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ABSTRACT

A numerical method has been developed to estimate the mechanical properties of
atherosclerotic plaques by combining genetic algorithm with finite element
methods. Plaque images derived from optical coherence tomography were
employed to construct finite element models which were subsequently used in
conjunction with a genetic algorithm to determine the parameters in a nonlinear
constitutive model. A new multi-frame scheme is introduced to better perform the
estimation on a nonlinear mechanical model and reduce the effects of noise.
Results show while it is feasible to estimate the nonlinear mechanical properties of
plaque, the accuracy can depend on various factors, especially the noise.
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Chapter 1

Introduction

1.1 Atherosclerosis Pathology and Morphology

Atherosclerosis is the major cause of morbidity and mortality in industrialized

countries. Major studies have been devoted to the understanding of the

pathophysiological processes leading to this disease by attempting to relate it to

mechanical, biochemical, and genetic factors.

The current state of understanding about atherosclerosis has been developed in four

stages'. During the early days of study, atherosclerosis was considered a process of

aging: when people get old, their artery hardens and therefore atherosclerosis takes

place. A later theory, 'the lipid hypothesis', considers genetic factors and high

cholesterol the main reasons to develop the atherosclerotic lesions. With the

recognition of growth factors, 'the response-to-injury hypothesis' was introduced,

which explains the vascular response to the initial lipid damages.

Representing the latest understanding of the disease is 'the inflammation

hypothesis'. Inflammatory stimuli, e.g. oxidized low-density lipoprotein (LDL),

can induce the production of adhesion molecules 2, which will further activate the

circulating mononuclear cells via chemokine activation. These mononuclear cells

10



will initiate a firm adhesion to the vascular walls via various adhesion molecules,

such as ICAM-1 and VCAM-1 (Fig. 1)'.

e07 Baton"

Rolkug ActvMtw~
Firm AttinciunuV

Ox-LDL, age, Infection, etc

Fig. 1.1 Schematic illustration of the inflammation hypothesis .

These mononuclear cells then migrate through the junction of the endothelial cells

and enter the vascular tissue. They will further absorb lipid substances and lead to

the formation of foam cells, and therefore a lipid lesion. Smooth muscle cells,

simultaneously migrate and localize to the intima as a step in the repair process.

They eventually become a fibrous cap, coving the lipid region. These thin fibrous

caps are subject to a risk of rupturing under certain conditions. Plaque rupture can

11
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cause advanced diseases like thrombosis and heart attack that may bring server

consequences.

A B

C D

Fig. 1.2 Atherogenesis morphological progression. A. Mononuclear cells migrate.
B. Fatty streak formation. C. Progression to intermediate and advanced disease. D.
Fibrous cap formation 3

1.2 Mechanical Factors in Atherosclerosis
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Mechanical factors have long been suggested as contributors to the initiation and

development of the desease 4 . Recent studies have uncovered the relationship

between particular mechanical stress distributions and the risk of plaque rupture 5'6.

To understand the underlying mechanism of this correlation and to help better

analyze the nature of the disease, and eventually develop diagnostic methods for

assessing the risk of a specific plaque to rupture, detailed information about the

plaque geometry, load and boundary conditions and the mechanical properties of

the vessel wall and plaque tissue is required.

While the plaque geometry can be obtained by advanced imaging techniques, e.g.

intravascular ultrasound (IVUS) 7, optical coherence tomography (OCT) 8 and high

resolution magnetic resonance imaging (MRI) 9, and similarly the corresponding

boundary conditions can be reasonably well described, few data are available on

the mechanical properties of plaque tissue, determination of which is crucial for

detailed mechanical analysis of the plaque 1o. Furthermore, due to patient-to-patient

variability in plaque composition and structure, acquiring patient-specific

mechanical properties remains a key step in the analysis of plaque vulnerability.

The physical characteristics of plaque tissue make it relatively difficult to directly

measure the mechanical properties ex vivo 10. Numerical methods have therefore

been used to estimate plaque's mechanical properties non-invasively, by relating

the strain field in a pressure-inflated vessel wall, derived through vascular

13



elastography 7, to the finite element models constructed with prescribed mechanical

properties, thereby optimizing the unknown distribution of mechanical properties

that provide best agreement between the computational data and elastography.

Many numerical methods have been developed to estimate the mechanical property

distribution using linear models. The calculus-based techniques "' 1, commonly

used to solve such problems, are typically complicated to implement and

computationally expensive. Further, due to the need for direct inversion of the

finite element matrix, such methods are not trivially applicable to nonlinear elastic

models. Yet, the stress-strain constitutive laws of biomaterials are usually far more

complex than isotropic-linear models. Vessel tissue constituents differ in the nature

of their behavior and mechanical properties; for instance, collagen tissue usually

behaves linearly, while elastin is nonlinear. Neglect of the nonlinearity of the tissue

mechanical properties can hence result in substantial errors in the stress distribution.

Although considerable research has been devoted to implementation of nonlinear

mechanical properties 13, often the corresponding parameters can not be accurately

determined 14. A noninvasive method to estimate the nonlinear mechanical

properties is therefore valuable for detailed mechanical analysis of arterial plaques.

Compared to linear elastic models 15, the overall problem is complicated in

nonlinear material models when the number of unknown parameters for each

material exceeds one (Young's modulus or shear modulus for linear elastic model),

14



for example to two (DI and D2) in the Mooney-Rivlin model. One important issue

that needs to be addressed in parameter estimation problems is the uniqueness of

the solution and is discussed in detail in Chapter 3.

I

Fig. 1.3 Overall flow chart of the research.

1.2 Thesis Goals

Recent work 16 has been conducted to estimate the mechanical properties in 2D

using a lumped parameter model and genetic algorithm that dramatically enhances

the efficiency and flexibility of the estimation method, and without necessarily

15
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directly inverting the finite element matrix system. In this work, we extend our

combined genetic/finite element algorithm to incorporate the nonlinear

Mooney-Rivlin model for parameter estimation using patient-specific 2D plaque

geometries. The uniqueness of solution, as well as the effect of noise, are discussed

using a simple model, while introducing a multi-frame scheme (i.e. utilizing strain

maps under at least two different pressure loads). Finally, an idealized 3D vessel

geometry is employed to demonstrate the viability of the present nonlinear

parameter estimation algorithm in 3D.

16



Chapter 2

Arterial Image Acquisition

The acquisition of arterial image is the first step in this research. Images of the

atherosclerotic artery can provide the boundaries of the vascular components, i.e.,

the normal arterial wall, the fibrous cap and the lipid pool, which are used in the

FEM modeling. Another important information that can be extracted is the

deformation of the artery under the variation of lumenal blood pressure, that is the

displacement or strain map of the artery under certain pressure change. Most of the

contents presented in this chapter is adapted from the work of a previous graduate

student in our lab, Alexandra Chau, on the OCT-based arterial elastography 4.

2.1 Optical Coherence Tomography (OCT) imaging

Optical coherence tomography (OCT) is the optical analog to time-of-flight

B-mode ultrasound (which detects acoustic signal). OCT provides high-resolution

cross-sectional images of human tissue 18, 19. A beam of near infrared light is split

into two, one sent into the sample and one used as the reference beam. Optical

interferometry is used to measure back-reflections from tissue samples. Tissue

structure can be detected in the depth or axial direction by varying the optical

17



pathlength of the reference arm and in the lateral direction by rotating the sample

beam circumferentially.

The major advantage of using OCT as an imaging modality is in its relatively

higher spatial resolution (axial resolutions of 10gm and lateral resolutions of

25pm). This feature can substantially decrease the noise in the electrograph, which

as characterized in the following chapters is a major factor limiting the estimation

ability of the algorithm. The shortcomings of the OCT modality are: 1) the depth of

imaging is limited in OCT, as a result the vessel used can not be too thick (usually

within a diameter of 1mm) 17; 2) it is an intravascular and therefore invasive

imaging technique, limiting its clinical applications.

2.2 Intravascular Ultrasound (IVUS)

IVUS is currently the most widely used arterial imaging technique in clinical

settings. It can acquire real-time cross-sectional images of coronary arteries in

20vivo . Like OCT it is an invasive imaging technique, with relatively lower image

resolutions, typically a high-frequency ultrasound (30-40 MHz) provides axial

resolutions of 100pm and lateral of 200gm. Yet, it can be used to identify tissue

components, namely lipid pool, fibrous cap, calcified region, etc.. IVUS has much

larger penetration depth than OCT, usually of 4-10mm in diameter.

18



2.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is an important non-invasive version of

angiography, The improvements in high-resolution MRI will provide an

opportunity to use MRI instead of OCT to acquire arterial images 9. Researches

have demonstrated that MRI is capable of determining atherosclerotic plaque

components 21-23. Although up to today the resolution of MRI is far from capable of

elastography, the algorithm we are developing is generic and can be used when one

day high-resolution MRI is available.

2.4 Post-processing of arterial images

For this research, the post-processing procedure includes the identification of

arterial components and elastography. To identify the arterial components, i.e.

segmentation, is an important step in this research and therefore was carried out in

coordination with experienced physicians. In the following we briefly show the

general rules of identifying different arterial components.

The fibrous cap region usually appears homogeneous, signal rich (see Fig.
2.1).

19



Fig. 2.1 OCT image (A) compared to histology image (B). F stands for fibrous cap

*8
region.

The calcified region usually show poor signal and with distinct borders (see Fig.

2.2).

20



Fig. 2.2 OCT image (A) compared to histology image (B). C stands for calcified

.8
region.

The lipid pool usually appears signal poor regions with diffuse borders covered by

a signal rich band, that is the fibrous cap (see Fig. 2.3).

21
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L

Fig. 2.3 OCT image (A) compared to histology image (B). L stands for lipid pool8 .

By these criteria, we can identify the region components in the atherosclerotic

plaque. For instance, the segmentation of a lipid-rich plaque and a calcification-rich

plaque were shown in the following (see Fig. 2.4).

