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Abstract

In this thesis we investigate the use of thin rubber sheets or laminates of metal and
rubber sheets as bearings in precision positioning systems. Such bearings have the
potential to replace more conventional flexures fabricated for instance from metal.
Rubber bearings also potentially have advantages in for example ease and low-cost of
fabrication, overload robustness, and compact form.

To study the properties of these we have designed a test fixture. This fixture al-
lows us to measure the shear and compression characteristics of these bearings in their
static sense, as a function of frequency, and of various design parameters. The test
fixture has been used to test several types of rubber material. The tests performed
include compression and shear tests of rubber laminates' static stiffness, dynamic
stiffness, preload effects, step response, hysteresis, fatigue tests, and manufacture-
ability.

Different low-cost manufacturing methods of the rubber bearings have been sug-
gested and preliminary tests have been done. The feasibility of these manufacturing
methods has been confirmed, and the advantages and disadvantages of each identified.

On the basis of the experimental results a rotary precision positioning system uti-
lizing a rotary laminated rubber bearing, was designed, fabricated and tested. The
bearing of this device consists of multiple laminates of metal and rubber sheets pack-
aged within a preload mechanism. This preload mechanism assures the bearing radial
stiffness and compact form. It also assures a low cost alternative versus the use of
conventional flexural bearings. Tests have shown that a steady-state angular travel
of 2.5 mrad-pk can be accomplished and two types of controllers have been used to
obtain a closed-loop bandwidth in the range of 1 kHz and 1.5 kHz.
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Chapter 1

Introduction

The main focus of this thesis is to gain a better understanding of the properties of

laminate rubber bearings, and of their use in precision positioning systems. These

laminate rubber bearings are a promising alternative to the use of conventional flex-

ural bearings.

To study the properties of rubber bearings we have designed and fabricated the

test fixture shown in 1-1. This fixture allows us to measure the shear and compression

characteristics of bearings in their static sense, as a function of frequency, and of

various design parameters. The test fixture has been used to test several types of

rubber materials including Buna-N, Silicone, Neoprene, Viton, and Latex/Natural

Rubber. The performed tests include compression and shear tests of rubber laminates'

static stiffness, dynamic stiffness, preload effects, step response, hysteresis, and fatigue

tests.

The results of these tests have shown the potential of rubber bearings as bearing

for precision positioning systems due to the high compression to shear stiffness ratio

that can be achieved. Based on the experimental results a rotary precision position-

ing system utilizing a rotary laminated rubber bearing was designed, fabricated and

tested. A photograph of the device can be seen in Figure 1-2.
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Figure 1-1: Photograph of Rubber Bearing Test Device.

1.1 Motivation for the Research

Current bearings used in precision machines include aerostatic, flexural, hydrostatic,

magnetic, rolling element, and sliding contact. Laminate rubber bearings are an al-

ternative bearing that can be designed and fabricated in a compact form, with low

cost. Also the rubber bearings don't require additional supporting services like pres-

surized air or fluid.

Rubber bearings are already used in several engineering applications, including

bridge bearings which have lasted for decades [9], and elastomeric dampers for heli-

copter blades, which have been widely studied [4] [8].

Previous work done by Rivin [17] has proved the potential of laminate rubber bear-

ings as a bearing for precision machines, due to the high static compression to shear

modulus ratio Ec/G. Rivin has shown that this ratio can reach values of 100 - 1000

for ultra-thin rubber laminates for thicknesses between 0.8 - 0.1 mm. As noted by
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Figure 1-2: Photograph of Rotary Fast Tool Servo.

Rivin [17] the properties of rubber-metal laminates make them "ideally suited for

many machine-design application" (p.447), including limited travel bearings. The

tests performed by Rivin were all static, and part of his recommendations are that

future researchers should address the many other issues involved in rubber bearing

application, which is a motivation for this research.

1.2 Objectives of the Research

The objective of this thesis is to gain a better understanding of thin laminate rubber

bearings behavior. These have been studied in their static sense by Eugene I. Rivin

[17].

The use of rubber for damping has had a large amount of research, including their

dynamic behavior [17] [11] [14]. All of these research efforts show how rubber stiff-

ness increases with frequency, with dependence on the type of material and operating

temperature. The type of dynamic tests available for elastomeric materials, including
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rubber, are somehow limited to the purpose of obtaining information about their loss

characteristics. These tests are generally performed at frequencies on the order of

tens of Hertz.

The designed rubber test fixture shown in Figure 1-1, is used to perform static and

dynamic tests of several rubber materials in compression and shear up to 5 kHz. The

performed tests include: static stiffness, dynamic stiffness, step response, hysteresis,

and fatigue tests.

Manufacturability tests are also performed to assure the rubber bearings low cost.

There is a wide variety of rubber materials which could be candidates for rubber

bearings. To select an adequate material for the rubber bearing, several materials

were selected and subjected to several tests to evaluate their applicability as a rubber

bearing.

Based on the experience gained testing the rubber materials a rotary precision

positioning system utilizing a rotary laminated rubber bearing was designed, fabri-

cated, and tested. The designed precision rotary positioning system is a low cost

alternative to a similar earlier device designed by Montesanti [13] which uses metal

flexures. Montesanti's rotary precision positioning system consists of a Rotary Fast

Tool Servo, used for diamond turning. It has a maximum stroke of 50 Mm pk-pk at

low frequencies and has demonstrated a 2.5 pm pk-pk stroke at 2 kHz while under

operation.

1.3 Outline

Chapter 2 gives a literature review of relevant theory related to rubber properties.

This serves to interpret the results obtained with the rubber test device as well as
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understanding some issues involved in designing rubber bearings. Chapter 3 describes

the design of the test fixture used to test rubber specimens in compression and shear.

The design considerations for the design of the device are presented, as well as the

most important calculations. Chapter 4 and 5 present the rubber test device compres-

sion and shear test results, respectively. Further the effects of different parameters in

the compression and shear properties of the rubber bearings are analyzed. Chapter

6 makes further analysis of the properties rubber bearings. It also presents several

manufacturing methods for the laminate rubber bearings, and different topologies of

the linear and rotary bearings. Chapter 7 shows the design, assembly, and testing

of a rotary Fast Tool Servo (or precision positioning system), using laminate rubber

bearings. The design of the control system and all the related electronics is also pre-

sented here. Finally, in Chapter 8 we discuss the results of the rubber compression

and shear tests, as well as the measured performance of the designed rotary fast tool

servo. Also suggestions for future work are presented.
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Chapter 2

Literature review

In order to design a precision machine using rubber bearings it is important to be able

to predict their performance. The performance of rubber bearings depend on several

variables including frequency, temperature, shape, strain levels and preload. Being

able to quantify this dependence and understand its physical meaning is key. In this

chapter relevant characteristics of viscoelastic materials (including rubber) behavior

is presented.

2.1 Rubber compounding

In the selection of rubber materials for the use in rubber bearings one needs to un-

derstand how the properties of rubber can be modified to obtain the desired charac-

teristics. Rubbers are part of a group called polymers, which is defined by Jones [11]

as "materials composed of long interwined and cross-linked molecular chains" (p.39).

The way to impart the desired properties to a rubber compound is by adding

chemicals called cross-linking agents during vulcanization. This are listed by Gent [91

as reinforcements, anti-degradants, process aids, extenders, and specialty additives,

such as tackifiers, blowing agents, and colorants.
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If the compounding of your own rubber material is realizable then its properties

could be modified to fit certain requirements. Often one relies on already compounded

rubbers, and not all suppliers will provide you with a list of the cross-linking agents

used in the compounding of their vulcanized rubber. Even the properties of the rub-

ber supplied by a manufacturer may vary from batch to batch. For this reason it is

very important to rely on experimentation.

As described by [12], the fillers are used in the majority of rubbers used in engi-

neering applications, and may comprise up to one third of the total volume, being

generally one of the many kinds of carbon black which can be reinforcing or non-

reinforcing. The reinforcing blacks improve tear and abrasion properties, and increase

the Young's modulus, hysteresis and creep. The non-reinforcing ones have little effect

on tear and abrasion, but give moderate increases in Young's modulus, hysteresis and

creep.

2.2 Stiffness of rubber springs

In this section methods for calculating the stiffness of rubber springs will be presented.

This will help in the design of rubber bearings for precision machines, and serve as ba-

sis of comparison with the experimental results gathered with the Rubber Test device.

2.2.1 Homogeneous Compression

Homogeneous compression is possible when a rubber block is compressed between

surfaces that permit the rubber block to freely expand laterally, as shown on Figure

2-1. When considering rubber as incompressible with a Poisson ratio v = 1 then

A.,, = At and the applied compressive force becomes:
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F =AEox (2.1)
t - x

where F is the applied compressive force and E0 is the Young's modulus.

The detailed derivation of (2.1) is done by Lindley [16] (p.5).

Area A F
t Area Ax x

tx

Figure 2-1: Homogeneous compression.

According to Lindley [16] for strains below 10 -20% the homogenous compressive

strain is well represented by Hooke's Law

F = AEox (2.2)
t

2.2.2 Compression stiffness of rubber bonded to metal

Bonding rubber to metal significantly increases the compression stiffness due to the

increased constraints imparted on the rubber deformation. This is of great impor-

tance when trying to achieve high compression to shear stiffness ratios, which is ideal

for rubber bearings. Lindley [16] presents different methods of bonding rubber to

metal like brass plating, proprietary bonding cements, or other types of adhesives.

Friction could sometimes be enough to prevent slippage of the load carrying surfaces,

but it is not recommended by Lindley [12], since slippage may occur for high shape

factors S > p/2, where p is the coefficient of friction.
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Rubber has a Poisson ratio v which is only slightly below !. Because of this

rubber can be treated as a first approximation as incompressible. If rubber bonded

to metal (or any other rigid member) is subject to compression then any decrease in

thickness will be accompanied by bulging of the rubber at the force free surfaces. The

compression stiffness in this case will depend on the shape of the rubber, which can

be represented by its shape factor S, and is defined as the ratio of one loaded area to

the total force-free area as shown on Figure 2-2.

Loaded Area
(Top only)

t ,

b

L Force free areas

Figure 2-2: Figure showing loaded and force free areas of a block under compression.

Under the assumption that rubber is incompressible the compression modulus for

a circular disk and rectangular blocks of infinite length is given by Freakley [8] (p.116):

E= EO(1 + 2kS 2) (2.3)

for circular disks, and

4
Ec= -Eo(1 + kS 2 ) (2.4)

3

for rectangular blocks of infinite length (or one-dimensional strain).

Here EO is the Young's modulus, S is the shape factor, and k is a compression

coefficient. The coefficient k is an empirically determined material property, which
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corrects for experimental deviation. Typical values of k are given in Table 2.1.

Rubber may be considered as incompressible for some applications, but for blocks

with high shape factors, bulk compression must be taken into account, since if it is

not considered (2.3) and (2.4) are unbounded. The compression modulus E, of rubber

blocks taking into account the bulk modulus E,, is given by Lindley [16] (p.9):

E [Eo(1 + 2kS2) +
I- 

1

Eoo
(2.5)

for circular disks, and

= [4 3 ) +
S4Eo( + kS2) Eoo

(2.6)

for rectangular blocks of infinite length (or one-dimensional strain)

As a reference, the materials properties for natural rubber are given in Table 2.1

(Source: Gent [9]).

For a rectangular block as shown in Figure 2-2 the shape factor is

Lb
2t(L + b)

For a circular disk of radius a as shown in Figure 2-3 the shape factor is

S = a
2t

(2.7)

(2.8)

Finally, for a compression strip of width b and thickness t, where the strain in the

direction of its length is negligible, the shape factor is defined by Lindley [12] as
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Table 2.1: Hardness and elastic moduli for natural rubber (note: The Shore A hard-

ness is a value given only as a reference, the data given corresponds to the IRHD
scale)(Source: Gent [9])

Hardeness Shore A Shear modulus Young's modulus Bulk modulus Comp. coeff.

(IRHD ±2) (see note) G (kPa) Eo (kPa) E,, (MPa) k

30 26 296 896 979 0.93
35 31 365 1158 979 0.89

40 36 441 1469 979 0.85
45 43 524 1765 979 0.8
50 48 621 2137 1007 0.73
55 53 793 3172 1062 0.64

60 58 1034 4344 1124 0.57
65 63 1344 5723 1179 0.54

70 68 1689 7170 1241 0.53
75 74 2186 9239 1303 0.52

b
S = -b

2t
(2.9)

Lindley [12] (p.41) derives the compression stiffness of a solid rubber ring of rect-

angular section shown in Figure 2-4 considering a one-dimensional strain as (2.4)

giving the following:

t-At

Figure 2-3: Compression of a bonded disk.
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K = -E07Dm I+ b2 (2.10)
3 t 4t

where Dm = j(D + d), and b (D - d).

F

III
d ,

D

Figure 2-4: Compression of a ring of rectangular section.

2.2.3 Tension stiffness

A tensile loading condition must be avoided in the design of rubber bearings, since

according to Lindley [16] the use of rubber springs in tension is not a common prac-

tice, since in tension are susceptible to ozone cracking, and support much lower loads

than in compression.

Lindley [16] observes that the stiffness of a bonded rubber unit in tension can

be calculated using the same equations used for compression. The stiffness is also

dependent of the shape factor and the rubber unit bulges inward instead of outward,

as in compression.

2.2.4 Shear stiffness

Rubber bearings are utilized in shear and it is preferable that its shear stiffness be-

haves linearly within its working strain range. It is noted by Lindley [16] that the
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shear-strain curves of rubber are linear for strains below 50%. However hard vulcan-

izates tend to be less linear as shown in Figure 2-5.

This doesn't limit the use of hard vulcanizates as materials for rubber bearings

in precision machines since their strain is expected to be way below 50% or even

lower than 1%, depending on the application. This large strain capability is a strong

advantage of rubber bearings as compared with metal flexure bearings, which are

limited to material strain on the order of 0.1%.

15 F

0

En

MI

W)
U,

10

5

CI
25 50

Shear strain (%)

75 100

Figure 2-5: Shear stress-strain curves for rubbers of different hardness
ley [16]).

(Source: Lind-

The shear stiffness K, is simply given by

F GA
X t

(2.11)

where G is the shear modulus, A is the surface area subject to shear, and t is the

rubber thickness.
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According to Freakley [8], (2.11) is applicable within the linear strain range stated

earlier. However, when the ratio of thickness to length exceeds 1/4, the deflection

due to bending becomes significant and must be considered.

2.3 Dynamic properties of rubber

The design of rubber bearings for precision machines requires a good knowledge of

their dynamic properties which can be affected by several factors including, additives,

temperature, preload, frequency of oscillation, type of strain, and amplitude of oscil-

lation.

2.3.1 The nature of viscoelastic behavior

Viscoelastic materials behave cannot be modeled either as an elastic solid nor liquid

bodies, their behavior can be seen as a combination of both types of bodies. As noted

by Ferry [7] elastic solid stress is directly proportional to strain in small deformations

but independent of the rate of strain, while viscous liquid stress is directly propor-

tional to rate of strain but independent of the strain itself.

Viscoelastic materials do not maintain a constant strain under constant stress but

deform slowly with time, or creep [7]. Viscoelastic materials under cyclic deformation

give rise to properties such as stiffness and energy dissipation, which means that some

energy is stored and recovered in each cycle and some is dissipated as heat [7] [11].

This means that when viscoelastic materials are subject to a sinusoidal stress the

strain will be out of phase from the stress.

Ferry [7] observes that a polymer is composed of threadlike molecules which have

a greater volume than atomic dimensions. Also that a qualitative way to view a poly-

mer structure is to consider "long-range contour relationships, somewhat more local
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relationships seen with a more detailed scale, and so on, eventually including the ori-

entation of bonds in the chain backbone with respect to each other on a scale of atomic

dimensions" (p. 2 ) as shown on Figure 2-6. When a polymer is subject to stress, rear-

rangements on a local scale are relatively rapid, and very slow on the long-range scale.

-CH2 CH2 -

s C=C

CH3 CH3

Figure 2-6: Representation of Long-range and short-range contour relationships in a
flexible threadlike molecule, adapted from [7]. (Natural rubber molecule shown).

Because of the rearrangements time-frame related with the rearrangement of local

and long-range scale, when a polymer is subject to a low frequency excitation the

long-range rearrangements predominate. And when subject to a high frequency exci-

tation the local scale rearrangements predominate. This means that the polymer will

attain smaller strains with the same stress magnitude as the frequency of excitation

is increased.

2.3.2 Simple Shear

The shear strain ^12 = ^721 = tan a ~ a, and shear stress -12 are functions of time.

Ferry [7] notes that they are related by a constitutive equation based on the principle

that the effects of sequential changes in strain are additive:

= J G(t - t')y 1(t') dt' (2.12)
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Figure 2-7: Simple shear of a cubical element, seen from 1-2 plane.

and that the strain can be expressed in terms of of the history of the time derivative

of the stress u-21 as:

'721()= J(t - t')a-(t') dt' (2.13)

where ^ 21 is the shear rate, G(t) is called the relaxation modulus, and J(t) is

called the creep compliance.

If the shear stress is applied in the form of a step then the shear strain can be

expressed as stated by Ferry as [7] (p.10) as 7y2l(t) = o-J(t), where J(t) increases in

a significant manner with time, resulting in a strain versus time as shown in Figure 2-8.

Time

Figure 2-8: Time profile of a shear creep experiment (from tested Neoprene rubber).
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The creep behavior of rubber under a step stress can give some insight on its

frequency response. Ferry [7] notes that periodic stress applied at a frequency w is

qualitatively equivalent to a transient experiment at time t = 1/w.

2.3.3 Sinusoidal excitation in Simple Shear

When designing a precision machine using rubber bearings it is necessary to know

how rubber behaves when subject to a sinusoidal excitation. This becomes essential

to design a controller for the machine.

When applying a sinusoidal shear stress -(t) with frequency w, the output strain

-y(t) comes out sinusoidal and out of phase, both being related as shown by Ferry [7]

(p.12)

-(t) = -y0JG*I cos(wt + J) (2.14)

provided that the viscoelastic behavior is linear. Here G* is defined as the complex

modulus and has the following form G* = G'+ iG". Also G'(w) is defined as the shear

storage modulus, G"(w) as the shear loss modulus, and tanJ = G"/G'.

Viscoelastic materials of high molecular weight can show a drop of the shear

compliance with frequency of many powers of 10. Examples are given by Ferry [7]

(p.33-47), including a lightly vulcanized Hevea rubber, showing this behavior.

2.3.4 Bulk Compression

The change of shape in simple shear is not accompanied by change in volume. Other

deformation geometries like bulk compression are characterized by a change in volume

and shape. For the case of bulk compression the voluminal strain A,(t) is as a

42



consequence of an applied pressure P(t) is time dependant as shown by Ferry [7](p.20)

for very small strains as

-P(t) = K(t - t')LA,(t') dt' (2.15)

where A, = (V - Vo)/Vo ~ I-kk and K(t) is termed the bulk relaxation modulus.

The applied pressure P(t) and voluminal strain A/(t) are related as shown by

same author as

P(t) = -AvK(t) (2.16)

Av(t) = -PB(t) (2.17)

where B(t) is the bulk compression creep compliance.

When testing the compression stiffness of high shape factor specimens it is impor-

tant to understand their behavior. This show less increase of compression stiffness

than the shear stiffness with frequency. As stated by [7] "Bulk compression would

not be expected to involve changes in long-range molecular configuration or contour

shape" (p.22). Viscoelastic materials of high molecular weight can show drops of the

Bulk compliance with frequency of less than 10. Examples are given by Ferry [7]

(p.49,561), including natural rubber vulcanized by sulfur which shows a drop of Bulk

compliance of less than a factor of 2.

2.3.5 Simple extension

Simple extension is defined as an elongation in one direction accompanied by shrink-

ing of the two mutually perpendicular directions of the same magnitude.
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Figure 2-9: Simple extension.

The longitudinal strain 711 is related to the tensile stress UT by the constitutive

equation derived by Ferry [7] (p.22)

UT = 11 [G(t) + (2.18)

(2.19)

The quantity in brackets is denominated E(t)/2, and the tensile strain C is equal

to by11 getting to the following:

OT = CE(t)

C(t) = UT D(t)

(2.20)

(2.21)

where E(t) is the tensile relaxation modulus and D(t) is the tensile creep compli-

ance.

For a perfect elastic solid at equilibrium, the equilibrium Young's modulus is

related to the shear and bulk moduli by the classical elastic theory:

Ee -9GeKe 2Ge(1 + Ve)Ge + 3Ke
(2.22)

but for the case of viscoelastic materials where G, K, and v are time-dependent,
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E(t) must be specified in terms of G and v as shown by (2.18)

For polymeric systems, in certain broad ranges of time scale, K(t) is often greater

than G(t) by two orders of magnitude or more. This condition corresponds to a

Poisson ratio close to 1/2, and in that case E(t) and D(t) become:[7]

E(t) = 3G(t) (2.23)

D(t) = J(t)/3 (2.24)

This means that the results from simple extension experiments will give the same

information as the shear experiments. But Ferry [7] observes that "for any viscoelas-

tic material, there will in general be some conditions (especially short times or high

frequencies) under which G and K are similar in magnitude and the approximations

of (2.23) and (2.24) will not be applicable. This situation corresponds to a value of

v substantially less than 1/2; the minimum value ordinarily observed is about 0.2 for

homogeneous, isotropic materials" (p.24). He further implies that (2.23) and (2.24)

are also limited to small deformations, and small rates of deformation, where the last

implies low frequency, since for large deformations or large strain rates, the simple

extension and shear experiments show very different behavior.

The observations from Ferry must be taken into consideration when reading com-

plex modulus data from tested materials, since the presented data might be assuming

a similar shear extension and shear behavior, which might not be adequate for your

application.

It is observed by Nashif [14] that elastomeric materials at low frequencies (or high

temperatures) have a Poisson ratio v - 0.5, which gives E = 3G, but the Poisson

ratio decreases with frequency. An example is given where the 3M-467 adhesive,

reaches a poisson ratio of v ~ 0.33, and so E ~ 2.67G.
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2.3.6 Bulk Longitudinal deformation

Bulk longitudinal deformation occurs when the volume is subject to an elongation or

compression in one direction and the two other mutually perpendicular dimensions

are constrained to remain constant.

Ferry [7] notes that the condition of bulk longitudinal deformation is met by the

compression of a flat sample. Rubber bearings fabricated with thin rubber and the

load carrying surfaces bonded to rigid members, subject to compression loads can

be considered to be subject to this type of deformation. Ferry further states that

viscoelastic behavior in bulk longitudinal deformation will in general combine the

features of shear and bulk viscoelasticity, however bulk effects will predominate. So

similar behavior to that of bulk deformation is expected.

2.3.7 Classical Models for viscoelastic behavior

As shown by (2.14) the modulus of viscoelastic materials can be expressed in complex

form, and so the stiffness:

k* = k(1 + i7) (2.25)

where q is known as the loss factor. As shown by Jones [11] viscoelastic behavior

can be approximated by simple models such as the Maxwell and Voigt models, as

shown on Figure 2-10. Defining the parameters of the Maxwell and Voigt models is

fairly simple when using few of this elements, but poor approximations are accom-

plished.

The complex stiffness of the different types of models are summarized in Table

2.2. Jones [11] observes that the number of elements used can be increased in order

to model the complex modulus behavior, which requires the identification of a large
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Figure 2-10: Classical models of viscoelastic behavior, adapted from [14].

Table 2.2: Complex stiffness of standard viscoelastic models, Source: Jones [11]

Model Complex stiffness k*
Maxwell +iwbi

Voigt k2 + iwb2
Standard 'twkibi + k2Mk+ -iwbi +...

Multiple ko + 7,kb + zk202 +

number of parameters.

2.3.8 Effects of Temperature

Temperature affects the properties of viscoelastic materials and is considered one of

the most important environmental factors. Nashif [14] states that "when the tem-

perature is reduced the thermal motions of the molecules become slower and, since

rubber-like deformation depends on these motions, the response to stress changes

becomes more sluggish, the rubber appearing stiffer, ie. its modulus increases. At

a sufficiently low temperature substantially no molecular motions occur and the be-

havior then resembles that of a glass, in which deformation is due to the straining of

interatomic bonds". (p.89)

The effects of temperature are shown on Figure 2-11, where four distinct regions

are observed. Most rubber like materials, such as cross-linked polymers are charac-

47



terized by the glassy, transition, and rubbery regions as noted by Nashif [14]

E
40

CO)
CO)
0
-1

o Glassy Transition Rubberlike
& Region Region Region

Temperature

Figure 2-11: Variation of storage modulus and loss factor with temperature, adapted
from [14].

2.3.9 Effects of Frequency

The modulus of rubber-like materials always increases with frequency [14]. The in-

crease of modulus with frequency takes place in three regions as shown in Figure

2-12. The first is the rubbery region which takes place at low frequencies and where

the modulus takes the lowest value. The second one is the transition region where

the modulus increases dramatically. The third one is the glassy which takes place at

high frequencies and is where the modulus takes its highest values. The loss factor

increases with increasing frequency in the rubbery region, taking its highest value

in the transition region, and then starts decreasing with increasing frequency in the

glassy region.

2.3.10 Representation of Frequency-Temperature effects

Because of the inverse relationship between temperature and frequency effects on

dynamic properties a superposition principle is used [14]. Based on this principle,

48



42 0E

(U

S Rubberlike Transition Glassy
Region Region Region

Frequency (log scale)

Figure 2-12: Variation of complex modulus and loss factor with frequency, adapted
from [14].

measurements of properties as a function of frequency made at different tempera-

tures can be collapsed on one master graph called nomogram.

These nomograms are useful to predict dynamic behavior, but care must be taken

to find out what axe the limitations of these nomograms. The tests undertaken for

creating this type of nomograms might be at conditions which do not cover the scope

of your application. This might differ in the type of deformation, strain amplitude,

frequency range of tests, etc.

2.3.11 Effects of Cyclic Dynamic Strain

The variation of the modulus and loss factor with dynamic strain amplitude is similar

to that of temperature, but the effect is much smaller than that of temperature as

observed by Jones [14]. Figure 2-13 shows how the modulus decreases with increasing

dynamic strain. The three regions shown are called the linear, the transition, and

the equilibrium zone. The composition of the material affects the variation of the

modulus with dynamic strain. As shown in Figure 2-14 when the amount of fillers is

increased then its nonlinearity is greater.
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Figure 2-13: Variation of complex modulus and loss factor with strain amplitude,

adapted from [14].

LU
CO

Increase in carbon
black content

Strain (log scale)

Figure 2-14: Variation of storage modulus and loss factor with strain amplitude for
different contents of carbon black, adapted from [14].

2.3.12 Effect of Pressure and Temperature in Viscoelastic

behavior

It is observed by Nashif [14] that the dynamic or complex modulus increases with

static preload, whereas the loss factor decreases, and that this effect is usually more
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important in the rubbery region, which will be at low frequency as shown in Figure

2-15.

L-

E

Inc. preload

0Inc. preload

Frequency (log scale)

Figure 2-15: Variation of complex modulus and loss factor with preload, adapted

from [14].

As shown by Gent [9], components of high shape factor subject to a compressive

strain increase their static shear stiffness as compressive load is applied. This effect

is greater for higher shape factors.

2.3.13 Tests for Dynamic mechanical properties of polymers

In this section different types of devices for testing dynamic mechanical properties of

polymers will be presented. A brief description of them and their specifications will

accompany.

Yersley Oscillograph

As presented by Gent [9] the Yersley Oscillograph consists of a rocking arm that can

deform a rubber sample either in compression or in shear as shown in Figure 2-16. A

pen attached to the arm records the rocking motion to yield an oscillogram. The test

is applicable to materials with static moduli below 2 MPa in compression or 1 MPa

in shear to produce about 20% deformation.
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Weight Pivot Weight

Figure 2-16: Schematic of Yersley Oscillograph, adapted from [9].

It is further implied by Gent [9] that this setup provides a fair understanding of

the the relative dynamic stiffness and damping properties of different rubber compo-

sitions. This setup is limited by the fact that it provides a decreasing force input and

that testing occurs at low frequencies, between 3 and 6 Hz.

Resonant Beam

The resonant beam presented by Gent [9] consists of a beam pivoted at one end and

driven by a vibration exciter on the other end. The sample is placed in between as

shown in Figure 2-17. The beam is driven at a controlled displacement at resonance

which permits large displacements with minimum force. This device permits finding

the static stiffness and damping properties (at a given frequency) of the sample. The

frequency range of this device is 10 to 30 Hz.

Disp. transducer

Beam

Pivot Sample

Vibration Force transducer
Exciter

Figure 2-17: Schematic of resonant beam test device, adapted from [9].
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Servo-hydraulic testers

Servo-hydraulic testers like the one shown by Gent [9] provide in a single device the

capability of high force and large displacements. Different types of specimens can

be tested in this machine like a rubber mount in compression or shear, and a tire.

A displacement transducer senses the motion while a load cell in the stationary side

measures force as shown in Figure 2-18. The frequency range is limited to several

hundred Hz. A similar device is shown by Payne [16] where a maximum frequency of

50 Hz can be obtained with a peak-to-peak amplitude of 0.1 inches.

Load cell

Sample

Actuator
Servovalve

Disp. transducer

Figure 2-18: Schematic of a servo-hydraulic tester, adapted from [9].

