
Approaches to multi-agent learning

by

Yu-Han Chang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree o

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY'

"May 2005

@ Massachusetts Institute of Technology 2005. All rights reserved.

A uthor
Department of Electrical Engineerin4(and Computer Scieni3

May 20, 2005

Certified by (
L l

Leslie Pack Kaelbling
Professor of Computer Science and Engineering

Thesis Supervisor

RKER

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS IN E
OF TECHNOLOGY

OCT 2005

LIBRARIES3

MASSACHUSETTS INSTJE
OF TECHNOLOGY

OCT 2 12005

LIBRARIES

... . .

2

Approaches to multi-agent learning

by

Yu-Han Chang

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Systems involving multiple autonomous entities are becoming more and more promi-
nent. Sensor networks, teams of robotic vehicles, and software agents are just a few
examples. In order to design these systems, we need methods that allow our agents
to autonomously learn and adapt to the changing environments they find themselves
in. This thesis explores ideas from game theory, online prediction, and reinforcement
learning, tying them together to work on problems in multi-agent learning.

We begin with the most basic framework for studying multi-agent learning: re-
peated matrix games. We quickly realize that there is no such thing as an opponent-
independent, globally optimal learning algorithm. Some form of opponent assump-
tions must be necessary when designing multi-agent learning algorithms. We first
show that we can exploit opponents that satisfy certain assumptions, and in a later
chapter, we show how we can avoid being exploited ourselves.

From this beginning, we branch out to study more complex sequential decision
making problems in multi-agent systems, or stochastic games. We study environments
in which there are large numbers of agents, and where environmental state may only
be partially observable. In fully cooperative situations, where all the agents receive a
single global reward signal for training, we devise a filtering method that allows each
individual agent to learn using a personal training signal recovered from this global
reward. For non-cooperative situations, we introduce the concept of hedged learning,
a combination of regret-minimizing algorithms with learning techniques, which allows
a more flexible and robust approach for behaving in competitive situations. We
show various performance bounds that can be guaranteed with our hedged learning
algorithm, thus preventing our agent from being exploited by its adversary. Finally,
we apply some of these methods to problems involving routing and node movement
in a mobilized ad-hoc networking domain.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

I am indebted to my advisor Leslie Kaelbling for her vast stores of wisdom, her

generous capability for finding time to share it, her invaluable guidance and encour-

agement, and her infinite patience while I searched for my research bearings. I would

also like to thank my thesis committee members, Tommi Jaakola, Michael Littman,

and John Tsitsiklis, for their helpful advice and insights. This thesis would not have

been possible without the enduring support of my parents, who have encouraged me

in the pursuit of knowledge and wisdom throughout my life, and Tracey Ho, who has

been my love, light, and inspiration throughout the writing of this thesis.

5

6

Contents

1 Introduction

1.1 M otivation .

1.2 The approach .

1.3 Scaling up

1.4 Highly complex domains

1.5 A specialization: cooperative, single-designer systems

1.5.1 Mobilized ad-hoc networking

1.6 Thesis contributions

2 Background

2.1 Repeated games

2.1.1 Mathematical setup

2.1.2 Prior work .

2.1.3 Solving for Nash equilibria

2.1.4 Correlated Nash equilibria

2.1.5 Game theoretic perspective of repeated games

2.2 Regret-minimization and online learning

2.2.1 Prior work .

2.2.2 A reactive opponent

2.3 F iltering .

2.4 POMDP methods .

2.4.1 Markov decision processes

2.5 Mobile ad-hoc networking

7

21

22

24

24

25

27

27

30

33

. 3 3

. 34

. 37

. 39

. 41

. 41

. 44

. 44

. 45

. 47

. 48

. 50

. 52

2.5.1 Node movement . 52

2.5.2 Packet routing . 52

2.5.3 Learning . 53

3 Learning in repeated games 55

3.1 A new classification . 56

3.1.1 The key role of beliefs . 59

3.1.2 Existing algorithms . 59

3.1.3 The policy hill climber . 62

3.2 A new class of players and a new algorithm 63

3.2.1 A new algorithm: PHC-Exploiter 64

3.2.2 Analysis . 66

3.2.3 Experimental results . 68

3.3 Combinations of methods . 69

3.4 Conclusion . 71

4 Large sequential games 75

4.1 The problem setting . 75

4.1.1 Stochastic games . 75

4.1.2 Partial observability . 76

4.1.3 A motivating application . 77

4.1.4 Credit assignment . 78

4.2 A simple solution: Filtering the reward signal 79

4.3 Mathematical model . 80

4.3.1 Kalman filters . 81

4.3.2 Q-learning . 82

4.3.3 Model solving . 82

4.4 Algorithm . 84

4.5 Experiments . 85

4.5.1 Idealized noisy grid world . 88

4.5.2 Multi-agent grid world . 91

8

4.5.3 Mobilized ad-hoc networking

4.6 Discussion

4.6.1 Limitations

4.6.2 Model assumptions

4.6.3 Averaging rewards

5 Learning with uncertain models

5.1 Regret-minimizing methods

5.2 Mathematical setup

5.2.1 Reactive opponents

5.3 Extending the experts framework

5.3.1 Evaluating all possible strategies

5.4 Learning Algorithms as Experts

5.4.1 Exam ple

5.5 The Hedged Learner

5.5.1 Naive approach

5.5.2 Hierarchical hedging

5.5.3 Practical comparisons

5.6 Experimental Results

5.6.1 Hedging between models

5.6.2 Non-stationary environments

5.7 Approximately optimal solutions to MDPs

5.8 Extensions

6 Mobilized ad-hoc networking

6.1 Domain overview

6.1.1 Performance benefits of mobility . .

6.2 The routing problem

6.3 The movement problem

6.4 Application of our methods

6.4.1 Routing

94

. 96

. 97

. 99

. 103

109

. 110

. 112

. 112

. 114

. 117

. 117

. 119

. 120

. 121

. 123

. 126

. 127

. 127

. 130

. 131

. 133

135

. 135

. 136

. 138

. 140

. 142

. 142

9

6.4.2 Movement 142

6.4.3 Basic Q-learning . 143

6.4.4 Filtered learning . 143

6.4.5 Gradient methods . 144

6.4.6 Hedged learning . 144

6.5 Empirical results . 145

6.5.1 Empirical results for routing 145

6.5.2 Empirical results for movement 151

7 Conclusions and future work 157

7.1 Richer regret . 160

7.2 The swarm . 160

7.2.1 Swarm challenges . 161

10

List of Figures

2-1 Some common examples of single-shot matrix games. 36

2-2 This figure shows an example of a network game. There are seven

players in this game, and the links between the players represent re-

lationships between players that results in direct payoff consequences.

For example, Player l's payoffs are only affected by its own actions,

and the actions of Player 2 and Player 3. They are only indirectly

affected by the action choices of the remaining four players, if Players

2 or Player 3's action choice is influenced by the rest of the players. . 39

2-3 This figure shows the Matching Pennies game in extensive form. Clearly,

the extensive form is a more general representation, since we can now

allow the players to move sequentially and possess different information

sets. Though not needed in this particular game, the extensive form

representation can also include probabilistic choice nodes for "Nature",

which can be used to account for randomness in the reward structure. 40

3-1 Theoretical (top), Empirical (bottom). The cyclic play is evident in

our empirical results, where we play a PHC-Exploiter player 1 against

a PHC player 2 in the Matching Pennies game. 72

3-2 Total rewards for the PHC-Exploiter increase as we gain reward through

each cycle, playing against a PHC opponent in the Matching Pennies

gam e. 73

11

4-1 As the agent in the idealized single-agent grid world is attempting to

learn, the reward signal value (y-axis) changes dramatically over time

(x-axis) due to the noise term. While the true range of rewards in this

grid world domain only falls between 0 and 20, the noisy reward signal

ranges from -10 to 250, as shown in the graph at left. 85

4-2 Given the noisy signal shown in Figure 4-1, the filtering agent is still

able to learn the true underlying rewards, converging to the correct

relative values over time, as shown in the middle graph. 86

4-3 The filtering learning agent (bold line) accrues higher rewards over time

than the ordinary Q-learner (thin line), since it is able to converge to

an optimal policy whereas the non-filtering Q-learner remains confused. 86

4-4 The filtering model-based learning agent (bold line) is able to learn an

optimal policy much quicker than the filtering Q-learning agent (thin

line), since it is able to use value iteration to solve for the optimal

policy once the personal reward signals have been accurately estimated. 87

4-5 This shows the dynamics of our 5x5 grid world domain. The states

correspond to the grid locations, numbered 1,2,3,4,...,24,25. Actions

move the agent NS,E, or W, except in states 6 and 16, where any

action takes the agent to state 10 and 18, respectively, shown by the

curved arrows in the figure at left. 90

4-6 The optimal policy for the grid world domain is shown at left, where

multiple arrows at one state denotes indifference between the possibil-

ities. A policy learned by our filtering agent is shown at right. The

learning algorithm does not explicitly represent indifference, and thus

always picks one action to be the optimal one. 90

4-7 Filtering agents are able to distinguish their personal rewards from

the global reward noise, and thus able to learn optimal policies and

maximize their average reward over time in a ten-agent grid-world

dom ain . 91

12

4-8 Another graph showing that filtering Q-learners converge. Unlike Fig-

ure 4-7, the exploration rate decay is slowed down, thus allowing all

the agents to converge to the optimal policy, rather than being stuck

in the sub-optimal policy. 92

4-9 In contrast to Figure 4-7, ordinary Q-learning agents do not process

the global reward signal and can become confused as the environment

changes around them. Graphs show average rewards (y-axis) within

1000-period windows for each of the 10 agents in a typical run of 10000

tim e periods (x-axis). 93

4-10 Once again, the filtered model-based agent is able to learn an optimal

policy in fewer simulation iterations than the filtered model-free Q-
learning agent. Note that the scale of the x-axis in this figure is different

from the previous figures. 94

4-11 A snapshot of the 4x4 adhoc-networking domain. S denotes the sources,

R is the receiver, and the dots are the learning agents, which act as

relay nodes. Lines denote current connections. Note that nodes may

overlap . 95

4-12 Graph shows average rewards (y-axis) in 1000-period windows as fil-

tering Q-learner (bold line) and unfiltered Q-learner (thin line) agents

try to learn good policies for acting as network nodes in the ad-hoc

networking domain. The filtering agent is able to learn a better policy,

resulting in higher network performance (global reward). Graph shows

the average for each type of agent over 10 trial runs of 100000 time

periods (x-axis) each. 96

4-13 Graph shows average rewards (y-axis) in 1000-period windows as filter-

ing model-based learners (bold line), filtered Q-learners (dashed line),

and unfiltered model-based learners (thin line) try to learn good poli-

cies for acting as network nodes in the ad-hoc networking domain. The

trials are run on a 5x5 grid, with 4 sources, 1 receiver, and 13 learning

nodes. 97

13

4-14 Graph shows average network connectivity in 1000-period windows as

filtered Q-learning agents (dashed line), hand-coded agents (bold line),

and random agents (dotted line) act as network nodes in the ad-hoc

networking domain. The trials are run on a 5x5 grid, with 4 sources,

1 receiver, and 13 learning nodes. 98

4-15 This graph shows the distribution of the noise term over time in the

idealized noisy grid world simulation. The graph closely mimics that of

a standard normal distribution, since the noise is drawn from a normal

distribution. 100

4-16 This graph shows the distribution of the noise term over time in the

multi-agent grid world simulation. As we can see, the distribution still

resembles a standard normal distribution even though the noise is no

longer drawn from such a distribution but is instead generated by the

other agents acting in the domain. 101

4-17 This graph shows the distribution of the estimated noise term over time

in the multi-agent ad-hoc networking simulation. This distribution

only vaguely resembles a normal distribution, but is still symmetric

about its mean and thus has low skew. 102

4-18 This graph shows the performance of a model-based learned using a

filtered reward signal (bold line) vs using an averaged reward signal

(thin line). The averaging method does not work at all within the

25,000 time periods shown here. 104

4-19 Average rewards fluctuate over time, rendering the average reward an

inappropriate training signal since it does not give the agents a good

measure of their credit as a portion of the global reward signal. . . . 105

4-20 This graph shows the noise term evolving over time. While the additive

term in each time period has a mean of zero, clearly the noise term bt

increased as the agents learn good policies for behavior. 106

14

4-21 This graph shows the average additive noise over time. While the mean

is very near zero, small deviations over time produce a noise term bt

that grows away from zero over time. 107

4-22 The source of the growing noise is clear from this graph. In these

experiments, we use filtered learning, and the agents are learning better

policies over time, thereby increasing the average global reward signal

over tim e. 108

5-1 Different variants of the Prisoner's Dilemna game exhibiting the need

for different commitment periods. 111

5-2 A possible opponent model with five states. Each state corresponds to

the number of consecutive "Cooperate" actions we have just played. . 119

5-3 This graph shows the performance of learning algorithms against a Tit-

for-Ten-Tats opponent. As the opponent model grows in size, it takes

longer for the learning algorithm to decide on an optimal policy. . . . 128

5-4 This chart shows the performance of different learning, hedging, and

hedging learning algorithms in a game of repeated prisoner's dilemma

against a Tit-for-Ten-Tats opponent. 129

5-5 In these trials, the opponent switches strategy every 15,000 time peri-

ods. It switches between playing Tit-for-Ten-Tats ("Cooperate for 10

Cooperates") and "Cooperate for 10 Defects". While the modeler be-

comes confused with each switch, the hedging learner is able to adapt

as the opponent changes and gain higher cumulative rewards 130

5-6 Graph showing the probability with which the weighted hedger plays

either a cooperating strategy or a defecting strategy against the switch-

ing opponent over time. 131

15

6-1 A comparison of directional routing vs Q-routing in a network with 10

sources, 15 mobile agents, and one receiver. Simulations were run over

20 initialization positions and 5 source movement scenarios for each

different initialization. For each buffer size, averages over all of these

trials are depicted, with error bars denoting one standard deviation. 146

6-2 Using the directional routing policy, packets often become congested

on the trunk of the network tree. Sources are shown as squares, mobile

nodes are circles, and the receiver is an encircled square. 147

6-3 In contrast to the situation in Figure 6-2, when we use Q-routing on the

same experimental setup (note that the source and receiver nodes are

in the same position as the both figures), the mobile nodes in the ad-

hoc network spread out to distribute packet load. Both figures show

the simulator after 10000 periods, using the same initialization and

m ovem ent files. 148

6-4 This graph shows a running average of successful transmission rates for

a sample network scenario under four cases: Q-routing with centroidal

movement, directional routing with centroidal movement, directional

routing with random movement, and Q-routing with random move-

m ent. 150

6-5 Graph showing the average performance of various movement policies

over time in a typical scenario. The learning policy is shown during its

training phase. The learning policy eventually exceeds the performance

of the hand-coded policy that uses the same observation space, but

never outperforms the global knowledge central controller. 152

6-6 Graph showing the hedged learner's probabilities of using its various

internal strategies in the mobilized ad-hoc networking domain over

time. In this scenario, the pre-trained policy worked very well, and we

can see that it is followed most of the time. 153

16

6-7 Graph showing the hedged learner's probabilities of using its various

internal strategies over time. In this case, the learning algorithm suc-

ceeds in learning a better policy than any of the fixed strategies. . . 154

6-8 Relative to the performance of the system when the nodes are purely

using the learning algorithm, the hedged learner suffers some loss since

it must spend time evaluating its other possible policies. It also con-

tinues to suffer higher variance in its performance even once it has

assigned high probability to following the learning algorithm, since it

still evaluates the other policies occasionally. 155

17

18

List of Tables

3.1 Summary of multi-agent learning algorithms under our new classifi-

cation that categorizes algorithms by their observation history length

and belief space complexity. 56

3.2 Table showing performance of the PHC-exploiter against different op-

ponents in various repeated games. Performance is given as average

rewards per time period, over 20 trials. The game payoffs are given in

F igure 2-1. 70

4.1 Table showing the mean, variance, skew, and kurtosis of the noise

distribution measured in the various experimental domains. 103

5.1 Comparison of the performance of the different methods for structuring

the hedged learner. 127

19

20

Chapter 1

Introduction

Learning enables us to adapt to the environment that surrounds us. By designing

learning algorithms for robots and intelligent agents, we enable them to adapt to the

environment into which we place them. This endeavor has produced many insights

into the theory and practice of a single-agent learning to behave in a stationary envi-

ronment. But what if the environment reacts to the agent? What if the environment

includes opponents, or other agents? How do we need to change our learning methods

to cope with a non-stationary or reactive environment?

Multi-agent learning captures an essential component of learning: the adaptivity

of a learning agent to the environment around the agent. Often when we speak of

learning in a single-agent domain, we implicitly assume that the environment is sta-

tionary. Our main goal in this single-agent case is to find a good policy for operating

in this stationary environment. Due to the environment's stationarity, the speed with

which we learn becomes secondary in importance to the eventual convergence of our

learning algorithm to a near-optimal solution. Accordingly, while many existing rein-

forcement learning methods can be shown to find optimal policies in the limit, they

are fairly slow to converge to this optimal policy.

In contrast, in multi-agent domains, the environment is assumed to change rapidly.

Our opponents are part of the environment, and they may adapt to the way we act.

They may indeed be trying to adapt to us as quickly as we are adapting to them.

Thus, our learning algorithms must emphasize speed and adaptivity. This changes

21

the focus in the design of good multi-agent learning algorithms from convergence

in the long run to good performance in the short run. The algorithms must adapt

quickly but still be able to achieve good performance within some given amount of

time.

1.1 Motivation

Bees dance to announce the finding of food. Ants count the number of run-ins with

other ants to determine their best current role, be it forager, maintenance, or drone.

Antelope congregate for safety from hunting lions. Chimpanzees can learn by ob-

serving the mistakes of fellow chimps. And humans can acquire new behaviors by a

variety of different means.

Whether these behaviors are learned or innate, they are invaluable for each species'

survival in a world populated by a multitude of other animals. Either the species as

a whole benefits from a cooperative behavior, or the individual benefits by avoiding

a mistake committed by someone else or perhaps learning a new skill invented by

someone else. While few people are prepared to call computer programs and robots

a new species, various computer programs will eventually populate cyberspace, and

increasingly sophisticated robots will begin to appear in the physical world around

us. As a research community, we have thus far devoted most of our time creating

intelligent agents or robots (henceforth called artificial agents, or simply agents) that

can operate in various human-centric but static domains, whether directly helping

humans in roles such as personal digital assistants or supporting human society in

forms such as robotic assembly line manufacturers. However, as artificial agents

become more prevalent and more capable, we may begin to see problems with this

focus on the single agent. The interactions between all of the created agents will

need to become a primary focus of our attention. The goals of the created agents

may begin to conflict with one another, or we may begin to see the potential for

cooperative behaviors amongst our agents.

At the most mundane level, consider a future fleet of autonomous vehicles, each

22

delivering people or goods to prespecified locations. Most likely there will be some

traffic information service that provides updates on traffic conditions for all of the

possible routes for each vehicle. If all the vehicles acted selfishly, choosing the shortest

route, the road system might experience bad oscillations in traffic volume. Ideally,

we could enable the artificial agents in these scenarios to learn to cooperate with

one another, settling on a policy of action that would be mutually beneficial. If we

were a transit agency, our goal might be the overall efficiency of the entire regional

road system. Or, if we were a luxury car manufacturer, our goal might be to design

an agent with the single selfish aim of getting to its precious occupant to his or her

destination as quickly as possible. Even in this case, the agent would have to rely on

its prediction of the actions of all the other vehicles in the road network in order to

achieve its desired goal. It could not operate as if the world were static, as if it were

the only adaptive agent operating on the roads.

These are only two possible scenarios within the wide range of situations that

might be encountered by a system of multiple agents. They are perhaps the most

salient because it is easy to imagine that we will have to deal with these situations

in the not-so-distant future. As such, these two scenarios represent the two main

types of multi-agent systems we will explore further in this thesis. We call the second

type "competitive, multi-designer systems" since the agents have conflicting goals

and may be designed by many different individuals, each trying to create an agent

that outsmarts all the others. In addition to purely competitive systems, we will also

explore situations where coordination among the agents might lead to higher payoffs.

The other type of situation is the "cooperative, single-designer system." In particular,

we will explore complex cooperative systems that can be trained via simulation. They

may or may not adapt further when actually deployed. The competitive agents, on

the other hand, may or may not be trained prior to deployment, but will necessarily

have to adapt their behavior in response to opponents once deployed and operating.

23

1.2 The approach

How do we begin studying such systems? Multi-agent domains are by their very

nature highly complex. In order to study these domains, we need to pare them

down to their bare essentials. One such setup is the repeated normal-form game. In

this framework, the environment is the simplest it can be: a set of N x N matrices

representing the rewards received by each agent, given a choice of actions by each

agent. This allows us to focus on the game dynamics in terms of the interactions of the

players, rather than their interaction with the environment. Most of the complexity

will stem from the changing nature of the opponent, and the constant tension between

trying to model and exploit the opponent while preventing the opponent from doing

the same to us.

We will explore this framework in Chapter 3. Among other results, we will demon-

strate that our beliefs about the types of opponents we are likely to face are very

important for designing good algorithms. Some of this work was previously described

by Chang and Kaelbling [2002].

1.3 Scaling up

From here, we try to increase the complexity of the environment, since it is hard to

imagine repeated normal-form games finding wide applicability in real-world settings.

Most real situations involve more complex environments that change as we act within

them. Thus, our actions should affect the evolution of the environment state. In

repeated normal-form games, we are always in the same state, playing the same

normal-form game.

Furthermore, the environment is often too large for us to observe everything at

once. If there are many agents operating in the same environment, we may not be

able to observe what everyone is doing at the same time. Thus, we need methods

that deal with this partial observability. Our approach is somewhat different from

the traditional approach in the literature on partially observable Markov decision

24

processes (POMDPs), where methods have been developed to use memory to keep

track of unobserved state variables. We also use a memory variable, but our main

idea is to filter the reward signal so that a single agent is able to receive a training

signal that is proportional to the credit that it is due. Thus, we do not explicitly track

the states of the other agents, other than to maintain a single memory variable that

summarizes the contribution of the rest of the system to the observed reward signal.

Some of this work was previously described by Chang, Ho, and Kaelbling [2004a].

1.4 Highly complex domains

While the filtering approach provides us with a simple method for resolving multi-

agent credit assignment in certain situations, its effectiveness is also limited. When

the number of agents grows large, or if the agents are self-interested, the filtering

approach cannot retrieve enough information from the observed reward signal to filter

out a good training signal. Furthermore, the filtering method implicitly assumes that

the environment, including the other agents, operates independently from the agent

in question. In an adversarial domain, however, this is no longer the case, and thus

the filtering approach would fail.

In such cases, we may need to develop a model of the world that explicitly in-

cludes the other agents. The states and potential actions of all the agents in the

system would have to be considered in order to estimate the value of an observed

state from one agent's perspective. However, as Bernstein et al. [2002] have shown,

even if we allow the agents to explicit communicate their partial state observations

periodically, the decentralized control of a Markov decision process (MDP) is in-

tractable. More specifically, in this case, it can be proved that there cannot be any

polynomial-time algorithms to accomplish this task. Given this predicament, we need

to resort to approximations or further assumptions in order to design algorithms (and

thus agents) that perform reasonably well in such domains. Policy search is one such

approximation [Peshkin et al., 2000].

Even worse, we can show that if we do not make any assumptions about the

25

opponent at all, then it is impossible to construct a learning algorithm that is optimal

over all possible opponents. We must either restrict our attention to certain classes of

opponents, or we must define a new notion of optimality. In this thesis, we introduce

a new algorithm that approximates traditional optimal performance against large

classes of opponents, and guarantees a regret bound against arbitrary opponents,

which can be considered as a new notion of optimality.

We consider the potential for using experts that may be able to provide us with

advice about which actions to perform. We might hope to resort to the advice of these

experts to help us focus our search on potentially fruitful policies. The problem we

then face is deciding between different expert advice. This framework can be used to

derive a variety of different learning algorithms that provide interesting guarantees. In

these combined learning algorithms, we can consider an individual learning algorithm

to be one of the experts that provides us with advice from what it has learned thus

far. We will call this approach hedged learning, since the algorithm hedges between

following the various experts. For example, we present an algorithm that combines a

set of given experts with an efficient MDP learner to create an algorithm that provides

both a regret-minimizing guarantee and a polynomially time-bounded guarantee that

it will find a near-optimal policy for the MDP.

Using experts provides us with a way of dealing with the adversarial, changing

nature of the opponents in competitive settings. This framework is able to give us

worst-case guarantees against such opponents. As long as we have decent experts to

listen to, our performance is guaranteed to at least mimic the best expert closely and

thus should be reasonably good. The importance of using these regret-minimizing

techniques is that it insures that our learning process is in some sense hedged . That

is, if one of our learning algorithms fails, we have intelligently hedged our bets between

multiple different experts and thus we limit our losses in these cases. Some of this

work is described by Chang and Kaelbling [2005].

26

1.5 A specialization: cooperative, single-designer

systems

We next study what seems to be the easier scenario: all of the agents are designed

by a single architect, and all of the agents are working towards a single global goal.

There is no longer a competitive issue caused by adversarial opponents. By limiting

ourselves to systems where a single designer controls the entire system, we also do

not need to consider interoperability issues and goal negotiation or communication

amongst the agents. All of the agents know what the goal is and cooperate to achieve

the goal.

Moreover, we might imagine that the designer is able to construct an approximate

simulation of the world in which the agents are being designed to operate. These

simulators could thus be used to train the agents before they are actually deployed in

real situations. Flight simulators accomplish much the same task for human pilots.

We will introduce the mobilized ad-hoc networking domain as a basis for moti-

vating our ideas on creating effective learning algorithms for cooperative multi-agent

systems. This domain will also serve as a test-bed for our algorithms. Some of this

work was previously described in Chang, Ho, and Kaelbling [2003].

1.5.1 Mobilized ad-hoc networking

Mobile ad-hoc networking is emerging as an important research field with a number of

increasingly relevant real-world applications, ranging from sensor networks to peer-

to-peer wireless computing. Researchers in Al and machine learning have not yet

made major contributions this growing field. It promises to be a rich and interesting

domain for studying the application of learning techniques. It also has direct appli-

cations back to Al, for example in the design of communication channels for groups

of robots. We introduce mobilized ad-hoc networks as a multi-agent learning domain

and discuss some motivations for this study. Using standard reinforcement learning

techniques, we tackled two distinct problems within this domain: packet routing and

27

node movement. We demonstrate that relatively straightforward adaptations of these

methods are capable of achieving reasonable empirical results. Using the more so-

phisticated techniques we develop in Chapter 5, we are able to improve upon this

performance.

Mobile ad-hoc networks have not traditionally been considered a multi-agent learn-

ing domain partly because most research in this area has assumed that we have no

control over the node movements, limiting research to the design of routing algo-

rithms. Each node is assumed to be attached to some user or object that is moving

with its own purpose, and routing algorithms are thus designed to work well under a

variety of different assumptions about node mobility patterns.