22



Fig. 2.4 Lipid-rich plaque segmentation (left) compared to histological images

(right). The regions in red, blue and black contours are lipid pool, fibrous cap, and

8normal arterial wall, respectively .
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Fig. 2.5 Calcification-rich plaque segmentation (left) compared to histological

images (right). The regions in red, blue and black contours are calcification, fibrous

cap, and normal arterial wall respectively.

Palpation has been used by physicians to probe deep tissue for centuries.

Elastography was proposed to provide a more quantitative and reliable means of

assessing tissue elasticity 24-26 The whole process is an analog of palpation: first,

the tissue is compressed/stretched, then imaging techniques, e.g. ultrasound, is used

to capture the displacing specimen, then the images under different pressure/stretch

are processed via cross-correlation techniques and give us the displacements. The

displacement field can give us a strain map that can used to quantify properties of

the tissue. De Korte et al. 20 applied this idea in estimating intravascular elasticity.

The variation of blood pressure provides a natural mechanical excitation and IVUS

was used to capture the arterial motion. Other mechanical excitation approaches,

27include dynamic loading, as opposed to static, can also be used
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Chapter 3

Parameter Estimation with Multi-frame Scheme

3.1 General Scheme of the Parameter Estimation

Generally speaking, an estimation method is comprised of the definition of fitness

function and an iteration scheme. To look for the solution of a problem, one usually

has to compare a certain number of possible solutions. A fitness function is used to

evaluate the possible solutions, to determine how "fit" they are or how close the

solution is to the real one. Usually the fitness function is a function with single

input (the possible solution) and gives back a number that determines the fitness. In

the current problem, the fitness function is derived from the difference between the

measured and predicted effective strains

e = Ve 2 +e 2 +-Le 2

xx yy 2 yz

Summed over all elements, the smaller the summed difference the more likely the

corresponding parameters fit the true values. In practice, all strains are placed in a

long vector, and the norm of the difference between the predicted and true strain

vectors is the fitness value. An iteration scheme is designed to further bring the best

fit parameter(s) to the next iteration.

25



Fig. 3.1 General scheme of parameter estimation and its applications.

In this part of the study, for simplicity, we used the random exhaustive search, just

for characterizing the multi-frame scheme. A genetic algorithm scheme is

introduced in the next chapter, which was proven to have higher efficiency than the

random exhaustive search method.

3.2 Finite element analysis

Finite element models, both in 2D and 3D, were employed to test the viability of

the estimation algorithm. 2D images of excised lipid-laden arteries were obtained

through optical coherence tomography (OCT) 28. Excised coronary arteries were

collected from autopsies and stored in PBS at 4*C until imaging occurred, within

72 hours. The specimen was place on a scaffold 28 and 0 pressure was applied to

26



the inner lumen of the vessel (relaxed). OCT provided cross-sectional images of the

entire length of the vessel segments. Digital images were processed, imported into

an FEM package, ADINA (Watertown, MA), and used to construct finite element

models (see Fig. 3.2 A). Specifically, 9-node 2D plain strain elements were utilized

to mesh the model geometry, at a sufficient mesh density based on grid

convergence studies.

A 3D plaque model consisting of a cylindrical arterial segment fixed on both

ends, with a crescent-shaped fibrous plaque and a sphere-like lipid pool was also

constructed (Fig. 3.2 B).

A

Fibrous plaque

Lipid pool-
Normal vessel wall

B
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Fig. 3.2 A) 2D Geometry of OCT-derived atherosclerotic vessel segmentation, meshed in

ADINA B) Finite element mesh of a 3D idealized artery segment with a fibrous plaque and a

lipid pool intra-plaque features.

A pressure load was applied on the vessel lumen, increasing from 0 to 16 kPa (120

mmHg) in 24 timesteps for both 2D and 3D cases. Mixed interpolation formulation

was applied.

The Mooney-Rivlin model was used to estimate the mechanical properties 29,30 of

the corresponding regions in the FEM model, namely normal vessel wall, fibrous

plaque, and lipid. The Mooney-Rivlin model is defined by the strain energy density

function W = D e -D2(113) ) where W is the strain energy density, D, and D 2 are

material constants, and I1 is the first invariant of the Cauchy-Green deformation

28



tensor. The product DID 2 is proportional to the elastic modulus of the material,

while D 2 is related to its strain-stiffening behavior. The values for D, and D2 were

taken from previous literature31 (see Table 3.1). A typical Mooney-Rivlin

stress-strain curve corresponding to the fibrous plaque tissue is shown in Fig. 3A.

Strain fields calculated at each time step were utilized as fictitious elastography

data in our current characterization study, which in practice will be obtained

experimentally.

3.3 Parameter estimation: Multi-frame scheme

A multi-frame scheme is introduced here to facilitate the nonlinear parameter

estimation. One important issue that needs to be addressed in parameter estimation

problems is the uniqueness of the solution. Compared to linear elastic models 1,

the overall problem is complicated in nonlinear material models where the number

of unknown parameters for each material exceeds one. For instance, consider a 1D

problem, e.g. a cantilever under stretch force load at one end, with a single

homogeneous linear elastic material of unknown stiffness. Knowing the strain

under a given force, one can easily determine the Young's modulus of elasticity for

the material (Fig. 3.3 A). However, if the material's constitutive law is nonlinear,

for instance Mooney-Rivlin model defined by D, and D2 parameters, there would

potentially exist numerous combinations of D, and D2 that can fit the strain

29



distribution under a given load. That is, the solution is not unique (see Fig. 3.3 B).

For a Mooney-Rivlin model, a minimum of two strain/load configurations ('two

frames') is required to uniquely capture the stress-strain curve (see Fig. 3.3 C).

Moreover, the result of estimation is expected to be sensitive to the underlying

noise and uncertainty in elastography procedure, both in the measured strain and/or

pressure load (see Fig. 3.3 C). One remedy is to obtain multiple frames of

elastography data at incremental pressure loads, and incorporate more- available

data to the parameter estimation algorithm (see for example Fig. 3.3 D, where 12

frames with noisy measurements are used). By fitting the curve to a number of

linearly independent points, we expect to obtain an optimized solution. The

comparison between single-frame and multi-frame schemes will be discussed in the

following sections, using results from our algorithm. Although in real cases it can

be far more complicated than we discussed above: when more than one element is

used, different elements may have to bear different strain, even if a single load is

applied. In a real problem, if a single-frame method is used for a non-linear

problem, the algorithm tends to optimize the most influential parameter only. In

general, from the authors' experience (see results below), the analysis above

provides a general guideline how the algorithm can perform given the number of

frame used.
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Fig. 3.3 Schematic stress-strain curve of a ID problem

A) Having the strain at one given force (black dot in the figure) we can determine the

linear-elastic parameter of the material. B) Having the strain at one given force (black dot in

the figure) there is no unique nonlinear model to fit the strain, where there can be numerous

solutions. C) Having two frames (black dots), it is possible to determine the Mooney-Rivlin

model where DI and D2 are unknown (solid black curve), provided there's no image noise

nor pressure error. However, if the strain is noisy (black cross) or the pressure measurement has

error (black block), the curve fitted can convey large error (dot grey curve). D) When given

more frames than two, the curve tends to satisfy all the given frames, minimizing the distance
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to all given points.

3.4 Random Exhaustive Search

To assess the multi-frame scheme in our current 2D and 3D models described

previously, the strain data are extracted at specific time steps from the finite

element model, where the applied load is known corresponding to the imposed

incremental pressures ramping from 0 to 16 kPa within 24 time steps. The

corresponding strain maps were imported into the algorithm for comparison with

the elastography data. An initial population (of size 400 in the current study) of

totally 6 material parameters (DI and D2 for arterial wall, fibrous plaque, and lipid)

were generated randomly in the initial search field as listed in Table 3.1. This

covers a reasonable but relatively small range of possible values for each of the

parameters. The best fit that minimizes the difference between strain vector

generated by the algorithm and that obtained from elastography is considered the

solution.

Table 3.1: True values of Mooney-Rivlin parameters and initial search field

Mooney-Rivlin parameters True values Initial search field of estimation algorithm

D [Pa] D [Pa]

Arterial wall 2644.7 8.365 2000-4000 7-10

Fibrous plaque 5105.3 13 4000-6000 10-14

Lipid 50 0.5 20-60 0.3-0.6
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To test the sensitivity of the overall multi-frame algorithm, white Gaussian noise

(namely, 1%, 5%, and 10%) was added to the elastography strain data, and the

robustness of the parameter estimation algorithm was tested using both

single-frame or multi-frame schemes. Furthermore, the effect of pressure

inaccuracy on the parameter estimation was assessed by applying 1%, 5%, and

10% pseudo error in the input pressure.

The two-frame method shows a distinctively smaller error as well as smaller

standard deviation as compared to the single-frame method (see Table 3.2).

Table 3.2: Estimation

Mooney-Rivlin

parameters

Arterial wall

Fibrous plaque

Lipid

Mooney-Rivlin

parameters

Arterial wall

Fibrous plaque

Lipid

results from 1-frame and 2-frame methods with
noise-free data

1-frame estimated results (based on 8 runs)

DI [Pa] (error)±SD D2 (error)±SD

3526.8 (33.4%)±33.5% 7.2 (14.2%)±22.4%

5222.8 (2.3%)±6.7% 13.3 (1.9%)±5.0%

56.2 (12.3%)±47.0% 0.6 (18.7%)±31.6%

2-frame estimated results (based on 8 runs)

DI [Pa] (error)±SD D2 (error)±SD

2613.4 (1.2%)±7.1% 8.5 (1.2%)±5.2%

4966.2 (2.7%)±2.3% 13.0 (0.3%)±1.0%

43.4 (13.2%)±20.2% 0.5 (5.9%)±19.5%

The Mooney-Rivlin stress-strain curve for the arterial wall and lipid pool regions

were used to evaluate the estimated vs. true parameters, based on the results given

in Table 3.2 with a 2-frame method (see Fig. 3.4). For normal arterial wall (Fig. 3.4
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A), the two curves agree well, suggesting little difference between true and

estimated parameters. For lipid pool (Fig. 3.4 B), however, a considerable error

was observed which is believed to be mainly due to lipid's relative softness

compared to other wall regions that bear most of the pressure load. This lends itself

to 'near-singular' behavior in lipid's estimated elastic modulus. That is, a small

change in the magnitude (although large in percentage) of lipid's mechanical

property yields negligible effect on the overall strain map. Nevertheless, since the

contribution of lipid to the overall stress field is minor1 3 , the stress calculation in

atherosclerotic vessel wall is not compromised.