Electromagnetic shaker

This machine shown by Payne [16] consists of a 50 lb electromagnetic shaker mounted

on a horizontal axis. Two samples are tested at the same time in this machine, with

one just used as a reactance, allowing preload to be applied. The other is placed

between two force transducers, and two accelerometers are attached to the moving

side of the sample. This machine can vibrate up to 2000 Hz. Power limitations of

this machine gave a peak-to-peak amplitude of 0.1 inches at 50 Hz.
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Transducer measurements by Electrical Impedance

This interesting method presented by Ferry [7] measures complex voltage/current ra-

tios without the need to determine absolute values of force displacement, or velocity,

and can be applied for soft solids. The Fitzgerald transducer apparatus presented

by Ferry is an example which provides considerable versatility and precision. This

device tests two disc-shaped samples in shear inside a thick cylindrical driving tube

and a heavy, freely suspended floating mass as shown on Figure 2-19. The tube and

masses are suspended by fine wires, which keep them centered, and permit longitudi-

nal motion. The driving tube is electromagnetically driven, producing a longitudinal

oscillation with small amplitude. The floating mass moves at a smaller amplitude,

whose magnitude and phase are determined by its inertia and their supports elas-

tance. The mechanical impedance of the oscillating system is calculated based on the

measured impedance of one of the driving coils, which is measured with the aid of a

bridge while in motion. The Fitzgerald apparatus has been used at frequencies from

10 to 6000 Hz.

Driving tube Floating
mass

MAgnt core

Fine wire
supports

Figure 2-19: Schematic of Fitzgerald Electromagnetic transducer, adapted from [7].
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Torsion test ASTM D5279

Useful information was found on the EARSC website [5]. Here they present the ASTM

torsion test, also called the rheovibron test, which is used to measure the mechanical

properties of polymers in torsion. The specimen which has a rectangular cross sec-

tion is gripped longitudinally between two clamps. The lower one is connected to the

drive motor, and the upper one to a torque transducer. This device is equipped with

a thermal chamber which permits testing through temperatures ranging from -1000 C

to 100"C. The frequency limit of this device is 10 Hz. The results from this test as

stated by EARSC [5] "provide useful measures of the glass transition and peak loss

factor and can be used to approximate dynamic performance at higher frequencies."

As well a photo of such an instrument is shown in the following website < http :

//www.ptli.com/testlopedia/tests/DMA - D4440.asp > from Plastics Technology

Laboratories, INC.

2.4 Mechanical Fatigue of rubber

Fatigue life properties of rubber become essential for the use of rubber bearing in pre-

cision machines. Understanding how mechanical fatigue is identified and the factors

that affect it helps in the design of the rubber bearing.

Gent [9] notes that mechanical fatigue is demonstrated in rubbery materials by a

progressive weakening of physical properties as a result of slow crack growth during

application of dynamic loads or deformation. Gent also notes that the main causes

of fatigue cracking in rubber are mechanical, thermal, environmental (oxygen, ozone,

and ultraviolet radiation), and chemical.
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2.4.1 Fatigue Life

Fatigue life is the number cycles required to break an specimen into two pieces at

a given stress or strain. Fatigue characteristics of materials are denoted by S - N

curves where S denotes stress -or strain e , depending if the fatigue test is stress or

strain controlled, and N is the number of cycles to failure.

Gent [9] observes that when reducing the dynamic stress or strain to a certain

value the fatigue life of rubber approaches infinity, as shown on a typical S - N curve

for rubber in Figure 2-20. This concept is called limiting stress or strain. This con-

cept is really important since if infinite life can be assured in a rubber bearing then

replacement of it could be avoided increasing the rubber bearing reliability.

42 ~
COt

Dynamic Strain c, or Stress a

Figure 2-20: S-N curve for rubber: S is the peak to peak amplitude dynamic stress
or strain, and N the number of cycles; adapted from [9].

2.4.2 Fatigue crack propagation

As described by Gent [9] fatigue crack propagation described by the crack growth

rate dC/dN, has four characteristic regions as shown in Figure 2-21.

Region I is were the tearing energy G is less than the threshold tear energy Go,

hence no mechanical crack growth occurs, and the crack growth is caused only by
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tensile stress), and is described by [9] (p.145)

'0

l G

I '111

log G (Jim 2)

Figure 2-21:
adapted from

Cyclic crack growth rate dC/dN; data of unfilled Natural Rubber

[9].

dC
dN

= kzOz = Rz; G < Go (2.26)

where Oz is the ozone concentration.

In region II, crack growth is dependent on both ozone and mechanical factors in

an approximately additive and linear fashion. Hence, [9] (p.145)

dC = Rz + A(G - Go);
dN

Go < G < GA

where A is a crack growth constant for region II.

In region III, a power law dependency between crack growth rate and G has been

found for many rubbers as follows, [9] (p.145)
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dC
dN BG; GA< G < Gc (2.28)

where B and /3 are constants, being 0 a value between 2 and 6, for most rubber

vulcanizates.

In region IV dC/dN approaches the velocity of elastic waves in rubber, about

50m/s [9].

2.5 Examples of use of rubber bearings

2.5.1 Bridge Bearings

As noted by Gent [9] laminated polychloroprene and natural rubber bearings have

been in service in US and Canada for more than 30 years. The primary function

of bridge bearings is to accommodate expansion and contraction, due to changes in

temperature and humidity, and of rotation caused by bending under traffic loads [8].

The laminated rubber bearings consist of rubber laminates bonded to metal in-

termediate plates. This bearings provide high compressive stiffness to support the

high loads from the bridges, as well as having low shear stiffness to accommodate the

bridge expansion or contraction.

Stiffness measurements have been performed on bridge bearings after being in

service for 20 years, showing no evidence of significant change in either shear or com-

pression stiffness [9].
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2.5.2 Rubber bearings used in helicopters

One use of rubber bearings in helicopters is their use in helicopter blades, where they

are called elastomeric lead-lag dampers. As noted by Brackbill [4] elastomeric lead-lag

dampers have been used on helicopters since 1970. Helicopters with soft-inplane rotor

systems are subject to ground and air resonance instabilities, which are remedied with

the use of the lead-lag dampers.

Other use of rubber bearings in helicopters is in their rotor head systems. As

noted by Freakley [8] the elastomeric rotor head is a low-maintenance articulated

rotor. Freakley further notes that "the main elastomeric bearing, consisting of a large

number of shims separated by thin natural rubber layers, yields the large shape factor

necessary for the small deflections under centrifugal loading, whereas the spherical

section of the shims permits the required motions of the blade in shear." (p.498)
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Chapter 3

Design of Test Hardware

In this chapter the design of the test hardware used for testing rubber specimens in

compression and shear is presented. The design considerations taken for the design

of the device are presented, as well as the most important calculations.

3.1 Compression Test Hardware

The design of the compression test hardware is presented in this section. A solid

model of the compression test device is shown in Figure 3-1.

3.1.1 Functional Requirements

The compression test hardware has the purpose of testing thin rubber specimens un-

der compression, with a thickness in the range of 0.5 - 1 mm. The rubber specimens

are of different materials and subject to static and dynamic tests ranging up to 5 kHz.

The applied force is required to be measured as well as the change in the rubber

thickness. Due to the high compression stiffness of thin rubber specimens, the me-

chanical components must be robust in order to measure accurately the change in

rubber thickness.
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Figure 3-1: Solid model of compression test device (Some parts shown transparent to

clarify assembly).

A sample with a static stiffness of 50 N/pm is taken as a reference to design

the apparatus. Since dynamic tests are desired, the rubber specimen requires to be

preloaded so that a sinusoidal force can be applied keeping the specimen always under

load. The temperature rise of the whole apparatus must be kept to a minimum to

prevent measurement errors.
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3.1.2 Actuator

The chosen actuator is a voice coil actuator, as shown on figure 3-2. The BEI Kimco,

model LA24-33-OOOA, voice coil actuator was chosen because of being readily available

in our lab. The actuator has a force constant of Km = 7.1 N/A which let us apply a

force of nearly 7 N when keeping the current below 1 A.

1. rE -L PLg~tb

Figure 3-2: Voice coil actuator schematic.

The current is limited to 1 A to avoid overheating the hardware. This will keep

the heat dissipation from the voice coil 5.5Q resistance below 5.5 W, which can be

readily dissipated.

The voice coil inductance is 2.3 mH and must to be taken into consideration at

frequencies higher than 300 Hz depending on the load. For that reason current will

be measured and used to calculate the force applied by the actuator.

3.1.3 Preload mechanism

The rubber specimens require to be preloaded in order to be subject to sinusoidal

forces. The preload mechanism must be compact, in order to keep the device stiffness

high; and easy to assemble to reduce the disassembly and assembly time between

tests of different samples.
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Different options were evaluated for the preload mechanism, including the use of

small helical coil springs, and flexures. The problems with the use of the springs were

the space requirements and assembly difficulties. The use of a flexure type preload

was preferred because of the reduced space requirements, easy assembly, and the abil-

ity of increasing the preload force by stacking flexures.

The designed preload flexure consists of a set of six independent flexures which are

arranged circumferentially around a center ring. The flexures are bolted and clamped

to the target as shown in Figure 3-3. The clamps are designed with fingers to clamp

the steel flexures such that stress concentrations are reduced.

Figure 3-3: Preload flexure assembly.

Preload flexure sizing

For the sizing of the preload flexure, we use a model of a beam with one of the ends

fixed and the other one guided as shown in Figure 3-4. The equations for this model

will be as follows [19]:

WL
MA - 22
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-WL 3

YA = 12E1 (3.2)
12EI

RB = W; (3.3)

MB - WL (34)
2

(3.5)

AIAtmh A /_

Figure 3-4: Model of flexure.

The stiffness of each flexure will be k = W/YA = 12EI/L 3 with a total stiffness of

the preload flexure as kT = Nk, with I = 1/12bt3 , and the number of flexures N = 6.

Based on preliminary calculations and material availability, 1095C Blue Tempered

0.381 mm (0.015 in) thick Spring Steel is the chosen material for the preload flexure.

The design allowable stress for the material is 900MPa. The flexure section width

is chosen based on the space limitations and allowable stress. The preload force is

required to be large enough to keep the sample under compression while applying to

it a sinusoidally varying force, and to assure a uniform contact of the rubber specimen

contacting surfaces. The required force for that task is estimated to be of the order of

60N; based on a 5 p total flatness error of ground steel flat stock, a 50 NA stiff rubber

specimen. It is estimated that one quarter of the specimen is lying on a non-uniform

surface, and so the preload assures the contact of the load carrying surfaces with the

steel surfaces. This estimate also considers one side of the rubber specimen being

bonded.//

A single preload flexure was designed to provide 60N of preload force, and at the

same time have a low stiffness compared to the rubber specimens. With the following

final dimensions for the flexure, as shown in Figure 3-5:
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Figure 3-5: Model of flexure.

b = 6mm

t = 0.381mm

L = 25.2mm

we get the following results:

1
I = -(6mm)(0.381mm) 3 = 27

12
12(2.1. 10-3N/mm 2 )(27.65. 10- 3mm4 )

(25.2mm)3

.65- 10- 3mm4

= 4.34N/mm

kT = 6x4.34N/mm = 26N/mm

MA = ION -25.2mm - l26Nmm
2

MAt21
126Nmm - 0.381mm
2. 27.65. 10- 3mm 4

of = 868MPa < 900MPa(OK) (3.14)

The preload flexure needs to deflect 2.3 mm in order to provide the 60N force. It

was fabricated according to the design parameters, and tested satisfactorily for a 3.1

mm deflection.
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Table 3.1: Preload flexures estimated Preload force

Flexures Deflection Preload

(mm) (N)
1/2 flexure 2.37 31

1 flexure 2.37 62
1 1/2 flexures 1.99 78

2 flexures 1.99 103

The preload force has been tabulated in Table 3.1 for a 0.8 mm thick sample plus

one top clamp (0.060 in thick) plus two lower clamps (each 0.060 in thick) and a total

flexure stiffness of 26 N/mm.

Flexure bolts sizing

The flexures of the preload flexure are clamped with a single bolt which is subject

to both a normal force and moment. Because of this special loading, the need to use

small size bolts, and the restricted dimensions of the flexure, the sizing of these bolts

is analyzed in detail.

Three stacked preload flexures are considered for the sizing of the bolts which

results in a preload force of 180 N. This means that the bolt will experience a normal

force of 30 N and a moment of 384 Nmm.

Figure 3-6 shows the bolts dimensions, which are taken as reference to calculate

the bolt compliance 6b and joint compliance 6j [3]

1 0.4d 11 0.5d
6 b = -( 0.4 + + ).5 (3.15)

7rD2 /4 Am Am

6- = with As = -(DH +0.11 2 -dh 2 ) (3.16)
E -A, 4

where E is the bolt material Young's modulus, d is the minimum thread diameter,
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Figure 3-6: Felxure bolt.

Am the area of the minor thread diameter.

The bolt settling deflection f, and force F, are calculated as follows:

fz = 3.29. (1).34 10- 3mm (3.17)

F h = (3.18)
6b + 6j

Finally the minimum and maximum bolt mounting force is calculated [3]

FMmin = (Freq + F2) (3.19)

FMmax = aA -FMmin (3.20)

With the following data E = 2.1 . 10 5MPa, d = 1.5mm, Am = 1.8mm 2 11 =

75mm, DH = 3.8mm, 1j = 75mm, and dh = 2.4mm; we find the following compliances

6 and settling force F,:

6b= 200.6 -10- 6 mm/N (3.21)

As = 95.8mm 2 (3.22)
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6j = 3.7 -10-6mm/N

f = 12.4 - 10- 3mm (3.24)

F, = 61N (3.25)

(3.26)

Figure 3-7 shows how the pressure distribution in the bolted joint sums up. The

design consideration for this bolted joint is that all the joint interface stays in compres-

sion. For that Frel > -- +9Mi which implies that Freq > 30N+9.384Nmm/(4-5mm) =A A 4bA '

203N. Then the Fmin = SF - Freq + F, = 2 203N + 61N giving Fmin = 467N. And

the Fmax = aA . Fmin, with OA = 2.5 for being the bolt preloaded manually, giving

Fimax = 1168 N. The yield strength is matched in an M2 bolt at a preload force of

2420 N meaning that a safety factor of 2.1 is accomplished.

FFjdd

Figure 3-7: Flexure bolt joint pressure distribution under load.
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3.1.4 Top plate sizing

The rubber specimens are compressed between the target and the top plate by the

aid of the preload flexure. This top circular plate is bolted on the circumference

and subject to a uniform central force due to the force transmitted by the rubber

specimen. The top plate is required to be stiff compared to the rubber specimen. A

rubber specimen static compression stiffness of 50 N/pm is taken as a reference. The

design stiffness for the top plate is on the order of 1000 N/pm.

To size the top plate the expression given by Roark [19] to find the deflections of

a circular plate fixed on the outer edge is used

wa 3 C1L6
Yb = -- L 3  (3.27)

D (C4

W a2

S= W2 L6 (3.28)
DC4

where C1, L6 and C4 are factors which depend on the geometry of the plate as

defined by [19]; D = Et3  is the plate stiffnes constant, with t being the plate
12(1~vy2)

thickness, and v the Poisson ratio. The model of the plate is shown in Figure 3-8,

which shows a center hole which is the one existing in the top plate for the cap gage.

rO

Figure 3-8: Circular plate with outer edge fixed, and inner edge free.

70



S5APZ~L9-

Figure 3-9: Model of top plate and sample deformation.

When the sample is under a load W it will be subject to a reduction in thickness

At = W/k, where k is the sample stiffness. The plate will also deflect as shown in

Figure 3-9. Due to the plate deformation the capacitance gage will actually measure

a reduction of thickness Atm = At - (Yb - yw). The deflection y, is estimated

as yw = -(a - ro)3 . So the measurement error will be (Atm - At) which gives a

percentage error expressed by

(Atm - At) 1 Yb [ -At) (

A t = - (3.29)

Taking into consideration the following parameters: the top plate material Young's

modulus and Poisson ratio E = 2.1. 10 MPa and v = 0.3 (for steel), a plate thickness

t = 12.7 mm, dimensions b = 4 mm, a = 45 mm, ro = 15 mm, and a sample compres-

sion stiffness k = 50 N/pm gives as measurement error of -1.07%. This measurement

error is adequate for the considered static stiffness.

An estimate of the top plate natural frequency is of the order of 15 kHz, which

is acceptable for making measurements of the rubber specimens dynamic stiffness up

to 5 kHz. The estimate is done by using the equivalent mass and stiffness method,

71



derived with an approximate finite element method.

3.1.5 Body design

The body is designed to serve as the principal structure of the test device. Three

windows are incorporated to ease the device assembly and voice coil holder alignment

with respect to the permanent magnet.

A photograph of the target-flexure-sample-voice coil actuator assembly inside the

body is shown in Figure 3-10.

Figure 3-10: Photograph of the target-flexure-sample-voice coil actuator assembly
inside the body.
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3.1.6 Force indirect measurement

Because of the voice coil resistance, inductance, and back emf, the force requires to be

measured indirectly by measuring the current. The current is measured with the aid

of a 0. 1Q resistor, with a 25W power rating. The chosen resistor has a comparable low

resistance to the one of the voice coil in order to unalter the voice coil performance.

A schematic circuit of the current sensing is shown in Figure 3-13.

3.1.7 Displacement measurement

The displacement measurement is done with the aid of an ADE 2804 passive ca-

pacitance probe in conjunction with an ADE 3800 module. This capacitance probe

from ADE [1] is a transducer which forms a capacitor with the target surface. And

because the area of the formed capacitor is constant, variations in capacitance are re-

lated to variations in the distance between the probe and the target surface. Further

the module has an output voltage proportional to the distance between the probe

and the target. The output voltage is OV when the probe is at its nominal stand-

off, -1OV at near standoff, and +10V at far standoff. In our system the nominal

standoff is 50 pm, and the probe has a measuring range of +25 pum from this standoff.

The target used for the probe is the rubber specimen holder. For that reason the

rubber specimens are circular with a circular hole at the center, to allow the gage to

sense the displacement of the metal target with no intervening rubber.

The gage is clamped on the top plate with the aid of a quick-grip keyless bushing

like the one shown in Figure 3-11. This type of clamp was chosen in order to maintain

the top plate stiffness, ease quick assembly and disassembly, and hold the gage firmly

near the target. A cross section of the clamp, cap gage, and top plate assembly is

show in Figure 3-12.
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Figure 3-11: Quick-grip keyless bushing.

The stand-off of the capacitance gage must be set up to 50 pm from the target

within at least 5 pm. This can be done by placing plastic shims between the target

and capacitance or by a clamping mechanism that allows a precise adjustment of the

cap gage position without compromising the connection stiffness. The first option

is not possible because of the lack of access to the gap between the cap gage and

the target. But the quick-grip keyless bushing permits a fine adjustments of the gap

between the target and probe by increasing it while tightening the bushing nut. The

way to set up the probe stand-off is by first placing the cap gage close to the target

and then tighten the bushing nut until the cap gage module outputs 0 V (which cor-

responds to the 50 pm stand-off). If a tighter grip of the cap gage is desired then the

bushing could be pushed in when near to the measuring range of the cap gage and

then tighten the bushing nut until the cap gage module outputs 0 V. This procedure

is not easy to follow the first time you try it, but it doesn't require many repetitions

to make it an easy task.
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Figure 3-12: Cross section of compression rubber test device.

The ADE 3800 capacitance gaging module is set up for:

Sensor diameter: 2 mm

Total Measurement Range: 50 pm (±25 pm)

Output Voltage Range: 20V(t10V)

Output Measurement Range: 50 pm (±25 pm)

Output Scale Factor = OVR/OMR = 0.4V/pm

Standoff: 50 t
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Bandwidth: 5kHz

3.1.8 Power Amplifier

For our test setup a constant force magnitude supply from the voice coil actuator,

for the test frequency range, is ideal. For that to be possible the current magnitude

needs to stay constant. A maximum current of 0.8A is chosen in order to keep the

power dissipation of the voice coil low. The voice coil actuator circuit model is shown

in Figure 3-13, yielding the following differential equation:

dtVm(t ) - i(t )( Rs + Rm) - Lm+i(t) - e(t ) = 0 (3.30)

R, L,

+ +

Yn e

S

Figure 3-13: Voice coil actuator circuit.

where e(t) = Kmjx(t) is the back-emf. The magnitude of the back-emf is

defined by le(t)I = Kmwlx(t)I where jx(t)l < 1 - 10-6 m, Km = 7.1 V/A, and

w < 31416 rad/s(5 kHz), which gives a back-emf le(t)l < 0.22V. The back-emf is

very low compared to even the voltage drop across the resistors R, and Rm for the

chosen current of 0.8 A, of 0.8 A(5.5Q + 0.1Q) = 4.48 V. For that reason then we

simplify (3.30) as follows:

Vm(t) - i(t)(Rs + Rm) - Lmdi(t) = 0 (3.31)

Taking the Laplace transform of (3.31):
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Vm(s) - I(s)(R. + Rm) - LmsI(s) = 0 (3.32)

I(s) _ 1/(Rs + Rm) (3.33)
V(s) (Lm/(Rs + Rm))s + 1

For the given values of R, = 0.1Q, Rm = 5.5Q, and Lm = 2.3 mH, gives as a pole

with a break frequency at 388 Hz. The Bode plot for I(s)/V(s) is shown in Figure

3-14.

Voice coil actuator I(s)N(s)

F requency (Hz)

Figure 3-14: Voice coil actuator I(s)/V(s) Bode plot.

3.1.9 Electrical connections

To avoid ground loops a grounding technique was followed as shown in Figure 3-15.

The technique followed is to keep supply commons separate and meet only at one

single point connected to ground. As a result "each supply current returns only on

its associated common, and not on other commons or the ground wire," as stated by

Trumper [18] (Sec. 5.5.1)

This grounding technique helped reduce the ground loops and electrical noise of
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Figure 3-15: Schematic of electrical connections for the rubber test device.

the position signal. The measured electrical noise from the cap gage is on the order of

2 mV pk-pk, which is equivalent to 5 nm pk-pk displacement. This noise measurement

is taken with the capacitance gage module filter set up at 5 kHz, and further low pass

filtering of 50 kHz.

3.2 Shear Test Hardware

The design of the shear test hardware is presented in this section. A solid model of

the shear test device is shown in Figure 3-16.
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Figure 3-16: Solid model of shear test device (Some parts shown transparent to clarify

assembly).

3.2.1 Functional Requirements

The shear test hardware has the purpose of testing thin rubber specimens under

shear. This hardware utilizes basically the same main hardware as the compression

test hardware in order to make the device more versatile and to reduce its develop-

ment time and cost.
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The shear test hardware uses the same actuator, body, bottom plate, top plate,

and cap gage as the compression test hardware. The only hardware that requires a

new design is the target shaft and sample holder. The rubber specimens are placed

between the target shaft and sample holder. The sample holder should be able to

preload the rubber samples to different preload values in order to take into account

its effect in the rubber bearings performance. The rubber specimens will range in

thickness from 1 - 0.5 mm.

A photograph of the sample holder with the target shaft, with the sample in be-

tween both and the voice coil actuator coil holder is shown in Figure 3-17.

Figure 3-17: Photograph of sample holder with sample, target shaft and voice coil
coil holder.

3.2.2 Sample holder

The sample holder is designed to hold three rubber specimens that are located in its

inner circumference with an equal angular separation of 120'. The rubber specimen
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is constrained between the target shaft and sample holder. The sample holder is

designed to allow the rubber specimen to be preloaded and assure complete surface

contact, as well as provide the rubber specimen with sufficient friction force to receive

shear load, and to be able to test the rubber specimen under different preload values.

The sample holder works as a three point contact clamp, due to the two built-in

flexures as shown in Figure 3-18. These flexures in combination with the preload bolts

permit the rubber sample to be preloaded up to 8600 N per sample. The flexures are

designed so that they behave like pivots, because of their low stiffness compared to

the rubber sample stiffness. Belleville springs stacked on the clamp bolts are used to

adjust the preload of the rubber sample to determined values.

Figure 3-18: Sample holder.

The material chosen for the holder is hardened tool steel with a yield stress of

890 MPa. This material was chosen in order to both allow high compliance, high

strength, and allow frequent assembly and disassembly.
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3.2.3 Target shaft

The target shaft has the function of transmitting the force of the voice coil to the

rubber sample in shear, and to serve as the target of the cap gage displacement sen-

sor. To be able to test different sample thicknesses, stepped diameter shafts were

fabricated, while the sample holder inner diameter was kept constant. A photograph

of one of the sizes of target shaft is shown in Figure 3-19.

Figure 3-19: Target shaft.

The material chosen for the target shaft is aluminum. The shaft is required to

be of non-magnetic material in order to avoid interaction with the voice coil actuator

magnetic field.

The target shaft is also electrically grounded to the outer shell of the cap gage

as required by the ADE electronics [1]. This is done via a flexible insulated cable

connected to the side of the target shaft and then to the top plate of the test device

which is electrically connected to the outer shell of the cap gage via the gage clamp.
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3.3 Comments

The design of the test hardware yielded a simple and moderate price device. The

most expensive hardware is the voice coil actuator and capacitance gage and related

electronics. These hardware was readily available in our lab which permitted to build

the test device with a budget below 2000 dollars (including the purchase of the tested

rubber material).

One other important design accomplishment is that the device ended being com-

pact in form and of relatively simple assembly and disassembly. The last permits

testing of different samples in a short time.

The following chapter shows the results gathered by the test device for different

materials tested under compression and shear.
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Chapter 4

Rubber Compression Test Results

The rubber compression test device was used to test thin rubber samples with a

thickness between 0.5- 1.0 mm. The materials tested under compression are Buna-N,

Neoprene, Viton, Latex/Natural rubber, and Silicone rubber. The Shore A hardness

of most tested samples is 40, with the exception of the Viton sample that has a Shore

75A hardness.

Figure 4-1: Rubber ring sample shown over target.
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The design of the hardware used to perform the compression test is presented in

Section 3.1. The testing of the sample is done by first applying preload between the

target steel surface and the top plate of the machine with the aid of the preload flex-

ure. The sample is subject to static and/or dynamic loading provided by the voice

coil actuator, keeping the sample always in compression thanks to the preload. A

photograph of the sample over the target surface and with the voice coil actuator coil

holder is shown in Figure 4-1. The change in thickness of the sample is measured with

the capacitance gage and the force is indirectly measured by measuring the voice coil

actuator current with the aid of a sense resistor, and calculating the corresponding

force via the actuator force coefficient.

4.1 Sample fabrication

The chosen sample shape is a ring of rectangular section due to the need of a central

opening on the sample to let the capacitance gage measure the displacement of the

target, as shown in Figure 4-2. This rings are cut with the aid of a razor blade, using

hard metal as a working surface. Three main section sizes are chosen in order to

study the effect of the shape factor of the sample, as shown in the Table 4.1

Figure 4-2: Compression sample dimensions.

4.2 Static stiffness

The static stiffness is measured by applying a compression load to the rubber samples

while measuring the displacement with the aid of the capacitance gage. The applied
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Table 4.1: Compression sample section sizes

Table 4.2: Parameters of compression rubber samples, (1) adhesive on both sides, (2)
adhesive on one side only, (3) one day of curing, (4) one week of curing

Key Material Shore A D d t S Adhesive

(mm) (mm) (mm)
a Buna-N High Grade 40 30 20 0.84 3.0 NO
b Buna-N High Grade 40 40 20 0.84 6.0 NO
c Buna-N High Grade 40 50 20 0.84 8.9 NO
d Buna-N High Grade 40 50 20 0.84 8.9 Cement (1)
e Viton Comm. Grade 75 30 20 0.74 3.4 Cement (1)
f Viton Comm. Grade 75 40 20 0.74 6.8 Cement (1)
g Viton Comm. Grade 75 50 20 0.74 10.1 Cement (1)
h Neoprene ? 50 20 1.65 4.5 Loctite (2)

i Silicone 40 40 20 0.99 5.1 Silicone (1), (3)

j Silicone 40 40 20 0.99 5.1 Silicone (1), (4)
k Latex Nat. Rubber 40 30 20 0.75 3.3 Loctite (2)
1 Latex Nat. Rubber 40 40 20 0.75 6.7 Loctite (2)

m Latex Nat. Rubber 40 50 20 0.75 10.0 Loctite (2)
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compression loads range from 0 - 6 N and are applied in an step-wise manner. The

recorded displacement is the steady-state one, which is achieved in the order of sec-

onds. Due to the high compression stiffness of the rubber samples and the limited

actuator force ,static deflections on the order of 20 nm to 200 nm can be accomplished.

The static stiffness tests are done by applying a compression load to the sample,

which is already under compression due to the existing preload. All the samples are

tested with a preload force corresponding to two flexures which is in the order of 103

N of preload force as shown in Table 3.1.

4.2.1 Linearity

The rubber ring samples compression stiffness turned out to be fairly linear for the

applied strain, as seen on the chosen examples of Figure 4-3. There exists certain

non-linearities in the compression stiffness due to the lack of adhesive, and flatness

of the sample which will be discussed in Section 4.2.2 and 4.2.4.

5

4-

L2b

0 0.1 0.2
Displacement (um)

X 10

4-

a3

-Ab
CO,

0 0.005 0.01 0.015
Strain (%)

Figure 4-3: Static stiffness linearity (refer to Table 4.2 for legend).
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4.2.2 Effect of bonding

As stated in Section 2.2.2 friction by itself could be sufficient to prevent slip of the

load carrying surfaces. But this is only recommended for low shape factors where the

shear stress that accompanies the bulging of the rubber is low.

5d

4-

0 0.02 0.04 0.06 0.08 0.1
Displacement (um)

Figure 4-4: Effect of bonding on compression stiffness for Buna-N,(c) no adhesive,

(d) with adhesive (refer to table 4.2 for legend).

It can be seen on figure 4-4 the difference in static stiffness due to the use of

adhesive for the case of Buna-N Shore 40A with a high shape factor of S = 8.9. The

static stiffness of the sample without adhesive is doubled with the use of adhesive.

