version, Allinger et al., (1989) fixed the bond lengthening and the angle
bending issues by including a quartic term in his formulations. Sears and Batra (2004)
recently used the MM3 model and compared results with the other bond order methods in
deriving macroscopic properties of SWCNTSs. In an another generic force field model by
Mayo et al., (1990), bond length, angle bend, and torsion terms are considered in the

formulation of the potential function.

b. Bond Order Method

Abell (1985) originally introduced the Morse pair potential where universality in
bonding of similar elements was explored. Tersoff and Ruoff (1994) modified the Morse
type potential for carbon atoms. The subsequent Abell-Tersoff method is another
improvement where the energy of each bond and the angular dependency due to the bond
angles is considered in the formulation of the potential. Brenner later modified the
Tersoff potential by including formation and breaking of the bonds (Qian et al., 2002).
An improved version, the Tersoff-Brenner potential, is now available where the analytic
functions for the intra-molecular interactions and an expanded fitting database are

included in the previous version (Brenner et al., 2002).

¢. Semi-Empirical Method

Pettifor and Oleinik (1999) have proposed an analytical form derived directly
from a TB model and successfully modeled the structural differentiation and radical
formation. Since this method includes explicit angular interactions and is somewhat less
empirical then the empirical bond-order form proposed by Tersoff in the previous
section. Qian et al., (2002) referred it as semi-empirical method. This method was used

by Zhou et al., (2000).
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Besides the above potential functions in the study of CNTs, another important
aspect is the interlayer interaction. A widely used form of the inverse power model — the
Lennard-Jones (LJ) potential for atomic interactions — was modified by Zhao and Spain

(1989) as a pressure/inter-layer-distance relation

e -]

In Equation 1.8, P is the pressure, ¢ is inter-layer distance, ¢y = 0.341 nm is the
equilibrium distance, and ¥ = 36.5 GPa. Zhao and Spain (1989) obtained the relation in
Equation 1.8 by modifying the LJ potential energy relation in Equation 1.9 for a carbon
system modified by Girifalco and Lad (1956)

A1, 1 1
= —]| — — . ~9
?, ot liZyO (r,./o')12 (r,./O')(’] (19

In Equation 1.9 the C-C bond length o = 0.142 nm, A and y, are 24.3E-79 J.m® and 2.7,
respectively, and 7; is the distance between the i" atom pair. Recently, Pantano et al.,
(2003, 2004-a, 2004-b) and Guo et al., (2004) used this interlayer relation in their
continuum shell model and MD simulations, respectively.

The other functional form of the interlayer interaction is the Morse function
model. Based on Local Density Approximations (LDA), Wang et al., (1991) derived the

Morse potential function for carbon systems; it is given by
U(r)=D, [(1 —e P 1J+ Ee™”", (1.10)

where D, = 6.50E-3 eV is the equilibrium binding energy, E, = 6.94E-3 eV is the hard-
core repulsion energy, r. = 4.05 A is the equilibrium distance between two carbon atoms,

£ =1.004" and p' = 4.00 A7 (Qian et al., 2002). Recently, a modified form of the Morse
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potential has been used by Xiao et al., (2005) in their analytical molecular structural
model and by Sun and Zhao (2005) to model the breakage of a C-C chemical bond.

1.3.2.3 Structural Mechanics Analysis

Odegard et al., (2002) have used a truss model as a bridge between the molecular
and continuum models in a manner analogous to a TB model that acts as a bridge
between the ab initio and MD analysis. Li and Chou (2003a, 2003b), Shen and Li (2004),
Tserpes and Papanikos (2005), and Xiao et al., (2005) later used the equivalent truss
model to study the mechanical behavior of CNTs having different diameters and
chiralities.

Here, the geometry of the molecular structure is used to define an equivalent truss
structure. The stiffness (EI) of the truss elements is determined such that the total
potential energy of the molecular model and the strain energy of the equivalent truss are
equal for the same loading (Odegard et al., 2002). The three dimensional members in a
truss structure are pin-jointed with three displacement degrees of freedom at each end.
The nodes (pin-joints) represent the location of the carbon atoms in a CNT; see Figure
1.10.

C-C bond — Truss member C-atom — pin joint

/

(a) (b)

Figure 1.10: Equivalent truss structure of a CNT (a). Hexagonal pattern made of carbon atoms
and truss members that make the molecular structure of a CNT (b) (Tserpes and Papanikos 2005;
Xiao et al., 2005).
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Besides the truss elements to model the sigma bonds, Li and Chou (2003b) used
nonlinear truss rod elements to take into consideration the van der Waals interactions that
act between individual carbon atoms located on the neighboring layers in an MWCNT.
The equivalent truss structure approach seems to work well in visualizing and finding

differences in elastic properties of CNTs having different chiralities.

1.3.2.4 Continuum Mechanics Analysis

Theoretical analysis using ab initio or MD methods give extremely good results
for the study of the physics behind SWCNT and MWCNT, but are typically limited to the
simulation of four concentric CNTs (Liew et al., 2004). However, if the purpose of the
theoretical analysis is to investigate the global responses of individual SWCNTs or
MWCNTs or CNT-based composites, such as deformations, effective stiffness, or load
transfer mechanisms in the nanocomposites, then the continuum mechanics approach can
be applied safely to provide needed results effectively and efficiently (Liu and Chen,
2003). Solid and nested shell models have been used as equivalent continuum models
with average material properties of CNTs to study their mechanics. Harik (2001) adopted
an approach using non-dimensional ratios of geometric parameters to find ranges of
validity for the continuum beam model. To check the applicability of the beam

assumption for CNTs, he laid the following three criteria for a continuum beam,

* homogenization criteria - Ly, /a,>10

* aspect ratio criteria - Ly /dy >10

* linearity of strains criteria - (LNT =Ly )/ Ly, <<1 . (1.11)
In Equation 1.11, Lyr, Lyy and dyr are the final length, initial length and diameter of the

CNT, respectively, and a; is the width of the carbon ring — about 0.24 nm.
Large ambiguities in the properties of CNTs exist as a result of the application of
continuum models. Nonetheless, high computational efficiency at the cost of this

ambiguity and loss of accuracy seems to be accepted by the researchers.
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a. Equivalent Solid model
Treacy et al., (1996), Wong et al., (1997), Krishnan et al., (1998), Poncharal et
al.,(1999), Salvetat et al., (1999), and Qi et al. and many others applied beam theory to

isotropic solid cylindrical beam models to estimate the effective mechanical properties of
individual CNTs. The application of the solid beam model has been somewhat successful
for calculating the static and dynamic responses of the CNTs. However, the ambiguity in
the estimated properties such as effective bending modulus (0.81 — 1.8 TPa) can be seen
when Euler beam theory is applied to analyze the experimental data. Recent
investigations by Liu et al., (2001, 2003), Wang and Wang (2004), Wang et al., (2004),
and Wang et al., (2005) have taken the anisotropic nature of CNT into account in their 2D
(e.g., Liu et al., 2001, 2003) and 3D (e.g., Wang and Wang, 2004; Wang et al, 2004,
Wang et al., 2005) solid beam models. Using FE techniques, they were able to capture
both pre- and post-buckling effects of a CNT assuming small-strains and large-
deflections, and found a highly nonlinear moment-curvature relation; in addition they
found a non-dimensional critical curvature for the onset of the rippling bending mode in a
CNT. The material properties of basal graphene sheet were adopted to model the
anisotropic nature of MWCNTs.

b. Equivalent Shell Model

Yakobson et al., (1996) first compared the results of atomistic modeling for

axially compressed buckling of single-walled nanotubes with a simple continuum shell
tube that mimics the SWCNT wall. They found that the buckling patterns displayed by
MD simulations can also be predicted by the continuum shell. Thereafter, Ru (2000a,
2000b, 2000c, 2001), Wang et al., (2003), He et al., (2005), and others used analytic shell
models to capture the nonlinear mechanical behavior of both SWCNTs as well as
MWCNTs very well. Researchers however, are not consistent in their effective shell
thickness and Young’s modulus in that they range from 0.066 — 3.4 nm and 1.0 — 5.5
TPa, respectively. The properties are usually found by equating the total strain energies
of the system with that obtained from ab initio or MD analysis under identical loading

conditions. Later Pantano et al., (2003, 2004a, 2004b) used Yakobson et al.’s, (1996)
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insight to propose a continuum nested structural shell method for modeling CNTs; this

method will be discussed in detail in the next chapter.

1.3.2.5 Finite Element (FE) Analysis

Much like MD simulations, FE analyses help researchers verify the analytical
solutions and to visualize the experiments that are hard to see at nano scale levels. All
continuum models: solid, truss and shell have been used to study CNTs. Liu et al., (2001,
2003), Wang and Wang (2004), Wang et al., (2004), Wang et al., (2005), and current
authors have modeled the anisotropic solid beam model using the solid elements (Figure
1.11-a), Tserpes and Papanikos (2005), Li and Chou, (2003a, 2003b) developed a Truss
model using beam elements; see Figure 1.11-c. Pantano et al., (2003, 2004a, 2004b), and
Arroyo and Belytschko (2003) modeled MWCNTSs with the LJ potential as the interlayer
force while Sears and Batra (2004) modeled SWCNTs with thin shell elements, see
Figure 1.11-b.

(a) (b)

Figure 1.11: Finite Element analysis of CNT using orthotropic solid model (a) (Liu et al., 2001),
equivalent nested shell model (b) (Pantano et al., 2003), and truss model (c) (Tserpes and
Papanikos, 2005).

The FE-based orthotropic solid models, Liu et al., (2001, 2003), Wang and Wang
(2004), Wang et al., (2004), and Wang et al., (2005) adopted basal graphite plane elastic
properties to simulate MWCNTs subjected to bending. All the orthotropic solid FE-based
models were simulated in a commercial FE software package, ABAQUS. The FE-based

truss models are usually modeled with beam elements. Li and Chou (2003b) treated
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MWCNTs as a single-walled frame like structure and used a nonlinear truss rod model to
simulate the LJ potential and represent the interlayer van der Waals forces. The properties
were derived in an approach similar to that suggested by Odegard et al., (2002) in Section
1.3.2.3. Lastly, as mentioned in the previous section, Pantano et al., (2004b) modeled the
nested shell structure by assuming shell elements to be isotropic having Young’s modulus
and mechanical wall thickness pair of 4.84 TPa and 0.075 nm, respectively. The
interlayer van der Waals force was also included in the nested shell FE-based model of
MWCNTSs subjected to bending and axial compression (e.g., Pantano et al., 2003). Using
the nested shell FE-based model, Pantano et al., (2003, 2004a, 2004b) were able to study
the effect of van der Waals forces on the rippling behavior on MWCNTs subjected to

bending (e.g., Pantano et al., 2003) and axial compression (e.g., Pantano et al., 2004a).

In this chapter, we presented a detailed description of the nearly defect-free
carbon nanotube structure, and a brief overview of their potential applications.
Thereafter, we discussed techniques researchers are currently using to synthesize high
quality carbon nanotubes, and also to measure their mechanical properties. Measuring the
mechanical properties experimentally is a challenge due to exceptionally small
dimensions of the nanotubes; therefore, researchers must simulate the mechanical
behavior of these nanotubes using computational techniques, such as MD and FE
simulations. Recently, most experimental investigations point to a unified
characterization of the mechanical properties of carbon nanotubes; however, theoretical
investigations differ in their approach in estimating these properties. MD simulations
being the most precise, lack in computational efficiency in modeling multi-walled carbon
nanotubes. On the other hand, the less precise FE simulations are more computationally
efficient. Theorists have used beam, truss, solid, and shell elements to model carbon
nanotubes. Recently, Pantano et al., (2003, 2004a, 2004b) developed the nested shell
model in which they used shell elements to model MWCNTs, and user defined
interference elements to model interlayer van der Waals forces. With this technique, they
were able to successfully capture the complex nonlinear deformation mechanics of both
single and multi-wall carbon nanotubes; however, they used small-sized elements that

make their model computationally inefficient for large MWCNTs. For FE simulations,
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modeling nanotubes with solid elements is the most efficient approach; however, they
either fail to capture the complex buckling behavior of MWCNTs or fail to account for
the van der Waals force. This motivated us to develop a new FE approach, presented in
Chapter 2, which uses computationally efficient solid elements whose properties are

derived from nested shell theory (Pantano et al., 2003).

4—— Indentor tip —»

<«—  (Carbon nanotubes —»

(a) (

Figure 1.12: Two-dimensional schematic of nano-indentation (a) and nano-scratching (b).

Thereafter in Chapter 3, we will apply the developed FE approach to an analytical
contact model first proposed by Qi et al. (2003). The contact model simulates the nano-
indentation of vertically aligned carbon nanotube (VACNT) forests, whereby nanotubes
are consecutively bent during the penetration of the indentor (AFM tip), as shown in
Figure 1.12-a. Using the simulation results obtained from the FE approach in Chapter 2,
the contact model will be modified to include the buckling effect observed in MWCNTs.
Thereafter, the nano-indentation contact model will be further modified to simulate nano-

scratching of beams, as shown in Figurel.12-b. Finally, Chapter 4 concludes the thesis.
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Chapter 2

This chapter proposes a method for the representation of the mechanical behavior
of an MWCNT by building a linear elastic representation based on the local orthotropy of
its nested tube microstructure. We will refer to this as an “equivalent orthotropic
representation” (EOR) with the caveat that the tube as a whole is not orthotropic but its
microstructure is locally orthotropic. The effectiveness of the EOR model in predicting
nonlinear deformations is examined via comparison with the results of the nested
structural shell representation (NSSR) developed by Pantano et al., (2004b). The
proposed method when applied to the Finite Element Method (FEM) MWCNT models
replicates the bending, axial compression and radial compression phenomenon seen in the
NSSR model and several experimental investigations. The proposed model was observed
to capture the pre- as well as post-buckling, nonlinear structural behavior of MWCNTs
within a reasonable amount of deviation from previous predictions. The proposed method
is able to provide excellent predictions of such complex deformations, since it directly
accounts for the stiff axial behavior of the shell and the compliant radial and shear
behavior of the interlayer van der Waals interactions. The proposed model is time
efficient and works well for a complicated system of MWCNTs in FEM which is
currently impractical if not impossible with Molecular Dynamics (MD) or NSSR

techniques.

2.1 Introduction

Investigators have been able to successfully use MD simulations (e.g., Yakobson
et al., 1996, lijima et al., 1996, Tserpes and Papanikos, 2005, Sun and Zhao, 2005, Xiao
et al., 2005, Liew et al., 2004) and NSSR modeling (e.g., Pantano et al., 2003, 2004a,
2004b) to simulate the tension, compression and bending of MWCNTs thereby capturing
the initial linear elastic behavior of the tube as well as the buckling instabilities and

resulting nonlinear behavior. Liew and Wong et al. modeled a maximum of four
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concentric tubes with MD simulations, while Pantano et al., (2003) modeled a maximum
of nineteen concentric tubes with NSSR technique in FEM including interlayer
interactions. Although with the nested shell model approach, Pantano et al., (2003, 2004a,
2004b) are able to simulate a higher number of walls in the MWCNTs, it still becomes
impractical for very large MWCNTs containing over 100 walls.

