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Abstract
As technology advances and sophisticated electronic systems achieve ubiquity, the
demand for thorough, efficient Electromagnetic (EM) analysis continues to rise. The
prohibitive costs of constructing and maintaining measurement facilities and designing
and buildin-l system prototypes has fueled even greater demand for Computational
Electromagnetics (CEM). Today's CEM solvers can generate models that accurately
characterize the EM behavior of an arbitrary structure presented for analysis. Two
important a-pplications for CEM are Scattering analysis of targets excited by EM
waves and impedance modelling for the interconnect between the electronic compo-
nents in Systems on Package (SoP) and Systems on Board (SoB).

Often, the goal of analysis is to characterize behavior relative to parameters of in-
terest. and EMI solvers can generate paralneter-depenldent models of the system. The
complexity of structures has increased so much that solving the solver-generated mod-
els at nImierous desired parameter-points is a daunting computational task. For ex-
ample, using these models in a simulator would be infeasible. Instead, existing Model
Order Reduction (MOR) algorithms can construct reduced order models (ROMs) that
clharacterize the pararreter-dependent behavior of the original system. These existing
methods are effective when the system of equations is linearly or weakly nonlinearly
dependent on the parameters.

When analyzing structures that are large compared to wavelengths of interest,
retardation generates an exponentially nonlinear dependence on frequency, and such
a strong nonlinearity makes it impossible to use existing MOR methods. This disser-
tation describes a new algorithm, Segregation by Primary Phase factors, that extends
existing projection-based MIOR techniques to the case of "'Electromagnetically Large"
structures. Extensions of the SPPF method to problems with parameter-dependent
excitation arc considered, as well as how to combine SPPF with fast integral equation
solvers.

Thesis Supervisor: Jacob K. White
Title: Associate Director, Research Laboratory for Electronics
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Chapter 1

Introduction

The 21st centurv will be no different than the 20th century in at least one respect: The

pace of technological advancerrent will continue to increase. Rather than satisfying

society's needs, all of the past innovation has only accelerated demand for the next

generation of technologies. One of the primary reasons that technological capability

has progressed so dramatically is that the complexity of systems has increased just

as quickly. The adoption of modular designs has heralded systems that comprise of

ever-rmore elaborate combinations of complicated elements. Correspondingly, the list

of factors that engineers and manufacturers must consider during the design of nIew

systems has expanded rapidly. As a result, the design of new technology requires

ever-greater effort and skill to manage and guide the surging compllexity of' systemls.

Therefore, the nee(l for efficient anl accurate systems anIalysis tools to id (enllgineerll s

during the design process is greater than ever.

Electronics have been at the forefront of technological innovations during the 20th

century. Thus. much effort has been invested in developing tools for electromagnetic

(EM) analysis. Designing special EM measurement facilities and building prototype

structures to test is usually very expensive. Therefore, Computational Electromagnet-

ics (CEM) is a field of growing importance. Computational EM analysis tools that

are based on formulations of Maxwell's Laws can generate models that accurately

characterize the EM behavior of arbitrary structures. Two CEM applications of par-

ticular interest are EM scattering analysis and Ipedance extraction for interconnect
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structures.

In the semiconductor industry, added complexity of electronic systems and in-

creasing signal frequencies can lead to problems with interference. As wavelengths

decrease relative to the size of interconnect structures on system on packages (SoP)

and System on Boards (SoB), interconnect structures will transmit conductive inter-

ference to nearby sections of the system, and radiative interference to distant portions

of the system. Conductive interference induces currents and voltages on adjacent por-

tions of the system, while radiative interference induces retarded currents and voltages

on nearby and distant portions of the system. Interference of either type can impair

operation of the electronic system, and, as a result, must be considered during the

design process. Therefore, Electromagnetic (EM) analysis of interference in proposed

systems is imperative.

For the civilian transportation industry and for the military, the design of surveil-

lance systems and counter-surveillance measures requires detailed EM analysis. For

example, civilian transportation industries and the military have an ever-increasing

need for advanced radar systems with improved target detection, automatic target

recognition, and other sophisticated remote sensing capabilities. Air Traffic Con-

trol systems, employed at airports throughout the world to facilitate safe take-offs

and landings for aircraft, require meticulous design and EM analysis. The design

of communications antennas and sensors on aircraft requires careful EM analysis to

understand interactions of EM fields and waves with the body of the aircraft and each

other to ensure both safety and functionality. In military contexts, designers must

also consider that the enemy may attempt to jam the communications, sensors, and

other systems of an aircraft, ship, ground vehicle, or facility. Additionally, there is a

strong interest in improving capabilities to design stealth systems that are invisible

to radar. Designing aircraft, ground vehicles, and other weapons systems with lower

radar cross-sections increases the survivability of these systems! These are just a few

applications which have a clearcut need for EM scattering analysis.

Many CEM tools have been developed for EM analysis for these application.

Impedance extraction tools generate models that characterize the impedance behavior

14



of interconnect structures on electronics systems, such as System on Packages (SoP)

and Sstem on Boards (SoB) and relate system charges and currents to the source

voltage. Tile impedance models allow engineers to simulate the behavior of the system

to understand the interference that occurs. EM scattering solvers can generate models

that characterize the current density induced when all source EM wave contacts the

surface of the scattering target. From the induced surface current, other scattering

quantities of interest, such as radar cross section or field quantities, can be computed

at desired observation points. Thus. engineers can use these lnodels design better

stealth systems, target detection systems, target recognition systems, radar, and much

more.

Matching the growing complexity of systems, the models generated by CEM tools

have become very complicated and extremely large systems of equations are required

to describe the system, such that using the original model to solve for desired quanti-

ties is frequently prohibitively time-consuming. Thus, acceleration methods, such as

sparsification algorithms [36] [8] [2] [43] [4], have been developed to permit efficient

solution by constructing an approximation to the original model that can be solved

very rapidlly.

Often, one wishes to characterize or understand some parameter-dependencies of

a system, p:)erhaps through simulation, but the complexity of the models prohibit

direct use in simulation or to solve the system to compute results at every required

point over ai, desired parameter range. However, by using informlation obtained from

solving the system of equations at just a few parameter points, one can use standard

Model Order Reduction (MOR) techniques [?] [5] [30] [34] [12] [42] [37] [9] to con-

struct reduced order models (ROMs) that can be rapidly solved to characterize the

parameter-dependent behavior of a large system over the rest of the desired parameter

range.

Standard Model Order Reduction techniques are effective for generating low or-

der models to approximate systems in Quasistatic analysis regimes with polynomial

frequency dependencies. Figure 1-1 illustrates these regimes, where the signal wave-

length is llmuch greater than the maximnum diamneter of the structure. The traditionlal

15
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Scattering Object

Figure 1-1: Quasi-static EM Analysis: The amplitude of the incident source field
and interactions between distant panel pairs on the geometry vary very slowly (A >
8rMAX) over the diameter of the structure and will not induce significant voltage
differences.

MOR methods have been extended [34] to approximate systems with weakly oscilla-

tory frequency dependencies.

However, there are still many limitations to what CEM can accomplish. Ex-

isting MOR methods are not effective for fll-wave analysis regimes and unable to

efficiently generate accurate models for "electromagnetically large" structures. Fig-

ure 1-2 illustrates the full-wave analysis regime, in which the wavelength of the signal

is comparable or smaller than the maximum diameter of the structure. Complicat-

ing matters, the frequencies of signals present in today's technology are increasingly

in the full-wave regime. The primary contribution of this thesis is an algorithm,

Segregation by Primary Phase Factors (SPPF), that facilitates multi-point,

multi-parameter, sparsified, full-uwave MAodel Order Reduction (FMOR): The resulting

low order SPPF-FMOR models can accurately characterize the parameter-dependent

behavior of "electromagnetically large" systems and enable rapid analysis of arbitrary

EM structures.

The remainder of this introductory chapter will introduce the two applications and

attempt to motivate the contributions of the research described in this dissertation.

Chapter 2 will present the background material in sections that outline the develop-
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Incident Electric Field Amplitude

Satn Oj e

Figure 1-2: Full-wave Scattering Analysis: The amplitude of the incident source
field and interactions between distant panel pairs on the geometry vary significantly
(r 4AxA- > 8X) over the diameter of the scattering object necessitating careful consid-
eration of full-wave effects.

ment of imp-edance and scattering models from Integral Equations, describe standard

Model Order Reduction techniques, and summarize sparsification methods, focusing

on the Precorrected Fast Fourier Transform algorithm. Chapter 3 discusses the lirm-

itations of pire-existing Model Order Reduction techniques when used for full-wave

electromagnetic analysis. Then, chapters 4 through 10, which comprise the main

technical contributions of this research, present the Segregation by Primary Phase

Factors (SPPF) algorithm, extensions to SPPF for sources that have complicated

frequency dependencies, multi-point full-wave MOR, methods for SPPF. extensions

to SPPF for output selection vectors that have complicated frequency dependencies.

a Precorrected Fast Fourier Tranformn algorithm incorporating SPPF for full-wave

MOR (FMO)R), methods and ideas for multi-parameter FMOR, a new formulation

and technique to inprove conditioning, and related ideas, as well as results from

,applying these techniques to a variety representative sample problemls.
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1.1 Introduction to Full-wave Impedance Extrac-

tion

As predicted by Moore's Law, feature sizes have continued to decrease allowing more

and more components in a System-on-Board (SoB) or System-on-Package (SoP). At

the same time, frequencies generated within many of the systems have risen into the

Gigahertz (GHz) ranges. With the increasing complexity of SoB and SoC compo-

nents, the boards and packages will require the same or more amount of interconnect.

While these interconnect geometries are not decreasing in size, the steady decrease in

system operating wavelengths has driven many impedance extraction problems from

the quasi-static regime into the full-wave regime by increasing the ratio of the maxi-

mum diameter of the interconnect geometry relative to the source signal wavelength,

such that the ratio approaches, or even grows larger than. one.

The geometries in these full-wave impedance extraction problems are termed " elec-

trornagnetically large" when analyzed at fll-wave wavelengths. In both quasi-static

and full-wave modes of operation the magnitude of potentials induced by currents and

charges on segments of interconnect are proportiona.l to 1/r, where r is the distance

from the source currents and charges. For quasi-static modes of operation, voltage

differences induced along distant structures are exceedingly small since 1/r is smooth

for large r, and the change in 1/r along the distant, structure is negligible.

For full-wave modes of operation, impedance extraction for "electromagnetically

large" interconnect geometries must take retardation effects into account when corn-

puting impedance models because retardation can cause interference in distant por-

tions of the system that would be unaffected in quasi-static modes of operation. Due

to the retardation effects, full-wave interconnect signals can induce significant voltage

differences, up to 1/r in magnitude, along distant structures that are "electrorrlag-

netically large". Thus, during quasi-static modes of operation component charge and

current densities will transmit electric and magnetic fields to adjacent portions of the

system that can affect operation of the system. but, in flll-wave llodes of operation,

components will transmit electromagnetic waves that induce retarded potentials that

18



result in voltage differences even in distant portions of the systemn.

Depending on the geometry and properties of each component and its neighbors

in the system, the effects of interference on that component's various operations will

differ, but signals traveling through these systems at these Gigahertz frequencies will

transmitt significant levels of interference from components such as pins and wires to

every other component of the chip. The increase in frequency and complexity of SoB's

and SoP's has mandated ever more detailed, in-depth Electromagnetic Interference

(EMI) analysis [10] for these sorts of electronic systems. In order to ascertain how

EMI will affect operation of an electronic system without actually building the system,

it is crucial to simulate the system in all of its potential modes of operation. Accurate

simulation of the system requires detailed models for every component of the system,

and these models must incorporate the effects of EMI.

Tools such IES3 [26], FastImp [46], FastCap [29]. and FastPep [24] can extract

detailed quasistatic impedance models by discretizing an Integral Equation (IE) for-

mulation [19, 20], using Laplace Green's functions in the kernel, derived from the

applicable set of Maxwell's Laws. Discretization of the IE governing the quasistatic

firequency domain operation of the system generates a system of linear equations

whose elements are polynomial or rational finctions of frequency. Figure 1-3. shows

an example of' interconnect, discretized into small panels. For full-wave impedance

analysis, IE formulations of Maxwell's Laws utilize Helmholtz oscillatory Green's func-

tions for the kernel to capture the full-wave effects. Extraction tools, such as such as

IES3' [26] and Fastmnp [46], also can discretize IE formulations of this type to gener-

a.te impedance models, comprising of linear systems whose elements are polynomial

functions of' the product of frequency and complex exponentials of scaled frequency.

It, is the complex exponential term which accounts for oscillatory retardation effects.

Extracted linear systems will approximate the frequency domain behavior of the

original system but the matrices are usually so large that the impedance model's

computational complexity precludes simulation. Boundary Element Methods (BEM)

'IES3 is not suited for highly oscillatory kernels d(ue to the fact that it depends on asymptotically
smooth variation of the kernel for its conll)ression techniques. Therefore, it. inay e not usefuil for
electromagnetically large structulres that are many wavelengths in diameter.

19



Figure 1-3: Interconnect: This figure is borrowed with permission from Michael Chou

applied to discretize Integral Equations (IE) formulations can reduce computations us-

ing Green's formulas and boundary conditions to construct Surface Integral Equation

(SIE) based formulations. However, while the resulting matrices are smaller relative to

differential equation based formulations, the matrices resulting from discretizing SIEs

are very dense. Therefore, the computation required to accurately solve complicated

systems and calculate desired unknowns at specific single frequency points is fre-

quently too time-consuming to feasibly aid the design process. To permit simulation.

IE-based tools dramatically accelerate computations by utilizing iterative methods

[40] to solve the system in unison with "sparsification" algorithms [17, 16, 4] that ap-

proximate the discretized model of the original system, when computing matrix-vector

products. For example, FastImp employs the Precorrected Fast Fourier Transform

(PFFT) [36] sparsification algorithm. The BEM IE-based EM scattering solver imple-

mented for this research incorporates the PFFT algorithm with iterative techniques.

The impedance extraction solver used with this research relies on iterative solution

techniques alone.

However, system complexity has increased at such rates that the extracted impedance

models are often too large for simullation purposes, even when tools utilize sparsifica-

tion algorithms to solve the system. Therefore, the extraction tools also incorporate
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Model Order Reduction techniques to generate low order ipedance models that cap-

ture the frelquency behavior of the original system but can be rapidly solved at any

desired point i the system's operating frequency range [18, 14, 42]. Standard MOR

algorithms have been extended [34] to account for the oscillatory retar(lation kernel

required for analysis in the full-wave regime, and can generate low order models to

characterize the full-wave impedance behavior of a system. W\e briefly review these

full-wave MOR algorithms in section 2.7. However, the accuracy of these methods

hinge on the worst case interaction distances, severely limiting their performance. Fur-

thermnore, at h-igh frequencies, computation required to utilize these full-wave MOR

techniques, becomes very costly, perhaps infeasil:le, for many geometries and operat-

ing conditions.

Chapter 4 presents the Segmentation by Primary Phase Factors (SPPF) algorithm,

which can e used to approximate the original system and transform the equations

into a form that; is suitable for full-wave Model Order Reduction (SPPF-FMIOR). In

SPPF-FM()R,, the accuracy of the underlying truncated Taylor series approximation

to thte system is bounded by the value chosen for the SPPF parameter R. Because the

truncation error is decoupled from the worst-case interaction distances, SPPF-FMOR

enablles greater accuracy in reduced order models than [34] for a given truncation

order, and the SPPF-FMIOR ROMs have a much wider frequency band of accuracy.

Furthermore, SPPF-FMOR requires less conmputation2 to achieve a given level of

accuracy. Thus. SPPF-FMOR makes it feasible to characterize the frequency behavior

of many lnoi)re systems with these extraction tool than was possible before using the

methods in [34].

Chapter 6 presents options for SPPF-based mullti-point MOR, which is necessary

to extend the frequency range of accuracy for a R.OMI by adding terms to the pro-

jection m-latrix corresponding to alditional Taylor expansion points of the system.

Chapter 8 describes an algorithm to implement the key concepts from SPPF-FMOR

in conjunction with the PFFT sparsification algorithm to accelerate matrix-vector

2For malny fill-wave problems, the number of operations required for MOR (both for SPPF-
FMOR. and [4]) is approximately proportional to the trlncation order. nT.
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products to generate a low-order model of the original system that lmay be solved

at any points in the specified frequency range to obtain an accurate approximate so-

lution and dramatically improve fill-wave impedance analysis of electronic systems.

Finally, Chapter 10, presents a new formulation suited for full-wave MOR and some

techniques to achieve better conditioning.

1.2 Introduction to Full-wave Electromagnetic Scat-

tering

Accurate computer analysis of electromagnetic scattering of complex objects can be

achieved with SIE formulations, derived from Maxwell's Laws, that generate compli-

cated models. The second application for this thesis research is to develop algorithms

to efficiently generate reduced order models (ROMs) that accurately characterize the

resulting scattered Electromagnetic (EM) fields produced when full-wave incident

source fields interact with the surface of a complex target object, as illustrated in fig-

ure 1-4, over a desired full-wave frequency range. Full-wave source signals incident on

a scattering geometry can induce significant interactions even between distant points

in the scattering geometry. Figure 1-2 highlights the scale of the oscillations for EM-

Large structures. The key difference in the full-wave interactions is that, although

the amplitude of induced potential is very small at distant portions of the scattering

structure, the retardation causes voltage differences that cause significant currents.

This phenomenon is not present in quasistatic frequency ranges.

A difficult problem for full-wave electromagnetic scattering analysis is to compute

accurate results over entire ranges of selected parameters, such as frequency and look

angle, when the scattering object is "electromagnetically large" (EM-Large)and has

geometrical dimensions much greater than wavelengths of interest. In particular,

using BEM SIE solvers, a large number of basis functions are needed to accurately

approximate the unknown surface quantity of interest, and existing full-wave MOR

mretl-lods are not able to efficiently generate a single low order model that accurately
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cha.racterize-s an EMI-Large system for a sufficiently wide frequenlcy range. Existing

MVIOR methods can be used to generate multiple models, each accurate over a (narrow)

frequency band. Thus, a, composite R.OM could be constructed from the piece-wise

accurate narrow-band ROM\s for inverse scattering.

However, the approach of characterizing the desired frequency range by stringing

multiple narrow-band models together has a negative impact on computational effi-

ciency due to the cost of constructing multiple ROMs. Furthermore, the composite

ROM approach becomes unwieldy and infeasible when trying to characterize a sys-

tem for multiple paramleters of interest, such as frequency, look angle, and geometrical

parameters. Thus, it is desirable to have a single ROM that accurately character-

izes the system over the desired frequency range, and an improved full-wave MOR.

(FAMOR) algorithm might have great potential to facilitate a number of challenging

inverse-scattering type applications, such as metrology for semiconductor packages,

design of stealth military weapons systems, iterative designs of antennas, automatic

target recognition. and matching waveforms for both transmitters and targets.

The portions of this dissertation that are pertinent EM scattering are organized as

follows: Chapter refbckgrnd presents background material necessary to better com-

prehend the nature of the CEM challenges and describes the formulations used in this

dissertation for computational scattering. Two popular formulations, which can be

used to produce accurate results for selected problems, are the Electric Field Integral

Equations (EFIE) and the Combined Field Integral Equations (CFIE). Background

sections 2.1- 2.3 review these formulations and trace their development from the ap-

prol)riate set of Maxwell's Laws, and section 2.5 presents techniques to discretize

systems of field integral equation into linear (with respect to unknown sources) equa-

tions that can be solved on a computer.

For this thesis research, we have chose to design a system that iplements and

solves the EFIE discretized with RWG [38] linear basis functions. in the frequency

domain. Te resulting linear system approximates the frequency domain behavior

of the original system but the matrices are usually so large and dense that the scat-

tering model's computational complexity precludes rapid solution. To characterize
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EM Waves Scatterer
4aje

17I 

Figure 1-4: EM scattering analysis involves determining scattering quantities of inter-
est, such as induced currents on the target, radar cross section (RCS) of the target, or
scattered fields, due to an incident EM wave impinging on a scattering target. In the
picture, the distant radar (perhaps on an airplane) is the source of the EM wave that
impinges on the tank. The tank is the scattering target and the goal is to determine
the scattering quantities of interest due to EM waves scattering from the tank. A
common goal is solve for scattered fields at observation points of interest (frequently,
observation points are located at the source antenna). An BEM SIE EM analysis
tool would discretize the surface of the tank, in similar fashion to the interconnect
pictured in figure 1-3.
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scattering fronl a target structure over an entire parameter range, these tools dramati-

callv accelerate solution of the system and further approximate the already-discretized

model by employing "sparsification" algorithms in unison with iterative methods [40],

which are reviewed in section 2.6.4.

Since the system equations and source field vector have complicated parameter

dependencies, solving the large EFIE systels of equations across entire multidilmen-

sional paramncter ranges is a costly computational task. but the combination of spar-

sification and MOR. can meet this challenge. Traditional MOR methods are reviewed

in section 2.7. However, EM-Large scattering geometries (full-wave problems) pose

a particularly difficult computational challenge for scientists interested in simulat-

ing full-wave scattering applications since these problems are not very amenable to

the existing MOR. techniques. These challenges for full-wave MOR. are discussed in

chapter 3 and provide the motivation for the new algorithms and other contributions

offered in this dissertation.

Chapters through 10 presents all of the major contributions of our research.

The main contribution is to propose several new algorithms and techniques to facil-

itate full-wave MOR (FMOR). The core algorithml which serve as the foundation of

these new FMOR. algorithms and techniques is called Segregation by Primary Phase

Factors (S-'PF) and is presented in Chapter 4. Chapters 5 and 7 discusses how

to extend the SPPF-FMOR algorithms developed for Impedance Extraction (which

usually has a frequency-independent source vector) to efficiently generate accIurate

low order models for Electromagnetic scattering that account for te complicated

frequency-dependencies of the incident source field vectors and output selection vec-

tors. Chapter 6 presents new multi-point SPPF-FMIOR algorithms that generate

ROMs which have great accuracy around multiple expansion points, and thus carl

expand the frequency range of a ROM's accuracy. Chapter 8 shows how SPPF-

FMOR for Electromagnletic Scattering may be extended to incorporate sparsification

techniques which are critical for simulating complex geometries. Finally, chapter 9

discusses ideas for generating multi-pararnmeter reduced order models and presents al-

gorithlns for n-ulti-paramleter FMOR. that generate RO.(MIs with fiequency and look
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angle paramneters.
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Chapter 2

Background

This chapter provides the context necessary for the reader to understand the new

algorithms, presented in Chapters 4 to 10. that are the main contributions of this

dissertation research. Specifically this chapter will discuss how EM analysis tools

construct the original, pararneter-dependent 1 models for a system, how sparsification

algorithms can accelerate the solution of those models at a single pararmeter point,

and how traditional MOR techniques can generate reduced order models (ROMs)

that, allow rapid characterization of the parameter-dependent behavior of the system.

Much of the background material will be presented in the context of the scattering

application because scattering problems usually have sources and output functions

that have complicated frequency dependencies, leading to a more general model order

reduction problem than the impedance extraction application.