This is thought to be due to the slip of the loaded surfaces and lack of contact with

the steel surfaces when no adhesive is present. Both of these reduce the compression

stiffness of the tested sample.

4.2.3 Effect of curing time

Another important factor is the adhesive curing time. Some adhesives have consider-

ably long curing times, like the case of silicone adhesives. Bonding silicone rubber to

any surface is a real challenge due to its low surface energy [15]. The best adhesives

for silicone are silicone-based adhesives[15].
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0.1
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Figure 4-5: Effect of curing on compression stiffness of

(j) 1 week of curing (refer to table 4.2 for legend).

Silicone, (i) 1 day of curing,

Silicone adhesives take long periods of time to cure and have high viscosity which

makes it really difficult to obtain a thin adhesive film. The silicone adhesives have

curing times on the order of a week, which made the testing of silicone samples tedious.

Figure 4-5 shows how the compression stiffness varied in time due to the long

curing time of the silicone adhesive. It shows how the compression stiffness increased

about 70% due to the curing of the silicone adhesive.

4.2.4 Effect of Shape Factor

As seen in Section 2.2.2 the compression modulus E, of a rubber ring should increase

as a function of the shape factor squared (S2 ) limited by the bulk modulus E,', as

defined by (2.6)

E= [+
c4Eo(1 + kS2) E00

(4.1)
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Table 4.3: Calculated (using (4.1) and (4.2)) and experimental compression modulus
E, and compression stiffness k, of the tested samples

Calc Calc Exp Exp
Key Material Shore A S Ec kc Ec kc

(MPa) (N/pm) (MPa) (N/[m)
a Buna-N High Grade 40 3.0 17.7 21.6 36.6 44.5
b Buna-N High Grade 40 6.0 61.6 115.2 41.3 77.2
c Buna-N High Grade 40 8.9 126.5 342.9 26.0 70.5
d Buna-N High Grade 40 8.9 126.5 342.9 40.9 110.9
e Viton Comm. Grade 75 3.4 119.7 165.2 79.0 109.0
f Viton Comm. Grade 75 6.8 356.3 756.3 89.1 189.1
g Viton Comm. Grade 75 10.1 592.9 1824.9 198.1 609.7
h Neoprene ? 4.5 39.7 54.8
i Silicone 40 5.1 45.7 72.5 34.8 55.2

j Silicone 40 5.1 45.7 72.5 61.8 98.1
k Latex Nat. Rubber 40 3.3 21.6 29.4 80.0 108.9
1 Latex Nat. Rubber 40 6.7 75.6 158.3 47.9 100.3

m Latex Nat. Rubber 40 10.0 153.2 465.2 92.6 281.2

and the compression stiffness kc is calculated using

EcA
t

where A is the sample area, and t is its thickness.

Experimental results confirm that the compression modulus Ec does increase sig-

nificantly with the shape factor S as shown in Table 4.3. Figure 4-6 shows a compar-

ison between the experimental compression modulus and the one found using (4.1)

and the data from Table 2.1. The experimental data shows 40% less Compression

modulus Ec for a Shape factor S = 10 which is not so far off, taking into consider-

ation the fact that the data of table 2.1 is for Natural Rubber and is used only to

estimate the compression stiffness. The important thing to add is that only one load

carrying surface was bonded, which reduces the bulging of the compression ring and

in consequence its compression modulus Ec.
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Figure 4-6: Increase in compression modulus for Viton Shore 75A with respect to

shape factor S, (*) calculated using (4.1) (red line) and the data from Table 2.1.

Table 4.3 shows that the calculated compression modulus is greater than the ex-

perimental one in the majority of the cases. High shape factor samples show being

considerably softer than calculated. This can be attributed to lack of contact of the

whole sample loaded area due to its high compression stiffness and the use of adhesive

on only one side of the sample. Other important clarification is that the compression

modulus of high shape factor specimens is limited by the material bulk modulus. The

bulk modulus used to calculate the compression modulus of the samples is the one

provided by Table 2.1, which is for Natural rubber and serves only as a reference.

4.2.5 Settling

After the sample (with the respective adhesive) is placed in the test device and subject

to preload, it experiences a settling as shown in Figure 4-7. The settling was recorded

a few minutes after the sample was preloaded, so the actual settling displacement is

expected to be higher. The settling time is in the order of hours, and it is important

to wait for this settling to occur before testing the sample, in order to assure testing

repeatability. This settling is believed to occur due to flattening of the load carrying
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surfaces and the curing of the adhesive.

4-

:3

E --&-(g) Viton SH75A 50x20x0.74
) -*-(e) Viton SH75A 30x20x0.74

0 1 2 3 4 5 6 7 8
Time (hours)

Figure 4-7: Settling of Viton compression ring samples (refer to table 4.2 for legend).

4.3 Dynamic Stiffness

The dynamic stiffness tests are performed with the sample always under compression.

This is possible due to the initial preload of approximately 103 N, which is signifi-

cantly higher than the applied nominal load of 6 N pk (12 N pk-pk).

The noise level from the displacement sensor accounts for about 5 nm pk-pk in

a bandwidth of 50 kHz. This bandwidth is set via the panel controls on the AM502

differential amplifier. This noise becomes significant when testing the high shape fac-

tor samples, due to the high complex stiffness they achieve at high frequencies. As

shown in Figure 4-9, they can reach a complex stiffness of nearly 2000 N/pm. With

an applied load of 12 N pk-pk, the measured displacement will be on the order of 6

nm pk-pk, and so the cap gage noise of 5 nm pk-pk will corrupt the results.
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4.3.1 Comparison of dynamic stiffness between tested mate-

rials

A comparison between samples of different materials with approximately the same

shape factor and Shore hardness is shown in Figure 4-8. This figure shows how the

complex modulus and its phase of different materials change with respect to frequency.

It can be seen that all of the materials show the three regions (rubbery, transition,

and glassy region) described in Section 2.3.9. The rubbery region is up to 10 Hz,

after which the dramatic change in complex modulus starts, ending about 100 Hz.

The highest phase advance takes place at the transition region within the frequency

range of 20 to 40 Hz. The increase of Complex modulus from low to high frequency

for the three materials is of the same order of magnitude ranging from a factor of 7

to a factor of 9.
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Figure 4-8: Complex modulus of different materials,
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4.3.2 Effects of shape factor

In this section the effect of shape factor S in the dynamic properties of rubber is

presented. The shape factor S of the tested rubber samples as defined previously

in Section 2.2.2 is the ratio between the loaded area to the force free areas, and is

defined by S = (D-d)

As the shape factor becomes large, the sample approaches the condition of bulk

longitudinal deformation shown in Section 2.3.6 and so similar behavior to that of

bulk compression is expected. As stated by [7] "Bulk compression would not be ex-

pected to involve changes in long-range molecular configuration or contour shape"

(p.22). Viscoelastic materials of high molecular weight (including rubbers) can show

drops of the bulk compliance with frequency of less than 10. Examples are given

by Ferry [7] (p.49,561), including natural rubber vulcanized by sulfur which shows a

drop of bulk compliance of less than a factor of 2 with increasing frequency.
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Figure 4-9: Complex modulus of Buna-N Shore 40A, plotted against

S=3, (b) S=6, (c) S=8.9 (refer to table 4.2 for legend).
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Based on the previous argument it is expected for high shape factors that we will

observe less increase of the complex modulus with frequency. Figures 4-9 and 4-10

show the complex modulus of Buna-N Shore 40A and Viton Shore 75A respectively,

for different shape factors. These plots show that the increase of complex modulus is

larger for smaller shape factors. It also shows higher phase advance for smaller shape

factors, which is an indication of higher loss.
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Figure 4-10: Complex modulus of Viton Shore 75A, plotted against

S=3.4, (f) S=6.8, (g) S=10.1 (refer to table 4.2 for legend).

frequency, (e)

4.3.3 Effect of bonding and curing time

In a similar manner as for the static stiffness, the adhesive becomes a key factor in the

complex stiffness of the compression ring. It is shown in Figure 4-11 how the complex

stiffness increases significantly when using an adhesive for the case of Buna-N Shore

40A with a high shape factor of S = 8.9, the complex stiffness is approximately dou-

bled in its whole frequency range.
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Figure 4-11: Complex modulus of Buna-N Shore 40A without adhesive (c) and with

adhesive (d); and of Silicone rubber after 1 day of curing (i) and 1 week of curing (j)

(refer to table 4.2 for legend).

Figure 4-11 shows as well how the curing time of the silicone adhesive affects the

complex stiffness of silicone rubber. In this case the complex stiffness of the sample

with the silicone adhesive cured for one week is fifty percent higher than the one with

one day of curing. This increment takes place only on its low frequency range.

4.4 Step response

The step response of viscoelastic materials is characterized by a rapid rise (some-

times called the elastic zone) followed by a slow creep zone. The time characteristics

of the creep process depends mainly of the material and temperature of operation [11].

All the samples shown in this Section were subject to a 0.5 Hz square wave force of

11 N pk-pk, which was accomplished by driving the voice coil actuator with a current

source amplifier that had a bandwidth of about 50 kHz.
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The step responses of the tested samples have shown a rapid elastic response in

the order of 0.1 milliseconds, followed by a slow creep on the order of seconds. As

discussed in Section 2.3.1 polymers' structure can rearrange on a local scale relatively

rapid, which explains the initial rapid response, but rearrangements on the long-range

scale are very slow, which explains the slow creep process. Figure 4-12 shows the step

response of a Buna-N sample as reference.

0.5 1 1.5
Time (sec)

2 2.5 3

Figure 4-12: Step response of Buna-N Shore 40A (refer to table 4.2 for legend).

4.4.1 Comparison of step response between tested materials

A comparison of the step responses between tested materials with approximately equal

shape factors is shown in Figure 4-13. The step responses are shown with the un-

normalized and normalized displacement. It is clear in the normalized step response

that the Latex/Natural Rubber Shore 40A specimen has a considerable shorter creep

process, and that the Buna-N Shore 40A and Viton Shore 75A rubber show fairly

similar creep properties.
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Figure 4-13: Comparison of step response for different materials, (b) Buna-N Shore

40A, (f) Viton Shore 75A, (1) Latex/Natural rubber Shore 40A (refer to table 4.2 for

legend).

4.4.2 Effect of shape factor

The effect of the shape factor on the step response was found insignificant for most of

the tested samples as shown in the case of Buna-N in Figure 4-14, and in the case of

Latex/Natural rubber in Figure 4-16. Only Viton shows slightly less creep for smaller

shape factors, as shown in Figure 4-15.
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Figure 4-14: Step response for Buna-N Rubber Shore 40A for different shape factors,
(a) S = 3.6, (b) S = 6, (d) S = 8.9 (refer to table 4.2 for legend).
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Figure 4-15: Step response for Viton Shore 75A for different shape factors, (a) S = 3.4,

(b) S = 6.8, (c) S = 10.1 (refer to table 4.2 for legend).

E

E
0
Wu
"a
co
5

0.15

0.1

0.05

0

-0.05

-0.1

1

E 0.5

C
E00

C -
-D -0.5
0

0 1 2 3 0 1 2
Time (sec) Time (sec)

3

Figure 4-16: Step response for Latex/Natural Rubber Shore 40A for different shape

factors, (a) S = 3.3, (b) S = 6.7, (c) S = 10 (refer to table 4.2 for legend).

4.5 Comments

The compression tests shown in this chapter are useful for understanding the behav-

ior of thin rubber bearings under compression both static and dynamic. The results

have shown that to assure a high compression stiffness adequate bonding of the load

carrying surfaces is required. This compression stiffness is also limited by the ad-
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equate contact with the steel surfaces. Samples were prepared for testing with the

limitations of bonding only one side of the specimen. Both sides of the specimen

could actually be bonded using metal shims. This wasn't done due to lack of time

but is highly recommended.

The next Chapter will show the shear test of rubber pads both static and dynamic.
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Chapter 5

Rubber Shear Test Results

The rubber shear test device is used to test thin rubber samples with a thickness

between 0.5 - 1.0 mm. The materials tested under shear are Buna-N, Viton, Silicone

rubber, Neoprene and EAR C-1002.

from 35 to 80.

The Shore A hardness of the samples ranges

Figure 5-1: Shear test assembly of sample holder, rubber sample, target shaft, and
voice coil actuator coil holder.

103



The design of the hardware used to perform the shear tests is presented in Sec-

tion 3.2. The testing of the sample is done by first applying to it preload between

the target shaft and the sample holder. The preload can be varied with the aid of

the preload bolts and Belleville springs shown in Figure 5-1. The sample is sub-

ject to static and/or dynamic shear load provided by the voice coil actuator. The

shear displacement is measured with the capacitance gage and the force is indirectly

measured by measuring the voice coil actuator current with the aid of a sense resistor.

5.1 Sample fabrication

The rubber sample requires to be preloaded in order to provide the necessary friction

and prevent slip under a shear load. The preload is as well applied in order to study

its effect in the shear properties of the rubber sample. The rubber requires to have at

least one load carrying surface bonded to a rigid surface to avoid creep under when

preload is applied. Using an aluminum sheet as the rigid surface instead of the shaft

avoids the need of constantly removing the sample from the shaft with the use of a

razor blade and cleaning the adhesive from the shaft with the use of solvent.

The rubber samples for the shear tests consist of rectangular sheets cut out of

rubber sheets of the desired material and formed over a round shaft. This are fab-

ricated by first placing an aluminum sheet (0.050mm thick) over a round shaft as

shown in Figure 5-2 (a). Next it follows the bonding of the oversized rectangular

rubber sheets with the respective adhesive as shown in Figure 5-2 (b), applying the

neccesary pressure to get rid of the excess adhesive. After waiting an adequate curing

time, the bonded aluminum sheet and rubber sheet is removed. Then the rubber

samples are cut out with sharp scissors or an x-acto knive to the desired dimensions.

The fabricated samples are shown in Figure 5-2 (c).

Once the rubber samples are fabricated they are placed between the OD of the
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(a) (b) (c)

Figure 5-2: Shear test rubber samples fabrication

correct size shaft and the sample holder, as shown in Figure 5-3. The samples are

then preloaded to the desired preload with the aid of the preload bolts and Belleville

springs.

Figure 5-3: Top view of shear test assembly of sample holder, rubber sample and

target shaft.

To accomodate for the different thicknesses of the rubber specimens several shafts

were fabricated with different diameters ranging from #38.7 mm to #40.3 mm. Figure

5-3 shows the sample holder and shaft assembled with a rubber sample in place.
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The tested rubber samples have an arc length dimension B, height H, and thick-

ness t as defined in Figure 5-4. By changing the sample dimensions one can to test

them at higher strains by reducing the loaded area, and also further regulate the

amount of preload pressure.

H.

Figure 5-4: Shear sample dimensions.

Table 5.1 shows the parameters of the tested shear rubber samples.

5.2 Static Stiffness

The rubber samples are subject to a shear load while measuring their displacement

with the capacitance gage. The applied shear loads range from 0- 6N and are applied

in an step-wise manner. The recorded displacement is the steady-state one which is

achieved in the order of seconds. Static deflections on the order of 260 nm to 8 Am

could be accomplished.
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Table 5.1: Parameters
test)

of shear rubber samples,(notes: (1) after 35 days of fatigue

Key Material Shore B H t A Preload notes

(mm) (mm) (mm) (mm2) (MPa)
BN1 Buna-N 40A 40 20 0.84 800 6.9
BN2 Buna-N 50A 40 20 0.85 800 6.9
C1 EAR C-1002 50A 25 20 0.70 500 4.9
N1 Neoprene 40A 40 20 0.80 800 0.2
N2 Neoprene 40A 40 20 0.80 800 0.4
N3 Neoprene 40A 40 20 0.80 700 3.4
N4 Neoprene 50A 35 20 0.75 700 1.8
N5 Neoprene 50A 35 20 0.75 700 3.7
N6 Neoprene 70A 35 20 0.77 700 0.4
N7 Neoprene 70A 35 20 0.77 700 3.7
N8 Neoprene 80A 35 20 0.77 700 0.4
N9 Neoprene 80A 35 20 0.77 700 1.8

N10 Neoprene 80A 35 20 0.77 700 3.7
S1 Silicone 35A 25 20 0.5 500 0.8
S2 Silicone 35A 25 20 0.5 500 0.8 (1)
S3 Silicone 40A 40 20 0.99 800 3.4
S4 Silicone 50A 40 20 0.94 800 1.7
S5 Silicone 50A 40 20 0.94 800 3.4
Vi Viton 75A 40 20 0.71 800 0.4
V2 Viton 75A 40 20 0.71 800 1.0
V3 Viton 75A 40 20 0.71 800 1.7
V4 Viton 75A 40 20 0.71 800 3.4
V5 Viton 75A 40 20 0.71 800 6.9
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Figure 5-5: Shear static stiffness results for selected materials (a) Force vs. Displace-

ment, (b) Shear Stress vs. Strain (refer to table 5.1 for legend)

5.2.1 Linearity

As shown in Section 2.2.4 it is noted by Lindley [16] that the shear-strain curves of

rubber are linear for strains below 50%.

The strains applied to the tested samples where in their majority below 0.2%. It

can be seen in Figure 5-5 that the shear-strain curves of the tested samples are linear.

5.2.2 Effect of Preload

As noted by Gent [9] the shear stiffness (or shear modulus) of components of high

shape factor increases as a compressive load is applied. It is further noted that the

this effect increases with increasing shape factor and compressive strain.

The tested samples are subject to different compressive preload pressures with the

aid of the preload mechanism shown in Figure 5-3.
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The experimentally measured static shear modulus G for the different tested ma-

terials against preload pressure is shown in Figure 5-6 and Table 5.2. Table 5.2 shows

a term Xp = which is the ratio of the shear modulus of the rubber modulus with

preload with respect to the theoretical one without preload (taken from Table 5.3).

It can be seen in this figure how G increases with preload for all the tested samples.

It is important to notice that the samples with higher Shore hardness show higher

increment of Shear Modulus G with preload pressure.
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Figure 5-6: Static Shear Modulus G as a function of preload pressure.

Table 5.3 shows the shear modulus, and shear stiffness of the tested samples based

on 2.11

ks = 3 G
t
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Table 5.2: Tabulated static shear modulus G and shear stiffness k, as a function of
preload pressure

Key Material Shore Preload G k X = 
(MPa) (MPa) (N/p-m)

BN1 Buna-N 40A 6.9 1.94 10.9 4.0
BN2 Buna-N 50A 6.9 3.74 20.7 5.4
NI Neoprene 40A 0.2 1.22 7.2 2.5
N2 Neoprene 40A 0.4 1.43 8.4 2.9
N3 Neoprene 40A 3.4 1.52 9.0 3.1
N8 Neoprene 80A 0.4 3.94 19.6 1.5
N9 Neoprene 80A 1.8 6.04 30.0 2.3

N10 Neoprene 80A 3.7 6.39 31.8 2.4
S4 Silicone 50A 1.7 2.44 12.2 3.5
S5 Silicone 50A 3.4 2.83 14.2 4.1
Vi Viton 75A 0.4 3.92 26.0 1.7
V2 Viton 75A 1.0 5.54 36.8 2.4
V3 Viton 75A 1.7 5.45 36.2 2.4
V4 Viton 75A 3.4 6.21 41.2 2.7
V5 Viton 75A 6.9 7.17 47.6 3.2

where A = B - H is the area of each pad, t is the thickness, and G is the shear

modulus taken from the Table 2.1.

The shear modulus and shear stiffness of the rubber samples were measured un-

der preload. To measure the shear modulus and stiffness without preload the sample

requires to be bonded to the shaft and sample holder to avoid slip. To do this a new

shaft and sample holder will be required for each sample, or a long adhesive removal

procedure like soaking the assemble in solvent, will be required.

Comparing Table 5.2 and Table 5.3 it can be seen that the preloaded sample shows

a shear modulus and stiffness higher than the theoretical shear modulus and stiffness

of the sample without preload. This agrees with the increase of shear modulus and

stiffness shown by the shear tests.
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Table 5.3: Theoretical static shear modulus G

Key Material Shore G ks
(MPa) (N/pm)

BN1 Buna-N 40A 0.488 2.7
BN2 Buna-N 50A 0.690 3.8

N1-N3 Neoprene 40A 0.488 2.9
N8-N10 Neoprene 80A 2.683 13.3

S1-S2 Silicone 35A 0.429 2.1
S4-S5 Silicone 50A 0.690 3.5

V1-V5 Viton 75A 2.269 15.1

5.3 Dynamic Stiffness

The dynamic stiffness tests are performed with the sample under preload. This

preload is required to provide the necessary friction and avoid slip of the sample

under shear load. The preload is applied as well to study its effect on the dynamic

properties of the sample. This preload can be varied by stacking in different sizes and

arrangements Belleville springs as shown in Figure 5-3.

5.3.1 Effect of Shore Hardness

Rubber hardness is increased by the addition of fillers like carbon black. As noted by

Lindley [16] the addition of this fillers affects the dynamic properties of rubber. It is

shown by Lindley that for Natural rubber the addition of fillers have a considerable

stiffening effect on the low frequency complex modulus of rubber and much lower

effect on the high frequency complex modulus. It is also shown that the addition of

fillers to natural rubber decreases the loss factor.

The experimentally measured shear modulus G for Neoprene with different Shore

hardnesses and approximately equal preload is shown in figure 5-7. The low frequency

G of Neoprene increases with increasing Shore hardness, and the phase advance or

loss decreases. Because the loss of the Neoprene rubber decreases with hardness along
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with the increase of G with frequency. The Shear modulus of Neoprene increases by

a factor of 123, 57 and 22 for Shore 50A, 70A and 80A respectively.
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Figure 5-7: Complex shear modulus of Neoprene rubber for different Shore hardness,

plotted against frequency, (N5) 50A, (N7) 70A, (N1O) 80A (refer to table 5.1 for

legend).

5.3.2 Effect of Preload

When a rubber shear element is subject to preload its internal pressure is increased

and this results in an increase of its shear modulus and decrease of loss in the rubbery

region (low frequency region) as shown in Section 2.3.12.

The experimentally measured shear modulus G for Neoprene with different preload

pressures and the same Shore hardness is shown in Figure 5-8. The low frequency

G for Neoprene rubber increases with increasing preload, and the phase advance de-

creases. Figure 5-8 (a) shows how the phase advance for Neoprene Shore 40A is

significantly affected at low frequency and that the high frequency G and phase ad-
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vance remain similar in magnitude. On the other hand, Figure 5-8 (b) shows how the

phase advance for Neoprene Shore 80A is reduced at low frequency but has a major

reduction in the transition region, and that the high frequency G and phase advance

remains similar in magnitude.
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Figure 5-8: Complex shear modulus of Neoprene rubber for different preload pres-

sures, plotted against frequency, (a) Shore 40A, (b) Shore 80A (refer to Table 5.1 for

legend)

The low frequency shear modulus G of Viton rubber Shore 75A increases with

increasing preload, and the phase advance decreases. Figure 5-9 shows how the phase

advance for Viton Shore 75A is reduced at low frequency but has a major reduction

in the transition region, and that the high frequency G and phase advance remains

similar in magnitude.

The increase of Shear Modulus G with frequency for the tested materials at differ-

ent preload pressures is shown in Table 5.4 and in Figure 5-10. The table shows how

for a given material the low frequency (1 Hz) shear modulus increases with preload,

while the high frequency (2 kHz) shear modulus remains of similar magnitude. As a
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consequence the ratio of Shear modulus at high frequecy to low frequency decreases

with increasing preload. The figure shows the ratio between the Shear Modulus at

high frequency (2 kHz) and low frequency (1 Hz) GHF/GLF, and it can be seen how

it decreases with preload.
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Figure 5-9: Complex shear modulus of Viton rubber Shore 75A for preload pressures,

plotted against frequency (refer to table 5.1 for legend).

The higher Shore hardness materials show lower increase of shear modulus with

frequency as it can be seen for the case of Neoprene in Table 5.4.

When low preload pressures are present the shear modulus strongly increases with

frequency by 75 - 200 times. When preload is applied the increase of shear modu-

lus with frequency can be reduced to 20 - 120 times. The strong increase of shear

modulus with frequency can be a problem for high frequency designs, since it limits

the high frequency strokes of a precision machine using rubber bearings. But one can

design the precision machine taking this into consideration as well as being able to

adjust the low frequency shear stiffness with preload.
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Table 5.4: Tabulated values of low
frequency shear modulus GHF (at 2

frequency shear modulus GLF (at 1 Hz), high
kHz), and GHF/GLF

Key Material Shore Preload GLF GHF GHF/GLF

(MPa) (MPa) (MPa)
BN1 Buna-N 40A 6.9 2.8 362 131
BN2 Buna-N 50A 6.9 5.0 606 121
C1 EAR C-1002 50A 4.9 1.2 278 232
NI Neoprene 40A 0.2 1.8 285 161
N2 Neoprene 40A 0.4 2.2 285 128
N3 Neoprene 40A 3.4 2.6 223 86
N4 Neoprene 50A 1.8 2.0 186 95
N5 Neoprene 50A 3.7 2.2 260 118
N6 Neoprene 70A 0.4 5.3 397 74
N7 Neoprene 70A 3.7 7.3 411 56
N8 Neoprene 80A 0.4 4.7 217 47
N9 Neoprene 80A 1.8 9.0 217 24

N1O Neoprene 80A 3.7 9.0 193 21
S3 Silicone 40A 3.4 5.7 299 53
S4 Silicone 50A 1.7 3.2 241 76
S5 Silicone 50A 3.4 3.6 227 64
Vi Viton 75A 0.4 5.8 420 72
V2 Viton 75A 1.0 8.2 437 53
V3 Viton 75A 1.7 9.6 420 44
V4 Viton 75A 3.4 9.6 420 44
V5 Viton 75A 6.9 12.0 449 37
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Figure 5-10: High to low frequency shear modulus ratio versus preload pressure.

5.4 Hysteresis

Hysteresis is measured for the tested materials at specifically chosen frequencies. The

criteria for choosing these frequencies is based on recording the hysterisis at a low and

a high frequency where loss is expected to be low, and at several frequencies within

the transition region defined in Section 2.3.9, where the loss is expected to be high.

Hysteresis loops give an idea of the loss involved in the cyclic deformation of a

material. As the loss rq gets larger the hysteresis loop becomes thicker [14]. The hys-

teresis loops of the different tested materials is shown in Figures 5-11, 5-12, 5-13, and

5-14. It is hard to identify which sample shows more loss due to the different stiffness.

It is easier to identify at what frequency a tested sample experiences greater loss. Sec-

tion 5.4.1 calculates the loss factor based on this hysteresis loops, which helps making

a better judgement of the loss involved in the cyclic deformation of the tested samples.
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Figure 5-11: Shear Hysteresis Loops of Buna-N (Plots show Force (N) vs. Displace-

ment ([Am)).
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Figure 5-12: Shear Hysteresis Loops of Neoprene (Plots show Force (N) vs. Displace-

ment ( pm)).
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Hysterisis loop at 1 Hz
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Figure 5-13: Shear Hysteresis Loops of Silicone (Plots show Force (N) vs. Displace-

ment (Am)).
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Figure 5-14: Shear Hysteresis Loops of Viton (Plots show Force (N) vs. Displacement

( tm)).
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5.4.1 Loss factor calculated from hysteresis

The loss factor can be calculated in several manners which are not necessarily com-

patible, specially when high damping is present. One method is to calculate the

loss factor from the phase lag E of the strain with respect to the applied stress with

= tan e. Another is by calculating the loss factor from the hysterisis loop with

= D/27rU, where D is the dissipated energy per cycle and U is the maximum strain

energy. As stated by Nashif [11] "if the damping is high, tan E will not be small"

(p.49) and so it will differ greatly from the loss factor calculated from the hysterisis

loop. One must use a single method to compare the loss properties of materials, and

the value of the loss factor is usually below 1 for low loss materials but can be higher

than 1 when high damping is present.

The loss factor is calculated numerically from the hysteresis loops. First the en-

ergy dissipated per cycle D is found by integrating the hysteresis loop to find its area.

Second the maximum strain energy U is calculated. And finally the loss factor is

found by the equation 7 = D/27rU [14]. All this is done numerically with a developed

code shown in Appendix A.1.

The highest loss takes place in the transition region, as shown in Figure 5-15. This

is anticipated by the phase advance from the experimentally measured frequency re-

sponses in Section 5.3.

Tested materials with lower Shore hardness tend to have a higher loss factor than

the ones with higher Shore hardness. This can be seen in Table 5.5 which shows the

highest recorded loss factor of each tested material and its corresponding frequency.
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Figure 5-15: Shear Loss factor of tested samples.

Table 5.5: Highest loss factor for shear rubber samples

Material Shore Loss factor Frequency

r7 (Hz)

Buna-N 40A 2.00 30

Buna-N 50A 1.74 30

Neoprene 40A 1.71 30

Neoprene 80A 1.36 60

Silicone 40A 1.66 30

Silicone 50A 1.64 30

Viton 75A 1.57 30

5.5 Step response

All the samples are subject to a 0.5 Hz square wave force of 11 N pk-pk, which is

accomplished by driving the voice coil actuator with a current source amplifier that

has a bandwidth of about 50 kHz.
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The step responses of the tested samples show a rapid elastic response in the

order of 0.1 milliseconds, followed by a slow creep on the order of seconds, which is

similar to the compression test step response behavior. As discussed in Section 2.3.1

polymers' structure can rearrange on a local scale relatively rapid, which explains

the initial rapid response, but rearrangements on the long-range scale are very slow,

which explains the slow creep process. Figure 5-16 shows the shear step response of

a Buna-N Shore 40A sample as reference.

0.5 1 1.5
Time (sec)

2 2.5 3

Figure 5-16: Shear Step response of Buna-N Shore 40A (refer to table 5.1 for legend).