A

8.-

7.

6.- True value Estimated
5.44)

Cl) 04.

3.-

2.-

1.-

0.005 10.20 0.30 0.3 0.40 0.4

Logarithmic strain

B
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2
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0.00 0.0 0.10 0.1 0.2 0.2 0.3 0.3 0.4 0.4

Logarithmic strain

Figure 3.4 Stress-strain curve of vessel wall and lipid pool: comparison of true
value and estimation result (table 3.2).
A) Comparison of stress-strain curve of vessel wall. Black curve is drawn from true values wall
and gray curve is from the estimated results (very close). B) Comparison of stress-strain curve
of lipid pool. Black curve is drawn from true values wall and gray curve is from the estimated
results. Notice the Y axis scale is different in the two figures. Lipid pool is much softer than
blood vessel wall and hence bears smaller stress under same strain conditions.

The sensitivity of the algorithm to the image (strain) noise was next assessed by

using different levels of noise and frame numbers (Table 3.3 and Fig. 3.5)

Table 3.3: Estimation results from 1% noised strain data

Mooney-Rivlin 2-Frame Estimated results 6-Frame Estimated results 12-Frame Estimated results
parameters D, [Pa] (error) D2 (error) D, [Pa] (error) D2 (error) D, [Pa] (error) D2 (error)

Arterial wall 2117.7 (24.9%) 9.9(15.5%) 2366.0 (11.8%) 9.1 (8.3%) 2585.6 (2.3%) 8.6(2.4%)
Fibrous plaque 5370.3 (4.9%) 12.5 (3.7%) 4866.7 (4.9%) 13.0 (0.1%) 4859.5 (5.1%) 13.1 (0.5%)

Lipid 41.8 (19.6%) 0.5 (5.5%) 54.4 (8.1%) 0.5 (7.1%) 40.9 (22.2%) 0.6 (10.3%)

To evaluate the overall error in each case, we used the average error for the

material parameters excluding the lipid pool, which has a relatively large standard
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deviation as discussed earlier. The overall error decreased as the number of frames

used in algorithm was increased (Table 3.3 and Fig. 3.5 A). The parameter

estimation error increased as the underlying (imposed) noise was elevated from 1%

to 5% and 10%. At a 10% noise, the maximum error level was less than 7% which

is reasonably small 3 , suggesting that the algorithm is robust and shows a

reasonably low sensitivity to the noise in the strain data. Though no comparable

algorithm exists for nonlinear models, the present algorithm is generally less

sensitive to elastography noise in contrast with the calculus-based algorithms with

32linear-elastic models

A

Error Percentage of estimation using 2, 6, or 12-frame methods
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2%

0%

Error Percentage of estimation using 12-frame method

5% noise 10% noise

Figure 3.5. Sensitively analysis of the algorithm to the image noise. Error
percentage is defined as the average error of all the parameters except that of the
lipid's. A) Comparison of 2-frame, 6-frame and 12-frame methods under 1% strain noise
(white Gaussian). B) Trend of error percentage increases up to 7% when strain noise increases
from 1% to 5% and 10%, using the 12-frame method. No significant difference between 5%
and 10% results was found.

To further characterize the overall genetic/FEM algorithm, we next tested the

sensitivity of the algorithm (12-frame) to the error in pressure measurement (see

Fig. 3.6). A 10% uncertainty in the pressure data yielded overall error levels up to

15%.

A
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Error Percentage of estimation using 12-frame method

20%

15%

10%
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10% pressure
error

1% pressure

error

51% pressure
error

Figure 3.6 Sensitively analysis of the algorithm to the pressure measurement.

Trend of error percentage increases up to 15% when 1%, 5%, and 10% higher-than-normal
pressure are used for the estimation.

3.3 Extension to 3D Model

To test the performance of the present nonlinear genetic/FEM algorithm in

estimating the mechanical properties of plaques in 3D, a preliminary study was

conducted using an idealized 3D geometry (Fig. 3.1B). The error between the real

and estimated mechanical properties for intra-plaque regions was less than 15%

(see Table 3.4). Though further investigation is needed to verify the feasibility of

the algorithm on 3D model, the current result suggests the viability of our

algorithm in 3D applications.
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Table 3.4 Estimated mechanical properties on 3D model

Mooney-Rivlin

parameters

Arterial wall

Fibrous plaque

Lipid

2-Frame Estimated results

Di [Pa] (error) D2 (error)

2801.0 (5.9%) 8.4 (1.2%)

5105.3 (0.4%) 12.1 (6.9%)

57.0 (14.0%) 0.46 (8.0%)
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Chapter 4

Genetic Algorithm Approach

4.1 The Genetic Algorithm Search Scheme

A combined genetic/FEM algorithm was earlier developed to estimate the linear

16elastic mechanical properties of atherosclerotic tissues . Briefly, a genetic

algorithm is a search method that simulates biological evolution3 3 by using the

Darwinian principle of survival of the fittest to build search solutions. It was fist

studied by David Goldberg, under the goal of optimizing parameters in a slightly

different way than traditional method34. Genetic algorithms, developed by John

Holland and colleagues, are search methods that simulate biological evolution

through naturally occurring genetic operations on chromosomes 33. Genetic

algorithms begin with a predefined initial population of individuals, typically

created randomly from a field of possible search solutions. Each "individual" in the

population has a corresponding fitness value, which quantifies how fit the

individual is in comparison to others. In the current problem, the fitness function is

derived from the difference between the measured and predicted effective strains

e = e 2 +e 2 + -e 2
x 2 yz
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Summed over all elements, the smaller the summed difference is, the greater the

probability that the individual will advance to the next population generation.

Through pseudo genetic operations, such as crossover reproduction, the "fittest"

individuals in the population are selected to survive to the next generation and are

used as parents for the generation of new individuals in the population of next

iteration.

In the current study, we extend this combined algorithm to incorporate

nonlinear mechanical properties (namely the Mooney-Rivlin model). As shown in

Fig. 3.2 A, for each of the vascular regions: fibrous plaque, lipid pool and vessel

wall, two parameters (DI and D2, as defined in Mooney-Rivlin model) are needed

to describe the mechanical property. Therefore, there are totally six unknown

parameters for a typical problem.

The code we developed in this study is derived from part of Ahmad S. Khalil's

work 31, which is on using genetic algorithm to estimate linear elastic vascular

mechanical properties. In this study, to improve the robustness of the algorithm, we

extended the algorithm by incorporating a "mutation" feature. Briefly, in each

iteration, a stream of "new blood" (i.e., independently generated parameters) are

added into the population in each iteration. Hence, ideally, if run for a long enough

time and the number of parameters it tried out approaches infinity, it should closely

find the true values. However, in our experiment, genetic algorithm without
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mutation does not work well for the 6 parameters problem. The reason for this

might be, when the number of parameters increases from 3 to 6, the odds of

recombining these parameters correctly is squared. That means one may see a very

slow improvement by doing recombination with 6 parameters, which is consistent

with our results (not shown). However, in the genetic algorithm with mutation,

because newly generated parameters are brought in each iteration, and not with

complete randomness, one does not have to walk through all the possible

parameters in the search field. In other words, the speed of approaching the

ultimate true value of these methods is different. And as in the result we show, the

genetic algorithm method with mutation appears to be more efficient than random

exhaustive search.

4.2 Estimation Results

First, we apply the non-linear estimation code in a simplified situation, where we

D2 for each region is assumed by imposing the true values. Therefore each region

has only one parameter to be estimated. As shown in Fig. 4.1 A, an initial

population of 40 is used for each iteration. As we have also found in the linear

elastic problem, as well as the nonlinear problem solved by random exhaustive

method, an accurate estimation of lipid is always not achievable. The error
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percentage of parameters other than the lipid region reaches around 5% after

around 200 calls to ADINA. This is comparable with the linear-elastic results3 5.
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convergance of material parameters with 3 unknown
parameters

-.- nomal arterial wall D1
-- fibrous cap D1

lipid pool D1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

iteration

Fig. 4.1 Convergence of the 3 parameters with an A) initial population of 40 and B)

initial population of 16.

As we did in for the random exhaustive estimation, we select an overall error

percentage defined as the average error percentage of all the parameters (in this

case all DI) except the lipid's. As shown in Fig. 4.2 A) the convergence of the

overall error percentage is plotted against the iteration and in B) with respect to the

total call to ADINA, which presents the computational expense. As we can see by

using the initial population of 40, the result after initial iteration is closer to the true

value than that using 16, but after about 200 calls to ADINA, both have achieved

decent accuracy (about 5% error). It is acknowledged that to achieve certain
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accuracy with minimal total computational expense, an optimal population number

exists, as too small or too big population are both practically inefficient. However,

the difference between 40 and 16 as established by existing data in Fig. 4.2 B

appears to be small.
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convergance of material parameters with 3 unknown
parameters

70.00%
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A 40 population convergance

30.00% - ---- - - - 16 population convergance
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10.00% -__-

0.00%

number of calls to ADINA

Fig. 4.2 A) the convergence of the overall error percentage is plotted against the

iteration and in B) with respect to the total call to ADINA.