This chapter is organized as follows: An Integral Equation formulation is devel-

oped in sections 2.1- 2.4. Then, section 2.5 illustrates how to discretize the equations

to produce a linear system. Section 2.6 demonstrates how sparsification can be used

to rapidly solve the system at a particular parameter point. Finally, Model Order

Reduction (MOR) methods are presented in section 2.7. MOR is used to generate a

low order model that characterizes the behavior of the original system over a desired

paramneter range for certain parameters of interest and that can be rapidly solved. If

LModel pa.ranleters typically inclllude frequency. Zenith look angle, azimirltth look angle, and
geometrical parameters (width, height, length) are other possible parameters of interest
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tile reader is interested in exploring any of the background topics in more detail, there

is a wealth of literature on these topics. The reader can learn more about EM solvers

in [26, 46, 25, 29, 23], discretization in [19, 38], Sparsification in [36, 8, 2, 43, 4], and

MOR in [18, 5 30, 34, 12, 42, 13, 37. 9].

2.1 Establishing Governing Equations

To accurately analyze the EM behavior of an arbitrary structure, CEM solvers typi-

cally generate a model of the original system based on Maxwell's Laws, which relate

macroscopic EM fields and sources:

V B=0 (2.1)

V. D PE (2.2)

V x H= + J (2.3)

V = (2.4)at

In the preceding Maxwell's equations, E is electric field , H is magnetic field, JE

electric current density, PE is electric charge density. D is electric displacement, and

B is magnetic induction. Maxwell's laws are partial differential equations (PDEs) that

include derivatives with respect to position and time. Constitutive relations, relating

magnetic induction to the magnetic field and electric displacement to the electric field

in materials composing the structure, and boundary conditions, at interfaces of the

structure to be analyzed, provide additional relations that can be used to to solve for

unknowns of interest given sufficient known source terIns.
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2.2 Formulation for Electromagnetic Scattering

Thlere are many ways that a CEM solver can use Maxwell's Laws to construct a model

for a structure of interest. A particular set of choices that specify how to construct

a model coustitute a "formulation" for analysis of the Electromagnetic properties of

the structure. This section will first present several of the possible basic choices for

formulating the problem, and then present the formulation adopted for this research.

One can classify CEM solvers by whether the solver models the behavior of the

systemi in te time domain or the frequency domain. Timec-domain (TD) solvers of-

ten enploy time stepping methods (Runga-Kutta. Euler, Richardson Extrapolation,

Predictor-Corrector, etc) to analyze the time evolution of the system. Frequency

domain solvers transform Maxwell's PDEs from the time domain into the frequency

dolllain, using Fourier Transforlllation, which is useful when a goal of the analysis

is to characterize the frequency behavior of a system. A frequency domain solver

was developed for this research since one of the main goals of both Computational

EM scattering and Impedance cxtraction applications is to characterize the frequency

behavior of systelms. Therefore, using Fourier Transformation, the PDEs with deriva-

tives with respect to time and position coordinates, Equations 2.3 and 2.4, can be

converted to PDEs with derivatives with respect to position variables only:

V x H(7) = iwROE + JE (2.5)

V x E(r) -i./itQRH. (2.6)

Note that these equations were formulated under the assumption that the fields and

sources are functions of position and time, and that permittivity and permeability

are constant with respect to time. Also. they introduce relative permittivity2 and

relative permeability 3.

Clearly, the goal of any EIM analysis is to seek a solution that satisfies lIaxwell's

2PR _= //fLO

29



Laws for the geometry in question, and there are many ways to accomplish this.

Invariably, due to finite and discrete nature of computer computations, a CEM solver

will approximate the geometry of the original system and approximate the solution

space and/or the operators of Maxwell's Laws. Further classification of EM solvers

involves differences in the way the known and unknown quantities are "discretized" or

converted from continuous functions to the discrete representations that the computer

can work with.

Finite Diffilrencc letllod(s [1] discrctize the geometry of the structure with spaced

grid points that representing the field and source values at those positions. Grid points

must be positioned with regular spacing throughout the volume and surrounding

space. Finite Difference solvers approximate the differential operators of Maxwell's

Laws by computing finite differences using the grid point field quantities and the

corresponding grid point distances. The unknowns in a Finite Difference model are

grid point quantities (field or source, depending on the problem). The matrices in

the systems of equations generated by Finite Differences are very sparse, due to the

finite difference approximation of the derivatives, but the grid points must be very

finely spaced to achieve accuracy. The matrices are very large since unknown and

known quantities must be defined throughout the structure and surrounding volume.

Furthermore, since, the grid points do not necessarily coincide with boundaries, the

specification of boundary conditions can be complicated for Boundary Value Problems

(BVPs).

Finite Element Method (FEM) methods [32] place "elements" described by ver-

tices (points) throughout the volume of the geometry of the structure and surround-

ing space. but the points can be arbitrarily spaced. Instead of representing field and

source quantities at the points, the structure is discretized by the elements, composed

of a collections of points that forml a volumne. Thus, elemients can be defined so that

surface of the structure is fully represented the surfaces of elements that form the ex-

terior of the structure's volume, so FEM does not. share the difficulty modeling BVPs

with Finite Differences. For each element a 3-dimensional basis function is defined

that locally approximate field quantities inside the volume enclosed by the element's
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points. Thus. the basis fnction defined by an element is nonzero only within the

corresponding sub volume, and the weighted sum of all the elements approximates

the field and source quantities over the entire volume of the problem space. Note,

that, FEM rmethods approximate the known and unknown quantities. and FEMI model

unknowns are the weighting coefficients that correspond to the basis functions that

represent the unknown locally within each element. While FEM does not approximate

the differential operators, it satisfies them only in a :variational" sense, rather than

a pointwise sense [32]. Since the FEM system equations result from enforcing (vari-

ationally) a differential form of MNlaxwell's Laws over the volume enclosed by each of

the clemecnt basis functions, the matrices in the systems of equations are very sparse,

but also very large since unknown and( known quantities must be (lefined throughout

the structure and surrounding volume.

Boundary Element Methods (BESM) [3] require formulating MIaxwell's Laws in

integral form, and the resulting integral equations (IEs) are transformed into surface

integral equations (SIEs), either by application of Green's theorem or applying a

surface equivalence princip)le. The SIEs are discretized in similar fashion to FEM

except that, element vertex points are only defined on the surface of the structure,

and, therefore, elements are two-dimensional, defined on patches on the surface of

the structure. Higher order panels are possible, but triangular patches or panels

are cornnmmonly used for EM analysis, in wvhich the vertices are defined by three of

the surface grid points. Basis functions, each defined to be nonzero only on its

corresponding surface panel, are used to approximate the fields and sources locally

on the surface panels. Obviously, the weighted sum of all the basis functions will

approximate quantities over the surface of the entire structure. Clearly, SIEs are very

natural to mnodel BVP's. The matrices formed by BEMs for SIEs are very dense,

-but since knowns and unknowns are only defined on the surface of the structure, SIE

formulations can reduce the number of unknowns dramatically.

For many electromragnetic scattering problems, source electric currents produce

incident waves that travel, impinge, and scatter from the scattering object, b)ut the

sources themselves are very far away. For this research, we have selected a SIE
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formulation of Maxwell's Laws known as the Electric Field Integral Equation (EFIE)

[38, 39], and by using the BEM to discretize the EFIE will eliminate the need to

discretize the entire volume space of the problem. Since radars are often very far

from the scattering targets, this BEM approach will reduce the resulting model size

tremendously, as only the surface of the scattering target will need to be discretized,

and not all of the three-dimensional space between the radar and target.

2.3 Tailoring Equations for problems of interest

This section presents some of the basic theory and methodology for implementing the

EFIE. An excellent resource for a more in depth development of the EFIE and other

formulations is [28]. The rationale for choosing to iplement the EFIE was mainly for

simplicity and to save programming effort. Furthermore, SoB and SoP interconnect

and many EM scattering problems of interest involve analysis of "perfect electric

conductor" (p.e.c.) type structures, for which the EFIE is suitable.

As described in the literature [33], for certain problems, solutions to the EFIE

and Magnetic Field Integral Equation (MFIE) will not have unique solutions and the

resulting EM solver model matrices will approach singular at resonant frequencies.

The Combined Field Integral Equation (CFIE) formulation, combines the MFIE and

EFIE, preventing this problem, but our algorithms and results are tested on the

implemented EFIE solver. The reader can consult [33] and [28] to see that extending

the new algorithms developed in this research to 1\IFIE and CFIE implem-entations

would require only inimal modifications.

To study scattering due to incident wave excitation, it is helpful to separate the

fields outside the conductor into two components: the incident fields EINC and the

scattered fieldESC:

E(7r) = EI.VN + ES C, (2.7)

The gradients of electric scalar potential <I)E aridl magnetic scalar potential (IM are
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defined as follows:

-VIE('T) = ESC(T) + .wiLm0(T)- V x F(T) (2.8)

-V),,i( T= HSC() =+ iWCoF() - V x A(r), (2.9)

where A(j7) is the vector electric potential and F(T) is the vector magnetic potentil' ".

For our solver and the p.e.c. problems under consideration, the F(7) terms are

assumed to be zero.

By takinlg the curl of equation 2.9, the unknown electric vector potential is related

to the unknown current densities near the surface of the conductor by the inhorloge-

neous vector Helmlholtz equation:

V2 A(T) + k2 A(T) = -Js(r) (2.10)

By taking the divergence of equation 2.8, and applying the Lorentz gauge con-

ditions [22]. the unknown electric scalar potential is related to the unknown current

densities near the surface of the conductor by the inhomogeneous scalar Helmholtz

equation:

V bE(;r) k~ (EI(r)=- r (2.11)

.Note that the sources, surface charge ps(7) and surface current density Js(-r), are

surface quantities because we will use the EFIE to analyze p.e.c. structures for which

skin-depth is negligible. However, the Surface Equivalence Principle and Volumle

Equivalence Principle, discussed in [28], can be used to derive identical equations for

more general problems involving non-p.e.c structures, which mIay have significant skiln-

depths. but. in such cases, the surface quantities are fictitious "'equivalent" sources

used to simplify analysis by "homogenizing" the problem domain.

4 F(r) arises from employing Volume Equivalence principlies (see [28]) to silplify problems with
inhollogeneities by accounting for material properties with fictitious volume sources

5 This assllluptions is convenient to simplify implementattion of a ENI solver, butl using a MFIE or
C(FIE solver to exaine more general classes of EM analysis problems should not significantly alter
the new algorithms contributed by this dissertation
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2.4 Converting PDE's to Integral Equations

Currents only flow along the surface of perfect conductors. Green's functions derived

for the Helmholtz (homogeneous ODE) operators can be used to solve the vector

potential in terms of a Fredholm integral equation representing the convolution of

the Green's function and the unknown surface current, as shown:

A = J(r )G(r r)lS(r ). (2.12)

Green's functions derived for the Helmholtz (homogeneous ODE) operators can also

be used to solve the scalar potential in terms of a Fredholm integral equation repre-

sernting the convolution of the Green's function and the divergence unknown surface

current, as shown:

(2.13)(I(r) = fs Ps(')G(,' r )dS(') =f VIJs G( ')dS() (2.13)

in which current continuity is enforced to yield the 2nrd equivalence containing the

divergence of the surface current density as the unknown.

The Green's function for the Helmholtz equation 2.10 is

e-ik 'r- r ' II
GH(r, ')= ..... (2.14)

In the next section, boundary conditions will be applied to derive equations that carl

be used to solve for the unknown surface current densities induced by known incident

source fields.

2.4.1 Applying boundary conditions for perfect conductors

All magnetic and electric fields are zero within the volume of perfect conductors, as a

field in the interior would imply infinite current densities there. However, currents can

exist at the surface of conductors, described by the following boundary conditions:

T, X (EINC(r) + ESC(T)) sa+ = 0 (2.15)
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where S+ refers to points just exterior to the surface of tile conllductor. Substituting

integral equlations 2.12 and 2.13 to eliminate the scalar and vector potential terms

in equation 2.8 and using the result to replace the scattered Electric: Field Es in

equation 2.15 yields the electric field integral equation (EFIE):

T X EINC ( Y) := _ X (VV7'. J(f')G(r, r')dS(r') + k2 J(')G(, ')dS'))

(2.16)

which relates the unknown surface current density, Js, to the known incident excita-

tion, EI C (usually plane waves), evaluated at the surface. The EFIE is a Fredholm

IE of 1st kind. The EFIE 2.16 has a translationally invariant kernel (equation 2.14)

and can be considered a convolution. Although the EFIE is formulated specially for

the p.e.c. case, similar surface IE's can be developed for other scatterers through

application of the surface equivalence principle [28].

2.5 Discretization Techniques for Integral Equa-

tions

A computer cannot solve the Electric Field Integral Equation for the unknown surface

current density exactly because the surface current density is a continuous function

of position and its value at each position coordinate is unknown. Furthermore, the

known incident source wave is also continuous, since the EFIE can be evaluated at

any observation point. Therefore, the EFIE has an infinite number of unknowns and

represents an infinite number of equations. By employing a BEM-based discretiza-

tion procedure, the integral equations can be converted into a finite linear system

of equations which approximate (except at selected quadrature points where the ap-

proximation is exact) the original system.

With the Method of Moments (MoM) [19, 28, 27] discretization technique, a set of

)asis functions and a set of testing functions are selected to create an approximation

to the original EFIE. First a set of rnB basis functions are chosen to approximate the



desired unknown quantity:

J n= (2.17)
n=l

Due to the integrals, the nB current density coefficients become new unknowns that

approximate the unknown current, density function by saling the selected basis func-

tions. This approximation is substituted in the original equations to replace the

unknown current density. Second, nT = 1Bn testing functions are selected and used

to "test" the equations by taking the inner product of the mrth testing function J;,

with the approximate EFIE equations (integrating the approximate EFIE equations

multiplied by the testing function corresponding to the resulting rnth row of the

discretized, linear equations).

The resulting (rn. n) entry of the discrctized linear system from the two step

discretization process of basis function approximation and testing is

. fz(4) n x EINC(T)dS (2.18)
nB

Jis ½s' i. J t(~')f(B') VG(, Y')- + (s)2.f:( ) f,7 (r')G(, Y')(dS'dS,
n=l1

or in matrix notation: Z(s)J = EINC. Jn is the coefficient for the nth basis func-

tions, jfI and EINC are the inner product of the testing functions and the incident

excitation field vector. The testing functions, f, should be linearly independent and

the basis functions should be chosen such that the range space of the integral operator

for each basis function is linearly independent of that of the other basis functions,

so that a solution exists for the set of linear equations resulting from the method of

moments discretization, and is unique. The result is one equation relating the known

incident excitation field to the unknown basis function coefficients at all of the surface

points.

Approximating the unknown current density with the basis functions corresponds

to satisfying the approximate EFIE on the union of the sub-surfaces (panels), rather
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Discretization of Sphere:48 panels
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Figure 2-1: Discretization of a sphere is accomplished by introduction of basis func-
tions each supported (non-zero) on a small surface patch that approximates a corre-
sponding portion of the original geometry and zero everywhere else. The EFIE-based
solver used in this research approximates the surface of the geometry (a sphere in
this case) with the triangular panels. The figure shows the manner in which a sphere
might be discretizedl using basis functions supported on flat triangular panels, which
define regions of support associated with each of the basis functions. Panel vertices
are loc ated on the original surface and the triangular panels approximate the portions
of the original sphere to which each corresponds. Each of the basis functions that are
used to approximate the unknown current density is supported on the two triangular
patches or fiat panels corresponding to a single edge and zero everywhere else. The
EFIE-based solver computes both the original EFIE integration and the testing inte-
gration (that is required to discretize the original EFIE) over the approximate surface
reprented by the union of the triangular panels.
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than enforcing the EFIE on the exact surface of the original geometry. Employing

the testing process to discretize the EFIE forces the EFIE to be satisfied in some sort

of "average" sense over each of the approximate sub-surfaces (panels), rather than at

each point.

There are other ways to accomplish discretization. For example, It is possible to

choose high order functions, supported over the entire surface, for testing and basis

functions. However, for an arbitrary geomctry, it would be difficult to construct these

function sets to meet all the conditions and with sufficient span of the domain and

range space to approximate the unknown or known quantities effectively (as hard

as solving the original problem analytically). By breaking the arbitrary geometry

into very small, similar subsections as shown for a sphere example in figure 2-1, it

becomes feasible to consider constructing a function that is a linear combination of

lower order functions each with closed support on individual panels to approximate

the known and unknown quantity on each subsection of the geometry and satisfy the

governing equations and conditions. Intuitively, it seems if panels are selected to have

a, sufficiently small diameter relative to both the wavelength and the feature size, then

the unknown (current) and known incident field might be smooth enough over the

dimensions of one panel to be approximated by a lower order functions.

Why is the testing step necessary? To solve for the unknowns it is necessary to

have one equation for each unknown, but in this case, after substituting the current

density approximation (equation 2.17) into the EFIE, there is a different linear

equation for every surface point, and thus, an infinite number of equations relating

the nB unknowns, or the system is still over-determined. One specific example of

the "testing" step is to partition the surface into B roughly equal sized panels6 and

choose an evaluation point at the centroid of each panel, forcing the equations to be

exact at those " testing" points. This is the equivalent of choosing the testing functions

to be nB delta functions, centered at the selected surface panel centroid points, and

integrating the product of each delta function with the terms in the approximated

6 A panel can he described as a closed sets of surface coordinate points where the panel point set
is pathwise and simply connlected, meaning that a panel is not actually multiple separate regions of
the surface and that there are no holes in the panel. respectively.
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(by basis functions) IE7 over the surface.

If the te sting functions and basis functions are the same, .£, = fr = f, the

discretization procedure is a Galerkin procedure. If each testing function has close

support on different subsections of the geometry. then the discretization process is

called the IMethod of Moments. Often, the testing and basis functions are not or-

thogonal sets. For example, while delta and pulse (constant panel) testing functions

are orthogonal, linear and higher order testing finctions often are not. If the testing

functions are orthogonal, then discretizing the IE's in this manner forces the residual

(difference between the exact and approximate tangent incident excitation fields) to

be orthogonal to each of the testing functions, which will project the range space (the

known incident field for the given EM scattering problems) to the closest fulnction in

the span of the testing basis set.

What constraints affect the selection [28] of the basis functions and testing func-

tions? The basis functions are selected to span the domain space (possible current

densities) of tl: integral equation within some given tolerance of the error norm. The

basis and testing functions are chosen to satisfy conditions imposed by the governing

ODE arnd boundary conditions and required "smoothness". These fiunctions lnust be

selected such that the resulting matrix equation has a solution. For example, if both

basis and testing functions are the delta, (impulse) function, centered at each panel,

then the diagonal ternms of the discretized system matrix, representing the self-panel

contributions to the current density, will be infinite due to the singularity of the

lelrnholtz ( 2.14) and Laplace Green's functions used in the integral equations. and

t,he system wouldn't have a solution. Using step basis functions, each supported on

a single panel and zero elsewhere, helps eliminate the singularity problem, and linear

basis functions would improve accuracy even further since they offer a higher order

approximation.

Many formulations require derivatives of vector potentials and thus of the Green's

function. The inner product of the testing function with the Green's function and

7 EFIE 2.191 or MFIE with surfiace clrrent density approximated by linear combination of the
chosen vector basis functions .1s(7) l- .Jj()
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the original integral of the surface current density and the Green's function are each

convolutions. The convolution operations commute with the derivatives such that

one would expect each derivative order to increase the required "combined" order of

the basis and testing functions by one. For example, 1st order derivatives of a, pulse

(constant panel) basis function would produce a delta function which combined with

delta functions might produce problems as discussed earlier. Thus, to choose basis

and testing functions it is necessary to take into account the details of the governing

equations and boundary conditions.

2.5.1 Basis and Testing Functions for EM scattering

For this problem, the EFIE will be used to solve for the scattered fields (induced cur-

rent density) due to an incident source field. The EFIE has a second order derivative

(from gradient and divergence operators) and thus will require at least linear basis

functions and pulse testing functions (or vice versa). To gain the advantages of a,

Galerkin MoM procedure (symmetry) and to improve accuracy even further, we will

choose both the testing and basis functions to be linear. The first step in discretiza-

tion of the IE is to utilize a linear combination of the basis functions to approximate

the unknown quantity. For EM scattering, the unknown is the current density on the

surface due to the incident source fields. It is approximated:

'nB

Js('7) ,JlJf ,(T) (2.19)
n=l

where f is the basis function, such that the unknown of the new, approximate

integral equation are the coefficients Jn,.

The RWG basis/testing functions [38] have many properties that are appropriate

to approximate the current density on the surface of a scatterer. Each RWVG function

is associated with an edge between two panels and models the current in the panel

that crosses that edge:
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Panel T-n with area A-n

Edge n

jY - Point r

Panel T+n with area A+

Figure 2-2: Each RWG basis function fWI"G(T) is associated is associated with an
edge n1 and the edge's two associated panels T,- and T + .

( T- r;), r CT,+
f'V .a,, (2.20)

2A (7., --) p ( c T,7

where T is the + panel (triangle) and Tpael ( tria- panel (triangle) associated with

the nth edge (and the RWG basis function, .fw, at that edge). 1, is the length of

the nth edge, A+ is the area of the + panel associated with the nth edge, A- is the

area of the - panel associated with the nth edge, r+ is the vertex, opposite to edge

n, of the + panllel, and r is the vertex, opposite to edge r, of the - panel. These

quantities are illustrated in figure 2-2.

The RWG function is always tangential to the discretized surface (panels), an ap-

propriate property for approximating a surface quantity. At all edges on the boundary

of the panel pir, the normal component (perpendicular to edges) of the function is

zero, and the normal component of the RWG function is always constant with respect

to position along the edge shared between the panels and is continuous, implyiIng no

charge density can accumulate at panel edges since there are no jumps allowed in nor-

mral current across any edge, as expected for continuity of current. The RMWG function
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has enough flexibility to model a variety of simple current flows. For example, it is

easy to show how to combine the three basis functions of any panel to produce a

constant current flow of any magnitude and any direction across the panel. Since it

has a variety of usefil properties for solving EM scattering problems, the RWG basis

function will be used in this formulation.

The final step in discretization of the IE's is to "test" the IE with the testing (same

as basis functions for Galerkin procedures) function or integrate each basis function

with the terms on both sides of the IE, producing another linear equation for each

testing function. This results in a linear system of equations where the unknowns in

each equation are the coefficients introduced by the basis function approximation to

the current density. Following these steps, the fully discretized form of the EFIE is

E= f f(7) EI() J f(E) (V ()+ iwAA(r))dS(). (2.21)

where A is the approximate 8 electric scalar potential, A. 4 is the approximate electric

vector potential, and f () is a vector of all the testing functions evaluated 9 at :

f(r)= j'7(r) . (2.22)

Using a single-point quadrature approximation scheme for the testing integral, we

obtain

Ern = frn(T-rn±) EIVC(r.r±)
T,n+ :, -

Z,, J7;~ V fm(f)I, j--A('.- n±) - iwf('rm). AA(T'.-)dS

8 The ::A" subscript indicates approximation of the unknown current densities by a weighted sum
of basis functions.

9Only the three RWG testing function associated with the three edges of the panel, containing a
selected surface point, will be non-zero at the selected point
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E 1 2A rr± (.rn± ) + it m7±( ) 4(T)d

T71 +,T?-

S (±I,)4)A(.r,,rn±) + f,(.) A,(,w.;.,)
Tm +, Tn-

where r.rn,,± is the centroid ( signifies a panel centroid) of the ± panel associated

with the rnth edge, and, after substituting for IA(',) and AA(7),

E, = in 
n= 1 Trn+ Tm-

T =- I

i, 
Tt,,T-rn

s - V' .fr,(r')G(. rr') + iW/f,('r:.±) fn()G('r.,, T')dS'

I;'( ,wc 1 )) G('trn±, 1) - i,fn(?.mt)

Using a nx? point quadrature rule to perform the inner surface integration, one

obtains the rmth row of the discretized EFIE,

== (.;n, EINC) = E
nQ

, JnE ZQj E
j=1 T,,, +, T,,, _

-- ilfrrL ('.7 i) .-f(rQj ) G(7 .,ri, Qj)]

[( iA± ) ( rC( L±, i, 7Qj )

(2.25)

which relate the unknown J coefficients to the tested incident source field.