All of the step responses for the rubber specimens

pressure of about 0.8 MPa. The step responses are not

pressures.

are measured with a preload

measured at different preload

5.5.1 Comparison of step response between tested materials

A comparison of the step responses between tested materials is shown in Figure 5-17.

The step responses are shown with the un-normalized and normalized displacement.

It is clear in the normalized step response that the Silicone Rubber Shore 40A spec-
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imen has the shorter creep process, followed by Neoprene Shore 40A, and finally

followed by Viton Shore 75A with Buna-N Shore 40A, which show fairly similar creep

properties. (The idea here was to compare materials with the same Shore hardness,

but Viton was unavailable in Shore 40A for the desired thickness).
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Figure 5-17: Comparison of shear step response for different materials.

5.5.2 Effect of Shore Hardness

The step response of given materials with different Shore hardness is compared in

this Section. The Shore hardness has shown a minor effect on the step response.

It can be seen in Figure 5-18 how for tested silicones the normalized step response

came out as being practically equal. For the case of the tested Neoprene samples as

shown in Figure 5-19 the harder Shore 80A sample showed a slightly longer creep

process than the softer Shore 40A sample. On the other hand the the harder Shore

50A Buna-N sample showed a slightly shorter creep response than the softer Shore

40A sample, as shown in Figure 5-20.
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No actual correlation between creep response and Shore hardness can be estab-

lished with the set of conducted experiments.
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Figure 5-18: Comparison of shear step response of Silicone rubber for different Shore

A hardness.
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Figure 5-19: Comparison of shear step response of Neoprene rubber for different Shore

A hardness.
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Figure 5-20: Comparison of shear step response of Buna-N rubber for different Shore

A hardness.
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5.6 Fatigue Tests

Reliablility of the rubber bearing is very important in order to consider it for being

used in precision machines. For the bearing to be reliable is essential that its fatigue

life is long enough, and if possible "infinite".

Gent [9] notes that mechanical fatigue is demonstrated in rubbery materials by a

progressive weakening of physical properties as a result of slow crack growth during

application of dynamic loads or deformation.

As presented in Section 2.4.1 Gent [9] observes that when reducing the dynamic

stress or strain to a certain value the fatigue life of rubber approaches infinity, as

shown on a typical S - N curve for rubber in Figure 2-20. This concept is called

limiting stress or strain. This concept is really important since if infinite life can be

assured in a rubber bearing then replacement of it could be avoided, increasing the

rubber bearing reliability.

The fatigue tests consists in applying a cyclic sinnusoidal force to the samples

at a fixed chosen frequency. The chosen frequency is of 100 Hz because of being an

intermediate frequency within the tested range that will permit a reasonable strain

of the sample and at the same time a reasonable amount of cycles. The amount of

cycles accomplished with this test frequency is about 8.64 million cycles per day. The

strain accomplished with the chosen samples are 0.16% pk-pk for the Silicone Shore

35A (Si from Table 5.1), and 0.004% pk-pk for the Neoprene Shore 80A (N8 from

Table 5.1).

While the samples are subject to the cyclic strain, the dynamic stiffness, and phase

are recorded in real-time with the aid of a developed dSpace model and Matlab code.

The simple dSpace model is shown in Figure 5-21, and the matlab code is shown in

Appendix A.2.
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Figure 5-21: dSpace model for fatigue test.

The developed Matlab code lets you specify the testing frequency as well as the

time intervals to take the dynamic stiffness and phase measurements in real-time.

The dynamic stiffness is done by applying A discrete Fourier Transform of the mea-

sured cyclic force and displacement is taken, and then used to find the magnitude

and phase of the tested sample complex stiffness at the given test frequency. All this

is done in real-time at the user specified time intervals.

5.6.1 Silicone SH35A

The Silicone SH35A sample was subject to fatigue testing for about 35 days at 100 Hz

and a strain of 0.16% pk-pk (0.8 pm pk-pk). The recorded shear stiffness and phase

angle during the lapse of the fatigue test is shown in Figure 5-22. The stiffness shows

a quasi-constant rise of stiffness from an initial value of 13.3 N/prm to 14.6 N/Am,

which accounts for a 9.8% rise in stiffness. The phase has a quasi-constant decrement

from 117.7' to 117.10 which accounts for a 0.5% reduction.
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This result looks promising since the properties of the sample suffered just a mod-

erate change of stiffening manner, showing no signs of an upcoming fatigue failure,

after being subject to 294- 106 cycles at 0.16% pk-pk strain.
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Figure 5-22: Fatigue test recorded shear stiffness and phase for Silicone SH35A.

5.6.2 Neoprene SH80A

The Neoprene SH80A sample was subject to fatigue testing for about 24 days at 100

Hz and a strain of 0.004% pk-pk (0.03 pm pk-pk). The recorded shear stiffness and

phase angle during the lapse of the fatigue test is shown on figure 5-23.

The noise coming from the displacement sensor (capacitance gage) accounts for

about 5 nm pk-pk, which could generate a maximum noise in our stiffness mea-

surement of about 50 N/pm. Even with noise within the measurements the stiffnes

remains between 295 N/pm to 340 N/pm which is about 14% pk-pk change in stiff-

ness. The change in phase is practically unnoticeable being less than 0.5%.
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This result looks promising as well since the properties of the sample didn't suffer

an appreciable change, showing no signs of an upcoming fatigue failure, after being

subject to 207 - 106 cycles at 0.004% pk-pk strain.
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Figure 5-23: Fatigue test recorded shear stiffness and phase for Neoprene SH80A.

5.7 Comments

The shear tests have given us important information regarding the behavior of the

rubber pads under shear, which serves in the design of rubber bearings.

One of the most important findings from the tests is how strongly the stiffness

rises with frequency to about 75 - 200 times with low preload. This can be regulated

with preload and reduced to 20 - 120 times. High Shore hardness materials show the

lowest increase in stiffness with frequency and are a good choice when the high rise

of stiffness with frequency is not desired.

As shown in Section 5.6 rubber pads can sustain hundreds of million of cycles of
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under shear strain for the tested shear strains, without failure. Further fatigue tests

are recommended, but the performed tests already predict the possibility of excellent

fatigue properties of rubber bearings.

The next Chapter gives guidelines for the design of rubber bearings for precision

machines. This Chapter takes into consideration both the results from the compres-

sion and shear tests from Chapter 4 and the current Chapter.
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Chapter 6

Design of rubber bearings for

precision machines

In this chapter further analysis required for the design of rubber bearings is made.

Manufacturing methods for the laminate rubber bearings are also presented. Differ-

ent topologies of linear and rotary bearings are shown, and compared.

6.1 Compression stiffness of bonded rectangular

rubber blocks

The compression stiffness of circular disks is presented in section 2.2.2. This is taken

as a reference for calculating the compression stiffness of rectangular blocks and is

taken as a good estimate. A derivation of the compression stiffness of a bonded rect-

angular rubber block will follow.

When a bonded rectangular rubber block is subject to compression, the block will

keep its volume quasi-constant due to the Poisson ratiov very close to 0.5. Because

of this, bulging will occur all around the rectangular block as shown on figure 6-1.

For calculating the compression stiffness the deformation of the rubber block will be
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analyzed in two stages.

F

t At

-- - - -~ -y

BxH

Figure 6-1: Compression of a bonded rectangular rubber block

The first stage is the homogeneous compression of the rubber block. For a homo-

geneous compression of a rubber block of thickness t by an amount At a force F is

required as shown on 2.2.1

F1 =~ (6.1)
t

where At/t = c.

Since the upper and lower surfaces are bonded, no strain occurs on their faces

and so the block must bulge around the block periphery. Taking into consideration

a Poisson ratio of approximately v ~ 0.5 the volume will remain constant and the

volume reduced by compression (= BHAt) shall equal the volume of the bulge around

the block Vbulge.

The bulge takes a parabolic form as it will be shown, due to the shear stress present

in the bonded surface and the corresponding internal pressure which deforms the rub-

ber outwards to keep the volume constant. Figure (insertfigureshowingverticallinesdef ormed)

shows how vertical lines in one of the planes of symmetry deform after compression.

If we take a deformed differential volume Bdxt as shown on figure 6-2 this will have

shear stresses on the top and bottom of value ro(x), and a pressures acting on both

sides denoted as P and P + dP. From this we get the following:
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Figure 6-2: Differential bulging volume

TO = tdP (6.2)
2 dx

T(x,z)

To(X) Depth 'B'

dx

Figure 6-3: Partial differential bulging volume

Now taking a portion of the previous differential volume as shown in Figure 6-3

we can find the shear stress on the rubber as a function of the position within the

thickness of the rubber as follows:

-2z
T(X, z) = TO(X) [11 - (6.3)

The Bdxdz element is sheared by the shear stress r(x, z) as shown on figure 6-4

resulting in a deflection d(6x) for an element of height dz, which integrated as shown

will give the deflection 6x

133



T(x,z)

7idz
T(x,z)

F r - 6x

Figure 6-4: Shear of Bdxdz volume

d(6x) = To(x, z)dz
G

6X = G
z z21z--
t

(6.4)

(6.5)

As mentioned earlier the bulge described by 6x will take a parabolic form, and

the maximum deflection will take place at z = t/2, as shown on figure 6-5, which we

will call vx

t-AtV
I~ F

VX

t-At

:vy

Figure 6-5: Bulge at free ends of rubber block

VX = 6x(z = t/2)
T T(X)t

4G
(6.6)

The shear stress To(x) is taken as linear and will be defined as To(x) = Cix, giving

as the following

C1 Ht
vX(x = H/2) = 8G (6.7)
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Combining (6.2) and (6.7), and taking into consideration the border condition of

P = 0 at x = H/2 we get the following pressure distributions on the symmetry plains

of the compression block

2G Hv
P(x,y = 0) = 2

2GBvy
P(x=0,y)= t2

EI (6.8)

(6.9)

4x2-
H2

4y2 -
B2

Now for P(x = 0, y = 0) 2G-Hv 2GBandso

Hvx = Bvy (6.10)

The bulge volume can be calculated as follows:

4
VbuIge = BH6t = -(t - 6t)[vx(B + vy) + vy(H + v)] (6.11)

3
4

BH6t = -(t - 6t)[Bvx + Hvy] (6.12)
3

where vx and vy have been taken as much smaller than B and H. Using (6.10)

and (6.11) we find the following

3B 2 Hi
Vx = 32 c(6.13)

4(B 2 + H 2 )
3BH2 i

VY = 3B E(6.14)
= 4(B 2 + H 2 )

where At is taken as much less than t and E = At/t.

So a pressure distribution of the following form is assumed
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3GB2 H2c
P(x, y) = 2t2  2 + 2 )

2t2(B2 + H 2)

(6.15)
H2
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Figure 6-6: Pressure distribution related to the bulging of a rectangular rubber block

under compression as defined by (6.15)

Integrating the pressure distribution defined by (6.15) and shown on figure 6-6 over

the whole area will give us the force associated with the bulge F 2 = / 2 fH/ 2 P(x, y) dx dy

which will give

2GB3 H 3
F2 = 3t 2(B 2 + H 2 )

(6.16)

So adding up F and F2 from (6.1) and 6.16 we will have

F = EoAE + 2GB3 H3

3t 2 (B 2 + H 2 )
(6.17)

which when taking into consideration EO = 3G for v ~ 0.5 will reduce to the

following
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Table 6.1: Tabulated values for kR

n

1
2
3
4
5

10
00

kR
0.89
0.80
0.71
0.65
0.62
0.53
0.44

F = EAE I
2B 2H 2 1

+ I
9t 2 (B2 + H 2 )j

Taking a rectangle of sides B and H = nB, with n being the aspect ratio, the

shape factor will be S = nB and so (6.18) will take the form2t(n+1)

F = E0Ac 1 + 2kRS2I

Ec = E0 11 + 2kRS2I

(6.19)

(6.20)

where kR = 9(n,+1) which will take the values shown on Table 6.1.

So the compression of a rectangle with the same shape factor as a circular disk

can be expected to show less compression stiffness E, being this even lower when n

increases.

Taking into consideration the correction factor k given by Lindley as shown in

(2.3), (6.21) becomes

Ec = E0 1 + 2kRkS2I (6.21)
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Taking into consideration the bulk modulus of rubber as shown in Section 2.2.2

the compression modulus of the bonded rectangular rubber block becomes

Ec= + (6.22)
Eo [I + 2kRkg2] Eco

6.2 Laminate rubber bearings

Laminate rubber bearings consist of rubber and metal sheets bonded together in

an alternate manner. This type of bearing has been widely used as bridge rubber

bearings since the increase in compression stiffness of the rubber bearing is of great

significance, while maintaining the same shear stiffness.

Rivin [17] has done research on ultra thin layered rubber-metal laminates. The

results of the research have shown high compression Ec to shear modulus G ratios

between 200 to 1000, utilizing rubber sheets thicknesses between 0.1 to 0.6 mm.

In this section insight will be given on why the use of rubber bearings in precision

machines becomes much more attractive when the rubber-metal laminate approach

is taken. Some insight will be given on how to size the intermediate metal sheets,

and different alternatives of fabrication will be presented.

6.2.1 Compression to shear stiffness ratio

The compression to shear stiffness ratio of a single rectangular rubber sheet with the

load carrying areas bonded to metal are given by (6.21) and (2.11) as follows,

1= [I + 2kRkS2 (6.23)
ks G
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where S = BH/[2t(B + H)].

If N rubber sheets of thickness t' = t/N are bonded to (N + 1) sheets of metal

as shown in Figure (laminatefigure) the shape factor of each rubber sheet will be

S' = NS. The total rubber thickness still remains the same t. The rubber-metal

laminates will behave as N springs in series, each of them with the following stiffness,

_ E0 A [1 + 2kRkN 2S 2] (6.24)
t

and an equivalent compression stiffness for the N springs in series of

k - E0 A [1 + 2kRkN 2S 2]

Nt
(6.25)

The shear stiffness of a each rubber sheet will be

G CAN
t

(6.26)

and the shear stiffness of the rubber-metal laminate bearing will be

GA
t

(6.27)

So with (6.25) and (6.27) we can find the compression to shear stiffness ratio as

follows

ke E0 [1 + 2kRkN 2S 2]

ks NG
(6.28)

Let's take as an example a rubber bearing made of a Shore 40A rubber, of the

following dimensions B = 40mm, H = 20mm, and t = 2mm fabricated with a 1, 3
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or 5 layers. Table 6.2 compares the compression to shear stiffness ratio of the three

options. The increase of compression to shear stiffness becomes really significant

when increasing the number of layers of the rubber-metal laminate bearing. But of

course as the number of layers increases so does the fabrication complexity, especially

for bearings for precision machines which are of reduced dimensions.

Table 6.2: Tabulated values for kR

Layers N=1 N=3 N=5
kc/ks 61 172 285

6.2.2 Sizing of intermediate metal laminates

The intermediate metal laminates are subject to tension when the rubber-metal lami-

nate bearings are subject to a compression load. Even though the strength of metal is

high compared to rubber, failure can occur. Failure of the metal intermediate shims

has been experienced by Rivin [17], at compression loads of 45 MPa for brass metal

layers, and above 250 MPa for steel metal layers.

The metal sheets between rubber sheets are subject to shear stresses on the x-z

and y-z plane, on both sides. This shear stresses can be calculated with (6.6), (6.13)

and (6.14), having a maximum value of

Txmax = 3GnB (6.29)
(n2 + 1)t,

3Gn2B (6.30)
ymax (n 2 + 1)tr

where n is the aspect ratio defined in Section 6.1, t, is the rubber laminate thick-

ness, and e = a-cE, with -c as the compressive stress and E, the compression

modulus of a single rubber sheet from (6.21).
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By integrating the shear stress on both sides of the metal shims of thickness tm,

the normal stress acting on the shims can be found

Grn2B 2

O'nx = en2B (6.31)
2(n 2 + 1)trtm

Grn2 B2

Uny = en2B (6.32)
= 2(n 2 + 1)ttm

The metal shims will be under a combined load condition, with a compressive

stress a- in the z-direction, a tension stress Un in the x-direction and a tension stress

any y-direction. A failure criterion must be used to evaluate the resistance of the

metal sheet. One of the recommended ones will be the Huber-Hencky-von Mises [10]

theory as follows

/ (O1_ - 9 2 )2 + (U1 - U3 )2 + (9 2 - Or3)2 < oy (6.33)

where a,, a-2 and U3 are the principal stresses, and ay the material yield strength.

6.2.3 Fabrication

The method of fabrication of laminate rubber bearings for precision machines should

be effective and of low cost. The method of fabrication could range from hand-

crafted to the high production rate machinery. The fabrication methods that will

be presented in this section will be for curved rubber bearings, since the fabrication

efforts were towards that type of configuration. The reason for this is that a rotary

rubber bearing was desired to be used in a rotary precision machine.

The laminates as a finished product or part consist of sheets of rubber separated

by metal plates (with the interfaces being properly bonded), and having the desired

form. Different approaches can be taken for doing this. One of them will be to have
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the metal shims pre-arranged with the desired arrangement to bound the form of

the rubber bearing, and inject the un-vulcanized rubber between them, followed by

vulcanization. A second approach will be to use vulcanized rubber sheets with the de-

sired thickness and bond them to the metal sheets forming the desired bearing shape.

The first approach gives you more freedom on the shape of the bearing, but comes

along with increased fabrication hardware complexity. The second approach can be

considered less expensive depending on the production volume and of the hardware

complexity.

When fabricating the laminates using vulcanized rubber sheets, one bonds the

rubber to the metal sheets with the aid of the proper adhesive. Also one must mould

the rubber sheets into the final form before the curing of the adhesive. The problem

of moulding the bonded rubber bearings is that the metal sheets prevent the bending

when at two or more metal sheets are present. Small deformations of the rubber

bearing after bonding might be acceptable.

OD moulding

One of the experimented methods was what we could call OD moulding. This method

was utilized for fabricating the samples for the shear test as shown in section 5.1.

For fabricating rubber-metal laminate rubber bearings one places an initial metal

sheet over the shaft, which is held in place by a small tension force, which can be

provided by an adhesive tape adhered to the ends of the metal sheet. Over this

initial metal sheet one adheres the rubber sheet with the proper adhesive, followed by

another metal sheet with adhesive, and so on. Each metal sheet is held in tension with

the aid of the adhesive tape. After waiting for the required curing time the bonded

rubber-metal laminates are removed from the shaft, and cut out to the desired size.

As an example the rubber-metal laminate bearings fabricated with the OD mould-

ing method, using EAR-C1002 rubber with aluminum sheets and a cynoacrolite ad-
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Figure 6-7: Fabricated laminate rubber bearing with the OD moulding method.

hesive is shown in Figure 6-7.

This method might be considered low-tech fabrication, but it managed to produce

an acceptable laminate rubber bearing.

Pressure moulding

Another method experimented was the fabrication of laminate rubber bearings by

pressure moulding. This method consists of placing the layers of metal and rubber

with the proper adhesive between two moulding surfaces and under pressure.

It was proven to be more effective to mould a long oversized rubber-metal lami-

nate, later cut to the desired size. The oversizing is required to eliminate any excess

or lack of adhesive on the edges of the original oversized laminate.
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Figure 6-8: Mould shaft for fabrication of rubber bearings.

A simple device was designed to fabricate the laminate rubber bearings by this

method. The design included using a commercial vise with adapted jaws that will

hold the moulding parts. One of the moulding part is a ground steel shaft as shown

in Figure 6-8, and the other a semi-cylindrical cavity as shown in Figure 6-9. Once

the metal and rubber laminates are placed into the moulding cavity a pressure is

exerted between the shaft and cavity with the aid of the vise as shown in Figure 6-11

and Figure 6-10. The bearings are cut out of the oversized rubber-metal laminates

using an x-acto knife. An example of bearings fabricated using the pressure moulding

method are shown in Figure 6-12.

This method proved to be really effective and reduced the amount of hand-crafting

in the fabrication of the bearings. One of the downsides is that to obtain nice cut

edges the x-acto blade needs to be replaced each time the cutting of a new bearing is

required.
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Figure 6-9: Mould semi-cylindrical cavity with oversized rubber-metal laminate and
cured adhesive.

Figure 6-11: Vise exerting pressure for moulding or rubber bearings.
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Figure 6-10: Moulding parts exerting pressure on rubber-metal laminates under cur-
ing.

Figure 6-12: Finished bearing after pressure moulding and cutting.

6.3 Linear rubber bearing

The design of any linear rubber bearing must comply with the following general

functional requirements: be compliant in the axial direction, provide restraint in the

transverse directions, and provide adjustable preload to the rubber bearings.
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6.3.1 Topologies

Different topologies of the linear rubber bearing will be presented here stating in a

qualitative manner their advantages and disadvantages.

The first topology shown in Figure 6-13 consists of four rubber bearings in a

square arrangement. This bearing is for a shaft of square section. The preload of the

rubber is accomplished by bringing together the two parts of the body with the aid of

preload bolts. Several approaches could be taken assure a given preload, for example

the use of Belleville Springs. The axial compliance is given by the shear of the rub-

ber bearings in that direction. The transverse restraint is given by the compression

stiffness of the rubber bearings, which is high. However the torsional stiffness will be

moderate in this design.

Rubber
Bearing

Figure 6-13: Linear rubber bearing option No. 1.

The second topology shown in Figure 6-14 consists of three rubber bearings in

a triangular arrangement. This is intended of course for a triangular section shaft.

Preload is accomplished with the aid of the top and bottom part of the body and the
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aid of preload bolts, in similar manner as the first topology. The axial compliance

is given by the shear of the rubber bearings. The transverse restraint will be mainly

provided by the compression stiffness of the rubber bearings, and is considered high,

and the torsional restraint of will be moderate.

Rubber
Bearing

Shaft

Body

Figure 6-14: Linear rubber bearing option No. 1.

If torsional compliance of the rubber bearing is not an issue then all the rotary

rubber bearings shown in Figures 6-15 and 6-16 may be used as linear rubber bearings.

6.3.2 Stiffness calculations

Calculating the axial shear stiffness of any of these bearings is fairly easy since one

needs to take into the consideration the loaded area of each rubber pad A, the cummu-

lative rubber thickness of the rubber t (considering the bearing is of laminate type),

and the shear modulus G yielding

k = (6.34)
t
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where Xp is the stiffening due to the compressive preload, which can be found

experimentally. Experimental values of Xp are shown for several materials is shown

in Table 5.2.

For calculating the transverse stiffness of the different topologies one needs to

consider the geometric arrangement of the rubber pads and their compression stiffness,

which can be calculated with 6.21. One important aspect to consider is that the

preload pressure must be sufficiently large so that the rubber pads remain under

compression while the working load is applied. This is necessary to prevent slip, as

well as maintaining the entire area of the pad loaded, and so assure a high compression

stiffness.

The presented topologies show the use of rubber pads around the shaft instead

of a rubber continuum. The advantage of using rubber pads is the ease of uniform

preload of the rubber pads. A continuum can only be subject to preload by methods

described by Gent [9] (p.238): Enlarging the inner member dimensions after bonding;

reducing the outer member dimensions after bonding; or Molding at high pressures

to induce pre-compression in the elastomer.

Here the lateral stiffness of square section shaft with four rubber pads and a

rubber continuum will be compared. The lateral stiffness of the four padded case will

be basically defined by the compression stiffness of the rubber bearings. When the

rubber bearings are under compression load their loaded free areas can bulge and so

its compression modulus is defined by (6.21)

Ec = Eo [1 + 2kRkS2l (6.35)

with S BH
2t(B+H)

In the case of the rubber continuum when a lateral load is applied an axial bulge
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can occur without restraint. If we consider the lateral load being an upward load

then the top portion of the rubber continuum will be subject to a compression load

which creates an outward bulge, while the bottom one will be subject to a tension

load which creates an inward bulge. Both bulges to occur will require to deform the

lateral part of the rubber continuum, which implies a restraint.

The upper bound of the lateral stiffness of the rubber continuum bearing can be

found when considering that no bulge occurs either on the top or bottom portion of

the rubber continuum. For that case the top and bottom portion will be under a

one-dimensional strain as defined by (2.4)

4
Ec = -Eo(1 + kS 2 ) (6.36)

3

with S = H/2t

The increase of compression modulus due to the continuum is shown in Table 6.3,

were the dimensions B and H are considered equal, and a compression coefficient

k = 1 is assumed. It can be seen that the compression modulus could be increased by

a factor of 3 for high shape factors. The actual increase of compression modulus and

so lateral stiffness of the continuum type bearing will be less than the values found

here, but it gives as an idea on how the lateral stiffness of the rubber bearing can be

increased by the use of a continuum rubber.

When designing a rubber bearing one will have to take into consideration the ben-

efit versus the effort (or cost) of making the continuum type rubber bearing, instead

of a rubber pad one.

150



Table 6.3: Compression stiffness comparison between 4 pad and continuum rubber
bearing

H/2t E "(C"tinuum)
__ Ec(4Pads)

< 1 1.3
1 1.85
5 2.86
10 2.96

6.4 Rotary rubber bearing

The design of any rotary rubber bearing must comply with the following general

functional requirements: be compliant in the axial direction, provide restraint in the

transverse directions, and provide adjustable preload to the rubber bearings.

6.4.1 Topologies

Different topologies of the linear rubber bearing will be presented here stating in a

qualitative manner their advantages and disadvantages.

The first topology shown in Figure 6-15 consists of three rubber bearings in a

circular arrangement. The preload of the rubber is accomplished by the reduction of

the preload clamp inner diameter with the aid of preload bolts and Belleville springs.

The rotary compliance is given by the shear of the rubber bearings in a diametrical

manner. The transverse restraint is given by the compression stiffness of the rubber

bearings, which is high. This type of bearing is compliant in the axial direction and

so it requires an accompanying thrust bearing if this compliance is not desired.

The second topology shown in Figure 6-16 consists of three rubber bearings in

a circular arrangement. The preload of the rubber is accomplished by sliding the

taper collet into its holder with the aid of a preload part, preload bolts and Belleville

springs. The rotary compliance is given by the shear of the rubber bearings in a
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Rubber
Bearing

Shaft

Preload
Clamp+

Figure 6-15: Linear and rotary rubber bearing with self-preloading body.

diametrical manner. The transverse restraint is given by the compression stiffness

of the rubber bearings,which is high. This type of bearing is compliant in the axial

direction and so it requires an accompanying thrust bearing if this compliance is not

desired.

6.4.2 Stiffness calculations

To calculate the torsional stiffness ko of a three pad type rotary rubber bearing,

the dimensions of each rubber pad are taken as the width B (measured along its

curvature), the height H, the cumulative rubber thickness t (considering the bearing

is of laminate type), the shear modulus G, and the stiffening due to the preload which

we will call Xp as shown in section 6.3.2 and is given as follows

ko = xGA (6.37)
4 t
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Rubber Holder

Bearin
Shaft

Preload clamp

Figure 6-16: Linear and rotary rubber bearing with taper collet type preload.

where A = BH

The radial stiffness krad of the three pad type rotary rubber bearing is calculated

based on the fact that the three rubber bearings remain under compression, due to a

sufficient amount of preload. The lateral stiffness will be defined as follows

krad = 1.50xpkc (6.38)

where = D/B sin(D/B) is a correction factor due to the non-uniform loading

of the rubber bearing, and k, = EoA N , with S = and H = nB.Nt , ihS=2t(n+1)anH=nB

In similar manner as stated in section 6.3.2 the topologies shown use rubber pads

instead of a rubber continuum. A rubber continuum will increase the radial stiffness,

but the fabrication and uniform preload of rubber laminate bearings must be taken

into consideration. Here a comparison of the radial stiffness between the three rubber

pad option and the rubber continuum is shown.

Freakley [8] (p.137) presents an expression for calculating the radial stiffness of

annular rubber units in radial compression taken from an analysis made by Adkins
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and Gent (1954)

4irG[(r2/rl) 2 _ 1]

"a =[(r2/rl)
2 + l]ln(r2/rl) - [(r2/rl) 2 - 1]

This expression is for an infinite long unit which is adequate when considering

thin rubber units.

If we take as example a single layer rubber bearing with G = 0.5 MPa, Eo = 1.5

MPa, an inner radius r 1 = 6 mm, an outer radius r 2 = 7.5 mm, and a length L = 15

mm, we calculate the radial stiffness for the three rubber pad option using (6.38) and

for the continuum option using (6.39) giving 2663 N/mm for the three rubber pad

option, and 5697 N/mm for the continuum option. This case shows an increment of

a factor of 2.1 due to the use of the rubber continuum.

6.5 Rubber bearing design guide

In this section the necessary equations needed for static rubber bearing design will be

summarized, for the case of a single rubber-metal laminate rectangular linear bearing

and three-pad ubber-metal laminate rotary bearing.

6.5.1 Linear rubber-metal laminate bearing

First we need to size the bearing of width B, length H and thickness t, for the required

shear stiffness k, using

GA
ks = -(6.40)

t

where A = BH is the bearing loaded area, t the cumulative rubber thickness of
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the rubber (considering the bearing is of laminate type), and G the shear modulus

which can be found in Table 2.1.

Second the number of laminates N of the rubber bearing must be specified to

assure a desired compression stiffness using

k = 1 + 1  (6.41)
" EO[1 +2kRkN2S2] Ec Nt

where E0 is the Young's modulus, Emf is the Bulk modulus, and k a compress-

ibility factor (all of this having reference values which can be taken from Table 2.1);

kR is shown in Table 6.2, and S = BH/[2t(B + H)] is the shape factor of the rubber

bearing without considering the laminations.

6.5.2 Three pad rotary rubber-metal laminate bearing

First we need to size the bearing of width B, length H and thickness t, for the required

rotary shear stiffness ko when used in a diameter D shaft using

3D 2 GA
k - (6.42)

4 t

where A = BH is the bearing loaded area, t the cumulative rubber thickness of

the rubber (considering the bearing is of laminate type), and G the shear modulus

which can be found in Table 2.1.