In the previous results, a single frame method was used, and in the following we

test (an initial population of 40 is used in call cases) if multiframe method performs

differently in the problem with 3 and 6 unknown parameters. In the

6-unknown-parameter problem the initial search field is listed in Table 4.1. Note

that the range of initial search field is much larger (covering a range 10 folds) than

that used for the random exhaustive estimation shown in Table 3.1, for it was

impossible for random exhaustive estimation to get satisfying results with such a

large search field.
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Table 4.1: True values of Mooney-Rivlin parameters and initial search field

Mooney-Rivlin parameters True values Initial search field of estimation algorithm

D, [Pa] D2 D, [Pa] D,

Arterial wall 2644.7 8.365 1000-10000 1-10

Fibrous plaque 5105.3 13 1000-10000 10-100

Lipid 50 0.5 10-100 0.1-1

In Fig. 4.3 A, we show that increasing the number of frames used for the estimation

from 1 to 2 and to 4 does not increase the accuracy/efficiency of the algorithm

significantly. However, for the 6-unknown-parameter problem, as we discussed in

Chapter 3, at least 2 frames is required to approach the true values. And further

increasing the number of frames can reduce the effect the noise. In Fig. 4.3 B, we

show that using 4 frames, the error percentage reaches less than 10% around 28

iterations. By using 1 frame it is virtually impossible for the algorithm to approach

the true values. Theoretically by using 2 frames it is possible to converge to the true

value. However, even in the current study where strain maps are generated

numerically, having noise is inevitable. Hence we see an improved convergence by

using the 4-frame method. Also, it is worthwhile to note here that the number of

frames used in the algorithm does not necessarily increase the computational cost,

i.e. the number of call to the FEM software or the time cost of each call, because

for a nonlinear FEM procedure, a certain number of steps (in this case, 24) is

required anyway.
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convergance of material parameters with 3 unknown
parameters
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Fig. 4.3 Increasing the number of frames used for the estimation for A) the

3-unknown-parameter problem and B) the 6-unknown-parameter problem.

As we mentioned above, genetic algorithms can perform the estimation within a

much larger range of possible values than the random exhaustive search can afford.

We are also interested to see how different these two methods perform given the

same computational intensity available, for both of them could find the true value

eventually but their speed of approaching the value is different. In Fig. 4.4, we

show that at the same computational expensive (in terms of total number of calls to

ADINA) genetic algorithm reaches a much better accuracy than the random

exhaustive search. Because of the randomness in generating the initial population

in given search field, the result of random exhaustive search may vary. Hence,

standard deviations are calculated for the random exhaustive search results, each

based on 8 independent runs. 4 frames are used in both and the initial search range

is according to Table 4.1.
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convergance of material parameters with 6 unknown
parameters
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The effect of noise and how the increase of frame used in the estimation can be

used against the influence of noise are comprehensively studied in Chapter 3 for

the random exhaustive search. We also show in Fig. 4.5 that for the genetic

algorithm the same arguments we made in Chapter may be also applicable, i.e.

although 2 is the minimal enough number of frames for the non-linear estimation

without noise, a larger number used can compensate the effect of noise.
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convergance of material parameters at 1 % noise
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Fig. 4.5 Effect of noise on the estimation A) with 2 frames and B) using 12 frames.

We also tested the effect of higher noise, and with 5% noise it is already impossible
to get accurate estimation (data not shown), even though 12 frames are used,
indicating the sensitivity of the problem to the image noises.
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Chapter 5

Summary & Conclusions

To mimic the strain-stiffening behavior of vascular tissues nonlinear constitutive

models must be used. A lumped parameter genetic algorithm method, described

earlier 16 as a robust, efficient means for parameter estimation, was extended here

to incorporate a nonlinear elastic model. Nonlinear material models 3 do not easily

lend themselves to calculus-based techniques for parameter estimation. Genetic

algorithm, in contrast, is straight-forward and efficient when the model system can

be lumped into a small number of parameters (e.g. less than 10). The algorithm was

further characterized by quantifying its accuracy and low sensitivity to noise of the

estimation on the current model.

Our 2D models, incorporating OCT-based subject-specific 2D images 13

involved FEM analysis with plain strain element, which is only valid if the vessel is

either constrained longitudinally or if the longitudinal dimension is sufficiently

large and the longitudinal strains are negligible. As the elastography data was

generated with the same 2D FEM analysis, this does not influence the parameter

estimation results. This may not be the case in vivo, as some segments of coronary

vessels can undergo curvature change during the cardiac cycle. Longitudinal

variations in plaque geometry might also significantly alter stress and strain fields,
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possibly affecting the accuracy of FEM. analysis and the overall parameter

estimation algorithm. Due to this consideration, 3D FEM analysis was

preliminarily investigated and the robustness of the algorithm in applicability to

more complex and realistic FEM models was demonstrated. However, the

out-of-plane strain is extremely hard to get from 3D elastography, because it is

difficult to correlate the pixels between adjacent slices.. This could become a major

obstacle that limits the accuracy of 3D estimation.

Realistically, tissue mechanical properties are continuous and inhomogeneous

in space. Lumping parameter is a strong assumption and can lead to artificial stress

concentrations that undermine the viability of this method in assessing the plaque

vulnerability. Nevertheless, when provided with the in vivo elastography data via

OCT or high resolution MRI, this algorithm can estimate the patient-specific

mechanical properties non-invasively. Mechanical properties are intrinsic to the

specific tissue. For instance, ex vivo studies have observed that lipid's mechanical

properties are influenced by its components 1. Monitoring the change of such

parameters in vivo allow for longitudinal studies that can potentially increase our

understanding of the physiological change of the tissue during the progression of

atherosclerosis. By differentiating the mechanical characteristics of vascular tissues

with high or low risk of plaque rupture, it is possible to set up a diagnostic tool for
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assessment of plaque vulnerability based on the distribution of stress/strain and

plaque geometry and composition.

In the current study, we performed quasi-static FEM analysis where the applied

pressure load was incrementally raised. This is a valid assumption for ex vivo

elastography, where the pressure load is applied slowly allowing sufficient time for

the tissue to equilibrate. However, for the in vivo case, due to the blood pressure

oscillation the dynamic effects of the vessel wall and/or blood and tissue

surrounding it might not be negligible. Viscoelastic models' 4 may also be needed

for dynamic analysis, especially for the lipid pool component of the plaques. Such

dynamic analyses lend themselves to genetic algorithms with lumped parameter

model, which are much easier to implement as compared to calculus-based

methods.

Another limitation of present study is that residual strain was not considered in

the finite element analysis of the plaques. Unlike with linear elastic material modes,

the issue of residual strain tends to become more important with nonlinear

mechanical models. In the current study, elastography data obtained from the FEM

model were used and hence the neglect of residual strains does not affect the

parameter estimation algorithm. However, due to the lack of an accurate model to

quantify the residual stress in an artery, it is difficult to assess the residual strain

non-invasively. A recent study found that the cyclic strain distribution remains
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relatively unchanged by the inclusion of residual stress 36. But still, the influence of

residual strain on the nonlinear mechanical property estimation remains to be

addressed.

The multi-frame scheme was introduced here to determine the nonlinear

material model, and was used as an effective means for decreasing the sensitivity

of the algorithm to the noise from both strain image and pressure measurement.

This feature is not only useful for nonlinear material model but also helpful to the

estimation based on linear-elastic model.

Genetic algorithm was proven to be a viable and relatively efficient method.

But the image noise and pressure uncertainty strongly affects the accuracy of the

estimation. We also realize although the multi-frame scheme may be helpful to

solve the problem of noise, the real case could be far more complicated than the

simple models we tested here. Hence, noise is still the biggest obstacle in

developing such an estimation method, although ultimately with the development

of imaging techniques and elastography this method might be applied for clinical

purposes.
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Appendix A

Sample ADINA .in file of 2D arterial geometry with lipid pool
*

* Command file created from session file information stored within AUI database
*

*--- Database created 8 May 2004, 00:00:00 ---*
*--- by ADINA: AUI version 8.1.0 -
*

DATABASE NEW SAVE=NO PROMPT=NO

FEPROGRAM ADINA

CONTROL FILEVERSION=V81
*

FEPROGRAM PROGRAM=ADINA
*

CONTROL PLOTUNIT=PERCENT VERBOSE=YES

UNDO=5,

ERRORLIM=0 LOGLIMIT=0

PROMPTDE=UNKNOWN AUTOREPA=YES DRAWMATT=YES

DRAWTEXT=EXACT,

DRAWLINE=EXACT DRAWFILL=EXACT AUTOMREB=YES ZONECOPY=NO,

SWEEPCOI=YES SESSIONS=YES DYNAMICT=YES UPDATETH=YES

AUTOREGE=NO,

ERRORACT=CONTINUE FILEVERS=V81 INITFCHE=NO SIGDIGIT=6,

AUTOZONE=YES

FEPROGRAM PROGRAM=ADINA
*

COORDINATES POINT SYSTEM=0

0.00075193654500

0.00075193654500

0.00075193654500

0.00074563654500

0.00074563654500
0.00074563654500

0.00073933654500

0.00073933654500
0.00073933654500

0.00073303654500

0.00014205222000

0.00014835222000

0.00015465222000

0.00015465222000

0.00016095222000
0.00016725222000

0.00016725222000

0.00017355222000

0.00017985222000

0.00017985222000

1

2

3

4

5

6

7

8
9

10

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
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11 0

12 0

13 0

14 0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0
31 0

32 0
33 0
34 0

35 0

36 0
Snip...