However, there are many applications in which we can imagine that some of the

nodes would have control over their own movements. For example, mobile robots

might be deployed in search-and-rescue or military reconnaissance operations requir-

ing ad-hoc communication. In such cases it may be necessary for some nodes to

adjust their physical positions in order to maintain network connectivity. In these

situations, what we will term mobilized ad-hoc networks becomes an extremely rel-

evant multi-agent learning domain. It is interesting both in the variety of learning

issues involved and in its practical relevance to real-world systems and technology.

There are several advantages gained by allowing nodes to control their own move-

ment. Stationary or randomly moving nodes may not form an optimally connected

network or may not be connected at all. By allowing nodes to control their own

movements, we will show that we can achieve better performance for the ad-hoc net-

work. One might view these controllable nodes as "support nodes" whose role is to

maintain certain network connectivity properties. As the number of support nodes in-

creases, the network performance also increases. Given better movement and routing

algorithms, we can achieve significant additional performance gains.

It is important to note that there are two levels at which learning can be applied:

(1) packet routing and (2) node movement. We will discuss these topics in separate

sections, devoting most of our attention to the more difficult problem of node move-

ment. Packet routing concerns the forwarding decisions each node must make when

28

it receives packets destined for some other node. Node movement concerns the actual

movement decisions each node can make in order to optimize the connectivity of the

ad-hoc network. Even though we will use reinforcement learning techniques to tackle

both these problems, they must each be approached with a different mind set. For

the routing problem, we focus on the issue of online adaptivity. Learning is advanta-

geous because it allows the nodes to quickly react to changes in network configuration

and conditions. Adaptive distributed routing algorithms are particularly important

in ad-hoc networks, since there is no centrally administered addressing and routing

system. Moreover, network configuration and conditions are by definition expected

to change frequently.

On the other hand, the node movement problem is best handled off-line. Learning

a good movement policy requires a long training phase, which would be undesirable if

done on-line. At execution time, we should simply be running our pre-learned optimal

policy. Moreover, this movement policy should encode optimal action selections given

different observations about the network state; the overall policy does not change due

to changing network configuration or conditions and thus does not need to adapt

online. We treat the problem as a large partially-observable Markov decision process

(POMDP) where the agent nodes only have access to local observations about the

network state. This partial observability is inherent to both the routing and move-

ment portions of the ad-hoc networking problem, since there is no central network

administrator. Nodes can only observe the local state around them; they do not

have access to the global network topology or communication patterns. Even with

this limited knowledge, learning is useful because it would otherwise be difficult for a

human designer to create an optimized movement policy for each network scenario.

Within this POMDP framework, we first attempt to apply off-the-shelf reinforce-

ment learning methods such as Q-learning and policy search to solve the movement

problem. Even though Q-learning is ill-suited to partially-observable domains, and

policy search only allows us to find a locally optimal policy, we show that the re-

sulting performance is still reasonable given a careful construction of the observation

space. We then apply more sophisticated techniques that combine multiple learning

29

methods and predefined experts, resulting in much improved performance.

The packet routing and node movement problems represent two different methods

for handling non-stationarity. In the case of packet routing, we allow the nodes to

adapt rapidly to the changing environment. This type of fast, constant learning allows

the nodes to maintain routing policies that work well, even though the environment

is continuously changing. In the case of node movement, we take a different tack.

We attempt to model the relevant aspects of the observed state space in order to

learn a stationary policy. This stationary policy works well even though aspects of

the environment constantly change, because we have modeled these changes in the

policy's state space.

1.6 Thesis contributions

To summarize, this thesis presents new work in a diverse range of multi-agent settings.

In the simplest repeated game setup, we present an analysis of the shortcomings of

previous algorithms, and suggest improvements that can be made to the design of

these algorithms. We present a possible classification for multi-agent algorithms, and

we suggest new algorithms that fit into this classification.

In more complicated settings, we present a new technique that uses filtering meth-

ods to extract a good training signal for a learning agent trying to learn a good reactive

policy in a cooperative domain where a global reward signal signal is available. If the

agent is given expert advice, we show that we can combine MDP learning algorithms

with online learning methods to create an algorithm that provides online performance

guarantees together with polynomially time-bounded guarantees for finding a near-

optimal policy in the MDP.

If the setting is not cooperative, we cannot apply this filtering technique. We in-

troduce the idea of hedged learning, where we incorporate knowledge about potential

opponents in order to try to play well against as many possible opponents as possible.

We show performance guarantees that can be obtained using this approach.

Finally, we apply some of these methods to the problem of node movement and

30

packet routing in mobilized ad-hoc networks.

31

32

Chapter 2

Background

It comes as no surprise that there have been a wide range of proposed algorithms

and models to tackle the problems we discussed in the previous chapter. One such

framework, the repeated game, was first studied by game theorists and economists,

and later it was studied by the machine learning community interested in multi-agent

games. For more complex games, our use of filtering methods follows a long line

of applications of filtering techniques for tracking underlying states of a partially

observed variable. Regret-minimizing methods have been extensively studied by the

online learning community, but have also been studied under different names such as

universal consistency by the game theory community and universal prediction (and

universal codes) by the information theory community. In this chapter, we provide

background information on these diverse but very related fields.

2.1 Repeated games

Repeated games form the simplest possible framework for studying multi-agent learn-

ing algorithms and their resulting behavior. We first lay out the mathematical frame-

work and provide an introduction to the basic definitions of game theory, then give

a classification of prior work in the field of multi-agent learning algorithms. We then

discuss some of the prior work developed within this framework, from both the game

theory and machine learning perspectives.

33

2.1.1 Mathematical setup

From the game theory perspective, the repeated game is a generalization of the tradi-

tional one-shot game, or matrix game. In the one-shot game, two players meet, choose

actions, receive their rewards based on the simultaneous actions taken, and the game

ends. Their actions and payoffs are often visually represented as a matrix, where

action choices correspond to the rows or columns depending on the player executing

the action, and payoffs are shown in the matrix cells. Specifically, the reward matrix

Ri for each player i is defined as a function Ri : A1 x A2 -> R, where Ai is the set

of actions available to player i. As discussed, R1 is often written as an IA1 I x IA 21

matrix, with R1 (i, j) denoting the reward for agent 1 if agent 1 plays action i E A1

and agent 2 plays action j E A2 . The game is described as a tuple (A1 , A2 , R 1, R 2)

and is easily generalized to n players.

Some common (well-studied) examples of two-player, one-shot matrix games are

shown in Figure 2-1. The special case of a purely competitive two-player game is

called a zero-sum game and must satisfy R1 = -R 2.

In general, each player simultaneously chooses to play a particular pure action

ai C Ai, or a mixed policy pi E PD(Ai), where PD(Ai) is the set of all possible

probability distributions over the set of actions. The players then receive reward

based on the joint actions taken. In the case of a pure action, the reward for agent

i is given by Ri(ai, aj), and in the case of mixed policies, the reward is given as an

expectation, Ri(pi, ,pj) = E[Ri(ai, aj)jai ~ pi, aj - p]. For games where there are

more than two players, we will sometimes write the joint actions of all the other

agents as a-i or [i.

The literature usually uses the terms policy and strategy interchangeably. As we

will see later, sometimes policies or strategies will be more complicated mappings

between states and action distributions.

The traditional assumption is that each player has no prior knowledge about the

other player. Thus there is no opportunity to tailor our choice of action to best

respond to the opponent's predicted action. We cannot make any predictions. As

34

is standard in the game theory literature, it is thus reasonable to assume that the

opponent is fully rational and chooses actions that are in its best interest. In return,

we would like to play a best response to the opponent's choice of action.

Definition 1 A best response function for player i, BRi(pi), is defined to be the set

of all optimal policies for player i, given that the other players are playing the joint

policy pti: BRi(p-i) = {I p E MiIRi(p*, pi) > Ri(iI pi),Vpi E Mi}, where Mi is

the set of all possible policies for agent i.

If all players are playing best responses to the other players' strategies, then the

game is said to be in Nash equilibrium.

Definition 2 A Nash equilibrium is a joint policy p such that for every agent i,

pi C BRi (p-i).-

The fixed point result by Nash shows that every game must have at least one

Nash equilibrium in mixed policies. Once all players are playing a Nash equilibrium,

no single player has an incentive to unilaterally deviate from his equilibrium policy.

Any game can be solved for its Nash equilibria using quadratic programming, and if

the game only has a single Nash equilibrium, then a player can choose a strategy for

playing against a similar, fully rational player in this fashion, given prior knowledge

of the game structure. However, computing a Nash equilibrium is a computationally

hard problem. To date there are no polynomial time algorithms for exactly solving a

game to find all of its Nash equilibria, and it is an open question whether this problem

is NP-hard [Papadimitriou, 2001].

A different problem arises when there are multiple Nash equilibria. If the players

do not manage to coordinate on one equilibrium joint policy, then they may all end

up worse off. The Hawk-Dove game shown in Figure 1(c) is a good example of this

problem. The two Nash equilibria occur at (1,2) and (2,1), but if the players do not

coordinate, they may end up playing a joint action (1,1) and receive 0 reward.

In the zero-sum setting, a fully rational opponent will choose actions that mini-

mize our reward, since this in turn maximizes its reward. This leads to the concept

35

R, =

R2= -R1]

(a) Matching pennies

R[0
3]

R1= 1 2

R2fl 0]
(H D 3 2

(c) Hawk-Dove, a.k.a. "Chicken"

0 -1 1
R, 1 0 -- 1

-1 1 0

R2=2-R

(b) Rock-Paper-Scissors

R [2 0
R1= 3 1

R2=[2
3

(d) = 0 1

(d) Prisoner's Dilemna

Figure 2-1: Some common examples of single-shot matrix games.

of minimax optimality, where we choose to maximize our reward given that the op-

ponent is trying to minimize our reward. Von Neumann's minmax theorem proves

the existence of an equilibrium point where both players are playing their minmax

optimal strategies:

max min R,(pi, p) = min max R1 (Pi, P) -min max R 2(Pi, pj)i 3 j i j 2

Traditionally, zero-sum games are also called "pure competitive" games. We use the

term "competitive games" to include both pure, zero-sum games and general sum

games where the agents have competing goals.

Minimax optimality in zero-sum games is a special case of Nash equilibrium in

general-sum games. In general-sum games, we can no longer assume that the other

player is trying to minimize our payoffs, since there are no assumptions about the

relationship between the reward functions Ri. We must generally play a best response

(BR) to the opponent's choice of action, which is a much harder question since we

may be unable to predict the opponent's choice of action. We may need to know the

36

opponent's utility function Rj, and even if we know Rj, the opponent may or may

not be acting fully rationally. Moreover, to complicate matters further, the set of

opponent policies that can be considered "fully rational" will ultimately depend on

the space of opponent types we are willing to consider, as we will discuss later.

2.1.2 Prior work

Nash equilibrium is commonly used as a solution concept for one-shot games. In

contrast, for repeated games there are a range of different perspectives. Repeated

games generalize one-shot games by assuming that the players repeat the matrix

game over many time periods. Researchers in reinforcement learning view repeated

games as a special case of stochastic, or Markov, games. Researchers in game theory,

on the other hand, view repeated games as an extension of their theory of one-

shot matrix games. The resulting frameworks are similar, but with a key difference

in their treatment of game history. Reinforcement learning researchers have most

often focused their attention on choosing a single myopic stationary policy A that

will maximize the learner's expected rewards in all future time periods given that

we are in time t, max, Ej [z 1YR7-(p)] , where T may be finite or infinite, and

p E PD(A). In the infinite time-horizon case, we often include the discount factor

0 < y < 1. We call such a choice of policy p myopic because it does not consider the

effects of current actions on the future behavior of the opponent.

Littman [1994] analyzes this framework for zero-sum games, proving convergence

to the Nash equilibrium for his minimax-Q algorithm playing against another minimax-

Q agent. Claus and Boutilier [1998] examine cooperative games where R1 = R 2, and

Hu and Wellman [1998] focus on general-sum games. These algorithms share the

common goal of finding and playing a Nash equilibrium. Littman [2001] and Hall and

Greenwald [2001] further extend this approach to consider variants of Nash equilib-

rium, called correlated equilibria, for which convergence can be guaranteed.

When the opponent is not rational, it is no longer advantageous to find and play a

Nash equilibrium strategy. In fact, given an arbitrary opponent, the Nash equilibrium

strategy may return a lower payoff than some other action. Indeed, the payoff may

37

be even worse than the original Nash equilibrium value. For example, in the game of

Hawk-Dove in Figure 2-1, one Nash equilibrium occurs when player 1 plays the first

row action, and player 2 plays the second column action, leading to a reward of 3 for

player 1 and a reward of 1 for player 2. However, if player 2 deviates and plays action

1 instead, they will both receive a reward of zero.

Even in zero-sum games, the problems still exists, though in a more benign form.

As long as an agent plays a Nash equilibrium strategy, it can guarantee that it will

receive payoff no worse than its expected Nash payoff, even if its opponent does not

play its half of the Nash equilibrium strategy. However, even in this case, playing

the Nash equilibrium strategy can still be suboptimal. For example, the opponent

may not be playing a rational strategy. We would no longer need to worry about the

mutual optimality condition of a Nash equilibrium; instead, we can simply play a best

response to the opponent and exploit its irrationalities. Thus, in both general-sum

and zero-sum games, we might hope that our agents are not only able to find Nash

equilibrium strategies, but that they are also able to play best response strategies

against non-Nash opponents.

Bowling and Veloso [2002b] and Nagayuki et al. [2000] propose to relax the mutual

optimality requirement of Nash equilibrium by considering rational agents, which

always learn to play a stationary best-response to their opponent's strategy, even if

the opponent is not playing an equilibrium strategy. The motivation is that it allows

our agents to act rationally even if the opponent is not acting rationally because of

physical or computational limitations. Fictitious play [Fudenburg and Levine, 1995]

is a similar algorithm from game theory.

Again, the goal is similar to the Nash approach: the agents should exhibit conver-

gence to a stationary equilibrium, even if it is not the Nash equilibrium. Moreover,

the agents should converge to a Nash equilibrium against a stationary Nash oppo-

nent, but should be able to exploit any weaknesses of a non-Nash player. Indeed,

Bowling and Veloso show that in games where there is a single Nash equlibrium, a

special full-knowledge version of their WoLF-PHC algorithm converges to the Nash

equilibrium when playing against itself.

38

2

3

6 7

Figure 2-2: This figure shows an example of a network game. There are seven players
in this game, and the links between the players represent relationships between players
that results in direct payoff consequences. For example, Player l's payoffs are only
affected by its own actions, and the actions of Player 2 and Player 3. They are only
indirectly affected by the action choices of the remaining four players, if Players 2 or
Player 3's action choice is influenced by the rest of the players.

2.1.3 Solving for Nash equilibria

Recently there has been a great deal of interest in computational techniques for finding

one or more Nash equilibria strategies for a given game. The general problem itself

is usually quite difficult computationally, but it is an open question whether it is in

P in the size of the game [Papadimitriou, 2001]. It is conjectured that the problem is

somewhere between P and NP, since it is known to have at least one solution, unlike

most problems that are NP-hard. However, new techniques take advantage of special

structures in certain games to derive efficient computational techniques for finding

Nash equilibria. For example, Littman et al. [2001] study network games, where a

large game is structured into local interactions involving only small groups of agents.

These local interactions may have effects that propagate throughout the network, but

the immediate rewards of the local games are only directly observed by the local game

participants. Figure 2-2 shows an example of a simple network game.

Using this structure, the authors are able to show that one can compute 6-

39

Player I Choice Node

Heads Tails

Player 2 Choice Node Player 2 Choice Node

Player 2's
Information Set

Heads Tails Heads Tails

(1,-1) (-1,1) (-1,1) (1,-1)

Figure 2-3: This figure shows the Matching Pennies game in extensive form. Clearly,
the extensive form is a more general representation, since we can now allow the players
to move sequentially and possess different information sets. Though not needed in
this particular game, the extensive form representation can also include probabilistic
choice nodes for "Nature", which can be used to account for randomness in the reward
structure.

Nash equilibria in time polynomial in the size of the largest sub-game. Ortiz and

Kearns [2002] extend this work to compute Nash equilibrium in loopy graphical games.

Blum, Shelton, and Koller study a more general framework, described by multi-

agent influence diagrams, or MAIDs [Blum et al., 2003]. The diagrams also graph-

ically represent game structure, but they are richer descriptions than the network

games studied by Kearns et al. MAIDs are able to capture information contained in

extensive form games in a compact manner. Extensive form games generalize normal

form, or matrix, games by allowing the representation of sequential moves by the var-

ious players and different information sets available to the various players. Extensive

form games are usually represented as a tree, where branches of the tree represent

40

the different actions and agent may take from a particular node of the tree, (Figure

2-3). Blum et al. provide an algorithm that can compute an exact Nash equilibrium

strategy in polynomial time.

2.1.4 Correlated Nash equilibria

For the sake of completeness, we will also mention the concept of a correlated Nash

equilibrium. The correlated Nash equilibrium generalizes Nash equilibrium by allow-

ing the players to coordinate, or correlate, their actions by observing a randomized

external source of information. For example, consider this situation: two cars are

approaching an intersection. If we assume that they must take simultaneous actions,

then their Nash equilibrium would usually involve a randomized policy that chooses

between the two possible actions, stop or go. However, if we add a traffic light to the

intersection, then the cars can coordinate their actions based on the signal given by

the traffic light. This would be a correlated Nash equilibrium.

It can be shown that if we force all the agents to use a particular learning algo-

rithm, then the system will converge to a correlated Nash equilibrium [Greenwald and

Hall, 20031. The intuition is that this learning algorithm uses the observed history of

players' actions as the coordination signal.

2.1.5 Game theoretic perspective of repeated games

As alluded to earlier, modern game theory often take a more general view of opti-

mality in repeated games. The machine learning community has also recently begun

adopting this view [Chang and Kaelbling, 2002; de Farias, 2004]. The key differ-

ence is the treatment of the history of actions taken in the game. Recall that in the

stochastic game model, we took policies to be probability distributions over actions,

pi E PD(A). We referred to this choice of policy as a myopic choice, since it did not

consider the effects of the current policy on the future behavior of the opponent.

Here we redefine a policy to be a mapping from all possible histories of observations

to distributions over actions, [ti : H -> PD(Aj), where H = Ut Ht and H' is the

41

set of all possible histories of length t. Histories are observations of joint actions,

ht = (ai, a-i, h"l). Player i's strategy at time t is then expressed as pi(htl-).

We can now generalize the concept of Nash equilibrium to handle this new space

of possible strategies.

Definition 3 Let ht be a particular sequence of actions that can be observed given

that the agents are following policies pi and p-u. Given the opponent's policy Pa,

a best response policy for agent i maximizes agent i's reward over the duration t

of the game. We define the set of best response policies to be BRi(pi) = {,p E

M tI = RT(p*,pi) Et= R'(pi,pi),Vpi E Mi}, where Mi is the set of all pos-

sible policies for agent i and R'(pi, p-i) is the expected reward of agent i at time

period T.

A Nash equilibrium in a repeated game that is repeated for t time periods is a joint

strategy p(H) such that for every agent i, and every history of observations ht that

can be observed in the game given p(H), pi(ht) E BRi(pit(h t)).

For the infinitely repeated game, we let t -* oc. Now, the set of best response

policies BRi(p_) becomes the set of all policies y4 such that

t t

lim sup J r-1R'(p, p-i) > lim sup T-1R'(pi, pi), Vpi E Mi,
t-o t-0 i

where 6 < 1 is a discount factor.

Let h be an infinite sequence of actions that can be observed given that the agents

are following policies pi and p_. A Nash equilibrium in the infinitely repeated game

is a joint strategy p(H) such that for every agent i, and every history of observations

h' that can be observed in the game given p(H), pi(h) E BRl(pui(h)).

This definition requires that strategies be best responses to one another, where

the earlier definition only required that simple probability distributions over action

be best responses to one another. Henceforth, we will refer to the equilibrium in the

earlier definition as a Nash equilibrium of the one-shot game. It is a stationary policy

that is myopic.

42

By allowing our agent to use policies that are conditioned on the observed history

of play, we are endowing our agent with memory. Moreover, the agent ought to be able

to form beliefs about the opponent's strategy, and these beliefs ought to converge to

the opponent's actual strategy given sufficient learning time. Let fi : H -+ PD(Aj)

be player i's belief about the opponent's strategy. That is, given a particular history

H, a belief # would map that history to a probability distribution over actions that

we expect the opponent to play. In this sense, the belief mapping is similar to a policy

mapping that maps states to action distributions. Then a learning path is defined

to be a sequence of histories, beliefs, and personal strategies. Now we can define a

Nash equilibrium of a repeated game in terms of our personal strategy and our beliefs

about the opponent. If our prediction about the opponent's strategy is accurate, then

we can choose an appropriate best-response strategy. If this holds for all players in

the game, then we are guaranteed to be in Nash equilibrium [Greenwald and Hall,

2003].

Proposition 4 A learning path {(ht, pi(h'-1), i(ht-1))1t = 1, 2, ... } converges to a

Nash equilibrium iff the following two conditions hold:

* Optimization: Vt, put(ht) E BRj(/3(ht1)). We always play a best-response to

our prediction of the opponent's strategy.

o Prediction: limt.,oo 3(ht1) - IIth t)| = 0. Over time, our belief about the

opponent's strategy converges to the opponent's actual strategy.

However, Nachbar and Zame [1996] show that this requirement of simultaneous

prediction and optimization is impossible to achieve, given certain assumptions about

our possible strategies and possible beliefs. We can never design an agent that will

learn to both predict the opponent's future strategy and optimize over those beliefs at

the same time. Despite this fact, we can design an algorithm that approximates the

best-response stationary policy over time against any opponent. In the game theory

literature, this concept is often called universal consistency. In the online learning

literature, it is often referred to as regret minimization.

43

2.2 Regret-minimization and online learning

This regret-minimization framework relaxes the setup of the repeated game frame-

work. It no longer assumes that the environment (or opponent) is modeled by a

matrix game at each time period. Instead, it simply assumes that the agent interacts

with a black-box environment at each time period by choosing an action to play. The

agent then receives a reward, and may or may not be able to observe the expected

reward he would have received had he played any of his other possible actions. Thus,

the black-box environment could be an opponent, a fixed finite automaton, or any

general environment. For example, these methods have been applied to cases where

the environment is a set of casino slot-machines (one-armed bandits) [Auer et al.,

1995], the stock market [Blum and Kalai, 1997], or even a heuristic measurement of

robot arm positioning performance [Hsu et al., 2005].

2.2.1 Prior work

The first work on regret-minimization came from two independent fields, again,

game theory and machine learning. Fudenburg and Levine [1995] and Freund and

Schapire [1995; 1999] independently show that two analogous techniques, exponential

fictitious play and a multiplicative-weight algorithm, exhibit universal consistency or

regret-minimization. One limitation of these algorithms is that they require the player

to observe the expected rewards they would have received if they had played any of

the available actions, rather than only the action they actually played. This usu-

ally requires knowledge of the opponent's mixed strategy, since we need to know the

expected rewards. Clearly this is usually unavailable to us. Auer et al. [1995; 2002]

extend Freund and Schapire's technique to the case where outcomes are only observed

for the actions that are chosen, thereby getting around this problem while introducing

a small additional penalty in the achievable performance bounds.

There have been numerous related articles, applying the basic technique of main-

taining a mixture of weights to other areas. Cesa-Bianchi and Lugosi [2003] pro-

vide a general proof of this kind of potential-based algorithm and relate it to dif-

44

ferent variants of the technique that have been proposed. Their proof builds on

the ideas of Hart and Mas-Colell's analysis [2001] of A-strategies for playing iter-

ated games. Other authors have also extended the results to cases where the ac-

tion space is continuous, or where different loss functions are assumed [Vovk, 1998;

Mannor and Shimkin, 2003].

Interestingly, the machine learning technique of boosting is closely tied to this

work. Freud and Schapire [1995] provide the basic multiplicative weight technique

based on Littlestone and Warmuth's weighted majority algorithm [Littlestone and

Warmuth, 1989], and use it to develop Adaboost.

More generally, regret minimization is intimately related to the well-studied area

of universal prediction [Merhav and Feder, 1998], with its many related fields: uni-

versal coding in information theory, universal consistency in game theory, and online

prediction in machine learning. Various authors have also showed that certain types

of regret-minimization algorithms correspond to Bayes-optimal estimators in simple

parameter estimation problems [Monteleoni and Jaakkola, 2003; Kakade and Ng,

2004].

2.2.2 A reactive opponent

It is important to note that most of the regret-minimization methods proposed by

the machine learning community assume what is often called an oblivious opponent.

That is, the opponent does not learn or react to our actions, and essentially plays

a fixed string of actions. It is this assumption that makes it sensible to compare

our performance against other possible choices of actions given the same history of

opponent actions. Since the opponent is oblivious, we can assume that its history of

actions is independent of our choices of actions.

Under most circumstances, we might expect an intelligent opponent to change

their strategy as they observe our own sequence of plays. Thus, the opponent (and

hence the environment) may be changing as we play. We can still use the algorithms

described above, but we must simply satisfy ourselves with achieving a regret-bound

relative to the best we could have done against the worst-case oblivious opponent.

45

On the one hand, this does not seem too bad. We will do as well as the best fixed

action against the worst-case opponent. However, in many cases we do not face the

worst-case opponent. We might actually be able to do better than what these worst-

case algorithms guarantee. One possibility would be to consider opponents that play

behavioral strategies that depend on our prior actions [Chang and Kaelbling, 2002].

For example, consider the game of Prisoner's Dilemna. If we follow the oblivious

opponent assumption, then the best choice of action would always be to "Defect."

However, all of the methods above would thus miss out on the chance to cooperate

with opponents such as a "Tit-for-Tat" opponent. These opponents can be called

reactive opponents. Mannor and Shimkin [2001] propose a super-game framework for

extending the regret-minimization framework to handle such cases. In the super-game

framework, we evaluate performance not based on single periods of play; instead each

time we play an action or strategy, we commit to playing it for multiple time steps

in order to allow the environment to react to our strategy.

Pucci de Farias and Megiddo [2004] propose a different algorithm and use a differ-

ent performance metric for playing in such cases. Their performance metric measures

the algorithm's performance against the best minimum average reward attained by

any action or strategy within a certain time period. That is, it follows the same spirit

as the regret-minimization methods by comparing performance against the best ex-

pert. However, in their case, each expert's performance is defined differently as the

smallest average reward that the expert achieves within any phase in the history of

plays, where each phase is a certain time interval of the history. This is somewhat

unnatural, since it leads to a looser definition of good performance. If an algorithm is

attains the reward of the best expert under this metric, it is only doing as well as the

expert with the best poorest-performing phase. Thus, as long as all experts perform

badly just some of the time, an algorithm designed to fare well under this metric does

not actually have to perform very well at all. We will focus on the usual definition of

performance in this thesis when we discuss regret-minimization methods.