Many of the potential applications for CNTs will utilize MWCNTs (VACNT,
CNT-based composites, MEMS devices, and others). Current atomistic modeling and
FEM nested structural shell models, while providing detailed insights into the tube
structure and deformation, are computationally burdensome for use in actual composite
material simulations. This chapter presents an alternative continuum solid model
approach that preserves the structural features governing the tube mechanical behavior
while offering tremendous improvements in computational cost. The new model takes
into account the nested tube structure, the stiff inter-wall van der Waals normal
interactions, and the compliant shear interactions between walls that give carbon
nanotubes their unique mechanical behavior. The proposed EOR model has the potential
to construct several MWCNTs that include the internal van der Waals interactions
between walls and external interactions between individual tubes.

This chapter first reviews past models of CNT structure and then presents the new
approach. Axial compression, bending and radial compression behaviors from the new

model are then presented and compared for different models.

2.2 Review of Prior Modeling Approaches

This section reviews models of the structural and mechanical behavior of
nanotubes, including Molecular Dynamics, isotropic continuum solid, and nested

structural shell representations.
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2.2.1 Molecular Dynamics Model

Molecular Dynamics simulations of defect free cylindrical carbon nanotubes have
been performed by several research groups (Yakobson et al., 1996, lijima et al., 1996,
Tserpes and Poponikos, 2005, Xiao et al., 2005, Sun and Zhao, 2005, Liew et al., 2004).
MD simulation models can predict CNT behavior at small linear deformations and also
beyond the linear response. An analytic approach uses Newton’s second law to solve the

governing equations of particle dynamics:

L=-VY, @2.1)

where m; and r; are the mass and spatial coordinates of the i™ atom, respectively. V is the

empirical potential for the system, and Vdenotes the spatial gradient (Qian et al., 2002).
The empirical potential for the system is defined by one of force field, bond-order or
semi-empirical methods, as discussed earlier in Chapter 1. The interlayer interactions in
MWCNT are usually taken into account by either of two available potentials: Lennard-
Jones (LJ) (Girifalco and Lad, 1956) or Morse potential (Wang et al., 1991).

Yakobson et al., (1996) used the Tersoff-Brenner potential in their MD
simulations of SWCNTs for modeling interactions between carbon atoms (bond-order
empirical potential); the SWCNTs modeled had different diameters, helicities and
lengths. They subjected these SWCNTSs to axial compression, bending and torsion in their
simulations. The results thus obtained were plotted as strain energy of deformation versus
axial compression strain, bending angle or torsion angle. A sudden drop in strain energy
was observed in simulations upon the initiation of buckling. In a separate research, Iijima
et al., (1996) carried out similar MD simulations in bending. Here several SWCNTs and
DWCNTs of different diameters and helicities were modeled by applying the Tersoff-
Brenner potential. For DWCNTSs, the compliant van der Waals interaction between the
layers was also taken into account.

In their MD simulations for SWCNT and DWCNT, both Yakobson et al., (1996)
and Iijima et al., (1996) found that the strain energy of nanotubes increase quadratically

with the bending angle until the onset of buckling and subsequently linearly thereafter.
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The quadratic behavior implies that the bending response of a nanotube can be treated as
some effective linear elastic continuum beam. However, quadratic behavior appears only
before buckling implying that the effective linear elastic beam assumption is valid only

prior to the onset of local instabilities, as shown in Figure 2.1.

Figure 2.1: Molecular Dynamics simulation of a SWCNT subjected to bending (Iijima et al.,
1996). Single kink is visible, which results in the drop in the strain energy curve when plotted

with respect to bending angle.

Robertson et al., (1992) found that unloaded SWCNTSs possess an internal strain
energy per carbon atom that exhibits a /R’ relationship, where R is the radius of the tube
wall. The inverse square relationship in comparison with continuum-level elastic
structural mechanics predictions indicated that the single-atom thick tube-wall behaved in
a manner mechanically equivalent to that of a thin shell. In classic elasticity theory, the
internal energy per unit area or rolling energy, Uk, in a cylindrical tube is given by Ug =
%(D/R?), where D is the bending stiffness of the sheet. (Yakobson et al., 1996) supports
the Robertson et al., (1992) argument by comparing the internal energy of a SWCNT
obtained from ab initio or semi-empirical studies with the energy of a shell. Considering
the two-dimensional hexagonal structure of graphite as an isotropic material implies that
only two elastic parameters C (the membrane stretching stiffness) and D (the bending
stiffness) are required to define the equivalent shell. Taking the data from Robertson et
al., (1992), Yakobson et al., (1996) obtained C = 59 eV/atom and D = 0.85 eV (= 2.23 eV
A’/atom [assuming the occupied area per carbon atom to be Q = 2.62 4”/atom)). They

also reported the Poisson ratio as 0.19 for the shell, obtained by estimating the reduction
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in diameter of a tube subjected to uniaxial tension in a simulation. This value of Poisson
ratio also happens to be the value obtained from experimental results for single crystal
graphite by Kelly et al., (1981). Then applying classical shell theory, where C = Yh and D
= Yh'/12(1 - V?), they obtained E = 5.5 TPa and h = 0.066 nm, where E and h are the
Young’s modulus and the thickness of the shell, respectively. Later, Pantano et al., (2003,
2004a, 2004b) used classical shell theory, and the above C and D values to find an
equivalent Young’s modulus and mechanical wall thickness pair of 4.84 7Pa and 0.075

nm, respectively.

2.2.2 Linear Elastic Beam Model

MD simulation is an excellent technique for capturing CNT mechanics; however,
it is computationally expensive. For example, the model of DWCNT is a challenge when
simulating from initial small-strain, small-deformation behavior through the structural
instabilities. Therefore, linear elasticity theory in various forms has been employed by
many investigators to study and interpret various CNT deformations. As mentioned in the
previous section, Yakobson et al., (1996) and lijima et al., (1996) indicated that a CNT
can be treated as an effective solid beam because the strain energy of the tube shows a
quadratic behavior as a function of curvature for bending simulations before buckling
initiates. Harik (2001) using a non-dimensional approach, also supported the Yakobson et
al.,, (1996) theory of treating CNTs of large aspect ratio as nanobeams. Many
experimentalists (Wong et al., 1997, Qi et al., 2003, and more) performed bending on
CNTs using AFM tips; thereafter, they reduced the data assuming an effective linear
elastic beam to find the effective mechanical properties of the tube, such as a bending
modulus of CNTs. The bending is limited to small angles prior to any onset of buckling.

Here the effective bending stiffness, (El)gg, of a CNT is given by the classic formula,

whe —

El, =E,1,, = E, %(R: ~R') 2.2)
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where Ey, Lupe, R, R; are the effective bending modulus, moment of inertia, outermost
and innermost radius of the effective linear elastic beam, respectively. The E; found by
reducing it from the experimental results usually varies between 0.8 tol.8 TPa (Treacy et
al., 1996, Wong et al., 1997, Krishnan et al., 1998, Qi et al., 2003). The continuum elastic

solid beam is considered to have homogenous isotropic properties.

2.2.3 Discrete Nested Shell Model

A linear elastic isotropic beam model provides an adequate representation of the
mechanical behavior of SWCNTs and MWCNTSs for small strain deformation behavior
prior to any buckling and is time efficient for producing results for even large radius
MWCNTs. However, this technique cannot predict the buckling and post-buckling
behavior of a CNT. The experimental observations of internal structures during bending,
buckling, and telescopic sliding (Cummings and Zettl, 2000) indicate that specific
structural features of CNTs make important contributions to nanotube deformation
response during some cases of mechanical loading; therefore, such features should be
accounted for in any model of a nanotube. Pantano et al., (2004b) used the insights
derived from experimental work and atomistic simulations to develop an FEM-based
elastic nested shell model approach that considers the internal structural features of a
tube. The nested shell model can predict the pre-buckling (linear) mechanics, onset of
local versus global buckling and the post-buckling (nonlinear) mechanics of both

SWCNTs and MWCNTSs, as shown in Figure 2.2.

(a) (b)
Figure 2.2: Finite Element bending simulation of a 14-walled CNT using nested shell model (a)
(Pantano et al., 2004b). Complex rippling mode is apparent in the figure (b) which is remarkably
similar to the HRTEM image taken by Poncharal et al., (1999).
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Pantano et al., (2004b) specified four key aspects for modeling a CNT as a
continuum shell. First, a Poisson ratio of 0.19 and a specific paring of elastic constants
(Evan = 4.84 TPa, tyan = 0.075 nm) must be assigned to each tube wall such that both the
membrane stretching and bending behavior of the wall are captured. Second, an initial
stress state that corresponds to the curvature of the tube wall must be assigned. The initial
stress state develops because the stress-free planar hexagonal structure wraps into a
tubular structure. The initial stress state in the tangential direction, ogy, is inversely
proportional to the radius of the tube and can be calculated from the following equation

derived using classic elasticity theory,
E,.. |r—R
Ogg = ~ [—:| ) (2.3)

where, R is the mean radius of the shell tube, and r is the radial location of a point in the
tube. Clearly from Equation 2.3, the magnitude of the initial stress state diminishes as the
radius of the MWCNT increases. Third, a strong normal force interaction between the
adjacent walls, with other portions of itself, and with like substrates must be incorporated.
Pantano et al., (2003, 2004a, 2004b) used the pressure/inter-layer-distance relation which
Zhao and Spain (1989) derived from Girifalco and Lad (1956) LJ potential energy model.
The pressure/inter-layer-distance relation that Pantano et al., (2004b) used to model the

van der Waals interaction pressure-separation behavior is given below:

S OROI

where, P is the interlayer pressure, ¢ is the inter-layer distance, cp = 0.34 nm is the
interlayer equilibrium separation distance, and ¥ = 36.5 GPa. Fourth, the wall-to-wall
shear resistance, taken to be negligible, was observed experimentally to be very
compliant and an order of magnitude weaker when compared to the stiff normal wall-to-
wall resistance provided by van der Waals interaction. Blakslee et al., (1970) found the

shear modulus for Pyrolytic Graphite to be 0.18 to 0.35 GPa. In addition, Yu et al,,
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(2000b) and Cummings and Zettl (2000) made measurements of tube pull-out force as a
function of overlap length between shells, and controlled and reversible telescopic
extensions of MWCNTs within a TEM and found average sliding resistance strength of
0.48 MPa. The sliding resistance strength thus found for CNTs matches the experimental
mean value of the inter-layer sliding resistance strength for crystalline graphite found by
Kelly (1981).

In addition to the four key aspects, Pantano et al., (2004b) concluded that the most
accurate mechanical behavior for predicting structural instabilities was obtained when
with square individual shell elements discretizing the SWCNT, and with a side length of
0.24 nm, which is the same as the height of the hexagonal lattice cell. They (Pantano et
al., 2004b) found that smaller elements might erroneously capture a wavelength that
cannot be accommodated by the carbon lattice structure and too large an element
dimension might miss the buckling wavelength.

The interlayer potential between nested shell structures have been successfully
modeled with nonlinear FE method in Pantano et al., (2003, 2004a, 2004b). Results
obtained by compressing and bending the FE-based nested elastic shell model for
SWCNTSs and MWCNTs were compared with MD simulations of SWCNT deformations
(Yakobson et al., 1996) and with high-resolution images of bent MWCNTs (e.g., Falvo et
al., 1997, Poncharal et al., 1999, Bower et al., 1999). In their simulations with the FE
nested shell model, Pantano et al., (2003, 2004a, 2004b) were able to successfully capture
the pre- and post-buckling behavior of the CNTs. By setting the square shell element size
to that of the carbon lattice spacing (0.24 nm) and applying van der Waals interaction
within the tube, a single kink similar to that of MD simulations developed in the
SWCNTs. However, due to lack of numerical simulation results for MWCNTSs, Pantano
et al., (2004b) compared the results from the nested shell model with the experimental
observations of Lourie et al., 1998, Poncharal et al., 1999, and Bower et al., 1999.

MWCNTs develop a multiple kink pattern (rippling or wrinkling) in the post-
buckling regime, as shown in Figure 2.2. From their NSSR model, Pantano et al., (2003)
showed this rippling pattern to progress from a shorter initial wavelength (1) to a “steady-
state” longer wavelength as macroscopic loading increased. The predicted steady-state

buckling wavelengths were computed for several MWCNTs and compared with the
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experimental observations of Lourie et al., 1998 and Bower et al., 1999; the nested shell
model showed remarkably good agreement with the experimental observations (Pantano
et al., 2003, 2004b). The initial buckling wavelength for the outermost tube in an
MWCNT was found to match the value predicted by thin shell theory (Timoshenko,

1936) that not only accounts for the outer wall stress, but also thickness.

A=34,Rh, (2.5a)

here R, and 4 are the outermost radius and the CNT outer wall thickness (= 0.075 nm) of
the nanotube, respectively. In addition, Pantano et al., (2003, 2004b) showed that the
steady state longer wavelength in an MWCNT can be predicted from Equation 2.5b.

A=\Rnh

0"t (2.5b)
where s, = (R, — R)) is the total tube thickness and R; is the innermost tube radius,

following that observed by Bower et al., (1999).

2.3 Present Model Design

Here, we propose a new FE-based equivalent orthotropic representation (EOR)
model for an MWCNT based upon the nested shell structure of similar CNTs. The EOR
model uses a micro-mechanical representation, where the “plane” of orthotropy is aligned
with the radial (r), the tangential (), and the axial (z) directions of the tube, as shown in
Figure 2.3-a and 2.3-b. Unwrapping a local point (Figure 2.3-c), we construct a
representative volume element (RVE) of a material point, a radially symmetric layered
structure, to predict the equivalent mechanical properties. The EOR model can be thought
of as transversely isotropic in nature because of the radially symmetric nature, and
therefore requires five independent effective elastic constants to fully define its

equivalent mechanical properties. The required five constants that fully capture the
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locally transverse isotropic nature of the layered material are determined by the
axial/tangential modulus (E..zy = Eeegp), the radial modulus (E,,gp), the Poisson ratios
veeg (= Vuorg) and vigegy (= Vezgp), and the shear modulus (Geey = Gr.gp). Note that the
Poisson ratio notation used, for example is vy, = -¢.; / ggg for axial loading in the 6-
direction.

In the following sections, starting with simple rule of mixture (ROM) method, we
subject the RVE to four uniform loading conditions: in-plane stress (o, or ogg), transverse
stress (o), transverse shearing (s, = 0,:) and in-plane shearing (og;). The loading
conditions are chosen such as to determine the five constants in terms of the tube wall
properties, the interlayer potential and the RVE geometry (interlayer spacing) listed

earlier.

I

(c)

" (b)

Figure 2.3: N-walled CNT with a representative volume element (RVE) (a) at a material point
with inset (b). The gray layers represent the graphene sheets and the spaces between the sheets
are the spaces where interlayer interactions exist. Top-view of the N-walled CNT with cylindrical

coordinate system (c).

