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Abstract

This dissertation studies mechanism design for various combinatorial problems in the
presence of strategic agents. A mechanism is an algorithm for allocating a resource
among a group of participants, each of which has a privately-known value for any
particular allocation. A mechanism is truthful if it is in each participant's best interest
to reveal his private information truthfully regardless of the strategies of the other
participants.

First, we explore a competitive auction framework for truthful mechanism design
in the setting of multi-unit auctions, or auctions which sell multiple identical copies
of a good. In this framework, the goal is to design a truthful auction whose revenue
approximates that of an omniscient auction for any set of bids. We focus on two
natural settings - the limited demand setting where bidders desire at most a fixed
number of copies and the limited budget setting where bidders can spend at most a
fixed amount of money. In the limit demand setting, all prior auctions employed the
use of randomization in the computation of the allocation and prices. Randomization
in truthful mechanism design is undesirable because, in arguing the truthfulness of the
mechanism, we employ an underlying assumption that the bidders trust the random
coin flips of the auctioneer. Despite conjectures to the contrary, we are able to design a
technique to derandomize any multi-unit auction in the limited demand case without
losing much of the revenue guarantees. We then consider the limited budget case
and provide the first competitive auction for this setting, although our auction is
randomized.

Next, we consider abandoning truthfulness in order to improve the revenue prop-
erties of procurement auctions, or auctions that are used to hire a team of agents
to complete a task. We study first-price procurement auctions and their variants
and argue that in certain settings the payment is never significantly more than, and
sometimes much less than, truthful mechanisms.

Then we consider the setting of cost-sharing auctions. In a cost-sharing auction,
agents bid to receive some service, such as connectivity to the internet. A subset of
agents is then selected for service and charged prices to approximately recover the cost
of servicing them. We ask what can be achieved by cost-sharing auctions satisfying a
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strengthening of truthfulness called group-strategyproofness. Group-strategyproofness
requires that even coalitions of agents do not have an incentive to report bids other
than their true values in the absence of side-payments. For a particular class of
such mechanisms, we develop a novel technique based on the probabilistic method for
proving bounds on their revenue and use this technique to derive tight or nearly-tight
bounds for several combinatorial optimization games. Our results are quite pes-
simistic, suggesting that for many problems group-strategyproofness is incompatible
with revenue goals.

Finally, we study centralized two-sided markets, or markets that form a matching
between participants based on preference lists. We consider mechanisms that output
matching which are stable with respect to the submitted preferences. A matching is
stable if no two participants can jointly benefit by breaking away from the assigned
matching to form a pair. For such mechanisms, we are able to prove that in a
certain probabilistic setting each participant's best strategy is truthfulness with high
probability (assuming other participants are truthful as well) even though in such
markets in general there are provably no truthful mechanisms.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor

Thesis Supervisor: David Karger
Title: Associate Professor
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Chapter 1

Introduction

As computer scientists, we have traditionally assumed that our algorithms operate

in isolation from their environment. In our models, algorithms are presented with

environmental inputs which they use to design a solution. This solution is then

implemented in the environment, and in our standard analytic methods such as ad-

versarial analysis, average-case analysis, or simulations, we assume that the choice

of the algorithm does not affect the environmental input. Although this is a rea-

sonable model in many settings, the advent of new technologies such as the internet

has resulted in the growth of new computational problem spaces where the design of

the algorithm affects the inputs and the behavior of the users. Prominent examples

include the allocation of radio spectrum, privatization of public services, or, closer to

home, peer-to-peer networks like Gnutella and electronic commerce sites like eBay. In

these systems, participants act in their own self-interest and therefore declare inputs

which, based on their knowledge of the other participants and the mechanism itself,

they believe will maximize their own gain.

The field of mechanism design or implementation theory attempts to build systems

taking into consideration the strategic behavior of the participants (see [62, 63] for a

survey). The basic paradigm postulates that each individual maintains some private

information relevant to the problem at hand. A system solicits from participants

their private information and then computes a global solution to the problem. The

properties of this global solution are analyzed in a game-theoretic equilibrium or a
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steady-state induced by the behavior of rational participants. It is the goal of the

designer to introduce incentives in the system such that these equilibria result in glob-

ally optimal solutions. Algorithmic mechanism design focuses on the application of

mechanism design to computationally intensive settings (see [89] for an introduction).

1.1 Mechanism Design

We consider a setting in which there is a set N of n agents denoted {1,..., n} which

must collectively reach a common decision from a set of feasible decisions D. These

agents might be, for example, people at an art auction, the decision being the price

and allocation of the work of art. Each agent i maintains some private information

relevant to the decision problem at hand. This private information, denoted i, is

called his type, and is an element of his type space Hi. In the art auction, for example,

this private information might be the agent's value for the work of art, the type space

being the set of non-negative real numbers R+.

Agents have preferences over decisions as represented by a utility function ui:

D x )i - IR for each agent i.1 A decision d D for an agent i with type i E Ei is

said to have utility ui(d, Oi) for agent i. In the art auction example outlined above, the

utility function for a bidding agent, or bidder, i might be his value for the allocation

minus his price. Utility functions of this form are called quasi-linear. For example, the

value of agent i for an allocation x might be vi (Oi, x) = Oi if he is allocated the work of

art, and vi(Oi, x) = 0 otherwise. His utility function is then ui(d, Oi) = vi(0i, x) - p if

the decision d is to choose allocation x and charge agent i at price p. We assume that

the value of the auctioneer for the work of art is 0, and so his utility for a decision d is

p if the decision d is to allocate the work of art to a bidder at price p and 0 otherwise.

A mechanism M is a pair (xiAi, g) defining for each agent i a set of actions Ai and

a decision function g: xiAi - D mapping the agents' actions to a decision. If the set

of actions of an agent Ai equals the type space of that agent Hi, then the mechanism

1Note that this definition requires an agent's utility to be independent of the other agents' types.
This is called the private value setting, and will be the focus of this dissertation.
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is said to be a direct revelation mechanism. The action space in a direct revelation

art auction might be the sealed bid announcement of a value (that is, Ai = R+ for all

i); the decision function might allocate the work of art to an arbitrary agent with a

maximum announced value, charging him a price equal to the maximum announced

value among the remaining agents.

We study the properties of a mechanism in an equilibrium state. A vector of

actions is an equilibrium if each agent's action maximizes his (expected) utility given

perhaps some information regarding the types of the others (for example, knowing

their types, or knowing a probability distribution over their types). In some cases, it

is possible to define the mechanism M in such a way that each agent i has a dominant

strategy action a*, or one which maximizes his utility regardless of the actions of the

other players. In other words, for each possible type i E Oi there is an action a(Oi)

such that

ui (g(a (i), a_i), i) > ui (g(a), i)

for all profiles a of actions of the agents (where, as is standard, we have used the

notation ai to denote the (n - 1)-dimensional vector (al, ... , ai_1, ai+l,.. ., a) and

the notation (ai, a-i) to denote the n-dimensional vector a). A vector of dominant

strategy actions is called a dominant strategy equilibrium. A direct revelation mecha-

nism in which revealing Oi is a dominant strategy for any agent i with type 9i is called

a truthful or incentive compatible mechanism (we use these terms interchangeably).

So far, we have implicitly assumed that the only actions available to agents are those

defined by the mechanism. In other words, an agent does not have a choice about

whether to participate in the mechanism. A direct revelation mechanism is individu-

ally rational if, in an equilibrium, no agent is worse off by participating. Specifically,

let d be an equilibrium outcome of a mechanism M. We say M is individually ratio-

nal if for all agents i and types i E Oi, ui(Oi, d) > 0 (here we assume an agent can

guarantee himself a utility of zero by not participating). Henceforth, all auctions we

consider will be individually rational unless otherwise stated. By this definition, a
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truthful auction is individually rational if no agent is charged more than his bid.

The goal of the mechanism designer is, given a social choice function f: xi i -+

2 D, to define M in such a way that g(a) E f(0) for all type vectors 0 E xiOi and all

equilibria a E xiAi of agents with types 0. The social choice function might be, for

example, the set of decisions which maximize the social welfare or the revenue.

A prominent example of a truthful mechanism is the Vickrey-Clark-Groves mecha-

nism, or VCG mechanism, developed in a series of papers by Vickrey [115], Clark [19],

and Groves [52] for a general setting where agents have quasi-linear utility functions.

The VCG mechanism is a direct revelation auction that chooses a decision that max-

imizes the social welfare, or the sum of values of the bidders (equivalently, the sum

of utilities of all the agents including the auctioneer). It then charges each bidder a

price equal to his value minus a bonus. The bonus is defined as the amount by which

his presence increases the social welfare. More formally, given reported valuations 0

of the bidding agents, define W(9) = maxxED n= vi(i, x). The VCG mechanism

chooses a decision x which maximizes E=3 vi(9i, x) and then charges each agent i

a price equal to Pi = vi(0i, x) - (W(9) - W(9i)). In the case of a single item auc-

tion, the VCG mechanism is precisely the second price auction described earlier. A

classic economic result states that this mechanism is truthful and efficient (that is,

maximizes the social welfare) when utility functions are quasi-linear [19, 52, 115].

1.2 Sample Applications

The fundamental scenario in mechanism design is applicable in a wide variety of

settings, of which we highlight a few.

1.2.1 Multi-Object Auctions

Multi-object auctions concern the sale of multiple related objects by an auctioneer

(the seller) to interested bidders (the buyers). The notion of an object is intentionally

generic and encompasses anything from works of art or cut flowers to, in recent times,

radio spectrum or advertisement slots on web search pages. A special case discussed
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in this dissertation is the multi-unit setting in which the auctioneer wishes to sell

multiple identical copies of an object like two copies of the same photograph.

In multi-object and multi-unit auction settings, the set of agents is the bidders.2

The type of an agent is the utility function of the agent. The feasible decisions are

all possible allocations of the objects along with a price vector. There are a variety of

natural utility functions one might assume in this setting, the most prevalent being

quasi-linear utilities. One plausible goal of the mechanism designer is to maximize

revenue of the auctioneer. Another option is to maximize the social welfare of the

decision.

1.2.2 Procurement Auctions

This setting is quite similar to the last except that the auctioneer is a buyer and

the bidders are sellers. Typically, the auctioneer wants to hire a team of agents

to complete some task. Each agent, if selected, performs some fixed service which

facilitates completion of the task. For example, the auctioneer might be an Internet

Service Provider (ISP) who needs to enlist the services of several routing domains, or

autonomous systems (ASs), in order to route packets in the internet.

Again, the set of agents is the bidders. The type of a bidder is the cost to the

bidder of performing his service. The feasible decisions are a set of bidders capable

of completing the task along with a payment vector. The utility of a bidder is his

payment minus his cost (if selected). A goal in this setting might be to minimize the

payment of the auctioneer (that is, the sum of payments made to the bidders).

1.2.3 Cost-Sharing Auctions

In cost-sharing auctions, agents bid for a service. For each subset of bidders, there is

a cost associated with providing the service for that subset, and the objective of the

auction is to determine which bidders receive the service and how much each of them

has to pay to recover the cost of the service. For example, the residents of a town

2 Alternatively, we could define the set of agents to include the auctioneer, but it will prove more
convenient in subsequent discussions to exclude him.
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might wish to build a new power generator. To finance the cost of the generator,

they can run a cost-sharing auction to decide which residents will be serviced by the

power generater and how much each of them must pay.

The type of each agent in a cost-sharing auction is the value to him of receiving

the service. A feasible decision is a set of agents to be serviced, and a cost to charge

each agent. An agent's utility is his value for his allocation minus his price. One

goal here is to charge prices which exactly recover the cost of the production (called

budget balance), or, if that is not possible, to recover an a fraction of the cost (called

ac-budget balance).

1.2.4 Two-Sided Markets

Two-sided markets refer to scenarios in which there are two sets of participants, like

workers and firms or men and women, which must be paired together. A motivating

example in this setting is the National Residency Matching Program (NRMP) which

matches medical school graduates to internship programs in hospitals following their

schooling.

In this setting, the set of agents is the two sets of participants, and the type of

a participant is an ordered list of preferences over members of the opposite set. A

feasible decision is a matching between members of opposite sets. Such a matching is

called stable if there are no two participants who prefer each other to their respective

assignments in the matching. A goal in a two-sided market might be to output a

stable matching.

1.3 Our Contributions

When they exist, truthful mechanisms are very attractive. Their equilibria are highly

stable and predictable, and furthermore, it is fairly simple for each participant to

compute his optimal strategy (he need only be concerned about his own situation

and is not required to guess the strategies of his fellow participants). One important

area of research is to find the best truthful mechanism for a given problem. However,
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for some problems, by considering stronger equilibrium concepts, it is possible to

design a mechanism that, in equilibrium, significantly improves the objective. In other

problems, it may be theoretically impossible for a truthful mechanism to optimize the

global objective. This dissertation studies the benefits, drawbacks, and necessity of

truthful mechanism design for a variety of market settings.

The field of truthful mechanism design has a long history in the economics liter-

ature. Of this large body of work, the result most relevant to this dissertation is the

Vickrey-Clark-Groves (VCG) mechanism [19, 52, 115]. Applicable to a wide array of

settings, the VCG mechanism defines a truthful mechanism that maximizes the social

welfare. However, this mechanism does not necessarily maximize the revenue.

Chapter 2: Truthfulness in Multi-Unit Auctions

We first study revenue-maximizing truthful mechanism design in multi-unit auctions,

that is an auction for multiple copies of a single good. This setting is an important

special case of the multi-object (combinatorial) auction setting (for a discussion of

this setting, see [22]). We consider the revenue maximization problem under various

assumptions regarding the form of the bidders' utility functions. In particular, we

assume bidders either have limited demand (have utility for at most a fixed and

publicly known quantity of the good) or limited budgets (have a fixed privately known

budget to spend). We further assume that their utility increases linearly with their

allocation up to their budget or demand constraint.

The limited demand case is fairly standard and many of the known results from the

economics literature apply. The VCG mechanism may be applied in this setting, but

its revenue is quite low when the supply is large. Alternatively, if one assumes that the

valuations of bidders are drawn independently from a known probability distribution,

then a result of Myerson [88] yields a truthful mechanism with maximum expected

revenue. However, assuming a probability distribution for the bidders' valuations is

often unsatisfactory. In an effort to avoid any such assumption, Goldberg, Hartline,

and Wright [50] proposed a framework called competitive auctions for designing high-

revenue auctions. This framework seeks to maximize the ratio between the revenue
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of an auction to the revenue of an omniscient auctioneer (that is, an auctioneer

who knows the valuations of the bidders). In a sequence of works, Goldberg et

al. [49, 48, 50] and Hartline and McGrew [54] use this framework to design high-

revenue truthful auctions without any assumption on the bidders' valuations.

All of these results employ randomization in the computation of the allocation.

Use of randomization in truthful mechanism design is unsatisfactory from two view-

points: first, the resulting revenue guarantees hold only with some probability, and

second, the property of truthfulness holds only if the participants trust that the coin

flips of the auctioneer are indeed fair.3 In Chapter 2, we introduce a technique to

"derandomize" truthful mechanisms without sacrificing much of the expected revenue

guarantee, thus providing deterministic high-revenue auctions for the limited demand

setting.

The limited budget setting has received much less attention in the literature. The

utility functions of bidders in this setting are not quasi-linear (see Section 1.1). Thus,

many classic results such as the VCG mechanism are not even well-defined in this set-

ting. In fact, in Chapter 2, we show that, modulo some technical assumptions, there

is no truthful mechanism for this setting. On the positive side, we drop some of the

technical assumptions in order to provide the first (randomized) truthful mechanism

for this setting with high revenue guarantees. Unfortunately, our derandomization

techniques do not extend to this setting, and so the existence of a deterministic mech-

anism remains an open question.

The results of this chapter regarding limited demand are based on joint work

with Aggarwal, Fiat, Goldberg, Hartline, and Sudan [2]. The results regarding

budget-constrained bidders are based on joint work with Borgs, Chayes, Mahdian,

and Saberi [14].

3It is standard to assume that bidders trust the auctioneer to implement the announced mech-
anism and so one might argue that trusting the auctioneer's random source is not unreasonable.
However, an auctioneer can easily provide a certificate to prove the first fact (by, for example,
announcing the inputs). It is much harder to prove that the coin flips are truly random.
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Chapter 3: Weaker Notions than Truthfulness in Procurement Auctions

We then turn our attention to the setting of procurement auctions with a particular

focus on path and flow auctions. In path auctions, the auctioneer, a buyer, seeks to

buy a path of edges between a specified source and destination in a network while

spending as little as possible. Each edge of the network is owned by an agent. Agents

(network edges) have a privately known cost for transmitting traffic, and bid to attract

traffic. A flow auction is a generalization of a path auction in which the auctioneer

has a demand that might exceed the capacity of a single path and therefore needs to

buy a set of edges, called a flow, capable of routing his demand between the source

and the sink.

Nisan and Ronen [89] proposed applying the VCG mechanism to path auctions;

Hershberger and Suri [55] and Feigenbaum et al. [35] study methods to make this

mechanism efficiently computable and practical in this setting. However, as observed

by Archer and Tardos [6], the VCG mechanism (and, in fact, all min function mech-

anisms) can force the auctioneer to pay far more than the true cost of the cheapest

path. The tendency to overpay is exaggerated in path auctions because a bonus needs

to be paid to every agent on the path. Thus, the payment to the lowest-cost path

may even greatly exceed the cost of the second-cheapest path. Elkind, Sahai, and

Steiglitz [29] generalized the result of Archer and Tardos [6] to prove that all truthful

mechanisms have high overpayments.

As motivated by the work of Elkind, Sahai, and Steiglitz [29], to reduce the pay-

ment we must turn our attention to weakened equilibrium concepts. These equilib-

rium concepts require that the participants have more information about the setting

(for example, that they know the others' types or a probability distribution over their

types). Thus they are arguably less predictable and stable than dominant strategy

equilibria.4 Nonetheless, they promise substantial savings and so merit attention.

Elkind, Sahai, and Steiglitz [29] present and analyze an optimal Bayesian-Nash

mechanism. Czumaj and Ronen [20] propose a mechanism which combines dominant

4Substantial effort has been made to understand when we might expect mechanisms to exhibit
these weaker equilibria (see, for example, [38]).

19



and non-dominant strategy mechanisms; however they show that it has an arbitrary

ratio between the payment of different equilibria and say that overall, "finding a

natural and tractable measure of [non-dominant strategy] protocols seems challenging

and important." In Chapter 3, we analyze the payment properties of a first-price

auction, or one in which the cheapest feasible set is selected and each agent in this

set is paid a price equal to his bid. We show that the payment of such an auction in a

strong e-Nash equilibrium is never more than, and often much less than, the payment

in a truthful auction.

The results of this chapter are based on joint work with Karger, Nikolova, and

Sami [59].

Chapter 4: Stronger Notions than Truthfulness in Cost-Sharing Auctions

In Chapter 4, we consider cost-sharing auctions based on combinatorial optimization

games. In our setting, the "good" that is auctioned is a service, like connectivity to

the internet. The cost of the service for a particular subset of agents can be computed

by solving a combinatorial optimization problem, such as Steiner tree in the internet

connectivity example. The allocation rule selects a set of agents to service. Thus, the

allocation to an agent is a binary decision - he either receives service or does not.

In this setting, we explore a strengthened equilibrium concept called group strat-

egyproofness intended to rule out collusion among participants. This equilibrium

concept requires that no subset of participants has an incentive to collectively de-

viate from their truthful strategies. We assume there are no side payments in the

system, and so a coalition has incentive to deviate only if no member of the coalition

is worse off and some member is strictly better off after the deviation.

Moulin [85] presents a method for constructing group-strategyproof mechanisms

based on combinatorial constructions called cross-monotonic cost-sharing schemes.

This results together with cost-sharing schemes such as those of Shapley [107] or Dutta

and Ray [26] imply budget-balanced group-strategyproof mechanisms for any submod-

ular cost function. However, many interesting cost functions based on combinatorial

optimization problems are not submodular. It is known that no cross-monotonic cost-
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sharing scheme for some problems can be perfectly budget-balanced. Accordingly,

approximately budget-balanced schemes have been proposed for many combinatorial

optimization problems including minimum spanning tree [64, 68], Steiner tree [64],

Steiner forest [72], facility location [90], and connected facility location [78].

In Chapter 4, we provide a general methodology to prove upper bounds on the

fraction of cost recoverable by cross-monotonic cost-sharing schemes. We apply our

bounds to several cost functions to obtain significantly stronger bounds than previ-

ously known. In many cases, the bounds we get are tight (for example, for facility

location), or nearly tight. We also provide a partial characterization of group strat-

egyproof mechanisms in terms of cross-monotonic cost-sharing schemes and are thus

able to argue that our bounds hold for all group strategyproof mechanisms that sat-

isfy additional properties. Our results are quite pessimistic, suggesting that often

group strategyproofness may be too strong a goal.

The results in this chapter are based on joint work with Mahdian and Mir-

rokni [61].

Chapter 5: Truth in Two-Sided Matching Markets

Finally, in Chapter 5, we study an existing marketplace in which truthful mecha-

nisms are provably limited and introduce a new analysis technique to explain ob-

served behavior in this marketplace. Specifically, we consider centralized two-sided

marketplaces such as the National Residency Matching Program (NRMP). Ideally,

a centralized mechanism should output a stable solution in order to prevent partici-

pants from forming matchings outside the market and decentralizing it. However, it

is well-known that in a stable matching mechanism, it is not always in a participant's

self-interest to announce their true preference list. Yet Roth and Peranson [99] ob-

serve that in practice in the NRMP, very few participants have incentives to lie. They

suggest that this phenomenon is due to the fact that the length of the medical stu-

dents' preference lists is necessarily quite short. We provide a theoretical justification

of this observation by showing that in a reasonable probabilistic setting, the expected

number of participants who can improve their match by submitting a false preference
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list is vanishingly small. This proves a conjecture of Roth and Peranson [99], and

implies that, with high probability, a participant's best strategy is truthfulness when

other participants are truthful. Thus, even a dishonest participant is incentivized to

be truthful if he believes in the honesty of others. Furthermore, this result implies

that the NRMP mechanism has an equilibrium in which most participants are truth-

ful and an approximate equilibrium in which all participants are truthful. This proves

a conjecture of Roth and Peranson [99] regarding the NRMP marketplace.

The results of this chapter are based on joint work with Mahdian [60].
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Chapter 2

Multi-Unit Auctions

In this chapter, we focus on markets in which there are multiple identical units of a

good for sale. In these markets, it is natural to consider various forms of the utility

function for the buyers. As units of an identical good are perfect substitutes, like

tickets to a concert or cut flowers, in general each additional unit has less value to

a bidder than the last. Here, we concern ourselves only with the special case where

this marginal return is initially constant and then zero so that every additional unit

is equally valuable up to some limit. For instance, it is likely that buyers have limited

demand; perhaps they desire at most one unit of the good as might be the case in

the auction of a limited addition photograph. We refer to this general setting as the

limited demand case, and the setting of unit demands as the single-unit demand case.

On the other hand, as is the case for an advertisement slot on a web page, a buyer

(advertiser) might have a desire to be shown during multiple viewings of the web page

and so have a constant marginal return but be constrained by a limited advertising

budget. These buyers are called budget-constrained buyers.

There are many plausible formats for the sale of identical goods. They may be

offered at a fixed price, auctioned one after the other in multiple rounds, or sold

in a single auction. This last format is known as a multi-unit auction, and is used

extensively in settings such as the sale of government securities [113], the sale of

advertising slots on web pages, and, even, the initial public offering of Google stock.

Several auction formats have been proposed for these settings, the most abundant
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being the discriminatory auction and the uniform-price auction (see the book by

Krishna [74] for a survey on multi-unit auctions).

A standard goal in the design of multi-unit auctions, and auction design in general,

is to maximize revenue. One approach to maximizing revenue, traditionally applied

in the limited supply and/or limited demand case, is to determine an optimal reserve

price based on assumptions about the distribution of values of the bidders [16, 88].

The budget-constrained case has also been investigated using this approach in several

recent papers [11, 17, 18, 30, 31, 76, 79, 120] often in the context of privatization of

high-value public goods, such as FCC auctions of telecommunications bands. Given

an accurate model of these distributions, this approach is often optimal in the sense

that it maximizes expected revenue. However, a misconception regarding these dis-

tributions can significantly reduce the revenue of the auction.

Another approach, pioneered by Goldberg, Hartline, and Wright [50], makes no

assumptions regarding the value distribution and still approximately maximizes rev-

enue even in the worst-case scenario. A worst-case competitive analysis framework

is employed to compare the revenue of the proposed auction to that of an optimal

auction run by an omniscient auctioneer, or one who knows the private values of all

the bidders. The minimum ratio, over all possible input values, of the mechanism's

revenue to the optimal revenue is called the competitive ratio of the mechanism, and

the goal is to maximize this ratio. This framework has been used to design truthful

auctions for the single-unit demand case. [37, 46, 48, 50, 54].1

This chapter follows the competitive framework introduced by Goldberg, Hartline,

and Wright [50]. We design truthful mechanisms for profit maximization in markets

in both the limited demand case and the budget-constrained case. We begin with

a folklore theorem which characterizes the set of truthful auctions (Section 2.1). In

the limited demand case, all prior results in the competitive framework employed

the use of randomization in the allocation and pricing scheme. We present the first

derandomized mechanism for this setting, along with our derandomization technique

1All of this work is extendable to multi-unit demands when the demands are public knowledge
and the marginal returns are constant.
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(Section 2.2). We also give the first (randomized) mechanism in the competitive

framework for the limited demand case (Section 2.3).

The results of Section 2.2 are from a joint work with Aggarwal, Fiat, Goldberg,

Hartline, and Sudan [2]. The results of Section 2.3 are from a joint work with Borgs,

Chayes, Mahdian, and Saberi [14].

2.1 Truthful Auction Design

The space of truthful auctions is characterized by the following theorem which states

that the price charged to a bidder must be independent of his bid. Statements sim-

ilar to this one have appeared in numerous places and date back to at least the

1970s [82]. For simplicity, we state the characterization for the special case of a

single-item auction in which each bidder's utility is quasi-linear (see Proposition 2.3.1

for a generalization to a non-quasi-linear multi-unit setting).

Definition 1 (Bid-independent Auction) Suppose there are n bidders. Let fi be

a function from bid vectors of dimension n - 1 to R+ U {0} U {oo} (where oo is a

number larger than any bid) and f be a set of n such functions. The deterministic

bid-independent auction defined by f works as follows. For each bidder i:

1. Set ti =- fi(bi).

2. If ti < bi, bidder i wins at price ti

3. If ti > bi, bidder i loses.

4. Otherwise, (ti = bi) the auction can either accept the bid at price ti (in which

case bidder i is a winner) or reject it.

Theorem 2.1.1 An (individually rational) deterministic auction is truthful if and

only if it computes the same allocation and prices as a bid-independent auction.

Proof. It is clear that a bid-independent auction is truthful. Consider a truthful

auction A and define fi(b-i) as the minimum bid bi for which bidder i wins the good
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when the vector of bids is b. Consider a bid vector b and let ti = fi (b_i). We consider

the three cases ti < bi, t = bi, and ti > bi.

First suppose ti > bi. Then, by individual rationality, A does not allocate the

good to i.

Next, if ti = bi and A does not allocate i the good then the payment is zero by

individual rationality. If A allocates the good to i, then the price p is at most ti by

individual rationality. Suppose p < ti. Then when the true value of i is in the interval

(p, ti), he has an incentive to report ti, contradicting truthfulness. Therefore, p = ti.

Finally suppose ti < bi. Then we claim A must allocate the good to i at price ti.

If not, suppose p is the price at which A sells the good to i (p = oo if i is not allocated

the good). If p > ti, then i has an incentive to report ti when his true value is bi in

order to receive the good at a lower price p' where p' < ti by individual rationality.

Similarly, if p < ti, then i has an incentive to report bi when his true value is ti (the

above argument proved that when i bids ti he is either allocated the good at price ti

or not allocated the good).

Thus, A is equivalent to the bid-independent auction defined by f in which the

allocation when ti = bi is defined by calling A. O

As an example, consider the sealed-bid second-price auction for a single good. As

described in Chapter 1, this auction allocates the good to the highest bidder and

charges him a price equal to the second-highest bid. A simple thought experiment

shows that this auction is truthful when the utility of an agent is his value for his

allocation minus his price. Consider a bidder who submits his true value as his bid

and suppose he is the highest bidder. Raising his bid has no effect on his price and

allocation. On the other hand, by decreasing his bid, he runs the risk of undercutting

the second highest bidder and losing the good even though the price was favorable

to him. Similarly, if he is not the highest bidder, lowering his bid has no effect on

his allocation. By increasing his bid, he runs the risk of overshooting the highest

bidder at a price unfavorable to him. Indeed, the auction is truthful, as can be seen

by defining the bid-independent functions fi(b-i) = maxj~i{bj} for all i.
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2.2 Limited Demand

In many multi-unit markets, buyers have utility for at most a fixed number of units

of a good. An important special case is when buyers have unit demand for the good,

and this is the focus of the competitive auction literature. 2 In a sequence of papers,

Goldberg et al. [37, 46, 48, 50] and Hartline and McGrew [54], gave truthful random-

ized auctions for the single-unit demand case that achieve a constant fraction of the

optimal single price revenue with high probability. Our goal is to design a truthful

auction that guarantees a constant fraction of the optimal revenue and is determin-

istic. Unfortunately, Goldberg, Hartline, and Wright [50] prove that randomization

is necessary in order for truthful symmetric auctions, or ones whose outcome is not

a function of the order of the input bids, to achieve a revenue comparable to the

optimal revenue.