Second the number of laminates N of the rubber bearing must be specified to

assure a desired compression stiffness using

kc = I .VA(6.43)
E0 [1 + 2kRkN 2S 2] E Nt
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where 4 = D/B sin(D/B) is a correction factor due to the non-uniform loading

of the rubber bearing. Eo is the Young's modulus, Eif is the Bulk modulus, and k

a compressibility factor (all of this having reference values which can be taken from

Table 2.1). kR is shown in Table 6.2, and S = BH/[2t(B + H)] is the shape factor of

the rubber bearing without considering the laminations.

6.6 Comments

This chapter has presented tools to be used in the design of rubber bearings for pre-

cision machines. The tools presented here are used in the next Chapter for designing

a rotary fast tool servo using rubber bearings.
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Chapter 7

Design of rotary FTS using rubber

bearings

The design of a Rotary Fast Tool Servo (FTS) using rubber bearings was undertaken

in order to prove the applicability of rubber bearings in precision positioning systems

using rubber bearings. This is seen as a low-cost alternative versus the use of flexural

bearings.

The performance of the FTS designed and fabricated by Montesanti [13] was used

as a reference for the design of ours. His FTS uses metal flexural bearings, and is

driven by the same actuator used in our design. Montesanti's FTS has a maximum

stroke of 50 pm pk-pk at low frequencies and has demonstrated a 2.5 ,um pk-pk stroke

at 2 kHz while under operation.

The use of the FTS designed by Montesanti is for diamond turning, area in which

he has significant experience. Montesanti [13] learned from experience that when

designing a precision machine tool "the stiffness at the tool tip relative to the ma-

chine base needed to be at least 20 N/pm, and that the same stiffness was required

for the workpiece relative to the machine base." The basis for this recommendation

is discussed further in Montesanti's thesis [13], and it its based in a 4.5 N cutting force.
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For the design of our FTS the tool tip stiffness of 20 N/pm (for a design work

load of 4.5 N) was taken into consideration. The goal of our design will be to obtain

a maximum stroke of 50 pm pk-pk at low frequencies and a stroke on the order of

1 pm pk-pk at 1 kHz. A closed-loop bandwidth within the range of 1 - 10 kHz is

desired. Also because of possible overloads, a design radial load of 20 N will be taken

into consideration.

The work piece which the FTS is intended to machine on consists of a <$9 mm and

5 mm, which is held in a work piece holder which is mounted in a spindle. The design

of the FTS must permit the work piece to approach the diamond tool to perform the

machining of the work piece.

The design of the FTS will include preload of the rubber bearings with the aid of

a compact preload mechanism to assure the bearing radial stiffness.

7.1 Rubber Bearing material selection

The experimental results from Chapter 5 shown that the increase in complex shear

modulus with frequency GHF/GLF was significant, ranging from 30 up to 240. It is

of our interest to obtain as much stroke at high frequency as possible, for which a low

GHF/GLF is desired. Silicone, Viton, and Neoprene show the lowest complex shear

modulus increment, as shown in Figure 5-10.

A comparison between the use of Silicone, Viton, and Neoprene rubber materials

as a rubber bearing is made, based on the type A bearing shown in Figure 7-2. The

basis of comparison is using the same rubber sheet thickness t, = 0.77 mm, a shaft

diameter of D = 20 mm, and bearing of dimensions B = 20 mm and H = 25 mm. A

tool radius rT of 10 mm was considered for this calculation. The number of laminates

is varied to obtain a bearing radial stiffness Krad of approximately 100 N/pm. The
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desired stroke at low frequency is of the order of 20 Am pk, and the stroke at 2 kHz

is desired to be on the order of 1 um pk.

The comparison between materials shows that the highest DC stroke is accom-

plished with the softer materials of Shore 40A, being this stroke of about 40 um pk,

while the harder materials of Shore 75/80A accomplish DC strokes of about 20 Am

pk. The stroke accomplished at 2 kHz with Silicone Shore 40A is of 0.4 Am pk, while

the one accomplished with Viton Shore 75A is 0.3 pm pk, and with Neoprene Shore

80A is 0.5 pm pk. The results of this comparison are shown in Figure 7-1.

Softer materials have lower DC stiffness which helps accomplish higher DC strokes

but requires the use of thinner rubber layers to accomplish a desired radial stiffness.

Also softer materials have a higher increment of shear stiffness with frequency which

limits the stroke at high frequencies.

Harder materials have higher DC stiffness which lets you accomplish lower DC

strokes but thicker rubber layers can be used to compensate for the higher shear

stiffness, and still maintain the desired radial stiffness.

Silicone rubbers although being promising have a downside with regard to the

bonding of the rubber to metal surfaces. As noted by Petrie [15], silicone rubber is

characterized of being a low surface energy material, which are generally difficult to

bond with adhesives. Petrie recommends the use of "room temperature curing, one-

part silicone sealant adhesives (RTV Silicone)" (p.625) for medium to high strength

bonds.
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Type A

Material Silicone Viton Neoprene Neoprene Neoprene
Shore 40A 75A 40A 70A 80A_
Jshaft+motor (kgmA2) 5.79E-06 5.79E-06 5.79E-06 5.79E-06 5.79E-06
D (mm) 20 20 20 20 20
B (mm) 20 20 20 20 20
H (mm) 25 25 25 25 25
tr (mm) 0.77 0.77 0.77 0.77 0.77
n 2 5 2 4 5
t (mm) 1.54 3.85 1.54 3.08 3.85
A (mm2) 500 500 500 500 500
S 7.2 7.2 7.2 7.2 7.2
Ec (MPa) 125.0 391.6 125.0 268.9 391.6
G (Mpa) 0.524 2.366 0.524 1.344 2.366
Shear HF factor @ 2 kHz 100 75 150 100 43
Shear HF factor @ 10 kHz 100 75 150 100 43

(D

Cl)

0

ktors (N.m/rad) 51.0 92.2 51.0 65.5 92.2
krad (N/um) 102.5 128.4 102.5 110.2 128.4

X krad/ktors 2.0 1.4 2.0 1.7 1.4
Max stroke (um P)
(for 10mm tool offset) 39.2 21.7 39.2 30.6 21.7
ktors (N.m/rad) 5103.9 6913.8 7655.8 6545.5 3963.9
Max stroke (um P)

l (for 10mm tool offset) 0.39 0.29 0.26 0.31 0.50
Stiffness or Inertia driven Stiffness Stiffness Stiffness Stiffness Stiffness
ktors (N.m/rad) 5103.9 6913.8 7655.8 6545.5 3963.9

X Max stroke (um P)
(for 10mm tool offset) 0.09 0.09 0.09 0.09 0.09
Stiffness or Inertia driven Inertia Inertia Inertia Inertia Inertia

Est. Nat. fre uenc Hz 4.7E+03 5.5E+03 5.8E+03 5.4E+03 4.2E+03

Limited by flexure (Type B)

Type B

Neoprene
80A

5.79E-06
20
20
25

0.77
5

3.85
500
7.2

391.6
2.366

43
43

92.2
108.5

1.2

21.7

0.95
Stiffness

0.09
Inertia

3.OE+03

Type C

Neoprene
80A

2.70E-05
10
10
40

0.77
2

1.54
400
5.2

242.5
2.366

43
43

46.1
159.0

3.5

43.4
1982.0

0.47
Inertia
1982.0

0.02
Inertia

2.9E+03



When experimenting with the use of this adhesives the bond thickness resulted

in being excessive due to its high viscosity. A three layer sample fabricated with

Silicone rubber, aluminum shims and a Silicone adhesive (Dow Corning 737 RTV

Sealant) is taken as an example. This sample cured with and without an applied

pressure at room temperature. The resulting bond without an applied pressure while

curing was of adequate strength and with a bond thickness of about 0.1 mm. On

the other hand the bond obtained with curing under pressure resulted of low stiffness

with a bond thickness of about 0.04 mm. The silicone adhesives cure on exposure

to moisture as stated by Petrie [15]. It is thought that the applied pressure avoided

the proper exposure to moisture of the curing adhesive. The bond thickness of the

properly cured adhesive of 0.1 mm is excessive in relation to the rubber thickness of

the rubber laminates that are desired for our design.

The use of Silicone rubber as material for our rubber bearing was discarded mainly

because of its poor bonding properties. The bonding properties of Neoprene and Vi-

ton proved to be outstanding, obtaining thin and strong bonds when using a rubber

toughened cynoacrylate (Loctite 380). Bonds as thin as 0.02 mm could be obtained

experimentally under an applied pressure with the setup shown in Figure 6-10

Neoprene Shore 80A was preferred in comparison with Viton Shore 75A because

of its lower shear complex stiffness at high frequencies as shown in Figure 7-1. This

permits to obtain higher strokes at high frequencies.

7.2 Rubber bearing type selection

Three rubber bearing types were compared based on the selected material Neoprene

Shore 80A.

The type A bearing consists of three rubber bearings in a circular arrangement
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preloaded on their outside diameter, as shown in Figure 7-2.

The Type B bearing consists on a shaft with added flexures as shown in Figure

7-3. While the rubber bearing increases it complex shear stiffness at high frequency

the flexures torsional stiffness remain constant. So if the flexure torsional stiffness is

sized to be lower than the rubber bearing torsional stiffness at high frequency then

the flexure torsional stiffness will dominate at high frequencies. With this one could

size the flexures to obtain a desired stroke.

The Type C bearing consists on a long bearing between a solid and a hollow shaft

as shown in Figure 7-4. The hollow shaft is the rotating shaft that carries the tool.

The comparison between the Type A and B bearing shows that the Type B has

half the high frequency torsional stiffness and so double the stroke, as shown in Figure

7-1. This is accompanied by a 20% decrease in the radial stiffness due to the radial

compliance of the flexures. This alternative is an interesting approach but the added

complexity in the fabrication makes it unattractive.

The Type C bearing adds complexity in the design of the coupling between the

rotating shaft and the motor, and the added inertia makes the stroke at 2 kHz limit

the stroke to approximately the same as the Type A bearing, as shown in Figure 7-1.

Based on the comparison shown here the Type A bearing was chosen as the bear-

ing for the design of our rotating precision machine.
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(4)
Figure 7-2: Type A bearing.

Figure 7-3: Type B bearing.

0

Figure 7-4: Type C bearing.

7.3 Optimization of rubber bearing and shaft di-

mensions

The optimization was based on achieving the maximum possible stroke with a min-

imum radial tool tip stiffness of 25 N/pm. The desired DC stroke was on the order

of 50 pm pk-pk and a 2 pm pk-pk stroke at 1 kHz, taking into consideration the
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actuator as a torque source, of maximum torque of 0.4 Nm pk-pk.

The following dimensions of the shaft-bearing-tool-holder assembly were consid-

ered for the optimization: length from the coupling to the bottom of the bearing L2,

bearing height H, spacing from top of bearing to bottom of tool holder e, height of

tool from bottom of tool holder hth, tool radius rT, the rubber sheets thickness tr,

the width of the rubber bearing B (measured at the inner arc), and the number of

laminates n. Based on this dimensions the following general dimensions can be found:

the length from the bearing center to the tool tip Lb = H/2 + e + hth, and the length

from the coupling to the tool tip LT = L, + H/2.

For the optimization the following dimensions were fixed: the spacing e = 4 mm,

to provide enough space for a top sealing plate with its respective o-ring, the dimen-

sion hth = 5 mm, to provide enough space for the tool, and the rubber sheet thickness

tr = 0.77 mm, for being the thickness available for Neoprene Shore 80A. The rest of

the dimensions were considered as variables, leaving a total of 6 variables: d, B, rT,

LX, n, and H. To reduce the number of variables and so make the optimization pro-

cess less extensive the width of the bearing was taken as B = d. This leaves us with

only 5 variables.

The optimization was done for three different diameters of q12, #14 and q15 mm,

each diameter with four to five different tool radius rT, each tool radius with three

different values of Lx, and each length Lx with a rubber bearing of n = 1, 2, 3 and

4 rubber layers. The remainder dimension H is found by maximizing the stroke at 2

kHz limiting the tool tip stiffness to a minimum of 25 N/pm.

The radial tool tip stiffness is calculated by considering the radial compliance of

the rubber bearing, the bending of the shaft length from the center of the bearing to

the tool tip, and the compliance of the tool holder.

The bearing stiffness at the tool tip kbard is found by considering the model shown
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in Figure 7-5, were the radial stiffness at the motor shaft is taken into consideration,

giving us the following

kAkB(LT - Lb) 2

brad - (kAL2 + kBL2)
(7.1)

where kA is the radial stiffness at the motor shaft and kB is the radial stiffness of

the rubber bearing.

r_ X

6-

Zr

Figure 7-5: Model used to calculate tool tip stiffness.

The compliance of the tool holder and shaft bending are calculated by consider-

ing a cantilever beam which has a compliance of x/F = L3 /(3EI) where E is the

Young's modulus of aluminum, I the respective moment of inertia, and L = rT - d/2

for the case of the tool holder and L = Lb - hth - H/2 for the case of the shaft bending.

The optimization considered a total of 160 cases with a total of 6 spreadsheets to

calculate the different parameters. The summary spreadsheet is shown in Appendix B.

When increasing the diameter d from #12 to #14 mm the maximum possible stroke
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reduces. This is shown in Figure 7-6 (a) which shows the maximum stroke at 2 kHz

of all the cases plotted against d. Higher bearing stiffness at the tool tip Kbrad can

be accomplished for d = 12 mm as shown in Figure 7-6 (b).
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Figure 7-6: Plots of (a) Stroke at 2 kHz and (b) kbrad against d

It is interesting to notice that when increasing the number of layers n higher

strokes can be accomplished, as shown in Figure 7-7. But the maximum strokes

achieved with 3 and 4 layers similar in magnitude.

The chosen configuration was actually the one with the highest stroke, since the

dimensions of the shaft and bearing were reasonable, as well as having an acceptable

bearing stiffness. The dimensions of the chosen configuration are as follows

d = 12mm, rT = 12mm, LT = 54.5mm, Lb = 16.7mm, B = 12mm, H = 15.5mm,

tr = 0.77mm, n = 3
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Figure 7-7: Maximum stroke at 2 kHz plotted against number of layers n.

The chosen configuration is expected to have a radial stiffness at the tool tip

krad = 25 N/pm, a DC stroke of 31.4 pm pk, and a stroke at 2kHz of 0.9 [um pk.

7.4 Rubber Bearing metal laminates sizing

The selected material for the rubber bearing metal laminates was aluminum. Alu-

minum shims are light, readily available, easy to handle an bend to a desired form,

as well as being much easier to cut than steel shims.

The sizing of this metal laminates is based basically on the preload pressure ex-

erted to the rubber bearings. The reason for this is that the preload pressure exerts

a compressive stress on the rubber bearings which consequently stresses the metal

shims in compression in the direction of its thickness and in tension along it length
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and width. This has been shown in 6.2.2 along with the necessary equations to size

the metal laminates.

The normal stress acting on the metal laminates can be found using (6.31) and

(6.32)

Gni2 B2

O'n = n 2 e (7.2)
2(n 2 + 1)trtm

Gn 2 B2

S= 2 B2 E(7.3)
= 2(n2 + 1)ttm

where E = u,/Ec.

The design preload pressure applied to the rubber bearings is u,1.6 MPa, and the

Neoprene Shore 80A rubber laminates of thickness t, = 0.77 mm, have a compression

and shear modulus of Ec = 175 MPa and G = 2.4 MPa respectively. When consid-

ering aluminum laminates of thickness tm = 0.076 mm the resultant tension stress

along their lengths come out to be on the order of 16.7 MPa on both directions. The

equivalent stress found using (6.33) is ceq = 15 MPa. The material chosen for the

metal laminates is Aluminum 1145 with a yield strength of 115 MPa which satisfies

the strength requirements.

7.5 Preload mechanism

The preload mechanism must be able to preload the rubber bearings in compres-

sion with a preload pressure on the order of 1.6 MPa, allow variation of the preload

pressure to desired values with an acceptable tolerance, not compromise the rubber

bearing stiffness, and be compact.
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7.5.1 Options

The first considered option was having single part capable of holding the motor and to

house the rubber bearing. The housing of the rubber bearing will deform to preload

the rubber bearing, thanks to the compliance provided by the built in flexures as

shown in Figure 7-8. The problem with this option is that the built in flexures add

compliance to housing, and so requires reinforcing plates to make it stiff under oper-

ation.

Figure 7-8: Preload mechanism option No.1.

The second considered option was to fabricate a flexure within the housing as

shown in Figure 7-9, which will preload the rubber bearing. This option does not

reduce the housing stiffness but is a challenge to design a way to deform the inner

flexure, as well as being not a practical solution.
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Figure 7-9: Preload mechanism option No.2.

The third option shown in Figure 7-10 considered was the use of a collet with

a nut at one end, which when tightened will reduce its inner diameter to preload

the rubber. To assure a uniform preload on the rubber bearing it is required that

the collet deforms uniformly in its clamping zone. To assure that the collet length

becomes excessive. But this option gave rise to other type of solutions.

I

r

II

Figure 7-10: Preload mechanism option No.3.

The fourth option derived from the collet idea was the one shown in Figure 7-11.

This collet is deform with the aid of a tapered preload part, and preload bolts with

springs to exert a pre-defined force. This option looked promising but an option with
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less friction involved was desired.

pi2 ~

Figure 7-11: Preload mechanism option No.4.

The last and chosen option is shown in Figure 7-12, is a taper collet with built in

flexures which permit its deformation when pushed into a tapered holder. This collet

is geometrically held into place, being rigid and compact.

4OLJE6.T

Figure 7-12: Chosen Preload mechanism option.

7.5.2 Sizing of collet flexures

The stiffness of the collet must be low enough so as to prevent the oversizing of the

preload bolts, and make the preload force more deterministic. The compression stiff-

ness of the rubber bearings was taken as a reference. The compression stiffness of one

rubber bearing is in the order of 50 N/pm, and the collet stiffness was desired to be

less than 5% of that, so below 2.5 N/pm.
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Figure 7-13: Collet flexure model.

Each flexure was modeled as shown in Figure 7-13, and is stiffness was derived as

k El (7.4)
2L2 L + a (L+a)2

L 3 2 (4L+2a) I

Fr

Figure 7-14: Collet model.

Having the stiffness of each flexure defined then the collet could be modeled as

shown in Figure 7-14. The three springs in the model with stiffness kx represent the

flexures. When a preload force Fp is applied the collet will deform radially by an
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amount 6r which is related to the x of each flexure by x = v'/6,. And so the radial

stiffness of the collet k, becomes

kr = 3kx (7.5)

The fiexures will be subject to a moment and flexural stress defined by (check

words)

( L + a)L
M = kx3v'6r (7.6)

(2L + a)

Of =v/kxt(L+a)L 6r (7.7)
2I (2L + a)I

The chosen material for the collet was brass since its resistance was adequate,

and because of its increased machinability. The final dimensions of the flexure, its

stiffness and applied stress under operation is shown in Figure 7-15. The resultant

collet stiffness was kr = 820 N/mm which is less than 2% of the rubber bearing,

and the stress of the flexure under operation was of 7 MPa which is way below the

minimum yield stress of ASTM B16 brass of 103 MPa.

7.5.3 Determination of collet taper angle and preload force

The collet was designed to be self-locking to prevent it from coming loose in the

presence of an overload. Also if the collet was designed to be self-releasing, then the

stiffness of the bearing will be compromised, since it will be limited by the stiffness

of the preload springs.

The collet is pushed into the holder with the aid of a preload part as shown in

Figure 7-17, and preload bolts with Belleville springs. A rubber sheet is placed be-

tween the preload part and the collet to permit the collet to deform radially without

the presence of friction in the interface.
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w 16 mm Height of clamp
t 0.5 mm thickness of flexure

E 1.OOE+05 N/mm2 Brass
1 0.167 mm4 flexure inertia

L 6.4 mm flexure length 1
a 1.9 mm flexure length 2

8.3
kx 274.9 N/mm flexure local stiffness
kx 0.27 N/um flexure local stiffness

kr 0.82 N/um clamp stiffness to radius change

dr 2.7 um radius change
dr 0.0027 mm radius change

or 7 Mpa flex stress on flexure

of clamp.pdf

Figure 7-15: Preload Collet flexure sizing.

In order to make the collet self-locking the friction coefficient between the col-

let (brass) and the holder (steel) must be considered. The friction coefficient does

not only depend on the materials but as well as their surface finish. A better sur-

face finish comes along with a lower coefficient of friction as shown by Marks [6].

Because of the lack of information about the coefficient of friction between brass

and steel with surface finish 63 Ra or better, information about measurement of co-

efficient of friction between brass and stainless steel with different surface finishes

was taken into consideration. This information was found in the following website

(http://www.varmintal.com/afric.htm), which shows tests performed by Dick Hat-

field (2004). Based on this reference a coefficient of friction of p = 0.2 - 0.3 was used

for our analysis.

The model shown in Figure 7-16 was used to find the taper angle required to make

the collet self-locking. If the collet is already in the holder taper and a force F is

required to pull it out, then it is self-locking, so F must be greater than zero. Doing

the sum of forces gives
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F

Figure 7-16: Collet model to evaluate self-locking.

F = N(sin a - pcos a)

which for F > 0 requires that

p > tan(90 - a)

(7.8)

(7.9)

For [ = 0.2 the taper angle a requires to be greater than 790 for the collet to be

self-locking.

So a = 800 was used for the design of the collet.

The model shown in Figure 7-17 was used to calculate the relationship between

the preload force applied to the rubber bearing Fp and the bolt force

_ (sin a - p cos a)
(p sin a + cos a) (7.10)

where F, = kr 6r is the force required to deform the collet being kr its stiffness as

defined in (7.5), and F, = k,6r is the force required to deform the rubber interface

being k, its shear stiffness.
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Figure 7-17: Collet preload model.

The force required per bolt to preload each rubber bearing with a radial force

Fp = 270 N, is calculated as shown in 7-18, being FB = 124 N.

80 deg
1.396 rad
0.985
0.174
5.671

0.25 (0.20 - 0.30)

50000 N/mm
825 N/mm
700 N/mm

0.00540 mm

4.453098073 N
3.78 N

270.0 N

124.1 N

295.6 N

Clamp force
Interface rubber force

Rubber bearing preload force

Preload bolt force

Figure 7-18: Calculation of rubber bearing preload mechanism.

7.6 Collet Holder

The holder's main function is to house the taper collet within its own taper. Other

functions included the support the cap gage holder rests on its top surface, support

the sealing top plate, attachment to the separator, provide space for a part holder to
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reach the tool, for which the necessary features were provided. Pictures of the holder

with the collet in place are shown in Figure 7-19.

(a) (b)

Figure 7-19: Holder with the collet in place (a) Top view (b) Bottom view

7.7 Tool holder

The tool holder was designed to hold in a firm manner a diamond tool (with its

steel shank), and provide the necessary space for the #9 mm diameter work-piece.

The diamond tool used as a reference for the design was designed by Montesanti [13]

with collaboration from Chardon Tools. The diamond tool and tool shank weighs 0.4

grams and the tool shank has a 300 taper angle to assure a stiff connection with the

tapered slot of the tool holder.

The tool tip is aligned with the rotating axis as shown in Figure 7-20. This re-

duces the lateral displacement of the tool tip to a minimum. The amount of lateral

displacement for this position of the tool tip is defined by rT(1 - cos 0) while the

tool travel is defined by rT sin 9, where rT is the tool radial position and 9 is the

angular rotation of the shaft. For a tool travel of 25 ptm and rT = 12 mm, the lateral

displacement will be 26 nm. Since this is three orders of magnitude less than the tool
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travel we avoid the need of some type of compensation.

The closer the tool tip is to the center of the rubber bearing, higher radial tool

tip stiffness can be accomplished. Because of this the diamond tool was placed on

the end of the tool holder arm with is top plane aligned with the shaft axis as shown

in Figure 7-20. Another important feature about placing the tool at the end of the

tool holder arm is the compliance provided by the tapered slot allowing the slot to

deform when the tool shank is bolted to the tool holder.

Figure 7-20: Assembly of tool holder, diamond tool and balance mass.

The calculation of the stiffness of tool holder arm was considered in Section 7.3.

The calculated stiffness of the tool arm for the final dimensions is 207 N/pm as shown

in Appendix B.

The tool holder design includes a balance mass as shown in Figure 7-20 in order

to keep the center of mass of the tool holder assembly within an acceptable eccentric-

ity. This eccentricity was limited with the criteria that at the maximum operating

frequency, the inertial force generated by the mass of the tool holder assembly with

its eccentricity will be lower than 5% of the design operating load of 4.5 N.

The position of the center of mass of the tool holder is defined in polar coor-
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dinates by t = r6r, its velocity V = ri, + rOio, and its acceleration d = (V -

r62)6 + (2 + rO)etketa. Since the center of mass moves in a fixed radius then

a = (-r 2) r + (rO)etk'eta, where 6 = OMW cos(wt) and 6 = -6MW 2 sin(wt), with Om as

the maximum angle.

If we consider an eccentricity of the center of mass of r = 1 mm, a tool holder

mass mth = 0.007 kg, and a maximum angle 6 M = 8 - 10-' rad at w = 12566 rad/s

(corresponding to a 1 pm stroke at 2000 Hz). The maximum radial and circumferen-

tial inertial force comes out to 8 - 106 N and 0.1 N respectively. The last one is 2%

of the design operating load of 4.5 N, so a center of mass eccentricity below 1 mm

will be acceptable.

With the aid of the balance mass a tool holder center of mass eccentricity of

r = 0.007 mm was obtained in the design, which is so low that the fabrication toler-

ances might actually alter it. But even the fabrication tolerances won't give a center

of mass eccentricity near 1 mm, since they are on the order of 10 pm.

7.7.1 Tool holder and shaft interface

The tool holder and shaft interface required of centering type, and permit adjustment

of the angular position of the tool holder for alignment. To suit this purpose the tool

holder was provided with a counter bore to mate with the shaft end. The tool holder

counter bore was provided with an adequate tolerance to adequately center it to the

shaft axis, and permit its angular adjustment.

The tool holder was coupled to the shaft with the aid of a single centered bolt.

The joint force provided by this bolt required to be sufficient to work with the design

load. The design load used for the joint calculation was FR = FT = FA = 25 N as

shown in Figure 7-21. This design loads exceed the design operating load, since it

must be able to sustain possible overloads.

179



Ur

FA

f14iRN

Figure 7-21: Model to analyze tool holder and shaft interface.

When the joint is subject to shear stress T1 = FRT due to the FarT moment, a

shear stress T 2 = FT/A due to the transverse force FT, and a shear stress T3 = FR/A

due to the radial force FR, as shown in Figure 7-22 (a), (b), and (c) respectively.

(®)
F(/A

(b)(a)

(F,1A

(C)

Figure 7-22: Shear stress acting on tool holder and shaft interface

Defining IFRI = IFT = F the maximum shear stress will be defined by

F = +
Arm A

(7.11)

With F = 25 N, A = 71.5 mm2 , rM = 6.5 mm and rT = 12 mm, the maximum
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shear stress becomes Tmax = 1.14 N/mm2 . The required joint force FJreq to prevent

slip is defined by Fjreq = ^ , which with PAL-AL = 1.0 becomes Fjeq = 81.5 N.

With an M2.5x10 Class 12.9 Socket Head Cap Screw taken into consideration and

taking into consideration the joint and bolt compliances the force ratio (D = Fe +FeJ

becomes <D = 0.27. Also the bolt settling force becomes F = 163.4 N.

Finally the minimum, the maximum bolt mounting force, and the maximum bolt

force are calculated as follows:

FMmin = Fjreq+ Fz + FA(1 - (D) (7.12)

FMmax = aA - FMmin (7.13)

FBmax = FMmax + DFA (7.14)

where a = 2.5 for mounting with a wrench, giving FMmin = 263.2 N, FMmax =

657.9 N, and FBmax = 664.6 N. The yield strength is matched with a bolt force equal

to 3970N so the M2.5x10 Class 12.9 is adequate. Using a smaller screw might be

possible, but impractical, so the M2.5x10 was used.

To assure the correct preload of the screw the use of Belleville springs was con-

sidered. This also helps prevents the loosening of the screw under alternating loads

as well as prevent its damage due to excessive preload.

7.8 Shaft

The shaft consisted of a solid aluminum round shaft with its general dimensions as

defined in the Section 7.3. The shaft must provide a centering mating feature with

the tool holder at one end and a coupling at the opposite end.
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Since the capacitance gage used requires the target to be grounded to its case, a

grounding connection was provided at the coupling end of the shaft. A hole to insert

the grounding cable in conjunction with a set screw, and then a connection to the

separator was used for this purpose, as shown in Figure 7-23.

Figure 7-23: Ground cable connection for capacitance gage.

The final design of the shaft is shown in Figure 7-24.

Figure 7-24: Solid model of shaft.

The design of the mating surface with the tool holder is discussed in Section 7.7. 1,
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and the coupling design will be discussed in the following subsection.

7.9 Shaft coupling

The shaft coupling was designed as an integral part of the shaft. This assures a bet-

ter alignment between the shaft and the motor and provides an stiffer coupling. The

coupling was designed as a rigid coupling, since there is no over-constraint problem

when following a correct assembly procedure as shown in Section 7.17.

7.9.1 Options

Three options were considered for the design of the shaft coupling. The first one

shown in Figure 7-25 consisted in providing the shaft with a reduced diameter, in-

cluding a bore for the motor shaft and slit cuts. Then with the aid of a standard

clamp in combination the bore is reduced to couple with the motor shaft. This type

of coupling is low cost and adds moderate inertia, but provides low coupling stiffness.