The condition that ogs # 0 and all other o;; = 0 will determine Eggrr and ve.gp, the
condition that a,, # 0 and all other o;; = 0 will determine E,,gyand v,4gg; the condition that

oy # 0 and all other o;; = 0 will determine G,gzy and finally, the condition that g4, # 0 and
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all other a; = 0 will determine Geg.g The different loadings are applied on an N-layered

composite RVE taken from an MWCNT wall, as shown in Figures 2.3-a and 2.4-b.

Tangential (8) Ra‘dial (r)

/

,' ; Radius at
-~ midpoint of the
-~ layer
Axial (z) (a) (b)

Figure 2.4: Iso-view of the representative volume element for an MWCNT from Figure2.3.
Notice the Graphene layers and the Space layers that constitute the RVE in cylindrical coordinate
system (a). The N-layered planar RVE at a material point used in the analysis along with

cylindrical coordinate system (b).

2.3.1 Effective Elastic Orthotropic Properties

The EOR material can be treated as a micro-laminate composite made of
alternating layers of graphene sheets and empty space, as shown Figure 2.4-b. Applying
the ROM for composites, we can analytically determine the equivalent effective
properties for our layered EOR structure. Enforcement of compatibility and equilibrium
during the previously stated loading conditions enables us to determine the effective
composite properties based on the layer properties and their volume fraction. The volume
fraction of a constituent in the RVE is defined as the ratio of the volume of the

constituent, V; (i = g for graphene, i = s for space) to the total volume of the structure, V:
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V=V, +V,
Ve . A
fg=7 f‘—V_l S
ot
fg_tg+t_v
2tg*§:R'
f,(N)= T ;
t t
R, +|£|| -|R-|X
[ (5)) =-(3)).
. 2t *R'
£.(r)= s

(2.6a)

(2.6b)

(2.6¢)

(2.6d)

(2.6e)

where f; and f; are the volume fractions of graphene and space layer, respectively; #, is the

thickness of the graphene layer; £, (= ¢,) is the interlayer equilibrium spacing; R, and R;

are the outermost and innermost tube radius. In addition, R’ and N in Equations 2.6d and

2.6¢ are the mean radius of the /” tube and the number of concentric tubes, respectively.

Equations 2.6¢ to 2.6e represent three forms of f;: constant global f;, global f;(N) as a

function of N, and local fi(R)) as a function of R'. The basic difference in the three forms

of f; is that the f;(N) and fg(Ri) takes the curvature of the CNTs into account, while the

constant global form assumes layered planar structure. In addition to the curvature of the

layers, f;(R) accounts for the variation in volume fraction based on the variation in

curvature of the layers within an MWCNT. Therefore, f;(R’) obtained from Equation 2.6e

offers the most precise value out of the three forms.
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Figure 2.5: Variation of the volume fraction of graphene (f;(N)) with number of layers in an
MWCNT (2, = 0.075 nm, t,=0.34 nm). The inset view shows the top-view of MWCNT with

specific parameters used in the determination of global volume fraction.

Figures 2.5 and 2.6 are graphical representations of Equations 2.6d and 2.6e
obtained by substituting z, = 0.075 nm and #; = 0.34 nm. Similarly, substituting values for
ty and £, in Equation 2.6¢c, we find that f; is a constant value of 0.181 that does not vary
with either N or R', and represented by a straight dash-line in Figures 2.5 and 2.6.
However, substituting similar values of #, and #, in Equations 2.6d and 2.6e, we observe
that f; varies with N or R', as shown in Figures 2.5 and 2.6, respectively. Simulation
results indicated that Equation 2.6d give better results for higher number of coaxial tubes
in a MWCNT is considered — higher than 20 concentric tubes, as shown by dash line in
Figure 2.5. For MWCNTs having more than five concentric tubes, the right hand term in
the denominator can be ignored when compared to that of the left hand term in the
denominator in Equation 2.6d and 2.6e. Figure 2.6 shows the variation of the volume
fraction of the graphene layer and the adjacent space layer as a function of tubes radial

location R'. We expect to get better simulations results, if in future, material properties
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within a MWCNT model can be made to vary as a function of element’s location with
respect to the axis of the CNT with the help of fz(R').

0.36 ; ; , :
f,(R)

S |

0.34

9

0.32
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0.26
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02t ;

Local Volume Fraction for g-Layer in MWCNT, f (R')

0.18f e &

l:)'160 10 20 30 40 50 60 70

i™ Tube Radius in MWCNT, R' (nm)

Figure 2.6: Variation of the volume fraction (f,(R')) for an individual graphene layer with radial
position in an MWCNT (%, = 0.075 nm and +,=0.34 nm). The inset view shows the top-view of

MWCNT with specific parameters used in the determination of local volume fraction.

In the subsequent sections, we will revisit the volume fraction issue and its
possible role in the in the formulation or the EOR model. Next, we subject the RVE at a
material point to each of the four aforementioned uniform stress conditions in order to
determine the effective independent elastic constants for the EOR model material. Each
constituent layer is taken to be linearly elastic with properties E;, Gg, vy and E;, G, vs
defining the effective Young’s modulus, shear modulus and Poisson ratio for the
graphene and space layers, respectively. By satisfying the equilibrium and compatibility
conditions, we can derive the equations that govern the overall composite behavior for

each loading condition.
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A. RVE Subjected to Macroscopic Normal Stress (0 - direction) (6g9 # 0 with all other
gj=10)

The effective in-plane Young’s modulus (Egsgrand E..zp) and Poisson ratio (ve.gy)

of the RVE are calculated by applying a macroscopic stress, agg, as shown in Figure 2.7.

The main assumption in this formulation is that the strains in the 8- and z-directions in the

symmetry plane are the same in the graphene (g) and the space (s) layers. This implies

that the graphene-space layer bond is perfect.

0o Ggo

%

Figure 2.7: Representative volume element from a N-walled CNT is subjected to macroscale

normal stress in &-direction.

1. Equilibrium Equations

Grrg = O-rr.v = O-FI" = 0 (2'73)
oSy + ot =g (2.7b)
o-zzgfg + O-ZZS-f;‘ = 0-22 = 0 (2'70)

2. Compatibility Equations

grrgfg + grr.rfs' = grr (28a)
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(2.8b)

Eorg =€os = o

g T Eous €5 (280)
3. Stress-strain Equations
Vﬁrg Vzrg
_ ! Vg 2.9a)
reg [E 0-6’62 + E O-zzg:| (
66g zzg
1 V.
Eopg = [E— O o — 7 O } Vi = Vg (2.9b)
96 zzg
1 Vg }
£, =|—0,, — O ey (2.9¢)
¢ {Ezzg ¢ E€9g

A similar set of equations are obtained for the s-layer in the composite (switch the

subscripts ‘g’ in Equations 2.9a to 2.9¢ by ‘s’). Next, multiplying Equation 2.9¢ by v,

and adding the result to Equation 2.9b, we get

(2.10a)

E
O = 96‘5; [ggag Vo€, |-
(- Ve ) 5
Similarly, multiplying Equation 2.9b by v, and adding the result to Equation 2.9¢ gives

E

zzg

O-zzg = 2 [8zzg + Vﬁzg 89@5 ]
1=V

(2.10b)

Similar equations for stresses in the s-layer are obtained (switch the subscript ‘g’ by ‘s’ in
Equations 2.10a and 2.10b). Next, combining stress-strain equations with the equilibrium

and compatibility equations and rearranging, we get
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| Bl  Enf, EpfVou EonfVe
o _[(l—veigf (l—v;‘.)}” J{ -va,) " i-v2) } @.11a)

Similarly,
_ Ezzgvﬂzgfg Ezz.\‘V&sf\- Ezzgfg Egay_fs ‘
O'zz_|: (l—v;zg) + (I—V;zs)j|896+|:(1—1/;zg)+(]—v;”) £, (2.11b)

Note thato_, = 0, we solve forg,, in terms of &, from Equation 2.11b and the substitute

the result into Equation 2.11a and rearrange then gives the required effective Young’s

modulus in axial and tangential direction as

Eonyy =

O _ EowJy n Ewl | Eﬁé‘gfgv&g_i_EaacfsV&x
(-vi) -va)) | -vd)  0-vd)

x {Ezzgv&gfg (1 - V;zs )+ Ezzsv&sfv (1 B V;zg )} ) (21 1C)
Ezzgfg (1 - V;zs )+ Ezzs.fs (1 - Vﬁzzg )

68

Now, comparing ¢, from Equation 2.11b and Equation 2.11d below,

€2 = VorgEons (2.11d)
and comparing ¢, from Equation 2.11b and Equation 2.11d, we get
= Ezzgv&gfg(] _V;z.v)+Ezzsv9zsfs'(1_V;zg) (2 lle)
“ B fo(=va)+ B f,(-vs,)

Substituting Equation 2.11e back into Equation 2.11¢, we get
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E 0

Ogo _ Eesgfg E‘%.fg _ Egogfgv&g 11_7,"96&f-‘_1,&y
‘{(l-végf(l—v;)] [ i-ve) TT-va) | 11D

2

B. RVE Subjected to Macroscopic Normal Stress (r - direction) (o, % 0 with all other
cij=0)

The effective transverse Young’s modulus (E,.x5) and Poisson ratio (v,gzy) of the

RVE are calculated by applying a macroscopic transverse stress in the radial-direction, as

shown in Figure 2.8. Equilibrium provides the condition that stress in the r-direction is

the same in the graphene and the space layers.

¥

Gyr

Figure 2.8: Representative volume element from N-walled CNT is subjected to macro-scale

normal stress in r-direction.

1. Equilibrium Equations

o-rrg = o-rrs = o-rr (212a)

/s 2.12b
Ueegfg"'o'easfszgee:O:>Geav=‘_aeeg (2.12b)
O feto  fi=0_.=0 (2.12¢)
O .., = 04 ; isotropic plane (2.12d)
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2. Compatibility Equations

grrgfg + grrxfs‘ =€, (2133)
Eooy = Eom = Lo (2.13b)
2zg = gZZA\' = gzz (2'130)

3. Stress-Strain Equations

(o2 14 |4
g =gy g (2.14a)
rg 66g zzg
Errg EHGg Ezzg
o Vgr 1%
g, =|—=2-J2 4 = }0'9 } VO, =0 (2.14b)
rr Gz {° 2z 86g
s |: Errg {Eﬁﬁg Ezzg ¢
Similarly,
Vr6g 1 V&zg
Epg =1|— o, + —— 0 g |- 2.14¢
0% |: Errg rrg { Egeg Ezzg 66g ( )

Similar strain equations are obtained for the s-layer (switch the subscript ‘g’ with ‘s’ in
Equations 2.14b and 2.14c). Next, combining the stress-strain equations with the

equilibrium and compatibility equations and rearranging, we get

14 14
£, = fg +L G, — brg | oz _{ Vors " Vs } fgc-ggg' (2.15a)
E rrg E res E 224 E 2zg EG&S‘ E zz8

Note thatg,, = &, , and substitute Equations 2.12b and 2.14c in the above equation

(similarly for the s-layer); then rearrange to get
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[

zzg

= (o

O-E’Hg rr
E9¢9g E zzg E 665 E zz§ fr

After substituting Equation 2.15¢ into Equation 2.15a and E,, =

Je

ErrEﬂ' = {{E

rrg

rr

rr

, we get

s
€ — Vrgg _{ 1 _ V&zg }< Errg Errs
66
Errg Eé’Bg Ezzg 1 _ V&g +{ ] _ V&zs }(&
B E 96g E zzg E 665 E zz8 f s
Vg = Viapt,

E reEff grr

(2.15b)

(2.15¢)

(2.162)

(2.16b)

(2.16¢)
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v 1 Vv,
v = E rég _ _ g
rOEf g | g { I3 E }‘

rrg 66g zzg

(2.16d)

~

C. RVE Subjected to Macroscopic Shear Stress (r0 - plane) (6,9 % 0 with all other o;; =
0)
The effective shear modulus (Gggp) of the RVE is calculated by applying a
macroscopic shear stress in the radial-tangential-direction, as shown in Figure 2.9.
Equilibrium gives the shear stress in the r-6-plane to be equal in the graphene and the

space layers.

Figure 2.9: Representative volume element from N-walled CNT is subjected to macro-scale shear

stress in #-8-plane.

1. Equilibrium Equation

O,p0 =0, =0 g (2.17)

2. Compatibility Equation

Erfe tE S, =€ (2.18)
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3. Stress-Strain Equations

gy = O g (2.19a)

&, = o 2.19b
rés 2(;rgY ri ( )

Next, combining stress-strain equations with equilibrium and compatibility equations, we

get

Js /s

8,y = T, +
" 2G, * 2G,

oy (2.20a)

Rearranging Equation 2.20a

£,y = %[({—g + C{—S}ar(, , (2.20b)
rég rés
£, = ! o (2.20c)
re 2Gr9Ejf ré .
-1
fo ] }
Gy =| =2+ . (2.20d)
o liGng Gr&s‘

D. RVE Subjected to Macroscopic Shear Stress (07 - plane) (6q, # 0 with all other o, =
0)
The effective shear modulus (Gezp) of the RVE is calculated by applying a
macroscopic shear stress in tangential-axial-direction, shown in Figure 2.10. Here
equilibrium condition gives the shear strain in the 6-z-plane to be equal in the g- and the

s-layers.
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Oy,

Oy,

Figure 2.10: Representative volume element from N-walled CNT is subjected to macro-scale

shear stress in f-z-plane.

0-6‘2 = o-ékgfg + o-stfs'

zzg

O oy =2G4, 84,

0-95.5' = 2G&z§ E&x

1. Equilibrium Equation

2. Compatibility Equation

3. Stress-Strain Equations

(2.21)

(2.22)

(2.23a)

(2.23b)

Combining the stress-strain equations with the equilibrium and compatibility equations,

we get

Jﬂz = Z(G&g fg i G&sfs' )gﬁz

(2.24a)
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1

Eg = Oy
2G,,,

G&Lf/ = GBzgfg + Gstf\‘ (2.240)

(2.24b)

We can simplify the effective material constant equations (Equations 2.11¢, 2.11f,
2.16a, 2.16d, 2.20d and 2.24c) by substituting the conditions satisfied by the isotropic
(graphene) and transversely isotropic layers (space). For the isotropic layers, we can use
the conditions given in Equations 2.25a to 2.25¢, and for the transversely isotropic layers
we can use the supplementary conditions given in Equations 2.26a to 2.26d (Solecki and
Conant, 2003). Recall that the isotropic and transversely isotropic layer assumption is

based on nested shell model (Pantano et al, 2004b).