2.5.2 EM Scattering Model for a target

Equation 2.25 was generated from applying discretization procedures described earlier

to the EFIE. If equation 2.25 is written in matrix form; the result is a frequency

domain model:

[splA(s)+ (s)]J
SE(

=> Z(s)J

= E(s)

= [((s)2A(s) + 'P(s)]J = .s( (E(s)

y = Sco][C(s)]TZ(s )- [E(s) ]
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In Equation 2.26, s is the Laplace frequency variable, co is the speed of light,

i = /-- k is spatial frequency, s = s/co, A is a matrix that specifies contribution

from the discretization of the IE term corresponding to the electric vector potential,

branch resistances, · is a matrix that specifies contribution from the discretization

of thile IE term corresponding to the gradient of the electric scalar potential, J are the

current coefficients for the RWVG basis functions approximating the current density,

E is the contribution of the tested source incident, field, and y is the desired output

scattered field at a selected observation point.

2.5.3 Impedance Model for SoB or SoP Interconnect

Maxwell's Laws can also be formulated into integral equations that relate mesh cur-

rents and voltages on SoB and SoP interconnect structures. In order to analyze the

impedance of the iterconnect structures, the FastPep tool employs a formlulation

based on a set of mixed volume and surface integral equations that enforce Maxwell's

Laws on the surface and in the volume of the interconnect structures. FastPep has

been modified to capture full-wave effects.

FastPep approximates currents flowing in the volume of the interconnect using

constant filament basis functions, each of which approximates the current flow through

the small cylindrical portion (filament) of the volume in which the basis function

is supported (nonzero). The filament basis functions have constant nonzero value

only in the filament to which they correspond. FastPep approximates currents and

charges on the surface of the interconnect using constant, valued surface panel basis

functions. Figure 1-3 illustrates an interconnect structure that has been discretized

with filaments and panels, but only the surface panels are visible. The basis functions

have a constant value on the small patch (or triangular panel in our implementation)

of the surface to which the basis fiunction corresponds and is supported, having zero

values at every other portion of the surface and volume. FastPep employs Galerkin

procedures to discretize ° the IEs, and so the testing functions are chosen to be the

1 0Althoulgh the constant valle(l basis functions are different from the RWG basis fnti-ons sed
to discretize the EFIE for EM scattering problems, the basis steps in discretization are virtually
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Figure 2-3: Interconnect: This figure is borrowed with permission from Michael Chou

same basis functions.

Following the steps outlined above, our modified version of FastPep generates a

Partial Element Equivalent Circuit (PEEC) Model [20] of the system. Applying

Kirchoff's current law (KCL) and Kirchoff's voltage law to each of the resulting loops

that involve the filaments and/or panels a mesh formulation for the original system

can be derivecl which relates the mesh currents to the mesh voltage:

Z(s) J = B (2.27)

y = BTZ(s)- lB

Z() R + sL(s) M M T

0 PC)

In equation 2.28 each element of the matrix P(s) corresponds to the full-wave scalar

potential interactions between a particular pair of surface panels on the interconnect,

.s is the Lal)lace frequency variable, M computes loop voltages from branch. Ml '

identical to those described earlier in sections 2.5 and 2.5.1.
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computes branch currents from loop currents, R specifies branchl l resistances, L(s)

specifies branch inductances, P(s) relates the branch voltages to branch charge, J

are the mesh loop currents, B is the source voltage, which is zero everywhere except

at the specified source panel (in our implementation), and y is the desired output

current at that same panel.

2.6 Sparsification techniques for rapid system solves

2.6.1 Motivation

The linear systems (2.26) and (2.28) comprise of dense matrices A(s) and b(s) that

approximate the frequency domain behavior of the original system. For complicated

EM structures, the dimension 12, nE, of a discretized model that would be required

to accurately approximate the actual structure behavior frequently reach 0(10 ' ) and

even 0(106). Thus, if nE > 105 or 106 and the iterative solver costs O(n2) opera-

tions, then the cost of solving for the unknown current density of the system at just

a single frequency point would be greater than 0(1010) or even 0(1012) operations!

Thus, the scattering or impedance mnodel's computational complexity would preclude

rapid simulation using traditional iterative solution methods due to the infeasible

operation counts.

The nE linear equations with nE unknowns representing the model 2.26 or the

model 2.28 can be solved using iterative techniques, which require 0(n2) multiplica-

tions and additions. These iterative techniques solve the system by repeated matrix-

vector products with the system matrix. Every basis function interacts with every

other basis function, so the matrix vector multiply must reflect every such opera-

tion. The interactions which must be computed for just one edge are illustrated in

Figure 2-4 for an edge on panel 1.

llSince Fast-Pep is a hybrid mesh formulation, involving filaments, entries of Z(s), R, and L(s)
do not correspond to pairs of panels.

'12nE orresponds to i he number of elenlents in the unknown vector of basis-function coefficients
(current (lensity coefficients for the edges or mesh current coefficients for the filaments and panels)
for the discretized models represented by equations (2.26) or (2.28)
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Figure 2-4: The arrows in this diagram of a five panel system represent the interactions
associated Awith just one of the aIIls. Each f tels. Eac h of te 5 panels has a similar diagram of
interactions. The matrix-vector product in equation 2.26 computes scattered electric
field due to induced current sources. This computation requires O(I 2) operations,
because each edge current basis function interacts with every other edge current
basis function. Thus, since each edge basis function is only non-zero oii that edge's
associated panels, solving the matrix vector product involves coml)uting interactions
(nurnerical quadratures) between each possible pair of panels.

To permit simulation, Electromagnetic scattering analysis solvers and Impedance

extraction tools for Interconnect analysis, dramatically accelerate solution of the dis-

cretized linear system by employing '"sparsification"' algorithms in unison with it-

erative mnethods [40]. Since these sparsification algorithms require significantly less

than O(n,2 ) operations to compute approximate matrix vector products, the result

of using iterative methods based on these sparsification algorithms yields very fast

solvers (matrix vector products for many problems require roughly O(7tE) operations

to compute)!

2.6.2 Basics of Sparsification

Since iterative methods solve a system of equations, Z(s)J = E(s), by computing

repeated matrix vector products involving the system matrix, Z(s), these methods

do not explicitly require the system matrix itself, and reqluire only the result of nmul-

tiplying Z(s) with a vector. Thus, if one could rapidly conpute an approximation
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to the desired matrix vector products, the system of equations Z(.s)J = E(s) could

be rapidly solved, but Z(s) would never actually need to be generated. For certain

kinds of problems, this basic idea can be utilized to accelerate computations, by ap-

plying one of several alternative sparsification" techniques, which compute sparse

nearby interactions directly, but approximate the far-away interactions in order to

reduce operations. These methods can reduce the number of operations required for

a matrix vector product from O(n 2 ) to almost O(IE).

Sparsification methods rely on the same key ideas to accelerate matrix vector

products used to solve the system ZJ = b. The system matrix is decomposed into

"nearby" and "far-away" terms. The entries are classified by the interaction distances

between the panels (or edges) to which those entries of the matrix correspond. In

this manner the original matrix is decomposed into two matrices:

ZJ [ZN + ZF]J = b. (2.28)

The matrix representing the nearby interactions, ZN is very sparse such that ZNJ

requires O(nFE) operations. Under closer examination, the matrix vector product ZFJ

has the form:

rE

E G(I| - .In|) J(.z) = b(x-r ,), (2.29)
,n=O

which is a discrete convolution. With minor variations, the key idea behind the

various sparsification techniques is to approximate the kernel G(llr -xII) for distant

interactions with a degenerate kernel, for example: G(llx, - nf11) G1(,,)G2(),

resulting in a separable summation:

nE

ZmJ,,d - b

c(lXm-X1nll)

· · 4 (2.30)
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n=O

(2.31)

which essentially diagonalizes the terms corresponding to the matrix ZF and requires

O(nE) operations to compute, such that the overall approximation to ZJ = b is

O(nE) instead of O(nE)!

For example, the Precorrected Fast Fourier Transform (PFFT) algorithm, which

will be described in detail later. essentially transforms the convolution into a de-

generate kernel' approximation to the original for the computation of ":far away"

interactions. Using the Discrete Fourier Transform (DFT), the PFFT separates the

in-index terms from the n-index terms so that the Green's function evaluation is just

over the .

n-indexed term r-indexed term
7G-1 nG-1 i2p nG-1 i2rrp i2

f' 1 [(JG{)(FJ)] = I Y CG(tL)e G ,-CG E J(x ) ?G , c (2.32)
p=O 71=0 nL=0

but the benefit of this DFT-based transformation seems questionable because the

result is two functions that are both nG summations of nc terms (ncG V nE), as is

the outer inverse DFT. The resulting summnlations would require a greater number

of operations than the original convolution computation. However, the advantage is

c(learer whenl one considers that the Fast Fourier Transform (FFT) algorithm performs

each DFT in nc log(rc) operations and the element-wise multiplication of the two

nc-length vectors (G)(.FJ) requires just O(rnc) operations, such that the result of

the PFFT sparsification is a matrix vector prodluct which requires only O(rnE log 1E)

operations, huge savings relative to O(n-) required for the original convolution!

2.6.3 Choosing between two Sparsification Methods

For electromagnetic computations the Fast Multipole (FMM) [8]. Multilevel Fast MIIl-

tipole Inethod (MFMM) [43, 4] and Precorrectted Fast Fourier Transform (PFFT)
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[36, 37, 46] are popular methods for accelerating the matrix-vector product from

discretized integral equations with Helmholtz or Laplace kernels. FMM reduces com-

putations to O(n ,- 5 ), MFMM (improvement on FMM) can reduce the computation

to O(nE log(nE)) operations for sparse scatterers or O(nE) operations for dense scat-

terers, and PFFT can reduce the computation to O(11E log(n.E)) operations. PFFT's

performance is somewhat, dependent on geometrical considerations because it per-

forms less well on very inhomogeneous geometries with higher ratios of volume to

surface grid pointsl 3. For most problems, the PFFT algorithm is faster because of a

high constant factor associated with MFMM cost 4 . For this research, the PFFT algo-

rithm will be used because the PFFT acceleration method is essentially independent

of the IE kernel or Green's function 15, making the PFFT method more amenable to

mnodifications required to implement model order reduction. The fundamentals of the

Precorrected Fast Fourier Transform (PFFT) [36] algorithm, are reviewed next.

2.6.4 Basics of the Precorrected Fast Fourier Transform Al-

gorithm

The EFIE ( 2.16) is a Fredholmn IE of first kind with a translationally invariant kernel.

It is the sum of two terms, one corresponding to the vector potential and the other

corresponding to the gradient of the scalar potential. Each of the terms in the IE

has the form of a convolution between the Helrnmholtz Green's function and another

function, which is the current density for the vector potential term and the gradient

of the divergence of the current density for the scalar potential term. For example,

the vector potential term in the IE is:

A() - Js(T')G(I[ - ' j)dS(T'), (2.33)

l3grid points ill a cell through which a surface passes are surface grid points while volume grid
points are grid points in cells which contain no surfaces

14the crossover point where log(nEE) is greater than the MFMM factor requires a panel collnt, rIE,
not usually approached in typical problems

1'as opposed to the FMM and MFMM algorithms which are highly dependent on the specific
Green's finction being used
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which is a1 convolution.

Thus, the discretized EFIE 2.26, Z(s)J E(s), has the form of a discrete convo-

lution. The discrete convolutions are quite expensive since each involves computing

several operations for each observation and source point pair. Convolving two func-

tions at nE, discrete points requires O(n2 ) operations. However. Fourier Transform

theory suggests an idea to improve the situation: if the interacting observation and

source points were regularly spaced points, then the Fast Fourier Transform algorithm

could compute the discrete convolution in 0(T7E log(rns)) operations1 6 . Therefore, ill

order to take advalltage of the efficient, FFT algorithm to compute tile otherwise

time-consuming convolution, the PFFT employs a grid approximation to the original

current density coefficients. The grid currents are computed to approximlately induce

the samne far field effects as the original surface current densities.

Thus, the PFFT algorithm uses a grid approximation of the original current den-

sity coefficients in order to take advantage of the rapid FFT algorithm. In the first

step of this algorithm, the current densities are projected to grid point currents on

a regularly spaced grid. The projection operator use polynomial interpolation func-

tions to corlpute grid point current values that would b)e equilvalent17 to the original

lpanel current density coefficients uwith respect to computation of a electric field at

preselectcd far-away observation points.

The observations from the previous paragraphs motivate the main ideas behind the

Precorrected Fast Fourier Transform algorithm [36]. Figure 2-5 illustrates the basic

steps of the PFFT algorithm when applied to comrnpute the convolution described

by the integral equation 2.26 for a 2-D example. First, panels charge densities are

projected to the regularly spaced gridpoints of the grid cell containing the panel.

Then -the grid point charges are convolved with the Green's function via the FFT

and IFFT in O(nrlog(nGc)) operations to compute the potential at all grid points.

Finally, the grid point potentials are interpolated back to panel quadrature points.

16Convolution on a regularly spaced grid is equivalent to computing the inverse Discrete Fourier
Transform (D:FT) of the product of the individual DFT's of the functions to be convolved and this
task can be compu)1lted very efficiently in O(nc log(nlc)) operations using the Fast Fourier Transform
(FFT), where 'nc; is the number of grid points, and O(nc) = O(nE) for most problems.

17within pre-selected accuracy threshold
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FFT

Project J-JG Interpolate EG - E

Figure 2-5: 2-D illustration of basic steps of Precorrected Fast Fourier Transform
Algorithm: project panel quantities to regularly spaced grid points, compute incident
Electric field at grid points via, FFT, interpolate grid fields to compute approximate
panel incident Electric fields.

In the PFFT algorithm, there is an additional step required to compute the matrix-

vector product accurately: Grid point source values, computed by projecting panel

source values, can represent the original source functions accurately for "far away"

points in the convolution, but the interactions between nearby points in the convolu-

tion need to be solved exactly. Thus, the portions of the tested electric field, which is

interpolated from the grid and represents contributions from "nearby" source panels,

is subtracted fromn each panel's tested-electric field total, and the exact contribution

due to interaction of the nearby panels is computed(l directly. The step of removing

the inaccurate grid "nearby" contribution and replacing it with directly computed

results is called "precorrection".

Sinlce this presentatioIl aims to provide just an overview of the PFFT that is

sufficient to understand the research contributions of this dissertation, a number of

implenlentation details have been omitted for the purpose of clarity and brevity. The

details of the PFFT algorithm, including constructing the grid, partitioning grid-

points into cells, assigning panels to cells, and much more can be explored by further
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Figure 2-6: Projection involves calculating the current density at grid points,
rG1,..., of cell that would induce the same electric field, at a distant arbi-
trary point, as would be induced by the current densities at points -' of the panels in
that cell.

reading in 136, 37, 46]. Throughout the following sections, the details of numerical

integration and how the PFFT is incorporated with discretization are omitted. Note

that the following sections show how PFFT can accelerate a discrete convolution

between the Green's function and the current density coefficients, suppressing the

weights associated with each element of the system matrix that result from computing

the two integrations involving the Green's function (which PFFT approximates with

the projection and interpolation polynomials) and the basis and testing functions.

2.6.5 The PFFT Projection operation

'The discretized EFIE described in equation 2.25 and equation 2.26 requires current

density values and evaluation of the Green's fiunctions at the panel quadrature points.

In order to take advantage of the FFT algorithm, it is necessary to project source

quantities (current density) from panels to evenly spaced grid points, as illustrated

in figure 2-6. This subsection outlines the steps to construct a operator based on

polynomials to accomplish this projection, as demonstrated in [46].

Thic function -k[- is smooth away from the origin and has continuous derivatives
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up to any order away from the origin. Therefore, it is reasonable to approximate

the Helmholtz Green's function GH(r,') -, as a linear- combination of

polynomials, p ,,,(i', ) for far-away interactions:

no

G H ( 7 , T s(7 ()r TP ) = f ( r .~r 34)

where ni is the order of the polynomial approximation ad ,,(7) is the weighting

coefficient corresponding to the m-th polynomial.

By hypothesizing an electric field at an arbitrary distant observation point, 7, the

polynomial approximation can be utilized to facilitate projection of current densities

on panels to "equivalent" currents at grid points. Although the electric field, E, is

a sum of two terms18, for simplicity of notation, the following section considers the

system matrix as a set of Green's function evaluations and ignores the two weighting

factors at each element that results from integration and discretization of the two

terms of the EFIE to demonstrate projection for the grid current coefficients, without

loss of generality . Thus, at the observation point '7 the -th component of electric

field E(T). induced by the c'-th component of a source current density, J,(-'), at

point r' is:

Et() = GH(,Y ')J,((r' ) ()rp( ) (2.35)

To "unclutter" notation, from this point on, during this discussion, the index of

the electric field E and current density J will be suppressed and it will be assumed

the variables refer to a single component of those quantities. Figure 2-7 illustrates

equation 2.35 for a single panel containing a source point 7' within a cell composed

of four grid points, rI, ... , rG4.

For nc panels contained in a "cell" of grid points the electric field (component)

at an observation point far-away is:

18EFIE 2.26 has two terms: first corresponds to vector l)otential and second corresponds to gra-
dient of the scalar potential
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Figure 2-7: This figure illustrates the electric field at that is induced by the current
density at p)oint r' of panel within a cell defined by the grid points, TrC . . ., r'G4

E(7r)= [PC(I)]T J ?

Js p1 (7' T )fi (')dS'

Is, P2 (P' ) f (')dS'

Is, P2('', r) f,(T')dS'

.J, p (T', T).f,, (')dS'

" .rs, , (P', rT)fi (T')dS'

... S f p,, (; ',7) f2 (7')dS'

' is Pt,,, (', T) fc (')dS'

in which the integrals are the same inner integral in equation 2.24 and are computed

by quadrature (as shown in equation 2.25) and the Green's function in the integrand

of (2.24) is approximated by the weighted sum of the projection polynomnials p,,.

If the same electric field were induced at T by a set of nG grid points, comprising

the cell C, one could write:

ncl ( n G

Ec(r'r): CGH(,T r cI)J(l) ) E (p(T)) p(rG, )J(T)i= [PGc(p)]TJ.
1--1 1=1

(2.37)
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Figure 2-8: This figure illustrates the electric field at r that is induced by the grid

currents at grid points, rG_, r,. r4, of the cell (containing the panel with current

densities that are to be projected).

where

P (rG1 ) P2 (TGI ) ... Pr (G)

p1(rG2) )2(rTG2) ... Pn(TG2)

P1 (rGn h) 2 (r G(LC ) ... Pn 1(TGr C,)

and the shared T dependency has been suppressed in the polynomials, pm(rc,n', ), to

reduce notation. Equation 2.37 is illustrated in figure 2-8

Therefore, the two expressions for the electric field Ec() that is induced at the

distant point r by the currents contained in the cell, can be equated, and a expression

for the grid current density JG "projected" from the panel current density Jc in the

cell can be derived:

[PG(()] JG = [P(f):(7()]T Jc (2.38)

_p() Tp TJG = (P( ) P( I )TJC

= JG = PG- TP(r ') Jc,

W
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which supplies the formula for a projection operator W that. maps palel current

densities in a cell to equivalent 9 grid point currents for the grid points associated

with that cell.. hle projection operation is carried out for each cell, and thus all the

panels and gridpoints, in the grid. Note that PG can be the same for every cell, if it

is comnputed using local coordinates, but to allow this, p(rc-,, 7) must be converted

to local coordinates.

2.6.6 Discrete Convolution via FFT operations for the EFIE

Once current density and required derivatives of the current density have been pro-

jected from. panel quantities to grid quantities, the grid electric field cornponlents

are computed by convolving the Helmholtz Green's function with the grid current

quantities. Although the electric field, E, is a sun of two term, for simplicity of no-

tation , the following section considers the system matrix as a set of Green's function

evaluations and ignores the two weighting factors at each element that results from in-

tegration and discrctization of the two terms of the EFIE to dermonstrate FFT-based

(convolution bIctw(een the grid current aI)pl)oxinmation to the pancl c(urrent e()(fficient

and the Green's function (evaluated at grid points), without loss of generality. Thus,

the discrete convolution has the form:

EG GGJG, (2.39)

where GG is the Green's function relating current density to vector potential via 3-D

convolution with discrete grid point values,

GG =

G(rG- 1 -rG1) G(rcG - TG2) ... G(G1 - TcGn)

G(rG2 - 'rl) G(rG2 - 1rG2) '. G(r 2 - rGnc)

G(7,'c - 'Cl) G(7T.rc71 -'-G2) ... G(rc1 --'G7().

(2.40)
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Because the points 'rcI are all on a regular 3-dimensional grid, it is clear that

GG is just a 3-dimensional convolution of discrete functions evaluated at gridpoints

equally spaced within each dimension. Thus, from , we obtain

lG r ,'lGv ,?lGzI ,G ,n:- 1G

EG[(,;3 LSy] = E 9G[C - I, /3-On, [an 1, 13-.n n] JG [1, (.41)
1,rn,-=1

where gG is a function of discrete (integer) argulnents, formed fromn GG by dividing

the argument variable in each dimension by the grid spacing to obtain the integer

values ( = , = h, = yh), where h is the grid spacing). Similarly, the current

density is transformed to a function of discrete arguments as well. By applying the

Discrete Fourier Transform (DFT, Y) in each of the three dimensions, we obtain

EG[K, V ] = 9G[, VI ]JG , , V], (2.42)

for I = 1,...,c, r = 1,..., nGy, and v = 1..., nz, which is a element by element

multiplication of two arrays with n elements, rather than the O( G) operations

required for the original convolution.

The inverse Fast Fourier Transform (IFFT) operation produces the original desired

result for 2.39, replacing the convolution with two FFTs () and one IFFT (- 1) .

EG[I, m, n7] = F-(!gG[, n. v]JG[< , VI), (2.43)

for a total cost of O(nG + 3 nG log(n)) , still significantly less (for large nG) than

O(rng), required to perform convolution20 .

2.6.7 The PFFT Interpolation operation

In order to take advantage of the FFT algorithm, it is necessary to interpolate induced

quantities (electric field) from the evenly spaced grid points back to the panels, as

illustrated in figure 2-9. This subsection outlines the steps to construct a operator

based on polynomials to accomplish this interpolation, as demonstrated in [46]. As

2 0Note that in equation 2.43, the 3-dimensional grid is easily 're-indexed' or reshaped to form
the original 1-dimensional vector of Gc elements.
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Figure 2-9: Interpolation involves calculating an electric field at the panels in a cell
that is approximately equivalent to the computed electric field at the grid points,
rGl. . ., r G l, of the cell in the sense that each of these electric fields would be induced
by the same distant source charge located at an arbitrary point 7.

before: for simplicity of notation , the following section considers the system matrix

as a set of Green's function evaluations and ignores the two weighting factors at each

element that results from integration and discretization of the two terms of the EFIE

to demonstrate interpolation from the grid electric field approximation to the induced

fields on the panel, without loss of generality.