Figure 7-25: Shaft coupling (First Option).
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The second option considered the use of a nut with a taper bore to clamp a taper

slit cut feature to the motor shaft, as shown in Figure 7-26. This coupling provides

high stiffness, but its fabrication is expensive and adds a reasonable amount of inertia.

Figure 7-26: Shaft coupling (Second Option).

The third and chosen option consists on a built-in clamp as shown in Figure 7-27.

This clamp adds low inertia and its fabrication is less expensive than the second op-

tion, providing an acceptable stiffness.

7.9.2 Sizing

The clamp requires to deform radially the maximum radial difference between the

shaft and the coupling bore. This is calculated using both the shaft and coupling

tolerances. The measured shaft diameter was #6.980 mm, which required an electri-

cal insulation shim, being this a 76 Pm thick plastic shim. The coupling bore was

designed with a diameter of #7.144 - 7.149 mm, which is the tolerance given by a

commercial reamer. So the minimum and maximum diametral gap is of 11 pm and

16 Mm respectively.

For the calculation of the clamp a point of contact near the center of the shaft was

considered, as shown in Figure 7-27. The coupling needs to deform radially at that

point 6r = 8 Mm. This will be accomplished with the deformation of the highlighted
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zone shown in Figure 7-27, due to the transverse force F coming from the bolt, and

the moment F(L - B). The displacement 6r will be defined by

F F(L - B) (7.15)
3EI/B3  EI/B

An equivalent moment of inertia I = 7.8 mm4 was used, which resulted in a force

F = 344 N being required to deform the coupling as desired. The maximum stress

was found to be of 241 MPa due to the deformation of the coupling.

L ok

Figure 7-27: Model of shaft coupling.

Additional force is required to prevent slip of the coupling shaft interface. For

that a torque T = 300 Nmm was considered (due to a design load applied to the

tool tip of 25 N and the tool radius of 12 mm). A conservative coefficient of friction
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of A = 0.1 was used due to the plastic shim, which gave a required normal force to

prevent slippage on the <7mm diameter shaft of Freq = 429 N

The total required bolt mounting force becomes Fmreq = F + Freq = 773 N. The

maximum required bolt mounting force is Fmmax = 2304 N for an M2 bolt, as shown

in Figure 7-28. The yield strength on an M2 Class 12.9 Socket Head Cap Screw is

met with a 2421 N preload force, which makes it an acceptable choice.

Bolt

Joint

Fmreq

d
L
Am
fz
Eb
6b

EJ
As
6J

Fz
aA
Fmmin
Fmmax

772.6 N

2
6

1.539
4.780E-03
2.1 OE+05

2.351 E-05

7.OOE+04
10

8.57E-06

mm
mm
mmA2
mm
N/mmA2
mm/N

N/mmA2
mmA2
mm/N

1.490E+02 N
2.5

921.6 N
2303.9 N

Figure 7-28: Calculation of coupling bolt.

7.10 Rotational modal analysis

A rotational modal analysis of the assembly of the tool holder, shaft, shaft coupling,

and galvanometer was made. A discrete model which consisted of rotational inertias

Ji connected with rotational springs ki was considered as shown in Figure 7-29.

The modal analysis is based on the following matrix model
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Figure 7-29: Rotational Modal Analysis model.

(7.16)

where J and K are the inertia and stiffness matrix, defined by

J1 0 0 0

0 J 2 0 0

0 0 J3 0

0 0 0 J4

(7.17)
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k1 -k 1 0 0

-k 1 k1 + k2
0

-k30 -k 2 k2 +k 3 + kB

0 0

(7.18)

and the 0 and - are the rotational displacement and torque input vector defined

as

6 =

01

62

63

64

72

T-3

(7.19)

(7.20)

The discrete model considers the rotational inertias shown in Table 7.1.

Table 7.1: Rotational Inertias for Modal Analysis

Ji (kgm2 ) Rotational Inertia considered
J 6.40. 10-7 Galvanometer rotor

J2  1.46. 10--7 Coupling plus L 1/2 of shaft

J3  1.42. 10- L 1/2 + L 2/2 of shaft
J4 4.98. 10-7 L 2 /2 of shaft plus tool holder

The discrete model considers the rotational springs shown in Table 7.6.

The eigenvalue and eigenvector problem is defined by
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Table 7.2: Rotational Springs for Modal Analysis

k_ (Nm/rad) Rotational Stiffness considered

ki 3.81. 103 Galvanometer shaft

k2  1.15. 103 Coupling in series with stiffness L1 of shaft
k3  4.20 -10 Stiffness of L 2 of shaft
kB 76.5. 103 Rubber bearing DC stiffness

(A - AI)# = 0 (7.21)

with A = J--K, the eigenvalue A = w2 where w is the natural frequency in rad/s,

and the eigenvector # defining the mode shape.

The following eigenvectors, and corresponding natural frequencies f = w/27r are

found

Table 7.3: Rotational Springs for Modal Analysis

Eigenvector 1
0.090
-0.659
1.000

-0.205

fi (Hz)
35450

Eigenvector 2
-0.207
1.000
0.616
-0.199

f2 (Hz)
29616

Eigenvector 3
-0.793
-0.476
0.718
1.000

f3 (Hz)
7764

Eigenvector 4
1.000
0.991
0.956
0.961

f4 (Hz)
1151

The first mode occurs at 1151 Hz with the actuator rotor and shaft rotating as

a rigid body. The second one at 7763 Hz is the one with the tool holder and the

actuator rotating out of phase. The third and fourth mode are higher order modes

which occur far beyond the working frequency range.
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7.11 Flexural modal analysis

A flexural modal analysis was done in order to verify the non-existence of excitable

modes within the working frequency range that could compromise the machine per-

formance. The model shown in Figure 7-30 was used for the analysis.

3,.

-- AZ

2. -

1. e.
L's

Wl:L

Wx(

Figure 7-30: Rotational Modal Analysis model.

The modal analysis is based on the following matrix model

(7.22)

where M and K are the mass and stiffness matrix, defined by

M= 0

0

k1 +k2 -k2

-k 2  k2 + k3 +

0 -k3
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and the t and f are the rotational displacement and torque input vector defined

as

X1

X3

fi

f= f2

f3

The discrete model considers the masses shown in Table 7.4.

Table 7.4: Masses for Modal Analysis

'mi (kg) Masses considered
m, 9.32. 10-' Actuator shaft plus coupling plus L 1/2 of shaft

m 2  7.89. 10- 3  L 1/2 + L2/2 of shaft

m 3 9.20. 10- Tool holder plus L 2/2 of shaft

(7.25)

(7.26)

The discrete model considers the lateral springs shown in Table 7.5.

Table 7.5: Lateral Springs for Modal Analysis

ki (N/m) Stiffness considered
k, 2.38-109 Actuator shaft
k2  1.58. 107  Coupling in series with stiffness L1 of shaft
k3  1.07 - 10" Stiffness of L 2 of shaft

kB 7.60 . 107 Rubber bearing DC stiffness

The eigenvalue and eigenvector problem is defined by
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[A - AI] 4 = 0 (7.27)

with A = M-1 K, the eigenvalue A = w2 where w is the natural frequency in

rad/s, and the eigenvector # defining the mode shape.

The following eigenvectors, and corresponding natural frequencies f = w/27r are

found

Table 7.6: Rotational Springs for Modal Analysis

Eigenvector 1 Eigenvector 2 Eigenvector 3
1.000 0.008 0.004

-0.009 1.000 0.644
0.000 -0.552 1.000

fi (Hz) f2 (Hz) f3 (Hz)
80651 28757 10235

The first mode occurs at 10235 Hz which is the coupling moving laterally while

the tool holder stays practically still. To excite this mode a lateral inertial force due

to an unbalance needs to be present, which will be low. Also the natural frequency of

this mode is outside the working frequency range. The second and third modes are

of higher order and occur at 28757 Hz and 80651 Hz which is far beyond the working

frequency range.

7.12 Actuator

The chosen actuator for the precision machine is a Model 6880 Galvanometer Optical

Scanner from Cambridge Technology, INC. As stated by Cambridge Technologies [2],

this actuator consists of a moving-magnet actuator, having very little electrical in-

ductance. Consequently extremely high torque can be generated very quickly, which
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is essential for systems that require short step response times.

As stated further by Cambridge Technologies [2] the torque is limited by the

mechanical failure limits of the rotor assembly. The rms torque is limited by the

maximum power that can be dissipated by the actuator coming from the stator coils

(PR with R = 1 Q) when working at the maximum rms current. It is further noticed

that adequate heat sinking is required to work at the maximum rms current.

Cambridge Technologies [2] further states that the maximum temperature that

actuator body should attain is 50'C, to avoid personal injury. Also that the actuator

body must be electrically insulated from chassis ground. For that electrical insulating

Mylar and plastic sheets are used for the actuator body and shaft respectively. The

Mylar used for the actuator body is also provided with heat transfer paste to assure

a good heat transfer interface.

7.12.1 Holder clamping design

The holder design is required to serve two basic functions: first hold the actuator

firmly so as to not compromise the whole machine stiffness, and to require adequate

heat transfer from the actuator body to the environment. The chosen material for

the holder was aluminum since its strength is sufficient and its heat transfer proper-

ties are good as well. Also this type of material for the holder was recommended by

Cambridge Technologies [2].

To design the holder to clamp firmly the actuator the model shown in Figure

7-31. This model considers that the compliance of the holder is mainly provided by

the flexure formed by slit cut of the holder. This slit cut is sized so as to permit

the holder deform the inner diameter of the holder to fit the outer diameter of the

actuator. The outer diameter of the actuator (considering an insulation film 127 pm

thick) is #30.704 - 30.734 mm, and the design inner diameter of the holder is 030.810
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- 30.835 mm. This means that the inner diameter of the holder must reduce by a

maximum of 0.131 mm.

'I

F

Figure 7-31: Model of Actuator Holder.

Considering the angular stiffness of the flexure ko and the model of Figure 7-31,

the radial displacement 6r of the holder is found by

6r = 90(B - t/2)2 + (D/2) 2 cos a (7.28)

(D/2)
a = arctan D/2

B - t2
0F L

ko

(7.29)

(7.30)

The calculation of the actuator holder flexure is shown in Figure 7-32. The force

required by the holder bolts to clamp the actuator is of 278 N. This is easily obtained

with the chosen M6 Class 12.9 used.
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278 N

7.00E+04
70

5.00
729.2

3.0
17013889

20989
0.001234

30.8
46
78

MPa
mm
mm
mm4
mm
N.mm/rad
N.mm
rad

mm
mm
mm

0.340 rad

0.054
0.019

mm
mm

71.962 N/mm2

Figure 7-32: Calculation of actuator holder flexure.

7.12.2 Holder heat transfer analysis

The holder heat sinking capabilities were analyzed with the aid of the model and

line graph shown in Figure 7-33. Note that both T and T2 are temperatures above

the ambient temperature Tamb. The thermal resistance Coil-to-Case given by the

manufacturer is R1 = 0.66 0C/W. The calculated thermal resistance from the Case to

the outer surface of the Holder was on the order of 0.050C/W, reason for which the

temperature of the holder was considered uniform. The calculated thermal resistance

from the Holder-to-Ambient and the Holder thermal capacitance were 6.67 0C/W and

1220 J/degC respectively.
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Figure 7-33: Heat transfer model of actuator holder.

The derived transfer functions relating the dissipated heat from the actuator Q,(t)

with the Holder temperature T2 and the coil temperature T in transfer function form

are

T2 (s) _ R2 (7.31)
Q,(s) R 2C 2s + 1

Ti(s) _ R 1 R 2 C2 s + (R1 + R2) (7.32)
Q'(s) R 2 C2 s + 1

With a constant heat dissipation Q(t) = 1 W the coil temperature is expected to

rise to T, = 7.3"C above ambient temperature but the time constant associated with

this rise is in the order of 2 hours, as shown in 7-34. The Bode plot shown in Figure

7-35 shows how the temperature rise associated with a heat source at frequencies

higher than 0.001 Hz is only on the order of T, = 0.7"C above ambient temperature.

If the actuator was working with at with a current 1(t) = 10A sin(27ft) with a fre-

quency f > 1 Hz the coil heat dissipation will be Q,(t) = 1I2RI = 10OW1 sin(2irft)1.

And the coil temperature could reach T1 = 70'C above ambient, which corresponds
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Figure 7-34: Step response of T for a coil heat dissipation Q, 1 W.

to a coil temperature of 95'C for an ambient temperature of 20 deg C.
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Figure 7-35: Bode Plot of T 1(s)/Q,(s).

The maximum allowable actuator coil temperature of the actuator is given by the
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manufacturer as 110 0C. So the holder will let you work with currents of up to 10

A-pk provided with frequencies above 1 Hz. Also if the holder is bolted to another

structure this one will acts as an additional heat sink. This situation is not considered

in our heat transfer analysis.

7.12.3 Electrical Dynamics

The chosen actuator for the precision machine is a Model 6880 Galvanometer Optical

Scanner from Cambridge Technology, INC. The actuator has a torque constant of

Km = 0.0245 Nm/A, a coil resistance Rm =1 Q, a coil inductance Lm = 280 uH, and

a rotor inertia J = 0.64 - 10-6 kgm 2.

The actuator circuit model is shown in Figure 7-36, yielding the following differ-

ential equation:

Vm(t) - i(t)(Rs + Rm) - Lmdi(t) - e(t) = 0 (7.33)

R, L,

R
+ +

VM e

Figure 7-36: Actuator electrical circuit.

where e(t) = Kmd6(t) is the back-emf, and R, = 0.1 Q is the current sensing

resistance. The magnitude of the back-emf is defined by le(t)l = KmwIO(t)l. The

angular rotation will be 16(t)l < 2.5 mrad up to around 10 Hz, and then drops to

16(t)l < 83.3 urad around 1 kHz. The magnitude of the back-emf has a maximum

value of 4 mV at 10 Hz, with a voltage Vm = 8 V driving the actuator. The magnitude
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of the back-emf has a maximum value of 6 mV at 1 kHz, with a voltage vm = 15

V driving the actuator. So the back-emf is insignificant enough to simplify (7.33) as

follows:

Vm(t) - i(t)(Rs + Rm) - Lmdi(t) = 0 (7.34)

Taking the Laplace transform of 7.34:

Vm(s) - I(s)(R. + Rm) - LmsI(s) = 0
I(s)
V(s)

1/(Rs + Rm)
(Lm/(Rs + Rm))s + 1

(7.35)

(7.36)

For the given values of R, = 0.1 Q, Rm = 1 Q, and Lm = 280 pH, gives as a

breakpoint frequency at 625Hz and the Bode plot for I(s)/V(s) as shown on Figure

7-37.

10

10

10- -

0

-45

-90
102 103 104

Frequency (Hz)

Figure 7-37: Bode plot of I(s)/V(s) for FTS actuator.
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7.13 Cap gage holder

The cap gage holder serves the purpose of holding the cap gage with is axis aligned

with the tool tip and it sensing surface perpendicular to the tool holder target face.

The holder part was provided with an extension to mount the holder on.

The cap holder design is a part that can be mounted with two screws in one side

and a built-in collet that is clamped with the aid of two additional screws, as shown

in Figure 7-38.

Cap gage

Cap gage
Holder

Figure 7-38: Capacitance gage holder.

The clamp of the cap gage holder was calculated using a similar procedure as the

one for the shaft coupling shown in Section 7.9.2.
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7.14 Separator

The separator serves the main function of a transition piece between the collet holder

and the galavanometer holder. This part was made of aluminum, making it easy to

machine and a light part.

This part permits removal of the preload part and re-adjustments if necessary.

A grounding point is provided to connect a cable to the shaft, in order to provide

the necessary grounding between the cap gage and the tool holder. Also a hole is

provided on the side of the part to permit the tightening of the shaft coupling to the

galvanometer shaft. A solid model of the separator is shown in Figure 7-39.

Access to Ground point

Coupling

Figure 7-39: Solid model of Separator.

7.15 Sealing

Sealing of the machine is important to avoid any cutting oil or lubricant getting into

the rubber bearing, although the Neoprene rubber has a good resistance to oil. A
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sealing plate with an o-ring is provided to seal the top opening of the machine as

shown in Figure 7-48. The use of a plastic plug in the hole provided in the separator

to access the coupling bolt was considered, as well as in all other exposed counter

bores that could permit oil from getting into the rubber bearing area. In the case

of the drilled and tapped hole of the separator to provide a ground point the use of

silicone sealant or epoxy on the outer side will be sufficient.

Figure 7-40: FTS Solid model.

7.16 Final design

A preliminary set of general dimensions and first order performance parameters are

presented in Section 7.3. Here the general dimensions of the FTS, as a result of

the detailed design shown in Figure 7-40, will be taken into consideration. A sum-

mary of the general dimensions and performance parameters are shown in Figure 7-41.
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Dimensions

Shaft diam1 tool radius length from Spacing Length from length from Width of Height Thickness Number
tool to between top bearing tool to galvo Bearing of bearing of rubber of

bearing of bearing bottom to laminate laminates
center and tool galvo

dl rT Lb e Lx LT B H t n
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
12.0 12.0 16.7 4.6 30.4 55.1 12.0 15.5 0.77 3

Performance

Radial Tool Max DC Max Stroke Max Stroke Est. rigid
Tip Stiffness Stroke @ 2kHz @ 10kHz body nat.

frequency
krad fn

(N/um) (umP) (umP) (umP) (Hz)
19.3 31.39 0.87 0.42 1161

Stiffness Inertia
Driven Driven

Actuator torque I 0.2Nm
(The actuator is considered as a torque source for this analysis

Actuator shaft
stiffness 2.38E+06 N/um

Rotational inertia 1.44E-06 kg.m2
(Considers shaft + tool holder + Actuator Rotor)

Rubber Bearing Calculation

Material Shore Stiffness A 4 S kr Ec G kc ks kclks
factor due
to preload (mm2) (MPa) (MPa) (N/um) (N/um)

Neoprene 80A 3.72 185.8 0.9 4.4 0.9 477.4 8.8 38.4 0.7 54.2

krad kaxial ktors ktors ktors Shear Shear Shear Strain
DC DC DC @2 kHz @10 kHz Strain (%) Strain (%) (%)

(N/um) (N/um) (N.m/rad) (N.m/rad) (N.m/rad) DC @ 2 kHz @ 10 kHz
52.4 2.124 76.5 2752.6 2752.6 0.68 0.019 0.009

Estimate Estimate

DC Stiffness Calculations
(Stiffness referred to tool tip)

Rubber Tool holder Shaft
bearing bending bending
kbrad kthrad ksbrad
(N/um) (N/um) (N/um)
25.4 331.9 106.9

Or.

-1

D
S.q
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7.17 Assembly procedure

To assure the correct operation of the FTS an assembly process is required. Following

this assembly process avoids over-constraints of the rotating shaft.

The FTS consists of about 17 parts excluding fasteners and mounting accesories.

A photograph with all the FTS parts is shown in Figure 7-42.

Figure 7-42: Photograph of all the parts of the FTS.

The assembly steps of the FTS are presented as follows:
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Step 1

The first step is to assemble the rubber bearings with the shaft and collet. The

rubber bearings are undersized on purpose and so the use of an aluminum shim is re-

quired. The bearings must first be positioned in the bearing assembler unit as shown

on Figure 7-43.

Figure 7-43: Bearings in bearing assembler unit.

Step 2

An adequate aluminum shim is first placed in the inner diameter of the collet.

The collet is positioned with the correct alignment in the bearing assembler unit as

shown in Figure 7-44.
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Figure 7-44: Bearings and Collet in bearing assembler unit.

Step 3

Slide the shaft into the inner diameter of the rubber bearings until it reaches the

bearing assembler stop, which sets up the axial position of the shaft with respect to

the rubber bearings, as shown in Figure 7-45. The rubber bearings must be lightly

pressed into the collet before the assembly removal.

Figure 7-45: Bearings, Collet and Shaft in bearing assembler unit.

Step 4
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Remove the collet-bearing-shaft assembly from the bearing assembly unit by grip-

ping the collet with three fingers providing pressure. The resulting assembly is shown

in Figure 7-46.

Figure 7-46: Bearings, Collet and Shaft assembled!

Step 5

Assemble the top sealing on the collet holder with its respective alignment pin,

followed by the installation of the collet collet-bearing-shaft assembly.

Step 6

Preload the collet with the aid of the preload part, rubber sheet interface, and the

corresponding preload bolts and Belleville Springs, as shown in Figure 7-47.
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Figure 7-47: Collet preload.

Step 7

Remove the the top plate, and reinstall it with the o-ring in installed in the shaft,

as shown in Figure 7-48.

Figure 7-48: 0-ring installation.

Step 8

Install the tool holder assembly on the shaft and align it with the aid of parallels.

The resultant assembly is shown in Figure 7-49.
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Figure 7-49: Tool holder installation.

Step 9

Connect the ground cable to the shaft and the separator, and then assemble the

separator to the current assembly, as shown in Figure 7-50.

Figure 7-50: Separator installation.

Step 10

Install the actuator in the actuator holder and then assemble it with the assembly

of the previous step. The shaft coupling must assemble aligned with the actuator
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shaft letting to self center while assembling. Tighten the assembly bolts in a cross

manner by tightening all of them first with light torque. Place the assembly on a

flat surface and align with the aid of shims the collet holder as shown in Figure 7-51.

After the alignment tighten all bolts with medium torque and finally with full torque.

Full torque is the bolt manufacturer recommended torque. If tightening by hand then

you tighten according to experience.

Figure 7-51: Alignment of collet holder to actuator holder.

7.18 Power Amplifier and Current Control

The Power Amplifier and Current control used to drive the actuator were the same

used by Montesanti [13] to drive his actuator. The Current control was designed and

built by Montesanti.

The Power Amplifier is an Apex Microtechnology Corporation PA04 with a non-

inverting DC gain Kp, = 3. This amplifier is a high voltage, high current amplifier

with a maximum power supply voltage of ±100 V, and a maximum output current of

20 A-pk. A power supply of ±35 V was provided to the amplifier by two Lambda LK

343A FM connected in series, with a maximum output current of 10 A. The amplifier

output current was also limited to 10 A with the aid of a current limit resistor.
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The PA04 power amplifier frequency response was measured using an HP 35665

A Dynamic Signal Analyzer up to 50 kHz showing a constant gain of 2.95 and prac-

tically constant phase with only a phase lag of 0.56' at 50 kHz.

Additional high-frequency bypass capacitance was added to the amplifier power

supply bypassing. The amplifier had only 0.01 uF high-frequency ceramic capacitors

installed for the positive and negative part of the power supply, when it is recom-

mended to have between 0.1 uF and 1 uF. A total of 0.4 uF capacitance was installed.

7.19 Displacement measurement

The tool tip displacement was measured with the aid of a capacitance gage. The ca-

pacitance gage an module used is the same used in the rubber test device as described

in Section 3.1.7. The capacitance gage module outputs ±10 V for ±25 pm.

7.20 Simulink and Control desk models for test

The tests of the FTS were done using a dSpace ds1104 board as an analog to digital

interface between our electronics and the dSpace environment. A Simulink model

was created to perform all the necessary experimentation, and to control the FTS, as

well as provide the necessary safety features.

Safety features where included in the Simulink model to avoid the overheating of

the voice coil actuator and the damage of the tool holder or capacitance gage result-

ing from an excessive stroke. The current was limited to a maximum of 10 A pk,

and the stroke to a maximum of 25 pm-pk. Whenever any of this limiting factors

was exceeded the voltage supplied to the actuator was zeroed with the aid of a trigger.
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Figure 7-52: Simulink model used for the testing of the FTS.
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The developed Simulink model is shown in Figure 7-52.

7.21 Electrical connections

The electrical connections between all the electronic equipments where done to achieve

low noise level measurements and assure proper safety.

7.21.1 Avoiding ground loops

To avoid ground loops a grounding technique was followed as shown in Figure 7-53.

The technique followed is to keep supply commons separate and meet only at one

single point connected to ground. As a result "each supply current returns only on

its associated common, and not on other commons or the ground wire." as stated by

Trumper [18] (Sec. 5.5.1)

To keep the supply commons separate it is necessary isolate the subsystems. Unity

gain INA154 differential amplifiers are used to isolate the current control circuit from

the dSpace board (which is referenced to earth ground), the power amplifier, and the

actuator electronics. All this INA154 differential amplifiers were already included in

the current control electronics designed and built by Montesanti [13].

The capacitance gage module is used in differential mode with the shielding pro-

vided by the a floating common (ARTN), the positive and negative gage module are

connected to the positive and negative input of a Tektronix AM502 differential am-

plifier. This differential amplifier is connected to earth ground, reason for which the

shielding of the gage module outputs with the provided floating common was chosen.

All the power supply commons where connected to a single earth ground as shown

in Figure 7-53.
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Figure 7-53: Schematic of electrical connections showing grounding technique (leg-

end: 1, 111, and V are INA154 High-Speed Precision Difference Amplifiers; II is an

OPA602 High-Speed Precision Operational Amplifier; and III is the APEX PA04

Power Amplifier). 214



This grounding technique helped reduce the ground loops and electrical noise of

the position signal to a minimum. The measured electrical noise from the cap gage

shown in Figure 7-54, is on the order of 2 mV pk-pk, which is equivalent to 5 nm

pk-pk displacement of the tool tip.

0.

I0I81 1
-0.80 0.2 0 .4 0.6 0.8 1

-0.788 T~m Q

-0.79

6-0.794

S-0.794

0 0.002 0.004 0.006 0.008 0.
Time (s)

Figure 7-54: Electrical noise from capacitance gage module represented as measure-

ment noise (Three different time scales shown).

7.22 Open loop behavior

Preliminary measurements where done open loop to understand the open loop be-

havior of the FTS, as well as solving any electronic or mechanical issues, as well as

to serve as a basis for the design of a controller.

7.22.1 Tool tip stiffness

When measuring the open loop stiffness of the tool tip in the stroke direction, the

displacement comes mainly from the torsion of the rubber bearing, secondary dis-
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placement comes from the radial displacement of the tool holder. The second one

must be reduced to a minimum.

A digital force gage in combination with the capacitance gage was used to measure

the stiffness. The measured open loop tool tip stiffness was on the order of 0.62 N/pm.

Measurements of the radial stiffness of the tool holder where not successful with

the current setup. An adequate surface to apply a force aligned with the centerline

was not available, and only the tool tip displacement could be measured. Any ec-

centricity of the applied force creates rotation of the shaft and so adds up to the

measurement of the displacement of the tool tip. Indirect measurements of the radial

stiffness were done by applying a force at different eccentricities. The predicted radial

stiffness based on the indirect measurements ranges between 10 N/pm and 100 N/pm.

7.22.2 Step response

The step response of the FTS shows a rapid rise to around 60% of the maximum

displacement within the order of 100's of milliseconds, followed by a creep response

which takes place in the order of seconds, as shown in Figure 7-55. This step response

is basically a representation of the rubber bearing dynamics, which can be seen in

Section 5.5. The dynamics of the rotational inertia become secondary due to the low

rotational inertia.

7.22.3 Frequency response

The open loop frequency response of the FTS driven basically by a current source,

being current the input, and tool tip displacement the output was measured. The

open loop frequency response of the FTS is shown in Figure 7-56. The frequency

response shows a reduction of output stroke with an increase in frequency which is
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Figure 7-55: FTS Step response.

due to the increase of complex stiffness of the rubber bearing. The phase lag due to

the rubber bearing should get to a maximum within the transition zone, and then

drop as shown in Section 5.3.

The rotational modal analysis predicted a rigid body resonance at around 1.2

kHz and a out of phase resonance between the actuator rotor and the tool holder

at around 7.8 kHz. The rigid body resonance is actually highly over-damped due

to the damping from the rubber bearing. The rotational inertia of the FTS rotor is

J = 1.426 - 10-6 kgm2 which accounts for a rotational dynamic stiffness at 1 kHz of

about 56 Nm/rad. While the predicted rubber bearing rotational dynamic stiffness

at 1 kHz is on the order of 1000 Nm/rad. The Bode plot shown in Figure 7-56 shows

how the dynamic stiffness approaches a maximum, being this usual for rubber dy-

namic stiffness, and it is reached around 2 kHz. A resonance peak is seen around

3 kHz which is considered as the out of phase resonance predicted with the rota-

tional modal analysis happening at lower frequency. The lower resonant frequency

is foreseen as been due to an overestimate of the coupling stiffness. The phase lag

associated with an out of phase resonance is 180' at the resonance frequency and
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Figure 7-56: FTS Open Loop frequency response.

360' at higher frequencies. Being this considered as the reason of the phase of the

measured frequency response.

7.22.4 Maximum Stroke

The maximum open loop strokes as a function of frequency are shown in Table 7.7.

The predicted open loop maximum stroke was of 60 1um pk-pk at 1 Hz and 1.6 pm

pk-pk at 1 kHz. The maximum stroke prediction are of the same order of magnitude

than the experimental ones, being 30% off on the case of the one at 1 Hz and 100%

off for the stroke at 1 kHz.
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Table 7.7: Maximum open loop strokes as a function of frequency (with the actuator
driven at 20 A pk-pk)

7.23 Controller Design

From the open loop frequency response it is seen that -1800 are reached around 1

kHz, and then drops significantly. Also the frequency response magnitude is practi-

cally flat between 1 kHz and 3 kHz, which makes it really hard to design a controller

with a cross-over frequency higher than 1 kHz.

7.23.1 Proportional Controller

The open loop frequency response shows a pole with an associated break-point fre-

quency at around 10 Hz, followed by a zero with an associated break-point frequency

at around 1 kHz. Being this due to the rubber bearing dynamics. At frequencies

below 1 KHz the rubber bearing acts like an integrator which is limited by the low

frequency bearing rotational stiffness.