Isotropic Material
E,=E (2.25a)
v, =V (2.25b)
__£ (2.25¢)
2(1+v)
Transversely Isotropic Material
" V.
—L =—L fori=randj=6andz (2.26a)
Eil E»[_’/’
Vo =V (2.26b)
Egp =E, (2.26¢)
E
G. = 0 2.26d)
* = 2ery) (
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Final Material Constant Equations for the EOR model

— é L _ Lg— _ LG Egagf‘; (Em_vg - Egvr(%‘) -1
Ep .y = [{Eg + E} 2f, {[ EgJ (E J}{ E, 1-v,)f.Ep +0=v,)f,E, }H

(2.27a)
Eﬁagf Ef E9 fvg_, E fV
E =E — g + G6sJ s -V, ik g g + 005 57 6z 2.27b
Rl (=70 v R &yt =7y e
E . Epf\l—=v \E, v, —E V..
Vr&hﬁ =VrzEj7 = ﬂ Vg - e&f‘( &X £ £ a) (2270)
Eg E""S {(1 _Vg )fs‘Eﬁﬂs‘ +(1 - VHzx )ngg}
Ev f.(I-vi)+E,v, f.0-v])
Vogy =Viagy =| ——to G ek (2.27d)
ngg(l_v&.\‘)_i-EH&va(l—Vg)
Lo o1
Grony = Gy =[G—g+ G.\- } (2.27¢)
g rés
(2.271)

G&E// = Ggfg + G&zsf..\'

Equations 2.27a to 2.27f give the necessary equivalent material constants for the
EOR model; in the following sections, we apply these equations to model MWCNTSs with

an advanced Finite Element commercial software.

52



2.3.2 Finite Element Effective Orthotropic Solid Beam Model

The EOR model uses a micro-mechanical representation of the radially symmetric
layered structure to predict the equivalent mechanical properties for an effective elastic
orthotropic continuum solid; these effective elastic properties were derived in the
previous section (Equations 2.27a to 2.271).

Since the EOR model is based upon the NSSR model, the material properties for
the graphene layers are directly adopted from (Pantano et al., 2004b), and are listed in
Table 2.1. Recall that MWCNTs consist of layers of graphene sheets with a well-defined
inter-sheet equilibrium spacing of 0.34 nm — where van der Waals interactions occur; we
define this interlayer separation as the thickness of the space layer in our layered
structured EOR model. Since the van der Waals interaction can be thought of as effective
interlayer space radial modulus E,.(,,) that depend on interlayer separation, we derive
the interlayer space modulus from the LJ potential (Equation 2.4). Substituting Equation
2.28 into Equation 2.4 and then taking the derivative of both sides with respect to radial

normal strain (g,), we get

ne=c(l+s,), (2.28)

£nler)= (%)H@ ey H @)

where ¢ and ¢, are the current and the equilibrium inter-layer spacing, respectively. The

values of constants ¢y and ¥ are 0.34 nm and 36.5 GPa, respectively. Figure 2.11 is the
graphical representation of Equation 2.29 where ¢,, ranges between -0.5 to 0.15. In Figure

2.11, zero strain refers to the equilibrium separation distance of 0.34 nm.
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Figure 2.11: Radial modulus versus compressive strain for the s-layer derived from LJ potential.

Since the Poisson ratio is undefined for the space layer, we assume it to be same
as that of graphene layer (= 0.19). In addition, the effective shear modulus of the space
layer is taken to be 0.48 MPa, a negligible value; we assumed a negligible shear modulus
value since Pantano et al., (2004b) assumed the shear stiffness and strength to be zero for
their NSSR model. The shear modulus values reported in literature ranges from 70 MPa
to 4.5 GPa (e.g., Blakslee et al., 1970; Zhao and Spain, 1989). Pantano et al., (2004b)
made the zero shear stiffness assumption based on the experimental studies of Cummings
and Zettl (2000) and Yu et al., (2000b). The effective Young’s modulus (Egs = Ezz) for
the space layer is then calculated via Equaion 2.25¢. The final properties thus taken for
the layered structured EOR model in the local material coordinate system are listed in

Table 2.1.
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Table 2.1: Elastic properties used for Equivalent Orthotropic Solid model represented in
cylindrical coordinate system. The thickness of the graphene layer ¢, = 0.075 nm and that for

space layer ¢, =0.34 nm.

Mechanical Properties Graphene Layer Empty Space Layer
Constants (Isotropic) (Transversely Isotropic)

E, 4.84 TP E,(g)**

o 484 TPd' 1.14 MPa*

Ezz 4.84 TPa' 1.14 MPa*

Vo 0.197 0.19

Vi 0.19" 0.19

Ves 0.19" 0.19

G 2.03 TPa* 0.48 MPa'"

G, 2.03 TPa* 0.48 MPa'’

Gy 2.03 TPa* 0.48 MPa'’

" Pantano et al., (2003, 2004a, 2004b).
" Cummings and Zettl (2000).
* substitute £ and v for g-layer and G and v for s-layer in Equation 2.25¢

** see Equation 2.29

Next, we plot several curves (Figures 2.12 to 2.17) by substituting the elastic
properties for the graphene and the space layers into the final material constant equations
(Equations 2.27a to 2.27f). Figures 2.12 to 2.14 show the variation of the global elastic
properties as a function of number of concentric shell tubes, where f; assumes the global
form, f,(N). Figures 2.15 to 2.17, on the other hand, show the variation of the elastic
properties of individual set of layers as a function of radial location (R) within an
MWCNT, where f; assumes the local form fi(R'); the individual set of layers includes a
single space and its adjacent graphene layer. All the shell tubes in Figures 2.12 to 2.17

have armchair (n, n) chirality with the innermost radius of 0.34 nm and n =5, 10, ...
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Figure 2.12: Variation of E,zp Eeuys and E.zy of the representative volume element of the
equivalent orthotropic representation model with number of concentric tubes in an MWCNT,

Rinnermosr =0.34 nm.
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Figure 2.13: Variation of viegs Virp and vegy of the representative volume element of the
equivalent orthotropic representation model with number of concentric tubes in an MWCNT,

Rinnermost = 034 nm.
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Figure 2.14: Variation of Gugp Grgp and Gauy of the representative volume element of the
equivalent orthotropic representation model with number of concentric tubes in an MWCNT,

Rinnermoxi =0.34 nm.

Figures 2.12 to 2.14 show that the global elastic properties for the RVE of the
EOR model assumes constant values for more than 10 walls; conversely the EOR-based
MWCNT models may not be able to capture the nonlinear behavior for less than 10
walls. However, for CNTs having more than 10 walls, the EOR model based on the
global form of volume fraction may capture the nonlinear mechanics of MWCNT
deformation. The global elastic properties of the MWCNT can be treated as constant for
higher number of concentric tubes where the influence of the inner layers diminishes. For
CNTs with less than 10 walls we can consider the local form of f,, which allows the
elastic properties of the individual layer to vary with its location inside the MWCNT, as
shown in Figures 2.15 to 2.17.
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Figure 2.15: Variation of E,.zy, Egasp, and E..zr of the representative volume element consisting of
single layer of graphene and space layer of the EOR model with radial location in an MWCNT, R
=0.34 nm.
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Figure 2.16: Variation of v,gzp Vi.ggp and veeg of the representative volume element consisting of

single layer of graphene and space layer of the EOR model with radial location in an MWCNT, R,
=0.34 nm.
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Figure 2.17: Variation of G,gz5 Gr.ip, and Gy of the representative volume element consisting
of single layer of graphene and space layer of the EOR model with radial location in an MWCNT,
R;=0.34 nm.

Figures 2.13 and 2.16 show that v,y (= v,.) is negligible for any number of
concentric tubes when compared to vg,, which is constant (= 0.19) and independent of the
number of tubes or the location. The reason vg, is independent of the number of
concentric tubes is because the EOR model has locally transverse symmetry. Contrary to
vie (= V,z), strain in the axial or the tangential direction results in strain in the radial
direction of MWCNTSs. Yakobson et al., (1996) concluded from their MD simulation
results for SWCNT subjected to tension that the Poisson ratio is equal to 0.19.

Next, we write the constitutive equations in the matrix form for a material point
with locally transverse isotropy with the axis of symmetry in the r-direction and in terms
of engineering normal and shear strains. Notice that the coordinate system used

throughout our analysis is cylindrical.
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The stiffness matrix in Equation 2.30 is symmetric and requires only five
independent elastic constants (Cj;, Ca, Cas, Cp2 and C3) as is required for transversely
isotropic materials.

Since from Figures 2.12 to 2.14, the effective engineering constant values
stabilize for more than 10 walls, we extrapolated the asymptotic effective engineering
constant values from Equations 2.27a to 2.27f and substituted them into Equations in 2.30
to find the elastic constants (C;;, Ca2, Cy4, C12 and Cy3). These elastic constants are then
compared with those for graphite (e.g., Blakslee et al., 1970, Zhao and Spain, 1989) and
used by (Liu et al., 2001, 2003, Wang and Wang, 2004, Wang et al., 2004, and Wang et
al., 2005) in their orthotropic solid beam model. Elastic constants for both the graphite
and 100-walled CNT are listed and compared in Table 2.2.
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Table 2.2: Elastic constants of graphite and 100-walled CNT using current EOR model,

represented in cylindrical coordinate system at equilibrium.

Elastic Constant Basal Plane of Graphite* EOR Model
Cy; 36.50+0.1 GPa 46.88 GPa
Cy=Cs3 1.06+£0.02 TPa 1.12 TPa
Cr=0Cy3 15+5 GPa 2.45 GPa
Cys 18020 GPa 212.80 GPa
Cu 4.5+0.05 GPa 0.62 MPa
Ces 440 GPa 453.40 GPa

* (Blakslee et al., 1970; Zhao and Spain, 1998).

Values of C; and Cjs; are 1.12 TPa which agrees well with the planar Young’s
modulus of graphene sheet (1.06+0.02 TPa). Both simulations and research indicate
similar values for C,; and Cj3; as discussed earlier in Chapter 1. Similarly, elastic
constants Cy;, Cpz, Cy3, C23, and Ces for the EOR model are also close to the graphite
elastic constants. However, Cy for the layered structure vary from bulk graphite
primarily because of the shear modulus, Gg,, value assumed in Table 2.1. Recall that
Pantano et al., (2004b) assumed zero shear modulus in their NSSR model so that the
adoption of actual Cyy value in our EOR model will result in difference between the two
models. Adopting the higher value of shear modulus, Gg. (= 4.5 GPa), will result in
graphite property-based EOR model to deviate from the NSSR model; to support the
argument, we have compared the simulation results obtained from the two approaches
towards the end of this chapter.

Next, we will see how the LJ potential’s (Equation 2.29) dependence on radial
normal strain is manifested in the stiffness matrix components for a 100-walled CNT; this
is done by varying the radial normal strain, as shown in Figures 2.18 to 2.20. The tubes in
Figures 2.18 to 2.20 have an innermost radius and an outermost radius of 0.34 nm and 34
nm, respectively and have armchair chirality (n, n), where n =5, 10, ... The variations in
stiffness matrix components show that assuming a constant value for the LJ potential like
Liu et al., (2001, 2003), Wang and Wang (2004), Wang et al., (2004), and Wang et al.,
(2005) yields unsatisfactory results. This is especially the case in the post-buckling
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regime where radial strain could increase significantly or when the MWCNT is subjected

to lateral compression, as will be discussed in the subsequent sections.
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Figure 2.18: Variation of C;;, Ca; and Cj;; material constants with radial strain applied to the

representative volume element of the EOR model.
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Figure 2.19: Variation of C;5 C;; and Cp; material constants with radial strain applied to the

representative volume element of the EOR model.
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representative volume element of the EOR model.

Figures 2.18 and 2.19 show that material constants in the transverse direction (C};
and Cj; = Cy3) change drastically as compared to the in-plane material constants (C;, =
Cs3 and C3;). Figure 2.20, on the other hand, shows that elastic constants (Cy and Cge)
affecting the shear properties of the RVE remain constant with the incremental strain.
Hence, we can conclude that taking into account the LJ potential’s dependence on strain
is critical in the modeling of MWCNT for simulations where strain in the radial direction
might be expected, as is the case of lateral compression.

Based on the effective equivalent engineering constants in Table 2.1, the EOR
model will be shown to provide good predictions of the elastic behavior in a variety of
loading situations prior to any instabilities such as buckling. For predicting the buckling
and post-buckling regime, the element size in the FE simulations will be shown to play a
major role. Finally, a commercially available advanced finite element software package
(ABAQUS) was used to model several MWCNTSs. The solid elements were assigned a
local cylindrical material coordinate system, as shown in Figure 2.21; the user defined
material properties were solved in terms of the stiffness matrix components in Equations

2.30.
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(a) (b)

Figure 2.21: MWCNT model using EOR model divided into small 8-node solid elements along
with global cylindrical coordinate system (a). Local cylindrical material coordinate system

assigned to solid element in an MWCNT (b).

2.4 Results and Discussion

In this section, we will apply the new FE-based modeling approach to simulate
the nonlinear mechanical behavior of MWCNTSs of various aspect ratios subjected to
bending, axial compression, and lateral compression. We have used the finite element
software package, ABAQUS, for modeling and simulating MWCNTs. The results
obtained from simulation of the above three loading conditions are then verified by
comparing them to those of the nested structural shell representation (NSSR) (Pantano et
al., 2003, 2004a). The lateral compression simulation results are also compared with the
MD simulations and experimental results (e.g., Palaci et al., 2005, Guo et al., 2004, Yu et
al., 2000a, Shen et al., 2000, Hertel et al., 1998, and Lordi and Yao, 1998).

This section is divided into three main subsections and begins with the study of
mesh sensitivity for the EOR model for simulating MWCNTs subjected to bending, axial
compression and lateral compression. Thereafter in the second subsection, FE simulation
results using the EOR and the NSSR models are compared for MWCNTs of different
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aspect ratios subjected to the above loading conditions. Finally in the last subsection, the
EOR model elastic properties will be replaced with the bulk graphite elastic properties to

monitor how the graphite assumption affects the simulation results.

2.4.1 Mesh (element size) Sensitivity Study

According to the shell theory, in a thin cylindrical shell tube, the onset of buckling
is determined by the shell diameter, thickness and Young’s modulus. Using the EOR
model without the outer shell discretely modeled, the onset of buckling is difficult to
predict when compared to the nested shell model in which buckling propagates from the
outermost shell to the innermost. In their FE-based nested shell model, Pantano et al.,
(2004b) noticed that the MWCNT model depends on the mesh size and agrees well if an
element size of 0.24 nm is used — the dimension equivalent to the hexagonal lattice.
Similarly, for the EOR model, smaller elements might erroneously capture a rippling
wavelength that cannot be accommodated by the carbon lattice structure; too large an
element dimension might miss the buckling wavelength. This introduces a mesh
sensitivity issue in the EOR model, which we investigate by subjecting FE-based EOR

model of a 14-walled CNT to bending, axial compression, and lateral compression.

2.4.1.1 Bending

Here we repeat the bending simulations by Pantano et al., (2003) by constructing
a 14-walled CNT of length (L) 15 #m of the armchair (n, n) type MWCNT and with n =
5, 10, ..., 70, which gives an outer tube radius R, of 4.76 nm. The CNT is then rigidly
fixed at one end (symmetry plane) and rotated at the other end where the radial and
circumferential displacements are constrained. The free end is rotated by 0.2 radians
imposing a bending angle & of 0.4 radians for an equivalent beam length L of 30 nm. The
6 and the L yields a maximum global curvature x (= 6/L) of 0.0133 nm™. The bending
moment versus the global curvature diagram from the NSSR model, along with the EOR
model of different element sizes, are shown in Figure 2.24. Figures 2.22 and 2.23 show
the initial and the final deformed 14-walled CNT model from the NSSR and EOR
models, respectively. Figure 2.24 shows that regardless of the element size, the EOR
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model captures the pre-buckling behavior of the 14-walled NSSR CNT model. However,
the buckling initiation point and the post-buckling behavior are strongly dependent on
element size and are only properly captured when the element size is specifically set to a
proper initial wavelength (5%0.24 nm = 1.2 nm) of ~2.15 nm, predicted by the NSSR
model of a similar MWCNT (Pantano et al., 2003). The buckling point and post-buckling
behavior is different for both small- (0.96 nm) and large- (1.44 nm) mesh linear 8-node
solid elements. The EOR model fails to capture the steady state buckling wavelength of
~4.80 nm shown by the NSSR model; the wavelength for the EOR model decreases as

the amplitude increases.