Finally, Schmidhuber [1999] proposes a method he calls EIRA, Environment-

Independent Reinforcement Acceleration. EIRA attempts to continually improve

46

an agent's policy through modifications that improve the performance. If a policy

begins to perform poorly, whether because of recent modification or because the en-

vironment has changed, EIRA switches to using the previous best strategy. Thus,

EIRA guarantees that we are usually playing the best strategy we have evaluated, but

again, regret-minimization is more powerful since it guarantees that we are achiev-

ing performance equivalent to the expected performance of the best policy over all

periods of play.

2.3 Filtering

In the regret minimization framework discussed above, we assumed we did not know

a model of the environment. That is, we could not predict future opponent actions

based on observed past actions. However, sometimes we might have such a model,

even if we assume that the opponent's strategy is changing over time. If we have

a model of the way the opponent's strategy changes, then we can try to use our

observations to deduce the true environmental/opponent state at each time period.

Kalman filtering is a simple and efficient method for doing this when our model

of environmental change satisfies certain requirements. The celebrated and much-

studied Kalman filter was originally developed as a way to track moving objects

given noisy observations and a noisy model about the object's movement, or state

change. The noise in both cases is assumed to be a Gaussian process, and the model

for both observations and state change is linear.

To be precise, there is an additive noise process bt that evolves according to bt+1 =

bt+zt, where zt is a zero-mean Gaussian random variable with variance o-.. The global

reward that it observes if it is in state i at time t is gt = r(i) + bt, where r is a vector

containing the ideal training rewards r(i) received by the agent at state i.

The standard model that describes such a linear system is:

gt = Cxt + vt, Wt - N(O, E2)

Xt = Axt-1 + wt, wt ~ N(0, E1)

47

where vt and wt are Gaussian noise, C and A are matrix operators, xt is the state

vector we wish to track, and gt is a vector of observations that is available to us. In

our case, Xt = [rb], since we are trying to estimate the personal training reward signals

and the noise term. Kalman filtering maintains an estimate of the state vector xt and

its full covariance matrix, updating these quantities as it gets new observations. We

will discuss this model in more detail in Chapter 4.

Clearly, this model only describes a very particular set of environments that may

happen to behave in this way. However, in Chapter 4, we will explore the applicability

of this model to situations where the model conditions may not be entirely satisfied.

There have been many other techniques proposed to deal with environments that

change over time. In slowly varying environments, Szita et al. [2002] provide a special-

ization of Littman and Szepesv6ri's [1996] techniques for generalized MDPs, showing

that Q-learning will converge as long as the variation per time step is small enough. In

our case, we will be attempting to tackle problems where the variation is much larger.

Choi et al. [1999] investigate models in which there are "hidden modes". When the

environment switches between modes, all the rewards may be altered. This works

if we have fairly detailed domain knowledge about the types of modes we expect to

encounter. For variation produced by the actions of other agents in the world, or for

truly unobservable environmental changes, this technique would not work as well and

regret-minimization methods may be better suited to handle such problems.

2.4 POMDP methods

More generally, we may have a complex model of the environment, in which we assume

there is an underlying state space that is Markov. This underlying model might not

change over time, but we might only receive observations of these underlying states,

and the observations can be arbitrary functions of the underlying states. Thus, ob-

servations for different states may actually appear the same. This situation can be

modeled as a partially observable Markov decision process, or POMDP. Theoretically,

anything could be modeled this way given enough underlying states, but the com-

48

putational challenges for deriving an optimal policy of behavior in such a model are

formidable.

Formally, a POMDP is defined by:

" IS! states S = {1,...,ISI} of the world (or environment),

* IA! actions A = {1,...,|AI} that can be executed by the agent,

* a transition matrix P that describes the probability of transitioning from state

i to state j given action a,

* observations 0, and

" a reward function r(i) E R for each state i c S.

Since we are concerned with multi-agent settings, we note that the states S may

represent both states of the world, or states of the other agents. Thus, more generally,

we will refer to S as being the state space of the environment, which includes both the

world and the other agents. Sometimes our observations will also include the actions

of the other agents in the environment.

It is apparent that the POMDP framework is powerful enough to model many

different types of opponents. As long as the opponent can be modeled by a finite

number of states, this model is sufficient. If we expect that the opponent operates

with a continuum of states or an infinite number of states, then we would need

further extensions of the POMDP framework to continuous (and possibly infinite)

state spaces, which we will not explore in this thesis. Given these limitations, we

note that we cannot model opponents that employ arbitrary learning algorithms.

We must assume that there is some underlying MDP that describes the opponent's

internal decision making mechanism, i.e. the opponent is assumed to be a probabilistic

finite automaton. Unlike in the game theoretic setting, we are making a different type

of assumption about the opponent. Rather than assuming the opponent is rational, we

now assume that the opponent can be modeled by a hidden MDP. At the minimum,

we only get to receive observations that are the opponents' actions at each time

period.

49

In some sense, in the methods we have described so far, we could make three

different assumptions about the opponent:

" rational: The concept of rationality is the basis for Nash equilibrium.

" worst-case: This leads to the idea of using minimax optimality.

" MDP: In this case, we can attempt to solve for the optimal policy if we can

estimate the parameters of the MDP that describes the opponent.

2.4.1 Markov decision processes

Markov decision processes (MDPs) are significantly simpler than POMDPs since they

assume direct observation of the world state. Thus, there is no need for the set of

observation 0, since it is equivalent to the states S.

An MDP is thus:

" ISI states S ={1, ..., SI} of the world,

" JAl actions A = {1, ... , AI} that can be executed by the agent,

" a transition matrix P that describes the probability of transitioning from state

i to state j given action a,

" a reward function r(i) E R for each state i E S.

We are usually trying to learn a policy p : S -- A that maps observed states to

action choices. The goal is to learn a policy that provides us with the highest possible

long-term rewards. We can define long-term reward in one of two ways:

Definition 5 The long-term average reward, starting in state i and executing policy

[t, and assuming the reward function r(i) is bounded, is defined as

1 T

r7(p, i) = lim ZE[E r (it)lio = i, p].
T--+oo t=0

50

Definition 6 The long-term discounted sum of rewards is defined as

00

J(P, i) = E[Z r(it) io = i, P],
t=O

where [y [0, 1) is the discount factor, and io is the initial state of the agent, and it

is the state of the agent at each subsequent time period t.

Conveniently, if the agent plays mixed policies and the POMDP becomes ergodic,

then the two notions of reward are closely related to each other [Aberdeen, 2002;

Baxter and Bartlett, 2001]. Let Ei be the expectation over the unique stationary

distribution over states generated by such a mixed policy in the POMDP. Then

1
EiJ(a, i) = Eir/(p, i).

1- Y

Given a complete description of the model (S, P, A, R), we can use policy iteration

[Bertsekas and Tsitsiklis, 1996] or value iteration [Bertsekas and Tsitsiklis, 1996] to

solve for the optimal policy.

If we do not know the model parameters, in this case P, and we only know S,

we must either 1) learn the parameters and then solve for the optimal policy, or 2)

learn the optimal policy directly without first learning the model parameters. The

first method is usually referred to as a model-based method, since it relies on building

a complete description of a MDP and solving this model for an optimal policy. The

second method is often called a model-free method since it tries to learn an optimal

policy without estimating the model's transition matrix. Both types of methods

are the subject of much study in reinforcement learning. A good overview of these

methods can be found in the survey article [Kaelbling et al., 1996] or the textbook

[Sutton and Barto, 1999].

51

2.5 Mobile ad-hoc networking

Finally, we discuss some prior work in the field of mobile ad-hoc networking, since

one chapter of this thesis will be devoted to applying our algorithms to the closely

related domain of mobilized ad-hoc networking, which we introduce in Chapter 6. We

distinguish our application domain by calling it mobilized ad-hoc networking because

we assume that our nodes have control over their own movements, whereas researchers

who study mobile ad-hoc networks often assume that there are external users that

force the nodes to move along with them. For example, cell phones are forced to

move along in their owner's pockets or purses. In the mobilized ad-hoc networks that

we study, we assume that nodes can be mobile robots that can determine their own

preferred movements.

2.5.1 Node movement

We draw inspiration for this work from two different fields: networking and reinforce-

ment learning. In the networking literature, some work on the effect of node mobility

in ad-hoc networks has been done for applications in which movement and topology

changes are on the time-scale of packet delivery. Nodes are then able to act as mobile

relays physically transporting packets from one location to another. Grossglauser

and Tse [2001] analyze a strategy in which source nodes send packets to as many

different nodes as possible, which store the packets and hand them off whenever they

get close to the intended destination nodes. Li and Rus [2000] consider a scenario

in which mobile hosts make deviations from predetermined trajectories to transmit

messages in disconnected networks. Chatzigiannakis et al [2001] consider the case

where a subset of mobile nodes are constrained to move to support the needs of the

protocol, and act as a mobile pool for message delivery.

2.5.2 Packet routing

Our work is in a different setting, in which topology changes are on a much longer

time scale than packet delivery delay constraints. Nodes move in order to form

52

and maintain connected routes, rather than to physically deliver packets in a discon-

nected network. Routing is thus an important aspect of our algorithms that influences

and is informed by movement decisions. Perkins and Royer [1997] and Johnson and

Maltz [1996] examine routing in mobile ad-hoc networks where no control over node

movements is assumed, while Chen et al. [2001] deal with the issue of preserving a

connected topology with only some portion of nodes awake at any one time.

2.5.3 Learning

From the reinforcement learning community, there has been some interest in apply-

ing learning techniques to improve network performance. Such adaptive algorithms

may be better able to perform well under widely varying conditions. Boyan and

Littman [1994] applied reinforcement learning techniques to the problem of routing

in static networks. They showed that a simple adaptive algorithm based on the Q-
learning algorithm [Watkins, 1989] can out-perform a shortest-paths algorithm under

changing load and connectivity conditions. Peshkin [2002] used policy search rather

than Q-learning on the same problem, which allowed the system to search a richer

policy space. By using stochastic routing policies, the system is able to manage high

loads by finding multiple possible source-destination paths. We apply Q-learning to

the case of mobile networks, where node connectivity is constantly changing.

Moreover, since we assume control over the nodes' movements, we can also influ-

ence these connectivity changes by learning a good control mechanism for the node

movements. Several papers mentioned above propose various methods for controlling

node and packet movement under specific assumptions. In the general setting, we wish

to select optimal actions at each time step to maximize the long-term system perfor-

mance. This type of problem lends itself to reinforcement learning techniques [Kael-

bling et al., 1996], where the goal of the learner is to maximize long-term reward by

learning an optimal behavior policy through simulation. Stone and Sutton [2001] and

Bowling and Veloso [2002a] studied methods for scaling up reinforcement learning

techniques to complex domains such as robotic soccer.

However, a major problem in the networking domain is the high degree of partial

53

observability. From the perspective of any one node in the network, most of the rest

of the network state cannot be discerned. The node can only rely on messages passed

to it from its neighbors to glean information about the rest of the network, and to

compound the issue, we would like to minimize such informational messages since

they only contribute to network congestion. Thus, we will have to deal with partial

observability in creative ways.

There are several other challenges that we face. For example, as we train the

nodes, the behavior of the overall network changes as the nodes learn to use better

policies. As the nodes move, the learning environment changes. These changes are

further exacerbated by the fact that the other nodes are learning new behaviors over

time as well.

54

Chapter 3

Learning in repeated games

We begin by investigating basic multi-agent learning principles in the simplest setting

possible: repeated normal-form games. In this setting, all the complexity of the

environment has been reduced to a simple matrix of rewards. The repeated matrix

game is a degenerate form of a general stochastic games, in which there is only a single

state. Thus, we no longer have to concern ourselves with estimating state transitions.

All the remaining complexity becomes encapsulated in the behavior of our opponent.

This is the main object of our study.

When we study an agent's behavior, we will often refer to its policy or strategy,

which is the method by which it chooses an action to execute. We will use the

terms policy and strategy interchangeably. As discussed earlier, these strategies can

be stationary distributions over actions, or they can be more complex mappings

from histories of observations to action choices. They might even be more complex,

possibly assuming the form of some rule governing an agent's behavior based on

various attributes of the environment and the history of play. In this sense, a strategy

could in fact be any arbitrary algorithm. The algorithm receives inputs that are

observations of the past periods of play, and outputs future action choices. Thus, we

can consider the learning algorithms that we design for playing multi-agent games to

be strategies themselves. An agent's choice of a particular learning algorithm at the

beginning of a game would amount to a choice of a particular strategy that it will

follow for the rest of the game.

55

Table 3.1: Summary of multi-agent learning algorithms under our new classification
that categorizes algorithms by their observation history length and belief space com-
plexity.

BO B1 x Bt BOO
Ho minimax-Q, Bully

Nash-Q
R1 Godfather

Ho Q-learning (Qo), Qi PHC- Hedged
(WoLF-)PHC, Exploiter learning
fictitious play,
Exp3

3.1 A new classification

We propose a general classification that categorizes multi-agent learning algorithms

by the cross-product of their possible strategies and their possible beliefs about the

opponent's strategy, H x B. An agent's possible strategies can be classified based

upon the amount of history it has in memory, from Ho to TH,. Given more memory,

the agent can formulate more complex policies, since policies are maps from histories

to action distributions.

At the simplest end of the spectrum, Ho agents are memoryless and can only play

stationary policies. They cannot condition their action choices on their observation

of the past sequences of plays; i.e., they only play constant policies i : 1 -+ PD(A).

For example, an agent that always plays (1/3, 1/3, 1/3), i.e. a stationary distribution

that equally weights each possible action, in the game of Rock-Papers-Scissors would

be an 'HO agent.

Agents that can recall the actions from the previous time period are classified as

R1 and can execute purely reactive policies. These agents can possess policies that

map the last period's observed action choices to a distribution over action choices

for the current period, p : ht_1 -+ PD(A). This can be extended to agents with a

finite amount of memory, who react to sequences of plays from within the last k time

periods. These 7 (k agents would be able to execute fixed behavioral strategies of the

56

form p : Hk - PD(A), where Hk U I Hk is the set of all possible histories of

length k or less. Each strategy would thus be a complete mapping from any observed

history of length k or less to a particular distribution over action choices.

At the other extreme, 7H, agents have unbounded memory and can formulate

ever more complex strategies as the game is played over time. Most adaptive, learn-

ing algorithms will fall under this category, since these algorithms make use of the

observed history of play in order to improve their learned policies.

An agent's belief classification mirrors the strategy classification in the obvious

way. Agents that believe their opponent is memoryless are classified as B players,

Bt players believe that the opponent bases its strategy on the previous t-periods of

play, and so forth. Although not explicitly stated, most existing algorithms make

assumptions about the types of possible opponents in the world. These assumptions

are embodied in the kinds of beliefs they hold about the opponent.

For example, consider a B0 player. This player assumes that the opponent is essen-

tially playing a fixed mixed policy, i.e. the opponent plays according to a stationary

distribution over its possible actions, p-i : {1} -* PD(A). Clearly, given enough ob-

servations of such an opponent's past history of play, we can estimate the stationary

distribution fairly accurately. Thus, if the opponent truly is playing according to a

stationary distribution, a 7 t x B or H, x B0 , with t sufficiently large, ought to be

able to perform fairly well.

Of course, a player with beliefs that can be categorized as Bt clearly subsumes a B0

player, in the sense that a B player is simply a special case of a Bt player, with t = 0.

A Bt player assumes that its opponents play according to fixed behavioral strategies,

i.e. they play according to a policy that maps finite histories of observations to

action choices, P-i : Ht -+ PD(A). In other words, it assumes that its opponent

is a Nt player. A B0 player is thus simply a degenerate Bt player that assumes

that the opponent maps all possible observation histories Ht to the same probability

distribution over actions PD(A).

We also introduce the notion of a Bx player, which does not assume that the op-

ponent is capable of playing arbitrary policies that use the entire history observations,

57

but which also does not limit the opponent to using the previous t periods of history

in formulating its strategy. The Bx player assumes that the opponent uses some

compressed version of the history of observations in deciding which strategy to play.

For example, the opponent may keep track of our most common action over history,

and play a best response to that action. Let this feature space that the opponent uses

to model our play be called its feature history X. Then a Bx player assumes that it

faces opponents which are capable of playing policies of the form p-2 X -+ PD(A).

Finally, a B, player makes the most general assumptions about its possible op-

ponents. In fact, since it assumes that the opponent is a R,, player, it essentially

makes no assumptions about the opponent. The opponent could be using an ar-

bitrarily complex, adaptive algorithm. Clearly, it would be a great achievement to

design a learning algorithm that performs optimally given such general assumptions.

Unfortunately, as we discussed in Chapter 2, Nachbar and Zame [1996] have shown

that this is impossible. Thus, even if we use all available history, we cannot expect to

design an optimal 'HQO x L3 player, since the optimal strategy may not even be com-

putable by a Turing machine. We will have to satisfy ourselves with either creating

algorithms with simpler opponents assumptions (say, Bt or Bx, for various spaces X)

or algorithms that can perform reasonably, if not optimally, against all opponents.

How we define "reasonable" is an important question, which we will address in much

more detail in Chapter 5.

As we seek to design good multi-agent learning algorithms, we can think of each

R, x Bt as a different league of players, with players in each league roughly equal to

one another in terms of their capabilities. Clearly some leagues contain less capable

players than others. We can thus define a fair opponent as an opponent from an equal

or lesser league. New learning algorithms should ideally be designed to beat any fair

opponent.

Definition 7 A fair opponent for a player in league R, x Bt is any player from a

league R,, x Bt,, where s' < s and t' < t.

58

3.1.1 The key role of beliefs

Within each league of players (algorithms), let us assume that we can create players

are fully rational in the sense that they can fully use their available histories to con-

struct their future policy. However, an important observation is that the definition

of full rationality depends on their beliefs about the opponent. If we believe that our

opponent is a memoryless player, then even if we are an H,,, player, our fully rational

strategy is to simply model the opponent's stationary strategy and learn to play our

stationary best response. While our path of play may appear adaptive in the short

run because we are estimating the opponent's stationary distribution as we play, in

the long run our strategy is expected to converge to a steady state. When this player

is faced with an opponent that does not play a stationary distribution every time

period, then this player's strategy may never converge. Moreover, since it cannot ac-

curately model the opponent due to the limitations of its belief space, we would not

expect its performance to be very good. Given the entire history of observations, its

best response given no further information would be to play a stationary distribution,

even though more complex strategies might clearly perform better. Thus, our belief

capacity and our history capacity are inter-related. Without a rich set of possible

beliefs about our opponent, we cannot make good use of our available history. Sim-

ilarly, and perhaps more obviously, without a rich set of historical observations, we

cannot hope to model complex opponents.

3.1.2 Existing algorithms

Many of the existing algorithms fall within the H4,, x L3 league. As discussed above,

the problem with these players is that even though they have full access to the history,

given no further observations of future play, their fully rational strategy is stationary

due to their limited belief set. This is a reasonable first step in terms of designing

competitive multi-agent algorithms; however, it is hardly sufficient in most practical

circumstances. The players in this league are only adaptive in the sense that they

continue to use all the observed history to refine their policy of play towards a hope-

59

fully optimal stationary policy. They use the history to construct an estimate of the

opponent's policy, which they assume to be fixed.

Such an algorithm essentially treats its environment as a Markov decision process,

where the states in the MDP model correspond only to the external world states.

Since the opponent is assumed to be fixed, we do not need to model its internal

states. The actions in this MDP are simply the agent's own actions. The opponent's

actions influence the transition probabilities between states in the state space, but

since the opponent action distributions at each state are expected to be stationary,

we can simply estimate the transition probabilities between the states without wor-

rying further about the actual actions that the opponent takes. Thus, any standard

reinforcement learning algorithm, using an assumption of a fixed opponent, would fall

into this category of a H4, x Bo player, where the MDP model it tries to learn only

depends on the external world states, its own actions, and the corresponding rewards

that are observed.

Another general example of a N x B0 player is the policy hill climber (PHC).

It maintains a policy and updates the policy based upon its history in an attempt

to maximize its rewards. We will discuss this algorithm in more detail in the next

section. It will be used as an example of an adaptive algorithm that can still be

exploited by an intelligent opponent, because its beliefs about its possible opponents

are very limited.

At the opposite end of the spectrum, Littman and Stone [2001] propose algorithms

in Ho x B, and H, x B, that are leader strategies in the sense that they choose a fixed

strategy and hope that their opponent will "follow" by learning a best response to that

fixed strategy. Their "Bully" algorithm chooses a fixed memoryless stationary policy,

while "Godfather" has memory of the last time period. In games of multiple equilibria,

these algorithms choose the equilibrium point most beneficial to themselves and fix

their strategy at that equilibrium strategy, hoping the other agent will recognize that

the best response is to play the other half of that equilibrium point. Opponents

included normal Q-learning and Qi players, which are similar to Q-learners except

that they explicitly learn using one period of memory because they believe that their

60

opponent is also using memory to learn. The interesting result is that "Godfather"

is able to achieve an equilibrium against Q, in the repeated prisoner's dilemna game

that is not an equilibrium of the one-shot game, with rewards for both players that

are higher than the one-shot Nash equilibrium rewards. This demonstrates the power

of having belief models. Qi is a B1 player and Bully is a B.. player.

However, the Bully and Godfather algorithms still rely on the smartness of the

opponent in order to achieve good results. Because these algorithms do not have

access to more than one period of history, they cannot begin to attempt to construct

statistical models of the opponent. "Godfather" works well because it has a built-in

best response to Qi learners rather than attempting to learn a best response from

experience.

Finally, Hu and Wellman's Nash-Q and Littman's minimax-Q are classified as HO x

BO players, because even though they attempt to learn the Nash equilibrium through

experience, their play is fixed once this equilibrium has been learned. Furthermore,

they assume that the opponent also plays a fixed stationary Nash equilibrium, which

they hope is the other half of their own equilibrium strategy. Thus, if we assume that

the joint rewards of the repeated matrix game or stochastic game are known before

the game even begins, then Nash-Q and minimax-Q will not need to learn or adapt at

all; they will simply solve for a Nash equilibrium of the given game and play according

to it. Nash-Q, in particular, requires the assumption that an oracle is available that

ensures that all the players in the game choose the same Nash equilibrium, since there

may be multiple equilibria.

A summary of these different algorithms is given in Table 3.1. We will discuss Exp3

and Hedged Learning further in Chapter 5. Rather than claiming optimality against a

particular opponent type, these regret-minimizing algorithms perform approximately

optimally against some set of opponents, and perform approximately as well as some

comparison class of strategies against any arbitrary opponent. This will turn out

to be a very appropriate way of evaluating the performance of multi-agent learning

algorithms, as we will discuss in Chapter 5. In the meantime, we will further explore

the shortcomings of the other approaches we have classified in Table 3.1, such as the

61

various H-(x Bo players.

3.1.3 The policy hill climber

A general example of a R... x L3 player is the policy hill climber (PHC). It maintains

a policy and updates the policy based upon its history in an attempt to maximize

its rewards. Originally PHC was created for stochastic games, and thus each policy

also depends on the current state s. p(s) denotes the mixed policy the agent employs

when it observes itself at state s. In a slight abuse of notation, [(s, a) will denote the

probability assigned to taking action a at state s by the mixed policy P(s).

In the repeated games that we study in this chapter, there is only one state, so s

is fixed at that one state. In later chapters, we will be dealing with stochastic games

that possess multiple states, so we will preserve the notation of using a state s in the

following description of the policy hill climbing algorithm.

For agent i, Policy Hill Climbing (PHC) proceeds as follows:

1. Let a and 6 be the learning rates. Initialize

1
Q (s, a) <- 0, pi (s, a) +- Vs E S, a E Aj.

|Ai

2. Repeat,

a. From state s, select action a according to the mixed policy yu(s) with some

exploration.

b. Observing reward r and next state s', update

Q(s, a) +- (1 - a)Q(s, a) + a (r + -y max Q(s', a')).

c. Update ji(s, a) and renormalize it to a legal probability distribution:

{)) 6 if a = argmaxaI Q(s, a')
pas(s, a) +- pui(s, a) +

S-i otherwise

The basic idea of PHC is that the Q-values help us to define a gradient upon which

62

we execute hill-climbing. As we learn, we always increase the probability of choosing

the action with highest Q-value in an attempt to increase our expected future rewards.

Normal Q-learning, if applied to stochastic games, would be a special case of PHC

with 6 = 1, and Bowling and Veloso's WoLF-PHC (Win-or-Lose-Fast PHC) [Bowling

and Veloso, 2002b] modifies PHC by adjusting 6 depending on whether the agent is

"winning" or "losing." True to their league, PHC players play well against stationary

opponents. WoLF-PHC also manages to converge to a stationary Nash equilibrium

against other PHC players.

3.2 A new class of players and a new algorithm

As discussed above, most existing algorithms do not form beliefs about the opponent

beyond BO. None of these approaches is able to capture the essence of game-playing,

which is a world of threats, deceits, and generally out-witting the opponent. We

wish to open the door to such possibilities by designing learners that can model the

opponent and use that information to achieve better rewards. Ideally we would like

to design an algorithm in N x B, that is able to win or come to an equilibrium

against any fair opponent.

Since this is impossible [Nachbar and Zame, 1996], we start by proposing an algo-

rithm in the league H,,,, x B,, that plays well against a restricted class of opponents.

Since many of the current algorithms are best-response players, we choose an oppo-

nent class such as PHC, which is a good example of a best-response player in H" x B0.

In the remainder of this chapter, we will describe our new algorithm and demonstrate

empirically that our algorithm indeed beats its PHC opponents and in fact does well

against most of the existing fair opponents.

In Chapter 5, we will extend these ideas to create an algorithm that achieves good

performance against a large set of possible opponents. This hedged learning algorithm

provides theoretical guarantees about its performance against any opponent, and also

performs reasonably well in practice.

63

3.2.1 A new algorithm: PHC-Exploiter

Our algorithm is different from most previous work in that we are explicitly modeling

the opponent's learning algorithm and not simply his current policy. In particular, we

would like to model players from H, x B0 . Since we are in H, x B., it is rational for

us to construct such models because we believe that the opponent is playing strategies

that depend on history, that is, we believe that the opponent is learning and adapting

to us over time using its history.

The idea is that we will "fool" our opponent into thinking that we are stupid by

playing a decoy policy for a number of time periods and then switch to a different

policy that takes advantage of their best response to our decoy policy. From a learning

perspective, the idea is that we adapt much faster than the opponent; in fact, when

we switch away from our decoy policy, our adjustment to the new policy is immediate.

This is in contrast to our opponent, which adjusts its policy by only a small increment

after each time period. Moreover, due to the fact that the opponent is in H-,, x B,

its assumptions about us render it unable to model our changing behavior due to

its design assumptions. We can repeat this "bait and switch" cycle ad infinitum,

thereby achieving infinite total rewards as t -+ oc. The opponent never catches on to

us because it believes that we only play stationary policies.

A good example of such a H,,, x B player is Policy Hill Climber, with its variants

WoLF-PHC and Q-learning. Iterated Gradient Ascent (IGA) is a special case of PHC

for two-player, two-action games with public knowledge of the opponent's policy.

Public knowledge refers to the fact that we can observe the probability distribution

with which the opponent chooses an action to play. This is in contrast to the usual

situation where we only get to observe the action actually chosen.