Figure 7-57: Proportional Controller.

Adding a proportional controller as shown in Figure 7-57, with a cross-over fre-

quency within the 100's of Hertz range is easily accomplished. This proportional
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f Stroke
(Hz) (gm pk-pk)

1 45
10 33

100 6.3
1000 0.8



controller will provide sufficient disturbance rejection without the use of an integra-

tor, thanks to the rubber bearing dynamics.

The gain of the proportional controller was chosen by first experimenting with

three proportional gains K, being this 30, 40, and 50. The associated cross-over fre-

quencies fc, phase margin PM and gain margin GM are shown in Table 7.8, and the

loop transmission frequency response is shown in Figure 7-58.

Table 7.8: Proportional controller design

K fe (Hz) PM GM
30 380 450 10 dB
40 500 330 6.7 dB
50 700 20" 2 dB

1-'
C

40

20

2)I

10

c,)
U)

V

U).
C,,
Cu-c
0~

40C

102
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102 103
Frequency (Hz)

Figure 7-58: Loop Transmission frequency response with a proportional controller at

different gains.
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Figure 7-59: Closed loop frequency response with a proportional controller at different

gains.

The resulting closed loop frequency responses for the different proportional gains

are shown in Figure 7-59. The associated damping coefficient ( and bandwidth BW

are shown in Table 7.9. The chosen proportional controller gain was K = 35 so as

to obtain a bandwidth close to 1 kHz with a damping ratio close to ( = 0.3. The

resulting loop transmission and closed loop frequency response with a proportional

controller K = 35 is shown in Figure 7-60 and Figure 7-61 respectively.

Table 7.9: FTS Closed loop bandwidth and damping coefficient with proportional
controller

K BW(Hz) (
30 900 0.4
40 1200 0.2
50 1500 0.15
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Figure 7-61: Closed loop frequency response with a proportional controller (Kp = 35).

The small signal step response of the FTS with the implemented proportional con-

troller is shown in Figure 7-62. It can be seen that the rise time is about t, = 0.5. 10-3
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s, the time to the first peak is about t, = 0.7. 10-3 s, and the overshoot is about 35%

which is correspondent to the closed loop frequency response shown in Figure 7-61.

It can be seen in the small signal step response how the creep behavior of the rubber

bearing shown in Figure 7-55 is no longer present, and that the time constant of the

system has reduced significantly from an order of seconds to an order of milliseconds.

The large signal step response of the FTS is shown in Figure 7-63. The time

constant associated to this step response is larger than the small signal step response

due to the saturation of the A/D converter and further limited by the power amplifier

and power supplies current limit.

The measured closed loop tool tip DC stiffness was between 66 N/pm and 79 N/pm,

with an average of 70 N/pm. This was measured with the aid of a force gage and by

reading the measured displacement with the capacitance gage.
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Figure 7-62: FTS small step (0.26 um) using a proportional controller (Kp = 35).
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Figure 7-63: FTS large step (10 ptm) using a proportional controller (K, = 35).

The expected tool tip stiffness can be calculated by considering the simplified

system model shown in Figure 7-64. The DC tool tip stiffness Fd/X is defined by

F _ 1 + ,10 6 KKm (7.37)

x
KB

where rT = 0.012 m is the tool radius; KB = 76.5 Nm/rad is the rubber bearing

DC torsional stiffness; K, = 35 Nm/pm is the DC gain of the combined proportional

controller plus power amplifier and current control; and Km =0.0245 Nm/rad is the

actuator torque constant.

00
.Time (s)

Figure 7-64: Simplified system model to predict DC tool tip stiffness.
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Solving (7.37) gives a tool tip DC stiffness of 72 N/pm, which is surprisingly close

to the measured tool tip stiffness. Any decrease of the tool tip stiffness is due to the

radial displacement of the tool holder. The controller will try to compensate this dis-

placement up to certain extent but the rubber bearing radial stiffness will eventually

limit this compensation.

The maximum closed loop strokes as a function of frequency are shown in Table

7.10 (actuator driven at 20 A pk-pk).

Table 7.10: Proportional controller design

7.23.2 Lead Controller

The design of a lead controller for the FTS to obtain a higher bandwidth was under-

taken. As stated earlier the flat magnitude of the frequency response between 1 kHz

and 3 kHz, makes it really hard to design a controller with a cross-over frequency

higher than 1 kHz.

The lead controller defined by 7.38 was implemented with an a = 2 and a time

constant A = 159. 10-6. The maximum phase of this lead controller occurs at around

700 Hz and corresponds to 19.5'.
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f Stroke
(Hz) (pm pk-pk)

1 31
10 21
50 7.8

100 2.5
200 1.7
500 0.6
1000 0.3



(7.38)Glead(S) = Kc aAS +
A +1

Due to the added phase a higher cross-over frequency than the one with the

proportional controller can be achieved. Two controller gains K, where tried with

their respective cross-over frequency fe, phase margin PM and gain margin GM are

shown in Table 7.11. The resulting loop transmission frequency response for the lead

controller is shown in Figure 7-65.

Table 7.11: Lead controller design

K fe (Hz) PM GM
25 400 600 6.5 dB
27 480 550 6 dB
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Figure 7-65: Loop Transmission frequency response with a lead controller at different

gains.
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Figure 7-66: Closed loop frequency response with a lead controller at different gains.

The resulting closed loop frequency responses for the different gains K, of the

lead controller are shown in Figure 7-66. The associated damping coefficient ( and

bandwidth BW for the different lead controller gains K, are shown in Table 7.9.

Table 7.12: FTS Closed loop bandwidth and damping coefficient with lead controller

K, BW (Hz) (
25 1400 0.50
27 1500 0.45

The small signal step response of the FTS with the lead controller with a gain

K, = 27 is shown in Figure 7-67. It can be seen that the rise time is about

tr(10% - 90%) = 0.25 ms, the time to the first peak is about t, = 0.5 ms, and

the overshoot is about 8% which is correspondent to the closed loop frequency re-

sponse. It can be seen here as well that the creep behavior of the rubber bearing

shown in Figure 7-55 is no longer present, and that the time constant of the system

has reduced significantly from an order of seconds to an order of milliseconds.
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Figure 7-68: FTS large step (10 pm) using the designed lead controller (K, = 27).

The large signal step response of the FTS is shown in Figure 7-68. The time
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constant associated to this step response is larger than the small signal step response

due to the saturation of the A/D converter and further limited by the power amplifier

and power supplies current limit.

The measured closed loop tool tip DC stiffness was between 52 N/pm and 60 N/m,

with an average of 57 N/pm.

7.24 Comments

This chapter has shown an extensive design effort made in the design of a precision

machine using rubber bearings. The tests of the actual machine have confirmed that

the prediction of the static properties of the rubber bearings is somewhat accurate.

This tests have also shown that the high frequency rubber bearing properties can be

predicted within an order of magnitude.

The use of the collected data from the rubber compression and shear tests from

Chapter 4 and 5 has been really useful in the design of the precision machine shown

in this Chapter. Further experimentation is encouraged in order to get a better un-

derstanding of the high frequency properties of rubber bearings.
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Chapter 8

Conclusions and Suggestions for

Future Work

As part of our research we have designed and fabricated two machines, with the pur-

pose of gaining better understanding of the properties of rubber bearings. The first

machine is a test fixture, which served the purpose of testing rubber specimens in

compression and shear. The second machine is a Rotary Fast Tool Servo that used

laminate rubber-metal bearings.

8.1 Rubber Compression Test

The tests of the rubber specimens in compression have shown a fairly linear behavior

of the compression stiffness within the tested strain of 0.013%. Experimental results

show that the compression stiffness increases significantly with the shape factor S,

with this increment proportional to the shape factor squared S2 . Also the results have

shown that this increase of compression stiffness depends strongly on the adequate

bonding of the load carrying surfaces. The ratio of the high to low frequency com-

plex compression modulus EHF/ELF has shown to be between 7 and 9 for the tested

samples. Samples of higher shape factors show lower EHF/ELF, since its behavior

becomes more close to that of bulk modulus compression.
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8.2 Rubber Shear Test

The tests of rubber specimens in shear have shown a linear behavior of the shear

stiffness within the tested strain of 1.6%. Also the application of preload pressure

increases the static and low frequency shear modulus G, and decreases the ratio of the

high to low frequency complex shear modulus GHF/GLF. The measured GHF/GLF Of

the tested materials ranges from 30 to 240. The preferred rubber materials for rubber

bearings, when trying to obtain higher displacements at high frequencies, are the ones

with lower GHF/GLF. The loss factor calculated from the measured hysteresis loops

have shown that materials with lower Shore hardness exhibit higher loss factor rI than

the ones with higher Shore hardness. The shear step response of the rubber speci-

mens have a rapid elastic-type response within the order of 0.1 ms followed by a slow

creep process lasting seconds. Variation in the Shore hardness has shown practically

no effect on the shear step response of the tested specimens.

Fatigue tests performed on Silicone SH35A and Neoprene SH80A have shown no

signs of fatigue after being subject to 294 - 106 and 207 - 106 cycles, while subject to

cyclic shear strains on the order of 0.16% and 0.004%, respectively. These fatigue

tests show the tested rubber specimens possess remarkable fatigue life properties for

the tested strains.

8.3 Rotary FTS using rubber bearings

Testing of the rotary fast tool servo shows an open loop maximum stroke of 45 /Lm

pk-pk at 1 Hz and 0.8 pm pk-pk at 1 kHz. The predicted open loop maximum stroke

was of 60 pm pk-pk at 1 Hz and 1.6 pm pk-pk at 1 kHz. The maximum stroke predic-

tion is within one order of magnitude of the experimental ones, being 30% off on the
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case of the stroke at 1 Hz and 100% off for the stroke at 1 kHz. This is an acceptable

prediction of performance for the first prototype of this type of machine using rubber

bearings. But further testing of the rubber bearings with testing conditions closer to

the operating conditions is suggested, to make more accurate predictions.

The closed loop bandwidth of the rotary fast tool servo obtained with a simple

proportional controller is 970 Hz, which is close to the desired 1 kHz to 10 kHz band-

width. The maximum strokes obtained when using the proportional controller are

of 31 pm pk-pk at 1 Hz and 0.3 pm pk-pk at 800 Hz. Also the closed loop tool tip

stiffness is around 70 N/pm, which is well within the required 20 N/Pm for precision

diamond turning [13].

The preload mechanism (collet) used to preload the rubber bearings of the rotary

fast tool servo has proved in being effective. The assembly and alignment of the

rubber bearings, collet and shaft, is an easy task due to the bearing assembler unit.

The preload mechanism provides the necessary normal force in the rubber bearings

to prevent slip. It also permits an easy adjustment of the preload force with the aid

of the preload bolts and Belleville springs, which regulates the torsional stiffness of

the torsional rubber bearings.

The rubber bearings have shown great potential as bearings for precision posi-

tioning systems. These bearings are a low cost and compact form alternative versus

conventional flexure bearings. Flexure bearings provide a DC stiffness, while the rub-

ber bearings have a rising with frequency complex stiffness, which may make it an

unattractive option as a bearing for some engineers. But rubber bearings provide high

damping, while flexure bearings have very low damping. When using flexure bear-

ings additional damping elements are often needed to damp unwanted resonances.

Another advantage of rubber bearings is that they permit an increase in the low fre-

quency shear stiffness by applying higher preload compressive loads with the aid of a

preload mechanism.
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8.4 Suggestions for Future Work

A re-design of the current rubber test fixture is suggested as future work. It is sug-

gested to re-design the device to obtain strains higher than 1% in shear and being

able to drive at frequencies of at least 10 kHz. For that it is suggested to use the

proper actuator and power amplifier that will permit higher force output. Also it is

required to re-design the current bearing holder so as to obtain a stiffer connection

with the machine top plate. Another option is to use the design of the FTS preload

mechanism to test smaller laminate rubber bearings. The use of a displacement sensor

with a higher bandwidth than the current capacitance sensor with 5 kHz bandwidth

is recommended. Higher strains of the rubber bearings would also reduce the noise

to signal ratio of the displacement sensor output.

It is suggested as well that for the design of any future precision positioning sys-

tem using rubber laminate bearings, that more adequate information related to the

performance of the rubber bearings be collected. For this the testing conditions of

the rubber bearings must be as similar as possible to the operating conditions.

The design of a linear positioning system using rubber bearings is suggested. The

rubber bearings can provide with the adequate topology the necessary lateral and

torsional stiffness and be compliant in the desired longitudinal direction of motion.
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Appendix A

Matlab codes

A. 1 Code for calculating the loss factor of hystere-

sis loops

function [D,U,loss] = hystdu(xv,fv,ds)

%Calculates the dissipated energy per cycle D, the strain energy U, and loss factor

[xmin,nxmin] =min(xv); [xmax,nxmax]=max(xv); ntm=size(xv);

nt=ntm(1,2);

%U=0.5*fv(nxmax)*xmax XThis is the usual approach which I didn't take for

%not been applicable for all cases

UV=abs(fv. *xv. /2); [U,nUmax]=max(UV); xv(nUmax); fv(nUmax);

D=O;D1=O;D2=0;D3=0;

if nxmin<nxmax
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for n = nxmin:ds:(nxmax-ds),

D1=D1+(fv(n)+fv(n+ds))/2*abs(xv(n+ds)-xv(n));

end

D1=D1+(fv(n+ds)+fv(nxmax))/2*abs(xv(nxmax)-xv(n+ds));

if (nxmin~=1)&((1+ds)>=(nxmin-ds))

for n = 1:ds:(nxmin-ds),

D2=D2+(fv(n)+fv(n+ds))/2*(abs(xv(n+ds)-xv(n)));

end

D2=D2+(fv(n+ds)+fv(nxmin))/2*(abs(xv(nxmin)-xv(n+ds)));

end

if (nxmin~=1)&((1+ds)<(nxmin-ds))

D2=D2+(fv(1)+fv(nxmin))/2*(abs(xv(nxmin)-xv(1)));

end

if (nxmax~=size(xv))&((nxmax+ds)<=(nt-ds))

for n = nxmax:ds:(nt-ds),

D3=D3+(fv(n)+fv(n+ds))/2*(abs(xv(n+ds)-xv(n)));

end

D3=D3+(fv(n+ds)+fv(nt))/2*(abs(xv(nt)-xv(n+ds)));

end

if (nxmax~=size(xv))&((nxmax+ds)>(nt-ds))

D3=D3+(fv(nxmax)+fv(nt))/2*(abs(xv(nt)-xv(nxmax)));

end

end

if nxmin>nxmax

for n = nxmax:ds:(nxmin-ds),

D1=D1+(fv(n)+fv(n+ds))/2*abs(xv(n+ds)-xv(n));

end

D1=D1+(fv(n+ds)+fv(nxmin))/2*abs(xv(nxmin)-xv(n+ds));

if (nxmax~=1)&((1+ds)<=(nxmax-ds))
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for n = 1:ds:(nxmax-ds),

end

D2=D2+(fv(n)+fv(n+ds))/2*(abs(xv(n+ds)-xv(n)));

D2=D2+(fv(n+ds)+fv(nxmax))/2*(abs(xv(nxmax)-xv(n+ds)));

end

if (nxmax~=1)&((1+ds)>(nxmax-ds))

D2=D2+(fv(1)+fv(nxmax))/2*(abs(xv(nxmax)-xv(1)));

end

if (nxmin~=size(xv))&((nxmin+ds)<=(nt-ds))

for n = nxmin:ds:(nt-ds),

D3=D3+(fv(n)+fv(n+ds))/2*(abs(xv(n+ds)-xv(n)));

end

D3=D3+(fv(n+ds)+fv(nt))/2*(abs(xv(nt)-xv(n+ds)));

end

if (nxmin~=size(xv))&((nxmin+ds)>(nt-ds))

D3=D3+(fv(nxmin)+fv(nt))/2*(abs(xv(nt)-xv(nxmin)));

end

end

Dl; D2; D3;

D=abs(Dl)+abs(D2)+abs(D3);

loss=D/(2*pi*U);

237



A.2 Code for calculating in real-time the complex

shear stiffness magnitude and phase of a tested

sample during fatigue testing

function [FR,my-datal = fs_1104(A,f,sett,dts)

% function [FR] = fs_1104(A,f,sett,dts)

% --------------------- (Aug 27, 2004)---------------------

% % A : Sine wave amplitude (Voltage input to amplifier)

% f : frequency tested (Hz)

% sett Settling time (min)

% dts Time interval to take samples (min)

%-----------------------------------------------------------------------

% OUTPUTs: The output is a (3 x 1) vector.

% Row 1: time (min)

% Row 2: GAIN, as the ratio of channel2/channell

% Row 3: PHASE, in degrees

%clear all;

UInitializing board

mlib('SelectBoard','ds1104');

%mlib('StartDSP');

%Starting sine wave and clock

[amp-freq-start=mlib('GetTrcVar',...

{'Model Root/Fatigue Sample/Swept\nSine/Amplitude'; ...
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'Model Root/Fatigue Sample/Swept\nSine/Frequency';

'Model Root/Fatigue Sample/Start/Value'});

mlib('Write', ampjfreq-start, 'Data', {A;f;1});

%Defining force and displacement variables to trace

y-addr=mlib('GetTrcVar',...

{'Model Root/Fatigue Sample/channell/Outi'; ...

'Model Root/Fatigue Sample/channel2/Out1';...

'Model Root/Fatigue Sample/Swept\nSine/Outl'});

%Tracking time

time=mlib('GetTrcVar',...

{'Model Root/Fatigue Sample/Integrator/Outl'});

%Defining the number of samples

sampper=mlib('GetTrcVar',...

{'Task Info/Timer Task 1/sampleTime'}); % KAL 3/13/02

dt=mlib('Read',samp-per)

T=1/f; %Wave period

NC=2; %Number of cycles

st=NC*T; Nsamples=floor(st/dt);

time-trigger=sett*60; N=1;

ON=mlib('GetTrcVar',...

{'Model Root/ON/Value'});

mlib('CaptureState')
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while mlib('Read',time)<(sett*60), end

while mlib('Read',ON)==1,

while mlib('Read' ,time)<timetrigger, end

mlib('Set', ...

'Downsampling', 1,

'Delay', 0, ...

'NumSamples', Nsamples);

mlib('Set','Trigger', 'On',...

'TriggerVariable', y-addr(3),...

'TraceVars', y-addr,...

'TriggerLevel', 0,...

'TriggerEdge', 'rising');

mlib('LockProgram');

mlib('StartCapture');

%while mlib('CaptureState')==or(0,2)

X'wait'

%end

while mlib('CaptureState')~=O, end

mlib('CaptureState')

my-data= mlib('FetchData');

force=my-data(1,1:Nsamples);

disp=my-data(2,1:Nsamples);

mlib('UnlockProgram');
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F=fft (force);

D=fft(disp);

L=length (F) ;

Fk=F(2: (L/2+1));

[Fm,k]=max(abs(Fk))

ki=k+1;

Fm=F(kl);

f1=(k-)/(Nsamples*dt)

fv=2*Fm/Nsamples

Dk=D(2: (L/2+1));

[Dm,k]=max(abs(Dk))

k2=k+1;

Dm=D(k2);

f2=(k2-1)/(Nsamples*dt)

dv=2*Dm/Nsamples

xdc=D(1)/Nsamples

gain=abs(fv/dv)

phase=angle (fv/dv)

phasedeg=phase*180/pi

G(1,N)=gain;

P(1,N)=phasedeg;

XDC(1,N)=xdc;

tv(1,N)=dts*(N-1);
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save G;

save P;

save XDC;

save tv;

timetrigger=time-trigger+dts*60;

N=N+1;

figure(1)

subplot(3,1,1);

plot(tv,G);

xlabel('Time (min)');

ylabel('Stifnness (N/um)');

title('Fatigue test');

subplot(3,1,2);

plot(tv,P);

xlabel('Time (min)');

ylabel('Phase (deg)');

subplot(3,1,3);

plot(tv,XDC);

xlabel('Time (min)');

ylabel('Disp DC (um)');

figure(2)

subplot(2,1,1);

plot(force);

xlabel('Sampling points');

ylabel('Force (N)');

title('Force and displacement measurements');
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subplot(2,1,2);

plot (disp);

xlabel('Sampling points');

ylabel('Disp (um)');

pause(dts*60-5);

end

mlib('Write', amp-freq-start, 'Data', {0;0;0});

'Fatigue analysis finished by user'
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Appendix B

Optimization of Rubber Bearing

and Shaft dimensions results
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Maxv Strnke
Data . Ir - g p

Shaft Shaft tool height length length Shaft Shaft B=dl Rubber Tool Shaft tool tip DC @2kHz @10kHz
diami diam2 radius of tool from tool from tool length length up bearing holder bending stiffness

holder to bearing to galvo to bearing bending (w/o
center center torsion)

dl d2 rT (rT-d/2) hth Lb e Lx LT Lshaft Lshaftb B H t n kbrad kthrad ksbrad krad xmax xmax xmax fn
(mm) (mm) (mm) (mm) (mm) (mm) (mm )mm) (mm) (mm) (mm) (mm) (mm) (mm) -(N/um) (N/um) Num N/u umP umP (umP) (Hz)

12.0 12.0 11.0 5 5 13.89149 4 12 30.8 25.78 8.891488 12.0 9.8 0.77 1 29.48 358.40 304.08 25.00 15.18 0.42 Stiffness 0.42 Stiffness 10877
12.0 12.0 11.0 5 5 16.91681 4 12 36.8 31.83 11.91681 12.0 15.8 0.77 2 34.14 358.40 126.31 25.00 18.76 0.52 Stiffness 0.48 Inertia 9637
12.0 12.0 11.0 5 5 9 4 12
12.0 12.0 11.0 5 5 9 4 12

12.0 12.0 11.0 5 5 13.06576 4 20 37.1 32.13 8.065764 12.0 8.1 0.77 1 28.77 358.40 407.36 25.00 18.26 0.51 Stiffness 0.48 Inertia 9760
12.0 12.0 11.0 5 5 15.25464 4 20 41.5 36.51 10.25464 12.0 12.5 0.77 2 31.09 358.40 198.22 25.00 23.74 0.66 Stiffness 0.47 Inertia 8469
12.0 12.0 11.0 5 5 18.09409 4 20 47.2 42.19 13.09409 12.0 18.2 0.77 3 37.44 358.40 95.21 25.00 24.49 0.68 Stiffness 0.46 Inertia 8226
12.0 12.0 11.0 5 5 20.4262 4 20 51.9 46.85 15.4262 12.0 22.9 0.77 4 38.95 358.40 58.23 21.91 25.99 0.72 Stiffness 0.45 Inertia 7899

12.0 12.0 11.0 5 5 12.60368 4 30 46.2 41.21 7.603678 12.0 7.2 0.77 1 28.45 358.40 486.23 25.00 20.60 0.57 Stiffness 0.46 Inertia 8989
12.0 12.0 11.0 5 5 14.39738 4 30 49.8 44.79 9.397377 12.0 10.8 0.77 2 30.01 358.40 257.57 25.00 27.51 0.76 Stiffness 0.45 Inertia 7714
12.0 12.0 11.0 5 5 16.25795 4 30 53.5 48.52 11.25795 12.0 14.5 0.77 3 32.75 358.40 149.81 25.00 30.69 0.85 Stiffness 0.45 Inertia 7241
12.0 12.0 11.0 5 5 19.72707 4 30 60.5 55.45 14.72707 12.0 21.5 0.77 4 43.75 358.40 66.92 24.63 27.69 0.77 Stiffness 0.43 Inertia 7506

12.0 12.0 12.0 6 5 14.07697 4 12 31.2 26.15 9.076971 12.0 10.2 0.77 1 31.57 207.41 285.82 25.00 15.95 0.44 Stiffness 0.44 Stiffness 11071
12.0 12.0 12.0 6 5 17.54067 4 12 38.1 33.08 12.54067 12.0 17.1 0.77 2 38.53 207.41 108.38 25.00 18.97 0.53 Stiffness 0.52 Inertia 9979
12.0 12.0 12.0 6 5 20.65578 4 12 44.3 39.31 15.65578 12.0 23.3 0.77 3 41.27 207.41 55.70 21.28 20.85 0.58 Stiffness 0.51 Inertia 9376
12.0 12.0 12.0 6 5 9 4 12

12.0 12.0 12.0 6 5 13.20707 4 20 37.4 32.41 8.207073 12.0 8.4 0.77 1 30.68 207.41 386.68 25.00 19.25 0.53 Stiffness 0.53 Inertia 9921
12.0 12.0 12.0 6 5 15.56837 4 20 42.1 37.14 10.56837 12.0 13.1 0.77 2 33.72 207.41 181.09 25.00 24.66 0.69 Stiffness 0.51 Inertia 8665
12.0 12.0 12.0 6 5 19.61359 4 20 50.2 45.23 14.61359 12.0 21.2 0.77 3 46.78 207.41 68.49 24.51 22.90 0.64 Stiffness 0.50 Inertia 8823
12.0 12.0 12.0 6 5 9 4 20

12.0 12.0 12.0 6 5 12.72204 4 30 46.4 41.44 7.722042 12.0 7.4 0.77 1 30.28 207.41 464.21 25.00 21.76 0.60 Stiffness 0.50 Inertia 9131
12.0 12.0 12.0 6 5 14.62755 4 30 50.3 45.26 9.627555 12.0 11.3 0.77 2 32.25 207.41 239.53 25.00 28.79 0.80 Stiffness 0.50 Inertia 7868
12.0 12.0 12.0 6 1 5 16.74207 4 30 54.5 49.48 11.74207 12.0 15.5 0.77 3 36.23 207.41 132.03 25.00 31.39 0.87 Stiffness 0.49 inertIa 7462
12.0 12.0 12.0 6 5 19.88981 4 30 60.8 55.78 14.88981 12.0 21.8 0.77 4 44.66 207.41 64.75 23.44 29.75 0.83 Stiffness 0.47 Inertia 7557

12.0 12.0 13.0 7 5 13.43596 4 20 37.9 32.87 8.435963 12.0 8.9 0.77 1 33.86 130.61 356.05 25.00 19.78 0.55 Stiffness 0.55 Stiffness 10176
12.0 12.0 13.0 7 5 16.14569 4 20 43.3 38.29 11.14569 12.0 14.3 0.77 2 38.66 130.61 154.38 25.00 24.56 0.68 Stiffness 0.55 Inertia 9013
12.0 12.0 13.0 7 5 19.6748 4 20 50.3 45.35 14.6748 12.0 21.3 0.77 3 47.15 130.61 67.64 22.91 24.66 0.69 Stiffness 0.54 Inertia 8846
12.0 12.0 13.0 7 5 9 4 20

12.0 12.0 13.0 7 5 12.91168 4 30 46.8 41.82 7.911683 12.0 7.8 0.77 1 33.30 130.61 431.63 25.00 22.43 0.62 Stiffness 0.55 Inertia 9352
12.0 12.0 13.0 7 5 15.02133 4 30 51.0 46.04 10.02133 12.0 12.0 0.77 2 36.19 130.61 212.39 25.00 29.15 0.81 Stiffness 0.53 Inertia 8124
12.0 12.0 13.0 7 5 17.95837 4 30 56.9 51.92 12.95837 12.0 17.9 0.77 3 45.12 130.61 98.23 25.00 29.39 0.82 Stiffness 0.52 Inertia 7983
12.0 12.0 13.0 7 5 19.95889 4 30 60.9 55.92 14.95889 12.0 21.9 0.77 4 45.04 130.61 63.86 21.97 32.03 0.89 Stiffness 0.51 Inertia 7579

12.0 12.0 14.0 8 5 13.82243 4 20 38.6 33.64 8.822431 12.0 9.6 0.77 1 39.43 87.50 311.28 25.00 19.60 0.54 Stiffness 0.54 Stiffness 10590
12.0 12.0 14.0 8 5 17.78845 4 20 46.6 41.58 12.78845 12.0 17.6 0.77 2 53.23 87.50 102.20 25.00 21.51 0.60 Stiffness 0.59 Inertia 9918
12.0 12.0 14.0 8 5 9 4 20
12.0 12.0 14.0 8 5 9 4 20 _
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Max Strnke
Dpata ue ag ep

Shaft Shaft tool height length length Shaft Shaft B=dl Rubber Tool Shaft tool tip DC @2kHz @10kHz
diami diam2 radius of tool from tool from tool length length up bearing holder bending stiffness

holder to bearing to galvo to bearing bending (w/o
center center torsion)

dl d2 rT (rT-d/2) hth Lb e Lx LT Lshaft Lshaftb B H t n kbrad kthrad ksbrad krad xmax xmax xmax fn
(mm) (mm) (mm) (mm) (mm) (mm) (mm (mm) (mm) (mm) (mm) (mm) (mm) (mm) (N/um) (N/um) (N/um) (N/um) (umP) (umP) (umP) (Hz)

12.0 12.0 14.0 8 5 13.22495 4 30 47.4 42.45 8.224951 12.0 8.4 0.77 1 38.51 87.50 384.16 25.00 22.37 0.62 Stiffness 0.59 Inertia 9705
12.0 12.0 14.0 8 5 15.78368 4 30 52.6 47.57 10.78368 12.0 13.6 0.77 2 44.04 87.50 170.46 25.00 27.86 0.77 Stiffness 0.57 Inertia 8593
12.0 12.0 14.0 8 5 19.02854 4 30 59.1 54.06 14.02854 12.0 20.1 0.77 3 53.05 87.50 77.42 23.15 28.27 0.79 Stiffness 0.55 Inertia 8406
12.0 12.0 14.0 8 5 19.86 4 30 60.7 55.72 14.86 12.0 21.7 0.77 4 44.49 87.50 65.14 20.30 34.81 0.97 Stiffness 0.55 Inertia 7548