(b)

A L/h‘l 2.15nm

Figure 2.22: FE bending simulation of a 14-walled CNT nested shell model (a) (Pantano et al.,
2003) and EOR model (b). L = 30 nm and 15 nm for nested shell and EOR models, respectively.

Initial wavelength for the nested shell and EOR models are ~2.15 nm.
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Figure 2.23: FE bending simulation of EOR-based 14-walled CNT with different element size of
L=15 nm R, = 4.76 nm, showing the initial, buckling point, and final configuration of the
MWCNT. Element size = 0.96 nm (a, b, and ¢), = 1.2 nm (d, e, and f), and = 1.44 nm (g, h, and i).
The initial buckling wavelength is ~1.92 nm (b), ~2.4 nm (e), and ~2.88 nm (h).
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Figure 2.24: FE bending simulation of 14-walled CNT of L = 15 nm and outer radius of 8, =4.76
nm. The tube is armchair type (»n, n) with n = 70 (Pantano et al., 2003).

From results presented in Figure 2.24, we reach a conclusion that the pre-buckling
behavior is insensitive to mesh size; mesh sizes other than 1.2 nm for a 14-walled CNT
results in a different initial buckling 1. However, for a mesh size of 1.2 nm, the initial
buckling wavelength is very close to the approximate value of 2.15 nm, and the
corresponding moment-curvature plot in Figure 2.24 is in agreement with the results

presented by Pantano et al., (2003).

2.4.1.2 Axial Compression

Next, the effect of mesh size on the axial compression behavior a 14-walled CNT
is studied using the EOR model. The MWCNT FE-based model here is similar to the one
constructed in the bending simulation earlier. To our advantage, Pantano et al., (2003)

presented NSSR FE-based simulation results for a 14-walled CNT under axial
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compression, as shown in Figures 2.25 and 2.27. Here one end of the MWCNT is fully

constrained, while only radial and circumferential displacements are constrained on the

other. The free end is then gradually displaced (¢) by a distance of 1 nm in the axial

direction towards the fixed end to give a macroscopic axial compressive strain (&; = d/L)

of 0.666 nm. The axial force versus the compressive strain diagram computed from the

NSSR model and EOR model of different element sizes, are shown in Figure 2.27.

Similar to bending simulations earlier, EOR-based FE models are also simulated for

mesh sizes of 0.96 nm, 1.2 nm, and 1.44 nm; Figure 2.26 shows snapshots taken from the

FE simulations before, during, and after buckling occurs in the FE-based MWCNT.

Not Provided

(a)

(b)

Figure 2.25: Axial compression of a 14-walled CNT; the nested shell model (Pantano et al.,

2003). The mesh size for the nested shell model is 0.24 nm x 0.24 nm. Maximum compressive

strain of 0.04 was applied by displacing one end by 0.6 nm.
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Figure 2.26: FE compression simulation of EOR-based 14-walled CNT with different element
size of L=15 nm R, = 4.76 nm, showing the initial, buckling point, and final configuration of the
MWCNT. Element size = 0.96 nm (a, b, and ¢), = 1.2 nm (d, e, and f), and = 1.44 nm (g, h, and i).
The initial buckling wavelength is ~1.92 nm (b), ~2.4 nm (e), and ~2.88 nm (h).
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Figure 2.27: Axial compression of 14-walled CNT of L = 15 nm and outer radius of R, = 4.76 nm.
The tube is armchair type (n, »n) with » = 70 (Pantano et al., 2003).

Similar to the bending simulation results in Figure 2.24, the axial force versus
strain curves for different mesh sizes show that the EOR model captures the pre-buckling
behavior of the 14-walled CNT modeled using the NSSR model, as shown in Figure 2.27.
Also, similar to the bending simulations, the proper buckling initiation point is only
captured when element size is 1.2 nm — buckling being sooner for smaller elements (0.96
nm) and delayed for larger (1.44 nm) element sizes. Therefore, both the buckling point
and the post-buckling behavior are sensitive to mesh size in axial compression FE
simulations.

Results from Figure 2.24 and 2.27 show that the bending and compressive
behavior of an MWCNT can only be captured if the proper element size is selected, based
on the initial buckling wavelength. Pantano et al., (2003) reported that buckling

progression under axial compression and bending is similar for MWCNTs of the same
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size. However, Figure 2.26 shows that the EOR models again fails to capture the steady
state buckling of the MWCNT for all element sizes. The EOR model only captures the
initial buckling wavelength, thereafter, only the amplitude of the buckling wavelength
increases with further compression.

Unlike the NSSR model, where Pantano et al., (2003, 2004a) reported that the
buckling wavelength doubles as the MWCNT is further bent or compressed without any
significant change in amplitude; on the contrary, the EOR model simulation shows a
decrease in buckling wavelength with increases in amplitude. Therefore, the EOR based
FE models cannot be used for simulating situations where precise surface deformation

studies are important.

2.4.1.3 Lateral Compression

Next, the effect of mesh size on the lateral compression behavior is studied for a
10-walled CNT (armchair type (1, n); n = 25, 30,..., 70). The EOR based FE model of
CNT has L of 1.2 nm, inner radius R; of 1.7 nm, and outer radius R, of 4.76 nm. A hollow
tube is chosen because the van der Waals forces can be extremely high when the
interlayer spacing decreases upon lateral compression of the MWCNT; this often leads to
convergence problems in achieving a solution for FE models in 4BAQUS. To our
knowledge there is no data available in the literature for lateral compression of a NSSR
based FE model for large MWCNTs; Pantano et al., (2003, 2004b) did not present any

results for three-dimenstional lateral compression of large MWCNTSs. Therefore, we

[oN

simulated a lateral compression of a MWCNT using the NSSR model. We constructed a
10-walled CNT of L = 1.2 nm, R; of 1.7 nm, and R, of 4.76 nm with linear 4-node shell
elements (S4 in ABAQUS), as shown in Figure 2.28. Here, taking advantage of the
symmetry conditions, only one-half of the CNT is constructed. The element size for the
NSSR model is taken to be 0.24 nm and the user defined interlayer interactions elements
were modeled according to Pantano et al., (2004b). Figures 2.28-a, -b, and -c show
snapshots at 0 nm, 1.0 nm, and 2.0 nm lateral displacements, respectively.

Two 2-dimensional rigid planar plates are placed on the outermost shell

diagonally opposite to each other, as shown in Figure 2.28. The lower rigid plate is fully

constrained while the upper plate is gradually displaced towards the other plate by a
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distance of 2.0 nm. The contacts between the plates and the outermost surface of the
MWCNT are modeled to be frictionless. Except for the direction perpendicular to the
two-dimensional rigid plane and rotation about the axial direction, all degrees of freedom
are constrained for the nodes that constitute the symmetry plane for the shell elements.

Similarly, FE models of EOR based 10-walled CNT are constructed for different
mesh sizes and from linear 8-node solid elements (C3D8 in ABAQUS) in order to
compare the EOR and NSSR models for lateral compression. The CNTs have length, L of
1.2 nm, inner radius R; of 1.7 nm, and outer radius R, of 4.76 nm, as shown in Figures
2.29. The interlayer van der Waals force is modeled within the inner surface with the
same user defined elements that were used to model the interlayer force in the nested
shell model. The lateral force versus lateral displacement results thus obtained from the
NSSR and EOR based FE models are shown in Figure 2.30. Mesh sizes of 0.14 nm, 0.24
nm, and 0.34 nm were used in the EOR based FE simulations.

The deformations under the NSSR and EOR models in Figure 2.28 and 2.29 do
not indicate any kind of buckling pattern. Figure 2.30 indicate that lateral compressions
of MWCNTs are also sensitive to mesh size, with the best element size for lateral

compression being 0.24 nm — again, equivalent to the height of the hexagonal lattice cell.

(2) (b)

Figure 2.28: Lateral compression of NSSR based 10-walled CNT of L = 1.2 nm, inner radius R, =
1.7 nm, and outer radius of R, = 4.76 nm (mesh size = 0.24 nm). The tubes are armchair type (n,
n) with n = 25,..,70. Snapshots of the FE simulations at lateral displacements of 0 nm (a), 1.0 nm

(b), 2.0 nm (c).
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Figure 2.29: FE simulation snapshots where a 10-walled CNT of L = 1.2 nm, inner radius R, = 1.7
nm, and outer radius of R, = 4.76 nm is subjected to lateral compression. The tubes are armchair
type (n, n) with n = 25,..,70. Element size = 0.14 nm (a, b, and ¢), = 0.24 nm (d, e, and f), and =
0.34 nm (g, h, and i). The FE simulation snapshots are taken at lateral displacement of 0.0 nm (a,
d, and g), 1.0 nm (b, e, and h), and 2.0 nm (c, f, and 1).
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Figure 2.30: Lateral compression of 10-walled CNT of L = 1.2 nm R, = 1.7 nm, and R, = 4.76 nm.

From the above simulation results, we see that the period and uniformity of the
rippling pattern is affected by the mesh size; therefore, a proper mesh size is very
important in EOR-based FE modeling of MWCNTs. For example, a mesh size of 1.2 nm
(5*0.24 nm) is necessary for the 14-walled CNT for simulating bending and axial
compression, while that number is 0.24 nm for lateral compressions.

Next, since many applications in electric field require the knowledge of how the
outermost layer deforms (Pantano et al., 2004c), we next create a 14-walled CNT model
with a single discrete shell tube (0.24 nm x 0.24 nm) around the EOR model (element size
0.24 nm x 0.24 nm and 1.2 nm x 1.2 nm), as shown in Figures 2.31, 2.32, 2.34, 2.35, and
2.37. As before, the FE model is then subjected to bending, axial compression, and lateral
compression, the results of which are shown in Figures 2.33, 2.36, and 2.38. In all the

simulations, the interlayer van der Waals force is incorporated in between the shell tube
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and the solid element surfaces incorporating the user defined interaction elements

designed by Pantano et al., (2004b).

(a (b) (c)
Figure 2.31: Bending of combined EOR model with a discrete outer shell model. Mesh size of
0.24 nm for the EOR model and 0.24 nm for the shell model was chosen for 14 -walled CNT. Atk
=0nm’ (a) k=0.00401 nm”’ (b), and k= 0.0134 nm™’ (c).

/
Y
{

s I L1 \
(a) (b) (c)

Figure 2.32: Bending of combined EOR model with a discrete outer shell model. Mesh size of 1.2

nm for the EOR model and 0.24 nm for the shell model was chosen for 14 -walled CNT. At k=0

nm' (a) k= 0.00456 nm™ (b), and k= 0.0134 nm™ (c).
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Figure 2.33: FE simulation of 14-walled CNT (EOR model) subjected to bending. The three

curves are for the EOR model, nested shell, and a combination of the EOR and nested shell

model.
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Figure 2.34: Axial compression of combined EOR model with a discrete outer shell model. Mesh

size of 0.24 nm for the EOR model and 0.24 nm for the shell model was chosen for 14-walled
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Figure 2.35: Axial compression of combined EOR model with a discrete outer shell model. Mesh

size of 1.2 nm for the EOR model and 0.24 nm for the shell model was chosen for 14-walled

CNT. At £ =0 (a) £ = 0.0213 (b), and & = 0.0535 (c).
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Figure 2.36: FE simulation of 14-walled CNT (EOR model) subjected to axial compression. The
three curves are for the EOR model, nested shell, and a combination of the EOR and nested shell

model.

(@)

Figure 2.37: Lateral compression of combined EOR and NSSR model. Mesh size of 0.24 nm for
both the EOR and NSSR model for 14-walled CNT at lateral compression (J) of 0.0 nm (a), 1.0
nm (b), and 2.0 nm (c).
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LATERAL COMPRESSION
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Figure 2.38: FE simulation of 14-walled CNT (EOR model) subjected to lateral compression. The
three curves are for the EOR model, nested shell, and a combination of the EOR and nested shell

model.

Clearly, Figures 2.33 to 2.37 show that EOR-NSSR combined element model
results agree well with the nested shell model results if a proper element size is chosen.
The EOR-NSSR based FE model results agree well for the pre-buckling and the buckling
initiation regimes, but not the post-buckling in Figure 2.33. Figures 2.31-b, 2.32-b, 2.34-
b, and 2.35-b visually show that combined EOR-NSSR models are able to capture the
initial buckling wavelength and the rippling pattern irrespective of the element size
chosen for the EOR model; the initial buckling wavelength predicted by the NSSR model
is ~2.15 nm. However, Figures 2.33 and 2.36 show that selecting an element size equal to
0.24 nm x 0.24 nm results in premature buckling. Figure 2.36 indicate that the combined
model under axial compression gives reasonable results for pre- and post-buckling and

even the buckling point. Although the initial buckling wavelength of the combined model
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is similar to the nested shell and the EOR models, the steady state buckling wavelength
did not increase with deformation, as was reported by Pantano et al., (2003); the
wavelength was observed to decrease and amplitude to increase with further deformation.
The difference in the mesh sizes of the solid and shell elements in the combined FE
model is the major source of difference in the post-buckling behavior. The difference in
mesh size magnifies the errors for this highly nonlinear deformation mechanics and
geometry of the CNT. For lateral compression simulations for the combined EOR-NSSR
model show a slight increase in the lateral compression force with lateral displacement,
as shown in Figure 2.38. Nonetheless, the difference is negligible and therefore can be
applied to model MWCNTs in the FE analysis.

Next, we apply our observations from the above simulations to model MWCNT's
of different aspect ratios. We subject these CNTs to bending, axial compression and

lateral compression.

2.4.2 Comparison of EOR Model to NSSR Model and Experiments

We found from the FE simulation results presented in the previous section that in
order to properly capture the deformation behavior of MWCNTs, a proper element size
needs to be assigned to the EOR-based FE models. Before we simulate the EOR-based
MWCNT models of different aspect ratios under different loading conditions, there is a
need for an adequate method that estimates the proper element sizes. Recall that for a 14-
walled CNT, the best simulation results were obtained when an element size of 1.2 nm
was used. This element size is approximately half of the initial buckling wavelength
predicted by the NSSR-based MWCNT model and thin shell theory. Therefore, in the
subsequent subsections, we will estimate the element size based on thin shell theory

(Equation 2.5) and round the result to an integer multiple of 0.24 nm.