It was conjectured that this impossibility result holds for truthful asymmetric auc-

tions as well. An asymmetric auction considers the order of bids in the allocation and

pricing algorithms and can therefore produce outcomes which, for example, offer the

i'th bidder a price equal to the average of the first (i - 1) bids. We assume bidders

can not affect their position in the ordering. In this section, we show that truthful

deterministic asymmetric auctions can generate revenue which is a constant fraction

of optimal, thus disproving the conjectured impossibility. In fact, we show that any

truthful randomized auction has a truthful deterministic counterpart with approxi-

mately the same revenue guarantees, and so asymmetry is, in some sense, as powerful

as randomization. Specifically, for any truthful randomized auction with expected rev-

enue R, we construct a truthful deterministic auction with revenue R/4 - 2h where h

is the highest bid in the instance. Combined with the best known truthful randomized

auctions, this implies the existence of a truthful deterministic auction with revenue

at least OPT/13 - 2h where OPT is the optimal single price revenue. The main con-

tribution here is a derandomization technique that preserves truthfulness (standard

algorithmic derandomization techniques do not have this property). Unfortunately,

2However, most results can be generalized to larger demands so long as they are publicly known
and the marginal return is constant.
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our reduction is exponential. Therefore, we also give a specific polynomial-time truth-

ful deterministic auction whose revenue is always at least OPT/4 - h.

2.2.1 Setting

We focus on the single-unit demand case where buyers have utility for at most one

unit of the good. In this case, the utility function of a bidder can be specified by a

single parameter u (his value for one unit): the utility for allocation x is then ux - p

where p is the price charged to the bidder and x is an indicator variable for the event

that the bidder was allocated a unit.

Furthermore, we assume that the auctioneer has access to an unlimited supply of

the good. This assumption is merely for ease of exposition. In fact, any algorithm

for the unlimited supply case can be easily extended to a situation in which just k

units are available by restricting allocations to the k highest bidders and increasing

the minimum price to the (k +- 1)'st highest bid.

Clearly, our results depend on the definition of the optimal revenue. With no

restrictions, an omniscient auctioneer can extract a revenue equal to the sum of the

bidders' values =l ui. However, one can not hope to compete with this truthfully,

and so the following definition, which essentially restricts the omniscient auctioneer

by forcing him to offer a single price to every bidder, proves to be a more useful

measure of comparison [50].3

Definition 2 Given the values u = (ul,..., u,) of the agents, assume Ul _ ... > un

and let k be the index at which kuk is maximized. Then uk is the optimum price and

kuk is the optimum revenue, denoted OPT(u), or simply OPT when u is clear from

the context.

Unfortunately, this goal is impossible to approach with a truthful auction. The

problem is that one bidder may dominate the market with a very high value. In

this case, the optimal revenue extracts all its profit from this single bidder while an

3In fact, the two measures are also within a factor of log h of one another where h = maxi ui is
the highest bid in the input.
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auction can not extract even a fraction of this profit bid-independently. By Theo-

rem 2.1.1, bid-independent computations are required for truthfulness, and so this

line of reasoning implies that the revenue of any truthful auction can not compete

with the optimal revenue. Instead, we allow ourselves to lose a constant fraction of

the highest bid h in our revenue approximation: we look for auctions that obtain a

profit of at least OPT/3 - yh for small constants d and y. We refer to d as the

approximation ratio and yh as the additive loss.

Definition 3 We say an auction is (, y)-approximately optimal if its expected profit

on any input, b E [1, h]n, is at least OPT(b)/P - yh for fixed constants P and y.

We can equivalently formulate any approximately optimal result as a multiplica-

tive approximation in which the approximation factor is a function of the market dom-

inance parameter. Intuitively, the market dominance parameter bounds the amount

a single bidder contributes to the optimal revenue. In the single-unit demand case,

we define the market dominance parameter as the ratio of the maximum bid h to the

optimal single price revenue OPT. If we are promised that the market dominance

parameter is at most , then a (, -y)-approximately optimal auction has revenue at

least (/3 - ey)OPT. While in this section we state our results according in the form

of Definition 3, in Section 2.3, we will find it more convenient to prove bounds which

are a function of the market dominance parameter.

2.2.2 A Hat Puzzle

As indicated by the impossibility result of Goldberg, Hartline, and Wright [50], our

auctions will need to compute the allocation and prices asymmetrically and, in order to

be truthful, bid-independently. Still, we want the sum of the sale prices to approximate

a global optimum, namely the optimal revenue. This raises the question of how a

group of people may use asymmetry to coordinate convergence on a global objective

when they have access to only partial information.

We study the problem of asymmetric coordination through a hat puzzle. In a

hat puzzle, n players enter a room wearing hats. Each hat has one of k colors. No
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one can see his own hat or communicate with the other players, but each player

can observe the colors of other players' hats. The objective varies depending on the

version of the puzzle, but typically requires some players to guess the colors of their

hats correctly. In the version of the puzzle we study here, the everywhere-balanced

k-color hat puzzle (or balanced k-hats for short), the objective is for at least a 1/k

fraction (rounded down) of the players wearing each color to correctly guess their hat

color. For example, if Adam and Eve are wearing red hats, and Cain, Abel, and Seth

are wearing blue hats, they would win if Adam or Eve guesses red and one of the

remaining three guesses blue.

Hat puzzles of various forms have been contemplated in the mathematics commu-

nity, partially due to their connections to coding theory, discrepancy problems, and

autoreducibility of random sequences, and often simply because they make interesting

brain-teasers [27, 32, 93, 117]. In this chapter, we exhibit a connection between hat

puzzles and truthful mechanism design. We draw an analogy between agents' bids

and players' hat colors, and then use solutions to the hat puzzle to compute an offer-

ing price for each agent by setting his price equal to the corresponding player's guess.

As a player must guess his hat color without observing his own hat, the mechanism

we design will be bid-independent and hence truthful.

Balanced k-hats is easy to solve in expectation if the players have access to ran-

domization. Each player simply guesses each of the colors with equal probability 1/k.

We call this set of strategies the randomized hat guessing algorithm. In order to use

a hats solution in our auction derandomization technique, we need to find a deter-

ministic hat guessing algorithm. Notice that standard algorithmic derandomization

techniques such as trying all possible coin flips and selecting the best, can not be im-

plemented within the rules of the puzzle. Instead, we give a flow-based technique that

uses the ordering (or names) of the players in place of randomness to solve the puzzle

deterministically. It is instructive to view this technique as a derandomization of the

simple randomized hat guessing algorithm proposed above. Feige [32] independently

derived a similar flow-based construction.

First we define a bipartite graph representing the game (see Figure 2.2.2). The
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Figure 2-1: Hat puzzle graph

nodes are defined as follows. Each node on the left-hand side represents a possible

viewpoint of player i. Let c = (cl, . . , Cn) represent the array of colors and for

any index i, c-i represent the array of colors with the i'th color hidden. That is,

C-i = (C,... , ci-1, ?, ci+l, ... , cn) (by this definition c-i g4 c_j for i h j). Note that

c-i is precisely the view of player i. For each of the nk n - l possible values of c_i, we

have a vertex v,_i on the left-hand side. Each node on the right-hand side represents

a possible scenario (a hat color for each player) and a corresponding guess of some

player. Let X be one of the k colors. Then a scenario and corresponding guess is a

pair (X, c) (note this pair does not specify which player guesses X). For each of the

kn+l possible values of the pair (X, c), we have a vertex vx,c on the right-hand side.

We also include a source vertex s and sink vertex t. The arc set is defined as follows.

We place an arc from the source s to each vertex on the left-hand side, and another

arc from each vertex on the right-hand side to t. We also add an arc between v¢_i

and vc,c signifying that we get c when we reveal that at position i in c-i is a hat

with color ci. Notice that the in-degree due to such arcs of a vertex vx,C is precisely

the number nx(c) of hats of color X in c. The out-degree of a vertex vc_i is exactly

k, one for each possible color of the hat at position i. The structure of the graph is

sketched in Figure 2.2.2 (all arcs are directed from left to right in this figure).
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Next, we set upper and lower capacities on the arcs as follows. For each X and c,

we lower bound the flow of the arc (vx,, t) to Lnx(c)/kJ (recall nx(c) represents the

number of hats in c that are colored X). This represents the objective that at least

n,(c) players should guess X in scenario X For every other arc, we upper bound its

flow by 1. This represents the requirement that each player can submit at most one

guess.

We can interpret the randomized hat-guessing algorithm as a feasible flow on this

graph. Between s and each vc_i place a flow of 1. This corresponds to the randomized

algorithm, upon seeing ci, having a total probability of 1 to spend on guessing a

color for the i'th player's hat. On each of the outgoing arcs from vc_i we place a

flow of 1/k corresponding to the probability with which the randomized algorithm

picks each color (this is possible since each v,_i has k outgoing arcs). Now notice that

the incoming flow to v,C is precisely 1/k times the number nx(c) of hats in c from

color class X. Thus by sending all of this flow on the outgoing arc to t, we satisfy all

capacities. The flow is sketched in Figure 2.2.2 (the labels on the arcs represent the

amount of flow on that arc).

Similarly, we can interpret an integral flow in the this graph as a deterministic

hat-guessing algorithm: each player observes a vector c-i of hat colors and identifies

the corresponding node vc_i of the graph. If the integral flow sends flow from this

node to vx,,, then the player guesses X as his hat color (if the integral flow does not

send flow through this node, then we let the player make a default guess). We now

analyze the performance of such an algorithm on c. Given nx(c) hats with color X

in c, the lower bound on the capacity of the outgoing arc from vx,¢ to t is Lnx(c)/kJ.

Therefore, it must be that Lnx(c)/kJ of the nx(c) incoming arcs have one unit of

flow on them. For each such arc (vC_i, vx,C), player i correctly guesses X in the game

setting c. Thus, players guess the correct color X for nx(c)/kJ positions out of a

total of nx(c) such positions. This holds true for all colors X, and so the players have

solved the puzzle.

A classic result on integrality of network flows (see, for example, Hoffman's circula-

tion theorem in the book by Schrijver [104, Theorem 11.2]) states that in a graph with
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integral capacities, if there is a feasible fractional flow, then there is a feasible integral

flow. Therefore, the existence of the randomized hat-guessing algorithm implies the

existence of a deterministic one. Unfortunately, it takes exponential time to construct

an integral flow from a fractional one, and so our reduction is not polynomial-time

constructive.

2.2.3 Auction Derandomization

By analogy to the hat-guessing technique of Section 2.2.2, we can show that any

randomized auction has a deterministic counterpart that achieves approximately the

same profit.

Theorem 2.2.1 Corresponding to any single-round sealed-bid truthful auction A

with expected profit E[A(b)] on input bid vector b, there is a deterministic truthful

auction A' whose expected profit on any input bid vector b is at least E[A(b)] /4- 2h,

where h = maxi bi is the highest bid.

The proof of Theorem 2.2.1 reduces any (randomized) auction to a special type of (ran-

domized) auction that we define, called a guessing auction, and then uses a flow-based

construction similar to that in Section 2.2.2 to derandomize the guessing auction. The

proof follows directly from Lemmas 2.2.1 and 2.2.2. Our proof

Guessing Auctions

The flow-based construction for balanced k-hats in Section 2.2.2 tries to reconstruct

ci from the vector c_i. In order to use this construction in the auction setting, we

would like to draw an analogy between a player's hat color and an agent's bid, and

between a player's guess for his hat color and an agent's price. However, an auction

gets revenue not only when it charges a price equal to the bid value, but also when

it charges a price below a bid value. In order to resolve this discrepancy, we define

the notion of a guessing auction that uses only powers of two as prices and receives

profit from a bidder only when it offers him a price equal to his bid rounded down to

the nearest power of two (note that to preserve truthfulness a guessing auction may

33



charge a bidder another price; however, the revenue generated from such bidders is

not counted towards the profit of the guessing auction).

Guessing Auction gA:

Given an auction A, simulate A on input bid vector b. Suppose A offers

bidder i price qi and let 2k be the largest power of two less than qi. Then

for integer j > 0, offer bidder i price Pi equal to 2
k +j with probability

2-j-1.

Definition 4 The profit of a guessing auction is the sum of those offering prices pi

for which logpi = [log bi.

It is possible to convert any truthful auction into a truthful guessing auction while

only losing a factor of four from the profit. Denote the profit of a truthful auction

A on input b as A(b). This profit is given by the sum of the prices charged to

the winning bidders. For a randomized bid-independent auction A(b) is a random

variable. The profit of a guessing auction is as defined above.

Lemma 2.2.1 For any truthful auction A with expected profit E[A(b)] on input bid

vector b, there is a corresponding truthful guessing auction 9 A whose expected profit

on any input bid vector b is at least E[A(b)] /4.

Proof. Given a bid-independent auction A, A is bid-independent as well and

therefore truthful by Theorem 2.1.1. We now bound the expected profit (in the sense

of Definition 4) of 5A. Consider a bidder i who was offered price qi < bi by A. Thus

the profit of A from i is qi and the profit from all other bidders is zero. Thus, it

is enough to show that the profit (in the sense of Definition 4) of 5A from i is at

least qi/4. Let k be such that 2 k qi < 2k+l . Suppose bidder i's bid bi is in the

interval [2k+j, 2k+j+l). Then the probability that 5A offers i price 2k+j is 2- j-1, and

the profit from this offer is 2 k+j . Thus, the expected profit extracted from bidder i is

2 j- 1
2 k+j = 2 k- 1 . As qi < 2k+1 by assumption, the profit extracted from i is at least

a quarter of his price qi in A. This completes the proof. L
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We note that if auction A only uses prices that are powers of two, then the profit

of the corresponding guessing auction A is actually within a factor of two of the

profit of A instead of a factor of four.

The Flow Construction

We now show how to derandomize any guessing auction GA. Our derandomization

draws an analogy between bids and hat colors to deterministically compute prices for

the guessing auction using the technique of Section 2.2.2.

Lemma 2.2.2 Corresponding to any truthful guessing auction GA with expected profit

E[G~a(b)] on bid vector b, there is a truthful deterministic auction whose profit on any

input bid vector b is at least E[gA(b)] - 2h, where h is the highest bid value in b.

Proof. First, round all bid values down to the nearest power of two. We draw

an analogy between the k colors in the balanced k-hats puzzle and the log h powers

of two that are the possible (rounded) values of bids. Set up a flow construction

identical to that for the balanced k-hats puzzle, except that the fractional flow on an

arc from vb_ to V2j,b is the probability that 9A on seeing bi guesses 2j . Furthermore,

the flow from v2j,b to t is the expected number of times gA offers one of the bidders

with (rounded) bid 2 a price equal to 2j . We represent this quantity by Ej(b). We

then set the capacities as before: we require flow on an arc between v2j,b and t to

be at least Ej(b)J and all other arc flows to be at most 1. Once again, the above

fractional flow implies the existence of an integer-valued flow [104, Theorem 11.2],

and this integer-valued flow corresponds to an auction making a deterministic bid-

independent offer upon seeing bi. The flow out of v2j,b is precisely the number of

indices i such that the auction, upon seeing b_i, correctly guesses 2; since the flow

is feasible, the flow out of v2j,b is at least Ej(b)J. Thus, considering a bid vector b

where the expected profit of gA is E [gA] = o__gh 2 Ej(b), the deterministic auction

obtains Cjogh 2j LEj(b)j >Elogh [2jEj(b) - 2] > E[gA] - 2h. L

As a corollary of Theorem 2.2.1, known approximately-optimal randomized auc-

tions [37, 46, 50, 54] imply the existence of approximately-optimal deterministic auc-
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tions. Using a the best known randomized auction from Hartline and McGrew [54],

we obtain the following result.

Theorem 2.2.2 There is a deterministic auction whose revenue is at least OPT/13-

2h in the worst case.

Proof. The theorem follows from Theorem 2.2.1 and the Hartline-McGrew auction

whose competitive ratio is 3.25. El

In this construction, we assumed that the range of bid values [1, h] is known. This

assumption is not necessary. When considering bi, we can compute h, which is the

maximum bid value scaled such that the minimum bid value is 1 on the new scale,

correctly for all but the minimum and maximum bid value. Assuming the worst, that

is the auction fails to get any profit from the highest and lowest bid, we only lose an

additional additive h + 1.

2.2.4 A Polynomial-time Deterministic Auction

Unfortunately, the flow construction used to derandomize auctions in Section 2.2.3

had exponential size. Therefore the derandomized auctions of Section 2.2.3 are not

efficiently computable. In this section, we describe a competitive deterministic asym-

metric auction, the outcome of which can be computed in polynomial time. In par-

ticular, our deterministic auction guarantees a revenue which is at least OPT/4 - h

where OPT the optimal single price revenue and h is the highest bid.

There are three key ingredients in this auction: (a) a method, called a profit

extractor, for extracting a given feasible target revenue truthfully; (b) a method,

called a consensus estimator, for each bidder to bid-independently compute the same

feasible target revenue; and (c) a deterministic coin-flipping algorithm. To see how

these pieces fit together, first suppose we knew the optimal revenue R. Could we then

design an auction to truthfully recover revenue R? The goal of the profit extractor is

to do just that: given bids b, a profit extractor truthfully extracts a target revenue R

from some subset of the bidders. Although this mechanism is truthful and extracts
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the optimal revenue deterministically, it requires the optimal revenue as an input. We

can not hope to compute the optimal revenue bid-independently; rather we compute

n bid-independent estimates of the optimal revenue, one for each bidder. If these

estimates are coordinated appropriately (namely, if sufficiently many bidders compute

the same estimate), then we can use these estimates as inputs to our profit extractor

and generate sufficient revenue.

The profit extractor and consensus estimator were used previously by Goldberg

and Hartline [46] along with a single random coin flip to get an approximately optimal

randomized auction. Even though their consensus estimator uses just one bit of

randomness, it is difficult to derandomize using standard techniques from randomized

algorithms as they tend not to be bid-independent. For example, one might consider

derandomizing the auction of Goldberg and Hartline [46] by running it twice - once

with "heads" and once with "tails" - and outputting the higher-revenue solution.

However, this clearly can not be represented bid-independently and therefore is not

truthful. Instead, as the final ingredient of our construction, we design a deterministic

coin flip which can be computed bid-independently and use this to derandomize the

auction of Goldberg and Hartline [46].

Profit Extractor

The profit extractor we present here is a special case of a general cost-sharing scheme

due to Moulin [85] (see Chapter 4).

Mechanism ProfitExtractR:

Given bids b, find the largest k such that the highest k bidders can equally

share the cost R (that is, each of their bids is at least R/k). These bidders

are the winners and the rest are losers. Charge each of the winners R/k

and the losers 0. If no such k exists, then all bidders are losers and are

charged price 0.

As we will base our deterministic auction on this mechanism, it is important to note
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that it is truthful and actually extracts revenue R.

Lemma 2.2.3 ProfitExtractR is truthful.

Proof. We define a bid-independent implementation of ProfitExtractR. Let the bid-

independent function pei,R(b_i) equal Ry where is the largest number such that the

highest 1 bidders in bi all have a bid at least R If no such 1 exists, let peR(b_) be1+1 R(b-i ) be

oo, a number larger than any bid. Let k be the number of winners in ProfitExtractR.

Then, by definition, each of these k winners has a bid at least while each of the

losers in ProfitExtractR has bid strictly less than R . Thus, for a winner i, pe(b_i)

equals , i's price in ProfitExtractR. For a loser j, peiR(b_j) equals i, implying

that j is a loser in the bid-independent implementation as well. a

Lemma 2.2.4 If R < OPT(b), ProfitExtractR(b) = R; otherwise it has no winners

and no revenue.

Proof. The proof is immediate from the definition of the mechanism and the optimal

price OPT. D

Consensus Estimator

The goal of the consensus estimator is to compute an estimate of the optimal rev-

enue for each bidder bid-independently. A pair of consensus estimators is a pair of

functions, ro and rl, having the following properties:

1. For any real number V, there exists an r E {ro, rl} such that for all v E [V/2, V],

r(v) = r(V). This r is called a consensus on V.

2. For any real number V and r E {ro, rl} that is a consensus on V, r(V) E

[V/2, V]. In this case, r is said to estimate V.
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It is easy to see that the following functions form such a pair of consensus estima-

tors [46].

'ro(v) = 2v rounded down to the nearest even power of two.

r,1 (v) = 2v rounded down to the nearest odd power of two.

We will apply these consensus estimators to the value OPT(b_i) in order to obtain a

consensus on an approximate value for OPT(b).

Deterministic Coin-Flipping Algorithm

Our deterministic coin-flipping algorithm is best described via an analogy to another

hat puzzle. This time, each of the hats is colored a distinct shade of red.4 We would

like each of the players to simulate a coin flip with the collective property that, for

any particular shade of red, at least half the players with darker hats choose heads

and at least half choose tails (rounding down). We call such an algorithm balanced.

Clearly, the randomized algorithm that instructs every player to simply flip a

coin is balanced in expectation. The algorithm we are about to present achieves

this property deterministically. In fact, our solution satisfies the following stronger

property: lining the players up from darkest hat to lightest hat, the sequence of coin

choices alternates. We call such a set of choices perfectly alternating. Our algorithm

is based on the notion of the sign of a permutation.

Definition 5 Given a vector of n hat shades, c, the sign of c (shorthand for "the

sign of the permutation of the ordering of hats") is the parity of the number of trans-

positions of adjacent hats it takes to sort c, notated sign(c).5

The deterministic coin flip algorithm, works as follows. Each player has an

identity i - this defines the fixed ordering used to compute the coin flips. Given c-i

as the shades of the hats that player i sees, player i computes his coin, (c_i), by

4If hats are not distinct shades, then we can break ties according to the identities of the players.
5 While the number of transpositions performed in sorting c is not unique, the parity of the

number of transpositions is. See, for example, [58]
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imagining that his own hat is the darkest shade, denoted oo. As his coin flip, he

chooses the sign of his imagined vector of hat colors, denoted (ci, oo), whose i'th

entry is oo and j'th entry for j 5~ i is cj. To prove that this algorithm is balanced,

we will use the notion of the rank of a player.

Definition 6 Given a vector of n hat shades, c, the rank of i, denoted rank(c, i), is

the number hats in c that are darker than ci.

Lemma 2.2.5 The deterministic coin flip algorithm, , is perfectly alternating with

the shades of the hats' colors.

Proof. This result is implied by the fact that

Ob(c_i) sign(c) + rank(c, i) (mod 2),

which is evident because one way to sort (ci, oo) would be to first sort c and then

replace hat i with oc which would require rank(c, i) additional transpositions to move

oo to the front of the vector. As the parity of the ranks alternate, this implies the

lemma. [

In this solution to the deterministic coin-flipping problem, each player can compute

his own coin by simply executing ; however, no player can compute the coin of anyone

else as he does not know his own hat shade. Clearly, each player can compute his

coin in O(n log n) time; furthermore, as is evident from the above proof, the coins of

all the players can be computed in O(n log n) time.

Remark 2.2.1 Note that we can reduce the balanced k-hats puzzle introduced in Sec-

tion 2.2.2 for k = 2 to the problem of deterministic coin flipping as follows. Run

the algorithm with the two colors - light red and dark red. Interpret a heads coin as

"light red" and a tails coin as "dark red". The resulting algorithm, modulo rounding,

guesses half of the light red hats and half of the dark red hats correctly.
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Deterministic Auction

Finally, we have developed the tools necessary to describe our efficient auction, the

deterministic consensus revenue estimate (DCORE) auction. This auction is built

from the three components discussed above - the profit extractor, the pair of consen-

sus estimators, and the deterministic coin flipping algorithm. The auction uses the

deterministic coin flipping algorithm to pick a consensus estimator and correspond-

ing estimate Ri for each bidder i. It then offers bidder i a price equal to the price

computed for i by the profit extractor on input Ri.

Definition 7 DCORE is the bid-independent auction implemented by the following

functions, fi.

f(b_i) = pei,R,(b_i),

where R = r(b_i)(OPT(b_)) and pej,R is the bid-independent function for the mech-

anism ProfitExtractR defined in the proof of Lemma 2.2.3.

DCORE is bid-independent and therefore truthful. We now show that DCORE is

approximately optimal. Our proof is similar to the proof of the revenue of the CORE

auction in Goldberg and Hartline [46].

Theorem 2.2.3 The profit of DCORE is at least OPT/4 - h.

Proof. If the optimal single price sale has exactly one winner, then the optimal

revenue is h and approximating it within an additive h is trivial. Otherwise, let

OPT = OPT(b) be the revenue from the optimal single price sale. Then, for every

i, we have OPT/2 < OPT(b_i) < OPT. Since r and ro are a pair of consensus

estimates, one of them is a consensus on OPT. Suppose, without loss of generality,

that it is ro. Then ro(OPT(b_i)) = ro(OPT) for all i. Now consider the following

thought experiment. Suppose we had chosen consensus function ro for all i and so

Ri = ro(OPT) [OPT/2, OPT] for all i. In this case, our auction is equivalent to

the profit extraction mechanism on input ro(OPT). Let p be the price charged to

the k winning bidders in this thought experiment. Note, as ro(OPT) < OPT, the

41



total profit, pk, must be ro(OPT) E [OPT/2, OPT] by Lemma 2.2.4. In reality, in the

deterministic coin-flipping procedure, at least k/2 - 1 of these k bidders computed

(b_i) = 0 and thus these bidders all pay p, exactly as they would have in the thought

experiment. The total profit accounted for is pk/2 - p > OPT/4 - h, which proves

the theorem. °

2.3 Budget Constraints

In Section 2.2, we considered buyers who have limited demand. Here, we consider

buyers with budget constraints. Budget constraints are a central feature of many real

auctions. In the context of e-commerce, there is a great deal of interest in multi-

unit auctions of relatively low-value goods, such as the auction of Internet ads for

search terms and content pages on MSN, Google, Yahoo, etc., to bidders with budget

constraints.

The theoretical framework of budget-constrained auctions is currently substan-

tially less well-developed than that of unconstrained auctions - which is unsatisfactory

both from a theoretical viewpoint, and from a practical viewpoint, where the absence

of an appropriate framework leads to losses in revenue and efficiency. It is therefore of

tremendous interest to design truthful mechanisms for budget-constrained auctions.

Existing mechanisms for the budget-constrained case typically assume a distribution

on the budgets and values of bidders and use these assumptions to compute high

revenue auctions [11, 17, 18, 30, 31, 76, 79, 120]. In this section, we instead follow the

framework of Goldberg, Hartline, and Wright [50] outlined in Section 2.2 to design

a (randomized) auction with high revenue in the worst case. It is unknown whether

the results of the last section can be modified to derandomize this auction. We also

partially characterize the conditions under which deterministic truthful auctions exist.

2.3.1 Setting

Although the setting in this section is quite similar to that of Section 2.2, it differs

in several significant respects. First, whereas in the last section solutions to the
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unlimited supply case implied solutions to the limited supply case, in this setting,

maximizing revenue with unlimited supply is trivial: simply offer each unit for a very

small fixed price and every buyer will exhaust his budget. Thus, we consider the

limited supply case.

Second, whereas in the last section each agent submitted a single parameter to the

mechanism, namely his value, now our mechanism must now solicit a two-parameter

bid from each agent. The first parameter is interpreted as that agent's announced

value per unit and the second parameter is that agent's announced budget. In order

for our mechanism to be truthful, it must be the case that the agent's utility is

maximized by reporting both parameters truthfully.

Finally, our utility function is no longer quasi-linear. Instead, each agent i has

a private value ui E R+ U {0} per unit of the good and a private budget constraint

bi E 1R+ U {O}. The budget constraint is a hard constraint, that is the agent cannot

spend more than his budget under any circumstances. In other words, the total utility

ui(j, p) that agent i derives from an allocation of j units at a total price of p is:

ui if p bi,
Ui(j,p) = j - p

U( -0 if p bi.

The value -oo in the above definition means that this agent prefers receiving nothing

and paying nothing than participating in any lottery with a non-zero risk of going

over the budget.

This final distinction summarizes the most significant departure of this setting

from the one in Section 2.2. Many of the results in the auction theory literature are

not applicable when utility functions fail to be quasi-linear. In particular, the classical

Vickrey-Clarke-Groves (VCG) mechanisms [115, 19, 52], which in the limited demand

case yielded truthful mechanisms but with low revenue, are no longer even truthful.

This fact is illustrated in the following example.

Example 2.3.1 One plausible mechanism for auctioning m units of a good to budget-
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constrained buyers is to apply the VCG mechanism assuming that the value of agent

i for j units of the good is min(bi, jui). A common mistake is to assume that since

this mechanism is based on VCG, it is truthful. The following example shows that

this is not the case: assume we have two units of the good to sell to two agents, and

the truthful bids of these agents are given by (ul, b) = (10, 10) and (u2, b2) = (1, 10).

The above mechanism assumes that the value of the first agent for either one or two

units of the good is 10, and therefore allocates one unit to each agent to maximize the

total value (which is 10 + 1). The payment charged to the agents by this mechanism

is 1 and 0, respectively. Therefore, the utility of the first agent is 9. However, if the

first agent announces the bid (5, 10), then the mechanism will allocate both units to

this agent at a total price of 2. Thus, the first agent would achieve a utility of 18 by

bidding untruthfully. This example shows that the above VCG-based mechanism is

not truthful even if the agents are not allowed to lie about their budget.

In fact, it is easy to observe that in this setting, no truthful mechanism can always

produce an efficient allocation, that is an allocation that maximizes the social welfare,

even when there is only one unit. The reason for this is that an efficient mechanism

should always allocate the good to the bidder with the highest ui, even if such a bidder

has a zero budget and therefore cannot be charged any positive amount. Therefore,

any agent can bid a high value and zero budget to get the good for free. This

simple impossibility result shows that we cannot require efficiency from a truthful

mechanism. In contrast, in the limited demand case, the classic VCG mechanism

calculates an efficient allocation truthfully.

Despite the significant differences between this setting and the one in Section 2.2,

we are still able to employ a framework similar to that of Goldberg, Hartline, and

Wright [50] to design a revenue-maximizing auction. As in the last section, we com-

pare our revenue to the revenue of the optimal single price sale. For any price p, we

denote by r(p, k) the revenue of allocating at most k units at price p.

Definition 8 Suppose there are m units of the good for sale. Given the values and

budgets of the agents, let p* be the price at which r(p, m) is maximized. Then p* is
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the optimum price and r(p*, m) is the optimum revenue, denoted OPT.

As before, a particular bidder may dominate the market, making it impossible to

design a truthful auction which always receives a constant fraction of the optimum

revenue. However, now a bidder dominates the market by having a high budget as

opposed to a high value. Thus, the market dominance parameter is now defined as

the ratio of the maximum budget of all agents, bmax, to the optimum revenue OPT.

The mechanism we design has the property that its revenue approaches that of

the optimum single-price auction as the market dominance parameter tends to 0. In

particular, we will prove that for all 0 < < 1, the revenue of our mechanism is at

least a (1 - 6) fraction of the optimum posted-price revenue with probability at least

1 - O(e-C52/E) where c is some constant and e is the market dominance parameter.