Bowling and Veloso showed that in self-play, a restricted version of WoLF-PHC

always reaches a stationary Nash equilibrium in two-player two-action games, and that

the general WoLF-PHC seems to do the same in experimental trials involving more

general games. Thus, in the long run, a WoLF-PHC player achieves its stationary

Nash equilibrium payoff against any other PHC player. In cooperative settings, this

64

is a desirable outcome since both players are doing well over the long-run. The

interesting case is in the competitive setting, where one agent's gain is generally the

opponent's loss. In particular, the Nash equilibrium payoff for both players of a purely

competitive, zero-sum game is zero.

We wish to do better than that by exploiting our knowledge of the PHC opponent's

learning strategy. We can construct a PHC-Exploiter algorithm for agent i that

proceeds like PHC in steps 1-2b, and then continues as follows:

1. Let a be the learning rate, and w be the window of estimation. Initialize

1
Q(s, a) <- 0, pi(s, a)<- A , Vs E S, a E Aj, 6 +- 0.

2. Repeat,

a,b. Same as PHC.

c. Observing action at_ at time t, update our history h and calculate an estimate

of the opponent's policy:

Ati(s, a) = n,'s'" for all a
nt,s

where nt,,,a is the number of times in periods t - w to t that the opponent played

action a at state s, and nt,, is the number of times in periods t - w to t that the

opponent faced state s. We denote the length of the window of estimation as w. We

estimate A-w(s) similarly.

d. Update S by estimating the learning rate of the PHC opponent:

maxa IAti(s, a) - Ati'(s, a)

w

e. Update pi(s, a). If we are winning, i.e., E tp(s, a')Q(s, a') > Ri(/*(s), Ui (s)),

then update

s, a) {I if a= argmax, Q(s, a')

0 otherwise.

65

otherwise, we are losing, then update

6 if a = argmaxa, Q(s, a')

A- otherwise

Note that we derive both the opponent's learning rate 6 and the opponent's policy

pi(s) from estimates using the observable history of actions. If we assume the game

matrix is public information, then we can solve for a Nash equilibrium strategy A*(s),

otherwise we can run WoLF-PHC for some finite number of time periods to obtain

an estimate of this equilibrium strategy. Similar to the assumptions made in the

WoLF-PHC algorithm, there is assumed to be only Nash equilibrium in the games

considered here. The main idea of this algorithm is that we take full advantage of

all time periods in which we are winning and getting higher payoffs than our Nash

equilibrium payoffs, that is, when Ea /i(S, a')Q(s, a') > Ri(A*(s), 1 Li(s)).

It takes the PHC opponent a significant amount of time to realize that it is being

beaten and to adjust its policy appropriately, and during this time, we reap significant

rewards. Once we begin losing, we can then lead the opponent to a new policy that sets

it up for another beating. It is willing to go along because it is optimizing its current

policy by increasing the probability of choosing the action with highest Q-value.

Because the Q-value essentially absorbs some randomness of the play depending on

the update rule, we do not have to lose in every time period. By the time we have

the opponent set up for another beating, we will have lost much less reward than we

gained during the period of advantage.

3.2.2 Analysis

The PHC-Exploiter algorithm is based upon PHC and thus exhibits the same behavior

as PHC in games with a single pure Nash equilibrium. Both agents generally converge

to the single pure equilibrium point. The interesting case arises in competitive games

where the only equilibria require mixed strategies, as discussed by Singh et al. [2000]

and Bowling and Veloso [2002b]. Matching pennies, shown in Figure 1(a), is one such

66

game. In this type of game, PHC-Exploiter is able to use its model of the opponent's

learning algorithm to choose better actions for itself. In the long-run, it achieves

better rewards than any PHC opponent.

In the full knowledge case, where we know our opponent's policy A2 and learning

rate J2 at every time period, we can prove that a PHC-Exploiter learning algorithm

will guarantee us unbounded reward in the long run playing games such as matching

pennies. The central idea is that play will keep cycling, alternating between stages

where we are gaining high reward and stages where we are losing some reward but

setting up the system for another stage of high gain.

Proposition 8 In the zero-sum game of matching pennies, where the only Nash equi-

librium requires the use of mixed strategies, PHC-Exploiter is able to achieve un-

bounded rewards as t -+ oo against any PHC opponent given that play follows the

cycle C defined by the arrowed segments shown in Figure 2.

Play proceeds along C, C1, then jumps from (0.5, 0) to (1,0), follows the line

segments to (0.5, 1), then jumps back to (0, 1). Given a point (x, y) = (p1(H), p2 (H))

on the graph in Figure 2, where pi(H) is the probability by which player i plays Heads,

we know that our expected reward is

R,(x, y) = 1 - 2xy.

We wish to show that

j R,(x, y)dt = 2 x (f R(x, y)dt + 1 R(x, y)dt) >0

We consider each part separately. In the losing section, we let g(t) x = t and

h(t) = y = 1/2 - t, where 0 < t < 1/2. Then

1/1
R1(x, y)dt = R1(g(t), h(t))dt = -.

Similarly, we can show that we receive 1/4 reward over C,. Thus, JC R,(x, y)dt =

67

1/3 > 0, and we have shown that we receive a payoff greater than the Nash equilibrium

payoff of zero over every cycle. It is easy to see that play will indeed follow the cycle

C to a good approximation, depending on the size of 62.

At time t, the policy of a PHC-Exploiter agent 1 playing against a PHC agent 2 is

determined by the tuple (Pi, P2, 62) at time t - 1. For p(H) > 0.5 and p2 (H) < 0.5,

agent 1 plays H exclusively. Agent 2 is adjusting its policy by 62 increments. Thus, we

are guaranteed to reach (1, 0.5). For pl1(H) > 0.5 and P2(H) ;> 0.5, agent 1 is losing

and adjusts its policy by 62 at each time step. By definition, the PHC agent 2 is also

adjusting its policy by 62 increments. Thus, if we begin at (1, 0.5), we will eventually

reach (0.5, 1). Continuing in this fashion, it is easy to see that the resulting actions

follow the cycle depicted in Figure 2. The graph depicts the probability that each

agent plays heads (H). In the vertical sections of the cycle C., agent 1 is winning; and

in the diagonal sections C1, agent 1 is losing and adjusts its policy by 62 increments.

Note that the two winning sections are symmetric, as are the two losing sections.

Thus, it remains to show that during a complete traversal of this cycle of policies,

agent 1 receives positive total reward.

3.2.3 Experimental results

We now demonstrate empirically that we can estimate p2 and 62 sufficiently well from

past observations, thus eliminating the full knowledge requirements that were used

to ensure the cyclic nature of play above. We used the PHC-Exploiter algorithm de-

scribed above to play against several PHC variants in different iterated matrix games,

including matching pennies, prisoner's dilemna, and rock-paper-scissors. Here we give

the results for the matching pennies game analyzed above, playing against WoLF-

PHC. We used a window of w = 5000 time periods to estimate the opponent's current

policy P2 and the opponent's learning rate 62. As shown in Figure 2, the play exhibits

the cyclic nature that we predicted. The two solid vertical lines indicate periods in

which our PHC-Exploiter player is winning, and the dashed, roughly diagonal, lines

indicate periods in which it is losing.

In the analysis given above, we derived an upper bound for our total rewards over

68

time, which was 1/6 for each time step. Since we have to estimate various parameters

in our experimental run, we do not achieve this level of reward. We gain an average

of 0.08 total reward for each time period. Figure 3 plots the total reward for our

PHC-Exploiter agent over time. In this experiment, we held the learning rate for

the PHC player constant. The periods of winning and losing are very clear from this

graph. If we let the learning rate for the PHC player decay as usual, the periods we

observe will grow longer and longer over time.

Further experiments tested the effectiveness of PHC-Exploiter against other fair

opponents, including itself. Against all the existing fair opponents shown in Table

3.1, it achieved at least its average equilibrium payoff in the long-run. This is shown

in Table 3.2. Not surprisingly, it also posted this score when it played against a

multiplicative-weight learner. We included experiments using the Matching Pennies

game, the Rock-Papers-Scissors game, and Prisoner's Dilemma, which can be found

in Figure 2-1. Each matchup of different players in each game was run for 20 trials,

and the performance averaged over 500,000 periods. Matching Pennies and Rock-

Papers-Scissors are both zero-sum games, while Prisoner's Dilemma is a general,

non-zero-sum game. We see that in the zero sum games, the PHC-Exploiter is always

able to beat or approximate its minimax payoff of zero, against all of its opponents.

The Prisoner's Dilemma game is in some sense an easy game, since all the algorithms

will quickly converge on the single-shot Nash equilibrium strategy and receive payoff

of one in each time period, with all players defecting every round.

3.3 Combinations of methods

As we saw in the previous section, once an opponent gains some knowledge about our

policies and learning algorithms, they can easily exploit our weaknesses. In response,

we have a couple options. One method would try to hide our policies and algorithms

from the opponent by purposefully obfuscating them. This obfuscation might incur

us some loss, but the goal would be to minimize this loss while maximizing the

obfuscating effect.

69

Game type Opponent Average reward Standard Deviation

Matching pennies PHC 0.081 0.0002
Matching pennies MW 0.004 0.0011
Matching pennies Nash-Q -0.001 0.0005
Matching pennies PHC-Exploiter 0.001 0.0008

Rock-Papers-Scissors PHC 0.012 0.0044
Rock-Papers-Scissors MW -0.006 0.0429
Rock-Papers-Scissors Nash-Q 0.018 0.0072
Rock-Papers-Scissors PHC-Exploiter 0.008 0.0191

Prisoner's Dilemma PHC 1.0 0.0013
Prisoner's Dilemma MW 1.0 0.0021
Prisoner's Dilemma Nash-Q 1.0 0.0009
Prisoner's Dilemma PHC-Exploiter 1.0 0.0007

Table 3.2: Table showing performance of the PHC-exploiter against different oppo-
nents in various repeated games. Performance is given as average rewards per time
period, over 20 trials. The game payoffs are given in Figure 2-1.

A second option would involve trying to identify the opponent's new, more com-

plicated, policies and algorithms, and find a good response strategy to this more

sophisticated opponent. With each advance in sophistication, our space of possible

opponent models grows. In this way, it is similar to an arms race between two adver-

saries. We each need to increase our range of weapons, but it will be a never-ending

cycle of increases. Nevertheless, short of negotiating a compromise solution, possibly

an equilibrium solution, this is the situation we face. Opponents will always try to

exploit possible weaknesses, and we must always be ready to defend ourselves against

such exploits.

With an ever-increasing array of possible opponents, one major problem for us

is opponent identification. Once we identify the opponent, then we can employ our

best-response strategy to that type of opponent.

However, there is potential for skipping a step in this process. Similar to the

70

difference between model-free learning and model-based learning, we can attempt to

learn a good policy without identifying the opponent first. This is similar to learning

an optimal policy for acting in an MDP without first learning the MDP parameters.

One way to achieve this is by mixing between our best-response policies for differ-

ent types of opponents. If a policy seems to be working well, we play it more often.

This intuitive framework is formally described by the mixture of experts approach,

which provides us with bounds on the regret that we might suffer following such an

approach. We will discuss this further in Chapter 5.

3.4 Conclusion

71

Action distribution of the two agent system

0 0.5
Player 1 probability choosing Heads

Action distribution of the two agent system

agent1 winning
agent1 losing ---

K.

0 0.5
Player 1 probability choosing Heads

1

Figure 3-1: Theoretical (top), Empirical (bottom). The cyclic play is evident in our
empirical results, where we play a PHC-Exploiter player 1 against a PHC player 2 in
the Matching Pennies game.

72

1.5

a)

-r
C)

0

0

1

0.5

0

Cw

Ci

-0.5 '
-0.5

1.5

1.5

U

a)
c,)

0
0

.0

.0
0

a)
(U

1

0.5

0

-0.5 '
-0. 5 1.5

I I I

1

Agent 1 total reward over time
8000

6000

4000

2 2000

0

-2000

-4000
0 20000 40000 60000 80000 100000

time period

Figure 3-2: Total rewards for the PHC-Exploiter increase as we gain reward through

each cycle, playing against a PHC opponent in the Matching Pennies game.

73

74

Chapter 4

Large sequential games

In the previous chapter, we focused on simple repeated matrix games, usually with a

small number of players or participants. This allowed us to gain insight into the com-

plex relationships between the different players' possible policies and beliefs. However,

many real-world situations would be better modeled by a richer representation that

included different states. Recall that in the repeated matrix game model, there is

only one state of the world which we returned to at every time period. We thus play

the same matrix game at every time period.

4.1 The problem setting

In this chapter, we will investigate richer representations that allow us to reason

about different states of the world if necessary. For example, in a game of chess, the

different states might correspond to the different board configurations. We still need

to reason about the opponent's internal mental state, but we also have the additional

complication of the external world state.

4.1.1 Stochastic games

A more general representation is the stochastic game, which extends the repeated

game model by allowing states. Each state corresponds to a different matrix game,

75

and the joint actions of the players at one state influence the probability with which

they transition to a new state of the world. Whereas in the previous chapter, we only

had to concern ourselves with the internal state of the opponent, here we also need

to worry about the external state of the world in which we find ourselves. Not only

will we want to manipulate the opponent so that it is in a "good state of mind", we

also need to ensure that we both take actions that allow us to spend as much time as

possible in good states of the world.

We might also refer to these stochastic games as sequential games, since past ac-

tions influence our current world state. However, this is an overloaded term. In game

theory, sequential games usually refer to situations where the players can take actions

sequentially, rather than simultaneously, as we have assumed. We will continue to

use the simultaneous action assumption, since the sequential version of these games is

actually often easier to deal with. For example, a sequential version of Rock-Papers-

Scissors would be trivial for the second player, and always a losing proposition for

the first player.

4.1.2 Partial observability

To further complicate matters, in many real-world domains, a single agent is unable

to observe the overall state of the world, or the actions which all the other agents in

the world take at each time period. In these large multi-agent domains, we are left

with a partially observable external environment. In the previous section, the only

partial observability stemmed from our inability to read an opponent's mind. We

assumed we could always observe the opponents' actions, and clearly we also always

knew the state of the world, since there was only a single state.

In the scenarios we consider in this chapter, our problems are compounded. Not

only are the opponents' internal states of mind unobservable, the environment has

become so complex that we may not be able to observe the entire environment at

once. For example, the state space may be so large that we can only observe some

local properties of the environment. If there are many agents operating in this large

environment, perhaps we can only observe the locations of those agents which are

76

close by.

An additional complexity arises from the use of the stochastic games model rather

than simple repeated normal-form games. In stochastic games, we need to worry

about the effect of our current actions on our trajectory of future states, and thus,

future rewards. In repeated games, the future state is the same at every period, since

we play the same normal-form game each time period, regardless of our chosen action.

In stochastic games, depending on which action we choose in this current time period,

we may transition into a different state, and thus play a different matrix game that

corresponds to that different state during the next time period.

While this relationship of causality also existed in the repeated matrix games, it

only existed in our model of the opponents' internal state. Our actions might affect

its choice of actions in the future because we have either revealed something about

ourselves, caused it to behave in a friendly way towards us, or otherwise affected its

behavior due to its observation of our current actions. This causality was only implicit,

since we could not actually observe the internal change of state in the opponents'

minds; we could only observe the external outcomes of its effect on their resultant

behaviors, if any. In stochastic games, on the other hand, the causality between

current actions and future states is more explicit, since we may actually be able to

observe the next state directly.

4.1.3 A motivating application

Stochastic games are relevant for studying a wide range of real world multiagent

phenomenon. While much of the work in this thesis can be applied to many general

domains, in this chapter we will restrict our study to fully cooperative situations

where a large number of agents must interact and try to achieve the high level of

global reward. This type of scenario is in part motivated by our interest in mobilized

ad-hoc networks, which are described are studied in greater detail in Chapter 6. In

short, achieving maximum performance in a mobilized ad-hoc network requires the

connection of as many sources nodes as possible to the one or more receiver nodes in

the system. We use learning techniques to train mobile agent nodes to move around

77

and form connections between the sources and receivers, which may also be moving.

During this training phase, we use the network connectivity as a measure of system

performance, and pass that along to the mobile agent nodes as a global reward or

training signal.

There are many further complications to learning in this mobilized ad-hoc net-

working setting. In this domain, the learning agent does not have a full view of

the world - it cannot see the world state of agents that are far away or otherwise

obscured. Furthermore, it certainly does not have a complete representation of the

internal states of the other agents. This partial observability creates problems when

the agent begins to learn about the world, since it cannot see how the other agents

are manipulating the environment and thus it cannot ascertain the true world state.

Aliasing may occur, a situation in which the agent cannot distinguish between one

good state and one bad state because the observations it receives in both states are

the same. This is an acute problem in partially-observed multi-agent learning, since

the unobserved agents could have a tremendous effect on the value of a state.

4.1.4 Credit assignment

A separate problem arises when we train multiple agents using a global reward signal.

Even with full observability, the agents would need to overcome a credit assignment

problem, since it may be difficult to ascertain which agents were responsible for

creating good reward signals. Reward shaping may help, but if the world is not

fully observable, then again we are left in the dark. If we cannot even observe what

the other agents are doing, how can we begin to reason about their role in obtaining

the current reward? Our solution relies on its simplicity.

Consider an agent in an MDP, learning to maximize a reward that is a function of

its observable state and/or actions. There are many well-studied learning techniques

to do this [Sutton and Barto, 1999. The effects of non-stationarity, partial observ-

ability, and global rewards can be thought of as replacing this true reward signal with

an alternate signal that is a non-stationary function of the original reward. Think of

the difference between learning with a personal coach and learning in a large class

78

where feedback is given only on collective performance. This causes problems for

an agent that is trying to use the reward signal to learn an optimal policy for this

environment. Since each single agent is unable to observe the entire global state, it

might become confused as to whether the changes in its observed reward are due to

its own actions or to other external factors, such as the performance of the other

agents in the system. A high collective class score may simply reflect that one has

smart classmates, rather than whether or not one has learned anything useful. Ideally

the agent can recover the original personal reward signal and learn using that signal

rather than the global reward signal.

4.2 A simple solution: Filtering the reward signal

These large, partially observable stochastic games, even restricted to fully cooperative

games, are clearly a difficult domain in which to learn to behave optimally. However,

our approach is to simply abstract away much of the domain's complexity, leaving

only enough in our model that we can still achieve reasonable levels of performance.

While a more complicated model may be able to perform better, the reasoning is that

if we are limited in our computational or observational abilities, then we may simply

have to live with some simple, good approximations. Furthermore, it is somewhat

surprising that a large number of real-world situations are well-approximated by the

simple model we propose in this section.

We show that in many naturally arising situations where an agent attempts to

learn a good policy by observing a global, shared reward signal, an effective approach

is for this individual agent to model the observed global reward signal as the sum

of its own contribution (which is the personal reward signal on which it should base

its learning) and a random Markov process (which is the amount of the observed

reward due to other agents or external factors). With such a simple model, we can

estimate both of these quantities efficiently using an online Kalman filtering process.

Many external sources of reward (which could be regarded as noise) can be modeled

as or approximated by a random Markov process, so this technique promises broad

79

applicability. This approach is more robust than trying to learn directly from the

global reward, allowing agents to learn and converge faster to an optimal or near-

optimal policy, sometimes even in domains where convergence was once elusive.

The innovative aspect of our approach is to consider the reward signal as merely

a signal that is correlated with our true learning signal. We propose a model that

captures the relationship between the true reward and the noisy rewards in a wide

range of problems. Thus, without assuming much additional domain knowledge, we

can use filtering methods to recover the underlying true reward signal from the noisy

observed global rewards.

4.3 Mathematical model

The agent assumes that the world possesses one or more unobservable state variables

that affect the global reward signal. These unobservable states may include the

presence of other agents or changes in the environment. Each agent models the effect

of these unobservable state variables on the global reward as an additive noise process

bt that evolves according to bt+1 = bt + zt, where zt is a zero-mean Gaussian random

variable with variance a,. The global reward that it observes if it is in state i at

time t is gt = r(i) + bt, where r is a vector containing the ideal training rewards r(i)

received by the agent at state i. The standard model that describes such a linear

system is:

gt = Cxt +vt, vt - N(O, E 2)

Xt = Axt-1 + wt, wt - N(o, E 1)

In our case, we desire estimates of xt = [r[b]T. We impart our domain knowledge

into the model by specifying the estimated variance and covariance of the components

of xt. In our case, we set E 2 = 0 since we assume no observation noise when we

experience rewards; E1 (j, j) = 0,/ SI + 1, since the rewards are fixed and do not

80

evolve over time; E1(ISI + 1, SI + 1) = -, since the noise term evolves with variance

c-w. The system matrix is A = I, since none of the components of xt are combined

to produce xt+1, and the observation matrix is C = [0 0 ... 1 ... 0 0 1] where the 1

occurs in the ith position when our observed state s = i. This corresponds to selecting

the correct state and adding in the noise term b.

4.3.1 Kalman filters

Kalman filters [Kalman, 1960] are Bayes optimal, minimum mean-squared-error esti-

mators for linear systems with Gaussian noise. The agent applies the following causal

Kalman filtering equations at each time step to obtain maximum likelihood estimates

for b and the individual rewards r(i) for each state i given all previous observations.

First, the estimate J and its covariance matrix P are updated in time based on the

linear system model:

J'E = Ait_1 (4.1)

P = APt_1AT +E1 (4.2)

Then these a priori estimates are updated using the current time period's observation

gt:

Kt = pCT(CpC + 1 E 2)-(4.3)

Jt = i' + K(gt - C.'E) (4.4)

Pt = (I - KtC)Pt' (4.5)

As shown, the Kalman filter also gives us the estimation error covariance Pt, from

which we know the variance of the estimates for r and b. We can also compute the

likelihood of observing gt given the model and all the previous observations. This will

be handy for evaluating the fit of our model, if needed. We could also create more

complicated models if our domain knowledge shows that a different model would be

81

more suitable. For example, if we wanted to capture the effect of an upward bias in

the evolution of the noise process (perhaps to model the fact that all the agents are

learning and achieving higher rewards), we could add another variable u, initialized

such that uo > 0, modifying x to be x = [rT b u]T, and changing our noise term

update equation to bt+ 1 = bt + ut + wt. In other cases, we might wish to use non-linear

models that would require more sophisticated techniques such as extended Kalman

filters.

4.3.2 Q-learning

For the learning mechanism, one possibility is to use a simple tabular Q-learning

algorithm [Sutton and Barto, 19991, since we wish to focus our attention on the

reward signal problem. Q-learning keeps a "Q-value" for each state-action pair, and

proceeds using the following update rule:

Qt(s,a)= (1- a)Qti(s,a) +a(r+-yminQt(s',a')) , (4.6)
a/

where 0 < a < 1 is parameter that controls the learning rate, r is the reward signal

used for learning at time t given s and a, 0 < y < 1 is the discount factor, and s, a,

and s' are the current state, action, and next state of the agent, respectively. Under

fairly general conditions, in a stationary MDP, Q-learning converges to the optimal

policy, expressed as

7r(s) = argmaxa Q(s, a)

4.3.3 Model solving

One of the disadvantages of Q-learning is the fact that it must use many iterations

to propagate adjustments to the Q-values throughout the state space. During each

time period, we only make one update, based on our next state's observations. In

order to speed up this value propagation, we can use model-based methods instead.

Q-learning and other TD(A) methods are known as model-free methods, since they

do not explicitly try to estimate the transition probabilities between different states

82

given different actions. Instead, they only keep estimates of the rewards for various

state, action pairs, and rely on the simulation experience to propagate these values in

the correct probabilistic way, since our simulation experience will be generated from

the underlying transition probabilities.

If we estimate these transition probabilities, we can make the process more ef-

ficient by obviating the need for many iterations of simulations to propagate these

values. Instead, once we have estimated the transition probabilities accurately, we

can simply use value iteration or policy iteration to produce the optimal policy given

our estimated rewards and transition probabilities. If we are using actual robots in

the real world, this is clearly the route we want to take, since acquiring experience

in the world is very costly. In simulation, there is less need to use model solving,

since simulation experience is in comparison quite cheap. However, we will see that

using a good model-based technique will still allow us to find an optimal policy in

fewer iterations. The number of computations made during each iterations is larger

using the model-based technique, however, since one call of a procedure such as value

iteration requires many computation cycles.

For our experiments, we use a simplified version of Kearns and Singh's E3 al-

gorithm [Kearns and Singh, 1998]. Like other model-based learning algorithms, it

attempts to estimate the transition probability matrix of the domain. Its differ-

entiating characteristic is that it can be shown to produce an E-optimal policy in

polynomial time. However, it does require several expensive computations of value

iteration during many of its iterations. Thus, in our simplified version, rather than

actually using a very long mixing time A that is computed from the domain model,

we simply choose an arbitrary A that is fairly large. Furthermore, instead of explicitly

solving for the optimal exploration path, we will usually simply choose the action that

has been least explored in the past. For the domains we investigate, this simplified

version of E3 runs much faster and seems to perform adequately well.

83

4.4 Algorithm

Like any good student, the filtering learning agent chooses to accept well-deserved

praise from its teacher and ignore over-effusive rewards. The good student does not

update his behavior at every time step, but only upon observing relevant rewards.

Getting an A in a class with an easy professor should not convince me that I have good

study habits! The question remains: How does an agent decide upon the relevance

of the rewards it sees? We have proposed a model in which undeserved rewards over

time are captured by a Markov random process b. Using observations from previous

states and actions, an agent can approach this question from two perspectives. In

the first, each time the agent visits a particular state s, it should gain a better sense

of the evolution of the random variable b between its last visit and its current visit.

Secondly, given an estimate of bt during a visit to s at time t, it has a better idea of

the value of bt+1 when it visits s' at time t + 1. These are the ideas captured by the

causal Kalman filter, which only uses the history of past states and observations to

provides estimates of r(i) and b.

The agent follows this simple algorithm:

1. From initial state so, take some action a, transition to state i, and receive reward

signal go. Initialize zO(io) = go and -io(IS + 1) = bo = 0, since bo = 0.

2. Perform a Kalman update using equations 4.1-4.5 to compute the current vector

of estimates - , which includes a component that is the reward estimate i(so),

which will simply equal g this time.

3. From the current state i at time t, take another action with some mix of explo-

ration and exploitation; transition to state j, receiving reward signal gt. If this

is the first visit to state i, initialize t(i) = gt - bt- 1.

4. Perform a Kalman update using equations 4.1-4.5 to compute the current vector

of estimates i, which includes a component that is the reward estimate i(i).

5. Update the Q-table using (i) in place of r in equation 4.6; return to Step 3.

84

250-

200-

150-

100-

50 -

0

0 500 1000 1500 2000 2500 3000

Figure 4-1: As the agent in the idealized single-agent grid world is attempting to
learn, the reward signal value (y-axis) changes dramatically over time (x-axis) due to
the noise term. While the true range of rewards in this grid world domain only falls
between 0 and 20, the noisy reward signal ranges from -10 to 250, as shown in the
graph at left.