Using the same approximation 2.34 to the Helmholtz Green's function, a formula

can be derived for the interpolation operator. At an observation point 7 the electric

field. E(T), induced by the source current density, J(r'), at some arbitrary source

point r' is:

E(r') = GH(r', )J(7r) ( pT , ) r(r) (2.44)

Equation 2.44 is illustrated in figure 2-10 for a point ' on a single panel in a cell

defined by four grid points, -cl... , 7 G4

If there are multiple panels and multiple evaluation (quadrature) points on each
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Figure 2-10: This figure illustrates the electric field at Y that is induced by the current
density of panel within a cell defined by the grid points, rGi,..., rl.

of the panels in a cell C, equation 2.44 can be extended to:

GH(7, ?C1)

GH (r, TC2)

GH(, rTC)GH(7?. r-c,)

J(T) PCv(f)J(r), (2.45)

The key step is to deriving the interpolation operator is to realize that the Green's

function is symmetric, and therefore, the polynomial coefficients and polynomials

themselves can be "reused" for interpolation as well as projection.

As illustrated in figure 2-11 the electric field induced at the grid points due to the

same current at an arbitrary observation point, r can be written

EG =

GH (, TG1)

GH(, rG2)

G (, G7.G-)

J(7) PGv(v) J(7), (2.46)

and the cell panel electric fields Ec can be "interpolated" from the grid electric fields
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(r, G2) J( )

(r r@.J 

'G4 r G3

Figure 2-11: This figlre illustrates the electric field at the grid points, r,..., rG.4
defining a cell C, that is induced by the current density at a distant arbitrary point
r.

EG by eliminating the common term i()J('7) in equations 2.45 and 2.46:

Ec = PCPG-1 EG, (2.47)

W '

where W T . the interpolation operator that accomplishes the desired feat illustrated

by figure 2-9, is just the transpose of the projection operator W.

2.6.8 The PFFT Precorrection step

The goal of this FFT-based method is to accelerate the matrix-vector product required

for iterative solution of the discretized EFIE scattering system. While much more

efficient to compute (rather than convolution), this "FFT-grid" approximation to the

original discretized systemn (equation 2.26) has a serious deficiency. The contribution

of nearby gridpoints. including gridpoints in that cell and neighboring cells, is very

inaccurate due to the singularity of the Green's function. Furthermore. this nearby

contribution is also much larger than the more accurate contribution of all the far-

away grid points. Thus, the "FFT-grid" algorithm, described up to this point, would
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seem to perform the worst on the rmost important corrmputations. As a result, the final

step of the PFFT algorithm is to "precorrect" the result for nearby panels. The grid

contribution from all edge currents in nearby cells is removed for each edge result.,

and the interaction of all edges is computed "exactly" by equation 2.25 for each cell

and its adjacent eight neighboring cells. The nearby "grid contribution" to the tested

scattered field is

(E(7), fo(7)) WocGGWsCJ, (2.48)

where J is the coefficient of the source current basis function (in cell c), ,fo is the RWG

basis function associated with observation edge o (in cell c), Wo, is the interpolation

from the cell c to observation edge o W,, is the projection ref operator from edge s

to cell c, and GG, is the convolution operator between grid points in cell c.

Basically, equation 2.48 represents the (poorly approximated) FFT-grid contribu-

tion of the nearby source s to the scattered field at nearby observation edge o. This

quantity can be computed for the interactions between each source edge s in cell c and

its adjacent eight cells and each observation edge o in cell c. Performing this step for

all cells will account for all nearby interaction contributions to the scattered field and

we can construct a vector of these inaccurate grid contributions, using the matrix 21

NG, which is subtracted from the results in equation 2.48, leaving only the more

accurate contributions of grid-approximated far-away source edges. Note that for

just the nearby interactions, convolution may be preferred to compute equation 2.48

instead of three FFTs if the number of points is small enough to save operations.

Filially, the contributions of nearby interactions are accounted for by the matrix2 2

NEX and these contributions are added back into equation 2.48, giving us a far

more accurate resulting equation for computing the scattered field due to the induced

source currents,

2 1The symbol N is chosen to signify that the matrix corresponds to "nearby" interactions, and
the G subscript denotes "grid" quantities

22The symbol N is chosen to signify that the matrix corresponds to "nearby" interactions. and
the EX subscript denotes quantities that are coomputed "exactly' or directly from the corresponding
entries in the appropriate matrix in the EFIE (equation 2.25)
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f(r)

(E(r), ) ) W'GGWJ- WTF' (diag(pFG)JG) + NG + NEX. (2.49)

.frL(l (r)

Careful thought about the precorrection suggests that its cost does not eliminate

the advantages of utilizing the FFT to compute the approximate contribution of

far away sources to the scattered field mea.sured at each panel edge. The intra-cell

convolution for each cell, to compute NG. is of O(nc), where noC is the number of

cells. The intra-cell direct interaction computation, NEX, is also O(nc!). Assuming

nc, is proportional to the number of panels or edges, means that the FFTs for the grid

approximationl of far away interactions, still will dominate the overall computation

cost in equation 2.49, at O(G log(ncG)), a very dramatic reduction over the explicit

matrix-vector product of equation 2.26.

2.7 Simulation and Fast Parameter Sweeps with

Reduced Order Models

AMost computational electrolaginetic scattering analysis requires calculation of the

scattered fields for a given problem, not just at a single frequency point, but at. many

frequency points. In addition to frequency dependency, the scattered fields are usu-

ally dependent on other parameters, such as the look angle from which an incident

wave approaches the problem geometry. Typically, scattering analysis requires solv-

ing the system at a large, representative set of points for each parameter. so that

computing scattered fields at each point in the set will accurately characterize the

system behavior across each parameter's desired value range.

In the equations of earlier chapters, parameter dependencies were suppressed in the

electromnagnetic field and potential quantities being related. Examining the matrix
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form of the discretized EFIE 2.26,

(¢(s) + (s)2A(.s))J = Z(s)J = sE(.s), (2.50)

it is apparent that the two different matrix-vector multiplications describe quantities

induced by the unknown current density at edges. E(s) corresponds to the known in-

cident fields, which are also frequency dependent. J is the vector of nl2 unknown cur-

rent density coefficients each of which scales a basis function, Js(, s) J(.s)T(r(),

,E(s) corresponds to the contribution to the gradient of the scalar potential associ-

ated with the scattered fielis, and A(s) corresponds to the contribution to the vector

potential associated with the scattered fields. Each entry of both D(s) and A(s)

consists of a summation of scaled terms,

7,Q ,Q, ,cI

~ IYOrP(Totq) 1' iC kLa- (2.51)
q 1 1rsqll

each containing an evaluation of the Helmholtz Green function, corresponding to

the interactions between a point PR' on an observation panel with panel index o and

nhQ quadrature points 7r'q on source panels with panel index s and quadrature point

index q. 'aOosq' is the weighting coefficient for the os indexed interaction at the q-th

quadrature point.

Depending on available computational resources, the need to solve equation 2.50

for full parameter sweeps (across entire desired ranges for each parameter) or to use

the model for simulation can be prohibitively expensive. For example, in airborne

radar simnulations, the chosen set of parameter points mnust contain enough frequency

points to characterize the scattering response for frequency ranges of interest and

enough look angles to create an image of the target. In this example application, the

set of parameter points can be quite large, in the thousands, tens of thousands, or

even hundreds of thousands of points. If it requires minutes, hours, or even days to

solve the system of equations at a single parameter point, then both simulation and

computation of the scattered fields for full parameter sweeps might be infeasible.

A major goal of this research is to develop and implement new algorithms and
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techniques to accelerate the solution of very large (lany unknowns). parameter-

dependent systems of equations across a large set of parameter points. We hope

to (levelop a technique which not only can compute accurate approximations to the

scattered field for the entire set of desired parameter points, but one which only

requires a few full solves of the discretized EFIE 2.50 at appropriate parameter points

(44: 15. 45, 11]. By choosing a frequency of interest, ST, and plugging in the value into

equation 2.50, we can solve for J(STE) iteratively at a cost of O(nc, log(r1c)), using

the PFFT algorithm. However, even with PFFT acceleration, solving equation 2.50

for the current density over an entire range of frequency points c(an I)e prohibitively

expensive.

2.7.1 Model Order Reduction

Model order reduction is a technique for generating a reduced order model (ROM)

which retains parameter dependencies of the original system across a desired pa-

rameter range and retains certain properties of the original model. One call readily

compute anl accurate approximation to desired scattering quantities 23 which charac-

terize the original system from the induced current densities (y(s) = CTJ(s)) yielded

by solving the ROM by the source at a given parameter point. Since the smaller sys-

tein of equations of the ROM can solved far more rapidly than the original system of

equations, an accurate approximation to the behavior of original system across tle

desired parameter range can be quickly computed by solving the ROM at each point

in a large, representative set of parameter points.

The properties of the original model that will be retained by a ROM are key

choices in selecting a MOR algorithm. One method of generating a ROM which

accurately approximates the parameter dependency of the original system is based

on constructing the ROM to match a certain number of the most significant terms

(derivatives) of the Taylor Series representation of the original system, around a

carefully selected expansion point. If a new ROM is constructed which mlatches

23The desired scattering quantities, denoted y(s), coulld be scattered field, radar cross section. et-c
at a chosen observation point
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a greater number of terms (and assuming parameter dependencies meet necessary

constraints), then the new ROM will model the parameter-dependent behavior of the

original system with greater accuracy. MOR techniques of this type, which force the

ROM to match terms in the Taylor series representation of the system, are classified

as 'moment mnatching " methods. The name stems from the fact that the terms in

the Taylor series are often called "-mornents", particularly when the parameter is

frequency.

Using MOR., we hope to solve the fuill systemn of EFIE equations, of dimension

N1 E, at only a few, carefully selected parameter points, and then use those solutions

to construct a projection [18] matrix which projects a Taylor series expansion (with

respect to parameters) of the original EFIE matrices into a subspace of much lower

dimension, q, thereby generating a reduced order model. The projection matrix is

selected to force the ROM to match q, moments of the original system. Thus, the

ROM retains the desired parameter dependencies because it matches the 1st q, terms

in Taylor series representation of the original system of equations. If the order of the

model is low enough (q << n ,): then solving the model at every point in the set of

desired parameter points will be trivial, and approximations to the scattered field will

be readily constructed from the solutions yielded by the model, using the projection

matrix.

Hopefully, extending MOR techniques to handle the unique challenges posed by

electromagnetic scattering applications, and integrating the resulting methods into

our solver for the EFIE equations, will result in a solver that is able to compute accu-

rate approximations to the scattered fields for the entire desired ranges of frequencies

and look angles at a cost equivalent to a few full-system solves. Thus, if the solver

uses iterative methods without sparsification techniques, the cost of computing ap-

proximate behavior for the entire paranmeter range (potentially thousands or tens of

thousands of points) will be O(qn.,2) vs O(n,2) operations, roughly the same cost for

solving the equations at one parameter point. Obviously, if the MOR techniques are

compatible with sparsification algorithms, the cost will be much less. For the PFFT

sparsification algorithm, discussed in section 2.6.4, this cost would be O(nc log(n,)),
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to approximate the solution of the TH equations with nE unknowns over anrl entire

range of parameter points.

2.7.2 Review of Moment Matching MOR

Due to the computational efficiency of projection via moment matching, we have

choscn to irnplement this class of MOR. algorithms. There is a wealth of literature

describing these techniques including [18, 5, 13, 41, 42, 31, 35. 7, 6, 9] just to name a

few. Of these, [18] is certainly the most comprehensive treatment.

Before considering how to modify MOR methods to handle challenges posed by

electromagnetic scattering applications, we will briefly review the traditional MOR

techniques by applying MIOR to a simple first order (rather than the higher order

frequency dependencies present in equation 2.50) system of equations,

(I-sX) J = Bu
Z()

y = BTJ (2.52)

Above, the identity matrix I and X are the system matrices with nE X TnE real

elements, J and B are column vectors with 'nr elements, and y and u are scalars.

J is the unknown state vector, u is the input, B also selects components of the

state vector which are relevant to the desired output, and y is the desired output.

I, X, and B are constant with respect to frequency. The frequency variable, s, in

the equations replaces a time derivative and indicates equation 2.52 is the Fourier

Transform of first order (lifferential equations. Equation 2.52 describes the frequency

domain 24 of the system. After solving for J and expanding the result with a Taylor

Series, the equat.ions can be rewritten.

2'4Apart froml the governing differential eqllations, llse(d to dlescribe the various applications, the
rest of the equlations within this thesis are transformed into the frequency donmain.
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(x)

J(s) = (I- sX) -lBu = sj (XJ B) u, (2.53)

Vector

Substituting the solution of J, from equation 2.53, into the output equation y = BTJ,

one obtains:

(x,

y(s) - si [BTXj B ] u(s) =h(s)u(s). (2.54)
j=0

moments: j

In equation 2.54, rr-j are the moments of h(s), the system function which relates

the input u(s) to the output y(s). Equation 2.54 defines the moments mrj which are

used in the momlent-matching Model Order Reduction algorithm.

Moment-matching MOR methods assume that lower order moments are most irn-

portant to approximate the exact solution, and the reduced order model is constructed

to match a certain number, q of the lowest order moments of the original output, y(s).

If the largest singular value, ,MllAX = max[X], of the system X is less than one then

the absolute value of the moments m.j , will decrease with increasing i. In this case,

it is clear that any approximating function hAppRox(S) would approximate h(.s) with

error IhApprox(s) - h(s)II < (AAX)/(1 - UaMAX), and if q is chosen large enough,

the neglected terms corresponding to the moments mq, 'rq+1,... will be negligible for

frequencies close to a given expansion point if h,APPROX(s) matched the first moments

in the Taylor series expansion of h(s), shown in equation 2.53. This approximation

error will decrease if q, the number of matching moment terms, is increased.

Equation 2.53 highlights the fact that the vectors [XiB] = form a basis for the solu-

tion space, J:

J(s) {B. XB X 2B .. .} (2.55)

and froml linear algebra's Cayley Hamilton Theorem [21], we know that only the first
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1,n terns are re required to form a comrplete basis of the solution space J:

J(s) e {B,XB,X2B ... XnB} (2.56)

If the singular values of X have magnitudes nmuch less than one, as discussed

earlier, we c an utilize ideas from Krvlov-based Model Order Reduction (MOR) mneth-

ods [18] to generate a reduced order model whose Taylor series expansion matches

the most significant mornents, corresponding to a subset of the solution space of the

original system described by equation 2.56, such that the lower order model of size q

is small enough (q << 'rz) to be rapidly solved for frequency sweeps.

The key step to generating a small ROM that accurately approximates the fre-

quency behavior of the original system is to create a projection matrix V that contains

a subset (q << rIE) of the "most important" or lowest order vectors in the solution

space:

V V [v v ... Vq ] q<< E

v; E {B, XB X2B,... Xq-B} I VTV =I (2.57)

Note that each new column, vj, of V is constructed by Arnoldi procedures to

'be orthogonal to the previous columns because, otherwise, repeated multiplication

'by the same matrix causes the result vector to gradually align in the direction of

the largest eigenvalue. Thus the projection matrix V is an orthogonal basis for a

q-dimensional subspace of the space described by equation 2.55. The first step in

constructing the reduced order model or ROM is to approximate the unknown state

vector J as a linear combination of the columns of the projection matrix J m VJ.

(I - sX) VJ Bu (2.58)
J

Multiplying the left side of the equations 2.58 by VT and solving the resulting

system. for the new unknown J of the ROM forces a solution tat minimizes the
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J VJ
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/
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Figure 2-12: MOR: This figure illustrates how the projection matrix V is used to
project the original n.E-dimensional system into a smaller q-dirnensional subspace.
Note that V is long, comprised of n.E-length columns, but narrow, having only q of
the nE-length columns

residual,

(I - sX)VJ - Bu, (2.59)

and the result is a ROM is generated by projecting each component of the original

system to the lower q-dirnensional subspace described spanned by the columns of V:

VT(I- sX)VJ- VTBu = 0

(I-sX)J-Bu = 0. (2.60)

where B = VTB, X = VTXV, and I is the q x q identity matrix. Note that the

resulting system of equations is q equations each with q unknowns, where q << E.

The process is illustrated graphically in figures 2-12 and 2-13.

Since the q x q ROM system is very small. it can be solved almost instantaneously

(relative to the original nE X 'nE sySte'll) for the llknown ROM) current coeflicient

J, and an approximation to the original current density can be obtained:
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Reduced Order Model

q

qil i 1 i zlIE'

Figure 2-13: ROM: The reduced order model has a q-length unknown J which rep-
resents the approximate solution which minimizes the residual of the approximating
system.

J VJ
- V(I- sX)-1 Bu, (2.61)

where the "reduced" unknown state vector J will match the first 2q moments of the

Taylor series representation of the original J [18]. An approximation to the desired

output quantity y is computed easily from the ROM:

y j BTVJ (2.62)

Since the ROM matches the first 2q moments of the original system, the error in this

ROM-approximated output solution will be:

X= E sJkBit -
j=2q

Coo

Z sXiBuI
j=2q

However, once the ROM is created, the cost to compute h(s), for the entire desired

frequency range is very small, O(q3 ) or O(q 2 ), depending on whether Gaussian Elim-

ination or iterative techniques are faster for the small system.

2.7.3 Multi-point Model Order Reduction

Sometimes, the range of frequencies around the frequency point is large enough that

a reasonably-sized ROM will fail to accurately characterize the behavior of the orig-
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inal system over the entire frequency range. Multi-point Model Order Reduction,

described in [18], is a method for creating a ROM that simultaneolsly matches a

small number of low order moments for multiple Taylor series expansions, each at

different expansion point.

Considering the original system in the equations 2.53, simple algebra inanipula-

tions yield an equivalent set of equations:

J(s) = (I- sX + siX - sX)- B

= [(I - sX) - (s- sl)X]-Bu

[I- (s - s,) (I- slX)-'X]- ' (I - slX)-B u,

X
- - (s - s)X7] `/u

= (s- sl) (XB) 1., (2.64)
j=o

Vector

Clearly the solution space of the unknown state vector J can also be described:

J(s) E {B. XB, XB. . .,X B, (2.65)

in addition to description of the solution space of equation 2.56, and a projection

matrix V could be created:

V [V 1 V2.. Vq ] q << rlE

vj k, k2A . .. B j VTV I (2.66)

which would create a ROM that matches 2q moments of a Taylor expansion of the

original system expanded around the frequency point sl. Combining both of the

projection matrices, described equations 2.57 and 2.66, and reorthogonalizing the

result, one could generate a ROM that simultaneously matches q moments of the

original system around s = 0 and s = s by creating V as the union of q terms
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arounld .s = 0 and tle q terms around s = sl as fllows:

V : [ v 2 . V2], q << (2.67)

vj f (fBXB,X2B. Xq--BX I VTV= I

Obviously, since sl was arbitrary and the projection-based MOR algorithm is

linear, the I)rinciple of superposition can be applied by incorporating Taylor expansion

ternms for additional frequency expansion points into a projection matrix, as shown

above, to generate a multi-point moment-matching ROM that matches q moments

around each of an arbitrary number, niMP of Taylor expansion points. Thus, the

resulting ROM would be of dimension Hnjlp * q.

2.7.4 ETAS Method of Model Reduction for systems with

weakly oscillatory parameter dependencies

Applying tile same system reduction techniques discussed in section 2.7.1 and demon-

strated in equations 2.57- 2.60 to the EFIE ( 2.26) would be significantly more com-

plicated than applying them to the system in (equation 2.52) because both sides of

equation 2.26 of have frequency dependencies and the matrices A(s) and D(s) them-

selves have complicated frequency dependencies. One idea is to approximate Z(s)

with a truncat;ed Taylor series approxinmation:

(_S_- __) (s - ST)nT - 1
[ZO + ( - ST)Z1 + Z2 + ('- T - 1)! ZnT-1]J B. (2.68)

Note that now the matrices Z are frequency independent. As described in [34],

the introduction of new state variables.

Jo = J
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J1 = (s - ST) Jo,

J2 = (- ST)JI/2,

J3 = (S - ST)J2 /3,

JnT-1 = (S - ST)JnT-1/lT - 1

permits the equations 2.68 to be

equations is achieved:

rewritten, and the final desired form for the system

+

-Z 1

I
2

0

0

-Z 2

0

I
3

-z 3

0

0O
O

0 0

*... -Z --1
... O
... O

0

I
T-1

Jo Bo

J1 0

J2 - 0

JnT-l 0
(2.70)

The remainder of this dissertation will refer to equation 2.70 as the Expanded Taylor

Approximation System (ETAS). This ETAS corresponds to the original system from

equation 2.52, and can be rewritten in simplified notation:

[Z1 - (s - T)Z 2]J = B. (2.71)

where Z1 and Z 2 are the corresponding expanded matrix2 5 terms of size [(n -

1)nE]x[(nT - 1)rIE] and J and B are the corresponding expanded vector terms of size

[(niT-l1)nE] in equation 2.70. Note that by multiplying both sides of equations 2.71 by

Zj 1 produces equations that have the same form as equation 2.52, the starting point

for MOR. Thus, the entire MOR methodology presented earlier camn be applied to

generate a reduced order model (ROMI) for a weakly oscillatory system Z(s)J = E(s).

25Hereafter, cursive and bold matrices and vectors will refer to quantities which have ETAS form
to distinguish them from the non-ETAS quantities to which they correspond.

74

(2.69)

o 0 ...

01*o



Chapter 3

Complications for MOR of

Electromagnetic systems in the

Full-wave regime

Full-wave M\IOR based on the ETAS model (ELTAS-FMOR) methods were designed

[35] to ap)roximate structures for which the minimum wavelengths of analysis are

greater than the maximurn diameter of the geometry, rather than "electromragnetically-

large" (EM-Large) structures, which result in highly oscillatory kernels in some ele-

ments of the discretized EFIE system. This chapter will further highlight the linita-

tions of ETAS-FMOR, by considering examples both for analysis of EM-Large scat-

tering targets and EM-Large interconnect structures.

3.1 Difficulties for full-wave ETAS-MOR

For large systems, Model Order Reduction is a critical step in characterizing the

paralneter-dependent behavior of a system. The linear system of equations 2.28 does

ap)proximate the frequency domain behavior of the original system but the matrices

R + sL(s) and P(s) are usually so large and dense that the impedance model's coIm-

putational complexity precludes either simula.tion or solution at a very large number

of fequency points. Unfortunately, the full-wave MORB methods based on the ETAS
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Tnodlel (ETAS-FMOR) fail to generate a lower-order (T < 10) ETAS approximation

to the original system that is accurate over typical desired frequency ranges.

Thile pre-existing full-wave MOR. method based on the ETAS model (ETAS-FMOR,)

[35] approximates each elemlent of Z(s) with a low-order truncated Taylor Series ex-

pansion:

[Zo + i(k - kT)Z1 ++ ( - ST) Z -S]J B. (3.1)
2 ("T - 1)!

Each entry of the system matrix is constructed by multiple evaluations of the Green's

function, which is of the form (a-fr/)/co) where r is the separation distance between

the observation and source points on the scattering object.