2.3.2 An asymptotically optimal auction

Our mechanism is quite natural: similar to the random sampling optimal threshold

auction of [49, 50], we divide bidders into two random subsets, compute the optimal

price for each subset, and offer that price to the other subset. In order to guarantee

that our auction doesn't oversell the good, we sell at most half the available units

to each subset, greedily allocating units to interested agents arranged in an arbitrary

order.

Note, although our units are indivisible, we can assume that fractional allocations

are possible by using the proper randomization: whenever the algorithm asks us to

allocate a fraction c of a unit to an agent, we instead charge the agent c times the

offering price for participation in a lottery that offers him a full unit with probability c.

Thus an agent's payment is deterministic and less than his budget, and his expected

utility is constant. Only his allocation is randomized. For the remainder of this

section, we assume without loss of generality that our units are divisible.

Let n be the number of agents and m be the number of available units of a good.

Each agent i submits his value ui per unit of the good and his maximum budget bi.
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Mechanism

* Partition the agents randomly into two sets A and B by independently putting

each agent into either set uniformly at random with probability .

* From the set of values ui of agents i E A, choose PA to be the price which

maximizes the revenue of selling at most m/2 units in A. In other words, if the

ui's are sorted in decreasing order so that ul >_ u2 > ... un, then

io = min i: bj u 2

define PA = ui_- 1. Compute PB analogously.

* Consider the agents in A in an arbitrary order and allocate at most 2 units

to them as follows. In every step, if the per-unit value of agent i satisfies

Ui PB, allocate i units to i, or all remaining units if less than bi units
PB PB

remain. Charge i a price of PB per unit. Apply the same procedure to the set

B using the threshold value PA

First, we give a simple proof of the truthfulness of the mechanism.

Lemma 2.3.1 The above mechanism is truthful, that is for every agent it is a dom-

inant strategy to report the correct value and budget.

Proof. Consider an agent i in A. First we argue that agent i does not have any

incentive to misreport his value. We know that agent i receives a unit only if ui > PB,

and that he pays PB for a unit if he receives it. The two key observations are that

(1) the threshold PB is determined independently of all uj and bj, j E A, including

j = i; and (2) when the supply of units in A is inadequate to meet the demands of

all agents in A whose values exceed PB, then the allocation of units to those agents

is done in an arbitrary order, again independently of all uj and bj.

Finally, by reporting a budget below bi, agent i would potentially decrease his

allocation and hence his total utility. By reporting a budget above bi, if he was
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previously saturating his budget, then his allocation might increase causing him to

be charged more than his budget and decreasing his total utility to negative infinity.

Otherwise, if he was not previously saturating his budget, his allocation will not

change. In either case, he has no incentive to misreport. O]

The truthfulness of this mechanism is straightforward, but providing a revenue

guarantee requires a more careful analysis. Our proof is fairly natural. We first show

that, using a price that is at least the optimum posted price and disregarding supply

limits, the revenue extracted from each random subset of bidders is approximately

equal. We will use this to claim that the revenue extracted by our mechanism from

each subset is almost half the optimum.

First, we introduce some notation. Recall that r(p, k) is the revenue received by

allocating at most k units at price p. We now extend this definition to subsets of

bidders: for any price p, we denote by rs(p, k) the revenue of allocating at most k

units to a set S of agents at price p:

rs(p, k) = min kp, E bj
jeSluj>p

Finally, we also define r(p) = r(p, oo) = ui>p bi.

In our argument, we will use the following properties of an optimum posted-price

auction for allocating at most k units, for any k.

1. There exists an agent i such that selling the units at price p = ui results in the

optimum revenue.

2. For any k, if p is the optimum price for allocating at most k units, then r(p, k) <

r(p) < r(p, k) + bmax where bma = maxi bi. In particular, OPT < r(p*) 

OPT + bmax.

Let denote the market dominance parameter (the ratio of the maximum budget

of all agents, bmax, to the optimum revenue OPT). As we will show, the probabil-

ity of success of our algorithm is asymptotically controlled by e. The next lemma
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shows that the revenue extracted from each subset at or above the optimum price is

approximately equal, disregarding supply limits, with probability approaching 1 as e

approaches zero.

Lemma 2.3.2 Let > O. Then the probability that

rA(u) -rsB(Ul) < OPT for all 1 with u p*

is at least 1 - 2e- 2/(4).

Proof. Define ai to be a random variable indicating whether agent i is in A,

with ai = 1 when i A and ci = -1 when i B. Let Si = Ejijcjbj. Then

IrA(ul) - rB(ul)l = ISI1. Thus we need to bound the probability that the random

variable Si deviates by more than 6OPT from its expectation 0.

Let T(6) = min(i: ISil > OPT}. We define the following martingale:

S= f Si if i < ()
S-() otherwise

Let k be such that uk = p*. Then we have

1- Pr (rA(ui) - rB(ui) < 6OPT, Vi < k)

= 1-Pr (Sil < 6OPT, Vi < k)

= Pr(3 i < k : IS > 6OPT)

= Pr ((6) < k)

= Pr (ISkI 6OPT)

Now since Si is a martingale, by the Azuma-Hoeffding inequality we have:

Pr(ISkI > 3OPT) < 2 exp( 5 2 P T )
2 -i<k b?

Bounding the sum Zi<k b by bmaxr(p*) < OPTr(p*) and using the inequality

r(p*) < OPT(1 + e) < 2OPT, we obtain the lemma. El
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From now on, we will say that an event happens with high probability if its

probability is at least 1 - 2e-6 2 /(4e). From the previous lemma, it is clear that the

revenue of each subset at the optimum price is almost half the optimum revenue with

high probability, disregarding supply limits. In fact, it is not hard to see that this

statement holds even observing supply limits.

Corollary 2.3.1 With high probability, we have

rA(p* 2 ) > i OPT.2 2

Proof. First note OPT = r(p*,m) = min{p*m,r(p*)}, implying mp* > OPT

and r(p*) > OPT. From Lemma 2.3.2, we have with high probability, rA(p*) >

r(p*) - 60PT > 10PT. Furthermore, 'p* > 1-0OPT by definition of OPT, so

rA(p*, m) = nin(mp*, rA(p*)) > 1260PT. O

At this point we would be done if our mechanism computed the offering price p*.

Unfortunately, we can not compute this price. Instead we compute prices PA and PB,

the optimal prices for subsets A and B, and offer these prices to the opposing set.

Thus we need to a prove statement similar to that of Lemma 2.3.2 for all offering

prices. The following corollary states that for any offering price, the revenue of one

subset is either close to the revenue of the other subset or close to half the optimum

revenue, disregarding supply limits.

Corollary 2.3.2 With high probability, we have that

'rB(Uk) > min{rA(Uk)- 6OPT, OPT} for all k.
2

Proof. By Lemma 2.3.2, we have that with high probability,

rB(uk) > rA(Uk) - 6OPT for all k with uk > p*. (2.1)

Recalling that rA(p*)+rB(p*) = r(p*) > OPT, we conclude that with high probability,
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both (2.1) and
1-6

rB(P*) > OPT2

hold simultaneously. By monotonicity, this implies the statement of the lemma.

Indeed, either uk > p* so that rB(uk) > rA(Uk) - 6OPT, or uk < p* and rB(uk) >

rB(p*) > 1O60PT, which gives the lemma. [

Finally, we have developed all the necessary machinery to prove the main theorem.

Theorem 2.3.1 The mechanism described in the previous section is truthful. Fur-

thermore, for all 0 < 6 < 1, the algorithm has revenue at least (1 - 6)OPT with

probability 1 - O(e- C6 2 /e) for some constant c and e = bma/OPT.

Proof.

Recall that PA is the price which maximizes the revenue of selling at most ' units

in A. Thus, for all p, we have rA(P, ) r(, ) < rAA, ), so in particular rA(pA, ) >

rA(p*, 2)' Combined with Corollary 2.3.1, we conclude that with high probability,

rA(pA, M) > 1O60PT, which in turn implies that

PA > 2-OPT (2.2)- 2

and
1-6

rA(PA) > OPT. (2.3)
2

Combined with Corollary 2.3.2, inequality 2.3 gives

1 - 3 6

rB(PA) > 2OPT, (2.4)
2

again with high probability. Inequalities 2.2 and 2.4 together with the definition of

rB(PA, m) imply that with high probability,

m 1-36
rB(PA,) > OPT.

2 2

Exchanging the roles of A and B, we get the same result for rA(PB, m) Since
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rB(PA, 2) + rA(pB, ) is the revenue of the algorithmthhis completes this completes the proof of

the theorem. El

2.3.3 Impossibility Result

Although the auction given in Section 2.3.2 is truthful and asymptotically revenue-

maximizing, it behaves strangely in some scenarios. First, it does not allow any

bidder to receive more than m/2 units of the good. Ideally, if a bidder bids high

enough he will be able to receive all the available units. Second, the allocation of an

individual is affected by the bids of the losing agents. If losing agents ceased to bid,

or submitted negligible bids, the allocation of other agents might change drastically.

It is not surprising that the prices change with the bids of the losing agents, but

ideally the allocation should be independent of their bids. In this section, we explore

the space of truthful mechanisms proving that, in some sense, these violations were

essential.

In particular, we prove that there is no truthful mechanism satisfying three prop-

erties defined below, even if there are only two buyers and two units of the good. This

result automatically generalizes to auctions with more buyers, by considering the situ-

ation where all but two of the buyers bid zero. Our result also extends to randomized

auctions that are strategyproof in the following stronger sense: no matter what the

outcome of the coin flips are, it is a dominant strategy for the participants to reveal

their true type. The randomized algorithm given in Section 2.3.2 is strategyproof in

this sense only if the good is assumed to be divisible.

The first property is the following. This is similar to a property with the same

name defined by Moulin [85] in the context of group-strategyproof mechanisms for

cost sharing problems.

* consumer sovereignty - For any agent i and any vector of bids (ui, b-i) for

other agents, there is a bid (ui, bi) such that if agents bid according to (u, b),

then agent i receives all units of the good.
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Intuitively, consumer sovereignty requires that each agent must be able to win all

units if he bids high enough. This precludes trivial mechanisms that for example sell

at most one unit to each bidder.

The second property, which we call the independence of irrelevant alternatives

(IIA), is a much weaker version of a property of the same name in Lavi et al. [77].

This property is defined as follows.

* independence of irrelevant alternatives (IIA) - For any agent i and a bid vector

(u, b), if i receives no units at (u, b), then the allocation when every agent bids

according to (u, b) is the same as the allocation when agent i bids (0, 0) and

others bid according to (u-i, b_i).

Intuitively, the above property states that if an agent who does not win the auction

leaves, the allocation to other agents should not change (their payment, however,

might change). As we will see in the proof of Theorem 2.3.2, in the case of two buyers

and two units, IIA is equivalent to the property that if bids of both agents are large

enough (both the value and the budget), then both units are allocated.

As we will see at the end of this section, there are truthful mechanisms not sat-

isfying the IIA. In fact, the following example shows that even with IIA, there are

mechanisms that are truthful.

Example 2.3.2 Bundling mechanism: Consider the mechanism that always bundles

the two units, that is it allocates both units to the agent i such that min(2ui, bi) >

min(2u 3_i, b3-i), and charges him min(2u 3_i, b3-i). It is easy to see that this mecha-

nism is truthful and satisfies the IIA.

However, we conjecture that the bundling mechanism is essentially the only truth-

ful mechanism satisfying the above properties. In other words, we would like to show

that there is no truthful mechanism satisfying the above properties and the following.

* non-bundling - there is a bid vector (u, b) such that the mechanism allocates

one unit of the good to each buyer.
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Unfortunately, we do not know how to prove this conjecture. However, we can

prove this statement under the following stronger condition.

* strong non-bundling - for any non-zero bid (ul, bl) of the first agent, there is a

bid (u2, b2) for the second agent such that if both agents bid according to (u, b),

the mechanism allocates one unit of the good to each buyer.

The following theorem is the main result of this section.

Theorem 2.3.2 There is no deterministic truthful auction for two buyers and two

units of a good that satisfies consumer sovereignty, IIA, and strong non-bundling.

In the proof of our impossibility result, we will use the following simple characteri-

zation of truthful auctions. Similar to Theorem 2.1.1, this characterization essentially

claims that any truthful auction determines the allocation and price for agent i by

comparing his bid to thresholds computed from the other agents' bids.

Proposition 2.3.1 For any deterministic truthful auction selling m units of a good

to n agents in the budget-constrained case, there exist mn functions pl,. . . , p: (R+ U

{0}) 2(n- 1 ) -- + U {0 U {oo} such that agent i receives j units at price pi(ui, bi)

where j maximizes jui - (ui, b-i) subject to p (u-i, bi) < bi.

Proof. For any (u_i,bi) C ( + U {0))2(n-1) and j E {1,...,m}, we define

P (ui,bi) as the minimum, over the choice of (ui, bi) such that the auction allo-

cates at least j units to i if agents bid (u, b), of the price that the auction charges

to i at these bids. For any set of bids (u, b), let j* be an index that maximizes

j*ui - (u-i, b-i) subject to p* (u_i, bi) < bi. If when agents bid (u, b), the auction

allocates j units to i at price p, then we must have ju -p > j*ui -P' (ui, bi), since

otherwise agent i would have an incentive to bid untruthfully to get j* units at price

pi (u-i, bi). The equality follows from the definition of j*. o

By considering all cases for the relationship between the pi's, the auction can be

expressed as a concise set of inequalities. This is done for the case of two units of

good and two buyers in the following corollary. We will use this corollary to prove

that truthful mechanisms satisfying certain properties do not exist.
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Corollary 2.3.3 For any deterministic truthful auction selling 2 units of a good to 2

agents, there exist threshold functions p: (1R+U{O})2 - IR+U{O}U{oo}, 1 < i,j < 2,

such that for i = 1, 2, the agent i receives

* 2 units at a total price of pi2(U3 i, b3-i) if

bi p2(u3-i, b3-i)

and

Ui > Pi2(u3_i, b3-i) - min(p(u 3_i, b3_i),p2(u 3 _i, b3 -i)/2)

(or if the latter inequality holds with equality, the mechanism can choose to

allocate 2 units to i);

* else unit at price p (u3_i, b3-i ) if

bi > p (U3-i, b3-i)

and

ui > pi (U3-i, b3-i)

(or if the latter inequality holds with equality, the mechanism can choose to

allocate 1 units to i);

* else 0 units.

Conversely, for any set of threshold function p : (R+ U {0})2 -- U {O} U {oo}, 1 <

i, j < 2, the mechanism defined above satisfies incentive compatibility and individual

rationality.

Proof. We prove the statement for i = 1 (i = 2 is analogous). Consider the

threshold functions given by Proposition 2.3.1. Fix any bid (u2, b2) of the second

agent. Suppose the true value and budget of the first agent is ul and bl, respectively.

For simplicity, we use the notation p1 := pl(u 2, b2) and p~ := p1(u2, b2). Notice that by

the definition of pl and p~ in the proof of Proposition 2.3.1, p1 < p2l. The first agent's
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utility for an allocation of 0 units is 0, 1 unit is ul -pi assuming b1_ p, and 2 units

is 2ul - p2 assuming bl > p2. The first agent receives two units if and only if he has

enough budget to pay for it (that is, b > p2), and his utility for receiving two units

(2u _ p2 ) is greater than or equal to his utility for receiving one unit (ul - pI) and

zero units (zero). This can be written as ul > p2 -p1 and u1 > p2/2, or equivalently,

U1 > p2 - mnin(p1,p2/2). Otherwise, if the first agent does not receive two units,

then he receives one unit if and only if he has the budget (that is, b pt), and his

utility for one unit (ul -pi) is greater than or equal to his utility for zero units, or

equivalently, ul > pl. If these conditions do not hold, then the agent receives zero

units. The converse follows easily from the definition of the mechanism. [

The proof of the impossibility result is based on examining functional relations

imposed by our assumptions on the threshold functions of any truthful auction. We

obtain the result by showing that this set of functional relations has no solution.

Proof of Theorem 2.3.2. The fact that our auction observes supply limits implies

that whenever the threshold functions are such that the first (second) agent gets two

units, then the second (first) agent must get zero units. The consumer sovereignty

and IIA assumptions imply that these two situations are in fact equivalent in certain

regions of the bid space, that is the mechanism always allocates all the units when

the bids are large enough.

By consumer sovereignty, for each agent i = 1, 2, there is a bid (ut, b*) such

that if i bids (u*, b*) and the other agent bids (0, 0), then agent i wins both units.

Furthermore, by Corollary 2.3.3, for every u' > u* and b > b, if i bids (u', b) and

the other agent bids (0, 0), then i wins both units. Let C = max{u*, bt, u*, b*}.

Claim 2.3.1 For any set of bids (ul, b1) and (u2, b2) such that ul, b1, u2, b2 > C, the

mechanism allocates both units when agents bid according to (u, b). Furthermore, the

payment of any agent that receives at least one unit in this situation is non-zero.

Proof. Assume, for contradiction, that for one such bid vector the mechanism

allocates at most one unit of the good to the first agent and zero units to the second

agent. Now, by IIA, if the second agent bids (0, 0), the first agent must still receive at
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most one unit. This, contradicts the definition of C. Now, assume that an agent, say

1, receives at least one unit but has to pay 0. This means that if agent 1 bids (0, 0),

he still wins at least one unit, and therefore agent 2 does not receive both units. This

contradicts the definition of C. 0

Immediate from Corollary 2.3.3 is the fact that the allocations and payments

given bid (ai, Oi) holding bid (a3-i, P3-i) fixed is constant for all pi > 2cai and for

all ai > i. We will use this observation to make statements about the properties of

the threshold functions as one of the inputs becomes irrelevant (that is, sufficiently

large). Let

ri(x) =- p(x,2x),

S4() = pi,(, )

for i,j = 1,2. By Corollary 2.3.3, all of the above functions are non-decreasing

functions: holding the bid of bidder i fixed, as bidder 3 - i increases his value and/or

budget, his allocation can not decrease. Since there are a limited number of units

available, this means the allocation of bidder i must not increase which means his

thresholds pi must be non-increasing.

As the ri and si are non-decreasing, they can be discontinuous in at most a

countable number of points [102]. Let T denote the set of points greater than C

at which all of the above functions are continuous. Notice that since the number

of discontinuity points of each of these functions is countable, the set T is dense in

(C, o).

Claim 2.3.1 together with our characterization, Corollary 2.3.3, immediately imply

the following functional relations:

Lemma 2.3.3 For all A, B C T,

B < r]_i(A) = A > (si - min(s', si2/2))(B) (2.5)

Proof. Suppose agent i bids (A, 2A) and agent (3-i) bids (B, B) and B < ri(A).
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Then agent (3 - i) receives zero units, so agent i must receive two units. As agent i's

budget is essentially unconstrained, this implies that his value is at least the threshold,

or A > (S2 -

Similarly, we can prove the following statements for every A, B E T:

A > (s2 - min(s, s2/2))(B) B < r-_i(A),

B > r2_i(A) = A < min(s', s2/2)(B),

A < min(s1, s22)(B) =: B > r_i(A),

B > (r_i- min(r1_i, r2_l/2))(A) =: A < min(r, r2/2)(B),

A < min(r/, r2/2)(B) = B > (r i- min(r'_ , r_ 1/2))(A),

B > s2_i(A)3 3i"

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

From these functional relations, we can derive the following inequalities.

Lemma 2.3.4 For all A E T,

(r2 - min(r , r2/2))(A) > (s2 - min(s}, s]/2))(A). (2.12)

Proof. Choose B E T, B > (r2- min(r', r2/2))(A). Then relation 2.9 (with i = 1)

implies A < min(r, r/2)(B) < r(B). Take > 0 and note that relation 2.5 (with

i= 2) implies B > (s2 -min(s2, s]/2))(A- e). Taking the limit as goes to zero

and using the continuity of s2 and s2 at A, we have that B > (r - min(r, r2/2))(A)

implies B >n s2 - min(s2, s2/2))(A). Since this statement holds for every B E T and

T is dense, the lemma follows.

Similarly, we prove the following lemma.
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Lemma 2.3.5 For all A E T,

min(r, r2/2) (A) > min(sl, s2/2)(A). (2.13)

Proof. Choose B E T, B > min(r, r 2/2)(A). By the contrapositive of relation

2.9, A < (r 2 - min(r, r/2))(B). By Claim 2.3.1, min(r, r2/2)(B) > 0. Hence, A <

r2(B). This, by the contrapositive of relation 2.8, implies that B > min(s2, s2/2)(A).

Since this holds for every B E T and T is dense, the lemma follows. D

Our non-bundling assumption implies that for all Z E T the interval (r21(Z), r2(Z))

is non-empty. Select a point t in this interval and observe that the contrapositive of

relations 2.6 (with i = 1) implies

Z I< (s2- min(s, s2/2))(t). (2.14)

Let > 0 and note that t is in the interval (r(Z - ), r2(Z- e)) for small enough 

by continuity. Thus the contrapositive of relation 2.8 with i = 1 implies

Z > Z-e > min(sI, s2/2)(t). (2.15)

Combining inequalities 2.14 and 2.15, we get

(s - min(s , s1/2))(t) > min(s', s /2)(t)

and so

min(s', s2/2)(t) = s(t). (2.16)

Equations 2.15 and 2.16 imply that for every t E (r(Z),r2(Z)), Z > s(t). By

Equation 2.11, this implies that t < s2(Z). Taking the limit of this equation as t tends

to r2(Z), we obtain r2(Z) < s2(Z). On the other hand, summing Equations 2.12 and

2.13 implies that r2 (Z) > s2(Z). Therefore, r2(Z) = s2(Z) . Thus, inequalities 2.12

and 2.13 must both attain equality at Z. Ranging over choice of Z E T, we see that

inequalities 2.12 and 2.13 must attain equality everywhere in T. Our contradiction
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arises from the observation that in fact for some Z C T, inequality 2.13 is strict. By

Claim 2.3.1, prices are always nonzero, and so C < (r2-min(rl, r2/2))(A) < r2(A) for

some A E T. Select such an A and Z E ((r1 - min(r , r/2))(A), r(A)) n T. Notice

that since T is a dense set, this intersection is nonempty. Note that relation 2.8

with i = 2 implies that A > min(s2,s2/2)(Z). Therefore, for any small > 0,

A+ e > min(s}, s2/2)(Z). Similarly, note that relation 2.9 with i = 2 implies A+E <

min(r}, r2/2)(Z) for sufficiently small. But this means thiat, for this particular Z,

min(r , r2/2)(Z) > min(s', s2/2)(Z), yielding our contradiction. ]

The following example shows that the IIA assumption in Theorem 2.3.2 is nec-

essary, that is there are deterministic truthful mechanisms that satisfy consumer

sovereignty and non-bundling, but not IIA.

Example 2.3.3 Consider an auction with 2 units and 2 bidders which uses the fol-

lowing rules for allocation to agent i (i = 1, 2):

* If ui > 2 iu_, _)anb min(u 3 , b3 and b > min(u 3 , b3-i), then agent i gets 2 units and

pays min(u 3 _i, b3-i);

* else if ui > min(u 3_i, b3 _i) and bi > min(u 3_i, b3 _i), then agent i gets 1 unit

and pays min(u3_i, b3-i);

* else agent i receives nothing.

It is not hard to verify that this mechanism satisfies the characterization given in

Corollary 2.3.3, and is therefore truthful. However, if, for example, agent 1 bids

(4a, 4a) and agent 2 bids (9a, 9a) for any a, the mechanism allocates zero units to

agent 1 and one unit to agent 2. Therefore, the mechanism does not allocate both

units even if bids are sufficiently large, and hence it does not satisfy IIA.
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Chapter 3

Procurement Auctions

In this chapter, we study markets in which an auctioneer wishes to assemble a team

of agents to accomplish some task. These agents offer fixed services that incur some

privately known cost. The auctioneer must select a team, or feasible set of agents,

the combination of which is capable of performing the task. To this end, he designs

a procurement auction in which he solicits bids from the agents and then selects

some feasible set of agents (the winners) to perform the task at hand and pays them

according to the rules of the auction.

Path and flow auctions are important special cases of procurement auctions. In

path auctions, the auctioneer seeks to buy a path of edges of lowest price between a

specified source and destination in a network. Sellers (network edges) have a privately

known cost for transmitting traffic, and bid to attract traffic. Path auctions arise

naturally in network routing - for example, an Internet Service Provider (ISP) might

use a procurement auction to select autonomous systems (ASs) to route his demand.

Flow auctions are a generalization of path auctions in which the demand of the

auctioneer might exceed the capacity of any single source-destination path. In this

case, the auctioneer must buy a set of edges capable of routing his demand.

One plausible mechanism for procurement auctions, proposed for use in path auc-

tions by Nisan and Ronen [89], Hershberger and Suri [55], and Feigenbaum et al. [35],

is the Vickrey-Clark-Groves (VCG) mechanism [19, 52, 115]. Roughly speaking, the

VCG mechanism pays each winning agent the highest bid with which it could still
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have won, all other bids being unchanged. The utility of an agent is quasi-linear,

and so the VCG mechanism is truthful (agents bid their true cost) and efficient (a

feasible set of minimum total true cost is selected). However, as observed by Archer

and Tardos [6], even in the special case of path auctions, the VCG mechanism (and,

in fact, all min function mechanisms) can lead to the auctioneer paying far more than

the true cost of completing the task at hand. In fact, the payment of the auctioneer

may even greatly exceed the true cost of the second-cheapest feasible set. Elkind,

Sahai, and Steiglitz [29] generalized the result of Archer and Tardos [6] to prove that

all truthful mechanisms have high overpayments in general.

We are interested in reining in the cost to the auctioneer. There are two general

approaches to this problem. One approach tries to characterize procurement settings

in which the VCG mechanism has small overpayments. Tawlar [111] and Garg et

al. [42] consider restricting the setting by imposing a structure on the collection of

feasible sets of agents. Mihail, Papadimitriou, and Saberi [81] show that in a ran-

dom graph, the expected payment of a VCG mechanism for a shortest path is small.

Feigenbaum et al. [35] measure the average overpayment of the VCG mechanism for

shortest path auctions in the Internet's autonomous systems (ASs) graph and con-

clude that it is relatively small. A second approach is to consider alternative solution

concepts. Garg et al. [42] propose an ascending price auction format for procurement

auctions that can perform well in settings of incomplete information. For the special

case of path auctions, Elkind, Sahai, and Steiglitz [29] present and analyze an opti-

mal Bayesian-Nash mechanism. Czumaj and Ronen [20] propose a mechanism that

combines dominant and non-dominant strategy mechanisms and has small overpay-

ments under certain assumptions. However they show that it has an arbitrary ratio

between the payment of different equilibria and say that overall, "finding a natural

and tractable measure of [non-dominant strategy] protocols seems challenging and

important."

In this chapter, we follow the second of these approaches. We propose and analyze

variants on first-price auctions, or auctions in which the team with the lowest bid

is selected and paid their bid. First-price auctions are a natural class of auctions
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quite often implemented in practice. Therefore, it is interesting to ask if first-price

auctions or their variants can reduce the payment of the auctioneer. These auctions

are not truthful; instead, we motivate analyzing their properties in a strong e-Nash

equilibrium (see Definition 10). We show that in general procurement settings, strong

e-Nash exist, and the feasible set of agents selected in any strong e-Nash equilibrium is

approximately efficient. For path and flow auctions, we then bound the total payment

to the winning agents by relating it to the true cost of routing one additional unit

of demand (assuming all edges have unit capacity). Finally, we study the setting

in which the demand of the auctioneer is not known, but rather the auctioneer and

bidders share a common prior belief regarding the amount of demand. In other

words, there is a publicly known distribution of possible demands. For this model,

we design a first-price mechanism involving two-parameter bids and derive a bound

on the payments of this mechanism similar to that of the known demand case.

In Section 3.1, we formalize the setting of procurement auctions and define the

path and flow settings which we study later. In Section 3.2, we motivated the se-

lection of strong -Nash equilibria as a solution concept for first-price auctions. In

Section 3.3, we show that first-price auctions are approximately efficient in the gen-

eral procurement setting. Finally, in Section 3.4, we show how to bound the payment

of first-price auctions and their variants in the special case of path and flow settings.

The results of this chapter are based on joint work with Karger, Nikolova, and

Sami [59].

3.1 Setting

Consider a procurement setting in which an auctioneer wishes to hire a team of agents

to accomplish a particular task. There is a set U of n agents. Each agent is capable

of performing a fixed service. In performing this service, an agent incurs a privately

known cost ci E R+ U {(0. Some subsets of services can be combined to accomplish the

auctioneer's task. We call a subset S C U of agents a feasible set if their combined

services can accomplish the task. The collection of feasible sets is denoted by S.

63



The collection S could be publicly known to the auctioneer and all agents, or, more

generally, they could share a common prior (a publicly known probability distribution

over the collection of subsets of U) about S.

A special case of the procurement setting is the path or flow setting. In this setting,

there is a graph G. Each edge (u, v) is an agent capable of sending one unit of flow

from u to v at a privately known cost ci E R+ U {O}. The auctioneer wants to route k

units of demand from a known source node s and destination node t (in a path setting

k = 1). Hence the collection S of feasible sets is the collection of all subgraphs in

G that contain a k-flow from s to t. We assume that the structure of the graph

G is public knowledge. The demand k could be publicly known to the auctioneer

and all edges (the known demand case), or it might be drawn from a publicly known

probability distribution (the unknown demand case).

The unknown demand case is modelled as follows: The demand can take any

integral value in the range [1, r], where r is a positive integer. Further, there is

a known prior distribution on the demand values; say that the demand is k with

probability Pk, for k = 1, 2..., r. We assume for simplicity that Pk > 0 for all k; our

results easily extend to a situation in which Pk = 0 for some values of k E {1,..., r}.

In a procurement auction (similarly a path auction or flow auction), the auctioneer

selects a feasible set by running an auction. He solicits from each agent a bid bi 

R+ U {0} which is supposed to represent the agent's true cost ci. He then selects some

feasible set S of agents and pays each agent i E S an amount payment i E IR+U{0} and

all other agents 0. The set S is called the winning set. Each agent i E S is a winner,

and all other agents are losers. An agent's utility for the outcome is paymenti - cixi,

where x is the characteristic vector of S (that is, xi = 1 if i E S and 0 otherwise).