2.4.2.1 Bending
EOR based FE bending simulations are performed on MWCNTs of L = 15 nm

and for 4-, 8-, 14-, and 19-walled CNTs. All of the tubes in the MWCNT are of armchair
(n, n) chirality, with n = 5, 10,..., 95, and with R, = 1.36 nm, 2.72 nm, 4.76 nm, and 6.46
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nm, respectively, for 4-, 8-, 14-, and 19-walled CNTs. The bending simulation procedures
for these MWCNTs are the same as that for thel4-walled CNT, modeled earlier. The
bending moment versus global curvature results obtained by simulating MWCNTs are
shown in Figure 2.39. In Figure 2.40 we compare the total simulation time versus the

number of walls for the EOR and the NSSR FE models.
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Figure 2.39: Comparison of the EOR model with the nested shell model. Comparison of bending
moment of 4, 8, 14 and 19-walled CNT of L = 15 nm for the EOR and the nested shell models
(Pantano et al., 2003).
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Figure 2.40: Simulation time comparison of Nested shell and EOR model to run a job in
ABAQUS for Bending of different MWCNTs.

The best fit with the nested shell model was obtained by using element sizes of
0.72 nm (3*%0.24 nm), 0.96 nm (4*0.24 nm), 1.2 nm (5*%0.24 nm), and 1.44 nm (6*0.24
nm) for 4-, 8-, 14-, and 19-walled CNTs, respectively. Recall that we estimated the
element size for the EOR-based FE simulations as half the initial buckling wavelength
predicted by thin shell theory (Equation 2.5a) and as an integer multiple of 0.24 nm, as

shown below:

element size=1.7,|R t, nm, (2.31)

where, R, is outermost radius of the MWCNT and ¢, = 0.075 nm is the shell tube
thickness. If the solution from Equation 2.31 is not a multiple of 0.24, then the element

size is rounded to a higher multiple of 0.24 as follows:

(2.32)

element size j
0.24

element size = round(
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Figure 2.39 shows how the EOR model is able to satisfactorily capture the
nonlinear mechanics of the pre- and the post-buckling including the buckling point of the
MWCNTs. For the 4- and 8-walled CNT, the difference in the slopes of bending moment
versus global curvature between the two models can be attributed to the use of global
volume fraction fz(N) by the EOR model. We found earlier in Section 2.3.1 that for
MWCNT with less than 10 walls, the properties for the concentric layers vary
significantly with radial location; the differences in mechanical properties become
negligible as the number of walls increases in an MWCNT. Figure 2.40, on the other
hand, highlights the computational advantage of FE simulation with the EOR model over

the nested shell model.

2.4.2.2 Axial Compression
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Figure 2.41: Comparison of the results from the EOR model and the nested shell model.
Comparison of axial compression of 4, 9 and 14-walled CNT of L = 15 nm fixed at one end and

compressed at the other with the nested shell model results (Pantano et al., 2003).
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We next repeat the EOR-based FE simulations for MWCNTs of 4-, 9-, and 14
walls in a manner similar to the axial compression simulations presented earlier in
Section 2.4.1.2. The mesh sizes are same as those found earlier for MWCNTs in the
previous section. Applying Equations 2.31 and 2.32, the element size for the 9-walled
CNT was found to be the same as that for the 8-walled CNT. The results of axial
compressive force versus strain are shown in Figure 2.41 and simulation time for the
EOR and the nested shell models in Figure 2.42, respectively.

Figure 2.41 shows that the EOR model of MWCNTSs capture remarkably the
nonlinear mechanics of pre- and post-buckling including the buckling point. Similar to
the bending simulations, a slight deviation from the NSSR model is visible in the pre-
buckling regime for the 4-wall CNT. The deviation again becomes negligible as the
number of walls increases in the MWCNT. Again the axial compression simulations with
the EOR model are also computationally efficient, much like in the bending simulations

(Figure 2.42).
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Figure 2.42: Simulation time comparison of Nested shell and EOR model to run a job in

ABAQUS for compression of different MWCNTs.
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2.4.2.3 Lateral Compression

Lateral compression of a MWCNT is now examined. Although little simulation
data exist for large MWCNTs subjected to lateral compression, the availability of some
experimental data by Shen et al., (2000) allows us to check the applicability of the EOR
model. In their experiment, MWCNTSs were indented from above with a tetrahedron-
shaped diamond tip with an apex radius of about 25 nm. They suggested that the major
mechanics of deformation comes from changes in the cross-section from a circular one to
an elliptic one, with the innermost shell deforming the most. The average R, for their
MWCNTs is approximatelyl0 nm; however, the number of shell tubes, the innermost
radius, and the length are unknown. Using the MD simulations of 2- and 4-walled CNTs
by Guo et al., (2004) as a guideline, we estimated the innermost radius to be
approximately 1.7 nm.

We next simulate the lateral compression of a 10-walled CNT with a rigid sphere
of radius 25 nm, as shown in Figure 2.43. The MWCNT FE model constructed from both
linear 4-node shell (0.24 nm x 0.24 nm) and linear 8-node solid (0.72 nm x 0.72 nm)
elements has dimensions as follows: R; = 1.7 nm, R, = 5.1 nm and L = 50 nm. A large
length of 50 nm was chosen to minimize the end effects. The tangential and the axial
displacements were constrained on both ends while the rigid tip is gradually compress the
MWCNT laterally. The van der Waals interlayer interactions were applied at two
locations — between the shell and the solid elements, and within the inner surface of the

shell tube.

Figure 2.43: Lateral compression of the combined EOR model with a discrete inner shell model.
Mesh size of 0.72 nm for the EOR model and 0.24 nm for the shell model was chosen for 14-
walled CNT. R, = 1.7 nm, R, = 5.1 nm and L = 50 nm. The radius of the rigid spherical tip (not

shown) is 25 nm.
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Figure 2.44: Lateral compression of the FE-based model of MWCNT using combined solid and
shell elements (Shen et al., 2000).

Figure 2.43 shows how the combined EOR-NSSR model of a 10-walled CNT is
able to capture the lateral compression of an MWCNT. The initial slope of the combined
FE MWCNT model in Figure 2.44 matches with that of the experimental curve.
However, as suggested by the MD simulation results (Guo et al., 2004), the steep slope
beyond a lateral displacement of ~2.5 nm is due to the interlayer separation decreasing

below the equilibrium spacing.

2.4.3 Comparison of EOR properties with Bulk Graphite Properties

Liu et al., (2001, 2003), Wang and Wang (2004), Wang et al., (2004), and Wang
et al., (2005) performed FE simulations in which a two- and three-dimensional MWCNT
beam model was subjected to bending; the solid beam FE model had bulk graphite
properties listed in Table 2.2. The bending moment-curvature results were presented in a
diagram as normalized quantities. In order to study the difference, if any, between the
two approaches, we simulated the bending, axial and lateral compression of a 14-walled

CNT modeled using the bulk graphite elastic constants listed in Table 2.2. The
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simulations conditions are the same as those in Subsections 2.4.1.1 to 2.4.1.3 with the
exception of element sizes — 0.96 nm and 1.2 nm. The results thus obtained from the
simulations are compared with the results from the NSSR and the EOR models in Figures
2.45 to 2.47. For simulations using graphite elastic constants, an element size of 0.96 nm,
different than that of the EOR model was required in order to match the results from the
NSSR model.

Figure 2.45 shows that only the pre-buckling deformation behavior is matched by
the 1.2 nm case, whereas both the pre- and post buckling are matched reasonably well by
the 0.96 nm element size case. However, when FE models of MWCNTSs are constructed
from linear 8-node solid elements of size 0.96 nm, the initial buckling wavelength is
constrained to less than 1.92 nm (2*0.96 nm) as opposed to the 2.15 nm wavelength as

predicted by the NSSR model.
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Figure 2.45: Bending of 14-walled CNT. The three curves are from the nested shell, the EOR, and
graphite properties in the EOR models of the FE-based MWCNT model.

88



2000 T T T T T T T

1800+

1600+

-

Py

o

o
T

[}

t

1200+ g 1
1000+ ]

800+ S/ N

Axial Compression, F (nN)
Y

600 - 4 .

400+ e 4
~—— NSSR:0.24 nm x0.24 nm
200l —— EOR:1_.2 nmx1.2nm

-------- Graphite: 1.2 nm x 1.2 nm
---- Graphite: 0.96 nm x 0.96 nm

| i ! L I 1 |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Axial Strain, €,

Figure 2.46: Axial compression of 14-walled CNT. The three curves are from the nested shell, the

EOR, and graphite properties in the EOR of the FE-based MWCNT model.

For the compressive simulations, Figure 2.46 also shows that only the pre-
buckling deformation behavior is matched by the 1.2 nm case, whereas both the pre- and
post buckling are matched reasonably well by the 0.96 nm element size case. However,
by the same argument provided earlier, a smaller element size of 0.96 nm limits the initial

buckling wavelength to less than 1.92 nm.
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Figure 2.47: Lateral compression of 10-walled CNT. The three curves are for nested shell, EOR,
and graphite of the FE-based MWCNT model.

Figure 2.47 shows the lateral compression simulation results of a 10-walled CNT
with R; = 1.7 nm, R, = 4.76 nm, and L = 1.2 nm; with the graphite elastic constants listed
model, element size does not affect appreciably MWCNT models that are based on the
graphite properties. Figure 2.53 also shows that the lateral compression behavior
predicted by the MWCNT model with graphite properties does not match the behavior
predicted by the NSSR model. In fact, for lateral compression simulations, the results
obtained using graphite properties fail to match the results from the nested shell or the
EOR models by an order of magnitude.

Based on Figures 2.45 to 2.47, graphite properties-based MWCNT FE models
seem to capture the complete deformation behavior for bending and axial compression

simulations; the model, however, fails to capture the deformation behavior in lateral
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compression simulations. In addition, the model fails to capture the initial buckling

wavelength when the MWCNT is subjected to bending and axial compression.

Before we conclude this chapter, in order to verify the Poisson ratio trend in
MWCNTs, we conducted FE-based compression and tension simulations for 4- and 14-
walled CNTs. The FE-based MWCNTs were costructed from the EOR and NSSR
models. The NSSR-based 4-walled model had an innermost tube radius R; of 0.34 nm, an
outermost tube radius R, of 1.36 nm and a length L of 15 nm, while the 14-walled CNT
model had R; of 0.34 nm, R, of 4.76 nm and L of 15 nm. The tubes modeled are of
armchair (n, n) chirality, i.e., n=35, 10, ...70. The EOR-based 4-walled model had similar
dimensions as their NSSR-based CNT counterparts; the innermost radius is zero for the
EOR-based MWCNT models. During the simulation, one end was fully constrained,
while the other end was gradually displaced axially to simulate compression and tension,
accordingly. The results obtained from the compression and tension of 4- and 14-walled
CNTs are shown in Figures 2.48 to 2.53.

FE simulation results in Figures 2.48 and 2.49 show that the EOR model captures
remarkably the deformation mechanics of the MWCNTs under axial compression and
tension. In addition to the compressive and tensile forces, Poisson ratio v, (= -(0R/R)/(
OL/L)) versus strain was calculated as shown in Figures 2.50 and 2.51. According to both
figures, the Poisson ratio obtained from the EOR model is approximately 0.17 while that
from the NSSR model is 0.19. The compression simulations of 4-walled FE-based CNTs
(Figure 2.50) indicate that Poisson ratio is more or less invariant of axial strain for both
the NSSR and EOR models. However, for the EOR-based 14-walled CNT, the Poisson
ratio varies nonlinear behavior with respect to axial strain as can be seen in Figures 2.50
and 2.51; this effect does not have any appreciable consequences, as suggested by the
overlapping force versus strain curves from the two models in Figures 2.48 and 2.49. We
expected the Poisson ratio to drop with the increase in number of concentric tubes and

van der Waals forces; however, the results in Figure

91



1400

—— NSSR:4-wall
........ NSSRAd
---- EOR:4-wall
1200} x EOR14-wall [l
__ 1000+ |
z
£
w
g 800 |
[s]
[N
(]
2
8 eoof |
Q.
£
S
400 |
N |
Ol L L | 1 | | | .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 002 .

Figure 2.48: Compressive force versus axial strain for 4- and 14-walled nested shell and EOR

model.
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We expected the Poisson ratio to drop with the increase in number of concentric
tubes; however, the results for NSSR-based MWCNTs in Figures 2.50 and 2.51 show that
the Poisson ratio is same for both 4- and 14-walled CNTs. This suggests that the
interlayer spacing change linearly with axial strain, which is verified from the curves in
Figures 2.51 and 2.52 for the 14-walled CNT. The interlayer spacing between the
adjacent shell tubes changes linearly and similarly for all tubes within the 14-walled

CNT.

2.5 Conclusions

In dealing with FE simulations of layered carbon nanotubes, a novel and time-
efficient equivalent orthotropic solid model has been suggested. The proposed model is a
compromise between computational efficiency and accuracy, and can be used for any
number of concentric tubes in an MWCNT. The equivalent orthotropic material
properties were derived from the material properties of the individual layers in the nested
shell model (Pantano et al., 2004b). The properties for the isotropic graphene layer are
taken to be £ = 4.84 TPa and » = 0.19. On the other hand, the space layer, whose
effective modulus in the radial direction is derived from the LJ potential, is assumed to be
anisotropic. Since the EOR model is based on the layered nested structure of thin shells,
we assumed a negligible but finite shear modulus for the space layer of 0.48 MPa and v =
0.19 — same as the graphite sheet. When actual shear modulus values (4.5 GPa) of
graphite were used, the EOR model was observed to fail for the post buckling regime
under buckling and bending. Because of the difference in the solid and shell elements
used in FE simulations, the mesh size for the EOR model varies from that suggested by
Pantano et al., (2004b) — 0.24 nm; as a result, the EOR model fails to predict the buckling
of MWCNTs. However, when an appropriate element size is chosen based on thin shell
theory, the EOR model is able to capture the complete deformation of the MWCNT.
When compared with the nested shell models, the results indicated that the EOR models
can be used to successfully simulate large MWCNTSs subjected to bending, axial, and

lateral compressions. Although the initial buckling wavelength was found to be
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equivalent to that predicted by the nested shell model and experimental observations, the
EOR model fails to capture the steady state buckling wavelength. For the EOR model, the
buckling wavelength and amplitude were found to decrease and increase, respectively
with deformation; Pantano et al., (2004b) reported otherwise. Since the steady state
buckling of the EOR model is different than that of the NSSR model, the EOR model is
inadequate when deformation of external surface features is important such as in electron
transport theory in carbon nanotubes Pantano et al., (2004c). However, the proposed
model could work very well in modeling such processes as nano-indentation and nano-
scratching of vertically aligned carbon nanotubes (VACNT) forests with an AFM tip.