A truncated Taylor Series expansion of the Helmholtz Green's function only serves

as a good approximation over a desired frequency range if the successive terms rapidly

grow smaller such that the omitted terms are negligible. Thus, for entries correspond-

ing to larger interaction distances, a low-order polynomial will fail to approximate the

sinusodal factor of the Helmholtz Green's function over the desired frequency range,

because its argument is proportional to frequency and interaction distance and the

interaction distances are large.

The following equation clearly illustrates that the neglected terms of the truncated

Taylor series would only be negligible (over the desired frequency range) if nT is very

large relative to the absolute value of the exponent:( + r (3.2)
j=0 , ,; i

-Do if nT>>X

If A is wavelength (relative to expansion point) and r is the interaction distance,

full-wave analysis is defined to include frequencies for which , > 1. Therefore, for

full-wave scattering analysis, where jxz = 27r5 , corresponds to xl > 2r, equation 3.2

-Numerical quadratllre is utilized to comput.e the integral of the product of the greens function
and current density over the panels corresponding to a each particular entry.
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dlemlonstrates that an accurate Taylor approximation would require nt >> 6 termns in

the truncation, which is not "low-order" at all!!!

Considering impedance extractiorl for SoB and SoP, packages and boards are built

on scale of centimeters. Thus, elements of the interaction matrix representing a SoB

or SoP will have interaction distances between one to 20 centimeters, but often signals

present on these electronic systems contain frequencies in excess of 15 GI-Iz, which

corresponds to wavelengths smaller than two centimeters. Thus. from the preceding

paragraph the reader can verify that kr values for these systems will probably range

from k;r = 3 to kr = 10 and a very large truncation order '7-T is needed for accurate

approximation! As a result ETAS-based MOR. would be inefficient.

Electromaiagnetic scattering analysis frequently involves even more challenging prob-

lems. Appendix A lists some typical ground vehicles that might be surveilled by mil-

itary radar. Consider the scattering from one of those targets due to a source wave

with a frequency of 800 MHz: The sinusoidal exponential has an exponent of magni-

tude 8- or approximately 8r radians. For the simulation of electromagnetic scattering

from ground vehicles such as tanks, the separation distances in the Helmholtz Green's

functions will be on the order of 10 meters. Thus, for this problem, accuracy requires

7
2'T >> 80 terms in a truncated Taylor expansion. For the ETAS, this corresponds

to 80 * 'n entries in the dense portion of the matrix, or roughly 80 x the number of

operations for a matrix-vector product, making efficient computation of a RONI far

less feasible!!!

On the other hand, if the truncation order is kept low, then the ETAS model

accuracy will suffer. To demonstrate this shortcoming of ETAS models, scattering

analysis of an "electromagnetically large", long, thin wire, illustrated in figure 3-1(a),

is performed in a, full-wave frequency regime from 80 to 800 MHz. The accompanying

results figure 3-1(b) plots the log of relative error of the approximate current density

computed froim the ETAS model (o), with a low truncation order T = 6. This figure

clearly shows that the ETAS model has a very narrow range of accuracy (highlighted

Iby the dashed lines)! Furthermore, the same figure compares results computed from

an ETAS-baseid ROM (.) that was generated using multi-point MOR, to match ETAS
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(a) Long thin wire: Over the frequency range, the wire has length .3A to 3A.
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(b) This figure plots the log of the relative error of the ETAS model (o) for the EM-large long
thin wire in a full-wave frequency regime. The results illustrate that the ETAS Model (o) with
nT = 6 has a narrow band of accuracy around the expansion point at 400 MHz. The dashed lines
dernark a zone, 250 to 560 MHz, with relative error < .1. The ETAS-MOR ROM (.) matches
the ETAS model over the entire frequency range. Each '.: is within a o' !
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moments around 250 MHz and 600 MHz, in addition to the central expansion point

for the ETAS at 400 MHz. The figure clearly shows while the ETAS-based ROM

matches the ETAS at each point in the frequency range, the ETAS model itself has

a, very poor range of accuracy!

3.2 Difficulties for full-wave multi-point ETAS-MOR

Multi-point Model Order Reduction, introduced in [18], is a method to include mo-

ments or Taylor Expansion terms from additional expansion points into the subspace

spanned by the Projection Matrix V so that a ROM will also match moments of the

original model around the additional expansion points. Thus, multi-point MOR is an

important tool to extend the frequency range in which ROMs accurately characterize

the frequency response of the system. Since the ETAS-FMOR, ROMs are accurate

in a very narrow range around the expansion point, creating ROM's that match

additional expansion points would seem to be the missing key for ETAS-FMIOR.

Figure 3-1(b) demonstrates that existing multi-point techniques are inadequate to

improve full-wave ETAS-based FMOR. The ROM in figure 3-1(b) is computed with

two additional ETAS based multipoints at 180 MHz and 680 MHz, yet there are no

"dips" corresponrlilng to the additional expansion points, indicating that the inclu-

sion of these additional terms in the projection matrix contributes little to nothing

to improve the range of accuracy of the ROMs.

The lack of accuracy improvement or error reduction around the additional expan-

sion points raises questions regarding the utility of the multi-point MOR methods:

Are the multi-point MOR algorithms even working properly? The answer is yes,

but to understand why, one must remember that constructing ROMs using Krylov

subspace projection-based MOR. to generate a ROM for frequency dependent system

"essentially involves" TWO truncated Taylor Approximations. The first truncated

Taylor approximation, described in section 2.7.4, is used to elilinate frequency de-

pendency from the matrix elements and to algebraically manipulate the systeml into

a form similar to equation 2.52 that is conducive for MOR, while the other Taylor
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expansion is implicitly incorporated 2 into the model during the process of matching

moments or Taylor expansion terms that occurs during construction of the Krylov

subspaces for the MOR Projection Matrix V, described in section 2.7.2. Thus, al-

though it is disappointing that the results computed from the ROM do not match

those of the original system, the multi-point MOR algorithms are working extremely

well because the ROM solutions match those of the ETAS (from which it was reduced)

almost precisely over the entire range.

Should there be "dips" in error at the additional expansion points where the ROM

has been forced (via multi-point MOR,) to match the ETAS? The ETAS itself approx-

imates the system about only the original expansion point and is highly inaccurate

at the additional expansion points. Multi-point MOR, described in [18], forces the

resulting ROM to match the ETAS at the additional expansion points. Due to the

double Taylor Approximation, the best that the ETAS-based multi-point ROM can

do is match the ETAS results exactly over the entire range. In fact, the ETAS-FMOR

R.OM matches the ETAS exactly, indicating that increasing the ROnM size will not

improve accuracy and that only increasing 'ny,, the truncation order of the ETAS can

improve the accuracy! Therefore, the existing multi-point MOR methods are clearly

not that useful to improve the ETAS-FMOR ROM accuracy. It could be highly

beneficial to develop new techniques for ilulti-point MOR in the context of ETAS.

3.3 Conclusion

Certainly, logic suggests that attempting to approximate a rapidly oscillating sinu-

soidal functions over a wide frequency range with low-order polynomnials is doomed

to fail. On the other hand, employing some other basis functions to approximate

the Green's function could destroy various properties of the parameter dependencies

and preclude the wealth of MOR techniques that have already been developed and

described in the literature. A nice property of the Taylor Expansion-based ETAS

2Note that the resulting ROM is not a finite polynomial representation of the original solution
space, but an infinite series reduced'` representation that has been forced to match q of the first.
terms in the Taylor Expansion of the original solution space.
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method for full-wave MOR (ETAS-FMOR) is that these methods facilitate the stan-

dard MOB algorithms. Therefore, before giving up on Taylor Expansion completely.

it is worthwhile to observe that many elements of the truncated Taylor approximation

matrix will be reasonable approximations over the desired frequency range because

the separation distances are small enough. This observation suggests possible av-

enues to explore which lead to the new Segregation by Primary Phase Factors MOB

algorithms that are the contribution of this researclh and are presented in subsequent

chapters.
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Chapter 4

Segregation by Primary Phase

Factors

Segregation by Primary Phase Factors (SPPF) is a new algorithm for full-wavc MOR..

The fiull-wave regime poses challenging difficulties for MORB based on the ETAS model.

The discussion in chapter 3 suggested that polynomials, by themselves, may be in-

sufficient to construct a low-order and accurate approximation to the system's fre-

quency dependencies in a full-wave analysis regime for a reasonable desired frequency

ra.nge. HIowever, it is also desirable to find a method that incorporates the rich

Krylov-subspace, Projection-based MOR theory that has already been established.

Sections 2.7.1 through 2.7.4 of chapter 2 presented a, brief overview of the subset of

these techniques that are relevant to this dissertation and provided some references

for further details. The new SPPF full-wave MOR algorithrms are based on a new

expanded Taylor approximation to the system (SPPF-ETAS) ad will take full ad-

vantage of the existing MOR. theory to generate reduced order models to accelerate

full-wave analysis of "electromagnetically large" structures that are accurate over

much wider desired frequency ranges.

Both the goals outlined in the preceding paragraph and the observations discussed

in section 3 motivate the SPPF algorithm. The basic steps for SPPF are:

* Classify interactions into discrete "distance bins"
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· Decompose interactions into primary and remainder phase

· Segregate system Z by primary phase factors

* Compute Taylor Approximation to remainder phase"

* Apply full-wave MOR

Each of these steps will be described in detail in sections 4.1 to 4.5, which follow.

4.1 Classify interactions into discrete "distance bins"

The Helmholtz Green's Function, corresponding to full-wave EM analysis, is:

e-jk7
GII(r) = (4.1)

Although the wave number k is the official "frequency variable" from the physical

EM problem, from a more general mathematical viewpoint, it is also possible to

consider 'r to be a "frequency variable" with respect to the degree oscillation of the

sinusoid over values of some variable k. The basic idea of the Segregation by Primary

Phase Factors algorithm is to classify the Green's function evaluations of the system

matrix according to the size of the interaction1 distances r , and SPPF divides the

range of possible interaction distances into equally spaced segments of length I?,

the SPPF parameter 2 . The entries of Z,,, are decomposed and classified by the

integer value n,,,,, corresponding to its separation distance, r I,, using the relation:

7r,,, = lr,7i,(R) + d.n,., where d,,,,, < R. Thus, every entry Zm,,, of the system matrix

is classified into a segment or "bin" based on its separation distance as illustrated in

Figure 4-1.

1 Entries of Z(s) describe interactions between source and observation points
2 R/ is chosen such that R < rAIAX, where ,AIAx- is the maximum diameter of the structure. This

choice ensures the algorithm will produce a more accurate ROM than the existing MOR, methods.
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Figure 4-1: Segregation into Primary Phase Factor bins: In this example, the distance
'r between a pair of triangular panels is classified into the second SPPF bin since
r = 2R + d, and during any computations this interaction would be segregated into
a group with all other interactions corresponding to the same Primary Phase Factor
of e- 'i2R . This particular interaction would obviously have a remainder phase factor
of e-ikd

4.2 Decompose interactions into primary and re-

mainder phase

To decompose phase of the entries according to integer multiples of the SPPF paramne-

ter , the SPPF algorithm applies De Moivre's Theorem3 for exponential functions to

the Helmholtz Green's functionl evaluations required at each entry during construction

of the system matrix Z(,s):

d,-n < 

C-itr'"'"" e-ik(I,,,r k(R1... -+ ) -drnn ) e-ikd,,-..
Zmn - -7,nn, -rn r= Zn e ikR e (4.2)

,rnr, F nrrln T,,,,,

where I,,,r E , ,n, and 'h corresponds to rAX. In this manner, the entries of

equation 4.2 are decomposed into a primary phase component e- i"k nnR and a remain-

der phase component e-"ikdm, after the interaction distallce. r,,, is segregated into

3An exponential function with an exponent that is the suml of two termns equals a plroduct of two
of the samle exponential furctions each with one of the terms as the exponlen: al +y = ca:ay a.nl
therefore a'" := (ax)"n.
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a bin corresponding to its integer valued In using the relation: r,,mn -' L, I? + dn,,,

where d,,,,,lr < R/2,

Now, the main purpose for this manipulation starts to becorle clear: Once the

exponential function is separated into two exponential finction factors, the exponen-

tial factor containing the remrainder term d in the exponent can be approximated

accurately by a truncated Taylor series with low number, (T), of terms:

Be)-iktl..... (-_kd,~,.)(T- l
Z7,ML, 7 Z,.eR (1 +-i kdnn + . + ) (4.3)

'rMn, (TT - 1)!

Thus, to ensure the approximation of each entry Z,,, is accurate over a desired

frequency range of each entry, R must be chosen so that a truncated Taylor Series

approximlation to the remainder term is acceptably accurate over the desired fre-

quency range for all possible Id,,,,i, < R/2. In other words, the truncated terms in

the truncated Taylor Series approximation for e- ikd..l must be negligible for all k

in the desired frequency range (k = 2f). Clearly, for a given truncation order nT,

a choice of R < 'rma, will result in improvement. For a given order, a truncated

Taylor approximation of e - ikdrn will be accurate over a wider range than truncated

Taylor expansion of e- ik 'mL. Smaller R. will achieve a wider bandwidth of accurate

approximation around a selected Taylor expansion point.

4.3 Segregate system Z by primary phase factors

By classifying the separation distances into appropriate bins and decomposing each

entry into primary and remainder phase components, the system matrix can be seg-

regated( into i component matrices each corresponding to a different integer multiple

of R present in the separation distances of all of its entries, as shown in figure 4-2.

Using an operator Pl that multiplies entries corresponding to the th1 separation

distance bin by 1 and multiplying all entries that are classified in other separation

distance bins by 0, the equation corresponding to figure 4-2 can be segregated into

sparse sul)-mnatrices:
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"q"*

-·I s I s

7 A

Figure 4-2: Segregating Z(s) by Primary Phase Factors: The innermost sphere
around the indicated observation panel corresponds to the zero bin with primary
phase factor of one, and the second innermost spherical shell corresponds to the R
bin with primary phase factor of e-ikR. While the spherical shells corresponding to
c- k2R, -ik:3i£ etc are not shown, the panels within a radius of (m+ 1/2)1? but greater
than a radius of rmax((rr - 1/2), O)R correspond to the zm-th bin and have primary
phase factor of -ikrrR* Each such spherical shell also corresponds to group of entries
in selected rows of the SPPF interaction matrix Z(.s), and those rows correspond to
the observation edges associated with the given panel.

87

F

'A 

"q I



Z(s) = -kRPo(s) + Pi(s) + + (e-iRlp (s)

Note that P1 is not a matrix and that a new SPPF system matrix Z is constructed:
Iv 1' - -ikd-n 

Zrnt =

In equation 4.4 , Po selects the entries of Z(s) corresponding to the R circle in

above, P1 selects the entries of 2(s) corresponding to the 2R circle, and P2 selects the

entries of 2 (s) corresponding to 3R circle, which is not shown. Thus, the P1 operator

is used to segregate the original system into these sparse component matrices, each

of which corresponds to the requisite e-ik ftlr.. factor present in each of those entries

of the original matrix, and this step is how the algorithm was named Segregation by

Primary Phase Factors (SPPF). This crucial segregation step enables accurate and

cf;cic'cwnt truncated Taylor approximation, which facilitates full-wave analysis using

traditional MOR methods to develop accurate SPPF-based reduced order models

(SPPF-ROMs)!

4.4 Compute Taylor Approximation to "remain-

der phase"

Because the entries, Zn, (s) have small exponents (Idrnnl < R/2, where R is chosen

appropriately) or phase, the component matrices can be accurately approximated by

truncating the Taylor Series representation of each elemnent, resulting in:

kRP _-A(s)(?r1 )Z(flrl)
Z(s) e-iki°Po[Zo + k(s)Z1 + + (n -

( - 1) !

+ e- P1[Zo (s) + A(s) - 1) I +

_iki~tp+ e-+'t O +(S ) "T1 )Z(nT-1)] (4.5)
+t eikrP[2 0 + (s) +k + (n, - 1)!

Equation 8.2 and euation .4 are the key concepts behind the SPPF algorithm
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that enables FMOR. Applying these ideas, Ilmpedlance MIodels', in the form of ecua-

tion 2.28, can be expanded into the SPPF Expanded Taylor Approximation System

(SPPF-ETAS),

£
3 ( S;) ̂:= E C ,k-ikjp

j--(

0z

0

-Z 1 -Z 2 Z3
I
2 0 0

0 /I 3

O ..

I
I. 

... ZnT· ' 0

0 ... 0

0

0 0 0 I
rLT-1

0

Jo

J1

j 2

JnT -1

& B. (4.6)

Equation 4.6 can be rewritten in simplified notation:

7 C kj.j +.
i(), = CC-ikfj (s +(S - ST) 2) = B.

4.5 Apply full-wave Model Order Reduction to Impedance

Models

Model Order Reduction methods can be readily applied to an impedance model ap-

proximnated by equation 4.7 to yield a ROM, by pre-multiplying and post-multiplying

with the projection matrix V as follows:

4 Scattering Models will e considered in chapter 5 because the right hand side source vectors
have complicated frequency dependlencies. The SPPF-FMIOR algorithms will e extended for EM
scattering.
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-z 1 -z 2 -z 3

2

I¥ 0

0 0 0

zo 0 ...

0

I
'rvt -1

V

Jo

J 1

J2

JnT-1

or in SPPF-ETAS matrix notation:

I h7

Z(.s)J -* ZVTeikP1(i - ( - ST).2)Vi = VTB
j=o

>_ e ( Ij -(S ST)3 2 j )J B
.j=o

(4.9)

The resulting MOR algorithm is called Segregation by Primary Phase Factors for

Full-wave-MOR (SPPF-FMOR).

The astute reader might be wondering how the projection matrix V used in equa,-

tion 4.8 was constructed. Although it is a subject for further research, it is unclear

how to use the SPPF-ETAS to construct a Projection Matrix V that can be used

to generate a ROM. As te reader might have surmised, V is based on the original

ETAS system Z(s) of equation 2.70 which was shown to be inaccurate description

of the system for low-order, wideband approximations. If the ETAS is an inadequate

model of the original system Z(s), what justification is there to use the ETAS to

form a projection matrix V, the basis for the ROM approximation?

The ETAS is inaccurate because it lacks components (Taylor expansion terms) in

the frequency solution space, not because the components it possesses are incorrect.

Therefore, this ETAS does contain a subset of the components that are present in
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the exact system,l and basis "directions" formed using the ETAS for the Projection

Matrix's Krylov-subspace will be present in the original solution space. This reasoning

suggests that the original ETAS still might be helpful in generating the Projection

Matrix V required for MOR. This subject will be explored fulrther in later chapters,

but the results presented in the next section demonstrate that this choice seerns to

work.

4.6 Results of SPPF-FMOR

This section present results of applying SPPF-FMOR to generate reduced order mod-

els. Two example problems illustrated in figure 4-3 were selected for this demonstra-

tion:

* Transmission Line with 10 ohmn resistance

· Transmission Line with open circuit

A modified version of the Fast Pep solver [23] was used to generate the original

models of dimension n. = 183, in the form of equation 2.28, for each of these struc-

tures. It should be noted, while these SIE-based BEM techniques enable modeling

of structures with arbitrary geometries, transmission lines were chosen because the

results can be verified analytically and to save compute time. However, as the reader

will see, these simple examples will illustrate the great potential of SPPF-FMOR for

full-wave analysis!

For the Transmission line with 10 ohm resistance, figure 4-4(a) compares the

phase of the admittance comnputed by the original model, SPPF-FMOR. model, and

the ETAS-FMOR. model, and figure 4-4(b) compares the log of the relative magnitude

of the error of the current computed by ROMs generated by both the new SPPF-

FMOR algorithm and standard FMIOR based on the ETAS model (MOR-ETAS).

Comparison of results shows that the new SPPF-FMOR algorithm achieves relative

error almost 10 to 100 times (or one to two decades) smaller than MIOR-ETAS, over

the entire frequency range up to 15 GHz!!!
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Figure 4-3: 2 Transmission Line examples (length=2cmn, separation=lcrn, width=37e-
6m n height=15e-6m ): One example has the 10 ohm resistor shown in this figure.
Another example, which is not shown, has an open circuit instead of the resistor.

For the Transmission line open circuit, figure 4-4(d) plots the log of the relative

magnitude of the error for both the new SPPF-FMOR algorithm and the pre-existing

MOR-ETAS algorithm. Comparison of results shows that the new SPPF-FMOR

algorithm achieves relative error almost 100 to 1000 times (or two to three decades)

smaller than MOR-ETAS, over the entire frequency range up to 15 GHz!!!
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(b) Transmission Line with 10 ohm resistance: Log scale plot of Relative Error SPPF-FAIOR(o)
and standard IOR(.) vs frequency
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Chapter 5

Full-wave Model Order Reduction

for problems with source vectors

that have complicated

frequency-dependencies

Electromagnetic Scattering problems have more complicated frequency dependencies

than Impedance Extraction problems. In the Interconnect analysis examples shown in

section 4.6, the FastPep extraction tool computed full-wave models for the impedance

behavior of the Interconnect. The impedance models had the form of equation 2.28,

in which the source vector B corresponded to a voltage or current source coninected

to a single panel of the discretization. Therefore, any frequency dependency could be

easily factored from the source vector as a scalar multiple and thereby preserved in

a R.OI withlout any special consideration. Superposition principles can be used to

facilitate additional sources.

For any problems in Electromagnetic Scattering, each element of the source

vector has a different frequency dependence. For example, an incident source wave

will contact different panels of a scattering target at different mloments due to the

shape of the target. As a result, for scattering problems, the source vector E (due to
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incident electric field) will have frequency dependent elements:

Z(s)J = E(s). (5.1)

This complicated frequency dependency of the source term E(s) presents an ob-

stacle to applying the basic MOR methods discussed in the background, let alone

full-wave MOR.. The right hand side of equation 5.1 is frequency dependent and thus

the Krylov-based construction of the Projection Matrix V would require cornputa-

tion of a different V(s) at each frequency point, thereby defeating the purpose of the

generating a ROM.

5.1 MOR for source with complicated frequency

dependencies

To benefit from the MOR methods described in chapter 4, one must extend them to

apply to problems with frequency dependence in the source term. Several approaches

have been devised and developed for this purpose. Each of these approaches depends

on superposition principles. Although further study and comparison is a goal for

future research, these approaches are briefly outlined in the following subsections.

5.1.1 Enriched, larger Krylov Subspace

One idea to facilitate MOR for systems with right-hand-side source terms that have

complicated frequency dependencies is to expand the system into the ETAS 2.70 and

then to expand the right hand side source vector into its Taylor series representation:

E(s) = [Eo + (s -sT)E1 + ( -sT)2E2+-' + (s -ST) j Ej + .- ] (5.2)

and then approximate the E(s) by truncating the series to nT terms.

Then, it is possible to construct the projection matrix V to be the orthogonalized
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union of n7 separate orthogonal Krylov subspaces each corresponding to a termnl, Ej

(i = 1, ... , .T) in the truncated expansion of E(s). Letting X = (Z;LZ 2) and

Bj = (Z'1l£j), the projection matrix, V. for the ETAS of the system in equalltion 5.1

would be

V [ V1I V2 ... V , << E

v E {Bo, XBo0,..., Xl B0 ,B. XB, X... ....

BnT 1, XBnT-. 1, X · BT 1n }

VTV = I (5.3)

This matrix V projects the original system to a (ii, x nT)-dimensional subspace,

and the projected ROM will match i, moments of the exact system solved with a right

hand side including at least the first nT terms in the Taylor series representation of

E(s). The difference between this method and that in the previous paragraph is

subtle and does not affect the worst case error analysis. The ROM generated, using

V to project the system into a lower dimensional subspace, has n x nT, elements a

increase i size (versus i x l5t ) that negates some of the benefits of' MOR.