We will focus on first-price auctions. In a first-price auction, the payment of every

winner equals his bid. The auctioneer is restricted to select a minimum price feasible

set S, or one which minimizes BiEs bi. His only flexibility is in the definition of a

tie-breaking rule, or method to select from among the collection of minimum price

feasible sets. Thus, in specifying a first-price auction, we only need to specify a tie-

breaking rule. We also consider variants of first-price auctions in which the minimum
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price feasible set is almost always selected and the winners are paid a quantity close

to their bid.

To avoid confusion between the true costs and the prices of sets, we will adopt

the following terminology: the cost of a set S is EiES ci, sometimes written c(S).

Similarly, the price of a set S is is bi, sometimes written b(S). Additional notation

will be introduced for the path and flow settings in Section 3.4.

3.2 Solution Concepts

First-price auctions are clearly not truthful. This raises the question of how we expect

agents to bid.. We want to retain the property that agents can see each others' bids,

so that the bidding could be performed through posted prices. Thus, mixed-strategy

equilibria are not very meaningful in our setting. Instead, we look for a pure strategy

equilibrium solution concept which always exists and is arguably reasonable in that

agents can be expected to reach that equilibrium. This section motivates the selection

of strong e-Nash equilibria (see Definition 10) as that solution concept through a series

of examples. First we note that not every first-price procurement auction has a Nash

equilibrium (Example 3.2.1), and those that do are impractical (Example 3.2.2). Both

of these examples heavily rely on the continuity of the bid and payment space. In

reality, bids and payments are restricted to a discrete space as they should be some

multiple of a unit of money, like cents, for example. Thus it is simply not possible

for agents to arbitrarily improve their payoffs, and so we suggest studying -Nash

equilibrium (see Definition 9) where an agent deviates only if it improves his payoff

by at least e. Unfortunately, Example 3.2.3 shows that the overpayments in such an

equilibrium can be quite high. In this example, however, if certain subsets of agents

could arrange to jointly reduce their bids, all of them would benefit. This leads us

to study strong -Nash equilibria (see Definition 10), or -Nash equilibria which are

robust to such manipulations. As proven in Theorem 3.2.1, strong e-Nash equilibria

exist in all deterministic first-price procurement auctions (but may fail to exist in

randomized ones as evidenced by Example 3.2.4). It remains to be seen if one can
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devise a bidding protocol that helps agents converge to a strong e-Nash equilibrium.

3.2.1 Nash Equilibria

The most natural solution concept is that of a Nash equilibrium. Unfortunately, as

the following example shows, not every first-price auction has a Nash equilibrium.

Example 3.2.1 Suppose there are two agents A and B, either of whom forms a

feasible set (that is, S = {{A}, B)}}). Consider any auction in which ties are broken

by selecting agent B with probability p, 0 < p < 1, independent of the bid values. Now

suppose the costs of the agents are cA = 1 and cB = 2, and so in case of a tie the

auction selects the higher-cost agent with positive probability.

Suppose agent A bids x and B bids y. If x > y, then the expected payment of

agent A is at most (1 - p)y. As B has positive probability of winning, y > cB = 2,

and so the bid y - e for e < min(yp, 2) is a better bid than x for bid than x for agent A. If x < y,

then the payment to A is x and so x + (y - x)/2 is a better strategy than x for A.

This example relies on the assumption that the tie-breaking rule is not a function

of the bid values (otherwise we would have been unable to assume that the auction

selects the higher-cost agent with positive probability). In fact, for a carefully chosen

tie-breaking rule which is a function of the bid values, we can design first price auctions

with pure strategy Nash equilibria, as the following example shows.

Example 3.2.2 For ease of exposition, suppose all subsets 2U of the set of agents U

are feasible and index the subsets so 2 = B1,..., B 2n}. Partition the real numbers

into 2 subsets S1, ... , S2n such that each subset is dense in the reals. Let p be the

price of the minimum price set and suppose p E Sk. If Bk has price p, choose Bk.

Otherwise, choose randomly among the collection of minimum price sets.

We can construct a pure strategy Nash equilibrium for this tie-breaking rule as

follows. If the minimum cost set is not unique, then it is a Nash equilibrium for all

agents to bid bi = ci, their true cost. Otherwise, let B1 be the minimum cost set and

B2 be the next cheapest set (in terms of true costs). Find a p S n [c(Bi), c(B2))
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(thus B1 wins in the case of a tie at price p). Consider a set of bids b such that

b(B1) = b(B:,) = p, bi > ci for i E B 1, bi < ci for i E B 2 , and bi = ci for i f B 1 U B 2.

Then b is a Nash equilibrium.

However, this auction is arguably impractical as are the deviations discussed in the

last example because they both assume that the bids and payments can be any real

number. Yet;, in many problems, payments are discrete, so it is simply not possible

for agents to improve their utilities by arbitrarily small amounts. This motivates us

to use the solution concept of e-Nash equilibrium.

Remark 3.2.1 The results in this chapter can be proved using tie-breaking rules such

as that in Example 3.2.2 or using e-equilibria concepts presented below. However, for

clarity of presentation, we present our results in terms of c-equilibria.

3.2.2 e-Nash Equilibria

In an e-Nash equilibrium, we assume agents are indifferent to deviations that improve

their payoff by a small amount.

Definition 9 An e-Nash equilibrium is a set of strategies, one for each agent, such

that no agent can unilaterally deviate in a way that improves his payoff by at least e.

Unfortunately, there is a drawback to the c-Nash solution concept as well. As the

following example shows, when the winning set contains many agents, it may have a

price higher than the cost of the best competing set.

Example 3.2.3 Consider any first-price auction. Suppose there are four agents, A,

B, C, and D with costs 1, 2, 2, and 6 respectively, and the collection S of feasible

sets is {{A}, {B, C}, {D}}. Then it is an e-Nash equilibrium for agent A to bid 6 -,

and the rest to bid 6. In this case, the price to the auctioneer for the winning set {A}

is 6 - which is higher than the cost, 2, of the best competing set {B, C}.
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This defeats our goal of reducing customer overpayment. We might argue that

this solution would not be sustained in practice, since the agents in the second lowest-

cost set are likely to each reduce their price. This leads us to explore the concept of

strong e-Nash equilibria.

3.2.3 Strong e-Nash Equilibria

Strong -Nash equilibria, first introduced by Aumann [9] and used by Young [119],

require that there is no group of agents who can deviate in a way that improves the

payoff of each member by at least e.

Definition 10 A strong e-Nash equilibrium is a set of strategies, one for each agent,

such that no group of agents (called a coalition) can deviate in a way that improves

the payoff of each member by at least e.

This definition captures the notion that agents might collude to win the auction

if it is beneficial for each of them (for a discussion of stronger notions of collusion,

see Chapter 4). For example, the bid vector in Example 3.2.3 is not a strong E-Nash

equilibrium as agents B and C could collude and bid 3- e, thus improving each of

their payoffs by at least (assuming e < ).

Strong e-Nash equilibria have several advantages over Nash and e-Nash equilibria.

First, although randomized first-price auctions may fail to have strong e-Nash equi-

libria (see Example 3.2.4), Theorem 3.2.1 shows that every deterministic first-price

auction has a strong -Nash equilibrium. Second, as demonstrated by Lemma 3.2.1,

in a strong e-Nash equilibrium of a determinist first-price auction, we can bound the

bids of the winning agents by the true costs of the losing agents, furthering our goal

of reducing payments and allowing us to prove that the winning set is approximately

efficient (see Section 3.3). The rest of this section contains proofs of Theorem 3.2.1

and Lemma 3.2.1 and Example 3.2.4.

First, we show that any first-price auction with a deterministic tie-breaking rule

has a strong e-Nash equilibrium. Our proof is constructive. We consider the minimum

cost feasible set and fix the bids of all items outside this set to be equal to their true
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cost. For the items in this set, we adjust their bids so that the price of the set is just

less than the cost of the second-lowest cost feasible set.

Theorem 3.2.1 Any first price auction with a deterministic tie-breaking rule has a

strong c-Nash equilibrium.

Proof. Our proof is constructive. Let ci be the cost of agent i, S be the collection of

feasible sets, and S* be the minimum cost feasible set selected by the auction under

bid vector c. Define a variable xi for each i E S* and consider the following linear

program (LP for short):

maximize Xi

iES*

subjectto VS S: E xi < ci
iEs*-s iEs-s*

V i E S*: i ci

The strong e-Nash equilibrium that we construct will be a slightly modified optimal

solution to this LP. The first constraint guarantees that S* will be a minimum price

set in this equilibrium, and the second that every agent has non-negative utility in

this equilibrium. By setting xi = ci for all i, we see that the LP is feasible.

Let x* be an optimum solution of the LP, and define bid vector b where bi =

max{ci, x* - e/(2n)} for i E S* and bi = ci for all other i. Notice that our minimum

cost set S* is also a minimum price set with respect to bids b.

We prove that b is a strong e-Nash equilibrium. Note that only agents who are

guaranteed winners (that is, agents in every minimum price set) are submitting a bid

other than their true cost. For agents outside S*, this is evident from the definition

of b. Consider an agent i in S* that is not in every minimum price set, and let S be a

minimum price set that does not contain i. Corresponding to this S is an inequality

of type 1. This inequality together with those of type 2 for all j E S* - S imply that

xi = ci and so bi = ci. Thus the bidders in a successful coalition can only increase

their bids.
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Let T be a successful coalition and b' be the bid vector when T deviates (so b = bi

for all i ' T). Recall the notation b(S) = ieS bi. Then

(3.1)(b; - bi).
iETnS*

In order for each member of the coalition to benefit by at least , he must increase

his bid by at least , so

(3.2)

and T must be a subset of the selected minimum price set S'. Therefore,

b'(S') = b(S') (3.3)
iET

Furthermore, as S* is a minimum price set according to b and S' is a minimum price

set according to b',

b(S*) < b(S'), (3.4)

and

b'(S') < b'(S*). (3.5)

Inequalities 3.1, 3.3, 3.4, and 3.5 imply

(3.6)E (b; - bi) > E(b - bi).
iETnS* iET

Together with inequality 3.2, inequality 3.6 implies T C S*. As T C S' as well,

inequalities 3.4 and 3.5 imply

b'(S*) = b'(S'). (3.7)

Now consider the solution to the LP which sets each variable xi to agent i's bid in

bid vector b'. By inequality 3.2,
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Exi = bi
iES* iES*

> E bi+ S (bi + )
iES*-T iETnS*

Ad (h 2n + ZA 2n + 
iES*-T iETnS*

iES*

By maximality of x*, this implies that x is not feasible. Since each bi ci by

construction, x must violate an inequality of type 1. Letting S be the set in the

violating constraint, we see b'(S) < b'(S*) which, by equality 3.7, implies b'(S) <

b'(S'), contradicting the optimality of S'. o

Next, we show that in a strong e-Nash equilibrium, the price of the winning set

can be bounded by the cost of losing feasible sets. The intuition for this proof is that

if the winning agents are bidding significantly more than the losing agents, the losing

agents can undercut the bidding agents and win at a profitable price. One powerful

consequence of this definition is that, from the point of view of the total price, it

lets us assume without loss of generality that items who are not winning in a strong

e-Nash equilibrium are bidding within e of their cost. This notion is formalized in the

following lemma.

Lemma 3.2.1 Fix a strong -Nash equilibrium b and let S be the feasible set that

wins with bids b. Let T be any set (not necessarily feasible) such that T n S = 0 and

for all i E T, bi > ci + e, where ci is the true cost of item i. Consider the altered bid

vector b' in which

be t ci + E fori E T,

bi otherwise.

Let S' be a minimum price feasible set with respect to bids b'. Then b'(S') = b(S).
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Proof. Since T n S = 0, b(S) = b'(S), and so b'(S') < b(S). Suppose b'(S') < b(S).

This means for all minimum price sets with respect to bids b', there are items in the

set T. Let R' be a minimum price set with respect to bids b' which minimizes R' nT I

(by the previous statement, this minimum is at least one). We will show that the

agents in R' n T form a coalition when the bids are b, contradicting the assumption

that b was a strong e-Nash equilibrium.

Consider the bid vector b" constructed from b in which just the agents in R' n T

lower their bids to ci + e:

bi = ci + for i R' nT,

bi otherwise.

We will argue that the agents in R' n T benefit by at least in this deviation. As

T n S = 0, all agents in R' n T were losing agents with bid vector b and so their

utility with bids b was zero. We argue that in bid vector b" the agents in R' n T all

win the auction and, therefore, as b' = ci + e for i E R' nT, increase their utility by e.

As first-price auctions choose a winning set from among the minimum price feasible

sets, we must show that the agents in R' n T are contained in any minimum price

feasible set R" with respect to bids b" . As b < b' for all agents i,

b"(R") > b'(R") > b'(R') = b"(R') > b"(R"),

and so all statements hold with equality. Since items in T - R' increased in price

from b' to b", b"(R") = b'(R") implies R" does not contain any element of T - R'.

Since b'(R") = b'(R'), R" is also a minimum price set with respect to bids b'. As R'

was chosen to minimize the intersection with T among all minimum price sets, this

means R" must contain R' n T. Therefore, the agents in R' n T are winners in bid

vector b" and so increase their utility by at least . Furthermore, as bi = b for all

agents outside of R' n T, the agents in R' n T can form a successful coalition in b,

contradicting the assumption that b was a strong e-Nash equilibrium. Ol

Remark 3.2.2 In the proof of Theorem 3.2.1, we used the determinism of the mecha-
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nism in assuming that there was a unique winner for every bid vector. As the following

example shows, this assumption was necessary. Strong -Nash equilibria do not nec-

essarily exist for randomized first-price auctions. Randomized tie-breaking rules pose

a problem for the solution concept as a minor adjustment in bid value can drastically

affected a bidder's expected utility.

Example 3.2.4 Suppose there are two agents, A and B, either of whom forms a

feasible set for the auctioneer (that is, S = { {A, {B}}). In the case of a tie, assume

the auctioneer chooses uniformly at random between the two items. Suppose the cost

of each agent is 0. Note for any set of bids {bA, bB}, the agents can form a coalition

and each bid 2 max(bA, bB)+2e. In this way they both profit by at least e in expectation.

Therefore no pure strategy bid vector forms a strong e-Nash equilibrium.

3.3 Approximate Efficiency of First-Price Combi-

natorial Auctions

It is often desirable to design auctions that choose efficient allocations. A procure-

ment auction is efficient if it always select the minimum cost feasible set. The VCG

mechanism guarantees that the set it selects is efficient. The strong e-Nash equilibria

of first-price procurement auctions are not necessarily efficient. For example, if the

minimum cost and second-minimum cost feasible sets have costs within e of one an-

other, then it is a strong -Nash for the second-minimum cost set to bid truthfully

and the minimum cost set to overbid by e. In such a scenario, the first price pro-

curement auction will select the second-minimum cost set. Still, the winning set is

approximately efficient as its cost is within e of the minimum cost set. In this section,

we prove that this holds in general, that is the strong e-Nash equilibria of first-price

procurement auctions are approximately efficient.

Theorem 3.3.1 Let b be a strong e-Nash equilibrium of a deterministic first-price

procurement auction. Then the cost c(S) of the winning set S in a first-price pro-

curement auction is at most the cost c(S*) of the minimum cost feasible set S* plus
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an additive factor of en:

c(S) < c(S*) +en.

Proof. The proof is by contradiction. Assume the winning set S is not approxi-

mately efficient, that is, c(S) > c(S*) + en. Define a new bid vector b' in which the

agents who are not winning but are in a minimum cost feasible set lower their bids

to just above their cost:

b= min{bi, ci +} for i E S* - S,
bi otherwise.

In this bid vector, S* is cheaper than S:

b'(S) - b'(S*) = b(S-S*)-b'(S* - S)

> c(S- S*)- (c(S*- S) + n)

= c(S) - c(S*) - En

> 0.

This contradicts Lemma 3.2.1 with T = {i E S* - S : bi > ci + e}. °

3.4 Payment Bounds for Flow Auctions

In this section, we bound the overpayments of first-price flow auctions. We assume

that we have a deterministic tie-breaking rule so that if there is more than one cheap-

est feasible flow, we take the lexicographically first integral one. We consider two

settings. In the known demand path auction studied in Section 3.4.1, the total de-

mand of the auctioneer is known to the auctioneer and all the bidders at the time

of the auction. It is easy to imagine that the assumptions of this model might be

unrealistic in practice. Can the total demand really be known before it is realized?

What if the auctioneer wishes to buy flow in advance? In our second model, the

unknown demand path auction studied in Section 3.4.2, the auctioneer and bidders

instead know a probability distribution over possible demand values.
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Notation

For a graph G, let c be the vector of edge costs, b be the vector of edge bids, and

F,(k, G) be the set of edges in the winning k-flow1 in G with respect to edge weights

w (as we only consider deterministic first-price auctions, this is well-defined). We

will refer to Fc(k, G) as the minimum cost k-flow and Fb(k, G) as the minimum price

k-flow with respect to bid vector b. When the bids, costs, or graph is clear from

the context, we will sometimes drop them from the notation. As a shorthand, we

sometimes write c(k) for the (cost of the) lowest cost k-flow. Finally, to be consistent

with the previous notation, we denote the number of agents, or edges in G, by n.

3.4.1 Known Demand Path Auction

In the known demand setting, we assume that the auctioneer has a publicly-known

demand k. We will show that in such settings, the payments in a strong -Nash

equilibrium of a deterministic first-price auctions is bounded. In particular, we show

that the overpayment to each unit of flow is (approximately) at most the true marginal

cost of sending an additional unit of flow (see Theorem 3.4.1). Together with the

observation that the VCG mechanism pays each edge a bonus at least as large as this

marginal (see Theorem 3.4.2), this shows that the payments in first-price auctions are

(approximately) bounded by the payments in the VCG auction. We saw in Section 3.3

that the winning set in the first-price auction is also (approximately) efficient. These

statements regarding the payments and efficiency of first-price auctions suggest that

first-price auctions perform better than VCG auctions. However, first-price auctions

have a significant drawback; it is not clear how agents might converge to a strong

e-Nash equilibrium. We partially address this concern by proposing another auction

whose e-Nash equilibria have the same properties as the strong e-Nash equilibria of a

first-price auction.

1 The weight of this flow is equal to the weight of the minimum weight k-flow, that is requiring
integrality doesn't change the value of the optimal solution.
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Payment Bound

We first bound the payments in a strong e-Nash equilibrium (see Definition 10) of a

deterministic first-price auction. The edges announce bids and the auctioneer runs

a first-price auction to select a cheapest k-flow according to the bid vector, paying

each edge on the flow an amount equal to his bid. By Theorem 3.2.1, strong e-Nash

equilibria exist for such auctions. Given the existence of strong e-Nash equilibria, we

can bound the payments in any such equilibrium. In order to develop some intuition

for the proof, it is useful to first consider sending 1 unit of flow in a graph consisting

of just two parallel edges from the source s to the sink t of costs a and b, a > b + e.

The lower-true-cost edge must be allocated the flow in equilibrium since he can bid

just under the true cost of the higher cost edge and be guaranteed a profit of at

least . Therefore, by the conditions of a strong e-Nash equilibrium, we can assume

that the bid of the higher cost edge is at most more than his true cost, and so the

overpayment of any equilibrium will be at most a + e - b. The crux of this argument

was to bound the bid of the winning path by the bid of an augmenting path. Since

the augmenting path does not receive flow, Lemma 3.2.1 permitted us to assume, for

the purposes of bounding the price, that the bid of this path was close to its true

cost. This proof idea easily extends to auctions for k-flows in general graphs as can

be seen below.

Theorem 3.4.1 The total payment of the deterministic first price k-flow auction in

a strong e-Nash equilibrium is at most

k [c(Fc(k + 1))- c(F(k))] + knc,

where c is the vector of true edge costs.

Proof. Fix a strong -Nash equilibrium vector of bids b and define bid vector b'

such that

bi for i E Fb(k),{ minfbi, ci + e} otherwise.
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By Lemma 3.2.1, Fb(k) is a minimum price k-flow with respect to b'. Consider the

(non-integral) flow (k/(k + 1))F,(k + 1), that is the flow which sends k/(k + 1) units

of flow along the flow paths determined by F¢(k + 1). Since Fb(k) is a lowest-price

k-flow with respect to b' and using the integrality of optimal network flows [104], we

have

(k+l b'(F(k + 1)) - b(Fb(k)) > 0. (3.8)

Define edge sets

E+ = {e E F(k + 1)-Fb(k)}

Eo = {e E FC(k + 1) n Fb(k)}

E_ = {e E Fb(k)- F(k + 1)}

Then equation 3.8 reduces to

(k) b'(E+) ( 1) b(Eo)-b'(E_) > 

which, solving for b'(Eo) + b'(E_), gives

b(Fb(k)) = b'(Eo) + b'(E_)

< k(b'(E+) -b'(E_))

< k(c(E+) + nE - c(E_)) (3.9)

< k(c(F¢(k + 1)) - c(Fb(k)) + nE)

< k(c(Fc(k + 1)) - c(Fc(k)) + ne) (3.10)

where 3.9 follows from the fact that for any edge bi > ci and for all i E E+, bi < ci + e;

and 3.10 follows from the optimality of Fc(k) with respect to c. O

In addition, it is easy to see that this bound is tight. Consider a graph with (k+ 1)

parallel edges where the cost of the bottom k edges is c and the cost of the remaining

top edge is c' > c. Let all k lower cost edges bid c' - e for a small e > 0, so their bid
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is less than the bid of the remaining higher cost edge (whose bid is at least c'). The

minimum price k-flow with respect to this bid vector will use the bottom k edges for

a total price of k(c' - ) which approaches k(c(Fc(k + 1)) - c(Fc(k))).

Finally, we emphasize that the total payment of our first price mechanism in a

strong e-Nash equilibrium is at most knE more than the VCG payment for the same

graph in a Nash equilibrium.

Theorem 3.4.2 Given a graph G with source s and sink t, the VCG payment for k

units of flow from s to t is at least k(c(Fc(k + 1))- c(Fc(k))).

Proof. Let P 1,..., Pk be the k disjoint paths in the selected minimum cost k flow.

Fix one path Pi with, say, 1 edges. We will prove that the sum of payments to edges

on this path is at least c(Fc(k + 1)) - c(F.(k)). Recall that the VCG payment for an

edge e on a minimum cost k-flow is

Ce + c(F.(k, G - {e})) - c(F.(k, G)). (3.11)

We construct a new directed multi-graph on the same vertex set as G as follows.

We use the term forward to mean an edge directed from s to t along the flow path

and backward to mean an edge directed from t to s. For each edge e on path Pi,

add a backward copy of each edge in F,(k, G) and a forward copy of each edge in

F,(k, G - {e}), retaining multiplicities. Now add a forward copy of the path Pi to

the graph. Label each forward edge e with the cost Ce of the corresponding edge in G

and each backward edge with the cost -ce. Then, by equation 3.11, the sum of edge

weights in this graph equals the VCG sum of payments to edges on path Pi. Note

that this graph is a union of 1 s - t flows, 1 t - s flows, and one s-t path. Thus, the

in-degree of every vertex except s and t is equal to its out-degree, and for s (t), the

out-degree is one more (less) than its in-degree. For every pair of vertices, cancel the

2-edge cycles connecting them. That is, if the vertices are connected by k1 forward

edges and k2 backward edges, replace the edges by k1 - k2 forward edges if k1 > k2,

k2 - k1 backward edges if k1 < k2, or simply remove the edges if k1 = k2 (this does

not change the degree or edge weight properties of the graph discussed above). Call
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the resulting graph G'. As the sum of edge weights in G' equals the sum of VCG

payments to edges on path Pi, we can bound the sum of VCG payments to edges on

path Pi by bounding the sum of edge weights in G'.

First note every edge of F¢(k, G) is either non-existent or directed backward in

G': for edges e E F¢(k, G) - P, e is added exactly once in the backward direction and

at most once in the forward direction by each of the 1 edges in Pi; for edges e E Pi,

e is added exactly once in the backward direction and at most once in the forward

direction by each of the I - 1 edges e' in Pi, e' 4 e. Furthermore, edge e is added

once in the backward direction by itself and once in the forward direction in the last

step of the construction of G'.

Select a path P from s to t in G' (such a path exists by the degree properties

discussed above). As edges of F¢(k, G) exist only in the backward direction, our path

P is a valid augmenting path in the original graph G, and so its weight is at least

c(F(k + 1, G)- c(F¢(k, G)) by minimality of Fc(k+ 1, G). We claim the weight of P is

at most the sum of edge weights in G' (which equals the VCG payment), proving the

result. This follows from the fact that, due to its degree properties, G' can be written

as a union of P and a set of disjoint cycles, and, since F¢(k, G) is a minimum cost k-

flow in G, the sum of edge weights on any cycle must be non-negative. Otherwise we

could construct a cheaper k-flow in G by replacing the backward edges of a negative

cycle with the forward edges in Fc(k, G): specifically, if C is a negative cycle in G'

with backward edges A and forward edges B, then Fc(k, G) - A + B is a cheaper

k-flow in G. °

Implementation in e-Nash

The simple first-price auction may have costly e-Nash equilibria, as shown in Exam-

ple 3.2.3. In Section 3.4.1 we used the strong -Nash solution concept to get around

this problem. However, assuming that the bidders will reach an strong e-Nash equilib-

rium is perhaps too strong an assumption: it requires extensive coordination between

agents. In this section, we present a variant of a first-price auction in which every

e-Nash equilibrium results in a low price.
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One idea to achieve this is to pay edges a bonus that increases as their bid de-

creases. This encourages edges to submit low bids. However, this has the side-effect

of giving edges incentives to bid even below their true cost, as long as they remain

off the winning flow. This would make the bargaining problem that edges must solve

much more complex, as it would include bargains between winning and losing edges.

Alternatively, we could instead send flow on each edge with some probability that

increases as the bid decreases. Thus an edge will not bid below its true cost, but it

might have an incentive to bid very high. Using a combination of these two ideas, we

can construct a payoff function such that an edge will bid close to its true cost if it

is not on the lowest true cost flow. This is known as virtual implementation in the

economics literature (see, for example, Jackson [62]). If the bonuses and probabili-

ties are small enough, then the extra payment will not be very large in expectation,

and we can prove a bound on the total payment of the mechanism similar to that in

Theorem 3.4.1.

We describe the techniques in this section in the setting of path auctions, although

they extend to more general settings as noted. Assume that there is a value B such

that no edge bids more than B. (Alternatively, B can be the maximum amount

that the buyer is willing to pay.) Further, we assume that the edges are risk-neutral.

The mechanism starts by computing a collection of (not necessarily simple) paths

(Pe}. The mechanism then solicits a bid be from each edge e. The lowest-price path

is almost always picked; however, with a small probability, one of the paths from

the collection is picked instead. In addition, each edge is paid a small bonus that

depends on the bids. The selection probability and bonus are chosen to ensure that

it is optimal for every edge that is not on the lowest-price path to bid its true cost.

For simplicity, we present the mechanism and analysis for a single unit of flow; the

results can easily be extended to any constant k > 1 units of flow.

Mechanism RandomPath: The parameters a and T are selected to be small pos-

itive constants such that a < min{n- 2B-1, 2 ) and r < an- 1B -1 .

1. For each edge e, find P, a (not necessarily simple) path from s to t through e.
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Let 'P = {Pe}eEG. Note that an edge e may appear in multiple paths in P.

2. Solicit bids b = (bi,..., be, . .., bn) from the edges.

3. For each path P E P, compute

Up = - be
eEP

4. Select each path P E p with probability up; with probability (1 - Cpep (p),

select the lexicographically first lowest price path. Call the selected path P*.

Pay each edge e E P* its bid be.

5. In addition to any payment edge e may get in step 4, pay each edge e E G the

sum fe(b) = Epep,pDe feP(b), where

,P(b) = (B - be) +Tbe bj -r 2
2

jEP

Our payment rule is constructed in a way that encourages bidders not receiving

flow to bid their true cost. Note that the bonus increases as the bid decreases, but

the expected selection payment decreases as the bid decreases. Intuitively, we design

the bonus and selection probabilities so that the total payoff function is maximized

when bi = ci. Note that if an edge is selected, it incurs its true cost. In this way, the

true cost automatically enters his expected payoff function-the mechanism does not

need to know the cost in order to achieve the maximum at bi = ci.

Lemma 3.4.1 For any edge e not on the lowest-price path with bids b, if be ' [ce -

2/T, Ce + 2/'], then be = ce will increase the expected payoff to e by at least e.

Proof. With the bid vector b, e's expected payoff is

fe(b) + Z p(be -Ce) = [fP(b) + p(be-Ce)]
Pie P3e

b
= Zk[B-r 2 + r b, j-ce]

Pe jEP
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Let g(be) = [(B - ce) - rb + TCe Ejep bj]. Then, g(be) is a quadratic function of

be. Observe that Tg(bb) = -rbe + ce = 0 when b, = c,; at this point, a2g(b) = _- < 0.

This is true for all paths P containing e. Further, for A > 0,

g(c) - g(ce + A) = ceA + TA2/2 - TCeA = Ai /2

Similarly, g(ce) - g(ce - A) = TA 2/2. Thus, if be < ce - 2/I, then edge e has

incentive to raise his bid to be = ce. Similarly, if be > Ce + /T, then edge e has

incentive to decrease his bid to be = Ce (even if this puts him on the lowest-price path,

then his payoff is still g(c,) per path so the above calculation still holds). D

Lemma 3.4.1 implies that if e-Nash equilibria exist in mechanism RandomPath,

then any edge not on the lowest-price flow must bid close to its true cost. This will

help us bound the total expected payment in an -Nash, but first we must prove

that -Nash equilibria exist in this mechanism. Indeed the same construction as in

Theorem 3.2.1 yields an -Nash equilibrium.2

Lemma 3.4.2 For any cost vector c and any e > O, an -Nash equilibrium always

exists in the mechanism RandomPath.

Proof. Construct a bid vector b as in Theorem 3.2.1. By this construction, the

lowest-cost path equals the lowest-price path. We have be = Ce for any edge e that

is not on the lowest-price path. Edges on the lowest-price path bid close to the

maximum they can while still remaining on the lowest-price path (see the proof of

Theorem 3.2.1 for the precise construction).