In brief, the equivalent orthotropic solid MWCNT model is a compromise
between the computational efficiency and the accuracy of the results. The model is

reliable when a quick structural behavioral study of MWCNTs is required.
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Chapter 3

Vertically aligned carbon nanotubes (VACNT) have been a recent subject of
intense investigation due to the numerous potential applications of VACNTSs ranging
from field emission and vacuum microelectronic devices, to the creation of super-
hydrophobic surfaces, and as a source of well defined CNTs. Qi et al., (2003) suggested
the nano-indentation process to estimate the effective mechanical properties of VACNTs
and their constituent CNTs. The study of nano-indentation reveals a process whereby
nanotubes are consecutively bent during the penetration of the indentor. Therefore, the
resistance of a VACNT forest to penetration comes from the successive bending of
nanotubes as the indentor encounters nanotubes. Qi et al., (2003) first proposed a micro-
mechanical model that captures the nano-indentation process; using their model, the
effective bending stiffness of the constituent nanotubes in the VACNT array was deduced
from nano-indentation force-penetration depth curves. In this chapter, we propose a
similar analytical method for nano-indentation tests to determine the mechanical
properties of VACNTs and their constituent nanotubes. We proposed two micro-
mechanical contact models: one that accounts for large deformations and another that
simulates the buckling of nanotubes. The effectiveness of the analytical model of the
MWCNT in predicting nonlinear deformations is then examined by comparing the results
with nano- and macro-scale experiments and EOR-based finite element (FE) simulations
of the previous chapter. Macro-scale experiments and FE-based models are used to check
whether the proposed model captures the nonlinear deformation of MWCNTs.
Thereafter, EOR-based FE models are used to include the buckling of nanotubes in the
proposed micro-mechanical model. After including the critical observations from other
researchers (e.g., Yakobson et al., 1996; Wong et al., 1997; and Pantano et al., 2003,
2004a, 2004b) and the FE-based models to the contact model, it was found that the
micro-mechanical model adequately captures the buckling effects in the nano-indentation
process. The proposed model was observed to capture the force-penetration curve of the
constituent nanotubes in a VACNT sample obtained via nano-indentation. The proposed
contact models are able to provide excellent predictions of such complex deformations,

since it accounts for the nonlinear deformation and buckling of the MWCNTs. This new
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technique requires no special treatment of the samples, making it possible to apply this
method to a large number of tests to determine the statistical properties of CNTs, and as a

potential quality control method in mass production (Qi et al., 2003).

3.1 Introduction

Currently the process of nano-indentation is being explored as a reliable means of
determining the mechanical properties of carbon nanotubes and the constituent tubes of
vertically aligned carbon nanotubes forests. Under indentation, each nanotube can be
modeled as a cantilevered beam subjected to deflection from the penetration of the
indentor. The resistance to indentation is the result of the cumulative bending of the
VACNTSs. Using beam theory, the effective bending stiffness is determined by fitting the
mechanical model to the indentation force-penetration curves. Qi et al., (2003) used a
sharp tip AFM tip to perform several nano-indentations on the VACNT forests and large-
deflection beam theory to analytically model the nano-indentation process. In the past,
many experimentalists (Wong et al., 1997, Salvetat et al., 1999) used the classic beam
theory approach to determine mechanical properties of carbon nanotubes despite the fact
that most experiments deflect the cantilevered CNTs to large deflections. On the other
hand, Qi et al., (2003) in their nano-indentation contact model used large deformation
beam theory that accounted for both the axial and lateral components of the load applied
via the indentor tip; however, the second order curvature effects were ignored. The
absence of any standardization in the use of various beam theories in the study of carbon
nanotube mechanics motivated us to check the applicability of theory in the nano-
indentation process.

This chapter first reviews beam theories including theoretical analysis of linear
and of nonlinear deflections of cantilevered beams. Second, the analytical results from
linear and nonlinear deflection theories are compared to experimental results for an
MWCNT fixed at one end and deflected to large angles. Third, the appropriate beam

theory is applied to nano-indentation of VACNT arrays, forest-like samples, as shown in
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Figure 3.1. A discussion of the relevance of large deflection theory of cantilevered beams

then concludes the chapter.

Figure 3.1: Indentor tip nano-indenting (down arrow) and nano-scratching (right arrow) in a

vertically aligned carbon nanotubes (VACNT) sample (Qi et al., 2003).

3.2 Theoretical Analysis of Beam Bending

When investigating the deflections of a beam of bending stiffness (EI), an
analysis usually begins with the Bernoulli-Euler law. According to this law, the curvature
(1/p) at any point x along the length of the beam is proportional to the bending moment
(M) at that section.

Undeformed

k\\.\

“
5
ah-
:
o

Figure 3.2: Cantilever beam loaded with an external concentrated load at the free end and

parameters used for small deflections of the beam.
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The mathematical representation

s _499 3.1)

is immediately applicable when the equation of the deflection curve is given in the
intrinsic form s = f{p) where s is measured along the length of the arc and ¢ is the slope

at s, as shown in Figure 3.2. In rectangular coordinates, the curvature is expressed as

1 dyad
P i+ (@yrany]”

(3.2)

The negative sign can be explained by the fact that in assuming downward deflections as
positive, an increase in x means a decrease in ¢. The combination of Equations 3.1 and
3.2 results in a second order nonlinear differential equation when solved for the

deflection y as a function of bending moment

Ayl M, 53
i+ (@rayf” B

In classic beam theory, which assumes small deflections, the relationship between
bending moment and curvature is linearized by neglecting the square of the slope,
(dy/dx)?, in comparison with unity in Equation 3.2. The governing linear equation that

relates the M, to the transverse displacement then takes the following form:

=-_t (34

Neglecting (dy/dx)’, however, is not permissible for slender beams when the deflections
are appreciable compared to the length. The second order term allows for the shortening

of the lever arm during the deflection when a load is applied at the free end of a
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cantilever beam. The classic theory is therefore not applicable for the calculation of large
deflections. Moreover, the classic beam theory gives no solution for deflections in any
direction other than the one normal to the original shape of the beam.

For the case of inclined load, P, applied to a cantilevered beam of length L at the
free end such that tip deflection 6 << L, the moment contribution due to the horizontal
component of the load (P;) is ignored, as shown in Figure 3.3. This is because the
equations are formulated considering fixed geometry (i.e., the moments are determined
with respect to the original geometry and thus the moment from P, is zero. However, as
the beam deflects due to the bending moment at any x induced by P,, the lateral
deflection then also provides a moment contribution from P, (Equation 3.5). Therefore, in
the case of large deflection, two nonlinearities arise, one due to the curvature-deflection

relation (Equation 3.2) and another due to the additional moment due to

P{(M, =-P,(6 - y)), as well as that due to P, (M, = -P,(L—x)). (3.5)

Undeformed

PEENINN

Y

Deformed

Figure 3.3: Cantilever beam loaded with an external concentrated load at the free end and

parameters used for small deflections of the beam.

In this section, we compare and contrast linear versus nonlinear analysis of beam
bending for the case of a cantilevered beam subjected to an inclined point load at the free
end. Figure 3.4 shows a cantilever beam of length L with a concentrated load P inclined
at an angle «, applied at the free end of the beam in undeformed and deformed
configurations. In this figure &, and J, are the horizontal and vertical displacements at the

free end, respectively, and y, is the maximum slope of the beam at the free end. Also in
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Figure 3.4, 6 is the sum of y and o. Let the origin of the Cartesian coordinate system be
at the fixed end of the beam, and let (x, y) be the coordinates of point (), and s the arc
length. Next, we present four cases where a concentrated load is applied normal or

inclined at the free end of the cantilever beam considering small and large tip deflection.

Undeformed L P
N 4 > o
\A v x

Qx,y) I

”

NN

Deformed .
Indentor Profile 4~ -

i Xe I \

Figure 3.4: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for large deflections.

3.2.1 Equations for Small Deformation of A Cantilevered Beam with A

Concentrated Normal Load Applied at The Free End

For the case of small deformation, lateral tip deflection, bending moment, and
stored strain energy (U) for a cantilever beam are derived by integrating the governing
linear relationship, Equation 3.4, and geometric boundary conditions (Crandall et al.,
1976). The load considered here is applied normal to the neutral axis (« = 90°), as shown
in Figure 3.2. The geometric boundary condition for the cantilevered beam are given by

the following two conditions

2 =0, (3.6)
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The bending moment as a function of x is:
M, =-P(L-x), (3.7)

and then integrating Equation 3.4 and applying the boundary conditions in Equation 3.6

gives the following relationship for vertical tip deflection and slope:

3
5 _PL

= 3.8

¥ 3EI B8
1_rL (3.9)
p EI
Since the bending energy in a beam is given as

L 2
M

U= |—2dx. (3.10)

2EI

0

Substituting Equation 3.7 in Equation 3.10 and solving the integral gives the required

bending energy relation as follows:

273
v=t1L (3.11)
6EI

3.2.2 Equations for Large Deflection of A Cantilever Beam with A
Concentrated Normal Load Applied at The Free End

The relevant equations for this case can be obtained by considering first a
situation where a concentrated inclined load is applied at an angle « to the axis of the

beam, as shown in Figure 3.5, and then substituting a = 90° (Fay, 1962).
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Figure 3.5: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for large deflections; for normal load o = 90° in the above figure.

The Bending Moment at Q(x,y)

M, = 1Y — Psina(x, - x)+ Peosa(y, - ). (3.12)
AY

Let,

O=y+a. (3.13)

Differentiating Equation 3.12 with respect to s and substituting Equation 3.13, we get

2
EI‘;‘j’-_——Psinacosw—Pcosasinw=—Psine (3.14)
A

sin @ = sin(y + @) = sin @ cosy +cosasin iy

Now let,

s (3.15)

U=
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duz%, and d6 =dy
"'ﬁ = L.Ed.ﬂ
du ds

didy |, _d dy ds
dul ds ds| ds | du

dy 1.d%

ds* L' du®’

=dz_‘//[}

ds?

Substituting Equation 3.19 into Equation 3.14 gives

EI d*0

o + Psind=0.
U

Next let

Rearranging Equation 3.20 and substituting into Equations 3.21 and 3.22 gives

2
+e¢sin@=0.

du’

Boundary Conditions

(or) (@)oo =@

(or) (ﬁ) =0
du G=yy+a

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Multiplying both sides of Equation 3.23 by 248 and integrating, we get

j[z dz‘f df + 2¢sin H.dﬁ] =0 (3.26)
du
[d_@] =2¢[cos @ — cos(y, + a)] (3.27)
du
[?} = [2¢{cos 6 - cos(y, + a)}]% . (3.28)
u

Now solving for du in Equation 3.17 and equating to Equation 3.16, and then

substituting Equation 3.28 gives

du=5__ W d0 . (3.29)

L (d%u) ) [2¢{cos 8 —cos(y, + a)}]%

Solving Equation 18 fords , we get

ds = Ld9 . (3.30)

1

[ZC{cos 6 —cos(y, + a)}]i

Integrating both sides of Equation 3.30 and taking limits from ato(y, + &), we get
0 J

(vo+a) (wora)
ds = L a0 - (3.3
a 2 g [cos& —cos(, + a)]i
Solving the above equation, we get
(wo+a)
=L do (3.32)
2c

a [cos 0 -cosly, + a)]% .
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Applying integration limit property, we write Equation 3.32 as

(‘/’o*a’)
d9 + j d9 . (3.33)

l o
1= -
V2e I lcosO—cosly, + @) § [cos@—cosly, +a)fs

Next, using trigonometric identities, we rewrite the above equation as,

1] o d6 (ot do

1= 5 \/_ - j T + T

©| Ofsin?{lp, +a)2)-sin?{or2} ¢ [sin{(y, +a)/2}-sin?{o/2)):

(3.34)

Next let,
p=sin{y, +a)/2}, and (3.35)
psing =sin{6/2}. (3.36)
Now differentiating both sides of Equation 3.36, we get
pcosddd = %cos(9/2)d9. (3.37)
Rearranging Equation 3.37 and using trigonometric identities, we get
40 = 2pcosgdg _ 2pcosgdg _ 2pcosddg . (338)

cos(6/2) \/l—sin2(9/2) \/l—pzsin2¢
Since,
6 _, =« (3.39)
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else,
¢9|sz =y, +a, (3.40)

substituting Equation 3.39 into Equation 3.36, and assuming it to be equal to a variable

m, we get

m=¢=sin'{m/—2—)}for x=0. (3.41)
p

Alternatively, substituting Equations 3.35 and 3.40 yields

4= Sin_l[sin{(l//o +0()/2}} =T (3.42)
r 2

Next, substituting Equations 3.35, 3.36, 3.38, 3.41, and 3.42 in Equation 3.34, we get

2pcosgdg i 2pcosgdg
1 <_"j. J1-p?sin® ¢ +3j J1-p?sin’ ¢

l= T 1 . (3.43)
24/¢ 0 [p2 __p2 Sin2 ¢]§ 0 [pZ __pZ Sinz ¢]E
Simplifying Equation 3.43 further gives
3 n
1= L dg - = a¢ . (3.44)

Je |s [1—p2 sin’ ¢]5 0 [l—p2 sin’ ¢]%

Now applying trigonometric identity and Equation 3.38, we write Equation 3.30 as
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I 2pcosgdg
1- p’sin’ ¢

ds = = (3.45)
2\/E[sin2 {, +a)/2}—sin’ {8/ 2}]5
Substitute Equations 3.35 and 3.36 in Equation 3.45 to get
L|: 2pcosgdg }
J1- p’sin’
ds = psin’g _ (3.46)
\/;[p2 ~ p’sin? ¢]5
Substituting Equation 3.22 into Equation 3.46 and simplifying, we write ds as
ds = d¢ - (3.47)
k[l - p?sin? ¢]5
From Figure 3.4,
§=cosy/ , and Q:sint//. (3.48)
ds ds
Substitute Equations 3.13 and 3.47 in left equation in Equation 3.48 to get
o= —cosO—c)dp (3.49)
k\1— p*sin’ ¢
Recall the trigonometric identity,
cos(@ —a) =cosfcosa +sinfsina . (3.50)
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Then, using Equations 3.35 and 3.36, we get

sin @ = 2sin(6/2)cos(9/2) = 2sin(6/ 211 -sin(8/2) =2 psin g/l - p* sin* ¢,  (3.51)

cosf =1-2sin*(6/2)=1-2p*sin’ ¢. (3.52)
Now, substitute Equations 3.50, 3.51, and 3.52 in Equation 3.49 to get

(cos @ coscx +sin Osin ¢ )dg
k/1- p*sin® ¢ ,

dx—(l 2p”sin ¢)cosad¢ 2 psin g1 - p*sin ¢smad¢ (3.54)
k+J1— p*sin? k+J1- p? sin®

dx =

(3.53)

Simplifying Equation 3.54 further, we get

_ cosa dé _ 2p’sin’ gdg , sina
\ﬁ—pz sin®g  /1-p’sin’ g

2psingdg . (3.55)

Integrating both sides of the above equation and taking the limit from m to n, we get

[bUbu’lF([J m) F(p nj+ AE(}I n) /.E(y m)} 2 psin a(cos ## — COS ﬁ)J (3.56)
where, m is from Equation 3.41, and
n=sin" {————Si“{(‘” +a)l 2}}, (3.57)
p
F(p,m)= j;‘m—l (3.58)
; I
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F(p,n)= I—Ll | (3.59)

E(p,m)= mﬂl — p*sin? ¢]§ dg, (3.60)
E(p,n)= nj[l—pz sin® gJz dg (3.61)