5.1.2 Introducing new state variables

An alternative technique to facilitate MIOR for systems with right-hand-side source

terms that have complicated frequency dependencies is to introduce of rn - 1 new

state variables, each of length nE:

2 ' I
Jnzl+ = E1 + (S -T) J+

JT+ = E2 +.3 Jn.:+2,
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_S - ST)
J2nT-2 = E mT -2 + - J2nT-1

J2 nT-1 = EnT - 1 (5.4)

The ETAS system equations can be rewritten with these new state variable defi-

nitions,

Z1 0 ...

O I . + (s)

_'; _T n .. . n

I0 0o 2

0 " *. '. '. 0

I0 0 (nT-1)
r ( rn( n nL U U U U U

(5.5)

where Z1 and Z 2 are defined as in equation 2.71, and the first block row of 5.5

has (nr - 1) times the number of scalar rows as the rest of the block rows. Note

that the right hand size is now frequency-independe nt. Also, note that it is not nec-

essary to truncate the right hand side at the same order as the ETAS truncation

order or, in other words, 'IR can be different from rI. Throughout this dissertation,

equation 5.5 will be referred to as the Expanded Taylor Approximation system for

systems with right-hand-side source vectors that have complicated frequency depen-

dencies (ETASR). Introducing new notation, the ETASR equation 5.5 is rewritten

[ZR1 + (s - ST)ZR2]J = ER. (5.6)

where the R subscript indicates to ETASR quantities corresponding to the appropri-

ate terms in 5.5. The dimensions of ETASR are twice the size of those for the ETAS

(assumning nT is the same for the system matrices and right hand size). Once again.

as with the ETAS developed for impedance extraction. the resulting ETASR, system

of equations has a form similar to equation 2.52: frequency-independent matrices. a

frequency-independent right hand side, and a single linear frequency dependency.

Thus, standard MOR procedures are easily applied to the ETASR,
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[ VRZR1 - ( s - ST)ZR 2]VRJ = VRT£R. (5.7)

where the R subscript in the projection mnatrix, VR, signifies the Krylov subspace is

formed with the ETASR systeml. Using the approach outlined above it is possible to

obtain a ROM for systems like the EFIE model ( 2.26) that have a right hand side

with complicated frequency dependencies.

5.1.3 Creating nT ROMs

Equation 5.1 is a linear system and both of the previous algorithims, described in

sections 5.1.1 and 5.1.2, took advantage of that fact to generate reduced order models.

A tllird approach to developing a R,OM for the Electromagnetic scattering equations

also takes advantage of linearity to employ principles of superposition to construct a

ROM. In this approach, the right hand side is expanded in a truncated Taylor series

approximation, as in the previous two methods. However, in this approach, a separate

projection matrix Vj and ROM is created for each of the j = .... , n. vector term

associated Mwith expansion. In essence, to create the required ROMs, the system will

be solved (once or more if nmultipoint-MOR is used) for each of the n1 vector term

associated with expansion. The basic idea is shown below:

TT (s - T)nT-l
Z(s)J = E(s) ( s Ej

j=o (TT - 1)!

1 idea: let Z(s)Jj = Ej

(5.8)

Since the Ej terms are frequency independent, MOR call be applied to yield a

ROM for each of the '1n Ej terms. The resulting set of nT ROM's would be solved,

and the solutions scaled by the appropriate frequency terms and sumnlied to vieldcl the

desiredl result:
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p -S 
5 T)J(s) E (j n'-IIJ (5.9)

:= (- 1)!

The advantage of this approach are that the resulting ROM is only iinip x i np

(nAp refers to the number of "multipoint" Krylov subspaces [18]. associated with

additional frequency expansion points, whose union forms the basis of the projection

matrix V). and the resulting ROM allow freedom to choose a different expansion

variable for constructing the ETAS equations from the expansion variable used in

approximating the right hand side known source vector with a truncated Taylor se-

ries. In comparison, the method described in section 5.1.1 generates a ROM that is

nTinnAip x nTrinnp by creating a single projection matrix that forces the resulting

ROM to match the moments of the ETAS system at each of the n p Taylor ex-

pansion points (multi-points). While the ROM generated in section 5.1.2 is of size

'Fi'nMp x 'fln. jp ROM, the ETASR-based methods require the expansion variable of

the left hand side of the ETAS equations to be the same as the expansion variable

used to approximate the right hand side incident source field. Thus, the ETASR

system may not be optimal when considering techniques for multi-parameter MOR,

discussed later in sections 6, which depend on different expansion variables on the

left and right hand sides of the equations.

5.2 Incorporating SPPF algorithms when source

field has complicated frequency dependencies

When the system source vector term has complicated frequency dependencies. the

retardation effects can be even more significant than the effects observed in the system

matrix, discussed in section 3. For an incident planle wave, traveling along the z-axis,

the frequency dependence of this electric field source has the form Er = Eme - ikzm

where zr,, is the z-axis position coordinate, as measured from the origin. but the 1/r

factor that appears in the system Green fulction is absent from the incident source

field vector. Therefore. the source vector entries with the worst case phase factors
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do not halve the smallest aplitudes, as in the systern matrix. Therefore. it is even

more crucial to develop SPPF algorithms for incident field vectors that have terms

with of different frequency dependencies. In addition, yet another consequence of the

sarme observation is that it may be optimal to have separate SPPF parameters for

the right-hland side, ri' and RR, in addition the system matrix SPPF parameters, h

and fR or the systern matrix.

It; is easy tlo apply the Segregation by Primary Phase Factors Algorithm to the

ETAS and ETASR approximations. Similar to the Pj, used to select the elements

of the Z(s) matrix, the PEi selector operator is use(l to select only the elements

of the source "remainder" vector E(s) corresponding to the phase factor iRR for

i = 1 .... ri:-, an(1 each of these terms is sunmmlled to yield an accurate approximation

to the original source ternm,

ZR(S)JR e Pj(ZRl + ( - )ZR2)JR L RPEi£R (5.10)
j=0 j=(

Since primary phase factors are segregated and the phase of the entries in the

remainder source vector E(s) are smaller than RR, the truncated Taylor series used in

equation 5.10 to approximate E(s) will be far more accurate than just the truncated

Taylor series approximation.

5.3 Applying SPPF-FMOR when source field is

frequency dependent

Combining SP'PF-FAMOR with the techniques for handling frequency-dependent right-

hand-side source terrns (ETASR) SPPF-FMOR can be applied to electromragnetic

scattering problems with ninimal changes:

ZIRs)Jl = > e1RlVRTPj( ImI + (S - ST)ZI2)VRJ I?
j=0
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(5.11)
- S6ikRRiVR7 PEiER,
j=o

using the sanme FMOR projection matrix V, to obtain a ROM. The steps involved

are shown in more detail with the full ETASR. notation below:

ZR(S)JR ' VR P
j-O

zl
0

0
21

O

O - O

I 0
O . 0

* O I
-I 0 0 ... 0

2

0 01._... 0
3

". 0 0 I(nT-i)

0000 0

VRR = VRT

The choice of utilizing the same projection matrices to reduce the SPPF-ETAS

system as would be used for the ETAS systeml is not a heuristic, because, although

the SPPF Taylor series expansion has different derivative terms, that is only because

the primary phase factors are segregated. Therefore, the ETAS projection matrices

are still appropriate to match Taylor expansion terms or momrents of the original

system.

Incorporating the Pj and PEj operators into the matrix and vector indices yields

S(S)JR = , ei (i(.Rli + ( - ST)R2i)JR
j=0

e-ikR'f,4Ij.
j=(o

(5.13)
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Since superposition principles apply to the right hand side for all the algorithms

discussed here, as opposed to the system matrix that must be inverted, the motivation

to employ the SPPF algorithm to the right hand side is not as obvious. For frequency

dependent right hand sides, one could disregard SPPF concepts and expand the right

hand side into the necessary (very large) number of terms, nTtE, to construct an

accurate approximation, but generate a projection matrix using only a smaller nullmber

of those terms in order to achieve efficiency, and use some sort of multipoint MOR

algorithm to capture a wider band of frequencies, as necessary. However, even if the

nulnlmber of overall terms was comparable to the SPPF truncated Tavlor approximation

to the right hand side, the terms would not be sparse as they are for SPPF. Therefore.,

such a method would require more computation. In addition to the sparsity, for

certain geomnetries, such as smaller objects separated by distances greater than a

wavelength, SPPTF enables accurate truncated Taylor approximation with a far smaller

number of total terms, which in turn leads to far less computation in the MOR

proce(dures and analysis. However, as mentioned earlier, we hope to address and

examine these issues in greater detail during future research.

5.4 Example problems

Three exalnple structures were chosen to demonstrate the utility of SPPF-FMOR for

Electromagnetic Scattering Computations.

* Long thin wire

* Another long thin wire

* 4 spheres in a row

For all 3 example structures, the source is a plane wave traveling along the axis

,of symmetry,. exciting the scattering targets between frequencies of 80 MHz and 800

NIHz. The plane wave has non-zero electric field in the x direction and zero electric

field in the y an z directions.
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(e) Long thin wire. Over the frequency range, the wire has length .3A to 3A.

.-2.69

i 2.685
O 2.68

w. 2.675

= 2.67

" 2.665

I) 2.66

;= 2.655

0 2.65

E 2.645
0
Z 2.64

mn x 10-7xl.

1 2 3 4 5 6 7 8

Frequency x 100MHz

(f) Norm of the vector of edge current density coefficients. Note the sharp resonances.
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(g) Long thin wire. Over the frequency range, the wire has length .5S to 5A.

= 3.48
a)

E 3.47
a)

, 3.46

-c 3.45

Q.)

3.44

O 3.43

7 3.42

x 10-'

. - 2 3 4 5 6 7

Frequency x 100MHz

(h) Norml of the vector of edge current density coefficients. Note the sharp resonances.
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(i) 4 Spheres in a row. Over the frequency range, each sphere has diameter of .01A to .1 and
the row has length of .6A to 6A)

D .j
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Frequency x
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(j) Norm of the vector of edge current density coefficients.
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The figures in this section, (5.4,5.4, and 5.4). show the three structures and plots

of the normn of the vector of edge current density coefficients over the desired frequency

range. Model Order Reduction is used to plot the intermediary points since it would

be too time consluning to solve the original system at each point. Note the sharp

resonances of the long wire structures.

5.5 Results for SPPF-FMOR applied to EM Scat-

tering analysis

For each of the structure discussed in the p)revious section, the relative error is com-

pared between ROMs generated by SPPF-MOR and the FMOR-ETAS methods in

this section. Both models incorporate nT = 8 Taylor expansion terms with the cxpan-

sion point at 400 MHz and two additional multipoint at approximately 250 MHz and

600 MHz. Figure 5.5 demonstrates 100 to 1000 improvement for SPPF-MOR ROM

accuracy vs the ROM generated by FMOR-ETAS methods, over the entire frequency

range. Figure 5.5 demonstrates 10,000 to 1,000,000 improvement for SPPF-MOR

ROM accuracy vs the ROM generated by FMOR-ETAS methods, over the entire

frequency range. These results strongly support the notion that SPPF-FMIOR will

be of great benefit to EAM scattering applications.

The error plots show great potential for the SPPF algorithm to meet the full-

wave challenge, but the long wire plot does also raise some concern, mainly the lack

of improvement due to additional multipoint frequency expansion points. There are

no "dips" in the graph and error rises very rapidly away from the central Taylor

Expansion point. From one point of view, the graph highlights how poorly FMOR-

ETAS performs in approximating the original system between 80 MHz and 800 MHz,

rather than how well SPPF-MOR performs. Furthermrore, while performance of the

SPPF-FNIOR ROM is quite good, over most of the frequency range, just outside

the edges of the desired 80 MHz to 800 MHz frequency ranges the error is almost

100% even though it is much lower than the alternative ROM. This suggests that the
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(k) Long thin wire. Over the frequency range, the wire has length .5A to 5A.
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Frequency x
5 6

100MHz

(1) This figure comlpares the Log scale plot of Relative Error of the Current coefficients computed
by the new SPPF-FMOR (x) algorithm and by the previous ETAS-FMOR (.) methods plotted
versus frequency. The SPPF-FMOR ROM achieves 10 to 100 times better accuracy than the
ROM produced by the previous ETAS-FMOR method, over much of the frequency range.
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(m) 4 Spheres in a row. Over the
the row has length of .6A to 6A)

10 2

100

0

C)

C)

10

10
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-4

1 0 -6

frequency range, each sphere has diameter of .01A to .1 and

3 4

Frequency
5 6 7 8

x 100MHz

(n) This figure compares the Log scale plot of Relative Error of the Current coefficients computed
by the new SPPF-FMOR (x) algorithlm and by the previous ETAS-FMOR (.) methods plotted
versus frequencly. The SPPF-FMOR ROM achieves 100 to 1,000 times better accuracy than the
ROM produced by ETAS-FMOR over much of the frequency range.
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additional expansion points are adding little to the ROM performance.

Examining a slightly shorter wire .3,\ to 3A, figure 5.5 compares log relative

error performance of the FMOR-ETAS and SPPF-FMOR ROMs. The results are

disappointing, showing only five to ten times improvement of the new algorithm and

are not accurate at the edge of the desired frequency range. These results suggest

that developing a multipoint SPPF-FMOR algorithm might be highly advantageous.

In summary, the results of this section were extremely convincing in two respects:

First, that SPPF-FMOR has a lot of potential to improve the bandwidth of ROM

accuracy. Second, that to realize that potential, it is crucial to study multipoint

MOR and develop new techniques for multipoint full-wave MOR in the context of

the SPPF-FMO)R algorithm.
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(o) Long thin wire. Over the frequency range, the wire has length .3A to 3A.
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(p) This figure compares the Log scale plot of Relative Error of the Current coefficients computed
by the new SPPF-FMOR (x) algorithm and by the previous ETAS-FMOR (.) methods plotted
versus frequency. The SPF-FMOR ROM achieves up to 10 times better accuracy than the
ROM produced by ETAS-FMOR, over much of the frequency range.
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Chapter 6

Multipoint-MOR for Full-wave

Analysis

Figure 6-1(r) demonstrates why existing multi-point techniques are inadequate to

improve full-wave ETAS-based FMOR. Figure 6-1(r) plots the log of the error of the

current density coefficients for the ETAS(o), ETAS-FMOR ROM (.), SPPF-ETAS

(o), and SPPF'-FMOR (). The ETAS-FMOR ROM points are all within the circles,

everywhere on the plot. Both ROMs are comIpute(l with two additional ETAS based

inultipoints at 180 MHz and 680 MHz, yet there are no 'dips" corresponding to the

additional expansion points, indicating that the inclusion of these additional tecrns in

the projection matrix contributes little to nothing to improve the range of accuracy

of the ROMs. The ETAS-FMOR ROM matches the ETAS exactly, indicating that

increasing the ROM size will not improve accuracy and that only increasing n'r the

truncation order of the ETAS carl improve the accuracy! The SPPF-FMOR. ROM

barely beats the ETAS-FMOR ROM and ETAS by hardly a factor of ten but also

shows no improvement due to the multi-points evaluated from the original ETAS.

The SPPF-ETAS accuracy is very high over the entire frequency range. suggesting

that there is much potential in this algorithm. if only MOR methods, such as inulti-

point MIOR, could take advantage of it. It is unclear how MOR theory for multi-point

morent-matcl-ling clescribed in section 2.7.3, would be extended for full-wave MOR.

Multi-point moment-matehling was not considered in [35] or [37]. Figure 6-1(r)
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(q) Long thin wire: Over the frequency range, the wire has length .3X to 3A.

10010 °

-- 2

10

Q

10-6

10-8

1 2 3 4 5 6 7 8

Frequency x 100MHz

(r) Log plot of relative error in current computed from: ETAS( ), SPPF-ETAS(o), ETAS-
FMOR(.), SPPF-FMOR(o). This figure plots the log of the relative error of the ETAS model
(o) for the EM-large long thin wire in a full-wave frequency regime. The results illustrate that
the ETAS Model (o) with nT = 6 has a narrow band of accuracy around the expansion point
at 400 MHz. The dashed lines demark a zone, 250 to 560 MHz, with relative error < .1. The
ETAS-MOR ROM (.) matches the ETAS model over the entire frequency range. Each '.' is
within a 'o' !
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demonstrates that the SPPF-FMOR ROM has a wider band of accuracy than the

FMOR-ETAS ROM, and the other SPPF results in previous chapters were also much

better than the ETAS-FMOR. so why should one worry about multi-point MOR?

First of all, the SPPF-FMOR ROM errors were unacceptable (reaching almost 100%)

towards the edges of the desired frequencies ranges. Second, the results of figure 6-

l(r), for the same long wire, demonstrates that the SPPF-ETAS model (nT = 6)

is far more accurate over the entire desired frequency range and illustrates the full

'potential" of SPPF. In other words, while the SPPF-ETAS model is aplproximlately

1,000,000 times more accurate over much of the frequency range, the the multi-point

SPPF-FMO()R ROM is no-where near that accurate. Thus, SPPF-FMOR without

sonrie sort of miulti-point scheme would not :'tap into" the full potential of SPPF!

The ROM results computed by the SPPF algorithm are clearly an improvement,

but they do not show much benefit due to the additional points added via multi-point

MOR and nowhere near the improvement that the SPPF-ETAS is capable of. Since

the results of the previous chapter demonstrate that the poor performance of multi-

point MOR carries over to SPPF-FMOR. ROMs as well, those results help establish

the fact that the ETAS model is the limiting factor for ROM accuracy, in both SPPF-

FMOR and ETAS-FMOR algorithms. The last paragraph of section 4.5 hinted at

the importance of the Projection Matrix V and questioned the use of the ETAS-based

V to reduced the SPPF-ETAS, given the ETAS model's narrow band of accuracy.

However, there are two major motivations to choose an ETAS-based V: it is easy

to compute and it is unclear how to use the SPPF-ETAS model itself to compute a

projection matrix.

As described in section 3.2 and [18], Multi-point MOR applied to the ETAS forces

tile resulting ROM to match the ETAS at the additional expansion points. Due to

the double Taylor Approximation, the best that tile ETAS-based multi-point ROM

can do is mlatch the ETAS results exactly over the entire range. Since additional

expansion points are chosen to extend the range of accuracy for the resulting ROM,

it is desirablle to choose them outside the range of accuracy of the ETAS (which

approximates the system at the original expansion point), but in that case the ETAS
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values will not be accurate at any desirable expansion points! Therefore, since the

Krylov subspaces contributed by the additional expansion points do not seem to

expand the span of the approximating subspace, V, in directions that are closer to

the exact solutions at the additional frequency points, this first, cursory consideration

of the matter would suggest that results computed by the SPPF-FMOR ROM should

only be better than the ETAS or ETAS-based ROM because of "luck". This raises an

interesting observation and question: Why do the SPPF-FMOR ROM results beat

the ETAS?

The answer is easiest understood by examining what the ROMs retain from the

original model. The ETAS-FMOR ROMs retain the directions in the ETAS corre-

sponding to the q-dimensional Krylov subspace generated fromn the nTI-order ETAS

evaluated at the additional points. The SPPF-FMOR ROMs retain the directions in

the SPPF-ETAS corresponding to the (l-dimensional Krylov subspace generated from

the nT-order ETAS. Thus, since the SPPF-ETAS contains the full-contribution of the

primary phase components and only approximates the remainder phase components,

the directions in the q-dimensional Krylov subspace generated from the IT-order

ETAS inay project more of the original system's first q moments into the SPPF-

FMOR ROM than the ETAS-FMOR, ROM at the additional expansion points. This

observation is very important and may serve as a little hint to possible approaches to

obtain a new SPPF-based multi-point MOR. algorithm with true nmulti-point moment

matching!

The example problems in section 4.6 and section 5.5 demonstrated that SPPF-

FMOR can generate ROMs which have a much wider band of accuracy than ROMs

generated by the pre-existing FMOR-ETAS methods. However, it would be nice

to find a way to extend the frequency range for which SPPF-ROMs are accurate

further and tapping the full potential revealed in the accuracy of the SPPPF-ETAS

by taking better advantage of multi-point MOR techniques. The goal for developing

a new multi-point algorithm is to find a compromise that preserves easy construction

of V, improves accuracy of the ROM significantly with addition of new expansion

points, and takes advantage of the accuracy improvements of SPPF-FMOR,. The next
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sections will present new algorithmrs for mrulti-point moment matching i the context

of SPPF-FMC)R.

6.1 Multi-point SPPF-FMOR using multiple source

expansion points

Since the algorithm for multi-point IOR, described in this section, uses multiple

source or right-hand-side (RHS) expansion points and is appropriate for full-wave

MOR with SPPF-ETAS, we will refer to it as RHSMP-FMLOR. The RHSMP-FMIOR

algorithln for multi-point SPPF-FMOR. was developed based on a philosophy of in-

crementalisin. At the onset, the goal was to merely improve the both the projection

matrix and the resulting SPPF-ROMs with minimal additional computational and

implerrentation costs. The research, for chapter 5, to develop full-wave MOR. algo-

rithls for problems with frequency-dependent source vectors, yielded an ilnportant

observation: For a source plane wave, a source vector entry E,,(s) has the form of a

sinusoidal function ei'kz; as opposed to the Helmholtz Green's finction, e
k. '' form

of a system matrix Z,,,,,(s). This difference is significant because it indicates the

source vector plays a greater role in determining error-efficiency tradeoffs for devel-

oping ETAS-based models, since the Z,,r,,(s) ETAS terms with the worst phase error

correspond to the largest rr,, and are scaled by 1/r,n,n which decreases their influence

somewhat.

Taking advantage of this interesting observation, RHSMP-FMOR makes choices

to comlpromise in the direction of efficiency. RHSMP-FMOR extends the projection

matrix V by adding terms corresponding to multiple right-hand-side source expan-

sion points, but the Krylov imatrix is formed just by using the ETAS evaluated at

the additional expansion points. The justification for opting for this "incremental

improvement" of just using exact source vectors but, not computing the exact sys-

teni matrix Used to form the Krylov matrix for the additional expansion points is

the savings of not computing and( storing all the terms in the expansion of Z(s) at
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additional expansion points. The steps of the RHSMP-FMOR algorithm are:

* Choose additional frequency expansion points spl for = 1, n,,p

* Let X( = Z1(s)-'Z 2 (sT)

* Let X = [Z1(ST) - (SMP1- ST)Z2(ST)]-1Z2(sT) for I = 1, = , nMp

* Let Boj = Ejj(sT) for j = 1, , 'T

* Let Blj Ej(SMPl) for j = 1, , 'nT and I = 1, ,Lnp

Using the choices and notation abovc, the RHSMP-FMOR projection rnatrix is

then constructed very similar to the previous projection matrices, except for the

inclusion of Krylov subspaces at additional expansion points:

V [ v 1 V2.. Vq ], q < IE

vj C {Bo,o, XTBo,. X2 Boo,.. .Xq- 1 Bo,

Bo, (q-1) XoBo,(q-l), X B (q-1), X o,(-1)

Bl,o, X1Blo, X2B1 ,o,..., Xq-lB1,,...,

B1,(q-l), XlBI,(ql), X2B,(q_),... Xq- l B l,(q l ) , . . .