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

0.00021643654500

0.00021013654500

0.00020383654500
0.00019753654500

0.00019123654500
0.00018493654500
0.00017863654500

0.00017233654500
0.00016603654500

0.00015973654500
0.00015343654500
0.00014713654500

0.00073303654500
0.00073303654500

0.00072673654500
0.00072673654500

0.00072673654500

0.00072043654500
0.00072043654500

0.00072043654500

0.00071413654500

0.00071413654500
0.00071413654500
0.00070783654500
0.00070783654500
0.00070783654500
0.00070153654500
0.00070153654500
0.00070153654500
0.00069523654500
0.00069523654500
0.00069523654500

0.00068893654500
0.00068893654500
0.00068893654500
0.00068263654500
0.00068263654500
0.00068263654500

0.00018615222000 (

0.00019245222000 (

0.00019245222000 (

0.00019875222000 (

0.00020505222000 (

0.00020505222000 (

0.00021135222000 (

0.00021765222000 (

0.00021765222000 (

0.00022395222000 (

0.00023025222000 (

0.00023025222000 (

0.00023655222000 (

0.00024285222000 (

0.00024285222000 (
0.00024915222000 (
0.00025545222000 (

0.00025545222000 (

0.00026175222000 (

0.00026805222000 (

0.00026805222000 (
0.00027435222000 (

0.00028065222000 (
0.00028065222000 (

0.00028695222000 (

0.00029325222000 (

-0.00116834778000

-0.00116834778000
-0.00116834778000

-0.00116834778000

-0.00116834778000
-0.00116834778000

-0.00116834778000

-0.00116834778000
-0.00116834778000
-0.00116834778000

-0.00116834778000

-0.00116834778000

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
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*

LINE POLYLINE NAME=1 TYPE=BEZIER

1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.00000000000000 0.00000000000000 0.00000000000000

3 0.00000000000000 0.00000000000000 0.00000000000000
4 0.00000000000000 0.00000000000000 0.00000000000000
5 0.00000000000000 0.00000000000000 0.00000000000000
6 0.00000000000000 0.00000000000000 0.00000000000000
7 0.00000000000000 0.00000000000000 0.00000000000000
8 0.00000000000000 0.00000000000000 0.00000000000000
9 0.00000000000000 0.00000000000000 0.00000000000000
10 0.00000000000000 0.00000000000000 0.00000000000000
11 0.00000000000000 0.00000000000000 0.00000000000000
12 0.00000000000000 0.00000000000000 0.00000000000000
13 0.00000000000000 0.00000000000000 0.00000000000000
14 0.00000000000000 0.00000000000000 0.00000000000000
15 0.00000000000000 0.00000000000000 0.00000000000000
16 0.00000000000000 0.00000000000000 0.00000000000000

17 0.00000000000000 0.00000000000000 0.00000000000000
18 0.00000000000000 0.00000000000000 0.00000000000000
19 0.00000000000000 0.00000000000000 0.00000000000000
20 0.00000000000000 0.00000000000000 0.00000000000000

21 0.00000000000000 0.00000000000000 0.00000000000000

22 0.00000000000000 0.00000000000000 0.00000000000000
23 0.00000000000000 0.00000000000000 0.00000000000000
24 0.00000000000000 0.00000000000000 0.00000000000000
25 0.00000000000000 0.00000000000000 0.00000000000000
26 0.00000000000000 0.00000000000000 0.00000000000000
27 0.00000000000000 0.00000000000000 0.00000000000000
28 0.00000000000000 0.00000000000000 0.00000000000000
29 0.00000000000000 0.00000000000000 0.00000000000000
30 0.00000000000000 0.00000000000000 0.00000000000000
31 0.00000000000000 0.00000000000000 0.00000000000000
32 0.00000000000000 0.00000000000000 0.00000000000000
33 0.00000000000000 0.00000000000000 0.00000000000000
34 0.00000000000000 0.00000000000000 0.00000000000000
35 0.00000000000000 0.00000000000000 0.00000000000000
36 0.00000000000000 0.00000000000000 0.00000000000000
37 0.00000000000000 0.00000000000000 0.00000000000000
38 0.00000000000000 0.00000000000000 0.00000000000000
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39 0.00000000000000 0.00000000000000 0.00000000000000

40 0.00000000000000 0.00000000000000 0.00000000000000
41 0.00000000000000 0.00000000000000 0.00000000000000
42 0.00000000000000 0.00000000000000 0.00000000000000

Snip...

4268 0.00000000000000 0.00000000000000 0.00000000000000
2796 0.00000000000000 0.00000000000000 0.00000000000000

*

LINE COMBINED NAME=8 COUPLED=YES RESTRICT=YES

@CLEAR

3

4

5

*

LINE COMBINED NAME=9 COUPLED=YES RESTRICT=YES

@CLEAR

6
7

*

BODY SHEET NAME=1 LINE=9 DELETE-L=NO

@CLEAR

8

*

BODY SHEET NAME=2 LINE=8 DELETE-L=NO

@CLEAR

2

1

*

BODY SHEET NAME=3 LINE=1 DELETE-L=NO

@CLEAR

MATERIAL MOONEY-RIVLIN NAME=1 C1=0.00000000000000 C2=0.00000000000000,

C3=0.00000000000000 C4=0.00000000000000 C5=0.00000000000000,
C6=0.00000000000000 C7=0.00000000000000 C8=0.00000000000000,
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C9=0.00000000000000 D1=2644.70000000000 D2=8.36500000000000,
KAPPA=6.63689000000000E+07 DENSITY=0.00000000000000 FITTING-=O,
VISCOELA=0 MDESCRIP='NONE'

*

MATERIAL MOONEY-RIVLIN NAME=2 C 1=0.00000000000000 C2=0.00000000000000,

C3=0.00000000000000 C4=0.00000000000000 C5=0.00000000000000,
C6=0.00000000000000 C7=0.00000000000000 C8=0.00000000000000,
C9=0.00000000000000 D1=5105.30000000000 D2=13.0000000000000,

KAPPA=6.63689000000000E+07 DENSITY=0.00000000000000 FITTING-=0,

VISCOELA=0 MDESCRIP='NONE'
*

MATERIAL MOONEY-RIVLIN NAME=3 C 1=0.00000000000000 C2=0.00000000000000,

C3=0.00000000000000 C4=0.00000000000000 C5=0.00000000000000,
C6=0.00000000000000 C7=0.00000000000000 C8=0.00000000000000,
C9=0.00000000000000 D1=50.00000000000 D2=0.50000000000000,
KAPPA=6.63689000000000E+07 DENSITY=0.00000000000000 FITTING-=0,

VISCOELA=0 MDESCRIP='NONE'
*

EGROUP TWODSOLID NAME=1 SUBTYPE=STRAIN DISPLACE=DEFAULT,

STRAINS=DEFAULT MATERIAL=1 INT=DEFAULT RESULTS=STRESSES

DEGEN=NO,

FORMULAT=2 STRESSRE=GLOBAL INITIALS=NONE FRACTUR=NO,

CMASS=DEFAULT STRAIN-F=0 UL-FORMU=DEFAULT PNTGPS=0 NODGPS=0,

LVUS 1=0 LVUS2=0 SED=NO RUPTURE=ADINA INCOMPAT=DEFAULT,

TIME-OFF=0.00000000000000 POROUS=NO WTMC=1.00000000000000,

OPTION=NONE DESCRIPT='NONE'
*

EGROUP TWODSOLID NAME=2 SUBTYPE=STRAIN DISPLACE=DEFAULT,

STRAINS=DEFAULT MATERIAL=2 INT=DEFAULT RESULTS=STRESSES

DEGEN=NO,

FORMULAT=2 STRESSRE=GLOBAL INITIALS=NONE FRACTUR=NO,

CMASS=DEFAULT STRAIN-F=0 UL-FORMU=DEFAULT PNTGPS=0 NODGPS=0,

LVUS 1=0 LVUS2=0 SED=NO RUPTURE=ADINA INCOMPAT=DEFAULT,

TIME-OFF=0.00000000000000 POROUS=NO WTMC=1.00000000000000,

OPTION=NONE DESCRIPT='NONE'
*

EGROUP TWODSOLID NAME=3 SUBTYPE=STRAIN DISPLACE=DEFAULT,

STRAINS=DEFAULT MATERIAL=3 INT=DEFAULT RESULTS=STRESSES

DEGEN=NO,

FORMULAT=2 STRESSRE=GLOBAL INITIALS=NONE FRACTUR=NO,
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CMASS=DEFAULT STRAIN-F=0 UL-FORMU=DEFAULT PNTGPS=0 NODGPS=0,

LVUS 1=0 LVUS2=0 SED=NO RUPTURE=ADINA INCOMPAT=DEFAULT,

TIME-OFF=0.00000000000000 POROUS=NO WTMC=1.00000000000000,

OPTION=NONE DESCRIPT='NONE'
*

GFACE NODES=9 NCOINCID=BOUNDARIES NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=1 PREFSHAP=QUAD-DIRECT BODY=1 COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=DELAUNAY NLAYER=1

NLTABL=0

@CLEAR

*

GFACE NODES=9 NCOINCID=BOUNDARIES NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=2 PREFSHAP=QUAD-DIRECT BODY=2 COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=DELAUNAY NLAYER=1

NLTABL=0

@CLEAR

*

GFACE NODES=9 NCOINCID=BOUNDARIES NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=3 PREFSHAP=QUAD-DIRECT BODY=3 COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=DELAUNAY NLAYER=1