Following the analysis of g(be), the expected payoff in Lemma 3.4.1, be maximizes

e's payoff. (Note that e can only get onto the lowest-price path by bidding below

its cost, which would result in a loss.) It remains to show that every edge i on the

lowest-price path would not significantly benefit by changing it's bid. Note that, by

construction of the bid vector, if i increased its bid by more than /2, it would no

longer be on the lowest-price path. Further, because of the shape of the bonus payoff
2 Mechanism RandomPath can be extended to the general procurement setting. The proof of the

following theorem can be generalized to prove existence of e-Nash equilibria in this setting as well.
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function, i's expected gain g(be) from the bonus and probability of off-path selection

would also drop. Thus, i cannot possibly gain more than e by raising its bid. Consider

the possibility that i lowers its bid by x. Then, i would still be on the lowest-price

path. It would lose at least (1 - na)x in profit from being on the lowest-price path,

and gain at most (ge(be) - ge(be - x)) = -r(x 2 + (e - be)x) in ge(be) per path. As

be > Ce in b, its total gain is at most x2. As x < B, the loss is more than the gain

for any choice of T less than 2(1 - na)/(nB) or, rewriting in terms of a, a < 1+2n

These conditions can be guaranteed by the choice of a and -. o

Now, we observe that the values a and -r can be chosen small enough to make

the probabilities {cop} and bonuses fP(b) arbitrarily small. Thus, the total payment

to edges not on the shortest path is very small. The bound on the payment of the

mechanism RandomPath is more sensitive to the value of e because edges not on the

lowest-price path get very small payments in expectation. However, we can show that,

in the limit as e - 0, the maximum expected payment in any e-Nash equilibrium is

bounded. The following proof can be generalized to the flow setting to derive a bound

similar to that in Theorem 3.4.1.

Theorem 3.4.3 Choose any a < n- 2B - 1, - < an-lB -1. For these values of a

and T,

lim max { Total payments with bids b} - c(2) - c(1) + 3an2 B.
e-O e-NE b

Proof. Let b be an -Nash equilibrium bid vector, for sufficiently small . The

total probability that the mechanism picks a path other than the lowest-price path

is bounded by na. Any such path can have at most n edges on it, each with price at

most B. Thus, the expected payment for using one of these paths is at most an 2 B.

Similarly, we can bound the bonus fe(b) paid to any edge e: fe(b) < n[aB + TnB 2].

This is always less than 2anB.

Finally, using Lemma 3.4.1, we know that any edge not on the lowest-price path

bids at most ce + 2/2/T. Combining this with a similar argument to Theorem 3.4.1,
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we can bound the total payment to edges on the lowest-price path by

b(F(1)) < c(2) - c(l) + n ocI

In the limit as -+ 0, the last term is negligible. Adding up all three sources of

payment, we get the required result. a

Recall that mechanism RandomPath needs to compute a set of paths {Pe}, where

Pe is a path from s to t that uses e. If e is to be relevant to the path auction, such a

path must exist, however, it is not always straightforward to compute. In particular,

if the network is a general directed graph, it is NP-hard to compute such a path, since

it reduces to the two disjoint paths problem, which is NP-complete [41].

However, there are many interesting classes of graphs for which it is possible

to compute such a path Pe in polynomial time, including undirected graphs and

directed acyclic or planar graphs [41]. We can also modify the mechanism to ask each

bidder to exhibit such a path, thus transferring the computational burden on to the

bidders. Also, these paths may be precomputed and used in many executions of the

mechanism-they do not depend on the costs or bids.

Another possibility is to use a set of covering paths that do not all terminate at

t-this can be easily computed, even for general directed graphs. Then, if the path

is picked, some arbitrary traffic is sent along this path. After this "audit" traffic

has been delivered, the lowest-price path is used for the intended traffic from s to t.

As long as the mechanism can verify that the traffic is correctly delivered, the edges

would still have an incentive to bid as specified. Similarly, if we could verify the exact

path that the traffic used, we could use non-simple paths to cover the edges; again, a

set of non-simple covering paths can easily be found.

3.4.2 Unknown Demand Path Auction

In the previous sections, we studied first-price auctions to meet a known demand,

argued that they had stable Nash equilibria, and showed how to adjust this auction

so that the equilibria chosen by the auctioneer had relatively small overpayments.
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In practice, however, it may not be possible to defer the setting of prices until the

demand is known. In this section, we examine the problem of achieving stable prices

without advance knowledge of the demand. Instead, the bidders and auctioneer share

knowledge of a common prior or probability distribution over the possible demands.

Ideally, we would like our results for first-price auctions with known demand to

carry over. For example, we proved in Section 3.4.1 that a first price auction for k

units of demand led to a payment of Pk = k[c(Fc(k + 1)) - c(Fc(k))] in any strong

c-Nash equilibrium. It is thus natural to hope that the same auction operating over

random k also has strong c-Nash equilibria with expected payment Ek [Pk]. This turns

out to be false-in fact, as we will show, a first-price auction might not even have e-

Nash equilibria (recall that strong e-Nash equilibria are a subset of e-Nash equilibria).

As -Nash equilibria do not exist in first-price auctions, we turn to more complex

auctions. We will exhibit an auction involving two parameter bids that, unlike the

single-parameter first-price auction, does have e-Nash equilibria. Furthermore, using

an indifference-breaking technique similar to that of the mechanism RandomPath,

we can restrict the set of equilibria in a variant of this auction to ones with bounded

payments. The bound is not quite the Ek[Pk] we hoped to achieve, but does bear

a clear resemblance to it. Unfortunately, we are unable to prove that this auction

is implementable in polynomial time as it involves solving an integer program. It

remains to be seen if further modifications of this auction can result in a polynomial-

time auction with bounded payments.

Definitions and Notation

The unknown demand case is modelled as follows: The demand can take any integral

value in the range [1, r], where r is a positive integer. Further, there is a known prior

distribution on the demand values; say that the demand is k with probability Pk,

for k = 1, 2..., r. We assume for simplicity that Pk > 0 for all k; our results easily

extend to a situation in which Pk = 0 for some values of k E {1, . .., r}.

An auction for the unknown demand case receives bids, and announces flows F1,

F2, ... , Fr for each possible demand value. For a first-price auction in this setting,
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each Fk E F must be a minimum price k-flow. We call the collection T = F,

F2 . ., Fr} a candidate solution. We also identify a solution F with the set of edges

in the union F U F2 U U.. Fr, and say that i E F if i E Fk for some k.

As before, we use c(F) to denote the total expected cost of a solution F =

(F,..., Fr) when the individual edge costs are c, and (.F) to denote the price of

the flow F when the bids are . When the auction is clear from the context, we will

denote the auction output by .F(&).

Impossibility of e-Nash Equilibria in First-Price Auctions

In this section, we show that a first-price auction may have no e-Nash in the unknown

demand case. Intuitively, this is because edges must tradeoff the probability of receiv-

ing flow with the profit of receiving flow. With a high bid, the profit is large, but the

probability of winning the auction is low. If the other bids are also high, an edge will

prefer to lower its bid to win with a higher probability. This will lead other edges to

lower their bids so as to restore their high winning probability. Now, however, the

first edge will increase its bid so as to increase its profit at the expense of its winning

probability, and so a cycle emerges in the bidding strategies, as the following example

shows.

Consider a graph with four parallel edges W, X, Y, and Z between the source and

the sink, with true costs w, x, y, and z respectively. The demand is either 1, 2 or

3; for simplicity, let the probability of each demand value be . Assign the costs

such that w + 50e < x + 42E = y + 12e = z. Suppose there W, X, Y, Z bid a, b, c, d

respectively. The proof repeatedly uses the -Nash conditions to show that one of

the following must hold: (1) There is an agent who would gain by raising its bid, or,

(2) There is an agent who would gain by undercutting another agent to win with a

higher probability.

Theorem 3.4.4 There is no pure-strategy -Nash equilibrium in the unknown de-

mand first-price auction.

Proof. First we prove a series of inequalities that the bids must satisfy in an c-Nash
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equilibrium:

Claim 1: a, b, c < d.

Proof: First, suppose d > y + 3c, and c > d. Then, by changing its bid to d - 6, for

small enough 6, Y would be selected with probability 1/3 and so get utility greater

than e; thus, any solution in which Y had 0 expected payoff would not be an e-Nash

equilibrium. As the same is true for w and x, we must have a, b, c < d. Now, suppose

d < y + 3E. Then, d < z - 3, and as Z is selected with probability 1/3, its payoff

is less than --e, which cannot be true in the equilibrium. Thus, in this case too, we

have d > a, b, c.

Claim 2: d > y - 3.

Proof: If d < y - 3, then Y could not underbid Z without having expected utility

less than -E. Hence, Z would be chosen with probability at least (if the demand

was 3). But d < z - 3, and hence Z's expected utility would be less than -, and

hence this cannot be true in an e-Nash equilibrium.

Claim 3: a, b, c > x + 21e.

Proof: Suppose the order of the bids is a < b < c. Then, by Claim 1, W wins with

probability 1, X with probability 2/3, and Y with probability 1/3. Thus, we must

have (b - a) < , (c - b) < 2, and (d - c) < 3, or else one of W, X, Y could increase

her profit by . A similar argument holds if the bids are in a different order. Thus

a, b, c > d - 6E. By Claim 2, this implies a, b, c > y - 9 which equals x + 21.

Claim 4: b < c.

Proof: By Claim 3, c > x + 21e. If we had b > c, then X could deviate by bidding

c - 6. This would involve a bid reduction of at most 6, but would enable X to win

with a additional probability, leading to a net gain of at least e.

Claim 5: a < b.

Proof: If a > b, W could deviate to b - e, resulting in a gain of at least , as above.

These claims imply that (a, b, c, d) is not an -Nash equilibrium: We have shown

that a < b < c < d. It also must be true that (c-b) < 2, and c > y- 3 E. Thus,

b > x + 25e. Further, (b - a) < E. Hence, X could deviate to a - 6, resulting in a net
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gain of greater than e.

Implementation in e-Nash Using a 2-Parameter Bidding Scheme

In this section, we show that by allowing 2-parameter bids, we can define an auction

with e-Nash equilibria. Intuitively, a two-parameter auction gets around the problem

of a single-parameter auction by letting the edges express their preferences over the

entire price-probability space. It allows to an edge to bid a "price" such that the

expected payment of any edge with a non-zero probability of winning is equal to its

price. In particular, we will allow edges to report their cost along with a demanded

profit and then guarantee that the expected payment of a winning edge is exactly its

reported cost plus its demanded profit.

Auction 2-Parameter:

In the following auction, each edge i submits a pair ai = (ci, ui) as its bid, where ci

is interpreted as the reported cost of edge i, and ui is interpreted as the profit that

edge i demands.

1. Define an indicator variable xik for the event that edge i is on the selected flow

Fk, and yi for the event that edge i is selected to be on some flow. Also, for any

node a in the network, let In(a) denote the set of incoming edges, and Out(a)

denote the set of outgoing edges. Find an optimal solution to the following

integer program (IP for short).

minimize E Pk E CiXik + ifti (3.12)
k=1 i E iEE

subject to Va s,t, V < k < r: XEik - E ik = (3.13)
iEOut(a) iEIn(a)

V1 < k < r: Exik - Xik = k (3.14)
iEOut(s) iEIn(s)

V 1< i < n, Vl < k < r: yi - ik O (3.15)

Vl <i <n, Vl <k<r: Xik E 0, 1

V1 <i<n, Vlk<r: yi E (0,1}
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2. Set Fk = {i : Xik = 1} and F = {F1,. . .,Fr}. For each i CE F, calculate the

probability Pi = -{kliFk} Pk that i wins. If the actual demand turns out to

be r, use the edges in Fk to route the flow, and pay each edge i E Fk a sum

C + i
Pi

Remark 3.4.1 Notice with these payments, IP 3.12 chooses a flow solution which

minimizes the total expected payment for a fixed bid vector: constraints 3.13 and 3.14

guarantee that the set Fk = i : ik = 1} form a feasible k-flow and constraint 3.15

guarantees that edges selected to be on a flow are paid their reported cost.

We now prove that this auction has e-Nash equilibria. To develop some intuition

for the proof, recall that in the known demand case, only bidders on the cheapest

flow had the flexibility to submit a bid significantly more than their cost and still

win the auction. A similar statement holds here when the first parameter of all bids

are restricted to be equal to the cost. In particular, the following bid vector should

intuitively be an -Nash equilibrium: for edges i ' F(a), set ai = (ci, 0); for edges

i C F(d), set i = (ci, ui) where the ui divide up the available profit (the difference

between the price of the cheapest and second cheapest flow). Edges i F f.F(&) can not

afford to decrease their bids and have no chance of winning by increasing their bids,

so they have no profitable deviation. As the expected payment of any edge i E .F(5?)

is the same regardless of their winning probability, these edges also have no incentive

to decrease their bid. By an appropriate choice of {Ii}, we can arrange that if they

increase their bid then they will drop out of the solution.

We formalize this argument by using a linear-programming technique similar to

the proof of Theorem 3.2.1. The variables of the linear program (LP) are the profits

demanded by the bidders (that is, the second parameter of the bid). The LP con-

strains the total profit demanded by a set of bidders to be at most the cost-savings

induced by this set. Let F* be the minimum cost solution and ui be a variable corre-

sponding to the profit demanded by bidder i. Consider the following linear program.
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n

maximize z ui (3.16)
i=l

subject to V feasible solutions F ui < c(F) - c(.*) (3.17)
ioJ

Vl <i <n: ui > O

This LP is clearly feasible as ui = 0 for all i satisfies all constraints. We will show

that for an optimal solution {uf*}, the set of bids {(ci, max{0, u* - e/(2n)})} form an

e-Nash equilibrium.

Theorem 3.4.5 For any e > O, let ui = max{O, u* - and consider the bid profile

defined by a- = (ci, ui) for each edge i. Then a- is an e-Nash equilibrium.

The proof uses three lemmas regarding the bids of the minimum price solution.

The first lemma shows that edges i F* not in the minimum cost solution have

zero demanded profit (that is, ui = 0). This confirms the intuition that, as in the

known-demand case, only edges in the minimum-cost solution can demand a payment

significantly more than their cost.

Lemma 3.4.3 The minimum cost solution includes all i with u* > 0.

Proof. Consider the inequality in LP 3.16 corresponding to solution F*. This

inequality states that i* u* < O. Together with the non-negativity constraints,

this implies that u* = 0 for all edges i not in the minimum cost solution. Thus the

minimum-cost solution includes all edges i with u* > 0. D

The second lemma supports the intuition that the minimum cost solution .F* has

minimum price.

Lemma 3.4.4 The minimum cost solution is a minimum expected price solution with

respect to bids ai = (ci, fi )
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Proof. As the first parameter of any bid ai is ci, the expected price of any solution

F is equal to its expected cost plus the sum of demanded profits of its edges. Since

u* = 0 for i ¢ F"*, we have

n

a(*) = c(F*) + Zu*. (3.18)
i=l

For any flow X, the inequality 3.17 of LP 3.16 corresponding to F states that c(Y*) <

c(F) - yi. u*. Adding Ein'l u to both sides and using equation 3.18 gives a(F*) <

a( F) [

The third lemma argues that no single edge is essential to the minimum price

solution. In other words, for each edge there is a minimum price solution that avoids

that edge. Intuitively, if this were not the case, then the edge ought to be able to

demand extra profit.

Lemma 3.4.5 With bids a = (ci, iu), for any edge i there is a minimum price solu-

tion F(i) that does not contain i.

Proof. Let Y be a solution not containing i and suppose every minimum price

solution contains i. Then, by Lemma 3.4.4, the inequality corresponding to F must

be strict. As this holds for any solution F not containing i, every inequality containing

u* is strict. Therefore u* + is a feasible solution for some 6 > 0, contradicting the

optimality of solution u*. El

Proof of Theorem 3.4.5. Suppose a- is not an e-Nash equilibrium. Then, there

is some i which can change its bid to increase its payoff by e. Let (c', u') be i's

successful strategy, and let a' denote the bid profile given by ai = (ci, ui) and a = a-

for all j Z i. Let F be the solution output by the mechanism with bids a- and F'

be the solution output by the mechanism with bids a'. Note it must be the case that

i C F'.

We observe that the change in expected price of F' from bid vector a' to a-

is at least . Let Pi be the probability (over the demand distribution) that i is in
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solution F'. Then i's utility increases from ui to u'i +-- (c - ci)pi, and so by assumption

ui +- (c - Ci)pi- ui > e. Therefore, as only i's bid changes and i E F',

a'(F') - a-(F') = (u; + pic) - (ui + piCi) > e. (3.19)

Now, by Lemma 3.4.5, there is a solution (i) not containing i which has minimum

price with respect to bids a = (ci, i*). Let (i) be that solution. Then a(y(i)) 

a(P'). Note that for any solution F, the price with respect to bids a- is within e/2

of the price with respect to bids : a-(F) < &a(f) < a-(.F) + e/2. Therefore

) = a- (F')

< a-(F') + /2

< a'(F'),

where the last inequality follows from inequality 3.19. This contradicts the optimality

of '. 

Randomized 2-parameter Auction

The mechanism presented above has an e-Nash equilibrium corresponding to every

optimal solution to LP 3.16, but we cannot guarantee that there are no other -

Nash equilibria. As a result, it was not possible to bound the total payoff to the

edges. In this section, we consider a slightly modified mechanism in which we add a

small random payment, as in the mechanism RandomPath. We prove that, with this

modification, it is possible to bound the total payment. Our mechanism uses Auction

2-Parameter as a subroutine and therefore is not implementable in polynomial-time.

Randomized 2-parameter Auction: As before, each edge i bids a pair ai = (ci, ui)

where ci is interpreted as i's reported cost, and ui is interpreted as i's demanded profit.
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1. The 2-parameter auction. This step is conducted exactly as in Auction

2-Parameter by solving IP 3.12 to select the minimum price solution.

2. Rejection. If for any edge not in the selected solution ui y! 0, reject the bid

profile. No edge is selected and no flow is sent.3

3. The randomized audit. For edges on a random source-destination path, the

payoff is based entirely on the i component of the bid, and is constructed as

in the mechanism RandomPath. The parameters , r, and B are as defined in

the mechanism RandomPath. If an edge has true cost ci and bids (ci, ui), its

expected payoff from this component is g(Ci) = [ciCi - 2 ]. The exact form of

the payoff was derived in the proof of Lemma 3.4.1.

The audit component of the auction encourages edges to submit bid vectors in

which their costs are nearly truthful. The first two steps of the auction help guarantee

that the demand profits form a nearly feasible solution to LP 3.16. These facts allow

us to derive bounds on the expected payment as stated in the following theorem.

Theorem 3.4.6 The total price paid by the auctioneer in the randomized 2-parameter

auction is at most

j= pjc(Frl ) -rc(.F) + nr 3ln2B.

The result of Theorem 3.4.6 stands in an interesting relation to that of The-

orem 3.4.1. We do not achieve the intuitively appealing bound of the expecta-

tion of the bounds on the known demand auction in Section 3.4.1, i.e., Ej[Pj] =

c=1jpj(c(Fj+) - c(Fj)) but instead we achieve =1 rpj(c(Fr+l)(j/r) - c(Fj)). In

other words, the external multiplier j is replaced by r (a larger quantity), while in

the first term the quantity c(Fj+l) is replaced by c(Fr+l)(j/r), which can also be

larger because the cost of j units of flow is a convex function of j. Our Theorem 3.4.1
3This step ensures that, for all edges i not in the winning solution, i is 0. Alternatively, we

could ensure that these iii are close to zero (which is enough for our purposes) by charging a small
tax to all bidders who submit a positive ii component of the bid.
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is therefore weaker in two important respects than Theorem 2, but it does have a

similar overall structure.

To prove Theorem 3.4.6, we first show that all edges are nearly truthful about

their costs in equilibrium:

Lemma 3.4.6 Let a = (, ) be an e-Nash equilibrium of the randomized 2-parameter

auction. Then, for all i,

ci - 2/ i < Ci C+ 2/

Proof. We argue that player i can always do better by bidding his true cost; the

bounds follow from the e-Nash equilibrium condition and the expected-payoff graph

of the randomized path audit. Let Pi be the probability of i being included in the

lowest price solution in the -Nash equilibrium a. If Pi = 0, then i's entire expected

payoff is due to her expectation of winning in the randomized path audit, and the

bounds on i follow directly. The same argument holds if Pi > 0 but i receives a

negative expected payoff from the 2-parameter auction (because her bid ci was too

low).

Now, suppose Pi > 0, and, further, i receives a positive payoff from the 2-parameter

auction in the -Nash equilibrium. Consider the strategy a = (i, u') with u =

ui + pi[ci - ci]. (i received a non-negative profit under a, so it follows that u' is non-

negative.) Let F be the solution chosen in the 2-parameter part of the mechanism

when the bids are . Note that if i were to deviate from ai to a', the price of F would

not change: the change in the utility component would exactly cancel the change in

the cost component. Also, for any other flow F' that did not use i, the price of F'

would not change with i's deviation; thus, using the consistency of the tie-breaking

rule, F' would not be chosen above F. Thus, we conclude that i remains in the

winning solution (which need not be F) under the bids ai.

Next, observe that i's expected payoff from the 2-parameter auction (with bid ai)

is u'i, because i bids her cost truthfully and is in the winning solution. This is exactly

the same as i's payoff pi[ci - ci] + ui from the 2-parameter auction in the -Nash
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equilibrium ii.

To prove the bounds on ci, we compare i's payoff from the randomized part of

the mechanism with bids ai and a'. The bounds follow directly from the form of the

randomized audit payoffs. El

Using the fact that the costs are nearly truthful, we can show that the utility

values are an (almost) feasible solution to LP 3.16, and hence, derive the following

bound on the total payment. We use the linear programming formulation given in

LP 3.16, only this time we define the LP with respect to the reported costs rather

than the true costs. Rewriting, we get

n

maximize ui (3.20)
i=l

subject to V feasible solutions F: E ui < a() - (F*)
if F

V1 < i < n: ui > O

where F* is now the minimum cost solution with respect to costs c.

Let a = (i, u) be any e-Nash equilibrium of the Randomized 2-Parameter Auction.

Let F* be a minimum cost solution with respect to costs , and let Fr+l be a minimum

cost (r + 1)-flow with respect to costs c.

Lemma 3.4.7 Let u be any feasible solution to LP 3.20. Then for bids a = {(5i, u)},

the minimum price solution F satisfies

r

(F) < (Fr+) Ajpj - rC(F*).
j=1

Proof. Throughout this proof, minimum cost refers to minimum cost with respect

to cost vector . Consider an integral (r+ 1)-flow Fr+i minimizing c(Fr+i). Then Fr+1

is a minimum cost (r + 1)-flow and consists of (r + 1) disjoint paths {P1 , , Pr+1}

from s to t. For each k E {1, 2,. ,r,r + 1}, define Fr, = Fr+l\Pk, that is, the

r-flow obtained by dropping the k'th path. Extend Fr, to a collection of flows

F-k = {Fk, F2k, , Fk} where Fk consists of the j lowest-priced paths in F k.
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Noting that F - k has cost at most J that of Frk,

r

a(-k) < (F;k) Zp.>
j=l

Now, summing the inequality corresponding to -k over all k, we get:

r+l r+lrZL~i < E·(F -k) p Pj-
k=l iFr-k k=l j=1

Note that the left hand side includes each element of Fr+1 exactly r times. Similarly,

the flows F -k in the right hand side cover Fr+1 exactly r times. Thus,

n r

(r + 1) ui- ui < r(Fr+I) Epj -(r +1)(*)
i=1 i)Frk j=1

and so,

a(f) < a(F*)
n

< (*)+ Ui
i-=1
n n

< c )+ Ui + r E ui Ui
i=l i=l iFr-k
r~ji

< c(F+l) jpj - r(*)
j=1

Now, to prove our main theorem, we simply need to prove that the bid profile is

a feasible solution of the linear program.

Proof of Theorem 3.4.6. Similar to Theorem 3.4.3, the total probability that

the mechanism picks a path in the randomized audit is bounded by na. Any such

path can have at most n edges on it, each with price at most B. Thus, the expected

payment for using one of these paths is at most n2B. Similarly, we can bound the

bonus fe(b) paid to any edge e: fe(b) < n[aB + rnB2 ]. This is always less than

2anB.
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Now we show that vector it of demanded profits in bid profile & is a feasible solution

to LP 3.20. By assumption, for all losers, the demanded profit is zero. Therefore,

n n

(/F) = a(f) + ui > (F*) + ui.
i=l i=l

Consider any solution ' and note that

n

(F') + : ui = a(F') a(f) > c(*) + ui,
iEYn i=l

and so the constraint corresponding to F' is satisfied. Therefore is a feasible so-

lution. Since the u satisfy the conditions of Lemma 3.4.7, noting that for any set of

edges F, c(F) - nV 2/T< (F) < c(F) + n2v/T;, we can apply Lemma 3.4.7 to

get the result. 
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Chapter 4

Cost-Sharing Auctions

Consider a situation where a group of customers (the agents) wish to buy a service

such as connectivity to a network. The total cost of this service is a function of the

group of customers that is serviced: a group of customers in distant towns might incur

a larger cost than a group of customers in the same town. The service provider wants

to run an auction in order to determine which subset of agents to service and at what

cost. To this end, he might implement the Vickrey-Clark-Groves (VCG) mechanism,

and thus have a strategyproof mechanism which services the most efficient group

(that is, a group for which the sum of valuations minus cost is maximized). There

are, however, several drawbacks to this solution. First, it is impossible for the VCG

mechanism, or for that matter most efficient mechanisms, to be budget-balanced (that

is, charge prices that exactly recover the cost of the service).l A mechanism which

under-charges or over-charges customers is not economically viable. Second, although

the mechanism is strategyproof, agents can benefit by lying if they coordinate their

bidding strategies and so the mechanism is not group strategyproof.

In a group strategyproof mechanism, not even a group of agents should be able to

benefit by cooperatively lying. This discourages complicated bidding strategies, and

reduces concerns that the equilibrium of a truthful mechanism might not be stable

if bidders collude. In the Vickrey-Clark-Groves (VCG) auction for a single item, for

1This impossibility result can be avoided by imposing a compatibility condition on individual
beliefs and using a Bayesian model [21]. See Moulin and Shenker [87] for a discussion of the tradeoff
between budget-balance and efficiency in our setting.
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example, the two highest bidders can collude to bid just above the value of the third-

highest bidder. With such a strategy, the highest bidder improves his utility without

harming the second-highest bidder.2 Group strategyproofness attempts to guard

against these coalitions. In other words, group strategyproof mechanisms require

that, even for groups of agents, truthfulness remains a dominant strategy.

The notion of group strategyproofness bears an interesting relationship to that of

strong Nash equilibria introduced in Chapter 3. As strong Nash equilibria strength-

ened the notion of Nash equilibria by permitting collusion in the strategies, group

strategyproofness strengthens the notion of strategyproofness in the same way. The

key difference in this analogy is that in a coalition in a strong Nash setting, every

member was required to strictly benefit. In the group strategyproof setting, we only

require that no member is sacrificed to benefit the rest. An even stronger notion can

be defined if side-payments are permitted. In this case, the only requirement for a

coalition to form is that the total utility of the colluding group must strictly increase.

Side-payments require a transfer of money between bidders which might be restricted

in some settings either due to legal concerns or issues of trust, and so we do not con-

sider side-payments in this chapter. For a discussion of collusion with side-payments,

see Goldberg and Hartline [47].

In this chapter, we study the budget-balance properties of group strategyproof

mechanisms. At the base of any mechanism for these problems lies a cost-sharing

scheme, or method for sharing the cost of the service among the serviced customers.

Cost-sharing schemes are of independent interest and have been studied extensively

especially in the context of the allocation of a public good (see, for example, [86]

and [118]). The question of what constitutes an equitable cost-sharing is difficult

to define and has been the subject of centuries of thought, dating from Aristotle's

proclamation of "equal treatment of equals and unequal treatment of unequals in

proportion to their inequality" in his book on Nicomachean Ethics [7] through mod-

ern times. One plausible notion of equity is that of cross-monotonicity or population

2Note that this coalition was forbidden by the strong Nash equilibrium notion defined in Chap-
ter 3 as the second-highest bidder's utility is not strictly increased. In fact, any dominant strategy
equilibrium is also a strong Nash equilibrium but not necessarily group strategyproof.
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monotonicity (see [112] for a survey). Intuitively, cross-monotonicity requires that the

price charged to any individual in a group does not increase as the group expands.

There is a large body of literature [25, 26, 57, 66, 85, 94, 107, 110] on cross-monotonic

cost-sharing schemes for submodular cost functions3 , a subclass of cost functions of

particular interest. Many mechanisms exist, prominent among them the Shapley

value [107], which minimizes the worst-case efficiency loss, and the Dutta-Ray solu-

tion [26]. Both of these are budget-balanced and cross-monotonic for any submodular

cost function, but not efficient.

As observed by Moulin and Shenker [87], cross-monotonic cost-sharing schemes

can be used to construct group strategyproof mechanisms, or mechanisms that re-

sist collusion among the agents. As submodular cost functions have cross-monotonic

cost-sharing schemes that are budget-balanced, the group-strategyproof mechanisms

derived from these schemes are themselves budget-balanced. These schemes have

been applied to derive group-strategyproof mechanisms for important submodular

cost functions such as multicast on a tree [36, 34, 33]. Unfortunately, many classes

of important cost functions arise from (often NP-hard) optimization problems and

fail to be submodular. For example, the cost of providing the service for a set S

of agents could be expressed as the cost of building the cheapest Steiner tree that

covers the elements of S, or the minimum cost of opening facilities and connecting

each member of S to an open facility. These two games, and many others of practical

import, are instances of covering games. For such games, it is usually impossible

for a cross-monotonic cost sharing scheme to be budget-balanced. Moreover, even if

a budget-balanced cross-monotonic cost sharing scheme exists, it might be hard to

compute. Therefore, it is natural to consider cost sharing schemes that are approxi-

mately budget balanced, that is, they recover only a fraction of the cost of the service.4

Approximately budget-balanced schemes have been proposed for minimum spanning

3 Sometimes called concave games in the cooperative game theory literature.
4Alternatively, we can relax the definition of budget balance by allowing the scheme to recover

at least the cost; of the service and at most a small multiple of the cost of the service. This definition
seems more reasonable, since a business usually needs to at least recover its costs. However, the
two definitions are equivalent up to a constant multiple. To be consistent with other papers on this
topic, we use the first definition in this chapter.
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tree [64, 68], Steiner tree [64], Steiner forest [72], facility location [90], and connected

facility location [78].