The advantage of the Kalman filter is that it requires a constant amount of memory

- at no time does it need a full history of states and observations. Instead, it computes

a sufficient statistic during each update, x and P, which consists of the maximum

likelihood estimate of r and b, and the covariance matrix of this estimate. Thus, we

can run this algorithm online as we learn, and its speed does not deteriorate over

time.

4.5 Experiments

If the world dynamics match the linear model we provide the Kalman filter, then

certainly this method will work well. The interesting question concerns situations

in which the actual dynamics are clearly different from the model, and whether this

85

20 -

15
-

101-

5 -

0 L

0 500 1000 1500 2000 2500 3000

Figure 4-2: Given the noisy signal shown in Figure 4-1, the filtering agent is still able
to learn the true underlying rewards, converging to the correct relative values over
time, as shown in the middle graph.

3.5-

3-

2.5-

2-

1.5-

1 -

0.5-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
x 10'

Figure 4-3: The filtering learning agent (bold line) accrues higher rewards over time
than the ordinary Q-learner (thin line), since it is able to converge to an optimal
policy whereas the non-filtering Q-learner remains confused.

86

Graph comparing performance of the filtered Q-learner with
the filtered model-based learner

in the idealized noisy grid-world domain
4 .5 r

Q-learner
- Model-based

0 1000 2000 3000 4000
Iterations

5000 6000 7000 8000

Figure 4-4: The filtering model-based learning agent (bold line) is able to learn an
optimal policy much quicker than the filtering Q-learning agent (thin line), since it
is able to use value iteration to solve for the optimal policy once the personal reward
signals have been accurately estimated.

87

4

3.51-

3

2.51-

a)
2

1.51

1

0.5

n

filtering agent will still learn good, or even optimal, policies in such cases. This section

examines the efficacy of the filtering learning agent in several different domains: (1)

a single agent domain in which the linear system describes the world perfectly, (2)

a single agent domain where the noise is manually adjusted without following the

model, (3) a multi-agent setting in which the noise term is meant to encapsulate

presence of other agents in the environment, and (4) a more complicated multi-agent

setting that provides an abstraction of a mobile ad-hoc networking domain in which

mobile agent nodes are trying to maximize total network performance.

For ease of exposition, all the domains we use in this chapter are variants of the

basic grid-world domain shown in Figure 4-5 and described in various reinforcement

learning texts such as [Sutton and Barto, 1999]. The agent is able to move North,

South, East, or West from its present position, and most transitions give the agent

zero reward, except all actions from state 6 move the agent directly to state 10 with

a reward of 20, and all actions from state 16 move the agent directly to state 18 with

a reward of 10. Bumps into the wall cost the agent -1 in reward and move the agent

nowhere. We use a discount factor of 0.9.

4.5.1 Idealized noisy grid world

To demonstrate the basic feasibility of our filtering method, we first create a domain

that follows the linear model of the world given in Section 4.3 perfectly. That is,

in each time step, a single agent receives its true reward plus some noise term that

evolves as a Markov random process. To achieve this, we simply add a noise term to

the grid world domain given in Figure 4-5. As shown in Figure 4-1, an agent acting

in this domain will receive a large range of reward values due to the evolving noise

term. In the example given, sometimes this value ranges as high as 250 even though

the maximum reward in the grid world is 20 - the noise term contributes 230 to

the reward signal! A standard Q-learning agent does not stand a chance at learning

anything useful using this reward signal. However, the filtering agent can recover the

true reward signal from this noisy signal and use that to learn. Figure 4-3 shows that

the filtering agent can learn the underlying reward signals, converging to these values

88

relatively quickly. The graph to the right compares the performance of the filtering

learner to the normal Q-learner, showing a clear performance advantage.

Furthermore, we can compare the performance of the filtering Q-learning agent

with the performance of the filtering simplified E3 learning agent. As shown in Figure

4-4, the filtering model-based learning agent is able to learn an optimal policy much

quicker than the filtering Q-learning agent, since it is able to use value iteration to

solve for the optimal policy once the personal reward signals had been accurately

estimated. From Figure 4-2, we know that the personal reward signal becomes stable

after only a small number of iterations. The model-based algorithm is able to solve

for the optimal policy as soon as this happens, thus learning the optimal policy much

quicker than the model-free Q-learner.

The observant reader may note that the learned rewards do not match the true

rewards specified by the grid world. Specifically, they are offset by about -4. Instead

of mostly 0 rewards at each state, the agent has concluded that most states produce

reward of -4. Correspondingly, state 6 now produces a reward of about 16 instead

of 20. Since Q-learning will still learn the correct optimal policy subject to scaling

or translation of the rewards, this is not a problem. This oddity is due to the fact

that our model has a degree of freedom in the noise term b. Depending on the initial

guesses of our algorithm, the estimates for the rewards may be biased. If most of

initial guesses for the rewards underestimated the true reward, then the learned value

will be correspondingly lower than the actual true value. In fact, all the learned values

will be correspondingly lower by the same amount.

To further test our filtering technique, we next evaluate its performance in a

domain that does not conform to our noise model perfectly, but which is still a single

agent system. Instead of an external reward term that evolves according to a Gaussian

noise process, we adjust the noise manually, introducing positive and negative swings

in the reward signal values at arbitrary times. The results are similar to those in the

perfectly modeled domain, showing that the filtering method is fairly robust.

89

Figure 4-5: This shows the dynamics of our 5x5 grid world domain. The states
correspond to the grid locations, numbered 1,2,3,4,...,24,25. Actions move the agent
N,S,E, or W, except in states 6 and 16, where any action takes the agent to state 10
and 18, respectively, shown by the curved arrows in the figure at left.

Figure 4-6: The optimal policy for the grid world domain is shown at left, where
multiple arrows at one state denotes indifference between the possibilities. A policy
learned by our filtering agent is shown at right. The learning algorithm does not
explicitly represent indifference, and thus always picks one action to be the optimal
one.

90

I +5

2 +10

3

4 24

25

L~ it222

I
~itit 4-4-

it it it it it

lit it it
it Ii 't it

4-

3.5-

3-

2.5-

2-

1.5-

1 -

0.5

0

-0.5-

-1
0 1 2 3 4 5 6 7 8 9 10

x 104

Figure 4-7: Filtering agents are able to distinguish their personal rewards from the
global reward noise, and thus able to learn optimal policies and maximize their average
reward over time in a ten-agent grid-world domain.

4.5.2 Multi-agent grid world

The most interesting case occurs when the domain noise is actually caused by other

agents learning in the environment. This noise will not evolve according to a Gaussian

process, but since the filtering method is fairly robust, we might still expect it to work.

If there are enough other agents in the world, then the noise they collectively generate

may actually tend towards Gaussian noise. Here we focus on smaller cases where there

are 6 or 10 agents operating in the environment. We modify the grid world domain

to include multiple simultaneously-acting agents, whose actions do not interfere with

each other, but whose reward signal now consists of the sum of all the agents' personal

rewards, as given in the basic single agent grid world of Figure 4-5.

We again compare the performance of the filtering learner to the ordinary Q-
learning algorithm. As shown in Figure 4-9, most of the filtering learners quickly

91

Graph showing the performance over time of
each filtering Q-learning agent in the multi-agent grid world

4

3.5

3

2.5

3 2

1.5

1

0.5

0
0 1 2 3 4 5

Iterations X 10 5

Figure 4-8: Another graph showing that filtering Q-learners converge. Unlike Figure
4-7, the exploration rate decay is slowed down, thus allowing all the agents to converge
to the optimal policy, rather than being stuck in the sub-optimal policy.

converge to the optimal policy. Three of the 10 agents converge to a suboptimal

policy that produces slightly lower average rewards. However, this artifact is largely

due to our choice of exploration rate, rather than a large error in the estimated

reward values. The standard Q-learning algorithm also produces decent results at

first. Approximately half of the agents find the optimal policy, while the other half

are still exploring and learning. An interesting phenomenon occurs when these other

agents finally find the optimal policy and begin receiving higher rewards. Suddenly

the performance drops drastically for the agents who had found the optimal policy

first. Though seemingly strange, this provides a perfect example of the behavior

that motivates our method. When the other agents learn an optimal policy, they

begin affecting the global reward, contributing some positive amount rather than a

consistent zero. This changes the world dynamics for the agents who had already

learned the optimal policy and causes them to "unlearn" their good behavior.

The unstable dynamics of the Q-learners could be solved if the agents had full

92

4

3.5

3

2.51

2

1.5

1

0.5

0

-0.5
0

I I I

1 2 3 4 5 6 7 8 9 10

X10W

Figure 4-9: In contrast to Figure 4-7, ordinary Q-learning agents do not process the
global reward signal and can become confused as the environment changes around
them. Graphs show average rewards (y-axis) within 1000-period windows for each of
the 10 agents in a typical run of 10000 time periods (x-axis).

observability, and we could learn using the joint actions of all the agents, as in the

work of Claus and Boutilier [1998]. However, since our premise is that agents have

only a limited view of the world, the Q-learning agents will only exhibit convergence

to the optimal policy if they converge to the optimal policy simultaneously. This may

take a prohibitively long time, especially as the number of agents grows.

It is instructive to note that this type of oscillation does not occur if we use

unfiltered model-based techniques. Over a long enough period of time, the model-

based technique builds up a good estimate of the average reward signal at each state,

which it then uses as the personal training signal to solve for the optimal policy.

However, as shown in Figure 4-10, the filtered version of the model-based learner is

still able to find the optimal policy more quickly, since the filter is able to recover the

personal training signal more quickly than simple averaging. This is discussed further

93

;=OF 41 nm_

rfjl v

Graph showing the reward of each agent over time
in the multi-agent grid-world domain

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

I I I I I I

8000 10000 12000
Iterations

14000 16000 18000

Figure 4-10: Once again, the filtered model-based agent is able to learn an optimal
policy in fewer simulation iterations than the filtered model-free Q-learning agent.
Note that the scale of the x-axis in this figure is different from the previous figures.

in Section 4.6.3.

Once again, as in the previous experimental domain, the model-based method

finds the optimal policy in a much smaller number of iterations than the Q-learner.

Note that the scale of the x-axis in Figure 4-10 is much larger than in Figure 4-7.

4.5.3 Mobilized ad-hoc networking

Finally, we apply our filtering method to a more realistic domain. We investigate the

mobilized ad-hoc networking domain by simplifying and adapting it to the grid world.

As discussed earlier, mobilized ad-hoc networking provides an interesting real-world

environment that illustrates the importance of reward filtering due to its high degree

of partial observability and a reward signal that depends on the global state.

94

k~VMA

-0
2u

cc

-0.5'
0 2000 4000 6000

I I I I I I I I I

RS

SS

Figure 4-11: A snapshot of the 4x4 adhoc-networking domain. S denotes the sources,
R is the receiver, and the dots are the learning agents, which act as relay nodes. Lines
denote current connections. Note that nodes may overlap.

In this domain, there are a number of mobile nodes whose task is to move in such a

way as to optimize the connectivity (performance) of the network. Chang et al. [2004b]

cast this as a reinforcement learning problem. As the nodes move around, connections

form between nodes that are within range of one another. These connections allow

packets to be transmitted between various sources and receivers scattered among the

nodes. The nodes are limited to having only local knowledge of their immediate neigh-

boring grid locations (rather than the numbered state locations as in the original grid

world), and thus do not know their absolute location on the grid. They are trained

using a global reward signal that is a measure of total network performance, and their

actions are limited functions that map their local state to N, S, E, W movements.

We also limit their transmission range to a distance of one grid block. For simplicity,

the single receiver is stationary and always occupies the grid location (1,1). Source

nodes move around randomly, and in our example here, there are two sources and

eight mobile agent nodes in a 4x4 grid.

This setup is shown in Figure 4-11, and the graph shows a comparison of an

ordinary Q-learner and the filtering learner, plotting the increase in global rewards

over time as the agents learn to perform their task as intermediate network nodes.

The graph plots average performance over 10 runs, showing the benefit of the filtering

95

1L -- L 11

0 1 2 3 4 5 6 7 8 9 10

x 10

Figure 4-12: Graph shows average rewards (y-axis) in 1000-period windows as filtering
Q-learner (bold line) and unfiltered Q-learner (thin line) agents try to learn good
policies for acting as network nodes in the ad-hoc networking domain. The filtering
agent is able to learn a better policy, resulting in higher network performance (global
reward). Graph shows the average for each type of agent over 10 trial runs of 100000
time periods (x-axis) each.

process. Again, the model-based learner is able to learn a better policy within fewer

simulation iterations. Similar experiments for larger grid sizes (5x5 and 6x6) with

larger numbers of sources and mobile agent nodes also produced similar results.

4.6 Discussion

Clearly, this filtering approach will not produce good results for any given multi-agent

domain. The experiments in the previous section show that the filtering approach, de-

spite its restrictive assumptions about the nature of the global reward signal, actually

performs well in a variety of domains where we would expect that these assumptions

are violated. In this section, we will explore the reasons why this approach worked

well in these domains, and discuss other domains where this approach does not work.

96

Graph showing the average network connectivity over time,
in a 5x5 ad-hoc network with nodes trained using various methods

I Iu~

I

'S4

Filtered model solving
Unfiltered model solving

- -- Filtered Q-learning

1
Iteration

1.2 1.4 1.6 1.8

Figure 4-13: Graph shows average rewards (y-axis) in 1000-period windows as filter-
ing model-based learners (bold line), filtered Q-learners (dashed line), and unfiltered
model-based learners (thin line) try to learn good policies for acting as network nodes
in the ad-hoc networking domain. The trials are run on a 5x5 grid, with 4 sources, 1
receiver, and 13 learning nodes.

4.6.1 Limitations

First of all, this filtering approach was designed to deal with cooperative multiagent

domains where a single global reward signal is given to all the agents. We could, of

course, try to apply this technique to noncooperative situations where the multiple

agents in the environment do not necessarily receive the same reward at each time

period. The reward filtering would still try to achieve the same goals, i.e. it would

attempt to filter out the effect of the opponents and of the unobserved portion of the

environment on the unobserved reward signal. However, this does not work since the

opponents may be actively adapting to our action choices. Thus, and action that is

a good action in the current time period may no longer be a good action in some

following time period. The filtering method, as presented in this chapter, only allows

us to learn a static policy that maps states to actions. The reward distribution for

97

3

2.5

2

C
0)

C

a)

1.5

1

0.51

0
0 0.2 0.4 0.6 0.8 2

x 10,

Graph showing the average network connectivity over time,
in a 5x5 ad-hoc network with nodes moving based on various methods

3 -
Random policy
Hand-coded

2.5 -- Filtered Q-learning I

2 -

0.

0 .5
I.

Itraio
x 10

ag)t (dte ie s ewr oe nth dhcntokn doai. h

8:1 ;

CUU

0.5

0 05 1 15 2
Iteration X 10,

Figure 4-14: Graph shows average network connectivity in 1000-period windows as

filtered Q-learning agents (dashed line), hand-coded agents (bold line), and random
agents (dotted line) act as network nodes in the ad-hoc networking domain. The
trials are run on a 5x5 grid, with 4 sources, 1 receiver, and 13 learning nodes.

each observed state, action pair needs to remain constant or at least change only very

slowly.

While this may be true for cooperative domains, it is highly unlikely to be the

case in competitive situations. The filtering method would thus be just as confused

as any other H,,, x Bo player, if playing against a more intelligent opponent that its

assumptions allow. Just as described in Chapter 2, however, we could expand the state

space to include observation histories. In a two-player game, filtering would be longer

make sense. Filtering attempts to remove the complexity of the environment; here

the environment is already as simple as it can be. Filtering also attempts to remove

the complexity of the other agents' action choices; here these choices are tightly

correlated with our own choices, and thus cannot be removed using our described

filtering method without major modifications. We will discuss better ways of dealing

98

with this type of situation in the next chapter.

Another situation where the filtering approach will likely fail is in a multi-agent

domain where they are a very large number of agents. With a large number of other

agents in the environment, it is more difficult for a single agent to estimate the effect

of its actions on the global reward signal, since any incremental change in the reward

signal would likely get washed out by all the noise. Basically, the signal to noise ratio

will drop as the number of agents grows. Thus, it won't work for huge numbers of

agents, even though the "noise" may begin to more closely resemble Gaussian noise

due to the Central Limit Theorem, if we assume that the rewards generated by the

different agents are independently drawn.

4.6.2 Model assumptions

On the other hand, there are many situations in which the filtering method will pro-

duce good results, even though we do not expect that our restrictive model assump-

tions hold in these situations. For example, in our experiments in Section 4.5, the

filtering method allowed our learning algorithms to learn good policies even though

we do not expect the noise model to hold in these environments. However, as we

demonstrate in this section, it may be surprising that the number of environments

in which is noise model does indeed hold is quite large. This is not to say that there

aren't also many environments in which filtering is not applicable. For example,

in many single-agent POMDPs, such as those in Loch and Singh [1998], the filter-

ing technique cannot remove any "noise" and learn a good reactive policy since the

learning depends heavily on the learning and exploration technique used, which affect

the estimated performance of any policy by affecting the state occupation frequen-

cies of the underlying MDP. Furthermore, in adversarial environments, the filtering

technique will also fail, since the "noise" is actually our adversary's response to our

actions and is thus very likely to depend heavily on our action choices and change

over time.

The intuition is that as long as the effect of the other agents in the environment on

the change in the global reward signal is somewhat independent of our agent's actions,

99

Distribution of the noise in the idealized noisy grid-world domain
1200

1000-

C
800-

16

5 600-

E
= 400-

200-

0
-4 -3 -2 -1 0 1 2 3 4

Value of the noise

Figure 4-15: This graph shows the distribution of the noise term over time in the
idealized noisy grid world simulation. The graph closely mimics that of a standard
normal distribution, since the noise is drawn from a normal distribution.

then this effect can be approximated reasonably well as a Gaussian distribution. The

effect of the other agents in each time period is simply a random draw from the

Gaussian distribution in our model.

In the idealized noisy grid world domain, the noise is exactly represented by a

Gaussian distribution. Figure 4-15 shows that over time, the random draws from this

distribution indeed produce a histogram that closely resembles the normal distribu-

tion. This histogram counts the number of observations in each range of the noise

values over time. Each time period produces one observation.

While we might have expected Figure 4-15 to resemble a Gaussian distribution

since the idealized noisy grid world uses such a distribution to produce the noise

in that domain, it comes as more of a surprise that a similar histogram produced

for the multiagent grid world also resembles a Gaussian. Figure 4-16 shows such a

histogram. Recall that the noise in this domain, from the perspective of agent i,

corresponds to the change over time of the sum of the other agents' rewards, i.e.

100

X 104 Distribution of the noise in the multi-agent grid world domain
7

6-

O 5-
C
0

Cu 2-

-

0

-. 3-
a)

.0
E
z 2 -

01
-150 -100 -50 0 50 100 150

Value of the noise

Figure 4-16: This graph shows the distribution of the noise term over time in the
multi-agent grid world simulation. As we can see, the distribution still resembles a
standard normal distribution even though the noise is no longer drawn from such a
distribution but is instead generated by the other agents acting in the domain.

b = r - rj r3_ 1. We can see that the histogram of this noise resembles a

Gaussian distribution. To be more precise, we also measure the mean, variance, skew,

and kurtosis of the noise distribution produced in this multi-agent grid world domain.

In order for this distribution to correspond to our model, it should have zero mean,

positive variance, and zero skew and kurtosis. Table 4.1 shows these statistics. We

note that up to the third moment, the noise distribution in the multi-agent grid world

corresponds well to the Gaussian.

Finally, we consider the noise distribution in the mobilized ad-hoc network sce-

nario. In this domainthe value of the noise term is less clearly defined, since the

global reward signal is no longer a simple sum of one agent's personal reward and

some other term. Thus, in order to measure the noise in each time period, we will

need to estimate it based on our global knowledge of the network state. Using this

global knowledge, we need to construct an estimate of what the single agent's personal

101

18

16 -

14 -

12 -

) 10 -
- -
0

-o-

4 --

2 --

0
-4 -3 -2 -1 0 1 2 3 4

Estimated value of the noise

Figure 4-17: This graph shows the distribution of the estimated noise term over
time in the multi-agent ad-hoc networking simulation. This distribution only vaguely
resembles a normal distribution, but is still symmetric about its mean and thus has
low skew.

reward ought to be.

For a particular mobile agent node, we assign a score of +1 for each source for

which it serves as a node in the shortest path between that source and a receiver.

Its personal reward signal is then approximated as a sum of these scores. This signal

attempts to reward mobile agent nodes only when they are actively participating

in helping to make a connected network. Clearly this is not necessarily the best

estimate to use, since we might imagine occasions when a non-participating node

is actually playing an important role by seeking out other unconnected sources, or

waiting around in a location where a disconnect is likely to occur soon. However, for

the purposes of gaining a clearer picture of the fit for our noise model to the actual

environment, our coarse approximation suffices.

Figure 4-17 shows the distribution of the estimated noise term, which is calculated

by subtracting the approximated, heuristic personal reward signal from the observed

102

X 104 Distribution of the estimated noise

Mean Variance Skew Kurtosis
Model assumptions 0 any 0 0
Idealized noisy grid world 0.016 1.017 -0.0166 3.031
Multi-agent grid world 0.000 817.400 0.0059 3.259
Mobilized ad-hoc networking 0.000 0.720 -0.0664 7.501

Table 4.1: Table showing the mean, variance, skew, and kurtosis of the noise distri-
bution measured in the various experimental domains.

global reward signal. Like a Gaussian distribution, it is symmetric, but its shape is

slightly different from a Gaussian, as reflected by its positive kurtosis. Since its mean

is zero, its kurtosis should also be zero if it were a standard Gaussian distribution.

These statistics are shown in Table 4.1. Another reason for the larger kurtosis in this

domain is that the potential values for the noise term are discretized, and can only

take on a small number of values. For s sources, there are only 2s + 1 possible values

for the noise term. We ran experiments with s = 3, 4, 5 and produced similar results

in each case.

These measurements show that despite an apparent lack of correspondence be-

tween some of these domains and our restrictive noise model, these domains actually

correspond to our noise model fairly well. Our filtering technique is able to take

advantage of this correspondence and learn good policies using the filtered rewards.

4.6.3 Averaging rewards

One final question arises in this situation. Since we know that the noise term has

zero mean, we might think that we could simply average the global reward signal

over time and produce a usable training signal in this way. This averaging method

would improve upon the nave method of simply training on the global reward signal

since it is able to estimate a more stable training signal, preventing the learning agent

from becoming confused by the fluctuations in the global signal. While this method

may work in the very long run, our filtering technique is much more efficient because

it is able to take advantage of the correlations of the noise term estimates between

different states of the environment. Thus the filtering technique arrives at a good

103

4.5

4

3.5 F

3

'2
CO

cc)

2.5

2

1.5

1

0.5

0

Graph showing performance of the two model-based learners,
one using filtering, one using simple averaging

0.5 1
Iterations

1.5 2

x 10,

Figure 4-18: This graph shows the performance of a model-based learned using a
filtered reward signal (bold line) vs using an averaged reward signal (thin line). The
averaging method does not work at all within the 25,000 time periods shown here.

estimate of the personal reward signal much more quickly than a simple averaging

method.

Figure 4-18 compares the averaging method with the filtering method in the multi-

agent grid-world domain. As we can see, the averaging method does not work at all.

The reason is that the zero mean noise may skew the average rewards if the agent has

state occupancy frequencies that favor a certain set of states. Thus, in the medium

run, the averages will not be centered around the true reward. In the very long run,

the expected average would be centered around the true reward, but even so, that

would require many many independent trials for this to be true.

104

45

40

35 -

30

a>
25

a
U)

10

5

0

Graph showing the average reward observed at each state
by agent 1 in the multi-agent grid-world domain

I.

0 2 4
Iteration

6 8 10

x 104

Figure 4-19: Average rewards fluctuate over time, rendering the average reward an
inappropriate training signal since it does not give the agents a good measure of their
credit as a portion of the global reward signal.

105

15t

Graph showing noise over time in the multi-agent grid-world domain,
where the "noise" is the sum of the other agents' reward

30-

25-

20-

0
C

15
a)

10-

5 -

0 1 2 3 4 5 6 7 8 9
Iteration x 10e

Figure 4-20: This graph shows the noise term evolving over time. While the additive
term in each time period has a mean of zero, clearly the noise term bt increased as
the agents learn good policies for behavior.

106

Graph showing the average additive noise term over time
0.06

.)

-j

0
C:

(D

Ua

0.04

0.02

0

-0.02

-0.04

-0.06
0 2 4

Iteration
6 8 10

x 104

Figure 4-21: This graph shows the average additive noise over time. While the mean
is very near zero, small deviations over time produce a noise term bt that grows away
from zero over time.

107

I

I

-

-

Graph showing the average reward over time
for each of the agents in the mult-agent grid-world domain

3.5-

3-

2.5-

(D 1.5 -
1--

0.5

0
0 2 4 6 8 10

Iteration X 10,

Figure 4-22: The source of the growing noise is clear from this graph. In these
experiments, we use filtered learning, and the agents are learning better policies over
time, thereby increasing the average global reward signal over time.

108

Chapter 5

Learning with uncertain models

As we have seen, the environment may become too complex for filtering alone to

produce good results in a reasonable amount of time. Furthermore, if the environment

is adaptive and adversarial, then filtering alone has no hope of solving our problems.

In this chapter, we will introduce the concept of hedged learning, which is able to

guarantee a high level of performance against any arbitrary opponent.

Unlike the filtering technique, where we take advantage of a very simple model

assumption, using hedged learning we are able to consider different possible assump-

tions about the world. We might have several different models, all of which has the

potential to best explain the world we observe. Ideally, we already know which model

best suits the domain at hand, but realistically this is often not the case. Thus, we

need an algorithm to behave well in the domain, while learning which model is best,

and learning an even better policy for behaving in the world using that best-fit model.

We will often refer to the "best model" and the "policy learned from the best model"

interchangeably.

Our performance may depend greatly on the appropriateness of the models we

have chosen. In partially observable environments, where we have a choice of features

and may need to use memory to fully capture the underlying state space, this can be

a significant barrier to producing good learning results. Thus, if a particular model

does not seem to be producing good behavior, we should ignore its predictions and

use a different, better performing model.

109

Finally, we may be uncertain about the appropriateness of different kinds of learn-

ing algorithms for a given domain. Again, since the environment is only partially-

observable, simple methods such as Q-learning probably will not do well. However,

if there is a good reactive policy that can be learned, it may actually succeed. Al-

gorithms such as policy gradient ascent may also have their shortcomings in these

domains, since they are only guaranteed to find local optima. Again, sometimes they

may work quite well, especially if we can initialize them to begin searching in an ap-

propriate part of the policy space. Finally, we may need more sophisticated methods

such as using a finite-state controller paired with a policy gradient method.

Hedged learning provides a way of deciding which model or learning method to

use. We want to choose a method that does not simply converge to the best pol-

icy among our choices, since this may take a very long time. Rather, we want a

method that enables us to achieve good performance in a fixed finite amount of time.

Hedged learning gives us a way to choose between models and methods depending

on how well they seem to be doing. Using this technique, we can thus derive perfor-

mance guarantees for our algorithm while it chooses between alternative models and

methods.