NLTABL=0

@CLEAR

*

BOUNDARIES SUBSTRUC=0

@CLEAR

*

MASTER ANALYSIS=STATIC MODEX=EXECUTE TSTART=0.00000000000000,

IDOF=100111 OVALIZAT=NONE FLUIDPOT=AUTOMATIC CYCLICPA=1,

IPOSIT=STOP REACTION=YES INITIALS=NO FSINTERA=NO IRINT=DEFAULT,

CMASS=NO SHELLNDO=AUTOMATIC AUTOMATI=ATS SOLVER=SPARSE,

CONTACT-=CONSTRAINT-FUNCTION TRELEASE=0.00000000000000,

RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-PEN=NO

MAXSOLME=O,

MTOTM=2 RECL=3000 SINGULAR=YES STIFFNES=1000.00000000000,

MAP-OUTP=NONE MAP-FORM=NO NODAL-DE=" POROUS-C=NO

ADAPTIVE=0,

65



ZOOM-LAB=1 AXIS-CYC=O PERIODIC=NO VECTOR-S=GEOMETRY

EPSI-FIR=NO
*

TIMEFUNCTION NAME=1 IFLIB=1 FPAR=1.00000000000000,

FPAR2=1.00000000000000 FPAR3=1.00000000000000,
FPAR4=0.00000000000000 FPAR5=0.00000000000000,

FPAR6=0.00000000000000

@CLEAR

0.00000000000000 0.00000000000000
24.0000000000000 16.00000000000000

*

DELETE FRAME SURFACE=CURREN
*

TIMESTEP NAME=DEFAULT

@CLEAR

24 1.00000000000000

@

ITERATION METHOD=FULL-NEWTON LINE-SEA=DEFAULT MAX-ITER=50,

PRINTOUT=ALL
*

PPROCESS NPROC=1 MINEL=O MAXEL=999999
*

EGCONTROL MAXELG=999999
*

LOAD PRESSURE NAME=1 MAGNITUD=1000 BETA=0.00000000000000,

LINE=0
*

APPLY-LOAD BODY=3

@CLEAR

*

APPLY-LOAD BODY=3

@CLEAR

1 'PRESSURE' 'EDGE'6 0 10.00000000000000 0 -10 2 0 NO',
0.00000000000000 0.00000000000000 1 0

2 'PRESSURE'1 'EDGE'7 0 10.00000000000000 0 -10 2 0 'NO',

0.00000000000000 0.00000000000000 1 0
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*

FIXITY NAME=NOZ

@CLEAR

'X-TRANSLATION'

'-TRANSLATION'

'X-ROTATION'

'Y-ROTATION'

'Z-ROTATION'

'OVALIZATION'

*

FIXBOUNDARY POINTS FIXITY=ALL

@CLEAR

3175 'ALL'

3907 'NOZ'

*

SUBDIVIDE BODY NAME=1 MODE=LENGTH SIZE=0.00007000000000000

@CLEAR

2

3

*

GFACE NODES=9 NCOINCID=BOUNDARIES NCTOLERA=l.00000000000000E-05,

SUBSTRUC=0 GROUP=l PREFSHAP=TRIANGULAR BODY=l COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=ADVFRONT NLAYER=1

NLTABL=0

@CLEAR

1

*

GFACE NODES=9 NCOINCID=BOUNDARIES NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=2 PREFSHAP=TRIANGULAR BODY=2 COLLAPSE=NO,

SIZE-FUN=0 MIDNODES=CURVED METHOD=ADVFRONT NLAYER=1

NLTABL=0

@CLEAR

1

*

GFACE NODES=9 NCOINCID=BOUNDARIES NCTOLERA=1.OOOOOOOOOOOOOE-05,
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SUBSTRUC=O GROUP=3 PREFSHAP=TRIANGULAR BODY=3 COLLAPSE=NO,

SIZE-FUN=O MIDNODES=CURVED METHOD=ADVFRONT NLAYER=1

NLTABL=O

@CLEAR

1

*

PRINTOUT ECHO=NO PRINTDEF=STRAINS INPUT-DA=1 OUTPUT=SELECTED,

DISPLACE=YES VELOCITI=YES ACCELERA=YES IDISP=NO ITEMP=NO,

ISTRAIN=NO IPIPE=NO STORAGE=NO LARGE-ST=NONE
*

PRINT-STEPS SUBSTRUC=O REUSE=1

@CLEAR

121241

*

PPROCESS NPROC=2 MINEL=O MAXEL=999999
*

EGCONTROL MAXELG=999999
*

ADINA OPTIMIZE=SOLVER FILE=,

'C:\genetic-algorithm_2D\2DOCT.dat',

FIXBOUND=YES MIDNODE=NO OVERWRIT=YES

Appendix B

Sample Genetic Algorithm code

for mmm= 1:1

save 'mmm.mat' mmm;

clear all;

format long e;

load 'mmm.mat';
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% dos ( ['del ','Solutionrecord.mat']);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%

% USER SETTINGS

% Number of parameters

n = 6;
timestep = 4;

noiseratio = 0;

groupnumber = 3;

elements( 1) = 535; %7%

elements( 2 ) = 674; %7%

elements( 3 ) = 166; %7%

totalelements = sum( elements);

%4%1585

%4%1854;

%4%526;

pop( 1) = 40;

pop( 2:100) = 40;

numMutation = 20; %pop > 4*numMutation

% Eactual( 1) = 2644;

% Eactual( 2 )= 5105;

% Eactual( 3 )= 50;1.8e4

% Eactual( 4 )= 8.36;

% Eactual( 5 ) = 13;

% Eactual( 6 ) = 0.5;20

maxValue( 1) = 10e3;

minValue( 1) = 1e3;

maxValue( 2 ) = 10e3;

minValue( 2 ) = 1e3;

maxValue( 3 ) = 100;

minValue( 3 ) = 10;

% maxValue( 3 ) = 1e4;

% minValue( 3 ) = 3e4;

% maxValue(4)= 10;

% minValue( 4 )=7;

% maxValue( 5)= 14;
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% minValue( 5 ) = 10;

% maxValue( 6 ) = 0.6;

% minValue( 6 = 0.3;

maxValue( 4) = 10;

minValue( 4) = 1;

maxValue( 5 ) = 100;

minValue( 5 ) = 10;

maxValue( 6 ) = 1;

minValue( 6) = 0.1;

if mmm==2

load 'Solutionrecord.mat';

maxValue( 1) = 4e3;

minValue( 1) = 2e3;

maxValue( 2) = Solutionrecord(2);

minValue( 2 ) = Solutionrecord(2);

% maxValue( 3 ) = 1e4;

% minValue( 3 ) = 3e4;

maxValue( 3 ) = 60;

minValue( 3 ) = 20;

maxValue( 4) = 10;

minValue( 4 ) = 7;

maxValue( 5 )= Solutionrecord(5);

minValue( 5 ) = Solutionrecord(5);

maxValue( 6) = 0.6;

minValue( 6 ) = 0.3;

end

if mmm==3

load 'Solutionrecord.mat';

maxValue( 1 ) = Solutionrecord(1);
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minValue( 1) = Solutionrecord(1);

maxValue( 2) = Solutionrecord(2);

minValue( 2 ) = Solutionrecord(2);

% maxValue( 3 ) = 1e4;

% minValue( 3 ) = 3e4;

maxValue( 3 ) = 60;

minValue( 3 ) = 20;

maxValue( 4) = Solutionrecord(4);

minValue( 4) = Solutionrecord(4);

maxValue( 5 ) = Solutionrecord(5);

minValue( 5 )= Solutionrecord(5);

maxValue( 6 ) = 0.6;

minValue( 6 ) = 0.3;

end

%global GAdir;

GAdir ='C:\genetic-algorithm_2D\';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%

ADINAdir = .'C:\Program Files\ADINA\ADINA System 8. 1\bin\';

ADINAaui = strcat( ADINAdir, 'aui.exe" -b -m 100mb');

ADINA = strcat( ADINAdir, 'adina.exe" -b -s -m 100mb');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%

initialfilename = '2DOCT';% '2Dhistology'

iterfilename = strcat( initialfilename,'_');

skeletonFile = strcat( initialfilename,'.in');

skeletonFilePrefix = initialfilename;

dos( ['CAProgram Files\ADINA\ADINA System 8.1\bin\aui.exe" -b -m 200mb ',

skeletonFile ]);

dos( [.'C:\Program Files\ADINA\ADINA System 8.1\bin\adina.exe" -b -s -m

200mb', skeletonFilePrefix ]);

% porfilename = strcat( skeletonFilePrefix,'.por');

% datfilename = strcat( skeletonFilePrefix,'.dat');

% resfilename = strcat( skeletonFilePrefix,'.res');
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% modfilename = strcat( skeletonFilePrefix,'.mod');

% dos ( ['del ',porfilename]);

% dos ( ['del ',datfilename]);

% dos ( ['del ',resfilename]);

% dos (['del ',modfilename]);

outfilename = strcat( skeletonFilePrefix,'.out');

[actStrains = readOutFile('2DOCT.out', timestep,elements); % ENSURE!

% if false == 1

% % break

% end

%%%%%%%%%%%%%%%%Artifical Noise%%%%%%%%%%

% noise = 0;%-0.01;

% actStrains

actStrains*(1+noise);%+actStrains.*(((rand(totalElements))-(rand(totalElements)))*noiseratio);

%dos( ['del ',outfilename]);

clear actualdisplacement;

actualdisplacement = reshape (actStrains,size(actStrains,1)*3, 1);

actualdisplacementcomp = actualdisplacement;

for i= 1: size(actStrains,1)*3

actualdisplacement(i)=actualdisplacement(i)*(1+randn*sqrt(noiseratio));

end

noisedifference = norm (actualdisplacement-actualdisplacementcomp)/norm

(actualdisplacement)

% for i = 1:totalelements

% effActualStrains( i,1 ) = sqrt( actStrains( i,1 )A2 + actStrains( i,2 )A2 + 0.5 *

actStrains( i,3 )A2);

% end

% clear actStrains;
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clear Eoffspring;

[ Eoffspring ] = initialize( pop( 1 ),n,minValue,maxValue);

%plot (Eoffspring','.');

save Eoffspring.mat Eoffspring;

for iters = 1:size( pop,2);

if iters == 1

numParents = pop( iters);

else

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CREATE OFFSPRING FROM PARENTS

clear Eoffspring; clear Eparents; clear survival;

% get back raw (unnormalized) numbers

for j = 1:groupnumber

Efitness( :,n+1+j ) = Efitness( :,n+1+j );%* normalizer( j );

end

numParents = pop( iters ) /2;

numCross = numParents;

% for i = 1:pop( iters)

% survivalCurve = 1;

% % size of survival: survival( 1) -> survival( pop( iters ) + 1)
% survival( 1) = 0;

% survival( pop( iters ) - ( i - 2 ) ) = isurvivalCurve /

sum( ( l:l:pop( iters ) ).AsurvivalCurve);

% end

for i = 1:numParents

% for j = 2:pop( iters )+ 1

% r = rand;
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% if r < 0.5 + ( sum( survival( 1:j )/2 & r > 0.5-

(sum( survival( 1:j )) )/2;

Eparents( i, 1:groupnumber+n+1 ) = Efitness( i, 1:groupnumber+n+ 1);

% conv=1;

% end

% end

end

% Best in Population must move on no matter what!