We can derive simple bounds on the budget-balance factor of combinatorial op-

timization games using the integrality gaps of the "natural" LP-relaxations. The

cross-monotonicity of a cost sharing scheme implies that for every set of agents the

cost shares form an allocation in the core of the game (see Section 4.1 for defini-

tions). Therefore, the best budget-balance factor achievable by a cross-monotonic

cost sharing scheme cannot be better than that of a cost sharing in the core. A

simple extension of the classic Bondareva-Shapley theorem [13, 108] implies that the

best budget-balance factor for a cost sharing in the core of integer covering games

is equal to the integrality gap of the "natural" LP-relaxation of the problem (this

fact was observed by Jain and Vazirani [64]). This line of reasoning proves bounds on

cross-monotonic cost sharing schemes for many combinatorial optimization games. In

particular, metric facility location, vertex cover, and set cover games cannot recover

more than a 1463' , and fraction of the total cost, respectively. Prior to this work,

this was the only method known for upper bounding the cross-monotonic cost sharing

schemes. In this chapter, we show stronger upper bounds for several combinatorial

optimization games using a novel technique based on the probabilistic method that

will be explained in Section 4.2. In particular, we prove that the best budget-balance

factor achievable for the facility location game is , proving optimality of the scheme

given by Pal and Tardos [90]. Also, for the vertex cover and set cover games, we show

that no cross-monotonic cost sharing scheme can recover more than an O(n- 1 / 3 ) and

( ) fraction of the the total cost, respectively. We also apply this technique to several

other games including the maximum flow and the maximum matching games. In

subsequent work, K6nemann et al. [73] used our techniques to prove a tight bound of

1 on the budget-balance factor of the Steiner tree game.

One might wonder if our negative results on cross-monotonic cost sharing schemes

imply similar negative results for group-strategyproof mechanisms. As we know

that there are group-strategyproof mechanisms that do not correspond to any cross-

monotonic cost-sharing scheme, our negative results for cross-monotonic schemes do
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not immediately imply negative results for group-strategyproof mechanisms. How-

ever, we give a partial characterization of group-strategyproof mechanisms in terms of

cost-sharing schemes that satisfy a condition weaker than cross-monotonicity, and use

this characterization to prove that group-strategyproof mechanisms that satisfy an

additional condition called upper continuity give rise to cross-monotonic cost-sharing

schemes, and therefore our negative results apply to such mechanisms.

The rest of this chapter is organized as follows. In Section 4.1, we present the

definitions of cross-monotonic cost sharing schemes. Section 4.2 contains a description

of our upper bound technique, highlighted by the example of the edge cover game

(Section 4.2.1), and proof of bounds for the set cover game (Section 4.2.2), the vertex

cover game (Section 4.2.3), the facility location game (Section 4.2.4) , and several

combinatorial profit-sharing games (Section 4.2.5). In Section 4.3 we define group-

strategyproof mechanisms and prove several results relating such mechanisms to cost-

sharing schemes.

The results of this chapter are based on joint work with Mahdian and Mirrokni [61].

4.1 Setting

Let v denote a set of n agents who are interested in a service. A cost-sharing game

is defined by a function C : 2' - R + U {0O which for every set S C , gives the

cost C(S) of providing service to S. 5 A cost allocation for a set S C_ 6 is a function

: S F-t R+ U {O}, that for each agent i E S, specifies the share 4(i) of i in the total

cost of servicing S. A cost-sharing scheme is a collection of cost allocations for every

S C d.

Definition 11 A cost sharing scheme is a function : x 2a -* R+ U {O} such

that, for every S C Wa and every i S, (i, S) = 0.

5 This is similar to the notion of a coalitional game with transferable payoff, where the cost function
is replaced by a function that gives the value, or the worth of each set. This notion was first defined
by von Neumann and Morgenstern [116].
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Intuitively, we think of ((i, S) as the share of i in the total cost if S is the set of

agents receiving the service.

Ideally, we want cost sharing schemes (and cost allocations) to be budget-balanced,

that is, for every S C a, EiEs (i,S) = C(S). Budget-balance is desirable as it

guarantees economic viability of the auction. However, it is not always possible to

achieve budget balance in combination with other properties, or even if it is possible,

it might be computationally hard to compute the cost shares. Therefore, we relax

this notion to the notion of a-budget balance (for some a < 1).

Definition 12 A cost sharing scheme is a-budget-balanced if, for every S C ds',

aC(S) < Eies (i, S) < C(S).

This definition guarantees that the mechanism does not over-charge agents, but it

may under-charge them. Alternatively, one could define a-budget balance as C(S) <

-ies (i, S) < 1C(S) and equivalently relax the notion of a-core (see Definition 13).

All negative results hold without modification in this alternative framework as well;

the positive results extend by multiplying each ((i, S) by !. To be consistent with

other papers, we use the first definition in this chapter.

In addition to budget balance, we usually require cost allocations and cost-sharing

schemes to satisfy additional properties. One property that is extensively studied

in the classic cooperative game theory literature [8, 13, 43, 103, 108, 109] is the

property of being in the core, first suggested by Edgeworth [28] in 1881. This property

intuitively says that no subset of agents should be overcharged for the service.

Definition 13 A cost allocation Vb for a set S C d is in the a-core if and only if it

is a-budget balanced and for every T C S, ZieT +(i) < C(T). A cost-sharing scheme

Z is in the a-core if and only if for every S, (-, S) is in the a-core.

Another property, which was studied by Moulin [85] and Moulin and Shenker [87]

in order to design group-strategyproof mechanisms (see Section 4.3), and has recently

received considerable attention in the computer science literature (see, for example,

[64, 66, 68, 90]), is cross-monotonicity (or population monotonicity). This property
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captures the notion that agents should not be penalized as the serviced set grows.

Namely,

Definition 14 A cost sharing scheme is cross-monotone if for all S, T C v and

i E S, (i,S) > (i, SUT).

It is a simple exercise to show that every a-budget-balanced cross-monotonic

cost sharing scheme is in the a-core, but the converse need not hold. Therefore,

cross-monotonicity is strictly stronger than the core condition. Using this fact and

a simple extension of the classic Bondareva-Shapley theorem [13, 108] (see Jain and

Vazirani [64]), one can derive upper bounds on the budget-balance factor of cross-

monotonic cost-sharing schemes for covering games in terms of the integrality gap

of their LP formulation. In the next section, we derive a technique based on the

probabilistic method which yields stronger bounds.

4.2 Upper bounds for cross-monotonic cost shar-

ing schemes

In this section we present the main idea behind our upper bound technique and

prove upper bounds for several games defined based on combinatorial optimization

problems. We explain the technique in Section 4.2.1 with a simple example of the edge

cover game and then extend it to the set cover game in Section 4.2.2. Sections 4.2.3,

4.2.4, and 4.2.5 contain the proofs of our bounds for the vertex cover, facility location,

and several other games.

4.2.1 A simple example: the edge cover game

In this section, we explain our technique using the edge cover game as a guiding

example. The edge cover game is defined as follows.

Definition 1.5 Let G = (V, E) be a graph with no isolated vertices. The set of agents

in the edge cover game on G is the set of vertices of G. Given a subset S of vertices,
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the cost of S is the minimum size of a set F C E of edges such that for every v E S,

at least one of the edges incident to v is in F. Such a set F is called an edge cover

for S.

It is easy to see that for every set S, one can obtain a minimum edge cover of

S by taking a maximum matching on S and adding one edge for every vertex that

is not covered by the maximum matching (see [23]). Using this fact, we can give

a cost-sharing scheme that is in the -core of the game: charge each vertex that

is covered by the maximum matching , and other vertices 2 Since there is no

edge between two vertices that are not covered by the maximum matching, this cost-

sharing scheme satisfies the core property (but not cross-monotonicity). Furthermore,

it is easy to see that the sum of the cost shares is always equal to times the edge

cover for S. Therefore, there is a cost-sharing scheme satisfying the core property

with a budget-balance factor of . In fact, Goemans [44] showed that for every graph

there is a cost sharing scheme in the -core. However, in the following, we show that

no cross-monotonic cost-sharing scheme can achieve a budget-balance factor better

than 1

Theorem 4.2.1 For every > O, there is no ( +)-budget balanced cross-monotonic

cost sharing scheme for the edge cover problem.

Here is the high-level idea of the proof: We assume, for contradiction, that there is a

cross-monotonic cost sharing scheme that always recovers at least a ( + e) fraction

of the total cost. We explicitly construct a graph G (or in general the set of agents

.W and the structure based on which the cost function is defined), and look at the

cost-sharing scheme on this graph. For edge cover, this graph is simply a complete

bipartite graph Kn,,, with n large enough. Then, we need to argue that there is a

set S of agents such that the total cost shares of the elements of S is less than 1 + s

times the size of the minimum edge-cover for S. This is done using the probabilistic

method: we pick a subset S at random from a certain distribution and show that in

expectation, the ratio of the recovered cost to the cost of S is low. Therefore, there

is a manifestation of S for which this ratio is low. In the edge-cover example, we pick
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one vertex v of G uniformly at random and let S be the union of v and the set of

vertices adjacent to v. We now need to bound the expected value of the sum of cost

shares of the elements of S. We do this by using cross-monotonicity and bounding

the cost share of each vertex u E S by the cost share of u in a substructure Tu of

S. Bounding the expected cost share of u in Tu is done by showing that for every

substructure T, every u E T has the same probability of occurring in a structure S

in which Tu = T. This implies that the expected cost share of u in Tu (where the

expectation is over the choice of S) is at most the cost of Tu divided by the number

of agents in Tu. Summing up these values for all u gives us the desired contradiction.

Proof of Theorem 4.2.1. Assume that there is a ( + E)-budget-balanced cross-

monotonic cost sharing scheme 6. Let G be the complete bipartite graph Kn,n, where

n will be fixed later, and consider on G. For every v E V(G), we let Sv be the

union of v and the set of vertices adjacent to v (that is, all vertices of the other part).

We pick a set S of agents by picking v uniformly at random from V(G) and letting

S = Sv. By the definition of the edge cover game,

C(Sv) = n for every v. (4.1)

On the other hand,

Es [Z (i,S)]= E [(v,S,)] + E [ E ( S)]
iES uESv\{v}

< + E [ (u, u,v})], (4.2)
uEsv\{v}

where the last inequality follows from the facts that for every vertex u and every set

S, (u, S) < 1, and that for every v E V(G) and u E S \ {v}, (u, Sv) < (u, {u, v}).

Both of these facts are consequences of the cross-monotonicity of 6. By the definition

of expected values, we have

Ev [ ,(u,{u,v})]= n Evu [(u, {u,v}) ], (4.3)
ueS\{v}

107



where the second expectation is over the choice of v from V(G) and u in S \ {v}.

However, choosing a vertex v and then a neighbor u of v at random is equivalent to

choosing a random edge e in G at random, and letting u be a random endpoint of e

and v be the other one. By the budget-balance condition, the sum of the cost shares

of the endpoints of e is at most one. Therefore, for every e, if u is a random endpoint

of e and v is the other endpoint, E[~(u, {u, v})] < 1. Thus, the right-hand side of

Equation 4.3 is at most . Therefore, by Equations 4.1 and 4.2, we have

KES ,<(i, < < I +*
Es [ C(S) < n 2

for n > 1/E. Therefore, there is a set S satisfying EiES,S) < + E, which is a

contradiction with the assumption that is ( + E)-budget balanced. 

It is not difficult to see that the cost-sharing scheme satisfying ((i, S) = 2 for

every i C S is cross-monotonic and -budget balanced. Therefore, the bound given

in the above theorem is tight.

4.2.2 The set cover game

The set cover game is defined as follows.

Definition 16 Let W be a set of agents and g be a collection of subsets of v such

that every element of a is contained in at least one set in g. For every S C qX, the

cost of S in the set cover game is the minimum size of a subcollection 9 C 6' such

that every x E S is contained in at least one set in S. Such a collection S is called

a set cover for S.

One can think of the edge-cover problem as a special case of the set cover problem

in which the size of each set is 2. It is not difficult to generalize Theorem 4.2.1 to

the special case of set cover in which the size of each set is k, and prove that for k

constant, no cross-monotonic cost-sharing scheme for this problem can recover more

than a - fraction of the cost. Using a similar argument, the next theorem shows that
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for the general case of the set cover game, no cross-monotonic cost-sharing scheme

can recover more than a O(1) of the total cost.

Theorem 4.2.2 There is no cross-monotonic cost-sharing scheme ~ for the set cover

game such that for every set S C X, d recovers more than a 0(-1) fraction of the

cost of S.

Proof. Assume that there is such a cross-monotonic cost sharing scheme J. Consider

the following set cover game. Let ad be a set of n2 agents that can be partitioned

as = Al LJ A 2 U U An, where Ai's are disjoint sets each of size n. Define as

the collection of all sets S C a such that IS n Ail = 1 for every i = 1,..., n. An

alternative way to look at this is that W and g are sets of vertices and edges of an

n-uniform n-partite complete hypergraph.

We pick a random set S of agents in the above game as follows: Pick a random

i from {1,..., n}, and for every j i, pick an agent aj uniformly at random from

Aj. Let T = {aj : j Z i} and S = Ai U T. The cost of the optimal set cover solution

on S is always at least n, since no set in & contains two distinct elements of Ai, and

therefore each element of Ai must be covered with a distinct set in .

We now bound the average recovered cost over the random choice of S.

Es[ (x,S)] = E [ (x,S)] + E [ (aj, S)]
xES xEAi ji

< E [ ((x,{x} UT)] + E [ (aj,T)]
xEAi ji

Since all elements of T can be covered by one set, the second term in the above

expression is at most 1. We write the first term as nEs,x [(x, {x} U T)] where the

expectation is over the random choice of S and the random choice of x from Ai. As

in the proof of Theorem 4.2.5, the expected value of ((x, {x} U T) in this experiment

is equal to the expected value of Ejn=1 (aj, al,..., an}) in an experiment that

consists of choosing an agent aj from each Aj uniformly at random. By the budget-

balance property, we always have j=l 1 (aj,(al,...,an}) C({al,...,an}) = 1.

Therefore, the first term in the left-hand side of the inequality (4.4) is at most one.

109



This means that the expected total cost share recovered from the set S is at most

two. Therefore, the ratio of recovered cost to total cost of S is at most 2/n < 4/IS I.

Ol

It is worth noting that the above proof shows that even for the fractional set cover

game, no cross-monotonic cost-sharing scheme can achieve a budget-balance factor

better than O(1/n). 6 This is particularly interesting for the following reason: It is easy

to show that if there is an a-budget balanced cross-monotonic cost-sharing scheme for

the fractional set cover, then for any special case of the set cover problem of integrality

gap at most A, there is an ao/-budget balanced cross-monotonic cost-sharing scheme.

For example, if we could find a constant-factor for fractional set cover, we would

automatically get a constant-factor for metric facility location, generalized Steiner

tree, and many other network design games. Unfortunately, the above theorem shows

this approach for designing cross-monotonic cost-sharing schemes fails to recover much

of the cost.

4.2.3 The vertex cover game

The vertex cover game is defined on a graph G = (V, E). The set of agents is the

set of edges of G, and the cost of serving a set S C E is equal to the minimum size

of a set A of vertices such that for each e S, at least one of the endpoints of e

is in A. Such a set is called a vertex cover for the set S. It is well-known that the

integrality gap of the LP relaxation of vertex cover is 2, and therefore no allocation

in core can recover more than half the cost of the solution in the worst case [13, 108].

We show in the following theorem that if we require the cost-sharing scheme to be

cross-monotonic, then no constant-factor budget balanced scheme exists.

Theorem 4.2.3 For every > O, there is no cross-monotonic cost sharing scheme

for vertex cover that on every set S of n agents, recovers at least a (2+E)n-1 / 3 fraction

of the cost of S.

60Other bounds in the section also apply to the fractional variants of the corresponding games.
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Figure 4-1: Vertex Cover Sample Distribution

Proof. Assume, for contradiction, that such a scheme exists. We let G be a

complete graph on m + 2£ vertices, where m and e (m < ) are numbers that will be

fixed later, and consider the cost-sharing scheme on G. We show that there is some

set S of edges of G for which recovers at most a ISI-1/3 fraction of the cost. We

do this by picking S randomly from a distribution described below, and showing that

the above statement holds in expectation, and therefore there should be a particular

S satisfying the above statement.

Let 7r be a permutation of the m + 2f vertices. Let A be the set of the first m

vertices, B be the set of the next e vertices, and C be the set of the remaining e

vertices. We denote the i'th vertices of B and C (based on the ordering given by

7r) by bi and ci. Let S denote the set of all me edges between A and B, together

with the set of edges bici for i = 1,..., e. We pick S by picking the permutation r

uniformly at random and letting S = S,. See Figure 4-1 for an example.

If we denote the set of edges between A and B by T, we have

E [I: (e, S) ] < E [I (e, T) < , (4.4)
eET eET

where the first inequality follows from the cross-monotonicity of and the second

inequality is implied by the budget balance assumption and the fact that the cost of

the minimum vertex cover in T is m. We also let T be the set of all m + 1 edges in S

that have bi as an endpoint (see Figure 4-1). Equation 4.4 and the cross-monotonicity
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of ~ imply the following.

Es [Z(i,S)] = E [Z (e, S)]+ZE [(bici,S)|
iES eET i=l

e

< m + E [(bic, Ti)], (4.5)
i=l

We now need to analyze the expectation of T(bici,Ti) over the random choice of

7r. Notice that the only elements of 7r that are important in T(bici,Ti) are the

first m elements and the m + i'th and m + f + i'th elements (bi and ci). There-

fore, the expectation of 5(bici, Ti) over the choice of r is equal to the expectation of

( (Vm+2Vm+l, { VlVm+l, V2Vm+,- . . , VmVm+l, Vm+2Vm+l)) over the random choice of an

ordered list v1, v2,..., Vm+2 of m + 2 different vertices of G. However, in this ex-

periment it is clear by symmetry that the expected cost share of viVm+l is the same

for i = 1,. . ., m, m + 2, and therefore by the budget balance condition each of these

expected cost shares is at most m+i This, together with Equation 4.5 imply the

following.

Es [LZ(i S) ] <m+ m+ (4.6)
iES

On the other hand, the size of the minimum vertex cover in S is always £. Therefore,

the expected value of the ratio of ieS(i, ) to C(S) is at most + 1 . Thus,

there is a set S for which this ratio is at most m + mf. Taking m = V, we see that

the allocation on S recovers at most a 2 < (2 + e)ISI-1/3 fraction of the cost. E

We can show the following positive result for cross-monotonic cost sharing schemes

for the vertex cover which, together with a result of Moulin [85] (see Theorem 4.3.1),

implies an approximately budget-balanced group-strategyproof mechanism for this

problem (see Section 4.3). We do not know the right bound for the budget-balance

factor of the vertex cover game.

Theorem 4.2.4 For the vertex cover game, the cost sharing scheme that charges the

edge uv in the set S an amount equal to min(1/degs(u), 1/degs(v)) is cross-monotonic

and i -budget balanced.
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Proof. It is clear that this scheme is cross-monotone. We only need to verify the

budget-balance factor. Consider a set S of n agents (edges), and the graph G[S]

induced on this set of edges. We prove that the total cost share of the agents in S is

at least 1 times the cost of a vertex cover for S.

Divide the set of vertices into two subsets L and H, where L is the set vertices of

degree less than /n in G[S] and H is the rest of vertices (H = V(G) - L). As a vertex

cover solution, select H and both endpoints of all edges (u, v) such that u, v E L. We

show that the cost shares of the edges in S sum to at least a fraction of the cost

of this solution. First consider any edge e between vertices in L. The cost share of e

is at least , thus its cost share covers 1 of the cost of picking both its endpoints.

Now consider the vertices in H. Since the degree of each vertex v E H is greater

than or equal to +/E, the sum of the cost shares of the edges adjacent to v is at least

+/E = . Each edge is included in at most two such summations (namely, when

both its endpoints are in H), and thus the sum of the cost shares of edges adjacent

to vertices in H is at least a fraction of the cost of H. Therefore, the sum of

the cost shares of the agents in S is at least 1i times the cost of the optimal vertex

cover for S. [

4.2.4 The metric facility location game

Given a set of cities, facilities with opening costs, and metric connection costs between

cities and facilities, the facility location problem seeks to open a subset of facilities

and connect each city to a facility in a manner that minimizes the total cost. In

the facility location game, each city is an agent. The cost of a subset of agents is

the cost of the minimum facility location solution for that subset; a cross-monotonic

cost-sharing scheme tries to share this cost among the agents. In this section, we

prove that any cross-monotonic cost-sharing scheme for facility location is at best

1-budget-balanced. This matches the budget-balance factor of the scheme given by

Pal and Tardos [90].

We start by giving an example on which the scheme of Pal and Tardos [90] recovers
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Figure 4-2: Facility Location Sample Distribution

only a third of the cost7 . This example will be used as the randomly chosen structure

in our proof.

Lemma 4.2.1 Let I be an instance of the facility location problem consisting of

m + k - 1 cities Cl,.. c, c C,... , c_ 1 and m facilities fil, fm each of opening

cost 3. For every i and j, the connection costs between fi and ci and between fi and

c' are all 1, and other connection costs are obtained by the triangle inequality. See

Figure 4-2(a). Then if m = w(k) and k tends to infinity, the optimal solution for I

has cost 3m + o(m).

Proof. The solution which opens just one facility, say fi, has cost 3(m- 1)+ + 3 =

3m+o(m). We show that this solution is optimal. Consider any feasible solution which

opens f facilities. The first opened facility can cover k clients with connection cost 1.

Each additional facility can cover 1 additional client with connection cost 1. Thus,

the number of clients with connection cost 1 is k + f- 1. The remaining m - f clients

have connection cost 3. Therefore, the cost of the solution is 3f +k+f -1+3(m-f) =

3m + k + f - 1. As f > 1, this shows that any feasible solution costs at least as much

as the solution we constructed. [

Theorem 4.2.5 Any cross-monotonic cost-sharing scheme for the facility location

game is at most 1/3-budget balanced.
7 This example also shows that the dual computed by the Jain-Vazirani facility location algo-

rithm [65] can be a factor 3 away from the optimal dual.
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Proof. Consider the following instance of the facility location problem. There are

k sets Al,... , Ak of m cities each, where m = w(k) and k = w(1). For every subset

B of cities containing exactly one city from each Ai (IB n Ai = 1 for all i), there is a

facility fB with connection cost 1 to each city in B. The remaining connection costs

are defined by extending the metric, that is, the cost of connecting city i to facility

fB for i V B is 3. The facility opening costs are all 3.

We pick a random set S of cities in the above instance as follows: Pick a random

i from {1,..., k}, and for every j 4 i, pick a city aj uniformly at random from Aj.

Let T = {aj : j _y i} and S = Ai U T. See Figure 4-2(b) for an example. It is

easy to see that the set S induces an instance of the facility location problem almost

identical to the instance I in Lemma 4.2.1 (the only difference is that here we have

more facilities, but it is easy to see that the only relevant facilities are the ones that

are present in I). Therefore, the cost of the optimal solution on S is 3m + o(m).

We show that for any cross-monotonic cost-sharing scheme J, the average recovered

cost over the choice of S is at most m + o(m) and thus conclude that there is some

S whose recovered cost is at most m + o(m). As in the previous proofs, we start

bounding the expected total cost share by using the linearity of expectations and

cross-monotonicity:

Es [Z (cS)]= E [ (c,S)] + E [Z (ajS)]
cES cEAi ji

<E [I(c, {c}UT)] E [Z(aj,T)]
cEAi jfi

Notice the set T has a facility location solution of cost 3 + k - 1 and thus by the

budget balance condition the second term in the above expression is at most k + 2.

The first term in the above expression can be written as mEs, [(c, {c} U T)] where

the expectation is over the random choice of S and the random choice of c from Ai.

However, it can be seen easily that this is equivalent to the following random experi-

ment: From each Aj, pick a city aj uniformly at random. Then pick i from { 1,..., k}

uniformly at random and let c = ai and T = aj : j ~4 i}. From this description it
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is clear that the expected value of ((c, {c} U T) is equal to k =1 (a {al,. . , ak}).

This, by the budget balance property and the fact that {al,..., ak} has a solution of

cost k + 3, cannot be more than k+3. Therefore,

Es [- J(c, S)] ) (k ) (+ 2) = m + o(m), (4.7)
cES

when m = w(k) and k = w(1). Therefore, the expected value of the ratio of recovered

cost to total cost tends to 1/3. 0

4.2.5 Other combinatorial optimization games

In this section we prove bounds for three other combinatorial optimization games

(in particular, the ones considered by Deng, Ibaraki, and Nagamochi [23]). These

problems are maximization problems; therefore instead of cost-sharing schemes, we

consider profit-sharing schemes, as defined below.

Definition 17 A profit-sharing game (or a coalitional game with transferable util-

ities) is defined by a set d of agents, and a function v : 2 R+ U {O} that for

every set S, gives the value v(S) of S (or the profit earned if agents in S collaborate).

A profit-sharing scheme is a function : x 2 '-* R+ U {O}, such that for every

S C Wa and every i ~ S, ((i, S) = O. Such a scheme is called a-budget-balanced (for

some a > 1) if for every S C X, v(S) < EiES (i,S) < av(S). A profit-sharing

scheme is in the a-core if it is a-budget-balanced and for every S and T C S,

ZiET (i, S) > v(T). A profit-sharing scheme 5 is cross-monotone if for all S, T C d

and i E S, (i,S) < (i, SUT).

In this section, we consider profit-sharing schemes for the games of maximum flow,

maximum arborescence packing, and maximum matching, and derive lower bounds on

the budget-balance factor of cross-monotonic profit-sharing schemes for these games.

The maximum flow game In the maximum flow game, we are given a directed

graph G = (V, E) with a source s and a sink t. Agents are directed edges of G. Given
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Figure 4-3: The graph G for the maximum flow game

a subset of edges, S, the value of S is the value of the maximum flow from s to t

on the subgraph of G induced by the edges of S. It is known that the core of the

maximum flow game is nonempty [23]. The situation is different for cross-monotonic

profit-sharing schemes.

Theorem 4.2.6 There is no o(n)-budget-balanced profit-sharing scheme for the max-

imum flow game where n is the number of agents in the set that receives the service.

Proof. Let G be a graph consisting of three nodes named s, u, and t; n - 1 edges

from s to u; and n - 1 edges from u to t. Let ESu and Eut denote the set of edges

from s to u and from u to t, respectively. See Figure 4-3. We pick a random set S

of n agents as follows: With probability 1/2, pick a random edge e from s to u, and

let S = {e} U Et. With probability 1/2, pick a random edge e from u to t, and let

S = {e} U E8 . For example the set S could contain the thick edges in Figure 4-3.

Assume g is an o(n)-budget-balanced cross-monotonic profit-sharing scheme for

G. We have

aES aEEut

+ ee [S E (a,{e} U Esu)
aEEsu

> -EE [5 i (a, {a, e})] + E [ (a, {a, e})]
aEEut aEEsu

(n - )E aREs,bREut [ 6(a, {a, b}) + -6(b, {a, b)]
a-Esb-E t 2 2

n-1
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On the other hand, the value of every set S picked using the above procedure is

one. Therefore, the expected ratio of the sum of profit shares to the value of S is at

least (n - 1)/2. El

Remark 4.2.1 It is easy to see that the above proof also works for the problems of

packing the maximum number of arborescences in a digraph, and gives the same lower

bound. An r-arborescence is a spanning tree rooted at r in which all edges are directed

away from r. The maximum r-arborescence game is defined on a digraph G = (V, E)

with a root r where each edge is an agent. The value of a set S is the maximum

number of edge-disjoint r-arborescences on the subgraph induced by S. One can think

of the value of S as the maximum bandwidth for broadcasting messages from r to all

vertices of the graph. It is known that the core of this game is nonempty [23].

The maximum matching game As a last example, we consider the maximum

matching game, in which the agents are vertices of a graph G, and the value of a subset

of vertices S is the size of the maximum matching in the subgraph of G induced by

S (denoted G[S]). One can show that there is a 2-budget-balanced profit-allocation

in the core of this game.

Theorem 4.2.7 There is no o(n)-budget-balanced profit-sharing scheme for the max-

imum matching game, where n is the set of agents that receive the service.

Proof. We use the same construction that was used in the proof of Theorem 4.2.1.

Let G be a complete bipartite graph with n - 1 vertices in each part (here we use

n - 1 instead of n so that the size of S becomes n), and pick S by picking a random

vertex in G and all vertices in the other part. Using an argument essentially the same

as the one in the proof of Theorem 4.2.1, the expected sum of profit shares of the

elements of S is at least (n - 1)/2. On the other hand, the value of S is always one.

Thus, there is an S on which the ratio between the total profit share and the value

of S is at least (n - 1)/2. [

118



4.3 Implications for Cost-Sharing Mechanisms

One of the important applications of cross-monotonic cost-sharing schemes is in the

construction of group-strategyproof cost-sharing mechanisms [85, 87]. In this sec-

tion, we explore the connection between cross-monotonic cost-sharing schemes and

group-strategyproof cost-sharing mechanisms, and implications of the upper bounds

of the previous section on such mechanisms. In Section 4.3.1 we define the setting

and present some preliminaries. In Section 4.3.2 we discuss an issue in the defini-

tion of group-strategyproof mechanisms, and note that in order to exclude a trivial

mechanism, we need to use a stronger version of one of the axioms. In Section 4.3.3

we give a partial characterization of group-strategyproof mechanisms in terms of

cost-sharing schemes satisfying a property weaker than cross-monotonicity. We then

use this characterization to prove that group-strategyproof mechanisms that satisfy

additional properties give rise to cross-monotonic cost-sharing schemes.