14.0 14.0 11.0 4 5 13.07433 4 12 29.1 24.15 8.074335 14.0 8.1 0.77 1 26.85 700.00 752.28 25.00 11.48 0.32 Stiffness 0.32 Stiffness 11946
14.0 14.0 11.0 4 5 14.94843 4 12 32.9 27.9 9.948434 14.0 11.9 0.77 2 27.71 700.00 402.20 25.00 15.72 0.44 Stiffness 0.44 Stiffness 10045
14.0 14.0 11.0 4 5 16.6796 4 12 36.4 31.36 11.6796 14.0 15.4 0.77 3 28.95 700.00 248.55 25.00 18.27 0.51 Stiffness 0.43 Inertia 9187
14.0 14.0 11.0 4 5 18.53559 4 12 40.1 35.07 13.53559 14.0 19.1 0.77 4 30.95 700.00 159.69 25.00 19.61 0.54 Stiffness 0.42 Inertia 8735

14.0 14.0 11.0 4 5 12.44432 4 20 35.9 30.89 7.444315 14.0 6.9 0.77 1 26.65 700.00 959.90 25.00 13.58 0.38 Stiffness 0.38 Stiffness 10677
14.0 14.0 11.0 4 5 13.97188 4 20 38.9 33.94 8.971881 14.0 9.9 0.77 2 27.21 700.00 548.34 25.00 18.81 0.52 Stiffness 0.42 Inertia 8960
14.0 14.0 11.0 4 5 15.32702 4 20 41.7 36.65 10.32702 14.0 12.7 0.77 3 27.94 700.00 359.57 25.00 22.17 0.62 Stiffness 0.41 Inertia 8166
14.0 14.0 11.0 4 5 16.67322 4 20 44.3 39.35 11.67322 14.0 15.3 0.77 4 28.94 700.00 248.96 25.00 24.38 0.68 Stiffness 0.40 Inertia 7707

14.0 14.0 11.0 4 5 12.08651 4 30 45.2 40.17 7.086505 14.0 6.2 0.77 1 26.54 700.00 1112.77 25.00 15.15 0.42 Stiffness 0.40 Inertia 9746
14.0 14.0 11.0 4 5 13.40605 4 30 47.8 42.81 8.40605 14.0 8.8 0.77 2 26.97 700.00 666.69 25.00 21.23 0.59 Stiffness 0.39 Inertia 8153
14.0 14.0 11.0 4 5 14.5422 4 30 50.1 45.08 9.542204 14.0 11.1 0.77 3 27.49 700.00 455.78 25.00 25.31 0.70 Stiffness 0.39 Inertia 7403
14.0 14.0 11.0 4 5 15.62909 4 30 52.3 47.26 10.62909 14.0 13.3 0.77 4 28.14 700.00 329.77 25.00 28.21 0.78 Stiffness 0.38 Inertia 6957

14.0 14.0 12.0 5 5 13.15387 4 12 29.3 24.31 8.15387 14.0 8.3 0.77 1 27.90 358.40 730.48 25.00 12.28 0.34 Stiffness 0.34 Stiffness 12053
14.0 14.0 12.0 5 5 15.08696 4 12 33.2 28.17 10.08696 14.0 12.2 0.77 2 28.89 358.40 385.85 25.00 16.76 0.47 Stiffness 0.47 Stiffness 10150
14.0 14.0 12.0 5 5 16.89945 4 12 36.8 31.8 11.89945 14.0 15.8 0.77 3 30.34 358.40 235.03 25.00 19.37 0.54 Stiffness 0.47 Inertia 9301
14.0 14.0 12.0 5 5 18.91212 4 12 40.8 35.82 13.91212 14.0 19.8 0.77 4 32.88 358.40 147.07 25.00 20.59 0.57 Stiffness 0.45 Inertia 8880

14.0 14.0 12.0 5 5 12.50932 4 20 36.0 31.02 7.509317 14.0 7.0 0.77 1 27.67 358.40 935.19 25.00 14.54 0.40 Stiffness 0.40 Stiffness 10772
14.0 14.0 12.0 5 5 14.07993 4 20 39.2 34.16 9.07993 14.0 10.2 0.77 2 28.31 358.40 529.00 25.00 20.08 0.56 Stiffness 0.46 Inertia 9049
14.0 14.0 12.0 5 5 15.4863 4 20 42.0 36.97 10.4863 14.0 13.0 0.77 3 29.16 358.40 343.43 25.00 23.59 0.66 Stiffness 0.45 Inertia 8257
14.0 14.0 12.0 5 5 16.90372 4 20 44.8 39.81 11.90372 14.0 15.8 0.77 4 30.35 358.40 234.78 25.00 25.82 0.72 Stiffness 0.44 Inertia 7808

14.0 14.0 12.0 5 5 12.14309 4 30 45.3 40.29 7.143092 14.0 6.3 0.77 1 27.56 358.40 1086.53 25.00 16.23 0.45 Stiffness 0.44 Inertia 9830
14.0 14.0 12.0 5 5 13.49687 4 30 48.0 42.99 8.496865 14.0 9.0 0.77 2 28.04 358.40 645.54 25.00 22.69 0.63 Stiffness 0.43 Inertia 8231
14.0 14.0 12.0 5 5 14.67061 4 30 50.3 45.34 9.670606 14.0 11.3 0.77 3 28.63 358.40 437.87 25.00 26.99 0.75 Stiffness 0.42 Inertia 7482
14.0 14.0 12.0 5 5 15.8036 4 30 52.6 47.61 10.8036 14.0 13.6 0.77 4 29.39 358.40 314.05 25.00 29.99 0.83 Stiffness 0.41 Inertia 7039

14.0 14.0 13.0 6 5 13.28284 4 12 29.6 24.57 8.282842 14.0 8.6 0.77 1 29.64 207.41 696.89 25.00 12.90 0.36 Stiffness 0.36 Stiffness 12225
14.0 14.0 13.0 6 5 15.31608 4 12 33.6 28.63 10.31608 14.0 12.6 0.77 2 30.86 207.41 360.71 25.00 17.50 0.49 Stiffness 0.49 Stiffness 10319
14.0 14.0 13.0 6 5 17.27735 4 12 37.6 32.55 12.27735 14.0 16.6 0.77 3 32.78 207.41 213.99 25.00 20.03 0.56 Stiffness 0.50 Inertia 9492
14.0 14.0 13.0 6 5 19.64732 4 12 42.3 37.29 14.64732 14.0 21.3 0.77 4 36.71 207.41 126.02 25.00 20.76 0.58 Stiffness 0.48 Inertia 9151

14.0 14.0 13.0 6 5 12.61431 4 20 36.2 31.23 7.614312 14.0 7.2 0.77 1 29.36 207.41 897.04 25.00 15.29 0.42 Stiffness 0.42 Stiffness 10923
14.0 14.0 13.0 6 5 14.25688 4 20 39.5 34.51 9.256883 14.0 10.5 0.77 2 30.14 207.41 499.24 25.00 21.02 0.58 Stiffness 0.49 Inertia 9193
14.0 14.0 13.0 6 5 15.7523 4 20 42.5 37.5 10.7523 14.0 13.5 0.77 3 31.21 207.41 318.57 25.00 24.55 0.68 Stiffness 0.48 Inertia 8408
14.0 14.0 13.0 6 5 17.30284 4 20 45.6 40.61 12.30284 14.0 16.6 0.77 4 32.81 207.41 212.66 25.00 26.62 0.74 Stiffness 0.47 Inertia 7979
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nsta Rubbeor bearln I~n tfnum tfn ti Uax Strnka

Shaft Shaft tool height length length Shaft Shaft B=dl Rubber Tool Shaft tool tip DC @2kHz @10kHz
diami diam2 radius of tool from tool from tool length length up bearing holder bending stiffness

holder to bearing to galvo to bearing bending (w/o
center center torsion)

dl d2 rT (rT-d/2) hth Lb e Lx LT Lshaft Lshaftb B H t n kbrad kthrad ksbrad krad xmax xmax xmax fn
(mm) (mm) (mm) (mm) (mm) (mm) (mm )mm) (mm) (mm) (mm) (mm) (mm) (mm) (N/um) (N/um) (N/um) N/um) (umP) (umP) (umP) (Hz)

14.0 14.0 13.0 6 5 12.23428 4 30 45.5 40.47 7.234278 14.0 6.5 0.77 1 29.22 207.41 1045.96 25.00 17.09 0.47 Stiffness 0.47 Inertia 9965
14.0 14.0 13.0 6 5 13.64476 4 30 48.3 43.29 8.644764 14.0 9.3 0.77 2 29.81 207.41 612.98 25.00 23.80 0.66 Stiffness 0.46 Inertia 8356
14.0 14.0 13.0 6 5 14.88252 4 30 50.8 45.77 9.882521 14.0 11.8 0.77 3 30.54 207.41 410.30 25.00 28.18 0.78 Stiffness 0.45 Inertia 7608
14.0 14.0 13.0 6 5 16.09725 4 30 53.2 48.19 11.09725 14.0 14.2 0.77 4 31.52 207.41 289.77 25.00 31.15 0.87 Stiffness 0.45 Inertia 7174

14.0 14.0 14.0 7 5 13.48772 4 12 30.0 24.98 8.487717 14.0 9.0 0.77 1 32.47 130.61 647.63 25.00 13.26 0.37 Stiffness 0.37 Stiffness 12492
14.0 14.0 14.0 7 5 15.69366 4 12 34.4 29.39 10.69366 14.0 13.4 0.77 2 34.18 130.61 323.83 25.00 17.78 0.49 Stiffness 0.49 Stiffness 10590
14.0 14.0 14.0 7 5 17.95506 4 12 38.9 33.91 12.95506 14.0 17.9 0.77 3 37.24 130.61 182.13 25.00 19.94 0.55 Stiffness 0.53 Inertia 9820
14.0 14.0 14.0 7 5 22.15317 4 12 47.3 42.31 17.15317 14.0 26.3 0.77 4 50.09 130.61 78.46 24.77 18.10 0.50 Stiffness 0.50 Inertia 9979

14.0 14.0 14.0 7 5 12.78005 4 20 36.6 31.56 7.78005 14.0 7.6 0.77 1 32.10 130.61 840.92 25.00 15.74 0.44 Stiffness 0.44 Stiffness 11155
14.0 14.0 14.0 7 5 14.54298 4 20 40.1 35.09 9.54298 14.0 11.1 0.77 2 33.17 130.61 455.67 25.00 21.47 0.60 Stiffness 0.53 Inertia 9418
14.0 14.0 14.0 7 5 16.19908 4 20 43.4 38.4 11.19908 14.0 14.4 0.77 3 34.73 130.61 281.94 25.00 24.80 0.69 Stiffness 0.52 Inertia 8652
14.0 14.0 14.0 7 5 18.03141 4 20 47.1 42.06 13.03141 14.0 18.1 0.77 4 37.38 130.61 178.95 25.00 26.36 0.73 Stiffness 0.50 Inertia 8276

14.0 14.0 14.0 7 5 12.37762 4 30 45.8 40.76 7.377616 14.0 6.8 0.77 1 31.92 130.61 986.18 25.00 17.62 0.49 Stiffness 0.49 Stiffness 10173
14.0 14.0 14.0 7 5 13.88152 4 30 48.8 43.76 8.881522 14.0 9.8 0.77 2 32.71 130.61 565.25 25.00 24.38 0.68 Stiffness 0.50 Inertia 8551
14.0 14.0 14.0 7 5 15.23006 4 30 51.5 46.46 10.23006 14.0 12.5 0.77 3 33.74 130.61 369.89 25.00 28.66 0.80 Stiffness 0.49 Inertia 7810
14.0 14.0 14.0 7 5 16.59809 4 30 54.2 49.2 11.59809 14.0 15.2 0.77 4 35.21 130.61 253.83 25.00 31.33 0.87 Stiffness 0.48 Inertia 7397

14.0 14.0 15.0 8 5 13.82055 4 12 30.6 25.64 8.820549 14.0 9.6 0.77 1 37.26 87.50 577.05 25.00 13.23 0.37 Stiffness 0.37 Stiffness 12911
14.0 14.0 15.0 8 5 16.35566 4 12 35.7 30.71 11.35566 14.0 14.7 0.77 2 40.20 87.50 270.44 25.00 17.34 0.48 Stiffness 0.48 Stiffness 11041
14.0 14.0 15.0 8 5 19.55424 4 12 42.1 37.11 14.55424 14.0 21.1 0.77 3 48.11 87.50 128.45 25.00 18.12 0.50 Stiffness 0.50 Stiffness 10528
14.0 14.0 15.0 8 5 9 4 12

14.0 14.0 15.0 8 5 13.04614 4 20 37.1 32.09 8.046145 14.0 8.1 0.77 1 36.69 87.50 760.22 25.00 15.76 0.44 Stiffness 0.44 Stiffness 11516
14.0 14.0 15.0 8 5 15.02372 4 20 41.0 36.05 10.02372 14.0 12.0 0.77 2 38.42 87.50 393.20 25.00 21.17 0.59 Stiffness 0.56 Inertia 9781
14.0 14.0 15.0 8 5 17.01917 4 20 45.0 40.04 12.01917 14.0 16.0 0.77 3 41.34 87.50 228.08 25.00 23.85 0.66 Stiffness 0.55 Inertia 9074
14.0 14.0 15.0 8 5 19.95709 4 20 50.9 45.91 14.95709 14.0 21.9 0.77 4 49.70 87.50 118.35 25.00 23.28 0.65 Stiffness 0.52 Inertia 8988

14.0 14.0 15.0 8 5 13.04614 4 20 37.1 32.09 8.046145 14.0 8.1 0.77 1 36.69 87.50 760.22 25.00 15.76 0.44 Stiffness 0.44 Stiffness 11516
14.0 14.0 15.0 8 5 15.02372 4 20 41.0 36.05 10.02372 14.0 12.0 0.77 2 38.42 87.50 393.20 25.00 21.17 0.59 Stiffness 0.56 Inertia 9781
14.0 14.0 15.0 8 5 17.01917 4 20 45.0 40.04 12.01917 14.0 16.0 0.77 3 41.34 87.50 228.08 25.00 23.85 0.66 Stiffness 0.55 Inertia 9074
14.0 14.0 15.0 8 5 19.95709 4 20 50.9 45.91 14.95709 14.0 21.9 0.77 4 49.70 87.50 118.35 25.00 23.28 0.65 Stiffness 0.52 Inertia 8988

15.0 15.0 12.0 4.5 5 12.87036 4 12 28.7 23.74 7.870358 15.0 7.7 0.77 1 27.00 491.63 1070.46 25.00 10.72 0.30 Stiffness 0.30 Stiffness 12532
15.0 15.0 12.0 4.5 5 14.56102 4 12 32.1 27.12 9.56102 15.0 11.1 0.77 2 27.55 491.63 597.09 25.00 14.92 0.41 Stiffness 0.41 Stiffness 10435
15.0 15.0 12.0 4.5 5 16.04662 4 12 35.1 30.09 11.04662 15.0 14.1 0.77 3 28.26 491.63 387.14 25.00 17.66 0.49 Stiffness 0.44 Inertia 9447
15.0 15.0 12.0 4.5 5 17.50251 4 12 38.0 33.01 12.50251 15.0 17.0 0.77 4 29.22 491.63 267.03 25.00 19.51 0.54 Stiffness 0.43 Inertia 8859

15.0 15.0 12.0 4.5 5 12.28462 4 20 35.6 30.57 7.284623 15.0 6.6 0.77 1 26.86 491.63 1350.00 25.00 12.63 0.35 Stiffness 0.35 Stiffness 11145
15.0 15.0 12.0 4.5 5 13.68053 4 20 38.4 33.36 8.680528 15.0 9.4 0.77 2 27.24 491.63 797.84 25.00 17.72 0.49 Stiffness 0.42 Inertia 9279
15.0 15.0 12.0 4.5 5 14.87767 4 20 40.8 35.76 9.877669 15.0 11.8 0.77 3 27.69 491.63 541.49 25.00 21.17 0.59 Stiffness 0.41 Inertia 8393
15.0 15.0 12.0 4.5 5 16.01385 4 20 43.0 38.03 11.01385 15.0 14.0 0.77 4 28.24 491.63 390.60 25.00 23.65 0.66 Stiffness 0.41 Inertia 7856
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Max SokDat_ er m ss p
Shaft Shaft tool height length length Shaft Shaft B=d1 Rubber Tool Shaft tool tip DC @2kHz @10kHz
diami diam2 radius of tool from tool from tool length length up bearing holder bending stiffness

holder to bearing to galvo to bearing bending (w/o
center center torsion)

dl d2 rT (rT-d/2) hth Lb e Lx LT Lshaft Lshaftb B H t n kbrad kthrad ksbrad krad xmax xmax xmax fn
(mm) (mm) (mm) (mm) (mm) (mm) (mm (mm) (mm) (mm) (mm) (mm) (mm) (mm). (N/um) (N/um) (N/um) (N/um) (umP) (umP) (umP) (Hz)

15.0 15.0 12.0 4.5 5 11.95148 4 30 44.9 39.9 6.951482 15.0 5.9 0.77 1 26.79 491.63 1553.54 25.00 14.05 0.39 Stiffness 0.39 Stiffness 10105
15.0 15.0 12.0 4.5 5 13.16775 4 30 47.3 42.34 8.167746 15.0 8.3 0.77 2 27.08 491.63 957.74 25.00 19.90 0.55 Stiffness 0.39 Inertia 8398
15.0 15.0 12.0 4.5 5 14.18773 4 30 49.4 44.38 9.187729 15.0 10.4 0.77 3 27.41 491.63 672.87 25.00 23.98 0.67 Stiffness 0.38 Inertia 7582
15.0 15.0 12.0 4.5 5 15.13385 4 30 51.3 46.27 10.13385 15.0 12.3 0.77 4 27.80 491.63 501.45 25.00 27.05 0.75 Stiffness 0.38 Inertia 7081

15.0 15.0 13.0 5.5 5 12.96169 4 12 28.9 23.92 7.961688 15.0 7.9 0.77 1 28.31 269.27 1034.05 25.00 11.34 0.32 Stiffness 0.32 Stiffness 12667
15.0 15.0 13.0 5.5 5 14.71176 4 12 32.4 27.42 9.711763 15.0 11.4 0.77 2 28.96 269.27 569.72 25.00 15.73 0.44 Stiffness 0.44 Stiffness 10559
15.0 15.0 13.0 5.5 5 16.26636 4 12 35.5 30.53 11.26636 15.0 14.5 0.77 3 29.81 269.27 364.93 25.00 18.55 0.52 Stiffness 0.47 Inertia 9572
15.0 15.0 13.0 5.5 5 17.8154 4 12 38.6 33.63 12.8154 15.0 17.6 0.77 4 31.00 269.27 247.95 25.00 20.39 0.57 Stiffness 0.46 Inertia 8993

15.0 15.0 13.0 5.5 5 12.3601 4 20 35.7 30.72 7.360096 15.0 6.7 0.77 1 28.15 269.27 1308.89 25.00 13.37 0.37 Stiffness 0.37 Stiffness 11264
15.0 15.0 13.0 5.5 5 13.80123 4 20 38.6 33.6 8.801226 15.0 9.6 0.77 2 28.59 269.27 765.47 25.00 18.72 0.52 Stiffness 0.46 Inertia 9387
15.0 15.0 13.0 5.5 5 15.04702 4 20 41.1 36.09 10.04702 15.0 12.1 0.77 3 29.12 269.27 514.57 25.00 22.29 0.62 Stiffness 0.45 Inertia 8500
15.0 15.0 13.0 5.5 5 16.241 4 20 43.5 38.48 11.241 15.0 14.5 0.77 4 29.79 269.27 367.40 25.00 24.82 0.69 Stiffness 0.44 Inertia 7966

15.0 15.0 13.0 5.5 5 12.01768 4 30 45.0 40.04 7.017677 15.0 6.0 0.77 1 28.07 269.27 1509.99 25.00 14.89 0.41 Stiffness 0.41 Stiffness 10211
15.0 15.0 13.0 5.5 5 13.2707 4 30 47.5 42.54 8.270705 15.0 8.5 0.77 2 28.41 269.27 922.42 25.00 21.04 0.58 Stiffness 0.42 Inertia 8493
15.0 15.0 13.0 5.5 5 14.32832 4 30 49.7 44.66 9.328318 15.0 10.7 0.77 3 28.79 269.27 642.90 25.00 25.30 0.70 Stiffness 0.41 Inertia 7674
15.0 15.0 13.0 5.5 5 15.31629 4 30 51.6 46.63 10.31629 15.0 12.6 0.77 4 29.25 269.27 475.32 25.00 28.45 0.79 Stiffness 0.41 Inertia 7174

15.0 15.0 14.0 6.5 5 13.10672 4 12 29.2 24.21 8.106724 15.0 8.2 0.77 1 30.44 163.13 979.53 25.00 11.78 0.33 Stiffness 0.33 Stiffness 12877
15.0 15.0 14.0 6.5 5 14.95501 4 12 32.9 27.91 9.955005 15.0 11.9 0.77 2 31.27 163.13 528.97 25.00 16.25 0.45 Stiffness 0.45 Stiffness 10755
15.0 15.0 14.0 6.5 5 16.62933 4 12 36.3 31.26 11.62933 15.0 15.3 0.77 3 32.41 163.13 331.81 25.00 19.03 0.53 Stiffness 0.50 Inertia 9773
15.0 15.0 14.0 6.5 5 18.35467 4 12 39.7 34.71 13.35467 15.0 18.7 0.77 4 34.12 163.13 219.11 25.00 20.69 0.57 Stiffness 0.49 Inertia 9216

15.0 15.0 14.0 6.5 5 12.47953 4 20 36.0 30.96 7.479532 15.0 7.0 0.77 1 30.24 163.13 1247.19 25.00 13.91 0.39 Stiffness 0.39 Stiffness 11449
15.0 15.0 14.0 6.5 5 13.99458 4 20 39.0 33.99 8.994576 15.0 10.0 0.77 2 30.79 163.13 717.16 25.00 19.38 0.54 Stiffness 0.49 Inertia 9556
15.0 15.0 14.0 6.5 5 15.32231 4 20 41.6 36.64 10.32231 15.0 12.6 0.77 3 31.48 163.13 474.49 25.00 22.96 0.64 Stiffness 0.48 Inertia 8669
15.0 15.0 14.0 6.5 5 16.61798 4 20 44.2 39.24 11.61798 15.0 15.2 0.77 4 32.40 163.13 332.78 25.00 25.41 0.71 Stiffness 0.47 Inertia 8142

15.0 15.0 14.0 6.5 5 12.12217 4 30 45.2 40.24 7.122166 15.0 6.2 0.77 1 30.14 163.13 1444.50 25.00 15.50 0.43 Stiffness 0.43 Stiffness 10377
15.0 15.0 14.0 6.5 5 13.43489 4 30 47.9 42.87 8.434892 15.0 8.9 0.77 2 30.56 163.13 869.59 25.00 21.82 0.61 Stiffness 0.45 Inertia 8643
15.0 15.0 14.0 6.5 5 14.55492 4 30 50.1 45.11 9.554924 15.0 11.1 0.77 3 31.06 163.13 598.24 25.00 26.13 0.73 Stiffness 0.44 Inertia 7820
15.0 15.0 14.0 6.5 5 15.61432 4 30 52.2 47.23 10.61432 15.0 13.2 0.77 4 31.67 163.13 436.39 25.00 29.26 0.81 Stiffness 0.44 Inertia 7323

15.0 15.0 15.0 7.5 5 13.33612 4 12 29.7 24.67 8.336116 15.0 8.7 0.77 1 33.93 106.19 900.87 25.00 11.96 0.33 Stiffness 0.33 Stiffness 13199
15.0 15.0 15.0 7.5 5 15.35112 4 12 33.7 28.7 10.35112 15.0 12.7 0.77 2 35.14 106.19 470.54 25.00 16.33 0,45 Stiffness 0.45 Stiffness 11062
15.0 15.0 15.0 7.5 5 17.24904 4 12 37.5 32.5 12.24904 15.0 16.5 0.77 3 36.95 106.19 283.95 25.00 18.85 0.52 Stiffness 0.52 Stiffness 10101
15.0 15.0 15.0 7.5 5 19.38039 4 12 41.8 36.76 14.38039 15.0 20.8 0.77 4 40.19 106.19 175.49 25.00 19.98 0.55 Stiffness 0.51 Inertia 9614

15.0 15.0 15.0 7.5 5 12.66734 4 20 36.3 31.33 7.667338 15.0 7.3 0.77 1 33.65 106.19 1157.77 25.00 14.14 0.39 Stiffness 0.39 Stiffness 11732
15.0 15.0 15.0 7.5 5 14.3051 4 20 39.6 34.61 9.305095 15.0 10.6 0.77 2 34.44 106.19 647.73 25.00 19.54 0.54 Stiffness 0.52 Inertia 9820
15.0 15.0 15.0 7.5 5 15.7767 4 20 42.6 37.55 10.7767 15.0 13.6 0.77 3 35.48 106.19 416.96 25.00 22.95 0.64 Stiffness 0.51 Inertia 8937
15.0 15.0 15.0 7.5 5 17.26761 4 20 45.5 40.54 12.26761 15.0 16.5 0.77 4 36.97 106.19 282.67 25.00 25.08 0.70 Stiffness 0.50 Inertia 8432

R bb b i di Stiff t i



Rubber besrina d~mSlf~nea to t Max Stroke

Shaft Shaft tool height length length Shaft Shaft B=dl Rubber Tool Shaft tool tip DC @2kHz @10kHz
diami diam2 radius of tool from tool from tool length length up bearing holder bending stiffness

holder to bearing to galvo to bearing bending (w/o
center center torsion)

di d2 rT (rT-d/2) hth Lb e Lx LT Lshaft Lshaftb B H t n kbrad kthrad ksbrad krad xmax xmax xmax in
(mm) mm (mm (mm) (mm) (mm) (mm (mm) (mm) (mm) (mm) (mm) (mm) (mm) (N/um) (N/um) N/um) (N/um) (umP) (umP) (umP) (Hz)

15.0 15.0 15.0 7.5 5 12.28579 4 30 45.6 40.57 7.285794 15.0 6.6 0.77 1 33.51 106.19 1349.35 25.00 15.78 0.44 Stiffness 0.44 Stiffness 10630
15.0 15.0 15.0 7.5 5 13.69639 4 30 48.4 43.39 8.696386 15.0 9.4 0.77 2 34.10 106.19 793.49 25.00 22.08 0.61 Stiffness 0.48 Inertia 8873
15.0 15.0 15.0 7.5 5 14.92288 4 30 50.8 45.85 9.922878 15.0 11.8 0.77 3 34.83 106.19 534.12 25.00 26.26 0.73 Stiffness 0.47 Inertia 8049
15.0 15.0 15.0 7.5 5 16.11102 4 30 53.2 48.22 11.11102 15.0 14.2 0.77 4 35.77 106.19 380.45 25.00 29.16 0.81 Stiffness 0.46 Inertia 7561

15.0 15.0 16.0 8.5 5 13.71344 4 12 30.4 25.43 8.713443 15.0 9.4 0.77 1 39.96 72.95 788.83 25.00 11.73 0.33 Stiffness 0.33 Stiffness 13707

15.0 15.0 16.0 8.5 5 16.04261 4 12 35.1 30.09 11.04261 15.0 14.1 0.77 2 42.17 72.95 387.56 25.00 15.70 0.44 Stiffness 0.44 Stiffness 11568

15.0 15.0 16.0 8.5 5 18.47903 4 12 40.0 34.96 13.47903 15.0 19.0 0.77 3 46.30 72.95 213.10 25.00 17.50 0.49 Stiffness 0.49 Stiffness 10699
15.0 15.0 16.0 8.5 5 9 4 12

15.0 15.0 16.0 8.5 5 12.97294 4 20 36.9 31.95 7.972945 15.0 7.9 0.77 1 39.49 72.95 1029.67 25.00 13.92 0.39 Stiffness 0.39 Stiffness 12174

15.0 15.0 16.0 8.5 5 14.83097 4 20 40.7 35.66 9.830967 15.0 11.7 0.77 2 40.86 72.95 549.25 25.00 18.97 0.53 Stiffness 0.53 Stiffness 10243

15.0 15.0 16.0 8.5 5 16.59429 4 20 44.2 39.19 11.59429 15.0 15.2 0.77 3 42.91 72.95 334.83 25.00 21.84 0.61 Stiffness 0.53 Inertia 9389

15.0 15.0 16.0 8.5 5 18.59335 4 20 48.2 43.19 13.59335 15.0 19.2 0.77 4 46.56 72.95 207.77 25.00 23.06 0.64 Stiffness 0.52 Inertia 8976

15.0 15.0 16.0 8.5 5 12.55014 4 30 46.1 41.1 7.550141 15.0 7.1 0.77 1 39.27 72.95 1212.52 25.00 15.58 0.43 Stiffness 0.43 Stiffness 11022

15.0 15.0 16.0 8.5 5 14.13203 4 30 49.3 44.26 9.132034 15.0 10.3 0.77 2 40.27 72.95 685.26 25.00 21.55 0.60 Stiffness 0.51 Inertia 9240

15.0 15.0 16.0 8.5 5 15.5606 4 30 52.1 47.12 10.5606 15.0 13.1 0.77 3 41.61 72.95 443.09 25.00 25.29 0.70 Stiffness 0.50 Inertia 8425

15.0 15.0 16.0 8.5 5 17.02651 4 30 55.1 50.05 12.02651 15.0 16.1 0.77 4 43.56 72.95 300.01 25.00 27.56 0.77 Stiffness 0.49 Inertia 7971

Cq M

Data
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