% Eparents( numParents, 1:groupnumber + n+1 ) =

Efitness( 1,1:groupnumber+n+l );

% Eparents( 1:numParents,: ) = Efitness( 1:numParents,:);

[ Eoffspring ] = randCrossover( n,Eparents,numCross );

with value colse to the%%%%%%%%%%%%%%%%%Mutation

best%%%%%%%%%%%%%%

% for jj = 1:numMutation
% for j=1:n

% Eoffspring (round(rand*(numCross-3))+3,j) =
( rand*( mean(Efitness(:,j))*1.4 - mean(Efitness(:,j))*0.7 ) + mean(Efitness(:,j))*0.7 );%values

in 0.7-1.4 Efitness(1,:) bound

% end

% end

% forjj = 1:numMutation

% for j=1:n

% Eoffspring (round(rand*(numCross-3))+3,j) = ( rand*( Efitness(1,j)*1.3 -

Efitness(1,j)*0.7 ) + Efitness(1,j)*0.7 );%values in 0.7-1.4 Efitness(1,:) bound

% end

% end

% for jj = 1:numMutation
% for j=1:n

% Eoffspring (round(rand*(numCross-3))+3,j) = ( rand*( Efitness(2,j)*1.3 -

Efitness(2,j)*0.7 ) + Efitness(2,j)*0.7 );%values in 0.7-1.4 Efitness(1,:) bound

% end

% end

forjj = 1:numMutation
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% for j=1:n

% Eoffspring (round(rand*(numCross-3))+3,j) = ( rand*( mean(Efitness(:,j))*1.2 -
mean(Efitness(:,j))*0.8) + mean(Efitness(:,j))*0.8);%values in 0.7-1.4 Efitness(1,:) bound

% end

% end

% % forjj = 1:numMutation

% % for j=1:n

% % Eoffspring (round(rand*(numCross-3))+3,j) = ( rand*( Efitness(1,j)*1.2 -
Efitness(1,j)*0.8 ) + Efitness(1,j)*0.8 );%values in 0.7-1.4 Efitness(1,:) bound

% % end

% % end

% for jj = 1:numMutation
% for j=1:n

% Eoffspring (round(rand*(numCross-3))+3,j) = ( rand*( Efitness(1,j)*1.1 -
Efitness(1,j)*0.9 ) + Efitness(1,j)*0.9 );%values in 0.7-1.4 Efitness(1,:) bound

% end

% end

% %%%%%%%%%%%%%%%%%Mutation again with values off the

best%%%%%%%%%%%%%%

forjj = 1:numMutation

for j=1:n

Eoffspring (round(rand*(numCross-1))+1,j) = ( rand*( maxValue(j) -
minValue(j) ) + minValue(j));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%

end

for i = 1:numParents

filenumber = num2str( i);

filedot ='.in';
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fileprefix = strcat( iterfilename, filenumber );

infilename = strcat( iterfilename, filenumber, filedot);

% Writes .in file

createInFileAutomated( n, Eoffspring( i,: ), infilename, fileprefix, skeletonFile,

GAdir);

%% [,]= concatenation

%% Create .dat file

dos( ["'C:\Program Files\ADINA\ADINA System 8.1\bin\aui.exe" -b -m 200mb ',

infilename] );

%% Run simulation

dos( [.'C:\Program Files\ADINA\ADINA System 8. 1\bin\adina.exe" -b -s -m 200mb',

fileprefix] );

porfilename = strcat( fileprefix,'.por');

datfilename = strcat( fileprefix,'.dat');

resfilename = strcat( fileprefix,'.res');

modfilename = strcat( fileprefix,'.mod');

infilename = strcat( fileprefix,'.in');

dos ( ['del ',porfilename]);

dos ( ['del ',datfilename]);

dos ( ['del ',resfilename]);

dos ( ['del ',modfilename]);

dos ( ['del ',infilename]);

end

for i = 1:numParents

filenumber = num2str( i);

filedot ='.out';

outfilename = strcat( iterfilename, filenumber, filedot);

[ YZstrains ] = readOutFile( outfilename, timestep,elements);

dos( ['del ',outfilename]);
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% Make ID vector of YY and ZZ strains

clear effPredStrains;

if size(actStrains,1)*3 ~= size(YZstrains,1)*3

false =1;

else false = 0;

end

if false ==1

clear prddisplacement;

prddisplacement = actualdisplacement * 1e4;

% prddisplacement = prddisplacement';

else

prddisplacement = reshape (YZstrains,size(actStrains, 1)*3, 1);
end

diff = prddisplacement - actualdisplacement;

diff( 1:elements( 1 ) = diff( 1:elements( 1)) / elements( 1);

forj = 2:groupnumber

diff( sum( elements( 1:j-1 ) ) + 1: sum( elements( 1:j ) ) )
diff( sum( elements( 1:j-1 )) + 1 : sum( elements( 1:j ) ) ) / elements(j);

end

% rawFitness( i )= norm( diff);

Eoffspring( i,n+1 )= 0;

% Eoffspring( i,n+2) = norm( diff);

Eoffspring( i,n+2 ) = norm( diff( 1:elements( 1)));

forj = 2:groupnumber

Eoffspring( i,n+1+j ) = norm( diff( sum( elements( 1:j-1 ) )+1

sum( elements( 1:j))));
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end

end

clear YZstrains;

clear Efitness;

if iters == 1

Efitness = Eoffspring;

else

Efitness( 1:numParents,: ) = Eoffspring( 1:numParents,:);

Efitness( numParents+1:pop( iters ),: ) = Eparents( 1:numParents,: ); %

end

% Normalize

% Normalize!

% clear normalizer;

% forj = 1:groupnumber

% normalizer(j ) = sum( Efitness( :,n+1+j));

% end

% normalizer( n+1 ) = sum( Efitness( :,2*n+2));

% Efitness( 1:numParents,2*n+2 ) = Efitness( 1:numParents,2*n+2 ) / normalizer( n+1);

% forj = 1:groupnumber

% % Efitness( :,n+2 )= Efitness( :,n+2 ) / normalizer( n+1);

% Efitness( :,n+1+j ) = Efitness( :,n+1+j ) / normalizer( j);
% end

% for j = 1:n

% alpha(j )=1;

% end

% if iters == 1

alpha( 1 ) = 1/3;

alpha( 2 ) = 1/3;

alpha( 3 ) = 1/3;

% alpha( 1 ) =alpha( 1 )/ sum (alpha);
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% alpha( 2) =alpha( 2 )/ sum (alpha);

% alpha( 3 ) =alpha( 3 )/ sum (alpha);

% alpha( 4 ) = 0.10;

% alpha( 5 )= 0.10;

% alpha( 6 ) = 0.10;

% else

forj = 1:groupnumber

alpha(j ) = 1;

end

% end

% else

% alpha( 1 ) = 0.6;

% alpha( 2 )= 0.3;

% alpha( 3 ) = 0.1;

% end

% Weighted sum of each parameter's normalized fitness value

Efitness( :,groupnumber+n+2) = zeros;

forj = 1:groupnumber

Efitness( :,groupnumber+n+2 ) = Efitness( :,groupnumber+n+2 ) +

alpha( j )*Efitness( :,n+1+j);

end

% % Normalize

% clear sumNormalizer;

% sumNormalizer = sum( Efitness( :,groupnumber+n+2));

% Efitness( :,groupnumber+n+2 )= Efitness( :,groupnumber+n+2 ) / sumNormalizer;

[sortedRawFitness, Eindex] = sort( Efitness( :,groupnumber+n+2));

for i = 1:pop( iters )

Etemp( i,: ) = Efitness( Eindex( i ),:);

end

Efitness = Etemp;

clear Etemp;
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iters

Efitness(1:2,:)'

mean (Efitness(1:2,:))';

Efitnessrecord(iters,:)=Efitness(1,:);

Efitnessrecord'

save;

% % Efitness( 1,:)'

% plot (Efitness','+');

% iternumber = num2str( iters);

% Efitnessname = strcat( 'Efitness', itemumber,'.mat');

% save Efitnessname Efitness;

% save;

% if iters == 1

% E( l:pop( iters ),: ) = Efitness( l:pop( iters ),: );
% else

E( sum( pop( 1:iters-1 ) ) + 1 : sum( pop( 1:iters ) ),: ) = Efitness( l:pop( iters ),: );

% end

% Hardwire the independent parameter!