5.1 Regret-minimizing methods

The experts framework, and regret minimization, provides a useful tool for creat-

ing algorithms with real performance guarantees. Some of these results have been

presented in prior chapters. However, as the size of the environment increases, this

framework begins to break down.

In simple repeated games, it was enough to evaluate an algorithm's performance

relative to the performance of the best expert assuming the opponent's string of

actions remained unchanged. Within each period, we could evaluate the outcome we

would have observed if a different expert had been chosen.

Now let us assume that the environment actually reacts to our action choices. For

example, we might move to a different state in a stochastic game. Or, our actions

110

Ri= 2 3 R _2 _3

10 1 -5 -1

R2= 2 0 R2 2 -5
13 1 3 -1

(a) Short-horizon PD example (b) Long-horizon PD example

Figure 5-1: Different variants of the Prisoner's Dilemna game exhibiting the need for

different commitment periods.

may have convinced our opponent to change its internal state. Regardless of the

reason, the environment now acts differently in response to our actions. Thus, we

cannot evaluate our actions independently within each time period. For example,

take the classic example of Prisoner's Dilemna. Let's assume that the opponent we

face is a Tit-for-Tat player. If we play "Defect" in the current time period, then our

choice action for the next time period will lead to very different outcomes compared

to the situation that would have ensued had we chosen to play "Cooperate" in the

current time period. In the first case, cooperating in the next time period will result

in high loss. In the latter case, cooperating will the right thing to do, and will lead

to mutually beneficial gains.

Fortunately, it is not hard to adapt the experts framework to deal with reactive

environments. Rather than playing a chosen expert for only one time period before

choosing the next expert to follow, we must now commit to following one expert's

advice for multiple time steps. This commitment period is a time horizon that de-

pends on the nature of the environment's reactivity and the reward structure of the

environment. For example, in the Prisoner's Dilemna example described above, we

may need a commitment period longer than two periods even though the opponent

only has two internal states.

In the next section, we will refine our definitions and exact notation for the con-

cepts just discussed, including definitions for the commitment period needed to prop-

erly estimate the value of a particular policy.

111

5.2 Mathematical setup

In repeated games, the standard regret minimization framework enables us to perform

almost as well as the best action, if that single best action were played in every

time period. Suppose we are playing using some regret-minimizing algorithm which

outputs action choices at E A at each time period. Then our reward over T time

periods is R(T) = ET rat(t).

Definition 9 Our expected regret is defined to be Rma(T) - R(T), where Rm"(T) =

maxaEA EZ= 1 ra(t). If our algorithm randomizes over possible action choices, we also

define expected regret to be Rm.(T) - E[R(T)]. The set of actions against which we

compare our performance is called the comparison class.

Both game theorists and online learning researchers have studied this framework

[Fudenburg and Levine, 1995] [Freund and Schapire, 1999]. We will refer frequently to

the EXP3 algorithm (and its variants) explored by Auer et al. [1995]. In the original

formulation of EXP3, we choose single actions to play, but we do not get to observe

the rewards we would have received if we had chosen different actions. The authors

show that the performance of EXP3 exhibits a regret bound of 2Ve -- 1VTN ln N.

Generally speaking, these regret-minimizing algorithms hedge between possible ac-

tions by keeping a weight for each action that is updated according to the action's

historical performance. The probability of playing an action is then its fraction of

the total weights mixed with the uniform distribution. Intuitively, better experts

perform better, get assigned higher weight, and are played more often. Sometimes

these algorithms are called experts algorithms, since we can think of the actions as

being recommended by a set of experts.

5.2.1 Reactive opponents

It is important to note that most of these existing methods only compare our per-

formance against strategies that are best responses to what are often called oblivious

or myopic opponents. That is, the opponent does not learn or react to our actions,

112

and essentially plays a fixed string of actions. In this way, these existing methods are

best described as H,,, x Bo players. Our best response would be to play the single

best-response action to the empirical distribution of the opponent's actions. Under

most circumstances, however, we might expect an intelligent opponent to change their

strategy as they observe our own sequence of plays. Their major benefit over other

R-, x Bo players if that if the opponent turns out not to be an oblivious opponent,

this approach is still able to guarantee performance that approximates the reward

achieved with the best fixed action.

We can still use this type of algorithm in situations where we expect to encounter

reactive opponents, but we must simply satisfy ourselves with achieving a regret-

bound relative to the best we could have done against the worst-case oblivious oppo-

nent. On the one hand, this does not seem too bad. We will do as well as the best

fixed action against the worst-case opponent string of actions. However, in many

cases we do not face this type of opponent. We might actually do able to do better

than what these worst-case algorithms guarantee.

For example, consider the game of repeated Prisoner's Dilemma. If we follow the

oblivious opponent assumption, then the best choice of action would always be to

"Defect." Given any fixed opponent action, the best response would always be to

defect. This approach would thus miss out on the chance to earn higher rewards by

cooperating with opponents such as a "Tit-for-Tat" opponent, which cooperates with

us as long as we also cooperate. These opponents can be called reactive opponents.

Mannor and Shimkin [2001] propose a super-game framework for extending the regret-

minimization framework to handle such cases. In the super-game framework, we

evaluate an expert's performance not based on single periods of play; instead each

time we play an action or strategy, we commit to playing it for multiple time steps

in order to allow the environment to react to our strategy. Pucci and Megiddo [2004]

also explore this problem using a different performance metric.

113

5.3 Extending the experts framework

The key difference we need to make in order to account for reactive opponents is the

treatment of the history of actions taken in the game. Recall that in the stochastic

game model, we took pi = PD(Ai). As described earlier, we redefine pi : H -+ Aj,

where H = Ut H' and H' is the set of all possible histories of length t. Player

I's strategy at time t is then expressed as p(hl). For simplicity, we will assume

A = A1 = A2. Since we cannot design agents that optimize over any possible arbitrary

opponent, we focus on the largest set of opponents we can feasibly handle. One such

class is the set of all opponents that use fixed length behavioral strategies.

Definition 10 A T-length behavioral strategy p' is a mapping from all possible his-

tories H' to actions a E A. Let M' be the set of all possible T-length behavioral

strategies p'.

We note that IM'I = JAIIA12 . In the case where we take H' = H, we could even

consider learning algorithms themselves to be a possible "behavioral strategy" for

playing a repeated game.

This definition of our strategy space is clearly more powerful, and allows us to

define a much larger set of potential equilibria. However, when the opponent is not

rational, it is no longer advantageous to find and play an equilibrium strategy. In fact,

given an arbitrary opponent, the Nash equilibrium strategy may return a lower payoff

than some other action. Indeed, the payoff may be even worse than the original Nash

equilibrium value. Thus, regret minimization algorithms become important tools for

playing competitive games in unknown settings.

Our extensions to the regret-minimization framework follow along the lines of

the super-game setup described by Mannor and Shimkin [2001]. Instead of choosing

actions from A, we choose behavioral strategies from Mr. MT also replaces A as

our comparison class, essentially forcing us to compare our performance against more

complex and possibly better performing strategies. While executing p E M' for

some number of time periods A, the agent receives reward at each time step, but

does not observe the rewards he would have received had he played any of his other

114

possible strategies. This is reasonable since the opponent may adapt differently as

a particular strategy is played, causing a different cumulative outcome over A time

periods. Thus, the opponent could be an arbitrary black-box opponent or perhaps a

fixed finite automaton. While the inner workings of the opponent are unobservable,

we will assume the agent is able to observe the action that the opponent actually

plays at each time period.

For example, we might consider an opponent whose action choices only depend

on the previous T-length history of joint actions. Thus, we can construct a Markov

model of our opponent using the set of all possible -length histories as the state

space. If our optimal policy is ergodic, we can use the mixing time of the policy as

our choice of A, since this would give us a good idea of the average rewards possible

with this policy in the long run. We will usually assume that we are given A.

Rather than playing a chosen expert for only one time period before choosing

the next expert to follow, we must now commit to following one expert's advice for

multiple time steps. This commitment period is a time horizon that depends on the

nature of the environment's reactivity and the reward structure of the environment.

For example, in the Prisoner's Dilemma example described above, we may need a

commitment period longer than two periods even though the opponent only has two

internal states.

For example, consider the following game structure as shown in Figure 5.1, which

is an example of the Prisoner's Dilemna game. Let us assume that we keep playing

the same expert, so that the played we played is the last action of this expert's

commitment period choices. Then in the short-horizon version of the game, we receive

higher rewards for the "Always cooperate" strategy than the "Always defect" strategy,

even assuming our opponent begins the period by cooperating. Thus, a two-period

horizon is enough for us to evaluate the possible strategies and conclude that "Always

cooperate" is the best choice.

It even outranks the "Cooperate, then Defect (C,D)" strategy, since repeated

applications of "C,D" would initialize the opponent to defect in the first period of

play. This gets to a second, subtler point. Our strategies chosen in one commitment

115

period may affect the initial state for our next period of play. Thus, we may need to

assume some initial period of ramp-up time required for us to return to a favorable

environmental state, such as the cooperative state of our example where we have

previously cooperated and thus the opponent is inclined to cooperate on its next

move. Furthermore, we need to assume that such a return to a cooperative state is

even possible. We cannot allow opponents such as " Cooperate until a defection; defect

forever thereafter." Playing against such an opponent, once we play "Defect" once, we

can never return to a good cooperative state. Thus, we must make some assumption

about the plasticity of the environment. One such possible assumption is that the

environment exhibits ergodicity, which implicitly assumes that the environment can

be modeled as a Markov decision process. This means that our actions will not change

the environment forever, but they may have short-term consequences that must be

accounted for by playing strategies for multi-period commitments. To formalize this

intuition, we introduce the concept of an c-commitment time, which is closely related

to the standard concept of mixing time in Markov decision process.

Definition 11 Let M be a Markov decision process that models the environment

(the opponent), and let 7 be a policy in M such that the asymptotic average reward

Vk = limTs,0 VZ (i, T) for all i, where VZ(i, T') is the average undiscounted reward

of M under policy ir starting at state i from time 1 to T'. The E-commitment time

A, of 7r is the smallest T such that for all T' > T, IVZ(i, T') - Vj| <; e for all i.

In this chapter, we will assume that we are given a fixed value A for each learning

algorithm and opponent model, which is at least as large as the -commitment time

for any ergodic policy we may wish to learn using the particular opponent model we

are considering.

Thus, if we are executing a policy w learned on a particular opponent model M,

then we must run the policy for at least A time periods to properly estimate the

benefit of using that policy. For example, in the Prisoner's Dilemma game shown in

Figure 2-1, assuming a Tit-for-Tat opponent, we might fix A = 10, since the average

reward of playing "always cooperate" for n time periods is always within 1 of the

116

long-run reward. After playing this policy for 10 periods, we know that we will gain

an average reward within 1/5 of the long-term average reward of 1. This is due to

the fact that in the first time period, the opponent may still be playing "defect",

giving us a reward of -1 for that time period. We will then receive reward of 1 in each

ensuing period.

5.3.1 Evaluating all possible strategies

Given a fixed commitment length A, we may like to be able to evaluate all possible

strategies in order to choose the optimal strategy. This would entail enumerating

all possible behavioral strategies over A periods. Since the hedging algorithm will

essentially randomize between strategies for us, we only need to consider deterministic

behavioral strategies. However, there are still IAIIA12
A possible strategies to evaluate.

Not only would this take a long time to try each possible strategy, but the regret

bounds also become exceedingly weak. The expected regret after T time periods is:

2v'e - 1JAIA,2 A/2A12A /TA 1n IAl,

Clearly this amounts to a computationally infeasible approach to this problem.

In traditional MDP solution techniques, we are saved by the Markov property of the

state space, which reduces the number of strategies we need to evaluate by allowing

us to re-use information learned at each state. Without any assumptions about the

opponent's behavior, as in the classic regret minimization framework, we cannot get

such benefits.

5.4 Learning Algorithms as Experts

However, we might imagine that not all policies are useful or fruitful ones to explore,

given a fixed commitment length of A. In fact, in most cases, we probably have some

rough idea about the types of policies that may be appropriate for a given domain.

For example, in our Prisoner's Dilemma example, we might expect that our opponent

117

is either a Tit-for-Tat player, an Always-Defect or Always-Cooperate player, or a

"Usually Cooperate but Defect with probability p player", for example.

Given particular opponent assumptions, such as possible behavioral models, we

may then be able to use a learning algorithm to estimate the model parameters based

on observed history. For example, if we believe that the opponent may be Markov in

the -length history of joint actions, we can construct a Markov model of the opponent

and use an efficient learning algorithm (such as E3 from Kearns and Singh [1998])

to learn the c-optimal policy in time polynomial to the number of states, JA12r. In

contrast, the hedging algorithm needs to evaluate each of the exponentially large

number of possible policies, namely JAI^,2, possible policies. To make this precise,

we state the following lemma.

Proposition 12 Given a model of the opponent that is Markov in the T-length his-

tory of joint actions {at-, at-,... , a_1 , a 1i}, and given a fixed mixing time A, the

number of actions executed by E3 and a hedging algorithm such as EXP3 in order to

arrive at an e-optimal policy is at most 0 (|A lOT) for E3, and at least 0 (JAI|JAI2

for the hedging algorithm.

Thus, in most cases, the learning algorithm will be much more efficient than the

hedging algorithm. This is fairly obvious: whereas the hedging algorithm must try

all possible policies, the learning algorithm is able to use the structure of the state

space to solve for the optimal policy rather than trying each possible one.

Of course, using this method, we can no longer guarantee regret minimization over

all possible policies, but as we will discuss in the following section, we can choose a

subset of fixed policies against which we can compare the performance of any learning

algorithms we decide to use, and we can guarantee no-regret relative to this subset

of fixed policies, as well as relative to the the learning algorithms.

In some ways, using learning algorithms as experts simply off-loads the exploration

from the experts framework to each individual learning algorithm. The computational

savings occurs because each learning algorithm makes particular assumptions about

the structure of the world and of the opponent, thus enabling each expert to learn

118

more efficiently than hedging between all possible strategies.

5.4.1 Example

C C C C

D 01234 C

D
D D D

Figure 5-2: A possible opponent model with five states. Each state corresponds to

the number of consecutive "Cooperate" actions we have just played.

For example, consider again the repeated Prisoner's Dilemma game. We might

believe that the opponent reacts to our past level of cooperation, cooperating only

when we have cooperated a consecutive number of times. If the opponent cooperates

only when we have cooperated four periods in a row, then the opponent model shown

in Figure 5-2 would correctly capture the opponent's state dynamics. This model is

simpler than a full model using all possible 4-period histories, since it assumes that

the opponent's state is completely determined by our half of the joint history. In

the figure, the labeled transitions correspond to our actions, and the opponent only

cooperates when it is in state 4; otherwise it defects.

To learn the optimal policy with respect this opponent model, a learning algorithm

would simply have to visit all the state-action pairs and estimate the resulting reward

for each possible action at each state. Since we assume that the opponent model is

Markov, we can use an efficient learning algorithm such as E3.

Note that using this particular model, we can also learn the optimal policy for

an opponent that cooperates if we cooperate for some given n consecutive periods,

where n < 4. However, if n > 5, learning using this model will no longer result in the

optimal policy. Whereas choosing the cooperate action from state 4 results in a good

reward when n < 4, when n > 5 the same action results in a bad reward since the

119

opponent will most likely play defect. The problem is that the 5-state model is no

longer sufficient to capture the opponent's state dynamics, and is no longer Markov.

5.5 The Hedged Learner

Since our chosen learning algorithms will sometimes fail to output good policies,

we propose to incorporate them as experts inside a hedging algorithm that hedges

between a set of experts that includes our learners. This allows the hedging algorithm

to switch to using the other experts if a particular learning algorithm fails. It might

fail due to incorrect opponent assumptions, such as in the previous section's example,

or the learning algorithm may simply be ill-suited for the particular domain, or it

may fail for any other reason. The point is that we have a backup plan, and the

hedging algorithm will eventually switch to using these other options.

We study two methods for adding learning experts into a regret-minimization

algorithm such as Auer et al.'s EXP3. It is straightforward to extend our results

to other variants of EXP3 such as EXP3.P.1, which guarantees similar bounds that

hold uniformly over time and with probability one. For completeness, we provide the

EXP3 algorithm here:

We are given a mixing parameter -y G (0, 1]. We initialize the weights wi(i) = 1

for i = 1,. . . , N, where N is the number of experts or strategies.

For each time period t = 1, 2,..

1. Set
w2(t)

A (t) = (1- -) iW +-Y ,for alli=-1,...N.
E'j=, w) N

2. Draw a strategy it randomly according to the distribution defined by the

probabilities pi (t),. . . , PN (t), and play the action given by that strategy.

3. Receive reward xi,(t) E [0,1].

120

4. For j= 1, ... ,N, set

= y (t)/pg (t) ifj =it

1 0 otherwise

wm (t + 1) = wj (t) exp) .

For the Hedged Learning algorithm, we are also given N fixed experts, to which

we must add M learning experts. We assume that Ai = 1 for all i G N and refer to

these experts as static experts. These static experts are essentially the pure action

strategies of the game. For all i E M, we assume Ai > 1 and note that M can also

include behavioral strategies. When it is clear from context, we will often write N

and M as the number of experts in the sets N and M, respectively.

" Naive approach: Let Amax = maxi Aj. Once an expert is chosen to be followed,

follow that expert for a Amax-length commitment phase. At the end of each

phase, scale the accumulated reward by 1 since EXP3 requires rewards to

fall in the interval [0,1] and update the weights as in EXP3.

* Hierarchical hedging: Let E0 denote the top-level hedging algorithm. Con-

struct a second-level hedging algorithm E1 composed of all the original N static

strategies. Use El and the learning algorithms as the M + 1 experts that E0

hedges between.

5.5.1 Naive approach

The naive approach may seem like an obvious first method to try. However, we will

show that it is distinctly inferior to hierarchical hedging.

The naive approach proceeds as follows. Let N be the set of the original pure-

action experts, and let M be the set of the learning algorithms or behavioral strategy

experts. We label these experts i = 1, 2,... , M + N. We slightly abuse notation by

using IMI = M and INI = N where convenient. Initialize the weights wi(i) = 1 for

F = 1, 2,.. M + N,

For each t = 1, 2, .. .

121

1. At the beginning of each commitment phase, set

A(t) =(I--Y) iw(t) + M-Y
pi~) (- M) N wy() M + N'>Z±N'wi(t)

Otherwise, set pi(t) = pi(t - 1).

2. If we are still in the commitment phase for expert j, set it = j. Otherwise, draw

strategy it randomly according to the probabilities pi(t), ... , PM+N (t). Play an

action according to the strategy chosen.

3. Receive reward xit(t) E [0, 1].

4. If we have reached the end of a commitment phase for expert j, perform an

update.

For j=1,..., M+N, set

Zt(_ a X(T)/p(t) ifj =it
. j(t) =

0 otherwise

wj (t + 1) = w (t) exp N) '
G\jmax (M+N)J

Using this algorithm, our regret bound becomes substantially looser than the one

given for EXP3 with N pure action experts.

Theorem 13 Suppose we have a set N of static experts, and a set M of learning

experts with time horizons A2. Using a naive approach, we can construct an algorithm

with regret bound

2 e- 1VAmxT(N + M) ln(N + M).

Proof. We run EXP3 with the M + N experts, with a modification such that

every expert, when chosen, is followed for a commitment phase of length Amax before

we choose a new expert. We consider each phase as one time period in the origi-

nal EXP3 algorithm, and note that the accumulated rewards for an expert over a

given phase falls in the interval [0, Amax]. Thus, the regret bound over T phases isAmax

2AmaxV'e - 1I~ix()l() and the result follows immediately. LI

122

5.5.2 Hierarchical hedging

The Naive Approach suffers from two main drawbacks, both stemming from the same

issue. Because the Naive Approach follows all experts for Amax periods, it follows the

static experts for longer than necessary. Intuitively, this slows down the algorithm's

adaptation rate. Furthermore, we also lose out on much of the safety benefit that

comes from hedging between the pure actions. Whereas a hedging algorithm over the

set of pure actions is able to guarantee that we attain at least the safety (minimax)

value of the game, this is no longer true with the Naive approach since we have not

included all possible Amax-length behavioral experts. Thus, each expert available to

us may incur high loss when it is run for Amax periods. Hierarchical Hedging addresses

these issues.

The Hierarchical Hedging algorithm proceeds as follows:

Again, let N be the set of the original pure-action experts, and let M be the

set of the learning algorithms or behavioral strategy experts. We label these experts

i = 1, 2,. . . , M+N. Initialize the weights wi(i) = 1 for i = 1, ... , M + 1, and initialize

a second set of weights vi(i) = 1 for i = 1, . . . , N.

For each t = 1, Amax + 1, 2 Amax + 1, .. .

1. At the beginning of each commitment phase of length Amax, set

p(t)= (1-) + w (t) M + N'

2. Draw strategy it randomly according to the probabilities pi(t), ... ,pM+1(t). if

it E M, follow 3a. Otherwise, if it M, follow 3b.

3a. For each time period r t, t +1..... , t + Amax - 1, play an action according to

the chosen strategy it and receive reward xi, (T) E [0, 1.

3b. For each time period = t, t + 1,...,t + Amax - 1,

1. Set

qi(T) (1- v(T) + ,for alli=1,...,N.
Zg 1 Vj (T) N

123

2. Draw and play an action k, randomly according to the distribution defined

by the probabilities q 1 (T),.. . , qN(T).

3. Receive reward Xk,(T) E [0,1].

4. For j = 1, ... , N, set

ifj = ZT

vj(T + 1)

0 otherwise

= V(T) exp (N).

4. Since we have reached the end of a commitment phase for expert it, perform an

update.

Forj = 1,...,M+1, set

wj(t + Amax)

0

= w1(t) exp (t)

ifj = it

otherwise

Theorem 14 Suppose we have a set N of static experts, and a set M of learning

experts with time horizons A2, maxi Ai > |NI. We can devise an algorithm with regret

bound:
2/e - 1/T N In N

+ 2e-1/ AmaxT(M +1)ln(M+1)

This upper bound on the expected regret improves upon the Naive Approach

bound as long as
iln N

Amax > -1- n
,/ln(M + N) - Vln(M+1)

In practice, we will often use only one or two learning algorithms as experts, so M is

small. For M = 1, the bound would thus look like:

2.63 /TN In N + 3.10 AmaxT.

124

Xj (T)/lqj (T)

However, we note that these are simply upper bounds on regret. In Section 5.5.3, we

will compare actual performance of these two methods in a some test domains.

Proof. Using the bounds shown to be achieved by EXP3, our top-level hedging

algorithm EO achieves performance

REo > max R -2 e- 1T(M+)n(M +).
iEM+{El }

Now consider each of the IMI + 1 experts. The IMI learning experts do not suffer

additional regret since they are not running another copy of EXP3. The expert El is

running a hedging algorithm over INI static experts, and thus achieves performance

bounded by

RE1 max R- ~ 2 e-- ~ AmaxTNln N.
jEN

Combining this with the above, we see that

RE0 > maXiEM+NRi

-2/e - 1 TN In N

-2Ve - 1VAm:T(M +1)ln(M+1). El

Proposition 15 The Hierarchical Hedging algorithm will attain at least close to the

safety value of the single-shot game.

Proof. From an argument similar to [Freund and Schapire, 1999], we know that

the second-level expert E1 will attain at least the safety value (or minimax) value of

the single-shot game. Since the performance of the overall algorithm EO is bounded

close to the performance of any of the experts, including E1 , the Hierarchical Hedger

EO must also attain close to the safety value of the game. L

As desired, hierarchical hedging is an improvement over the naive approach since:

(1) it no longer needs to play every expert for Ama-length commitment phases and

thus should adapt faster, and (2) it preserves the original comparison class by avoiding

modifications to the original experts, allowing us to achieve at least the safety value

of the game.

125

Remark. It is also possible to speed up the adaptation of these hedged learners

by playing each expert i for only Ai time periods, weighting the cumulative rewards

received during this phase by 1/At, and using this average reward to update the

weights. Applied to the hierarchical hedger, we would play each learning algorithm i

for Ai-length phases and the second-level hedging algorithm El for N-length phases.

In practice, this often results is some performance gains.

5.5.3 Practical comparisons

We can verify the practical benefit of hierarchical hedging with a simple example. We

consider the repeated game of Matching Pennies, shown in Figure 2-1. Assume that

the opponent is playing a hedging algorithm that hedges between playing "Heads" and

"Tails" every time period. This is close to a worst-case scenario since the opponent

will be adapting to us very quickly.

We run each method for 200,000 time periods. The Hierarchical Hedger consists

of 9 single-period experts grouped inside E1 and one 500-period expert. The Naive

Hedger runs all the experts for 500 periods each. The results are given in Table 5.1,

along with the expected regret upper bounds we derived in the previous section. As

expected, the hierarchical hedger achieves much better actual performance in terms

of cumulative reward over time, and also achieves a lower expected regret. However,

the regret for the naive approach is surprisingly low given that its performance is so

poor. This is due to a difference in the comparison classes that the methods use. In

the naive approach, our performance is compared to experts that choose to play a

single action for 500 time periods, rather than for a single time period. Any single

action, played for a long enough interval against an adaptive opponent, is a poor

choice in the game of matching pennies. The opponent simply has to adapt and

play its best response to our action, which we are then stuck with for the rest of the

interval. Thus the expected rewards for any of the experts in the naive approach's

comparison class is rather poor. For example, the expected reward for the "Heads"

expert is -98,582. This explains why our expected regret is small, even though we

have such high cumulative losses; we are comparing our performance against a set of

126

Table 5.1: Comparison of the performance of the different methods for structuring
the hedged learner.

Regret Actual Actual
Bound Expected Regret Performance

Naive 125,801 34,761 -96,154
Hierarchical 36,609 29,661 -8,996

poor strategies!

5.6 Experimental Results

Since the worst-case bounds we derived in the previous section may actually be quite

loose, we now present some experimental results using this approach of hedged learn-

ing. We consider the repeated Prisoner's Dilemma game, and we first assume that

the unknown opponent is a "Tit-for-Ten-Tats" opponent. That is, the opponent will

only cooperate once we have cooperated for ten time periods in a row.

5.6.1 Hedging between models

We use a variety of different opponent models with simple learning algorithms, pure

hedging algorithms that only hedge between static experts, and hedged learning al-

gorithms that combine learning algorithms with static experts. First, we note that

larger opponent models are able to capture a larger number of potential opponent

state dynamics, but require both a longer commitment phase A and a larger num-

ber of iterations before a learning algorithm can estimate the model parameters and

solve for the optimal policy. For example, Figure 5-3 shows the performance of three

different n-state learners, with n = 4,10, 30. As discussed earlier in Section 5.4, the

4-state learner is unable to capture the opponent's state dynamics and thus learns

an "optimal" policy of defecting at every state. This results in an average reward of

zero per time step. On the other hand, the 10-state and 30-state learners lose some

rewards while they are exploring and learning the parameters of their opponent mod-

127

Performance of Learners with Differing Opponent Models

500
4-state Learner

1 0-state Learner ------
400 30-state Learner ----

300

2Z
c 200

E
10

0

-100

0 100 200 300 400 500 600 700 800
Time

Figure 5-3: This graph shows the performance of learning algorithms against a Tit-
for-Ten-Tats opponent. As the opponent model grows in size, it takes longer for the
learning algorithm to decide on an optimal policy.

els, but then gain an average reward of 1 after they have found the optimal policy of

always cooperating.