Bntp,(q-1), X,,, vpB,,,lp,(q-1) X2 ,p (q-) Xq- BAP(q-1)}'nA nMP

VTV = I (6.1)

6.1.1 Results for SPPF-RHSMP-FMOR applied to EM Scat-

tering analysis

Three example structures were chosen to highlight the utility of SPPF-RHSMP-

FMOR. for Electromagnetic Scattering Computations. To demonstrate the results

of this section, the several examples are analyzed in the frequency range of 80 MHz

to 800 MHz:

* Long thin wire with length of .3A to 3A
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· 4 spheres in a row

· Another long thin wire with length of length of .5A to 5A

For all the example structures the source is a plane wave traveling along the

axis of symmetry exciting the scattering targets, and the relative error is comlpared

between RC)OMs generated by SPPF-RHSMP-MOR, and the FMOR-ETAS methods.

Both ROMs incorporate nT = 6 Taylor expansion terms with the expansion point at

400 MHz and two additional multi-point at approximately 250 MHz and 600 MIHz.

The results will show the great improvement, in some cases 100,000 to 1000,000 times

better accuracy, relative to the results in the previous chapter dlue to the SPPF-

RHSI\IP-FMOR, algorithm.

The resultsl of applying the RHSMP-FMOR algorithm with SPPF-FMOR, (RHSMP

SPPF-FMOR) to the long, thin wire example of figure 6-1(s) are quite good and much

improved over the multi-point MOR, results based on the SPPF-ETAS in the previous

chapter. As figure 6-1(t) demonstrates, SPPF-RHSMP-FMOR is 1000 times more ac-

curate over most of the frequency range than multi-point MOR, based on the ETAS

(ETAS-MP-FMOR).

Figure 6-1(v) shows the results of applying the SPPF-RHSMP-FMOR to the

longer (.5A to 5 SA, electromagnetically larger), thin wire example of figure 6-1(u).

The accuracy of SPPF-MRHS-FMOR also is significantly better than multi-point

MOR based on the ETAS (ETAS-MP-FMOR) and much improved over the multi-

point MOR results based on the SPPF-ETAS in the previous chapter.

Figure 6-1(v) demonstrates that the RHSMP SPPF-FMOR. ROM achieved 1000

to 10,000 times better accuracy than the multi-point FMOR-ETAS ROM over much

of the frequency range. Since, we saw in 8.2 of section 5.5 that SPPF-FMOR with

ETAS-basedc nulti-point achieved 10-100 times accuracy improvement, it is obvious

RHSMP has helped tremendously (almost 100 tinmes or two decades better) at negli-

gible additional comrputational or storage costs.

1All ETAS or SPIPF-ETAS models include r1T = 6 terms, in the results.
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(s) Long thin wire. Over the frcqucncy range, thile wire has length .3,\ to 3A.

10°

-2
10

O

.-) I 0( 10

10-8

108

1 2 3 4 5 6 7 8

Frequency x 100MHz

(t) This figure compares the Log scale plot of Relative Error of the Current coefficients computed
by the new SPPF-FMOR (x) algorithm and by the previous ETAS-FMOR (.) methods plotted
versus frequency. Using the new RHSMP inultipoint MOR, the SPPF-FMOR ROM achieves
almost 10,000 time better accuracy than the ROM produced by ETAS-FMOR, over much of the
frequency range!
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(u) Long thin wire. Over the frequency range, the wire has length .A to 5A.
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(v) This figure compares the Log scale plot of Relative Error of the (Current coefficients computed
by the new SPPF-FMOR (x) algorithm and by the previous ETAS-FMOR (.) methods plotted
versus frequency. Using the new RHSMP miultipoint MOR, the SPPF-FMOR ROM achieves
almost 1,000 time better accuracy than the ROM produced by ETAS-FMOR, over much of the
frequency range!
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Examining tile final example, the reader will see that the results of applying the

RHSMP-FMOR algorithm with SPPF-FMOR (RHSMP SPPF-FMOR) to the row

of spheres exaniple of figure 6-1(w) are outstanding!!! Figure 6-1(x) demonstrates

100,000 to 1,000,000 times improvement for SPPF-RHSMP-FMOR R.OM accuracy

vs the ROM generated by FMOR-ETAS methods, over much of the frequency range.

In summary, the new SPPF-RHSMP-FMOR algorithm for SPPF-based multi-

point full-wave model order reduction has demonstrated the potential to generate

ROMs that accurately characterize the EM scattering behavior of the original scat-

tering target over an entire desired frequency range. This algorithnl enables the user

to include additional expansion points into the projection matrix that will increase

the frequency range of the ROM's accuracy.

6.2 Multi-point SPPF-FMOR using multiple source

expansion points

There is one key observation from figure 6-1(r), which is that the SPPF-ETAS is

very accurate over the entire range. From this observation, the key to multi-point

for SPPF can be deduced. If SPPF-ETAS is a very accurate approximation, then it

should be equal to ETAS expanded at any point rather than just the selected central

expansion point! Thus, if new ETAS are constructed at new multi-points and insert

Krylov subspaces, based on those additional ETAS, into the projection matrix, more

of the SPPF-ETAS (expanded around the main expansion point) moments will be

projected into the approximate ROM and the solution subspace will be closer to the

original unknown! This idea has been implemented but there has been insufficient

data at the time of writing this dissertation to include here.
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(w) 4 Spheres in a row. Over the frequency range, the spheres each have diameter of .01A to .1A
and the row has length of .6A to 6A
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(x) This figure compares the Log scale plot of Relative Error of the Current coefficients computed
by the new SPPF-FMOR (x) algorithm and by the previous ETAS-FMOR (.) methods plotted
versus frequency. Using the new RHSMP multipoint MOR.. the SPPF-FMOR. ROM achieves
almost 1,000,000 tinme better accuracy than the ROM produced by ETAS-FEMLOR,. over muchll of
the frequency range!!!
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Chapter 7

Full-wave Model Order Reduction

for problems with output selection

vectors that have complicated

frequency-dependencies

7.1 SPPF for Output Selection Vectors with com-

plicated frequency dependencies

The desircld output for a scattering solver is sonic uscr-spccificd fiunction of the coin-

puted induced scattering current density coefficients. Examples of outl.uts that users

frequently desire for scattering analysis of a target include radar cross-sections or

components of the scattered electric or magnetic field at some observation point.

Computation of the desired output typically involves computing the scattered fields

at an observation point outside the volume and surface of the scattering target. This

chapter briefly presents the steps necessary to incorporate SPPF when the output

selection vector C(s) has complicated frequency dependencies:

y(s) = C(s)T J(s). (7.1)
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In equation 7.1, the desired scattering output y(s) is a weighted sull of the induced

current densities, and the weighting has the phase ei 'ru, but r,, differs for each element

C,,, to be multiplied by the corresponding element J,(s). The output selection

vector, C(s), is used perform the weighted summation of the edge current densities

to compute the desired output.

This challenge seems very similar to the difficulty posed by complicated frequency

dependencies in the right and side source vector, but it is even greater. As before,

SPPF can be applied in order to facilitate truncated Taylor approximation, but the

challenge for truncated Taylor approxirnation of C(s) is compounded by the fact that

the observation point of interest can be miles away from the geometry for certain

problems, resulting in r values that are many thousands of meters. Thus, even

quasistatic analysis of structures that are not "electromagnetically large" can pose a

serious difficult with respect to application of traditional full-wave MOR algorithms.

Therefore, a new parameter Rsc, the distance between the observation point

and the centroid of the scattering geometry, is introduced in order to extend the

SPPF algorithms for use with frequency dependent output selection vectors. Since

the output selector phase factors are of different magnitude than the system matrix

entries, it follows to reason that it will be beneficial to have separate SPPF parameters

for the right-hand side, rtic and Rc0 . Thus the output selection vector interaction

distances are decomposed in the following way:

'm, = Rsc + Rclm + d (7.2)

So, in the case of output selection vectors with complicated frequency dependen-

cies . Segregation by Primary Phase Factors for output selection vectors (SPPF-OSV)

now involves three parameters, rnc, R(,, and RSC, instead of just the two system ma-

trix SPPF parameters, rh and R and the two right-hand side SPPF parameters 'rit

and RR. Figure 7-1 illustrates the steps for applying Segregation into Primary Phase

Factors to the output selection vector used to compute the output.,

lSurveillance airplanes will attempt to use radar to detect and ilentify grollnd vehicle targets
from great distances, often many miles from the target
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Scattering
Observation

Figure 7-1: Segregating of C(s), the output selection vector, by Primary Phase Factors
(SPPF-OSV): Observe how r, the distance between the observation point and points
on the geometry that are in the mrth output selection vector SPPF bin, is segregated
as follows: =I Rsc + mRc + d, where m can be positive OR negative integers. Panel
1 is in bin 0, Panel 2 is bin 1, and Panel 3 is bin -1.
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eikRS,, e-iRcjjpcC( () (-3)
j=)

Figure 7-1 illustrates that bin 0 has a primary phase factor of 1 bin 1 has a primary

phase factor of e- ikRc ., bin -1 has a primary phase factor of e+ ikRc , bin j has a

primary phase factor of e- kckRj, and every bin shares the scalar phase factor e-ikRsc

corresponding to the distance from the output observation point to the centroid of

the target or origin.

7.2 Example Problems

To highlight the performance of the SPPF algorithm for output selection vectors

with complicated frequency dependencies (SPPF-OSV), the results of this chapter

will analyze several examples in the frequency range of 80 MHz to 800 MHz:

* Long thin wire with length of .3A to 3A

* Another long thin wire with length of length of .5A to 5A

* 4 spheres in a row

For all 3 example structures, the source is a plane wave traveling along the axis

of synrmmetry, exciting the scattering targets between frequencies of 80 MHz and 800

MHz. The plane wave has non-zero electric field in the x direction and zero electric

field in the y and z directions.

The figures in this section, (7.2,7.2, and 7.2), show the three structures and plots of

the x component of the scattered electric field at the observation point < 10, 10, 10 >

over the desired frequency range. Model Order Reduction is used to plot the inter-

mediary points since it would be too time consulning to solve the original system at

each point.
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(a) Long thin wire. Over the frequency range, the wire has length .3A to 3A.
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(b) x component of the scattered electric field at the observation point < 10. 10, 10 >.
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(c) Long thin wire. Over the frequency range, the wire has length .5A to 5A.

._

..-C!
(1>

Td

)0;.-4

0v0
cw

SC-)

U:C)$:i

U

00
C-

4

3

2

1

0

-2

-3

x 10

I
II

be 0,0

0

* 0.10' *I*

0

. 0 e
0* 0.% %

0 0 

.0 ** *
* 0 0*0 % 

- .* * I

0 · ·

% ; -t0 * 00:k-
1 2 3 4 5 6 7 8

Frequency x 1 OOMHz

(d) x component of the scattered electric field at the observation point < 10, 10, 10 >.
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(e) 4 Spheres ill a row. Over the frequency range, each sphere has diameter of .01A to .1A and
the row has length of .6A to 6A)
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(f) x component of scattered Electric Field.
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7.3 Results

For the examples presented in the previous section, an output selection vector C(s)

with complicated (Helnholtz) frequency dependency will be required to compute the

x component of the scattered electric field from the (scattering) currents induced by

the incident source wave.

Since the previous chapter presented the new SPPF-RHSMP-FMOR algorithm,

the output selection vector results in this section, will further compare results between

the SPPF-OSV-RHSMP-FMOR and the preexisting ETAS-based multi-point full-

wave model order reduction for output selection vectors with complicated frequency

dependencies (ETAS-OSV-MP-FMOR) algorithms. Subsection 7.3.1 will show results

that compare SPPF-OSV-FMOR and ETAS-OSV-FMOR, obtained using ETAS-

based MP-FMOR with additional expansion points at 250 MHz and 600 MHz. Sub-

section 7.3.2 will show results that compare SPPF-OSV-FMOR and ETAS-OSV-

FMOR, obtained using RHSMIP-FMOR. with additional expansion points at 250 1\Hz

and 600 MHz. While all results highlight the accuracy iprovement enabled by the

SPPF algorithms (extended for the output-selection vectors), the results in subsec-

tion 7.3.2 will show that SPPF-OSV-RHSMP-FMOR ROMs have the capability to

characterize the desired output behavior of original scattering target. over the en-

tire desired frequency range by including additional frequency expansion points, as

necessary.

7.3.1 Results for SPPF-OSV-FMOR using ETAS-based multi-

point MOR

This subsection presents results for the SPPF-OSV-FMOR algorithm using ETAS-

based multi-point (ETAS-MXIP) to compute a ROM to characterize the the x coinpo-

nent of scattered electric field at the observation point < 10, 10, 10 > clue to scat-

tering from the original scattering target. For each of the example problems, the

corresponding figure compares the error between the SPPF-OSV-FMOR. ROM and

ETAS-OSV-FMOR, R.OM to show the improved accuracy of the new SPPF-OSV-

132



Fl\IOR algorithm applied to output selection vectors with complicated frequency

dependencies. The compared ROMs are of equal size and both were generated using

equal truncation order and ETAS-based multi-point MOR, with alditional expansion

points at 250 MHz and 600 MHz.

The results in figure 7-2(h) compare the error in the computed x component of the

electric field scattered from the wire in figure 7-2(g) between the SPPF-OSV-FMOR

algorithm and the ETAS-FMOR using ETAS-MP. The improvement in accuracy is

noticeable on the log error plot but it, is less than a factor of 10, and at some points

the results of the SPPF-OSV-FMOR are actually worse. These results are somlewhat

disappointing since they fail to realize the potential accuracy of the SPPF algorithms

that the SPPF-ETAS figure 6-1(r) shown in chapter 6 suggests is possible. Further-

more, since there seems to be no dips in error at the additional expansion points, these

results seem to highlight the poor performance of ETAS-based multi-point. Using the

ETAS for multipoint expansions seems to hardly help increase the ROM's range of

accuracy at all.

The second example scattering target is the longer wire shown in figure 7-2(i).

The results, in figure 7-2(j), compare the error in the computed x component of the

electric field scattered from the wire between the SPPF-OSV-FMOR, algorithm and

the ETAS-FMOR, using ETAS-MIP. The improvement in accuracy is noticeable on

the log error plot, up to 1000 times better over a small range of frequencies, but not

that great over much of the range. Furthermore the error in SPPF-OSV-FMOR. is

alnost 100/'o over a significant portion of the frequency range. These results are even

more disappointing (as would be expected for an electromagnetically larger problem)

since they are further from realizing the potential accuracy of the SPPF algorithms

that SPPF-ETAS model results such as figure 6-1(r) of chapter 6. suggested should

be attainable. Once again, since there seems to be no dips in error at the additional

expansion p)oints, these results also highlight the poor performance of ETAS-based

.multi-point.

The third examlple scattering target is the row of 4 spheres shown in figure 7-

2(k). The results, in figure 7-2(1), compare the error in the conputed x component of

133



(g) I,ong thin wire. Over the frequency range, the wire has length .3A to 3A.
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(h) This figure compares the Log scale plot of Relative Error of the X component of scattered
electric field at observation point < 10, 10, 10 > computed by the new SPPF-FMOR (x) algorithm
and by the previous ETAS-FMOR (.) inethods plotted versus fiequency. Both methods are usiIlg
ETAS-based multipoint MOR. The ROM produced by new SPPF-OSV-FMOR achieves roughly
10 to 100 times better accuracy than the previous ETAS-OSV-FMOR method across the frequency
range, although at some points it is worse.
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(i) Long thin wire. Over the frequency range, the wire has length .5A to 5A.
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(j) This figure compares the Log scale plot of Relative Error of the X component of scattered
electric field at observation point < 10, 10, 10 > computed by the new SPPF-OSV-FMOR (x)
algorithm and by the previous ETAS-OSV-FMOR (.) methods plotted versus frequency from
80MHz to 800 MHz for long thin wire example. The ROMs are designed to match additional
expansion points using ETAS-based nultipoint MOR. The SPPF-OSV-FROM algorithm achieves
10 to 10,000 times better accuracy over much of the frequency range.
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the electric field scattered from the wire between the SPPF-OSV-FMIOR algorithm

and the ETAS-FMOR algorithm using ETAS-MP. The results of this example really

highlight the strengths of the new algorithm. The improvement in accuracy quite

good, but not as good as the SPPF-RHSMP-FMOR, results of the previous chapter,

and it would be nicer to demonstrate even better accuracy since output selection

vectors often reduce the state that a ROM must characterize to retain accuracy.

Furthermore, once again, over a small portion of the frequency range, the error of the

SPPF-OSV-FMOR ROM reaches almost 100% . Yet again, for a third time, there

seems to be no (dips in error at the additional expansion points, which highlights

the poor performance of ETAS-based multi-point and motivates use of the RHSMP

presented in chapter 6.

7.3.2 Results for SPPF-OSV-RHSMP-FMOR Algorithm

This subsection shows results for computation of the x component of scattered electric

field at the observation point < 10, 10, 10 > using the SPPF-OSV-RHSMP-FMOR

algorithms and compares these results those of the ETAS-based FMOR to show the

improvements of this algorithm. The ROMs are of equal size and were generated

using equal truncation order and each with additional expansion points at 250 MHz

and 600 MHz.

The results in figure 7-2(n) compare the error in the computed x component of

the electric field scattered from the wire in figure 7-2(m) between the SPPF-OSV-

RHSMP-FMOR algorithm and the ETAS-FMOR. The improvement in ROM accu-

racy due to SPPF and RHSMP has jumped considerably almost 100-fold relative to

the ETAS-FMOR ROM! Furthermore, dips in error are clearly visible near the addi-

tional expansion points (would be even clearer if the expansion points and more points

around them were plotted), which clearly highlight tile positive impact of RHSMP.

Figure 7-2(m) shows the longer wire which is "'electromagnetically larger" in this

full-wave analysis regime. Figure 7-2(p) compares the error in the computed x com-

ponent of the electric field scattered from the wire between the SPPF-OSV-RHSMP-

FMOR algorithm and the ETAS-FMOR. Tile improvement in ROM accuracy due to
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(k) 4 Spheres in a row. Over the
the row has length of .6A to 6A)
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(1) This figure compares the Log scale plot of Relative Error of the X component of scattered
electric field at observation point < 10, 10, 10 > computed by the new SPPF-OSV-FMOR (x)
algorithm and by the previous ETAS-OSV-FMIOR (.) methods plotted versus frequency from
80MHz to 800 MHz for the row of 4 spheres example. The ROMs are designed to match additional
expansion points using ETAS-based multipoint MOR. the SPPF-FMOR RC)OM achieves 1,000 to
1,000,000 times better accuracy than the ROM produced by ETAS-FMOR over much of the
frequency range!
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(m) Long thin wire. Over the frequency range, the wire has length .3A to 3A.
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(n) This figure compares the Log scale plot of Relative Error of the X component of scattered
electric field at observation point < 10, 10, 10 > computed by the new SPPF-OSV-FMOR (x)
algorithm and by the previous ETAS-OSV-FMIOR (.) methods plotted versus frequency from
80MHz to 800 MHz for the long thin wire example. The SPPF-OSV-FMOR ROM achieves 1,00
to 10,000 times better accuracy than the ROM produced by ETAS-FMOR over much of the
frequency range! This demonstrates a remarkable improvement in the SPPF-ROM's range of
accuracy due to the new RHSMP multipoint MOR algorithm.
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SPPF and RHSMP is even clearer, as the figure demonstrates 1,000 to 10,000-fold

improvement relative to the ETAS-FMOR. ROXM! Furthermore, as in the previous

example, dips in error are clearly visible near the additional expansion points (would

be even clearer if the expansion points and more points around them were plotted),

which clearly highlight the positive impact of RHSMP.

The final example scattering target of this chapter is the row of 4 spheres shown in

figure 7-2(q). The results, shown in figure 7-2(r), compare the error in the computed

x conlponent of the electric field scattered from the wire between the SPPF-OSV-

RHSMP-F7MOR. and the ETAS-FMOR algorithms. The accuracy of the SPPF-OSV-

RHSMP-FMNiOR. ROM is astonishing, almost 100,000,000 times less error than the

ETAS-FM()R! The geomletry of the 4 spheres aligned in a row is particularly suitable

for SPPF-based analysis. but this final result suggests that RHSMP is required to

fully realize its potential!

In summary both SPPF-OSV-FMOR and SPPF-OSV-RHSMP-FMOR, demon-

strate significant improvements over ETAS-FMOR, for generating ROMs that char-

acterize the behavior of a, desired output quantity (y(s) = C(s)'J). Both the results

in this chapter and the previous chapter highlight the strong impact of multi-point

MOR. using RHSMP and potentially other multi-point algorithms (and suggest that

multi-point algorithms that are based on evaluating the ETAS at the additional ex-

pansion points are ineffective).
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(o) Long thin wire. Over the frequency range, the wire has length .5A to 5A.
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(p) This figure compares the Log scale plot of Relative Error of the X component of scattered
electric field at observation point < 10, 10, 10 > computed by the new SPPF-OSV-FMOR. (x)
algorithm and by the previous ETAS-OSV-FMIOR (.) methods plotted versus frequency from
80MHz to 800 MHz for the long thin wire example. The SPPF-OSV-FMOR ROM achieves 1,000
to 100,000 times better accuracy than the ROM produced by ETAS-FMOR over much of the
frequency range! This demonstrates a remarkable improvement in the SPPF-ROM's range of
accuracy due to the new RHSMP multipoint MOR algorithm.
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(q) Spheres in a row. Over the frequency range, each sphere has diameter of .Ol\ to .1A and
the row has length of .6A to 6A
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(r) This figure compares the Log scale plot of Relative Error of the X component of scattered
electric field a-t observation point < 10, 10, 10 > computed by the new SPPF-OSV-FMOR (x)
algorithm and by the previous ETAS-OSV-FMOR (.) methods plotted versus frequency from
80MHz to 800 MHz for the long thin wire example. The SPPF-OSV-FMOR ROM achieves
100,000,000 times better accuracy than the ROM produced by ETAS-FMOR over most of the
frequency range!!! This demonstrates a remarkable improvement in the SPPF-ROM's range of
accuracy due to the new RI-ISIP nultipoint MOR. algorithm.
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Chapter 8

Extending Segmentation by

Primary Phase Factors to

incorporate PFFT sparsification

algorithm

The SPPF algorithm for model order reduction proposed in sections 4 and 7 did not,

discuss sparsification techniques, which are often utilized in conjunction with iterative

methods for solving large linear systems of equations. The SPPF algorithm dlepends

on access to the dense systerl matrices in order to separate each frequency dependent

exponential into a primary component e-iki (integer multiple of 1) and a remainder

collpollent. e-ik'd.

The entries of the system matrix can be segregated,

-ikr, . .e-ik (RIl, d,,,,, ) v -ikd,Zn17 = ~Zrrn = jlnm7n-il e (8.1) 
rrrln 'rrrn IrrnM

where /,n, C 1,.. f. Computing the remainder terms, using equation 8.1, is the first

step in segregating the system matrix into multiple matrices, each corresponding to

a primlary phase factor, as follows:
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Z(s) - k'R PoZ(s) + -ikRP1Z(s) +- +-i RnLPriZ(s) (8.2)

This first step of the SPPF algorithm may present a problem when sparsification

algorithms such as PFFT are considered, because the chief advantage of the PFFT

algorithm comes from the fact that the system matrices are never constructed and

are not required for iterative solution techniques such as generalized minimum resid-

ual (GMRES), since the PFFT algorithm supplies the results of the matrix-vector

products without forming the system matrices.