% if iters ==1

% % forj=1:n

% % if alpha( j )>= 0.7

% % Efitness( :,j ) = Efitness( 1,j)

% clear Eoffspring;

% Eoffspring = Efitness;

% % end

% end

end

80



Solutionrecord(mmm,:)=Efitness(1,:);

save 'Solutionrecord.mat' Solutionrecord

mmm=mmm

Solutionrecord'

end

% Econverged = Efitness( 1,:)

save 'Onoise.mat';

% [mu,sigma,muci,sigmaci]=normfit(Efitness(:,1))

function [ strains, false] = readOutFile (filename, timestep,elements);%( n,filename)%,

elements); %,sample,sampleSize);

totalelements = sum( elements);

false = 0;

fid = fopen( filename);

if fid == -1

error( 'File not found or permission denied');

end

readfalse = 0;

strains = [];
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iterate = 0;

while( iterate == 0 )

buffer = fgetl( fid);

iterate = stmcmp( buffer,' S T R E S S C A L C U L A T IO N S', 38);

if buffer == -1,

false = 1; break;

end

end

strainHeader = 12;

for ii = 1:strainHeader, buffer = fgetl( fid ); end

for ii = 1:totalelements*timestep

totalStrainYY = 0;

totalStrainZZ =0;

totalStrainYZ =0;

buffer = fgetl( fid);

buffer = fgetl( fid);

for iii = 1:7
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if buffer == -1,

false = 1; break;

end

[ strainxxstring, buffer ] = strtok( buffer);

[ strainxx-string, buffer J= strtok( buffer);

[ strainxx-string, buffer ] = strtok( buffer);

if buffer == -1,
false = 1; break;

end

readfalsex = isempty (strainxxstring);

[ strainyy-string, buffer ]= strtok( buffer);

readfalsey = isempty (strainyy-string);

[ strainzzstring, buffer ] = strtok( buffer);

readfalsez = isempty (strainzz-string);

[ strainyz-string, buffer ] = strtok( buffer);

readfalse = 1-(readfalsex)*(readfalsey)*(readfalsez);

if readfalse -=0

strainyy = str2num( strainyy-string);

strainzz = str2num( strainzzstring);

strainyz = str2num( strainyz-string);

totalStrainYY = totalStrainYY + strainyy;

totalStrainZZ = totalStrainZZ + strainzz;

totalStrainYZ = totalStrainYZ + strainyz;

buffer = fgetl( fid);

buffer = fgetl( fid);

buffer = fgetl( fid);

buffer = fgetl( fid);
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readfalsexx = isempty (str2num( strainxx-string ));

if readfalsexx ==O

strains( ii, 1 ) = str2num( strainxx-string);

strains( ii,2 ) = str2num( strainyy-string);

strains( ii,3 ) = str2num( strainzz-string);

end

else

iterate = 0;

while( iterate == 0)

buffer = fgetl( fid);

iterate = stmcmp( buffer,' S T R E S S C A L C U L A T IO N S', 38);

if buffer == -1,

false = 1; break;

end

end

strainHeader = 12;

for ii = 1:strainHeader, buffer = fgetl( fid);

end
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totalStrainYY = 0;

totalStrainZZ =0;

totalStrainYZ =0;

buffer = fgetl( fid);

buffer = fgetl( fid);

if buffer == -1,

false = 1; break;

end

[ strainxx-string,

[ strainxx-string,

[ strainxx-string,

buffer = strtok( buffer);

buffer = strtok( buffer);

buffer = strtok( buffer);

if buffer == -1,

false = 1; break;

end

[ strainyy-string, buffer = strtok( buffer);

[ strainzz-string, buffer ] = strtok( buffer);

[ strainyzstring, buffer ] = strtok( buffer);

strainyy = str2num( strainyy-string);

strainzz = str2num( strainzz.string);

strainyz = str2num( strainyz-string);

totalStrainYY = totalStrainYY + strainyy;

totalStrainZZ = totalStrainZZ + strainzz;

totalStrainYZ = totalStrainYZ + strainyz;

buffer = fgetl( fid );
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buffer = fgetl( fid);

buffer = fgetl( fid);

buffer = fgetl( fid);

strains( ii, 1) = str2num( strainxx-string);

strains( ii,2 ) = str2num( strainyy-string);

strains( ii,3 ) = str2num( strainzz-string);

end

end

end

fclose( fid);

function [ Eoffspring I = randCrossover( n,Eparents,numCross)

numOffspring = size( Eparents, 1);

for i = 1:numCross

crossPartner( i )= round( rand*( numOffspring - 0.01 ) + 0.5);

while crossPartner( i )== i

crossPartner( i )= round( rand*( numOffspring - 0.01 ) + 0.5);

end

crossNo = round( rand*( n-1-0.01 ) + 0.5);
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forj = 1:crossNo

crossLoc(j ) = round( rand*( n-0.01 ) + 0.5);
if j> 1

notYet =0;

while notYet == 0;

for c = 1:j-1
if crossLoc( j ) == crossLoc( j-c)

crossLoc(j ) = round( rand*( n-0.01 ) + 0.5);

break;

end

notYet = 1;

end

end

end

if crossLoc(j ) == 1;

Eoffspring( i,crossLoc( j ) ) = Eparents( crossPartner( i ),crossLoc( j ));
Eoffspring( i,crossLoc(j )+1:n ) = Eparents( i,crossLoc(j )+1:n);

elseif crossLoc( j ) == n

Eoffspring( i,crossLoc( j ) ) = Eparents( crossPartner( i ),crossLoc( j ));
Eoffspring( i,1:crossLoc(j )-1 )= Eparents( i,1:crossLoc(j )-1);

else

Eoffspring( i,crossLoc( j ) ) = Eparents( crossPartner( i ),crossLoc( j ));
Eoffspring( i,1:crossLoc( j )-1 )= Eparents( i,1:crossLoc( j )-1 );
Eoffspring( i,crossLoc( j )+ 1:n )= Eparents( i,crossLoc( j )+ 1:n);

end

end

end

function [Eoffspring-init ]= initialize( initPop,n, minValue,maxValue)

% for i = 1 : initPop*n/n

% Eoffspring-init( i,1 ) = ( rand*( 117600 ) + 39200 ); % * OA5;

% end

% for i = 1 : initPop*n/n

% Eoffspring-init( i,2 ) = ( rand*4800000 + 1600000 ); % * 10A7;
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% end

% for i = 1 : initPop*n/n

% Eoffspring-init( i,3 ) = (rand*480 + 160); % * 10^3;
% end

% el = 4e3;

% e2 = 4e3;

% e3 = 1e2;

% fac=0.4;

% facmax=4;

% elmin= el - e1*fac;

% elmax = el + el*facmax;

% e2min =e2 - e2*fac;

% e2max = e2 + e2*facmax;

% e3min =e3 - e3*fac;

% e3max = e3 + e3*facmax;

forj=1:n %6 subject to change when the number of parameter increases
for i = 1 : initPop

Eoffspring-init( i,j ) = (rand*( maxValue(j) - minValue(j) ) + minValue(j)); % * 10^5;
end

end

% for i = 1 : initPop*n/n

% Eoffspring_init( i,2) = ( rand*( maxValue(2) - minValue(2) ) + minValue(2) ); % *
10A7;

% end

% for i = 1 : initPop*n/n

% Eoffspring-init( i,3 ) = ( rand*( maxValue(3) - minValue(3) ) + minValue(3) ); % *
10A3;

% end

% i = 2;

% sample( 1) = round( rand*(n*initPop-1) + 1);

% while( i <= n*initPop )
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% sample( i ) = round( rand*(n*initPop-1) + 1);

% for ii= 1:-1

% if sample( i ) == sample( ii)

% i = i-1;

% break

% end

% end

% i = i+1;

% end
% L L L

%j = 1;
% for i = 1:n:n*initPop

% Eoffspring-init( j, 1) = random( sample( i ));

% Eoffspring-init( j,2 ) = random( sample( i+1 ));
% Eoffspring-init( j,3 ) = random( sample( i+2 ));

% j =j+1;
% end

function createInFileAutomated ( n, E, filename, fileprefix, skeleton, GAdir)

groupnumber = 3;

% D2(1)=8.36500000000000;

% D2(2)=13.0000000000000;

% D2(3)=5.00000000000000;

Kappa(1)=2.21229155000000E+07;

Kappa(2)=2.21229155000000E+07;

Kappa(3)=25000.000000000;

% Open the files. If this returns a -1, we did not open the files

% successfully.

%KKK=8

fidR = fopen( skeleton, 'r');

if fidR == -1

error( 'File not found or permission denied');

end

fidW = fopen( filename, 'w');

if fidW == -1

error( 'File not found or permission denied');

end
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iterate = 0;

lineNumi = 0;

while ( iterate == 0)

buffer = fgetl( fidR);

iterate = stmcmp( buffer, 'MATERIAL MOONEY', 15);

lineNumi = lineNumi + 1;

end

frewind( fidR);

for i = 1 : (lineNumi - 1)

buffer = fgetl( fidR);

fprintf( fidW, '%s\n', buffer);

end

for i = 1 : groupnumber

% Get the 'Material Elastic Name...' line from the skeleton file

buffer = fgetl( fidR );

% Get the 'Density...Alpha' line from the skeleton file

buffer = fgetl( fidR);

buffer = fgetl( fidR);

buffer = fgetl( fidR);

buffer = fgetl( fidR);

buffer = fgetl( fidR);

EndCommandBuffer = fgetl( fidR);

%EndCommandBufferl = fgetl( fidR);

end

for i = 1 : groupnumber %3 subject to change when # parameter increases

fprintf( fidW, 'MATERIAL MOONEY-RIVLIN NAME=%g CL=0.00000000000000

C 2 =0.00000000000000,\n C3=0.00000000000000 C4=0.00000000000000

C5=0.00000000000000,\n C6=0.00000000000000 C7=0.00000000000000
C8=0.00000000000000,\n C9=0.00000000000000 D1=%14.14e D2=%14.14e,\n

KAPPA=%14.14e DENSITY=0.00000000000000 FITTING-=0,\n', i,

E(i),E(groupnumber+i),Kappa(i));

%3+i subject to change when number of parameter increases

fprintf( fidW, '%s\n', buffer);

fprintf( fidW, '%s\n', EndCommandBuffer);
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%fprintf( fidW, '%s\n', EndCommandBufferl);

end

iterate = 0;

while ( iterate == 0)

buffer = fgetl( fidR);

fprintf( fidW, '%s\n', buffer);

iterate = stmcmp( buffer, 'ADINA OPTIMIZE=SOLVER FILE=,', 28);

end

% Get the next line

buffer = fgetl( fidR);

%fprintf( fidW, '%s\n', buffer);

%buffer = fgetl( fidR );

fprintf( fidW, "'C:\\genetic-algorithm_2d\\%s.dat",\n', fileprefix);

buffer = fgetl( fidR );

while ( buffer -= ( -1 ))
fprintf( fidW, '%s\n', buffer);

buffer = fgetl( fidR);

end

% KKK=9

fclose( fidR);

fclose( fidW);
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