Figure 5-4 shows the performance of various learning and hedging algorithms. The

"1-period experts" hedging algorithm hedges between single periods of cooperating

and defecting. This myopic algorithm is unable to learn the cooperative outcome

and thus ends up achieving the single-shot Nash equilibrium value of 0. It assigns a

very high weight to the Defect expert. On the other hand, the "25-period experts"

hedging algorithm switches between two experts which either cooperate or defect for

all possible 25-period histories. This algorithm realizes that the "always cooperate"

expert attains higher reward and thus eventually plays Cooperate with probability

approaching 1. The hedged 10-state learner is also able to achieve the cooperative

128

I I I I I I I

Performance of Hybrid Experts-Learners Algorithms Compared

40000

35000 - 1-period experts ---------
25-period experts .-----.-.-----.---

25-period experts w/ 10-state Learner ------ '
30000 25-period experts w/ 4-state Learner --------

2 25000
ca

m20000

15000 -

E
0 10000

-5000
0 5000 10000 15000 20000 25000 30000 35000 40000

Time

Figure 5-4: This chart shows the performance of different learning, hedging, and
hedging learning algorithms in a game of repeated prisoner's dilemma against a Tit-
for-Ten-Tats opponent.

outcome. It achieves cumulative reward only slightly lower than the un-hedged 10-

state learner, since it quickly realizes that the "always cooperate" policy and the

learned optimal policy both return higher rewards than the "always defect" policy.

One main benefit of the hedged learning approach becomes evident when we ob-

serve the performance of the hedged 4-state learner. Even though the 4-state model

is unable to capture the state dynamics and the learning algorithm thus fails to learn

the cooperative policy, the hedged 4-state learner is able to achieve average rewards of

1 as it assigns larger and larger weight to the "always cooperate" expert and learns to

ignore the recommendations of the failed learning expert. We have wisely hedged our

bets between the available experts and avoided placing all our bets on the learning

algorithm.

129

4-state Learner
10-state Learner --------

Performance of Algorithms When Opponent Switches Strategies
45000

40000

35000 - 10-state Learner --- ''-
Hedged Learner --------

30000 -

25000(D

> 20000 -

E 15000

0

10000--

-5000
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Time

Figure 5-5: In these trials, the opponent switches strategy every 15,000 time peri-
ods. It switches between playing Tit-for-Ten-Tats ("Cooperate for 10 Cooperates")
and "Cooperate for 10 Defects". While the modeler becomes confused with each
switch, the hedging learner is able to adapt as the opponent changes and gain higher
cumulative rewards.

5.6.2 Non-stationary environments

Another major benefit of using hedged learners occurs when the environment is non-

stationary. For example, assume that the opponent switches between playing Tit-

for-Ten-Tats ("Cooperate for 10 Cooperates") and "Cooperate for 10 Defects" every

15,000 time periods. While the unhedged learner becomes confused with each switch,

the hedged learner is able to adapt as the opponent changes and gains higher cumu-

lative rewards (Figure 5-5). Note that when the opponent does its first switch, the

unhedged learner continues to use its cooperative policy, which was optimal in the

first 15,000 periods but now returns negative average reward. In contrast, the hedged

learner is able to quickly adapt to the new environment and play a primarily defecting

130

Probability with which Cooperation or Defection is chosen over time

1 14I I 1.

0.9 oile

11

0.8-

I II0.7 - -'

CU 0.6

0.5 - Learned
Defect --------

0 4Cooperate .--------
.0.4:

0.2

0.1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Time

Figure 5-6: Graph showing the probability with which the weighted hedger plays
either a cooperating strategy or a defecting strategy against the switching opponent
over time.

string of actions. Figure 5-6 shows how the hedging algorithm is able to change the

probabilities with which it plays each expert as the environment changes, i.e. when

the opponent switches strategies.

5.7 Approximately optimal solutions to MDPs

Lets focus on one particular expert within this hedged learning framework for a

moment. The scenario is as follows. The domain is a stochastic game, where we can

observe states of the world and where we might also have features that provide us

information about the internal states of the opponent. These states provide us with

potentially a good enough description of the model to learn a proficient reactive policy

that simply maps observed states to action choices. Thus, we could simply employ a

131

standard MDP learner to find an optimal or near-optimal policy. However, we might

also be unsure whether our model is actually correct. In case it is not correct, we

might incur significant losses trying to find and follow a policy that is near-optimal for

an incorrect model. By combining the MDP learner with other experts in an experts

framework, we can guarantee minimum performance levels while also guaranteeing

polynomial-time convergence to a near-optimal MDP solution.

The first polynomial-time probably near-optimal algorithm for solving general

MDPs was given by Kearns and Singh [Kearns and Singh, 1998]. As the authors

state, they make no attempt to optimize the bounds they give; their goal was simply

to show that polynomial-time bounds were possible.

The original bound given by Kearns and Singh guarantee a probably near-optimal

policy in an unknown MDP in time bounded by

0 (N 3T(G aT/E) 2 log(N6)mknfwn)

where T is the mixing time, N is the number of states in the MDP, Gmax is the

maximum reward at any state, mk,,,, is the number of times each action from a

given state must be executed before we declare the state to be "known", 6 is the

probability with which our bound fails, and E is deviation from the optimal policy

value. mknown is of the order 0 (((NTG ax)/E)4Varmax log(1/6)).

There are some clear benefits when we plug E3 into the experts framework. Since

E3 is model-based, it does not rely on on-policy exploration of the state space. Thus,

even if we are not executing E3 in our experts algorithm, we can still update the

MDP we are trying to learn within E3. Each action we take may land us in a new

state, which we should count as a state visit within E3. We can update the state's

transition and reward statistics accordingly.

There is only one major detail to which we need to pay careful attention. E3 relies

on an "attempted exploration" step as a key component of the algorithm. This is a

T-step attempt to find a state that is not yet known. Thus, our r-horizon cannot be

shorter than T period. But, in fact, the mixing time T is a natural choice for T in

132

this setup.

5.8 Extensions

As we've seen in this chapter, hedged learning is able to incorporate various possible

opponent models as well as various possible fixed strategies into its hedging frame-

work. It is thus able to benefit from the efficiencies of using learning algorithms

to learn optimal policies over these models, while ensuring that it has the option

of falling back on the fixed strategies in case the learning algorithms fail to output

any good policies. Even when the opponent switches strategies during play, hedged

learning is able to adapt to its changing environment and switch to using the expert

best adapted to the new opponent strategy.

We note that all of our results still hold for > 2 players, since we only require

observations of our own reward and the history of actions. Furthermore, we can also

extend these techniques for use in stochastic games. For example, we have applied

this technique to the a simplified game of soccer, once again adapted to the grid-

world environment. The setup and thus the results are very similar, since the hedged

learning algorithm only relies on the given experts and learning algorithms to deal

with the added external state. However, given large state spaces, the algorithm

becomes less efficient, since learning takes longer, and there are ever more behavioral

strategies to consider. The problem is no different from increasing the length of the

behavioral strategies that we are willing to consider for our opponent models.

One of the main thrusts for future work will be the development of rich opponent

models whose structural properties allow us to increase the efficiency and performance

of our hedged learning algorithm by giving us the ability to reuse information across

multiple experts. Rather than the current situation where we must in essence evaluate

each expert separately, we might be able to design experts such that an evaluation of

one expert also provides us with some information about the other experts' expected

performance if they were to be evaluated on the same trial.

133

134

Chapter 6

Mobilized ad-hoc networking

So far we have developed a large suite of methods for dealing with different types of

multi-agent learning problems. Most of our experiments have focused on small toy

domains. In this chapter, we will apply our algorithms to a large, realistic domain:

mobilized ad-hoc networks. Here we are confronted with all of the difficulties that

have been raised thus far: a large domain with many agents, partially observability

due to the size of the domain, and a global reward signal that is given to all the agents

regardless of individual merit. One of the only simplifications we can take comfort

in is the fact that the network will be assumed to be cooperative. That is, all of the

nodes are assumed to have the same overall goal in mind and will act cooperatively to

achieve this goal. One could easily imagine an extension of this domain in which there

might be an adversary that attempts to jam the network, but we do not consider that

possibility here.

6.1 Domain overview

Our mobilized ad-hoc network consists of one or more source nodes, one or more

receiver nodes, and a number of other wireless nodes within a constrained area. All

nodes are independently initialized according to a uniform distribution over this area.

The sources generate packets at a constant rate and move according to a random

way-point model. The aim of all nodes other than the sources and receivers is to

135

transmit the maximum possible number of packets from the sources to the receivers.

Some of these nodes can move so as to aid transmission, while the rest are stationary.

Performance is measured by the proportion of packets successfully transmitted to

the receivers. When inter-node link capacities are limited and buffer sizes are finite,

packet drops may occur due to buffer overflow, thereby decreasing network perfor-

mance. When inter-node link capacities are sufficiently large compared to the source

packet generation rates, an equivalent performance metric is the average proportion

of sources connected to the receivers over time.

6.1.1 Performance benefits of mobility

Clearly, the mobility of our agent nodes increases the performance of our ad-hoc

network by allowing these nodes to move to locations where they are most needed. In

this section, we attempt to quantify this performance benefit with respect to several

network parameters.

The packet transmission success probability achievable in an ad-hoc network de-

pends heavily on various parameters including the transmission range r, the number

of network nodes n, and the proportion of mobile nodes m. Alternatively, we may

consider what values of these parameters are sufficient to achieve a desired success

probability. Our following result illustrates these relationships and gives some sense

of the potential benefits of having controllable mobile nodes in an ad-hoc network. It

builds upon a theorem by Gupta and Kumar [1998] that sets a bound for the mini-

mum (or critical) range necessary for n nodes in a given area to be fully connected.

They state that for the case of a disk of area A and n approaching infinity, the critical

range for the network is r, = A(logn+-n), where yn is a function of n that grows7rn

arbitrarily slowly to infinity as n -* oc. We extend this result to the case of partiallly

mobile networks.

Proposition 16 Let rn be the minimum, or critical, range needed for n nodes inde-

pendently and uniformly distributed on a given area to form a fully connected network.

If a proportion m = 1 k an integer, of the nodes are mobile, then a transmission

136

range r = ' is sufficient to make it possible for the mobile nodes to move to form

a fully connected network. If the range r is fixed at rn, with m = k , k an integer,

then a total number 2 of nodes suffices for full connectivity.
k

Proof. If a proportion m = k k of the nodes in a n node network being mobile,

these mn nodes can essentially move around to increase the effective transmission

ranges of the stationary nodes. For each fixed node, we have k -I mobile nodes. Thus,

each stationary node is able to form one link to neighboring node over a distance of

krn using a set of k - 1 mobile nodes as relays. Since a fully connected network of

n nodes requires only n - 1 links, each link can be allocated a set of (-n > k - 1
k~1

mobile relay nodes, allowing each stationary node to transmit a full distance of krn

rather than r,. Since n' = ', from Gupta and Kumar's theorem we know that if all

the nodes were stationary, then the critical range for n' nodes would be r", = ra =

A log n'+-,/ A log n+y - r~v/. However, since (k - 1)n nodes are now mobile,

making the transmission range k times the original range, we only need a range of

r = for each node; thus a sufficient range for fully connectivity of the partially

mobile network is r = r.

Using the same reasoning, it is easy to show the second part of the theorem. Let

us fix the range of the n nodes in the network to be rn = A(logn+ .) We need to

show that with n' = ! total nodes, of which mn' are mobile, each with range rn, we

can form a fully connected network. In this case, we only have n" = n stationary

nodes. Similar to the above, we know that the critical range for a network with n"

nodes is +l±Y/2) < rnk. Since mn' nodes are mobile, m = , we actually

only need a range of rnk = rn. Lk

This result shows that as the proportion of mobile nodes increases, the transmis-

sion range r needed for full connectivity decreases for given n (or the minimum value

of n required given r decreases). These are loose upper bounds since they allow for

up to all links of the fully connected network being greater than kk1 of the maximum

link length.

For more realistic settings with smaller fixed n, we can obtain corresponding em-

pirical results for the minimum range r necessary for achieving nearly full connectivity

137

(> 95%). We ran some trials with n nodes, 25 < n < 400, independently initialized

according to the uniform distribution on a unit square. We find that the approxi-

mation r' = Alogn a rI n gives a good estimate of the critical range to within a

small decreasing factor. We also calculated the mean proportion h of links that were

greater than half the critical range.

Noting that a substantial proportion of the links are less than half the critical

range leads to the conclusion that the bounds given above are quite loose, i.e. the

necessary values for each parameter r, n and m, given fixed values for the other

two parameters are lower than the sufficient values given by Theorem 16. As such,

we would expect potentially better results under conditions of global knowledge and

rapid optimal deployment of mobile nodes.

In most realistic settings, nodes only possess local knowledge and movement speed

is limited. Thus it becomes harder to reach the potential optimal network perfor-

mance. Nevertheless, we can develop learning algorithms that perform well given

these constraints. In the remainder of this chapter, we develop such learning al-

gorithms for movement and routing, and compare their performance against both

non-learning and centralized algorithms, where performance is measured by the pro-

portion of packets successfully transmitted under various network scenarios.

6.2 The routing problem

To optimize the performance of the ad-hoc network, we need to design good control

algorithms for the support nodes. The nodes will need to adapt to changing conditions

138

n critical range mean proportion h std. dev.

25 2.0r' 0.2735 0.1233

50 1.7r' 0.3265 0.0785

100 1.7r' 0.2353 0.0647

200 1.6r' 0.1992 0.0390

400 1.6r' 0.1588 0.0258

and communication patterns using intelligent routing and movement algorithms. We

focus on the routing problem in this section.

Q-routing [Boyan and Littman, 1994] is an adaptive packet routing protocol for

static networks based on the Q-learning algorithm, which we adapt for use in mobile

ad-hoc networks. The algorithm allows a network to continuously adapt to congestion

or link failure by choosing routes that require the least delivery time. When a route

becomes congested or fails, Q-routing learns to avoid that route and uses an alternate

path. Due to its adaptive nature, we might expect that Q-routing would also work

well in the mobile ad-hoc setting.

Q-routing is a direct application of Watkins' Q-learning [Watkins, 1989] to the

packet routing problem. Q-routing is a distributed routing scheme where each node

in the network runs its own copy of the Q-routing algorithm. A node x faces the

task of choosing the next hop for a packet destined for some receiver node d. Using

Q-routing, it learns the expected delivery times to d for each possible next hop y,

where each possible next hop y is a neighbor node connected to x by a network link.

Formally, Q-routing keeps Q-tables Qx for each node x and updates these tables at

each time period t as follows:

Qx(d, y) = (1 - a)Qx 1 (d, y) + a(bx + min Q 1(d, z)),
z

where 0 < a < 1 is parameter that controls the learning rate, and bt is the time the

current packet spent on the buffer or queue at node x before being sent off at time

period t.

Q-learning estimates the value or cost, V, associated with each state d, with

V = minz QX(d, z). In our case, the value of a state is the estimated time for delivery

of a packet from the current node x to destination d via node z. Once the nodes

have learned the values associated with each state-action pair, they simply execute a

greedy policy to behave optimally. When a node receives a packet for destination d,

it sends the packet to the neighbor y with the lowest estimated delivery time Qx(d, y).

In experimental trials, Boyan and Littman found that fast learning rates (around 0.5)

139

worked well since it is beneficial for the network to adapt quickly.

6.3 The movement problem

The problem of learning a good movement policy is much more difficult. We wish

to again apply reinforcement learning techniques to this problem. First of all, the

problem of partial observability is much more pronounced than in the packet routing

problem. For example, when the network is in a disconnected state, information

about the global network topology is impossible to collect but would be important

for determining movements that would optimize network connectivity. Moreover, the

local observation space could still be quite large, depending on the observed variables

we choose to encode. Secondly, the choice of action space is unclear. At the most basic

level, the agents could move in any direction at a given speed. We will limit the action

choices by designing more complex actions that incorporate domain knowledge. This

section briefly outlines our application of Q-learning to learn a reasonable movement

policy despite the fact that Q-learning generally fails in POMDPs.

We proceed by using the observation space as our "state space". This can po-

tentially lead to problems of aliasing, but we choose our observed variables carefully

in order to try to avoid this pitfall. Since the nodes communicate using a shared

wireless medium, a node can "sniff" packets sent by neighbors to destinations other

than itself. Thus, a node can detect the presence of neighbor nodes and their con-

nections, even if it is not involved in any of these connections itself. Moreover, since

the receiver nodes send back acknowledgement packets along these connections, our

agent node can also collect statistics about these source-destination paths by sniffing

these acknowledgement packets. Each agent node's observation space thus includes

the number of neighbors, the number of connections it is currently holding, the num-

ber of nearby connections, and the maximum and minimum average hop lengths of

these source-destination paths.

In order to constrain the learning process, we incorporate some domain knowledge

into our design of an appropriate action space. For example, there is little need to

140

train the nodes to avoid obstacles along their desired path of movement. We can

pre-program the nodes with the necessary algorithm to do this. Learning is focused

on higher-level action selection that is difficult to pre-program effectively. A subset of

our action space is given in the table below. Many of these actions could take multiple

time periods to complete. We get around this problem by allowing the agents (nodes)

to choose to either continue or change an action during each time period.

Action Description

stay Stay put; don't change position.

direction Head in a particular direction.

plug Searches for the sparsest path and attempts to fill in the

largest gap along that path.

leave Leaves a path and becomes available for other actions.

circle Circles around a node in search of more connections.

Attempts to retain connection to the source around

which it is circling.

lead Leads other mobile agents in search of more connections.

Attempts to stay within range of its followers.

follow Identifies and follows a leader node, while maintaining

connection to previous hop.

center Moves to the centroid of the neighbors to which it is

connected.

explore Random exploration.

Finally, the reward given to the nodes during each time period corresponds to

the percentage of successful transmissions during that time period, which is available

since we are conducting this training off-line. During online execution of the ad-hoc

network, this network performance measurement would not be available since there

would be no trainer that has access to the global state of the network. With these

assumptions, we can construct a standard Q-learning algorithm that tries to learn

good movement policies as the agents interact in simulation.

141

6.4 Application of our methods

6.4.1 Routing

Adapting Q-routing to the mobile ad-hoc network routing domain is fairly straight-

forward. We use the same Q-value updates as before:

Q'(d, y) = (1 - a)Q'_ 1 (d, y) + a(b' + min QY_ 1(d, z)).
z

The main difference is that we now interpret the variables differently. Neighbor

nodes are now defined as the nodes within transmission range. Unlike in the static

networking case, here neighbor nodes y may appear and disappear quite frequently

due to node mobility. When a node y moves out of range, we set the estimated

delivery time to d via y to o0; i.e., Q'(d, y) = oc. When a node y moves into range,

we optimistically set the estimated time to 0; i.e., QX(d, y) = 0. This optimistic bias

encourages exploration. That is, node x will always try sending packets via a node y

that has just come into range. If this action results in a high estimated delivery time,

then node x will quickly revert to its original behavior since Qx (d, y) will quickly be

updated to its true value. On the other hand, if this action results in a good delivery

time, then node x will continue to send packets via node y.

6.4.2 Movement

The movement problem represents a much harder problem. Our goal is to learn

a movement policy that maps local state information, possibly combined with some

internal state information, to distributions over actions. Difficulties arise from several

different fronts. First of all, the agents only receive global learning signal that tells

them the overall performance of the ad-hoc network. Since the agents only have a

local representation for the state space, it is difficult for them to deduce the credit

assignment that is due to them.

This local knowledge also leads to the second main problem, which is that the

agents only receive partial observations of their environment. Without being able to

142

see the global state of the network (including the locations of all the other nodes), the

agents cannot make an optimal decision regarding their own next moves. Thus, they

must base their decisions on the local information that is available. In some cases, it

may be beneficial to use memory to capture some more information about unobserved

states. Furthermore, since nodes are often connected to many other nodes, they can

piggyback some global state information on the data packets that are being routed

through the network.

In the remainder of this section, we discuss various strategies that we can employ to

overcome these difficulties. Our discussion will begin from the most basic algorithm,

Q-learning. From there, we will explore more complex learning methods that begin

to account for the complex nature of the domain we are studying.

6.4.3 Basic Q-learning

We have already described the basic Q-learning algorithm and applied it to the mobi-

lized ad-hoc network packet routing problem. To apply Q-learning to the movement

problem, we need to first decide on an appropriate state space. The simplest state

space to use would be the space of local observations. Using this state space, we can

hope to learn a purely reactive policy that maps local observations about the agent's

state to action choices.

There are still many different possible features of the local observation space that

we might wish to include in the state space. The four features we choose for the

state space are: (1) the number of source nodes to which the node is connected, (2)

whether it is connected to a receiver node, (3) a discretized measure of the number

of neighbors in its transmission range, and (4) a discretized measure of the number

of connections being routed within its transmission range.

6.4.4 Filtered learning

As described in Chapter 4, we can easily add our filtering technique to this Q-learning

implementation. Rather than simply training using the supplied global reward signal,

143

we instead train using the filtered signal. In Chapter 4, we saw that this led to

performance gains in the simplified mobilized ad-hoc networking problem. The gains

in this full implementation are much less clear. A model-based version of the filtered

learner appear to perform better, but it is also inconsistent. Part of the problem is

the inherent high variability of this system, since the system's performance depends

in large part on the movement trajectories of the source nodes.

6.4.5 Gradient methods

One method for dealing with the partially observable nature of this domain is to

use methods that were specifically designed for POMDPs. Since we have no hope of

solving this large POMDP exactly, we attempt to use approximate, locally-optimal

solutions such as approximate policy gradient estimation. Here we use the simple

REINFORCE algorithm proposed by Williams [1992]. We adapt REINFORCE to

our current domain by breaking up the simulations into fixed length trials, and using

these trials to estimate the policy gradient. This method is quite slow, and its success

depends very much on the initialization of the policy.

6.4.6 Hedged learning

Finally, we use the techniques we developed in Chapter 5 to construct a hybrid

algorithm for learning good movement policies in this domain. This type of technique

is particularly useful if we need to have the agents adapt to their environments online,

since we can include fixed policies that have been trained on various types of simulated

scenarios. These fixed policies would appear as static strategies within the hedged

learning framework. We could also include other learning algorithms as experts, which

could act as a safeguard in case none of the pre-trained policies results in a good level

of performance.

In particular, we use 3 fixed policies: (1) the stationary policy where nodes do not

move, (2) a hand-coded policy, and (3) a policy trained using the model-based learner

with the observation state space described above. We also include an untrained model-

144

based learning algorithm as one of the experts.

6.5 Empirical results

6.5.1 Empirical results for routing

Our empirical results give an indication of the power of using adaptive learning tech-

niques in designing movement and routing algorithms for mobilized ad-hoc networks.

The setup is described in Section 6.1. There are source, receiver, and support nodes

in a square grid, usually 30x30 in size. Each node has a transmission range of 6.

The support nodes may either be fixed stationary nodes or mobilized agent nodes.

There are two time scales: one for transmission and one for movement. During each

movement time step, the node can choose one of its movement actions and perform 10

packet transmissions. Each packet transmission is the result of a Q-routing decision

and update. Sources generate packets every two transmission time steps, and the

number of packets received by a node in any time period is only limited by the node's

buffer size.

To evaluate the performance of Q-routing, we implement a global-knowledge rout-

ing policy that is given information about the receiver location. This is done for

comparison purposes only; in reality nodes generally do not have access to such in-

formation. With this information, nodes can route each packet towards the correct

destination by forwarding the packet to a neighboring node that is closest to being

in the direction of the receiver. We call this our directional routing policy. Specifi-

cally, our implementation forwards a packet to the neighbor that is closest to being

in the direction of the receiver, up to a maximum deviation of 90 degrees. If no such

neighbor exists, then the packet is dropped.

We compared Q-routing with directional routing under a variety of different sce-

narios. In almost all cases, Q-routing performs better than directional routing. Es-

pecially when the nodes are limited by small buffer sizes, Q-routing performs signifi-

cantly better. Results for a typical set of network scenarios are shown in Figure 6-1.

145

Directional Routing vs Q-Routing

T

Directional routing
Q-routing -----

- -III

1 2 3 4 5 6

Buffer size

7 8 9

Figure 6-1: A comparison of directional routing vs Q-routing in a network with 10
sources, 15 mobile agents, and one receiver. Simulations were run over 20 initialization
positions and 5 source movement scenarios for each different initialization. For each
buffer size, averages over all of these trials are depicted, with error bars denoting one
standard deviation.

146

1

0.8

0.6

0.4 .

CD)

-I--
UO

0

C/)

0.2

0
10

Figure 6-2: Using the directional routing policy, packets often become congested on
the trunk of the network tree. Sources are shown as squares, mobile nodes are circles,
and the receiver is an encircled square.

This is due to the fact that Q-routing will create alternate paths to the receiver as

soon as a path becomes congested. Thus, packets will be less likely to be dropped due

to buffer overflow caused by path congestion or limited buffer sizes since alternate

paths will be constructed. In directional routing, on the other hand, often certain

paths will become overloaded with traffic, causing significant packet drop.

Q-routing outperforms directional routing even in cases where buffer size is not

a direct constraint, such as the case shown in Figure 6-1 where the buffer size is

10. This illustrates the underlying problem of network capacity. Since the total

source packet generation rate exceeds the transmission rate of any one inter-node

link, directional routing may still run into trouble with bottleneck links regardless

of buffer size. The network capacity achieved using Q-routing is larger since more

147

Figure 6-3: In contrast to the situation in Figure 6-2, when we use Q-routing on the
same experimental setup (note that the source and receiver nodes are in the same
position as the both figures), the mobile nodes in the ad-hoc network spread out to
distribute packet load. Both figures show the simulator after 10000 periods, using the
same initialization and movement files.

alternate paths are created around such bottlenecks. Furthermore, directional routing

is unable to find circuitous paths from sources to the receiver. Since it only routes

packets to neighbors that are in the direction of the receiver, any path that requires

a packet to be forwarded away from the receiver for one or more hops will never be

found.

These comparisons are done using a fixed movement policy we will call the cen-

troidal movement policy. Under this policy, a node that is holding a connection will

attempt to move to the centroid of its connected neighbors, which increases the like-

lihood of preserving these connections over time. If it is not holding a connection,

then it simply moves about randomly searching for a new connection. Thus, the next

148

hops determined by the routing policy strongly influence the direction of movement,

since the next hops determine the node's connections to its neighbors.

When a random movement policy is used instead of the centroidal policy, Q-
routing exhibits inferior performance relative to directional routing. One example is

given in Figure 6-4, which shows the evolution of average system performance over

time in a typical scenario. The table below gives averages over 100 different scenarios:

This phenomenon is due to the fact that Q-routing influences the centroidal move-

ment policy in a positive manner, whereas it is unable to influence a random movement

policy. In some sense, Q-routing with centroidal movement is able to find circuitous

source-destination paths and rope them in using the centroidal movement.