Fortunately, it turns out that SPPF-Dense can be modified to incorporate the

PFFT algorithm without too much difficulty. In fact, implementation of the SPPF

algorithm for PFFT (SPPF-PFFT) is less complex than SPPF for non-sparsified

(SPPF-Dense) systems (described in chapter 4). SPPF-Dense requires access to the

factor multiplied with frequency in the exponent of terms in the system with exponen-

tial frequency dependency. Thus, the key to extending SPPF to include sparsification

techniques is to identify the frequency dependencies in the sparsified (PFFT) repre-

sentation of the system.

By examining the PFFT algorithm,

Z(s)J [WTGGW + NEX- NG]J

WT-l(diaag(y(g))F(JG)) + (NEX - NG)J, (8.3)

it is clear that the projection and interpolation matrix, W. contains no frequency

dependence and that the precorrection matrices NG and NEX contain separation

distance factors of frequency in their exponent which have a maximum possible value

equal to the diameter of a 27 cell cube of neighboring grid cells, and thus should be

accurately approximated by low order truncated Taylor expansions.

Furthermore. equation 8.3 illustrates that only the convolution matrix GG(S) has
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terms with exponentials that have exponent factors of frequency large enough so that

some of its elements cannot be accurately approximatedl by low order truncated Taylor

series. Depending on the ratio of the maximnum grid point separation distances present

to the minimum wavelengths being examined, it may be necessary that a very large

number of terms must be kept from the series, or otherwise the truncated portion

of the series will not be negligible. Thus, the convolution matrix GG(s) is the sole

focus of attention for applying SPPF concepts to the PFFT algorithm, but because

of the Fourier transfornl properties that relate convolution in the original domain to

multiplication in the transform domain, the vector gc (much smaller than GG(S)) is

segregated into primary phase components to obtain

zJ e -kR WT(PihG) * JG + (NEX - NG). (8.41)
j=(

The summation with the primary phase factors e- ' tR can be pulled out of the

convolution because convolution is a linear operation. Notice that the precorrection

N G and NEX terms are unaffected by the SPPF algorithm since none of the sepa-

ration distances (whether between panel points or grid points) exceed R. Replacing

the convolution operation with FFT and IFFT algorithms yields

ZJ e-ikRJWTF-l(diag(YF(PjhG))T(JG)) + (NEX -NG)J (8.5)
j=o

Summing the various scalar and vector potential contributions and substituting a

truncated Taylor approximation for gG(kr), results in

ZiJ, ;~ < ~-kIRJwTrl(~ di~laq(Pj
E -iki C( d 1 a9 (Pj l hGIl I)]) J(c1 [n] )

j=0 7=0

' (NEXI- NGI)J. (8.6)

which corresponds to computing the matrix-vector products with the blocks Z in the
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top row of the ETAS alnd summing those terms in the truncated Taylor Expansion .

Examining s.6, wie can see that modifying SPPF to incorporate PFFT is actually eas-

ier to implement than SPPF for the original unsparsified (dense) system matrices for

several reasons: 1) PFFT diagonalizes the matrix corresponding to convolution with

the Green's function by projecting edge quantities to grid-point quantities. Thus, in

SPPF-MOR-PFFT only rnc quantities in the Green's function vector need to be Seg-

regated by their Primary Phase Factors as opposed to n for the dense unsparsified

system matrices. To apply SPPF-Dense, we have to segregate the entire system mna-

trix by primary phase components, while for SPPF-PFFT we only need to segregate

the 9G vector. 2) SPPF-Dcnse has to handle cases where the four panels associated

with a particular edge pair are not all classified into the same bin corresponding to the

closest integer multiple of R, while for SPPF-PFFT, the grid point pair separation

distances are unique, and thus every grid point pair has phase contribution from only

one primary phase factor. Key steps for Segregation into Primary IPhase Factors with

the PFFT algorithm are illustrated in figure 8-2, below.

8.1 Extending SPPF-PFFT for full-wave Model Or-

der Reduction

,Applying MOR to the SPPF-PFFT algorithm is straightforward and the same process

Ias discussed in sections 4.5 and 5.3. WVe briefly outline the steps involved to apply of

MOR to the system in conjunction with SPPF-PFFT, starting by applying SPPF to

the expanded state space system matrix from equation 2.28, obtaining

Zo 0 -.-

j=o

'Note: equation 8.6 incorporates the new state vectors introduced in 2.70
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12 I312

Figure 8-2: Segregation by Primary Phase Factors with PFFT Sparsification: This
figure is similar to figure 4-2 except that it shows how PFFT Green's function grid-
point to grid-point interactions can be segregated into SPPF bins and the associated
primary phase factors. Precorrection all takes place in the 0th bin with a primary
phase factor of one, such that precorrectioln routines and quantities are unaffected by
the SPFF algorithm.
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O O O O~~,T-

Jo

J1

JLT-1

B. (8.7)

Using sparsification techniques, this system matrix is never actually created. Solv-

ing the ETAS with iterative methods such as GMRES requires only matrix-vector

products. Generating the projection matrix V, which spans the Krvlov subspace

described inr, also only consists of Inatrix-vector products. Therefore, during a ma-

trix vector product with the SPPF-ETAS, each of the dense blocks in the top row

is "realized" by using the PFFT to compute the corresponding contribution of that

particular block to the Inatrix-vector product, as described in previous sections 2.6.4

to 2.6.8.

In a sparsified solver, the ETAS is never constructed explicitly, and equations 8.7

are only realized in terms of matrix-vector multiplications. The entries in the top row

correspond to application of the PFFT algorithnl to a portion of the extended current

density state vector (or vector of same size). Thus, at each grid point, n7 derivatives

of the corresponding 9G entry must be stored, with the primary phase factors removed

(divided out). The Krylov projection vector,V, is generated directly from the system

in equation 2.70 (without any application of SPPF).

To reduce equation 8.7 and obtain a reduced order model, premlultiply by VT and

postnmultiply by V to compute

z (S) e- ikRJiVTPj (RI - (S ST) ZR2)VJT
j=0

j=O

(e- ikRjVTP.& = C eikRji, (8.8)
J=0 J=0
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just as before with dense matrices. The ROM is explicitly created and is segregated

by primary frequency factors. Above, Z(.s) represents the entire system in equation

8.8 and Z(s) is the reduced order matrix.

8.2 Results for SPPF-PFFT-FMOR applied to EM

Scattering analysis

The SPPF-PFFT algorithm has not yet been implemented for the impedance extrac-

tion solver, so the results in this section are restricted to EM scattering examples.

Two example structures were chosen to demonstrate the utility of the SPPF-PFFT-

FMOR algorithms for Electromagnetic Scattering Computations.

* Long thin wire

* 4 spheres in a row

For both example structures, the source is a plane wave traveling along the axis

of symmetry, exciting the scattering targets between frequencies of 80 MHz and 800

MHz, and for both example problems, the relative error is compared between SPPF-

MOR and the traditional MOR methods for zT = 8. As these results were obtained

much earlier that the results in previous chapters, the truncation order used to obtain

these results is 2 orders higher and the R parameter is much smaller (or i parameter

is much larger), so the resulting ROMs are correspondingly more accurate.

Figure 8.2 demonstrates 10 to 100-fold improvement for SPPF-FMOR ROM ac-

curacies vs pre-existing FMOR-ETAS methods over the entire frequency range us-

ing both the dense-mratrix and PFFT-accelerated iterative solvers. For both SPPF-

FMOR andl FMOR-ETAS, the PFFT and dense solutions are difficult to discern from

each other on the graphs because they coincide in most2 locations.

2The lifferenclles are probably due to thlle fact that, the P'FF implement ation is a Galerkin
procedulre. while the dense implemenltation uses a RVG basis and( centroi(d delta function testing
fimctions.
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(a) Long, thin wire. For the frequency range of analysis, the wire has length of .3A to 3A.

0
0o

0 I
ea
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A)

0 1 2 3
Frequency

4
(in 100's

5
MHz)

6 7 8

(b) Log of Relative Error vs frequency. This plot compares the new SPPF-FMOR algorithm
to the pre-existing FMOR-ETAS methods,. The dense(o) and PFFT(V) SPPF-FMOR ROMs
achieves 10 to 100 times better accuracy than the dense(.) and PFFT(A) ROMs produced by
the FMOR-ETAS method, over the entire frtequency range!
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Figure 8.2 demonstrates 1.0,000 to 1,000,000 implrovernent for the dense and PFFT

SPPF-MOR, ROM accuracies vs the dense and PFFT ROMs generated by pre-existing

ETAS-FMOR method over much of the entire frequency range.

Both sets of results show that the dense and PFFT solutions are practically su-

perimposed on top of each other at many points, and the few differences are probably

due to the fact that the choice to use the same PFFT interpolation and projec-

tion operators results in a Galerkin discretization for the PFFT solver, as opposed

to non-Galerkin discretization, utilizing RWG basis functions and centroid-based

delta testing functions, of the dense solver that was described in earlier chapters.

Both the PFFT and Dense solver results strongly support the notion that SPPF-

FMOR will be of great benefit to EM scattering applications. Furthermore, once

the SPPF-based multi-point techniques (SPPF-MR.HSP-FMOR) are incorporated

into the SPPF-PFFT-FMOR algorithm, the accuracy improvement should be even

greater!
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(c) 4 Spheres in a row. For the frequency range
.01A to .1A and the row has length of .6A to 6A)

To

so cC-4

to
C "It

oo
I

of analysis, the spheres each have diameter of

0 1 2 3 4 5 6 7 8
Frequency (in 100s MHz)

(d) Log of Relative Error vs frequency. This plot compares the new SPPF-FMOR algorithm
to the pre-existing FMOR-ETAS methods. The dense(o) and PFFT(V) SPPF-FMOR ROMs
achieves 10.000-1,000,000 times better accuracy than the dense() and PFFT(A) ROMs produced
by the FMOR-*ETAS method, over the entire frequency range!!!
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Chapter 9

Multi-parameter, full-wave MOR

(MPAR-FMOR)

Electromagnetic analysis of impedance extraction and scattering problems frequently

involve other parameters in addition to frequency. Sometimes it is desirable to extract

impedance models that, are function of geometrical parameters of the interconnect

line, such as ,width and length, for interconnect analysis. Techniques to do this have

been (lescribed in the literature [9]. In EM scattering analysis of airplane radar

signals scattering from ground targets, there are also other parameters of interest.

Since airplalnes fly, angle at which the incident field contacts the scattering object

-will change as the airplane moves. Thus, for these types of solvers, look angle is

a. significantl parameter in addition to the frequency of the incident signal, and it

would be of great value to generate accurate Reduced Order Models (ROIMs) which

cllracterize both the frequency and look a.ngle behavior of the original system.

The sections of this chapter address several possible techniques to generate ROM's

that. are parameters of frequency and additional parameters. Since multi-parameter

M:IOR (IPAR.-MOR) algorithmls already have been developed and described in [9]

for the impl)edalnce extraction, this dissertation will not attempt to re-examine them.

However, the subsequent sections of this chapter will discuss potential techniques

,and present new MOR algorithms for generating multi-parameter ROM's for EM

scattering analysis in full-wave regimes.
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9.1 ROMs that include frequency and zenith look

angle

To consider how we might generate ROMs which include the zenith look angle as a

parameter we first examine how the incident field depends on the zenith look angle.

For an incident plane wave approaching along the z' axis, with look angle of 0 radians,

each entry has the form e- ikz. Basically, as shown in Appendix B, one can think about

the look angles as a rotation from the -axis through the zenith look angle, and with

that perspective, the mth entry would be

eikz',l = ikz,, cos(A) (9.1)

Thus, including the zenith look angle parameter, the right hand side would be

PikRip £ = ikR&ip r7eikz cos(Ak) (9.2)
j= j=o

and expanding the source vector into a Taylor Series representation would yield an

'mth entry proportional to

eikz',,, = eik z,, cos(A()(l + [i(k - kT)Zn cos(A)] + + [i(k - kT)zm cos()]l +

(9.3)

The key observation, in order to develop a two parameter ROM, is that one can

choose the expansion variable to be j(k - kT) cos(A0b) instead of j(k - kT), and then

the ETAS approximation of the system is

(S)= i) ZC P-ii(1 - (s - ST)Z2 )

J=O
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where ( = i(k - kT)cosAO. Note that we chose ETAS rather than ETASR to

approximate the system because the right hand side of equation 8.8 has a different

expansion variable than the left hand side. As before, to construct a projection

nmatrix, each of the Taylor terms i the right hand side are added into the Krvlov

subspace, which results in a larger RO1\. Since equation 9.4 preserves the distinct

Taylor expansion variables on each side of the equation in the ROM, the approach

in 9.4 can be used to include frequency and zenith look angle directly into the ROM

without any additional computation cost, as follows:

(s) = ekRe j P3 ( l +j(k - kT)ZR2)J

j-()

j=o (· (TT - 1!f
fl nT -1 

= Z ikJ(J+ -lj+ + )(nT-l)j) (9.5)

Equation 9.5 is a, multi-parameter R.OM including both fequency andl zenith look

angle developed using SPPF-FMOR techniques and which could be generated using

the PFFT algorithml to take advantage of sparsification.

While this algorithm for SPPF-based. imulti-paramreter, with frequency and zenith

look angle., and Full-wave Model Order Reduction (SPPF-MPABRZLA-FMOR) has

been inlplemented for the EM scattering problem, there has been insufficielt time to

collect and compare results to include in this dissertation docuiment.

9.2 ROMs that include frequency, full look angle

parameters, and geometrical parameters

The extensions necessary to develop and implement MOR algorithms that generate

ROMs containing frequency and the filll set of look angle parameters will likely be

qllite (lifferent that the algorithm (leveloped in the section 9.1 for frequency and
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the zenith look angle. The methods in 9] seem to apply straightforwardly, but the

complicated implementation details are beyond the scope of the dissertation. In other

words, this topic is the subject of ongoing research and hopefully filture publications.
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Chapter 10

Other Contributions

10.1 New Formulation for Impedance Extraction

Model Order Reduction with ETAS or SPPF-ETAS to a ROM of size q requires

solving a large systems of equations q times. Since the fastest way to accomplish this

is usually by iterative techniques [40], it is very important to use fornmulations that

has matrices with low condition numbers.

In order to facilitate model order reduction for Impedance extraction models, one

can modifyr the formulation so that rational functions of the frequency parameter

are elirninated in each entry and the entries becomne polynomrials of the frequency

paramneter k. This modification simplifies analytic computation of the derivatives

with respect; to k. Furthermnore, rescaling branch and node quantities by the speed of

light will improve conditioning of the following system:

IkR + (ik)2CoL(ik) O
Z(i:-k)J = M + O P) MTJ = ikB (10.1)

y = i:BTZ(ik)-'B

Thle ik introduced into the right hand side does not complicate MOR because it is

only a scalar factor.
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10.2 Poor Conditioning of the ETAS and SPPF-

ETAS required for FMOR

Even with the improved conditioning of the new formulation 10.1, the ETAS re-

quired to facilitate MOR, will have very poor conditioning because the Zj blocks

(corresponding to frequency derivates of those blocks of the system matrix) in the

top row have very different magnitudes. One can see this by examining the elements

of Z(ik) in equation 10.1 which have the form P(ik) -Z': where k is the frequency vari-

able, also known as the wave number, defined by ik = p(ik) is just a polynomial

in ik, and r represents the interaction distances corresponding to each elernent. In

equation 2.70, the Zj blocks in the top (block) row represent the successive terms

of the Taylor series approximation to equation 10.1, and the elements of the ith

matrices will have the form ri-le - ik r. Thus, the blocks Zj will have very different

magnitudes, resulting in poor conditioning for the overall system.

In SPPF algorithmrs, frequency derivates of the system matrix correspond to fre-

quency derivates of the SPPF remainder matrix which contain remainder phase fac-

tors. Since the distances in the remainder phase factors are much smaller, the scaling

problem and conditioning will be even worse for the SPPF-ETAS expanded from the

SPPF-remainder matrices.

10.3 A method to Improve Conditioning for the

ETAS and SPPF-ETAS

Letting A = 'i(k - k), the following alterations to the formulation described in

equation 2.70 will improve conditioning for both ETAS and SPPF ETAS:
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In Equation 10.2, the /3 parameter is a representative distance, rimabe an average

for the entire block. With judicious choice of ,, this modification improved the system

conditioning dramatically, by rescaling the blocks Zj. The examples we studied

demonstrated an improvement in the condition number of the SPPF-ETAS ranging

between 5-10 orders of magnitude.

10.4 A method to Improve Conditioning for the

SPPF-ETAS

Letting A == i(k - kT), the following alterations to the SPPF-ETAS formulation of

equation 4.6 will improve conditioning:

Zo 0 . -
2(.s)g Z e' jP 0

j=(
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As before, the value of the 3 parameter in Equation 10.3 is selected to be a rep-

resentative distance, maybe an average for the entire block. With judicious choice

of 3, this modification improved the system conditioning dramatically, by rescaling

the blocks Zj. As for the ETAS, the examples we studied demonstrated an improve-

ment in the condition number of the SPPF-ETAS ranging between 5-10 orders of

magnitude.
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Chapter 11

Conclusion

Co mputational electromagnetic analysis is used to extract impedance models for the

interconnect that connects the components on SoBs and SoP's which operate over a,

wide frequency bandwidth. While these parameter-dependent models accurately char-

acterize the parameter-dependent behavior of the original interconnect system, the

models correspond to extremely large paramreter-dependent linear systems of equa-

tions tha.t require enormous cornputational resources to solve. As a result of the

moclel complexity, simulating the interconnect and the components is infeasible rusing

the solver-generated impedance models.

Computational electromagnetic analysis is also used to compute models that ac-

curately characterize the paralneter dependent scattering behavior when electromag-

netic waves scatter from a targets of interest. The parameter dependent models can

be solved to compute induced current densities at individual parameter points, and,

once the in(luced current densities are known, other quantities of interest are easily

computed, such as scattered fields at observation points and radar cross sections,

at those paranmeter points. However, as in the case of the impedance models, these

extremely large paralmeter-dependent linear systems of equations require enormous

computational resources to solve. The size of these models often precludes use in

inverse scattering applications and for large parameter sweeps solves of the system.

Model Order Reduction (MOR) algorithms generate reduced order models (ROMs)

that approximate the parameter-dependent behavior of the original systemn over a

163



limited frequency ranrge. This frequency range call be extended by techniques known

as multi-point MOR. Since, the resulting reduced order models can be solved very

rapidly, MOR. can enable a simulation, rapid parameter sweeps, and a variety of

inverse scattering applications. The computational cost to construct the ROM is

usually equivalent to a few solves of the system. However, the pre-existing MOR

methods are unable to efficiently and accurately characterize frequency behavior of

systems over a large enough parameter range when source wavelengths of interest

are comparable or smaller than the diameter of the geometry, otherwise known as a

full-wave regime.

Segregation by Primary Phase Factors (SPPF) is a new algorithm that enables

use of tradition MOR techniques to efficiently generate accurate reduced order mnodels

that characterize the parameter-dependent behavior of "Electromagnetically-Large"

geometries for full-wave analysis in a desired frequency range. This dissertation pre-

sented techniques to enable SPPF-based multi-point MOR (SPPF-MRI-ISP-FMOR),

to incorporate SPPF concepts into the Precorrected Fast Fourier Transform algorithm

(SPPF-PFFT) in order to compute rapid matrix vector products during MOR, and

to extend SPPF for approximation of systems with source vectors (SPPF-RHS) and

output selection vectors (SPPF-OSV) with complicated frequency dependencies. For

certain example problems, the SPPF-FMOR based techniques produced ROMs that

were 100,000,000 times more accurate than ROMs generated by the pre-existing MOBR

technique with an equal order of computational cost. The results presented in this

dissertation convincingly demonstrate that SPPF has great potential to efficiently

generate accurate reduced order models for two challenging full-wave computational

electromagnetic modeling applications, interconnect impedance extraction and scat-

tering analysis.

Topics for future research will include: exploring specific application problems in

order to transition the SPPF algorithms into existing technologies, exploring if tile

SPPF algorithms will extend to other sparsification methods, conducting an in-depth

analysis of the computational complexity of tools incorporating these techniques to

better understand how the various parameters are inter-related, and exploring possible
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approaches to apply integral equation based methods to frequency ranges ill hic

these techniques were not considered feasible (due to high panel counts) in the past.
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Appendix A

Survey of Military Ground Vehicles

1 The USA High Mobility Multipurpose Wheeled Vehicles (HMMWV) have ap-

proximate length of 4.57 meters, width of 2.16 meters, anid height of 1.83 meters.

2 The USA Shadow Reconnaissance Surveillance Targeting Vehicle (RST-V) has

approximate length of 5.45 meters, width of 2.057 meters, and height of 1.397-

1.674 mneters

3 The USA Paladin 155MM self-propelled HIowitzer has approximate length of

9.75 meters., width of 3.15 meters, and height, of 3.24 ineters.

4 The SA M60A3 main battle tank has approximate length with gun forward

of 9.44 Ineters, width of 3.63 meters, and height of 3.28 meters.

5 The US Army M1 Abrams Main Battle Tank has approximate length of hull of

7.47 meters and height of 2.65 mneters.

6 The USA Mi1A / M1A2 Abramrs main battle tanks have approximate length

with gun forward of 9.83 meters, width of 3.66 meters, turret height of 2.37

mreters.

7 The Russian T-72 main battle tank has approximate length with gun forward

of 9.53 meters, length of hull of 6.86 meters, width of 3.37 meters, and height

of 2.26 meters.
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8 The Russian T-80 main battle tank has approximate length with gun forward

of 9.66 meters, length of hull of 7 meters, width of 3.4-3.6 meters, and height

of 2.2 meters.
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Appendix B

Rotation of Axes

If there is a coordinate systein with x, y, and z axes, the cartesian variables can be

represented in terms of spherical coordinates as follows:

:; = rsin(d)cos(O)

y = rsin() sill(O)

- = cos(b ), (B. 1)

Similarly, a second coordinate system with x', y', and z' axes, the cartesian vari-

ables can be represented in terms of spherical coordinates as follows:

x' = r' sill(') cos(O')

x' = r'sin(') sin(0')

Z = r' Cos( ). (B.2)

If the second coordinate axes are merely rotated around the original origin point

andl not translated, then the rotation of Ac and AO radians could be represented in

spherical coordinates, as follows:
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O' = 0+AO,

In this case of rotation without translation, the variables x', y', and z' will have

the values

x' = r sin(Q + AS) cos(O + A0)

y = r sin(0 + AO) sin(O + AO)

' = rcos(¢b+ A).

If the only rotation is restricted to the zenith angle,

r = r

' = +A u

0' = 0,

then new coordinates x', y', and z' will have the values:

(B.4)

(B.5)

x' = r sin(0 + A) cos(O)

= r cos(6) sin(A0) cos(O) + 'r sin(0) cos(A0) cos(O)

= - sin(zAi( ) + X cos(A0)

y =- sin() + iAn)) sin(f)

= r cos() sin(Ar) sirln(O) + ,r sin(&) cos(A0) sin(O)
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ZY
= --- sin(o) + l/cos(AQ)
p

' = ' cos( + )

= r cos(C) cos(A/)) + r sin(O) sin(A)

= zcos(A6) + psin(Ad),

where p = + Therefore a rotation of axes for only zenith angle would

merely scale the exponent of the source terms by the cosine of the zenith angle shift

(B.7)
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