4.3.1 Preliminaries

Let v be a set of n agents interested in receiving a service. Each agent i has a value

ui R for receiving the service, that is, she is willing to pay at most ui to get the

service. We further assume that the utility of agent i is given by uiqi - xi, where qi

is an indicator variable which indicates whether she has received the service or not,

and xi is the amount she has to pay. A cost sharing mechanism is an algorithm that

elicits a bid bi I from each agent, and based on these bids, decides which agents

should receive the service and how much each of them has to pay. More formally, a

cost sharing mechanism is a function that associates to each vector b of bids a set

Q(b) c d of agents to be serviced, and a vector x(b) E Rn of payments. When there

is no ambiguity, we write Q and x instead of Q(b) and x(b), respectively. We assume

that a mechanism satisfies the following conditions:8

No Positive Transfer (NPT): The payments are non-negative (that is, xi > 0

for all i).

8 For a discussion about these properties see Moulin [85] and Moulin and Shenker [87].

119



* Voluntary Participation (VP): An agent who does not receive the service is not

charged (that is, xi = 0 for i ~ Q), and an agent who receives the service is not

charged more than his bid (that is, xi bi for i E Q).9

* Consumer Sovereignty (CS): For each agent i, there is some bid b* such that if

i bids b, she will get the service, no matter what others bid.

Furthermore, we would like the mechanisms to be approximately budget balanced.

Mimicking the definition for cost-sharing schemes, we call a mechanism a-budget

balanced if the total amount the mechanism charges the agents is between oC(Q)

and C(Q). That is,

aoC(Q(b)) < E xi(b) < C(Q(b)).
iEQ(b)

for every bid vector b.

We look for mechanisms, called group strategyproof mechanisms, which satisfy the

following property in addition to NPT, VP, and CS. Let S C a? be a coalition of

agents, and u, u' be two vectors of bids satisfying ui = ui for every i S (we think of u

as the value of agents, and u' as a vector of strategically chosen bids). Let (Q, x) and

(Q', x') denote the outputs of the mechanism when the bids are u and u', respectively.

A mechanism is group strategyproof if for every coalition S of agents, if the inequality

uiqi - x' > uiqi - xi holds for every i E S, then it holds with equality for every i E S.

In other words, there should not be any coalition S and vector u' of bids such that

if members of S announce u' instead of u (their true value) as their bids, then every

member of the coalition S is at least as happy as in the truthful scenario, and at least

one person is strictly happier. We call such a coalition a successful coalition. 10

Given a cross-monotonic cost-sharing scheme S, Moulin [85] defined a cost-sharing

mechanism A as follows.
9 This is equivalent to the condition of individual rationality as defined in Chapter 1.

1 0Notice that we do not allow members of the coalition to sacrifice their own utility to benefit
the group's total utility, that is we disallow side-payments. Side-payments require a transfer of
money between agents which might be restricted in some settings either due to legal concerns or
issues of trust, and so we do not consider side-payments here. For a discussion of collusion with
side-payments, see Goldberg and Hartline [47].
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Mechanism 4':

Initialize S - S.

Repeat

Let S - {i E S: bi > (i, S)}.

Until for all i E S, bi > (i, S).

Return Q = S and xi = ((i, S) for all i.

Notice that the mechanism e always services the maximal subset of agents whose

bids are all at least as large as their cost shares in that set. ll This mechanism is a

generalization of the ProfitExtractR mechanism introduced in Chapter 2. There, the

cost of every set was equal to a target revenue R, and the underlying cross-monotonic

cost-sharing scheme set (i, S) = R/ISI for all i E S. We saw in Chapter 2 that the

ProfitExtractR mechanism was truthful. Moulin [85] proves a stronger result.

Theorem 4.3.1 (Moulin [85]) If ~ is a cross-monotonic cost-sharing scheme, then

Ae is group-.strategyproof.

4.3.2 A discussion about the definition

In the definition of group-strategyproof mechanisms in the paper by Moulin and

Shenker [87] (which is the basis for the definition of this concept in most computer

science papers), it is not required that an agent can bid in a way that guarantees her

not to receive the service. In particular, it is assumed that the bids are non-negative,

and an agent who bids zero can still be serviced, if her payment is also zero [87, page

517]. As we see in the following example, according to this definition, for every cost

function there is a trivial budget-balanced group-strategyproof mechanism.

Example 4.3.1 Arbitrarily order the agents from 1 to n. Then, find the first agent

i in this order whose bid is at least C({i,..., n}). The set that will receive the service

1 Note that there is a unique maximal set as if two sets are feasible then, by cross-monotonicity,
their union is as well.
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is Q = {i, ... , n}, and the total cost of servicing this set is paid by the agent i. Other

agents pay nothing.

Proposition 4.3.1 Assuming non-negative bids, the mechanism in Example 4.3.1 is

budget-balanced and group-strategyproof.

Proof. It is not hard to see that this mechanism is budget-balanced and satisfies

NPT, VP, and CS. To show that it is group-strategyproof, let i be the first agent to

receive service when agents bid truthfully (or n + 1 if no agent receives service) and

j be the first agent to receive service when a coalition deviates. If j < i, it must be

that j is part of the coalition and raised his bid to a number greater than or equal to

C({j,..., n}), but this decreases his utility. If j = i, then the outcome is identical to

the truthful scenario and so no utility changes. If j > i, then the utility of any agent

k < j is now zero and so did not increase. The utility of any agent k > j did not

change as his allocation and payment remained the same. Finally, as the payment

of j is at least his payment in the truthful scenario, the utility of agent j can not

increase either. Thus the coalition can not be successful. Cl

Although it satisfies all of the axioms, this mechanism is unsatisfactory, since

in practice a coalition can convince a member that has zero utility for receiving

the service simply not to bid, thus reducing the cost to others. Furthermore, this

mechanism fails to satisfy the axioms in the original paper of Moulin [85], where a

stronger version of CS is assumed that guarantees that each agent can bid in a way

that she does not receive the service, no matter how others bid.

In order to exclude mechanisms like the one in Example 4.3.1, we only consider

mechanisms that satisfy the stronger definition of CS by Moulin [85]. To this end, we

allow the utilities and bids to be negative. NPT and VP guarantee that any agent

with negative bid will not receive the service. An alternative approach (adapted by

Moulin [85]) is to assume that utilities, bids, and payments are all positive.1 2 In many

combinatorial games, the cost function is not strictly increasing and therefore it is

reasonable to allow cost shares to be zero. Thus, we use negative bids to indicate

12This is equivalent to a property called no free riders, or no free lunch.
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that an agent does not want to receive the service. However, it is easy to see that all

our results hold in the setting considered by Moulin [85].

4.3.3 A partial characterization of group-strategyproof mech-

anisms

In Section 4.2, we proved that for certain games every cross-monotonic cost shar-

ing scheme is poorly budget balanced. A natural question to ask is whether all

group-strategyproof mechanisms for these games are so poorly budget balanced. To-

wards this aim, one might hope to show a converse to Theorem 4.3.1, namely that

every group-strategyproof mechanism corresponds to a cross-monotonic cost sharing

scheme. Unfortunately, this statement is not necessarily true (See, for example, Ap-

pendix A. 1, or the incremental cost-sharing method for supermodular cost functions in

the paper by Moulin [85]). In this section, we prove that for any group-strategyproof

mechanism, we can construct a cost-sharing scheme that satisfies a weaker condition

than cross-monotonicity. Then, we use this characterization to show that group-

strategyproof mechanisms that satisfy certain additional properties correspond to

cross-monotonic cost-sharing schemes.

We start by defining a property weaker than cross-monotonicity for cost-sharing

schemes. Recall that a cost-sharing scheme is cross-monotonic, if the removal of each

agent from the service set does not increase the cost to any other agent.

Definition 18 Let : x 2 -' R+ U {O} be a cost-sharing scheme, S C , and

i E S. We sayi is a positive element of S iffor everyj E S\{i}, J(j, S\{i}) > (j, S)

and for at least one such j a strict inequality holds; i is a negative element of S if for

every j E S \ {i}, ~(j, S \ {i}) < (j, S) and for at least one such j a strict inequality

holds. If for all j E S \ {i}, (j, S \ {i}) = (j, S), we say i is a neutral element

of S. We say that ~ is semi-cross-monotonic, if every element of every set is either

positive, negative, or neutral. In other words, is semi-cross-monotonic if there is no

set S C d and three distinct elements i, jl, j2 of S, such that J(ji, S \ {i}) < (jl, S)
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and (j2, S \ {i}) > ~(j2, S).13

Thus, cross-monotonicity is precisely a special case of semi-cross-monotonicity,

when every element of every set is either positive or neutral. The results in this

section are based on the following partial characterization of group-strategyproof

mechanisms.

Theorem 4.3.2 For every a-budget-balanced group-strategyproof cost-sharing mech-

anism X for a cost function C, there is a cost-sharing scheme J for C such that

(a) W is a-budget-balanced and semi-cross-monotonic.

(b) for any set S and bid vector b such that bi = -1 for i f S and bi > (i, S)

for i E S, the mechanism . services the set S.

(c) for any bid vector b, if the serviced set is S, then the payment of i E S is equal

to (,i, S).

We note that this is not a complete characterization of group-strategyproof mecha-

nisms, as there are semi-cross-monotonic cost-sharing schemes that do not correspond

to any group-strategyproof mechanism (See Appendix A.2). Finding a complete char-

acterization of cost-sharing schemes that give rise to group-strategyproof mechanisms

is an interesting open direction.

Before proving the above theorem, we state two of the corollaries of this theorem.

These results characterize group-strategyproof mechanisms that satisfy the following

additional properties.

Definition 19 A mechanism 4' is upper continuous if for every agent i, if i gets

the service for every bid value greater than x holding other bids fixed, then i gets the

service if he bids x.

Definition 20 A mechanism is subsidy-free if, for any bid vector, the total charge

to any subset of agents is at most the cost of servicing that subset.

13Notice that this definition allows sets that contain both negative and positive elements. Also,
an element can be a positive element of one set and a negative element of another.

124



Although arguably not well-motivated, the condition of upper-continuity allows

us to prove the following equivalence between cross-monotonic cost sharing schemes

and group-strategyproof mechanisms satisfying this condition, hence implying that

all the upper bounds on the budget-balance factor of cross-monotonic cost-sharing

schemes proved in Section 4.2 apply to such mechanisms as well. This theorem can

be viewed as guidance in the search for group-strategyproof mechanisms: in order

to design a mechanism with better revenue properties than the best cross-monotonic

cost-sharing schemes, one must build a mechanism which violates upper continuity.

Theorem 4.3.3 The cost function C has an upper-continuous a-budget-balanced

group-strategyproof cost-sharing mechanism if and only if it has an a-budget-balanced

cross-monotonic cost-sharing scheme.

The subsidy-freeness property was considered previously by Moulin [84]. This

property parallels the core condition of cost-sharing games and is motivated by the

argument that no subset of serviced agents should be over-charged to accommodate

others. The following theorem shows the equivalence of group-strategyproof mecha-

nisms satisfying this property and cross-monotonic cost-sharing schemes, in the case

that the mechanism is perfectly budget balanced. We do not know if this theo-

rem holds for budget-balance factors other than 1, and so the results of Section 4.2

only imply that the problems presented there do not have budget-balanced group-

strategyproof mechanisms satisfying subsidy-freeness.

Theorem 4.3.4 The cost function C has a budget-balanced group-strategyproof cost-

sharing mechanism satisfying subsidy-freeness if and only if it has a budget-balanced

cross-monotonic cost-sharing scheme.

In the rest of this section, we present the proofs of Theorems 4.3.2, 4.3.3, and 4.3.4.

Proof of Theorem 4.3.2. (a): We start by defining the cost-sharing scheme (.

For an agent i, let b* be a large enough value such that if agent i bids b*, she will

get the service, independent of other agents' bids (such a value exists by CS). For a

set S C d, consider the scenario where the agents in S bid their value in b*, and
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others bid -1. By CS and VP, the set of agents serviced by the mechanism in this

scenario is precisely S. We define the cost share S(i, S) as the payment charged by

the mechanism to the agent i in this scenario. By this definition and the fact that

X is a-budget balanced, it is clear that S is also a-budget balanced.

Now, we prove that (v is semi-cross-monotonic. Assume, for contradiction, that

there is a set S C ' and three distinct agents i, jl, j 2 E S such that ((ji, S \ {i}) <

((jl, S) and (j2 , S\{i}) > (j2, S). Consider three bid vectors bl, b2, and b3 defined

as follows: In all of these vectors, agents j E S \ {i} bid b and agents j E \ S

bid -1. The bid of i in these vectors is b = b, b = (i, S), and b3 =- -1. By VP

and CS, the set of serviced agents at bl is S, at b3 is S \ {i), and at b2 is either S

or S \ {i}. Furthermore, by the definition of (, the payment of each agent j at the

bid vectors bl and b3 is ((j, S) and 5(j, S \ {i}), respectively. We consider two cases

based on whether i is serviced at the bid vector b2:

Case 1: i is served at the bid vector b2. By VP, i's payment at b2 is at most b =

~(i, S). If i's payment is strictly less than JA(i, S), then in a scenario where the

utility of the agents is given by b l , i would have an incentive to announce a bid

of b, contradicting the strategyproofness of the mechanism. Therefore, when

all agents bid according to b2 , the payment of i must be equal to S(i, S). Now

consider the payment xjl (b2 ) of jl when agents bid b2. If xj (b2 ) < (jl, S),

then in the scenario where the utility of the agents is given by b l , {i, jl} can

form a successful coalition: they can bid according to b2 , thereby decreasing

the payment of jl, and not changing the payment of i. Also, if xj (b2 ) >

((ji, S \ {i}), then in the scenario where the utility of the agents is given by

b2 , {i, jl} can form a successful coalition: they can bid according to b1 . This

decreases the payment of jl, and i is indifferent between the two situations, as

her utility is zero in both. Thus, J(jl,S) < x j(b 2) < S(jl, S\{i}), contradicting

the definition of ji.

Case 2: i is not served at the bid vector b2. Consider the payment xj 2(b2) of j2

when agents bid b2. If xj2 (b2 ) < Z(j2, S \ {i}), then if the true utility of the
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agents is given by b3, {i, j2} can form a coalition: they can bid according to b2,

thereby reducing j2's payment while keeping the utility of i constant at zero.

Also, if xj2(b2 ) > (j2 , S), then if the utility of the agents is given by b2, {i, j 2}

can form a coalition and bid according to bl, thereby reducing j2's payment and

keeping i's utility constant at zero. Therefore, (j2, S\{i}) < xj2(b2 ) < 5(j2, S),

contradicting the definition of j2-

The contradiction in both cases shows that ( is semi-cross-monotonic.

(b): Index the agents such that S = {1, ... , k}. For i = 0,..., k, define the bid vector

b(i) as follows: b) = b for 1 <j < k- i, b i) = bj > .,(j, S) for k- i < j < k, and

bi) = -1 for j E d \ S. We will prove by induction on i that if the agents bid b(i),

then the mechanism 4 will service the agents in S and charges j E S an amount

equal to (j, S). This statement for i = k would imply (b). The induction basis

(i = 0) is obvious from CS and the definition of ~r. To show the induction step, we

assume that the statement is true for i and prove it for i + 1. The only difference

between the bid vectors b(i) and b(i +1 ) is the bid of the agent k - i. If at the bid

vector b(i+l) agent k - i is either not serviced, or is charged an amount more than

r(k- i, S), then this agent has an incentive to announce a bid of b;_i when the true

utilities of the agents is given by b(i +1). Similarly, if k - i is serviced and charged an

amount less than ((k - i, S) when agents bid according to b(i+ l), then when the

true utilities of the agents is given by b(i), agent k - i has an incentive to bid bk-i-

Therefore, at b( i+ l ) , k - i gets serviced and pays ~(k - i, S). This means that from

the perspective of agent k - i, outcomes at b(i) and b(i+l) are the same. Therefore,

for every other agent j, the agent j must be indifferent between these two outcomes

as well, since otherwise {i, j} can form a coalition at one of the two bid vectors b(i) or

b( i+ l) . Therefore, by the induction hypothesis, at the bid vector b(i+l), every agent

j E S must receive the service and be charged (j, S).

(c): Let S = {i E S bi < J((i, S)}, S2 =S \ S1 , and S3 = \ S. By VP, every

i E S1 is not charged more than SJ(i, S) at b. Suppose the price charged to some

agent i* E S is strictly less than (i*, S). Consider a bid vector b' in which every

agent i E S bids b*, every i E S2 bids bi (his bid in b) and every i E S3 bids -1.
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From part (b), at the bid vector b', set S will receive the service and i E S will pay

~(i, S). Now, since the agent i* E S1 is charged strictly less than j,(i*, S) at b,

then when the true utilities are given by b', i* can form a coalition with the agents

in S1 U S3 and submit the bid vector b. As a result, i* pays strictly less and no

member of the coalition pays more, contradicting group-strategyproofness. Therefore

the price of any agent i E S1 equals ~(i, S) at the bid vector b.

Now consider an agent i E S2. If his payment differs between b and b', then i can

form a coalition with the agents in S1 US3 and submit the bid vector in which he pays

less. Agent i strictly benefits from this, while the situation of the agents in S1 U S3

does not change, again contradicting the group-strategyproofness of /. Therefore

the payment of every agent i E S2 also equals 5 4 (i, S). E

Proof of Theorem 4.3.3. The "if" part of this statement follows from Theo-

rem 4.3.1 and the simple observation that the Moulin mechanism ' is upper con-

tinuous.

Given an c-budget-balanced group-strategyproof mechanism X, we show that

the cost-sharing scheme (v defined in the proof of Theorem 4.3.2 is cross-monotonic.

In other words, we need to show that every element of every set is either positive or

neutral. Define b* as in the proof of Theorem 4.3.2. Consider a set S C d and an

agent i E S. Let b be a bid vector such that bj = bj for every j E \ i}, bj = -1

for every j E / \ S, and bi is any number greater than S(i, S). By part (b) of

Theorem 4.3.2, at any such bid vector, the set S gets the service. Therefore, by the

upper continuity of 4' and CS, the set S gets the service when i bids (A(i, S) and

every other agent bids according to b. Call this bid vector b'.

Now, assume, for contradiction, that (j, S\{i}) < ~r(j, S) for some j E S\{i}.

We argue that {i, j} can form a successful coalition when the utilities of the agents

is given by b'. In this situation, if i bids -1 and j does not change her bid, then by

Theorem 4.3.2 the set S\ {i} receives the service and agent j pays C.a(j, S\ {i}). This

outcome makes the agent j strictly happier, and agent i is indifferent between the two

outcomes. This contradicts the group-strategyproofness of '. This contradiction
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shows that every element i of every set S is either positive or neutral, and hence (v

is cross-monotonic. [

Proof of Theorem 4.3.4. As in the previous proof, the "if" direction is a direct

corollary of Theorem 4.3.1 and the simple observation that e satisfies subsidy-

freeness.

Given a subsidy-free 1-budget-balanced mechanism X, we show that the cost-

sharing scheme (v defined in Theorem 4.3.2 is cross-monotonic. First, notice that

by part (c) of Theorem 4.3.2, subsidy-freeness of X implies that (v& is in the 1-core

of C, that is, for every T C S C a, we have

E ,(j, S) < C(T). (4.8)
jET

Now, consider a set S C d/ and an agent i E S. If i is a negative element of S,

then for every j E S \ {i}, we have Q. (j, S) > ~.(j, S \ {i}), and at least for one j

this inequality is strict. Therefore,

E (X(j,S)> E c&(j, S \ i) = C(S - i), (4.9)
jES\{i jES\{i

where the last equality follows from the fact that X is 1-budget-balanced. Equa-

tion 4.9 contradicts Equation 4.8 for T = S \ {(i. [
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Chapter 5

Two-Sided Markets

Suppose all the eligible bachelors and bachelorettes in a town confide in the town's

matchmaker their ideal spouses. Each man submits an ordered preference list of the

women he would like to marry. Similarly, each woman submits an ordered preference

list of the men she would like to marry. The matchmaker must arrange marriages

such that no one is tempted to ask for a divorce. In particular, the matchmaker must

be sure that there is no pair of young lovers who prefer each other to their assigned

spouses. Such a set of marriages is called stable, and finding a set of stable marriages

is known as the stable marriage problem. Gale and Shapley [39] showed that the

stable marriage problem always has a solution and developed an algorithm, called

the deferred acceptance algorithm, to find it. Since the seminal work of Gale and

Shapley, there has been a significant amount of work on the mathematical structure

of stable marriages and related algorithmic questions. See, for example, the books by

Knuth [69], Gusfield and Irving [53], or Roth and Sotomayoror [101].

The stable marriage problem has many promising applications in two-sided mar-

kets such as job markets [98], college admissions [98], sorority/fraternity rush [83],

and assignment of graduating rabbis to their first congregation [12]. Since most ap-

plications of the stable marriage algorithm involve the participation of independent

agents, it is natural to investigate how we should expect these agents to behave.

In particular, we would like to know whether agents can benefit by being dishonest

about their preference lists. Ideally, in economic settings such as job markets, we
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would like to design truthful mechanisms which always output a stable matching.

Unfortunately, as shown by Roth [95], there is no mechanism for the stable marriage

problem in which truth-telling is a dominant strategy for both men and women [101].

Nonetheless, stable matching algorithms have had spectacular success in practi-

cal applications. One particular job market - the medical residency market - has

been using a centralized stable marriage market system called the National Residency

Matching Program (NRMP) since the 1950s [96]. To this day, most medical residences

are formed through an updated version of this centralized market system redesigned

in 1998 by Roth [97].1 It seems surprising that an algorithm like the one used by

the NRMP which provably admits strategic behavior can be so successful. Roth and

Peranson [99] noted that, in practice, very few students and hospitals could have ben-

efited by submitting false preferences. They analyzed several years of data from the

NRMP and calculated whether any applicant could improve his or her match (accord-

ing to his submitted preference list) by altering his preference list. For example, in

1996, they calculated that out of 24,749 applicants, just 21 could have affected their

match by changing their submitted preferences. One explanation for this observation

is that the data did not in fact reflect the true preferences of the applicants but rather

an equilibrium of the mechanism. Another clear factor that influences the medical

market is the correlation between preference lists. Applicants share a general opinion

of "desirable" and "undesirable" hospitals. Similarly, hospitals tend to agree on the

"desirable" and "undesirable" applicants. Taken to the extreme where all preference

lists are identical, this correlation induces a unique stable matching where no par-

ticipant can benefit by altering their preference list. Conversely, Knuth, Motwani,

and Pittel [70, 71] showed that in the general stable marriage setting, if preference

lists are independent random permutations of all members of the opposite sex, then

almost every person has more than one stable partner. However, Roth and Peran-

son [99] conjectured that the main factor influencing the medical market is its sheer

size. In a small town, every man knows every woman, but in the medical market, a

1 Although not addressed in this chapter, the algorithm currently used by the NRMP has the
feature that it can accommodate married couples among students that submit joint preference lists.
For a discussion about stable marriage with couples, see Appendix C.
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student can not possibly interview at every hospital. In practice, the length of appli-

cant preference lists is quite small, about 15, while the number of positions is large,

about 20,000. Experimentally, Roth and Peranson [99] showed that size matters.

They generated random preference lists of limited length and computed the resulting

number of uniquely matched participants. Even though these randomly generated

lists are, in a sense, the worst case (that is, there is no correlation between the lists),

their experiments show that the number of participants with more than one stable

partner (and therefore the number of those that can benefit by lying) is quite small

when the length of the lists is sufficiently limited. This led them to conjecture that

in this probabilistic setting, the fraction of such people tends to zero as the size of

the market tends to infinity.2

In this chapter, we prove and generalize this conjecture. More precisely, we prove

the following: Assume there are n men and n women in the town, and each woman has

an arbitrary ordering of all men as her preference list. Each man independently picks

a random preference list of a constant (that is, independent of n) number of women by

choosing each woman independently according to an arbitrary distribution 9. These

are the true preference lists. We show that in this setting the expected number of

people with more than one stable spouse is vanishingly small. We use the following

technique for our proof: First, we design an algorithm, based on an algorithm of

Knuth, Motwani, and Pittel [70, 71], that for a given woman checks whether she has

more than one stable husband in one run of proposals. Using this algorithm, we

prove a relationship between the probability that a given woman has more than one

stable husband and the number of single (that is, unmatched) women who are more

popular than she. This relationship, essential to our main result, seems difficult to

derive directly, without going through the algorithm. Given this relationship, we are

able to derive our result by computing bounds on the expectation and variance of the

2Existing results in the literature study the core of markets and conclude that, under certain
conditions, the size of the core shrinks as the size of the market grows (see, for example, the seminal
paper of Aumann [10] or the book by Hildenbrand [56]). The set of stable matchings is the core of
the stable marriage game, but our market setting is quite different from that in the literature. In
fact, in our setting, the core is often large even though the fraction of people with more than one
stable partner is small.
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number of single popular women.

This result has a number of interesting economic implications. We can interpret

the preference lists together with a stable marriage algorithm as a game G, in which

everybody submits a preference list (not necessarily their true preference list) to the

algorithm and receives a spouse. The goal for each player is to receive the best spouse

possible according to their true preference list. First, we show that, with probability

1- o(1) (as n approaches infinity), in any stable marriage mechanism, the truthful

strategy is the best response for a given player when the other players are truthful.

We also show that when a deferred acceptance mechanism is used, there is a Nash

equilibrium of this game in which a majority of the players are truthful. Finally, we

prove that in the more realistic setting of a game of incomplete information (where

each player only knows the distribution of the preference lists), the set of truthful

strategies in the game induced by the women-proposing mechanism form a (1 + o(1))-

approximate Bayesian-Nash equilibrium. In this ordinal setting, a (1+e)-approximate

equilibrium is one in which no player can improve the rank of his allocation by more

than a factor of (1 + e) in expectation. If the ratio of the largest cardinal preference

to the smallest cardinal preference is bounded by a constant, our results carry over

to the cardinal setting as well. It is important to note that our results hold for any

distribution 9 of women. For the special case of uniform distributions (which includes

the conjecture of Roth and Peranson), the o(1) in the above bounds is roughly ek/n,

and thus the bounds converge quite quickly.

Mechanisms that are truthful in a randomized sense (that is, in expectation, or

with high probability) have been a subject of research in theoretical computer sci-

ence [4, 5]. These mechanisms seek to encourage truthfulness by introducing random-

ization into the mechanism. Our results are of a different flavor. We show that one

can conclude statements regarding truthfulness by introducing randomization into

the players' utility functions. To the best of our knowledge, our result is the first

result of this type.

One can also view our results as an analysis of stable matching with random

preferences. There has been a considerable amount of work in this area [70, 71, 91, 92],
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mostly assuming complete preference lists for participants, and none motivated by the

economic aspects of the problem. We will use some of the techniques developed in

these papers in our analysis. Sethuraman, Teo, and Tan [105, 106] have studied the

stable matching game when participants are required to announce complete preference

lists, and have given an optimal cheating algorithm and several experimental results

regarding the chances that an agent can benefit by lying in this game.

The results of this chapter are based on joint work with Mahdian [60].

5.1 Setting

Consider a community consisting of a set V/ of n women and a set X of n men.

Each person in this community has a preference list, which is a strictly ordered list of

a subset of the members of the opposite sex. We assume that if a occurs before b on

c's preference list, then c prefers a to b. A matching is a mapping it from 4 U Y to

AX U t7/ in such a way that for every x E X, it(x) E 7/ U {x} and for every x E /,

ip(x) E X U {x}, and also for every x, y E X U 7/, x = ,u(y) if and only if y = i(x).

If for some rn E X and w E '//, t(m) = w, we say that w is the wife of m and

m is the husband of w in t; or, if for some x E X U A', it(x) = x, we say that x

remains single in it. A pair m GE , w E i/ is called a blocking pair for a matching

p, if m prefers w to ,u(m), and w prefers m to ia(w). A matching with no blocking

pair is called a stable matching. If a man m and a woman w are a couple in some

stable matching ut, we say that m is a stable husband of w, and w is a stable wife of

m. Naturally, each person might have more than one stable partner. In the stable

marriage problem, the objective is to find a stable matching given the preference lists

of all men and women.

The stable marriage problem was first introduced and studied by Gale and Shap-

ley [39] in 1962. They proved that a stable matching always exists, and a simple

algorithm called the deferred acceptance procedure can find such a matching. This

procedure iteratively selects an unmarried man m and creates a proposal from him

to the next woman on his list. If this woman prefers m to her current assignment,
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then she tentatively accepts m's proposal, and rejects the man she was previously

matched to (if any); otherwise, she rejects the proposal of m. The algorithm ends

when every man either finds a wife that accepts him, or gets rejected by all the women

on his list, in which case he remains single. This algorithm is sometimes called the

men-proposing algorithm. Similarly, one can define the women-proposing algorithm.

Gale and Shapley [39] proved the following.

Theorem 5.1.1 The men-proposing algorithm always finds a stable matching A. Fur-

thermore, this stable matching is men-optimal, that is, for every man m and every

stable wife w of m other than p(m), m prefers /l(m) to w. At the same time, P is the

worst possible stable matching for women, that is, for any woman w and any stable

husband m of w other than ,u(w), w prefers m to p(W).

Notice that in the description of the men-proposing algorithm we did not specify

the order in which single men propose. One might naturally think that choosing a

different order for proposals might lead to a different stable matching. However, the

above theorem together with the fact that the men-optimal stable matching is unique

imply the following.

Theorem 5.1.2 The men-proposing algorithm always finds the same stable match-

ing, independent of the order in which the proposals are made.

We will also need the following theorem of Roth [96] and McVitie and Wilson [80],

which says that the choice of the stable matching algorithm does not affect the number

of people who remain unmarried at the end of the algorithm.

Theorem 5.1.3 In all stable matchings, the set of people who remain single is the

same.

A stable matching mechanism is an algorithm that elicits a preference list from

each participant, and outputs a matching that is stable with respect to the announced

preferences. Ideally, we would like to design mechanisms in which truthfulness (that

is, announcing the true preference list to the mechanism) is a dominant strategy for
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all participants. However, Roth [95] proved that there is no such mechanism for

the stable marriage problem. On the positive side, Gale and Sotomayor [40] show

that in any stable marriage mechanism, each player has an optimal strategy which

is simply a truncation (a prefix) of his true preference list. The following theorem

(due to Roth [95] and Dubins and Freedman [24]) shows that in deferred acceptance

mechanisms, truthfulness is a dominant strategy for half the population.