Due to this type of influence, Q-routing and directional routing result in very dif-

ferent configurations for the network when coupled with centroidal movement. Direc-

tional routing tends to form a network backbone, which usually comprises the most

direct route to the receiver for a large portion of the source nodes. Other sources

send packets towards this backbone, resulting in a tree-like network configuration, as

shown in Figure 6-3. Q-routing, on the other hand, always seeks the shortest path

towards the receiver, even when buffer sizes are not a constraint. This results in a

fan-shaped network configuration, also shown in Figure 6-3, where each source has its

own shortest path to the receiver as long as there are a sufficient number of mobile

nodes to create these paths. From this observation, we can begin to see that there is

an interplay between the choice of routing protocol and the movement policy of the

mobile nodes.

This leads to a subtle but telling explanation for the improved performance of Q-
routing over directional routing. In Q-routing, the mobile agent nodes tend to become

149

Movement policy Routing policy Average performance

Centroidal Q-routing .924

Centroidal Directional .896

Random Q-routing .498

Random Directional .519

Running averages of successful tranmission rates
1

.xxxxxxxxxxxxxx-xxx - x- x- xx>~xxxxx-xxx.x.x

0.8-

C/ I.6 -+'' ++++ +

0.4

CO,

Random + Q-routing
Random + Directional -- +

0.2 -Centroidal + Q-routing ----------- -
Centroidal + Directional --- x-.

01
0 100000 200000 300000 400000

Time

Figure 6-4: This graph shows a running average of successful transmission rates for
a sample network scenario under four cases: Q-routing with centroidal movement,
directional routing with centroidal movement, directional routing with random move-
ment, and Q-routing with random movement.

150

more dispersed, since no network backbone is created. Thus, as source nodes move

about, the Q-routing ad-hoc network is more likely to be able to remain connected

without drastic reconfigurations. This interplay between routing and movement forces

us to carefully consider the movement policy we choose to pair with our selected

routing policy.

6.5.2 Empirical results for movement

We evaluate the performance of our learning algorithm against the centroidal move-

ment policy given in Section 6.5.1, a hand-coded policy that uses the same observation

space as the learning algorithm, and a global-knowledge central controller. Under

simulation, we give the central controller access to all the node, source, and receiver

positions, which would usually be unavailable to the agent nodes. Since our learning

algorithm only has access to local knowledge, the central controller's performance

should approximate an upper bound for the learning algorithm's performance. More-

over, this performance bound may fluctuate over time as network conditions change

depending on source movement scenarios.

The central controller is designed to approximate an optimal movement policy

given global knowledge about network conditions. It begins by identifying connected

components among the stationary nodes. If a packet is received by any node of a

connected component, then all nodes of that component can also receive the packet.

However, if a packet's destination is in a different component, then the controller

finds the shortest path to the destination component and recruits mobile nodes to

help construct the necessary links needed to deliver the packet.

Figure 6-5 gives the average performance of a sample network scenario over time

using each of these movement policies. As we can see, the learning algorithm does

eventually learn a policy that behaves fairly well, but it never achieves the perfor-

mance of the global knowledge controller. This is expected since the learner does not

have access to the global network topology. On average, the learned policies perform

slightly better than the hand-coded policy over large sets of network scenarios. How-

ever, in certain scenarios, it never learns to perform as well, possibly due to aliasing

151

Running averages of successful transmission rates
1

0.95

0.9

0.85 - x

ix) X
0.8 -

CO) 0.75

0.7

0.65 -
Learning

0.6 - Hand-coded -----
Central controller ---- +

0.55 Centroidal .x- .

0.5 1 1
0 100000 200000 300000 400000

Time

Figure 6-5: Graph showing the average performance of various movement policies over
time in a typical scenario. The learning policy is shown during its training phase.
The learning policy eventually exceeds the performance of the hand-coded policy that
uses the same observation space, but never outperforms the global knowledge central
controller.

problems.

152

Probability assigned to each expert in hedged learner
0.7

Stationary
Directional ---

Hand-coded -----
0.6 Learner y . ~

0.5

.'0.4

- 0.3

0.2-

0.1-

0

--

0 1 1

0 200000 400000 600000 800000 le+06
Time

Figure 6-6: Graph showing the hedged learner's probabilities of using its various
internal strategies in the mobilized ad-hoc networking domain over time. In this

scenario, the pre-trained policy worked very well, and we can see that it is followed

most of the time.

153

Probability assigned to each expert in hedged learner
0.9

Stationary
Directional ------

0.8 Random -------
Learner -

0.7

0.6

2 0.5
Cz.0

0.4

0.3

0.2 --

0.1

0
0 200000 400000 600000 800000 le+06

Time

Figure 6-7: Graph showing the hedged learner's probabilities of using its various
internal strategies over time. In this case, the learning algorithm succeeds in learning
a better policy than any of the fixed strategies.

154

Network connectivity over time in the mobilized ad-hoc network

Pure Learning Agent
Hedged Learning ----

0.9

0.8

0.47

C I I

0 0.20 0006000800 e0
Fiur 6-:Rlaiet th pefraI ftesse hntendsaepr

I I II

0.5

0.4

0.3
0 200000 400000 600000 800000 le+06

Time

Figure 6-8: Relative to the performance of the system when the nodes are purely
using the learning algorithm, the hedged learner suffers some loss since it must spend
time evaluating its other possible policies. It also continues to suffer higher variance
in its performance even once it has assigned high probability to following the learning
algorithm, since it still evaluates the other policies occasionally.

155

156

Chapter 7

Conclusions and future work

The thesis seeks to develop a fundamental understanding of multi-agent interactions,

and to build upon that understanding to design large, complex systems. Our initial

investigations focused on simple two-player repeated matrix games, where we can

concentrate on analyzing player interactions rather than environmental interactions.

There had been much confusion about the goals that learning agents ought to try

to achieve in multi-agent settings, and equilibrium concepts were popular. In con-

trast, we noted that equilibrium concepts are often ill-suited for competitive games

in practice, since there is no reason to expect that opponents would possess perfect

rationality, nor would the opponents presume that our agents were perfectly rational

either. Attempting to compute a best response strategy against a general, unre-

stricted opponent can also be shown to be futile. We demonstrated that an agent's

beliefs about its potential types of opponents drives the design of good algorithms,

and showed that even state-of-the-art algorithms could be exploited due to their op-

ponent assumptions.

As the environment grows more complex, and we move beyond simple two-player

repeated games, we need to bring in more sophisticated techniques for designing

practical, realistic, multi-agent systems. We show that filtering methods from control

theory, equilibrium concepts from game theory, universal prediction from information

theory, experts algorithms from online learning, and reinforcement learning methods

such as policy gradient estimation and Q-learning can be combined to create effective

157

learning algorithms for optimizing multi-agent behaviors.

Different combinations of methods are suited for various special situations. For

example, in cooperative environments where we are trying to train agents using a

global reward signal, we may be able to abstract away much of the complexity of the

multi-agent domain. Instead of explicitly modeling the effect of the other agents, we

assume their combined effect on the global reward signal is encapsulated by a single

noise term. We introduced the concept of reward filtering, in which methods such as

Kalman filtering can be used to estimate and remove unwanted noise from the reward

signal, thus allowing each agent to learn a good policy.

In non-cooperative settings, we introduced the idea of hedged learning, and pro-

posed algorithms that seek to combine the efficiency of learning with opponents mod-

els, and the performance guarantees obtained from hedging, or regret-minimizing,

methods. These methods are useful in situations where we know we may face large

classes of potential opponents, and we have multiple different models to describe their

behavior. Hedged learning allows us to hedge over these possible models, while guar-

anteeing that even if all the models are incorrect, and we are in fact facing a novel,

highly intelligent opponent, we will still perform reasonably well. We gave perfor-

mance guarantees and demonstrated this algorithm's effectiveness in several sample

domains.

One of the main application areas we focused on is mobilized ad-hoc networking,

and we've shown that these techniques can be applied to train mobile agent nodes to

form an effective ad-hoc network that can track moving sources and route information

from these sources to certain receiver nodes. A

A number of specific future goals stem from this work. First, we plan to continue

to apply the theory and techniques we've developed to the design of mobilized ad-hoc

networks, and to derive new insights and potentially new algorithms from studying

problems in this domain. Up to now, we have treated this domain as a fully coopera-

tive scenario in which mobile nodes collaborate to form an ad-hoc network. However,

insights learned from our work on competitive multi-agent settings may be applied

here to consider networks in non-cooperative environments, such as in the presence

158

of jamming signals or within a market-based bandwidth allocation process.

Secondly, our algorithms seem to hold great promise for other application ar-

eas such as financial equity markets or commodity auctions. In particular, the

hedged learning approach provides an explicit way to combine expert knowledge with

regret-minimizing behavior, possibly yielding techniques that can provide good perfor-

mance guarantees while empirically producing even better results in real applications.

Whereas traditional online resource allocation algorithms tend to base action choices

completely on hindsight and past performance, these hybrid algorithms incorporate

the predictive power of learning experts in order to assess the future ramifications of

current choices based on learned models of the environment.

Thirdly, given any good strategy, we know that it can be exploited if known by the

opponent in a competitive setting. Thus, obscuring or obfuscating our strategy may

be an important additional consideration in agent design. Obfuscation may take the

form of simple randomization over possible strategies, or we might employ deception

techniques such as those we demonstrated can be used to exploit the weaknesses of

certain state-of-the-art repeated-game players. We would like to quantify the value

of obfuscating our strategies and devise techniques that provide a clear tradeoff or

synergy between obfuscation and performance. The question of exploration versus

exploitation has always been important to reinforcement learning; perhaps in multi-

agent situations, another axis, obfuscation, needs to also be considered.

More broadly, my long-term research will attempt to bridge the crucial gap be-

tween game theoretic equilibria and practical methods for achieving good performance

with or without convergence. My research into categorizing and intelligently combin-

ing current multi-agent learning methods is a step in this direction. We need to

further understand the differing levels of opponent modeling that are necessary for

agents to succeed in different domains.

159

7.1 Richer regret

In Chapters 3 and 5, we established the usefulness of using regret as a criterion

for measuring the performance of multi-agent learning algorithms. We proposed the

technique of hedged learning, where we hedge between behaviors based on various

opponent models. We show upper bounds on the regret when this algorithm is used,

and we further show that the algorithm's actual performance in experimental trials

is more robust than other previous techniques against a wide range of opponents.

However, this work still does not exploit the full potential of hedged learning.

We have only explored the use of relatively simple opponent models, and we have

not made use of the extra information that might be conveyed when following one

expert's recommendations. For example, if we could use richer opponent models that

allow us to infer probable outcomes of strategies that were not actually tested, this

would increase the efficiency of our algorithm considerably. Both the upper bounds

on regret and the actual performance of the algorithm should be improved in this

case.

7.2 The swarm

The ultimate validation of a learning system is to evaluate its performance on real,

live robots. The swarm is a group of up to 100 miniature mobile robots, each capable

of operating autonomously and communicating with other robots in the swarm. Using

these capabilities, we can program the robots to collaborate and produce interesting

behaviors. For example, simple tasks such as "follow the leader" or "orbit around the

leader" are easy to implement using the swarm programming library. However, even

programming these simple tasks often involves hand-tuning parameters that affect the

system performance greatly. The task of custom-tuning a more complicated program

quickly becomes cumbersome. Thus we might wish to employ learning algorithms

to train the swarm instead. Using simple, easy-to-program functions as the basic

building blocks of swarm behavior, we can train the swarm to collaborate and achieve

160

complex goals without the need to engage in tiresome hand-tuning and custom-coding

for each new behavior we wish to produce.

This type of learning can be beneficial in a wide variety of situations. For example,

we may wish to deploy the swarm into different types of environments that may

require different behaviors for the swarm to achieve its goals. Rather than hand-

crafting behaviors for the swarm to follow in each of the environments, it may be

easier to simulate the environments and allow the swarm to learn good behaviors on

its own in simulation.

The swarm robots are designed to allow us to run hardware simulations rather

than relying simply on software. Each swarm robot is fitted with IR communications,

bump skirts, and a small video camera. They are capable of operating for 2-3 hours

on a single charge, and are able to autonomously recharge at a docking station.

Developed by iRobots, the Swarm is intended to be a hardware simulation platform

that ideally needs very little intervention from its human operators. The Swarm

toolbox consists of a library of functions that implement simple swarm behaviors

such as follow-the-leader, follow-the-gradient, orbit-a-robot, or disperse. These can

be used as the building blocks for designing more complex behaviors. For example, in

one scenario, the swarm robots were used explore inside a large building by forming

a connected web throughout the interior spaces. [McLurkin and Smith, 2004]

7.2.1 Swarm challenges

Part of the challenge (and the excitement) of working with real robots is that we

can no longer conform our simulation to fit our models of the world. We must now

conform our models and our learning algorithms to the real world situation that we

are given, as embodied by the robots and the environment they find themselves in.

Our challenges arise from the various constraints that we then discover, and robots

have no shortage of constraints.

First of all, unlike in simulation, we can no longer afford to spend hundreds of

thousands of iterations in training. Algorithms must perform well in a reasonable span

of time. The swarm robots of capable of approximately four rounds of communication

161

each second. On a single charge, they can operate for two to three hours, and while

they are capable of autonomously recharging, in practice we require a human to watch

over the robots for the duration of any experiment. That puts a practical limit of

eight or so hours for an experiment, which translates to 115,200 iterations at best.

Constraint 1. The swarm must be able to learn reasonable behavior within

100,000 iterations.

Secondly, communication failures and robot breakdowns are more common than

we would like to assume in a perfect simulated world. Packet losses are almost

25%, although luckily some low-level routines are able to abstract away most of that

lossiness. At the level of the learning algorithms, we can expect a packet loss rate of

about 5%.

Robots also simply stop working, due to equipment malfunction, some unusual

obstacles in the environment, or a variety of other reasons.

Constraint 2. Communications are lossy, and robots break down.

Onboard memory and processing power is provided by (fill in blank). Thus, our

algorithms are limited in their complexity, both in terms of running time and memory

allocation.

Constraint 3. Processing power is limited.

As discussed earlier, the swarm robots are only able to emit two to four information-

bearing packets each second. Each packet can contain several bytes of information,

so the number of actual variables transmitted between swarm robots is not the main

constraint. Rather, the constraint is due to the fact that these variables can only

be updated between robots a few times each second. Luckily, the robots also do not

move very fast (fill in here exactly how fast), so state variables usually do not change

very quickly.

Constraint 4. Bandwidth is limited.

162

7.3 Conclusion

This thesis fuses ideas from machine learning, game theory, distributed systems, and

networking to explore the relatively new field of multi-agent learning. From a seem-

ingly simple problem involving the competitive interaction between two intelligent

agents to the complex design of large multi-agent systems, ideas from each of these

fields can provide important insights. In the coming years, as computational power

proliferates and embeds itself in all aspects of our lives, the need to understand

multi-agent interactions and multi-agent systems will become increasingly important.

Learning algorithms provide us with valuable tools for studying these systems and de-

signing better systems. Their wide applicability ranges from web-based agent systems

to self-interested agents in financial markets to the behavior of teams of robots.

163

164

Bibliography

[Aberdeen, 2002] D. Aberdeen. Policy-gradient algorithms for partially observable

markov decision processes. Ph.D. Thesis, Australian National University, 2002.

[Auer et al., 1995] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E.

Schapire. Gambling in a rigged casino: the adversarial multi-armed bandit problem.

In Proceedings of the 36th Annual Symposium on Foundations of Computer Science,

1995.

[Auer et al., 2002] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The non-

stochastic multi-armed bandit problem, 2002.

[Baxter and Bartlett, 2001] Jonathan Baxter and Peter Bartlett. Infinite-horizon

policy-gradient estimation. Journal of Artificial Intelligence Research, 15:351-381,

2001.

[Bernstein et al., 2002] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.

The complexity of decentralized control of markov decision processes. Mathematics

of Operations Research, 27:819-840, 2002.

[Bertsekas and Tsitsiklis, 1996] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic

Programming. Athena Scientific, 1996.

[Blum and Kalai, 1997] Blum and Kalai. Universal portfolios with and without trans-

action costs. In COLT: Proceedings of the Workshop on Computational Learning

Theory, Morgan Kaufmann Publishers, 1997.

165

[Blum et al., 2003] B. Blum, C. R. Shelton, and D. Koller. A continuation method for

nash equilibria in structured games. In Proceedings of the Eighteenth International

Joint Conference on Artificial Intelligence, 2003.

[Bowling and Veloso, 2002a] M. Bowling and M. Veloso. Multiagent learning using a

variable learning rate. Artificial Intelligence, 136:215-250, 2002.

[Bowling and Veloso, 2002b] Michael Bowling and Manuela Veloso. Multiagent learn-

ing using a variable learning rate. Artificial Intelligence, 136:215-250, 2002.

[Boyan and Littman, 1994] J. Boyan and M. L. Littman. Packet routing in dynami-

cally changing networks: A reinforcement learning approach. In Advances in NIPS,

1994.

[Cesa-Bianchi and Lugosi, 2003] N. Cesa-Bianchi and G. Lugosi. Potential-based al-

gorithms in on-line prediction and game theory. Machine Learning, 51(3):239-261,

2003.

[Chang and Kaelbling, 2002] Y. Chang and L. P. Kaelbling. Playing is believing:

The role of beliefs in multi-agent learning. In Advances in Neural Information

Processing Systems, 2002.

[Chang and Kaelbling, 2005] Y. Chang and L. P. Kaelbling. Hedged learning: Re-

gret minimization using learning experts. In International Conference on Machine

Learning, submitted, 2005.

[Chang et al., 2003] Y. Chang, T. Ho, and L. P. Kaelbling. Reinforcement learning

in mobilized ad-hoc networks. Technical Report, AI Lab, MIT, 2003.

[Chang et al., 2004a] Y. Chang, T. Ho, and L. P. Kaelbling. All learning is local:

Multi-agent learning in global reward games. In Advances in Neural Information

Processing Systems, 2004.

[Chang et al., 2004b] Y. Chang, T. Ho, and L. P. Kaelbling. A reinforcement learning

approach to mobilized ad-hoc networks. International Conference on Autonomic

Computing, 2004.

166

[Chatzigiannakis et al., 2001] I. Chatzigiannakis, S. Nikoletseas, N. Paspallis, P. Spi-

rakis, and C. Zaroliagis. An experimental study of basic communication protocols

in ad-hoc mobile networks. In 5th Workshop on Algorithmic Engineering, 2001.

[Chen et al., 2001] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An

energy-efficient coordination algorithm for topology maintenance. In SIGMOBILE,

2001.

[Choi et al., 1999] S. Choi, D. Yeung, and N. Zhang. Hidden-mode Markov decision

processes. In IJCAI Workshop on Neural, Symbolic, and Reinforcement Methods

for Sequence Learning, 1999.

[Claus and Boutilier, 1998] Caroline Claus and Craig Boutilier. The dynamics of

reinforcement learning in cooperative multiaent systems. In Proceedings of the

15th AAAI, 1998.

[de Farias, 2004] D. P. de Farias. How to combine expert (or novice) advice when

actions impact the environment. In Proceedings of NIPS, 2004.

[Freund and Schapire, 1995] Yoav Freund and Robert E. Schapire. A decision-

theoretic generalization of on-line learning and an application to boosting. In

European Conference on Computational Learning Theory, pages 23-37, 1995.

[Freund and Schapire, 1999] Yoav Freund and Robert E. Schapire. Adaptive game

playing using multiplicative weights. Games and Economic Behavior, 29:79-103,

1999.

[Fudenburg and Levine, 1995] Drew Fudenburg and David K. Levine. Consistency

and cautious fictitious play. Journal of Economic Dynamics and Control, 19:1065-

1089, 1995.

[Greenwald and Hall, 2003] A. Greenwald and K. Hall. Correlated q-learning. In

Proceedings of the Twentieth International Conference on Machine Learning, 2003.

167

[Grossglauser and Tse, 2001] M. Grossglauser and D. Tse. Mobility increases the

capacity of ad-hoc wireless networks. In INFOCOM, 2001.

[Gupta and Kumar, 1998] P. Gupta and P. R. Kumar. Capacity of wireless networks.

In Stochastic Analysis, Control, Optimization, and Applications. Birkhauser, 1998.

[Hall and Greenwald, 2001] Keith Hall and Amy Greenwald. Correlated q-learning.

In DIMACS Workshop on Computational Issues in Game Theory and Mechanism

Design, 2001.

[Hart and Mas-Colell, 2001] S. Hart and A. Mas-Colell. A general class of adaptive

strategies. Journal of Economic Theory, 98(1):26-54, 2001.

[Hsu et al., 2005] D. Hsu, G. Snchez-Ante, and Z. Sun. Hybrid prm sampling with a

cost-sensitive adaptive strategy. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, 2005.

[Hu and Wellman, 1998] Junling Hu and Michael P. Wellman. Multiagent reinforce-

ment learning: Theoretical framework and an algorithm. In Proceedings of the 15th

Int. Conf. on Machine Learning (ICML-98), 1998.

[Johnson and Maltz, 1996] D. Johnson and D. Maltz. Dynamic source routing in ad

hoc wireless networks. In Mobile Computing, volume 353. 1996.

[Kaelbling et al., 1996 L. P. Kaelbling, M. L. Littman, and A. P. Moore. Reinforce-

ment learning: A survey. Journal of Artificial Intelligence Research, 4:237-285,

1996.

[Kakade and Ng, 2004] S. Kakade and A. Ng. Online bounds for bayesian algorithms,

2004.

[Kalman, 1960] R. E. Kalman. A new approach to linear filtering and prediction

problems. Transactions of the American Society of Mechanical Engineers, Journal

of Basic Engineering, 1960.

168

[Kearns and Singh, 1998 M. Kearns and S. Singh. Near-optimal reinforcement learn-

ing in polynomial time. In Proceedings of the 15th International Conference on

Machine Learning, pages 260-268, 1998.

[Li and Rus, 2000] Q. Li and D. Rus. Sending messages to mobile users in discon-

nected ad-hoc networks. In MOBICOM, 2000.

[Littlestone and Warmuth, 1989] Nick Littlestone and Manfred K. Warmuth. The

weighted majority algorithm. In IEEE Symposium on Foundations of Computer

Science, pages 256-261, 1989.

[Littman and Stone, 2001] Michael Littman and Peter Stone. Leading best-response

stratgies in repeated games. In 17th Int. Joint Conf. on Artificial Intelligence

(IJCAI-2001) workshop on Economic Agents, Models, and Mechanisms, 2001.

[Littman and Szepesviri, 1996] Michael L. Littman and Csaba Szepesviri. A gener-

alized reinforcement-learning model: Convergence and applications. In Proc. of the

13th ICML, 1996.

[Littman et al., 2001] M. Littman, M. Kearns, and S. Singh. An efficient exact algo-

rithm for singly connected graphical games. In Proceedings of NIPS, 2001.

[Littman, 1994] Michael L. Littman. Markov games as a framework for multi-agent

reinforcement learning. In Proc. of the 11th ICML, 1994.

[Littman, 2001] Michael L. Littman. Friend-or-foe q-learning in general-sum games.

In Proceedings of the 18th Int. Conf. on Machine Learning (ICML-01), 2001.

[Loch and Singh, 1998] John Loch and Satinder Singh. Using eligibility traces to

find the best memoryless policy in partially observable Markov decision processes.

In Proc. 15th International Conf. on Machine Learning, pages 323-331. Morgan

Kaufmann, San Francisco, CA, 1998.

[Mannor and Shimkin, 2001] Shie Mannor and Nahum Shimkin. Adaptive strategies

and regret minimization in arbitrarily varying Markov environments. In Proc. of

14th COLT, 2001.

169

[Mannor and Shimkin, 2003] S. Mannor and N. Shimkin. The empirical bayes en-

velope and regret minimization in stochastic games. Mathematical Operation Re-

search, 28(2):327-345, 2003.

[McLurkin and Smith, 2004] J. McLurkin and J. Smith. Distributed algorithms for

dispersion in indoor environments using a swarm of autonomous mobile robots. In

Proceedings of DARS, 2004.

[Merhav and Feder, 1998] Merhav and Feder. Universal prediction. IEEETIT: IEEE

Transactions on Information Theory, 44, 1998.

[Monteleoni and Jaakkola, 2003] C. Monteleoni and T. Jaakkola. Online learning of

non-stationary sequences. 2003.

[Nachbar and Zame, 1996] J.H. Nachbar and W.R. Zame. Non-computable strategies

and discounted repeated games. Economic Theory, 1996.

[Nagayuki et al., 2000] Yasuo Nagayuki, Shin Ishii, and Kenji Doya. Multi-agent

reinforcement learning: An approach based on the other agent's internal model. In

Proceedings of the International Conference on Multi-Agent Systems (ICMAS-00),

2000.

[Ortiz and Kearns, 2002] L. Ortiz and M. Kearns. Nash propagation for loopy graph-

ical games. In Proceedings of NIPS, 2002.

[Papadimitriou, 2001] C. H. Papadimitriou. Algorithms, games, and the internet. In

Proceedings of STOC, 2001.

[Perkins and Royer, 1997] C. Perkins and E. Royer. Ad-hoc on-demand distance vec-

tor routing. In MILCOM Panel, 1997.

[Peshkin et al., 2000] L. Peshkin, K. E. Kim, N. Meuleau, and L. P. Kaelbling. Learn-

ing to cooperate via policy search. In Proceedings of the Sixteenth International

Conference on Uncertainty in Artificial Intelligence, 2000.

170

[Peshkin, 2002] L. Peshkin. Reinforcement learning by policy search. Ph.D. Thesis,

MIT, 2002.

[Schmidhuber, 1999] J. Schmidhuber. A general method for incremental self-

improvement and multi-agent learning. Evolutionary Computation: Theory and

Applications, pages 81-123, 1999.

[Singh et al., 2000] S. Singh, M. Kearns, and Y. Mansour. Nash convergence of gra-

dient dynamics in general-sum games. In Proceedings of the 16th Conference on

Uncertainty in Artificial Intelligence, 2000.

[Stone and Sutton, 2001 P. Stone and R. S. Sutton. Scaling reinforcement learning

toward RoboCup soccer. In ICML, 2001.

[Sutton and Barto, 1999] Richard S. Sutton and Andrew G. Barto. Reinforcement

Learning: An Introduction. MIT Press, 1999.

[Szita et al., 2002] Istvan Szita, Balimt Takacs, and Andras Lorincz. e-mdps: Learn-

ing in varying environments. Journal of Machine Learning Research, 2002.

[Vovk, 1998] V. Vovk. A game of prediction with expert advice. Journal of Computer

and System Sciences, 56:153-173, 1998.

[Watkins, 19891 C. J. Watkins. Learning with delayed rewards. Ph.D. Thesis, Uni-

versity of Cambridge, 1989.

[Williams, 1992] R. Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning, 8:229-256, 1992.

171