Since at the free end of the cantilever beam, y =y, = n= —72£ , Equation 3.56 becomes,

x,=L-0, = %[cos a{F(p,m)— K(p)+2E(p)-2E(p,m)}+ 2 psin acos m| (3.62)
where,
K(p)= J——-d—’é—l (3.63)

E(p)= 2j[l _psin’ gl dg, (3.64)

Note: F (p, m), F(p,n), K(p) are ‘complete elliptic integrals of the first kind,” whereas,

E (p,m), E(p,n), E(p) are the ‘complete elliptic integrals of the second kind.’
Next, using Equations 3.48 and 3.50 to 3.52 and simplifying, we get

ind —cos@sina)d
dy = (sin@cosa czos. 2smoz) ) ’ (3.65)
ky1=p~sin” ¢
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iy = 2psingy1- p’sin’ g cosardp (1 —2p?sin’ ¢)sin a.de

, (3.66)
Wioprents Wi prsin's
. 2 202

dy = 05% 5 cin g — SN 9 d¢ _ 2p7sin” gdg (3.67)

k \/l—pzsin2¢ \/l—pzsin2¢-

Integrating both sides of Equation 3.67 and taking the limit from m to » as in Equation

3.56, we get

y= %[2pcos at(cosm —cosn)—sin a{F(p, m)—F(p,n)+2E(p,n)-2E(p, m)}] (3.68)

Again for the free end of the cantilever beam,yy =y, => n= %; therefore, Equation 3.68

becomes

y, =0, = %[2pcosa cosm —sin a{F(p,m)—K(p)+ 2E(p)—2E(p,m)}]. (3.69)

Y

Rearranging Equations 3.22, 3.44, 3.58, and 3.63, we get the following relation,
1
L==[K(p)=F(p.m)]. (3.70)

Bending Moment and Curvature at the fixed end

We can solve for bending moment at any point Q in the beam by first solving for (dy/ds)
from Equations 3.17 and 3.28, and then substituting the result into Equation 3.12

M, =%ﬁ:(cos€—cos(z//o +a)). 3.71)
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Next, bending moment at the fixed end of the beam can be evaluated by substituting

Equation 3.13 in the above equation as

M,

=0

x=0 = % \/20(003 o - COS((//O + a)) . (3.72)
14

Also substituting Equation 3.72 in Equation 3.1, we get the curvature at the fixed end as

1

Yol

= %\/2c(cos o— cos(t//o + a)) . (3.73)

w=0

Next, substitute Equations 3.21 and 3.22 into both Equations 3.72 and 3.73, to get

2P
Mb];;% = EI\/E (cos a —cos(y, +a)) (3.74)
L = \/2 (cosa —cos(y, + a)) . (3.75)

Strain Energy due to Bending

Substitute M, = (EI)/ p from Equation 3.1 into Equation 3.10, to get

dU = ——ds . (3.76)

Substitute Equations 3.21, 3.70 and 3.75 into 3.76 and rewrite as follows

dU = P{cos@ —cosly, + a)}ds 3.77)

(wo+a)

U=P _[{cosé’ —cos(y, +a)ds. (3.78)
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Thereafter, substituting Equations 3.20, 3.21, and 3.30 into Equation 3.78, we get

P (w,+a)

V=175 aj\/ fcos6—cos(y, +a)}d6 (3.79)
P {w,+a) a

U= m[ 5[ \/{0050 —cos(y, +a)jdo - !\/{cosﬁ —cos(y, + a)}d&} . (3.80)

Applying trigonometry identity, Equation 3.52 into Equation 3.80, we get

U=g[“”j“)ﬂsmz(%;_aq_sinz(g)}dg_N{sinz(«%@)_smz(g)}da}.

3.81)

Substituting Equations 3.35, 3.36, 3.38, 3.41, and 3.42 into Equation 3.81, gives

U =£{ [ Vip? - p?sin? 51 —2PS0 4y [Vip* - p*sin’ ¢}ﬂ—°ﬂ”—¢d4.

ks J1— p?sin® g 1- p’sin’
(3.82)
Simplifying using basic trigonometric identitysin® & +cos® @ =1, we get
2P "2 (p? = prsin®g) . "(p*—pPsin’g) |
v=2F [LL R Py L0 #)ag (3.83)
k | 0 yl-p’sin®g o A1—p*sin’g
(w2 ffy 22 4 2 mlfy 22 ) 2
U=2P {(1 psin ) 1+p }d¢—j{(1 p~sin ) I+p }d¢ (3.84)
ks 1- p’sin’ ¢ 0 1-p’sin’ ¢
2P —/r/2 /2 d¢
U="2| [J1=p’sin® gdp—(1- p?) | —ZF——
k _5[ !w/l—pzsin2¢

— [N1-p*sin® gdg + 1 —pz)mj—ljlf’\/_z;’j—sm_z—(ﬁ} (3.85)
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Next, substituting Equations 3.58, 3.60, 3.63, and 3.64 in Equation 3.85, we get
2P
U=7[{E(p)—E(Pam)}-(1—pz){K(p)—F(p,m)}]- (3.86)

Finally, substitute o = 90° in Equations 3.41, we get the required equations for a

cantilever beam subjected to large deflection on applying a transverse load at the free end

1
=sin™| —— |. 3.87
m = sin (p\/iJ ( )

From Equation 3.87 and trigonometric identitysin® @ + cos’ @ =1, we get

2
cosm= |22 . I (3.88)
2p
and substituting Equation 3.88 and « = 90° into Equation 3.62, to get
1
2_1}|2
x,=L-0, {%”——1)} . (3.89)
P
Similarly, substituting a = 90° in Equation 3.69 gives
1
ye=0,=+ (& (p)- F(p,m)-2E(p)+2E(p,m)]. (3.90)

Now, using trigonometric identity sin(a + b) =sinacosb + cosasinbd in Equation 3.35

_wflp,+a@)) 1 (. t//o) v,
p—sm(——z——j-—z sm(T +cos 2) . (3.91)
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Squaring both sides of Equation 3.91, then using trig. identitysin’ @ +cos® 8 =1, we get

—
p= ,/—(“'2“‘”“) . (3.92)

The bending moment (M}), the curvature (//p), and the corresponding strain energy (U)
can also be solved for the case where load is applied normally at the end of the beam by

substituting & = 90° in Equations 3.74, 3.85, and 3.86 as

1
M,|eo = EI[MT (3.93)
=0 EI
. 1
1 _ 2Psiny, |2 (3.94)
plx=0 El
w=0

U =2 [(5(p)- E(pm)- - 0K ()~ F(p. )] (395)

Next, we will show that Equations 3.93 and 3.94 reduce to Equations 3.7 and 3.9
at x = 0, respectively, when we assume small tip deflections (J, = 0). First Equation 3.93

can be written as

1

o = p[my (3.96)

M
b =0 P

Equation 3.96 then can be written as

1
, 3
w0 =P{2E[ (2(1+S'“"’0J—1H . (3.97)
=0 P 2

Thereafter, substitute Equation 3.92 in Equation 3.97 and simplifying gives

M,
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=

M,

=0

o = P[z—i]@pz —1)} . (3.98)

Substituting Equation 3.89 in Equation 3.98, we get

M,|s=0 = PL. (3.99)

=0

Equation 3.99 is same as Equation 3.7 for zero axial deflection (d, = 0). Now, since
Equation 3.94 is obtained by dividing Equation 3.93 by E/, we obtain Equation 3.9 by
dividing Equation 3.99 by EI, we get

% ) =%’ (3.100)

w=0

Next, we compare the linear and nonlinear numerical solutions of a cantilever
beam with a concentrated load applied normal to the beam in order to determine whether
the difference is appreciable.

The difference between the analytical solutions of linear and nonlinear deflection
equations for concentrated load applied normal to the axis of the beam is presented
graphically in non-dimensional terms as PLYEI as a function of (0y/L), as shown in
Figure 3.5. In order to present the non-dimensionalized diagrams, linear and nonlinear

equations are rearranged as follows:

2 o
PL_ 3| —% | for the linear case and (3.101)
El L

2 (5 )2
EELT = [TyJ [K(p)- F(p,m)-2E(p)+2E(p,m)]' for the nonlinear case. (3.102)
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Figure 3.6: Non-dimensional load versus non-dimensional lateral tip displacement for

cantilevered beam loaded with an external concentrated normal load at the free end.

Figure 3.6 clearly show the difference between the results of the classic beam
theory for small deformation of a cantilevered beam to the large deformation, where a
concentrated normal load is applied at the free end; the classic beam theory show linear
behavior even for large deflections while the nonlinear curve starts to deviate for lateral
tip deflection, J,, is greater than 0.6*L.

We next present the nonlinear large deflection equations one that accounts both
the axial and vertical components of load in the deformed configuration (Qi et al., 2003)

and the other that also accounts for the nonlinear differential relationship between

curvature and deflection (Fay, 1962).
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3.2.3 Equations for Large Deformation of A Cantilevered Beam with A

Concentrated Inclined Load at The Free End — (Qi et al., 2003)

Qi et al. (2003) solved the governing differential equation (Equation 3.4) of the
beam theory and related the bending deflection to the axial and lateral force components
of the inclined load applied by the indentor tip, as shown in Figure 3.7. In Qi et al.,
(2003), the applied load is always normal to the indentor surface since there is no friction
between the CNT and the indentor. Therefore, the relationship between the x and y load
components is develop: Fy /F}, = P.tan(Ongenior). Qi et al., (2003) applied this relation in

their derivation of the nonlinear equations, as shown below.

5Y
F, S
S
9indemor ~ <
N A
b N
L P
a=90°- 9indentor
7/, /
(a) (b)

Figure 3.7; Cantilever beam loaded with an external concentrated inclined load at the free end and
related parameters for small deflections (a) (Qi et al., 2003). To be consistent with the previous

notation, applied inclined load can be represented as shown in (b).

The bending moment at any point x along the beam in Figure 3.7-a is
M,=-Fx-F,(5,-y) (3.103)

Now substitute Equation 3.103 in Equation 3.4, to obtain the relationship between

moment and curvature as follows

119



dzy

P

(EI) Fx+F(5,-).

(3.104)

This differential equation is thus formulated in the deformed configuration and thus

accounts for the effect of large deflections on the bending moment represented by the

beam; however, it does not account for the nonlinear differential relationship between

curvature and deflection.

=0 and Q =0.

X x=L

(3.105)

Next, assuming k° = F, /(EI) andY =6, —y, Equations 3.104 and 3.105 can be written

as

with boundary conditions

Y| ,=0 and al o,
= dx

x=L1

The general solution to Equation 3.106 is

. F
Y=Acoskx+Bsmkx——Fyx,

X

where A4 and B are constants determined from Equation 3.108 as follows

F
A=0 and B=——2—.
F kcoskL

(3.106)

(3.107)

(3.108)

(3.109)
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Therefore,

=6, sinke+ 2
y= sinkx+—x. (3.110)

F
P =—y(ta“kL—L), G.111)

and Equation 3.110 is rewritten as

F F
=—2 (sinkL —sinkx)——2(L —x). 1
h% o (sm sin ) F( x) (3.112)

X X

The slope of the beam deformation is— y', and

. F cos kx
=21~ . 3.113
Y F ( coskLJ ( )

The fact that the slope y cannot exceed the slope of the indentor’s side surface (Figure
3.10-a), or

-y <tané, (3.114)

indentor *

Since there is no friction between the CNT and the indentor, the horizontal and vertical

components of the inclined load P can be written as

F_=Psiné,

indentor

= Pcosa (3.115)
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Fy = Pcos@,

indentor

= Psine . (3.116)

Therefore, Equation 3.104 can be written as

y

5 = tana(tar;ckL —L], (3.117)

where k then becomes

k= |feosa (3.118)
El

Next, the expression for strain energy due to bending is obtained by substituting the

bending moment equation (Equation 3.103) into the integral bending energy formula

U =[ sin? & }[kL - sin(kL)cos(kL)} ‘ (3.119)

4kLcosa cos (kL)

Recall that this approach accounts for the axial component of the inclined load P;
however, the higher order term in Equation 3.2 is assumed negligible. Therefore, there is
a need for a set of nonlinear equations that takes both the axial component of the applied

load P and the second order term in Equation 3.2 into account.

3.2.4 Equations for Large Deformation of A Cantilevered Beam with A
Concentrated Inclined Load at The Free End — (Fay, 1962)

For large cantilevered beam deflections with an inclined load P, as shown in
Figure 3.8, the differential equations can be solved and expressed in terms of elliptic
integrals. The required expressions were derived earlier in Section 3.2.2, where Equations

3.62 and 3.69 are solved for the axial (d,) and lateral tip deflections (dy), respectively, and
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Equations 3.70, 3.21, 3.35, and 3.41 are other relevant parameters required in solving

Equations 3.62 and 3.69 (Fay, 1962).

L =%[K(p)——F(p,m)], (3.120)
0, =L—%[cosa{F(p,m)-—K(p)+ 2E(p)—2E(p,m)}+ 2psinacosm], (3.121)
o, =—ll;[chosacosm—sina{F(p,m)—K(p)+ 2E(p)——2EQ),m)}], (3.122)
where

k=2 = [K(p)~F(p.m)] (3.123)

EI L T ‘
p=sin{(y, +a)/2}, (3.124)
m =sin_l[M]. (3.125)
p

The bending moment at the fixed end, the curvature, and the strain energy stored in the

beam is given by Equations 3.74, 3.75, and 3.86

M, |0 = EI\/—(cosa cos(y, +a)), (3.126)
x_o \/— cosa — cos +a)) (3.127)
2”[5@) E(p.m)}~(1- p YK (p)- F(p.m)]. (3.128)

The horizontal and vertical components of load P are given by Equations 3.115 and

3.116, respectively.
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Figure 3.8: Cantilever beam loaded with an external concentrated inclined load at the free end and

related parameters for large deflections; for normal load a = 90° in the above figure.
Now, the difference between the analytical solutions from nonlinear deflection
equations is presented graphically in non-dimensional terms as PL%EI as a function of

(6,/L), as shown in Figure 3.9. In order to present the non-dimensionalized diagrams,

nonlinear equations from both theories are rearranged as follows:

s
L:tana{ﬂ@l—l], (3.129)
L kL

where

PL’ :
kL = I, cosa Qietal., (2003). (3.130)

The current nonlinear approach can be rewritten as,

]Z}z = (iy—j [2pcosoecosm—sina{F(p,m)—K(p)+ 2E(p)—2E(p,m)}]2. (3.131)
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Figure 3.9 was plotted assuming the inclined load is applied with an indentor tip
similar to the one Qi et al., (2003) used that had a semi-apex angle or face angle, Bindentor,
of 21.6° that implies a = 68.4° (a = 90° - Biugenor). A similar process was repeated for
BOindentors OF 65.35° that implies a = 24.65° and the results were plotted in Figure 3.10. Both
Figures 3.9 and 3.10 clearly show that the two approaches start to deviate considerably
beyond the tip deflection to length ratio (6,/L) of 0.6. The difference between the two
approaches is because Qi et al., (2003) ignored the higher second order term in the
bending curvature (Equation 3.2); this limits their (Qi et al., 2003) the lateral tip

deflections, J,, to less than 0.6*L, or for appr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>