Theorem 5.1.4 In the men-optimal stable marriage mechanism, truth-telling is a

dominant strategy for men.

Consider a situation where there are n men and n women. Assume the preference

list of each man is chosen independently and uniformly at random from the set of all

ordered lists of k women, and the preference list of each woman is picked indepen-

dently and uniformly at random from the set of all orderings of all men. We want

to bound the expected number of people who might be tempted to lie to the mech-

anism about their preferences when the other players are truthful. As we will show,

only people who have more than one stable partner might be able to influence their

final match by altering their preference lists. Therefore, we focus on bounding the

expected number of women with more than one stable husband in this model. Notice

that this number is equal to the expected number of men with more than one stable

wife, since, in a market where the two sides are of equal size, the number of single

and uniquely matched men must equal the number of single and uniquely matched

women. Roth and Peranson [99] conjectured the following.

Conjecture 5.1.1 Let ck(n) denote the expected number of women who have more

than one stable husband in the above model. Then for all fixed k,

lim ck(n) = 0.
n- oo n

We prove this conjecture. In fact, we will prove the following stronger result. Let 9

be an arbitrary fixed distribution over the set of women such that the probability of

each woman in 9 is nonzero.3 Intuitively, having a high probability in 9 indicates
3 This assumption is needed to make sure that the problem is well-defined.
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that a woman is popular. The preference lists are constructed by picking each entry

of the list according to 9, and removing the repetitions. More precisely, we construct

a random list (,. .. , lk) of k women as follows. At step i, repeatedly select a women

w independently according to 9 until w {I,..., li-i} and then set li = w. Let

ak be the distribution over lists of size k produced by this process. Notice that if

9 is the uniform distribution, _k is nothing but the uniform distribution over the

set of all lists of size k of women. Therefore, the model of Roth and Peranson [99]

is a special case of our model. We also generalize their model in another respect:

we assume that women have arbitrary complete preference lists, as opposed to the

assumption in [99] that they have random complete preference lists. Our main result

is the following theorem.

Theorem 5.1.5 Consider a situation where each woman has an arbitrary complete

preference list, and each man has a preference list chosen independently at random

according to k. Let ck(n) denote the expected number of women who have more than

one stable husband in this model. Then, for all fixed k,

lim ck() _ 0.
n--oo n

Remark 5.1.1 One might hope to further generalize this model to one where each

man picks a random list from an arbitrary distribution over lists of size k. However,

the following example shows that Theorem 5.1.5 is not true in this model: Assume

women 1, ... , n/2 rank men in the order 1, 2,.. ., n, and women n/2 + 1,.. ., n rank

them in the reverse order. Each man picks a random i E 1,. . . , n/2}, and with

probability 1/2 picks preference list (i, i + n/2) and otherwise picks preference list

(i + n/2, i). It is not difficult to see that with these preferences, at least a 1/(8e)

fraction of women will have more than one stable husband.

Even though we state and prove our results assuming that all preference lists are

of size exactly k, it is straightforward to see that our proof carries over to the case

where preference lists are of size at most k. For uniform distributions, we can prove

a strong result on the rate of convergence of this limit.
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Theorem 5.1.6 Consider a situation where each woman has an arbitrary complete

preference list, and each man has a preference list of k women chosen uniformly and

independently. Then, the expected number of women who have more than one stable

husband is bounded by ek+l + k2 , a constant that only depends on k (and not on n).

5.2 Economic implications

There are a number of interesting economic implications of this theorem. Our first

result states that, with high probability, a given player's best strategy is truth-telling

when the other players are truthful. Thus, a dishonest player who believes in the

honesty of the other players has an economic incentive to be honest.

Corollary 5.2.1 Fix any stable matching mechanism, and consider an instance with

n women with arbitrary complete preference lists and n men with preference lists

drawn from ok (as in Theorem 5.1.5). Then, for any given person x, the probability

(over the men's preference lists) that for x the truthful strategy is not the best response

in a situation where the other players are truthful is o(1) (at most O(ek/n) for uniform

distributions).

Proof. Fix a person, say a man named Adam, and suppose all other players are

truthful. Theorem 5.1.5 implies that with probability at least 1 - o(1), Adam has

at most one stable wife, Eve, with respect to the true preference lists of the players.

Suppose all other players are truthful. We claim Adam's best response is truth-telling.

Suppose not. Allow Adam to play his best response p and let ,u be the matching that

the stable matching mechanism outputs. Now run the men-optimal algorithm with

the same preference lists (that is, p for Adam, and true preference lists for others)

and let UM be the resulting matching. By Theorem 5.1.1, Adam must prefer his

match in g1 M to his match in . However, by Theorem 5.1.4, in the men-proposing

algorithm, Adam's dominant strategy is truth-telling and, by assumption, matches

him to Eve. Therefore, Adam must prefer Eve to his match in /M and thus to his

match in . But Eve is the woman that Adam would have been matched to in the

139



original mechanism if he had been truthful (since it was his unique stable match),

and so his altered strategy p was not his best response. El

The previous corollary states that a player can benefit by lying only with a van-

ishingly small probability when the other players are truthful. Now we turn to the

situation in which the other players are not necessarily truthful, but are playing an

equilibrium strategy of the game induced by the stable matching mechanism. There

are two ways to interpret our stable marriage setting as a game. One way is to con-

sider it as a game of complete information: Let Pm and Pw denote the preference lists

of men and women. Knowing these preferences, each player chooses a strategy from

the strategy space of all possible preference lists. The corresponding preference lists

are submitted to a fixed stable marriage algorithm and a matching is returned. A

player's goal is to choose the strategy that gets him/her a spouse as high on his/her

preference list as possible. Let Gpm,pw denote this game.

Corollary 5.2.2 Assume the preference lists Pw of women are arbitrary, and the

preference lists Pm of men are drawn from k (as in Theorem 5.1.5). The game

Gp,p induced by these preferences and the men-proposing (or women-proposing)

mechanism has a Nash equilibrium in which, in expectation, a (1- o(1)) fraction of

strategies are truthful.

Proof. Suppose we are using the men-proposing mechanism (the women-proposing

situation is analogous). We prove that the following set of strategies forms an equi-

librium in the game Gp,p,: all men announce their true preferences; all women

who have at most one stable husband (with respect to Pm, Pw) announce their true

preferences; and all women who have more than one stable husband truncate their

preference lists just after their optimal stable husband. We denote the altered prefer-

ence lists of women by P1'. By Theorem 5.1.4, men cannot improve their situation by

altering their strategy. Consider a woman, say Eve, and assume Eve will be assigned

to Adam if the players use the strategies in (Pm, P' ). It is easy to see that there is

a unique stable matching with respect to (P, P'). Therefore, if we run the women-

optimal mechanism on (P, Pt,), we get the same outcome as in the men-optimal
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mechanism. However, by Theorem 5.1.4 we know that no woman can benefit from

altering her preferences in a women-optimal mechanism. Thus, if Eve changes her

strategy from the one dictated by P', then she gets a match, say Tom, that according

to P, is not better than Adam. However, by the definition of P', this implies that

Tom is not better than Adam according to the true preferences of Eve. This shows

that the set of strategies (Pm, P') is an equilibrium. By Theorem 5.1.5, we know that

all men and all but at most a o(1) fraction of women are truthful in this equilibrium.

In the above setting, we assume that each player knows the preference lists of

the other players when he/she is selecting a strategy, that is, we have a game of

complete information. A more realistic assumption is that each player only knows

the distribution of preference lists of the other players. Each player's goal is to alter

his/her preference list and announce it to the mechanism in a way that the expected

rank of his/her assigned spouse is as high as possible. A strategy for a player is a

function that outputs an announced preference list for any input preference list. Hence

the truthful strategy is the identity function. We wish to analyze the Bayesian-Nash

equilibria in this incomplete information game. A (1 + e)-approximate Bayesian-Nash

equilibrium for this game is a collection of strategies, one for each player, such that

no single player can improve the rank (computed according to his/her true preference

list) of his/her spouse by more than a multiplicative factor of 1 + e by deviating from

his/her equilibrium strategy.

Corollary 5.2.3 Consider the game described above with the women-optimal mech-

anism. Then for every > O, if n is large enough, the above game has a (1 + e)-

approximate Nash equilibrium in which everybody is truthful.

Proof. Since the women-optimal mechanism is used, we know by Theorem 5.1.4

that truthfulness is a dominant strategy for women. It is enough to show that if all

men and women are truthful, then no man can improve his match by more than a

(1 + E) factor if he uses a dishonest strategy. Fix a man, Charlie. With probability

1 - o(1), preferences are such that Charlie does not have more than one stable wife.
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In this case, the argument used in the proof of the previous two corollaries shows

that Charlie cannot gain by being dishonest about his preferences. With probability

o(1), Charlie has more than one stable wife, and in that case, he might be able to

improve his match from someone ranked at most k in his list to someone ranked first.

However, k is a constant. Using this, it is easy to verify that on average, he can

improve his match by at most a factor of 1 + k2 x o(1) = 1 + o(1). Thus, everyone

being truthful is an approximate equilibrium in this game. LO

Although we defined approximate equilibrium in Corollary 5.2.3 with respect to

ordinal preferences, the result also holds in the following cardinal setting: Each player

i has a distinct utility uij E R for being matched to player j (hence the true preference

list of i is (j, . . ., j) where uij > uij > ... > uij > 0), and the ratio maxj(uj) of theminj (uij)

maximum utility to the minimum utility is bounded by a constant for all i.

5.3 Proof of Theorem 5.1.5

In this section, we will prove our main technical result, Theorem 5.1.5. The proof

consists of three main components. First, we present an algorithm that, given the pref-

erence lists, counts the number of stable husbands of a given woman (Section 5.3.1).

We would like to analyze the probability that the output of this algorithm is more

than one, over a distribution of inputs. In Section 5.3.2, we bound this probabil-

ity assuming a lemma concerning the number of singles in a stable marriage. This

lemma is proved in Section 5.3.3 by bounding the expectation of the number of singles

and proving that it is concentrated around its expected value using the Chebyschev

inequality.

5.3.1 Counting the number of stable husbands

The simplest way to check whether a woman g has more than one stable husband or

not is to compute the men-optimal and the women-optimal stable matchings using

the algorithm of Gale and Shapley (See Theorem 5.1.1) and then check if g has the
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same husband in both these matchings. However, analyzing the probability that g

has more than one stable husband using this algorithm is not easy, since we will not

be able to use the principle of deferred decisions (as described later in Section 5.3.2).

In this section we present a different algorithm that outputs all stable husbands of a

given woman in an arbitrary stable marriage problem in one run of a men-propose

algorithm. This algorithm is a generalization of the algorithm of Knuth, Motwani,

and Pittel [70, 71] to the case of incomplete preference lists.

Suppose we want the stable husbands of woman g. Initially all the people are

unmarried (the matching is empty). The algorithm closely follows the man-proposing

algorithm for finding a stable matching. However, g's objective is to explore all her

options. Therefore, every time the men-proposing algorithm finds a stable marriage,

g divorces her husband and lets the algorithm continue.

Algorithm A

1. Initialization: Run the man-proposing algorithm to find the men-optimal stable

matching. If g is unmarried, output 0.

2. Selection of the suitor: Output the husband m of g as one of her stable husbands.

Remove the pair (m, g) from the matching (woman g and man m are now

unmarried) and set b = m. (The variable b is the current proposing man.)

3. Selection of the courted: If b has already proposed to all the women on his

preference list, terminate. Otherwise, let w be his favorite woman among those

he hasn't proposed to yet.

4. The courtship:

(a) If w has received a proposal from a man she likes better than b, she rejects

b and the algorithm continues at the third step.

(b) If not, w accepts b. If w = g, the algorithm continues at the second step.

Otherwise, if w was previously married, her previous husband becomes the
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suitor b and the algorithm continues at the third step. If w was previously

unmarried, terminate the algorithm.

Notice that in step 4(a) of the algorithm, w compares b to the best man who has

proposed to her so far, and not to the man she is currently matched to. Therefore,

after g divorces one of her stable husbands, she has a higher standard, and will not

accept any man worse than the man she has divorced. For w g, step 4(a) is

equivalent to comparing b to the man w is matched to at the moment.

We must prove that this algorithm outputs all stable husbands of g. In fact, we

will prove something slightly stronger.

Theorem 5.3.1 Algorithm Aoutputs all stable husbands of g in order of her prefer-

ence from her worst stable husband to her best stable husband.

Proof. We prove the theorem by induction. As the man-proposing algorithm

returns the worst possible matching for the women (by Theorem 5.1.1), the first

output is g's worst stable husband. Now suppose the i'th output is g's i'th worst

stable husband mi. Consider running the man-proposing algorithm with g's prefer-

ence list truncated just before man mi (so that it includes all men she prefers to mi

but not mi himself). As the order of proposals in the men-proposing algorithm do

not affect the outcome (Theorem 5.1.2), let the order of proposals be the same as

Algorithm A.Then, up until Algorithm Aoutputs the i + 1'st output mi+l, its ten-

tative matching during the j'th proposal is the same as the tentative matching of

the man-proposing algorithm during the j'th proposal (except, possibly, woman g is

matched in Algorithm Aand unmatched in the man-proposing algorithm). Now since

mi+l was accepted, the fourth step guarantees that g preferred mi+l to mi. Thus

mi+, is on g's truncated preference list, and so the tentative matchings of the two

algorithms are the same. Furthermore, mi+l is the first proposal g has accepted in

the man-proposing algorithm. All other women who get married in the set of stable

matchings already have husbands since they have husbands in Algorithm A,and so
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the man-proposing algorithm terminates with the current matching. Thus, mi+ is

the worst possible stable husband for g that is better than mi. O

5.3.2 Analyzing the expectation

We are interested in the expected number of women with more than one stable hus-

band, or, equivalently, the probability that a fixed woman g has more than one

stable husband. We can compute this probability by analyzing the output of Algo-

rithm Afrom Section 5.3.1 on male preference lists drawn from the distribution k.

We simulate this experiment using the principle of deferred decisions: a man only

needs to determine his i'th favorite woman when he makes his i'th proposal. If we

make these deferred decisions independently according to 9, then the distribution of

the output of this new algorithm over its coin flips will be exactly the same as the

distribution of the output of the old algorithm over its input. This motivates the

definition of the following algorithm which counts the number xg of stable husbands

of a girl g. At any point in this algorithm, the variable Ai denotes the set of women

that man i has proposed to so far. Men and women are indexed by numbers between

1 and n.

Algorithm B

1. Initialization: Let 1 = 1, V 1 < i < n, Ai = 0, xg = O. (The matching is empty

and no men have made any proposals).

2. Selection of the suitor:

(a) If I < n, let b be the l'th man and increase 1 by one.

(b) Otherwise, we have found a stable matching. If g is single in this stable

matching, then terminate. Otherwise, increment xg, remove the pair (m, g)

from the matching (man m and woman g who were previously married to

each other are now unmarried) and set b = m.

3. Selection of the courted:
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(a) If IAbl > k, then do the following: If xg > 1 (we have found a stable

matching and a previously married man is now single), then terminate.

Otherwise, return to step two.

(b) Repeatedly select w randomly according to distribution 2 from the set of

all women until w B Ab. Add w to Ab.

4. The courtship:

(a) If w has received a proposal from a man she likes better than b, she rejects

b and the algorithm continues at step 3.

(b) If not, w accepts b. If w was previously married, her previous husband

becomes the suitor b and the algorithm continues at the third step. If w

was previously single and xg = 0 (we have not found a stable matching),

the algorithm continues at the second step. If w was previously single and

xg > 1, the algorithm continues at the second step if w = g and terminates

if w g.

Before giving a proof of Theorem 5.1.5, we introduce some notation. For every

woman i, let Pi denote the probability of i in the distribution 2. We say that a

woman i is more popular than another woman j, if pi > pj. Assume, without loss

of generality, that women are ordered in the decreasing order of popularity, that is,

P1 > P2 > " > P.

Proof of Theorem 5.1.5. Recall that ck(n) is the expected number of women

with more than one stable husband. We show that for every e > 0, if n is large

enough, then ck(n)/n < e. By linearity of expectation, ck(n) = SgEE Pr[g has more

than one stable husband]. Fix a woman g E by'. We want to bound the probability

that g has more than one stable husband. By Theorem 5.3.1 and the principle of

deferred decisions, this is the same as bounding the probability that the random

variable xg in Algorithm Bis more than one.
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We divide the execution of Algorithm Binto two phases: the first phase is from

the beginning of the algorithm until it finds the first stable matching, and the second

phase is from that point until the algorithm terminates. Assume at the end of the first

phase, Algorithm Bhas found the first stable matching . We bound the probability

that xg > 1 conditioned on the event that p is the matching found at the end of the

first phase (we denote this by Pr[xg > 1 Ij ]), and then take the expectation of this

bound over j.

Let the set S,(g) denote the set of women more popular than g that remain single

in the stable matching p and X,(g) = IS,(g)J. If g is single in , then Xg = 0 and

therefore Pr[xg > 1 p ,] = 0. Otherwise, xg > 1 if only if woman g accepts another

proposal before the algorithm terminates. We bound this by the probability that

g receives another proposal before the end of the algorithm. The algorithm may

terminate in several ways, but we will concentrate on the termination condition in

step 4(b), that is, that some man proposes to a previously single woman. Thus, we

are interested in the probability that in the second phase of Algorithm Bsome man

proposes to a previously single woman before any man proposes to g.

Note that at the end of the first phase of the algorithm, all Ai's are disjoint from

S,(g), since women have complete preference lists. Thus whenever the random oracle

in step 3(b) outputs a woman from set S(g), the algorithm will advance to step

4(b) and terminate. Thus, the probability Pr[xg > 1 /u] is less than or equal to

the probability that in a sequence whose elements are independently picked from the

distribution 9, g appears before any woman in S,(g). By the definition of S,(g),

for every w E S,(g), every time we pick a woman randomly according to 9, the

probability that w is picked is at least as large as the probability that g is picked.

Therefore, the probability that g appears before all elements of S,(g) in a sequence

whose elements are picked according to 9 is at most the probability the g appears

first in a random permutation on the elements of {g} U S,(g), which is 1/(X,(g) + 1).

Thus, for every ,,

1
Pr[x > 1] X,() 1 (5.1)

9 - xi. (9) + 
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Thus,

Pr[xg > 1] = E [Pr[xg> 1 'l] ]

< E '[Xll (g (5.2)

We complete the proof assuming the following lemma, whose proof is given in

Section 5.3.3.

Lemma 5.3.1 For every g > 4k,

Ix<1 12e8nk/ 9g

Thus, using equation (5.2) and Lemma 5.3.1 for > l16ni, and Pr[xg > 1] < 1 for

smaller g's, we obtain

16nk n 12e8nk/g
Ck(n) < ln(n) + 9

= 16nk
9n In(n)

16nk + 3 ln(n)e n(n)/2

-< n(n) 16n 4nk
16nk

9 In(n)

16nk
< 16K + 3nln(n)/(4k) = o(n),

ln(n)

and so for every constant k, the fraction of women with more than one stable husband,

ck(n)/n, goes to zero as n tends to infinity. O

For the case of uniform distributions, since every woman is equally popular,

S,(g) = S,(g') is the set of all women, and so E[x (g),1] = E[x(I)+ 1] < nk/g

for g > 4k. Thus, k(n) < 4k + E4k 12 < 4k + 12e8k. We derive an even tighter

bound in this case, as stated in Theorem 5.1.6, using a slightly different technique.

This bound is proved in Section 5.4.

148



5.3.3 Number of singles

In this section we prove Lemma 5.3.1. This completes the proof of Theorem 5.1.5. We

start with the following simple fact: the probability that a woman w remains single

is greater than or equal to the probability that w does not appear on the preference

list of any man. More precisely, let E, denote the event that the woman w does not

appear on the preference list of any man when these preferences are drawn from ik.

Let Yg denote the number of women w < g for which the event Ew happens. Then

we have the following lemma.

Lemma 5.3.2 For every g, we always have X,;(g) > Yg.4

Proof. Every woman w < g for which E, happens is a woman who is at least as

popular as g and will remain unmarried in any stable matching. o

We now bound the expectation of 1/(Yg + 1) in a sequence of two lemmas. In

Lemma 5.3.3 we bound the expectation of Yg. Then, in Lemma 5.3.4 we show the

variance of Y7 is small and therefore it does not deviate far from its mean.

Lemma 5.3.3 For g > 4k, the expected number E[X,(g)] of single women more

popular than woman g is at least 2e- nk/g

Proof. Let Q = Ej=l pj denote the total probability of the first k women under .

The probability that a man m does not list a woman w as his i'th preference given

that he picks w,..., wi-1 as his first i - 1 women, is equal to

Pw Pw
1- >1 

j=1 -1Pwj - Q

Thus the probability that m does not list w at all is at least (1 -_ P)k, and so the

probability that woman w is not listed by any man is at least (1 - )nk. If w > k,

there are at least w - k women who are at least as popular as w, but not among the

k most popular women. Therefore, Pw < -Q. By these two inequalities, for every

w > 2k we have

4In more mathematical terms, this means that X,(g) stochastically dominates Yg.
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Pr[Eo] > (1 - )nk > e-2nk/(w-k) > e-4nk/w
w - -

Therefore, for every g > 4k, the expectation of Yg is at least

g g 4gg 9 g

E[Yg] = E Pr[Ew] > E e-4kij > S e-8nk/ = e-nk/g (5.3)
w=l j=2k j=9/2

yielding the result. O

Lemma 5.3.4 The variance u2(Yg) of the random variable Yg is at most its expecta-

tion E[Y91.

Proof. We show the events Ei are negatively correlated, that is, for every i and j,

Pr[E A Ej] < Pr[E]. Pr[Ej]. Let F be the event that a given man does not include

woman i on his preference list. By the independence and symmetry of the preference

lists of men, we have Pr[Ei] = (Pr[Fi])n, and Pr[Ei AEj] = (Pr[Fi AFj])n. Therefore,

it is enough to show that for every i and j, Pr[FjiFj] < Pr[F].

Let M be an arbitrarily large constant. The following process is one way to

simulate the selection of one preference list L = (11,.. ., Ik): Consider the multiset

E consisting of [piMJ copies of the name of woman i for each i. Pick a random

permutation r of E. Let li be the i'th distinct name in 7r. It is not hard to see

that as M -+ oc, the probability of a given list L in this process converges to its

probability under distribution k. Therefore, Pr[Fi] is equal to the limit as M -+ oo

of the probability that k distinct names occur before i in 7r. Similarly, if E' denotes

the multiset obtained by removing all copies of woman j from E, then Pr[FilFj] is

equal to the limit as M --+ oc of the probability that k distinct names occur before

i in a random permutation of Y'. However, this is precisely equal to the probability

that k distinct names other than j occur before i in a random permutation 7r of E.

But that certainly implies that k distinct names (including j) occur before i in r,

and so for every 7r where Fi1Fj happens, F also happens. Therefore, Pr[FilFj] <

Pr[Fi]. As argued above, this implies that Pr[E A Ej] < Pr[E] -Pr[Ej], and so the
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variance cr2 (Ya) is

2(y) = E[Y2]- E[Yg]2
9 9

= •E Pr[E] + 2 Pr[E, A E,] - Z Pr[E,]2 -2 E Pr[E]- Pr[Ej]
i=1 1<i<j<g i=1 1<i<j<g
9

< Pr[E]
i=l

= E[Yg]

as required. o

Using the above three lemmas and the Chebyshev inequality (see the book by

Alon and Spencer [3] for a discussion of this and related inequalities), we can easily

conclude the statement of Lemma 5.3.1.

Proof of Lemma 5.3.1. Let q be the probability that Yg < E[Yg]/2. By the

Chebyshev inequality and Lemma 5.3.4,

q < Pr [IY- E[Yg] > E[Yg]/2]

u2 (Yg)

- (E[Yg]/2)2

4
<
- E[Yg]'

Thus, by Lemma 5.3.2 and the fact that 1/(Yg + 1) is always at most one, we have

E [ 1 < E 1 

1

E[Yg]/2 + 1

6

< E[Y]'

which together with Lemma 5.3.3 completes the proof. [

In this section, we analyzed the expected number of agents that remain single in a

stable marriage mechanism, and used this lemma to prove our main result. Analyzing

the expected number of singles in a probabilistic setting is of independent interest,
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and in Appendix B, we present a tighter analysis of the expected number of singles

when men have random preference lists of size k and women have random complete

preference lists. If, in addition to the results of this appendix, one could prove that

the number of singles is concentrated around its expectation, then the bound for

the setting in Conjecture 5.1.1 (proven to be (ek + k 2)/n in this chapter) would be

improved.

5.4 Tighter analysis for the uniform distribution

For the case of uniform distributions (the setting in Theorem 5.1.6), it is possible to

derive a much tighter bound on the expected number of women with more than one

stable husband.

Recall that in the proof of Theorem 5.1.5, we bounded the probability that a fixed

woman g is single by E1[1/(X,1 (g) + 1)], where Xl(g) is the number of women at least

as popular as g that are single in matching it. In the case of the uniform distribution,

for every woman g, Xu(g) is equal to the number of singles in ,. Therefore, if we

define the random variable X as the number of women who remain unmarried in

the men-optimal stable matching (recall that by Theorem 5.1.3, the set of unmarried

women is independent of the choice of the stable marriage algorithm), then we have

ck(n) <nE X I

Thus, the following lemma shows that if men have random preference lists of size

k, then the expected number of women who have more than one stable partner is at

most ek+l + k2 . This completes the proof of Theorem 5.1.6.

Lemma 5.4.1 Let X denote the random variable defined above. Then,

E [ l] < • +l

The proof of the above lemma is based on a connection between the stable marriage

problem and the classical occupancy problem. In the occupancy problem, m balls are
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distributed amongst n bins. The distribution of the number of balls that end up in

each bin has been studied extensively from the perspective of probability theory [67].

We denote the occupancy problem with m balls and n bins by the (m, n)-occupancy

problem. The following lemma establishes the connection between the number of

singles in the stable marriage game and the number of empty bins in the occupancy

problem.

We use the techniques of amnesia, the principle of deferred decisions, and the

principle of negligible perturbations used by Knuth [69] and Knuth, Motwani, and

Pittel [70, 71]. These techniques allow us to show that our algorithm is almost

equivalent to the following random experiment: every man names exactly k + 1 (not

necessarily different) women. Thus, there are (k + 1)n proposals which we will think

of as balls. There are n women which we will think of as bins. The number of women

who are not named in this experiment, denoted by X', is closely related to the number

of singles, X, in the algorithm.

Lemma 5.4.2 Let Y,n denote the number of empty bins in the (m, n)-occupancy

problem and X denote the random variable in Lemma 5.4.1. Then,

I 1 k 2

X+ ] < E [(k+l)n,n + 1 n

Proof. Assume every woman has an arbitrary ordering of all men. We define the

following five random experiments:

* Experiment 1 is the experiment defined before Lemma 5.4.1: every man chooses

a random list of k different women as his preference list. Then, we run the

men-proposing stable marriage algorithm, and let the random variable X 1 = X

indicates the number of single women at the end of this experiment. Notice that

in this experiment, as in Section 5.3.2, men do not have to select their entire

preference list before running the algorithm. Instead, every time a man has to

propose to the next woman on his list, he chooses a random woman among the

women he has not proposed to so far, and proposes to that woman. It is clear

that this does not change the experiment.
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* In Experiment 2, each man names k different women at random. We let X2 be

the number of women that no man names in this game.

* Experiment 3 is the same as experiment 2, except here the men are amnesiacs.

That is, every time a man wants to name a woman, he picks a woman at random

from the set of all women. Therefore, there is a chance that he names a woman

that he has already named. However, each man stops as soon as he names k

different women. Let X 3 be the number of women who are not named in this

process.

* In Experiment 4, we restrict every man to name at most k+ 1 women. Therefore,

each man stops as soon as either he names k different women, or when he names

k+l1 women in total (counting repetitions). Let X4 denote the number of women

who are not named in this experiment.

* In Experiment 5 every man names exactly k+l1 (not necessarily different) women.

The number of women who are not named in this experiment is denoted by X5 .

Clearly, X5 = Y(k+l)n,n

Now, we show how the random variables X1 through X 5 are related. It is easy

to see that for any set of men's preference lists, the number of unmarried women in

Experiment 1 is at least the number of women who are not named in Experiment 2.

Therefore, X1 > X 2. Also, it is clear from the description of Experiments 2 and 3

that X2 = X3 -

In order to relate X 3 and X 4, we use the principle of negligible perturbations.

Experiments 4 is essentially the same as Experiment 3, except in X4 we only count

women who are not named by any man as one of his first k + 1 choices. Let E denote

the event that no man names more than k + 1 women in Experiment 3. We first

show that Pr[E] < k2 /n. Fix a man, say Homer. We want to bound the probability

that Homer names at least k + 2 women before the number of different women he has

named reaches k. By the union bound, this probability is at most the sum, over all

pairs {i, j} C {1,..., k + 2} that the i'th and j'th proposal of Homer are redundant.
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It is easy to see that for any such pair, this probability is at most 1/n 2 . Therefore, the

probability that Homer makes more than k + 1 proposals is at most (k+2)/n2 < k2/n 2 .

Thus, by the union bound, the probability of this happens for at least one man is

less than k2 /'n. That is, Pr[E] < k 2 /n. Now, notice that by the definition of X3 and

X4, the random variables X3 and X 4 are equal when conditioned on the occurrence

of E. Therefore, E[x31 JE] = E [+lJE]. Let C = E[x1+]- E [x1 ] be
the unconditioned difference of these expectations. Then, letting q = Pr[E] and

= Pr[E],

C qE X31 E]+ E [ 1 I]- qE I[X4 +1

fE[X3 +l IE]-E X4 + 1IE
< q

k 2

n

Finally, we observe that by the definition of Experiments 4 and 5, we have X 4 > X 5 .

The above observations imply

E[x+1] < E[X+1

1
E [ 1 ]

X3 + ]
1 k2

< E [X4 - 1] + -

1 k2

y(k+l)n,n 1 n

This completes the proof of the lemma. LI

By the above lemma, the only thing we need to do is to analyze the expected

value of 1/(Ym,n + 1) in the occupancy problem. We do this by writing the expected

value of 1/(Yn,n + 1) as a summation and bounding this summation by comparing it

term-by-term to another summation whose value is known.

Lemma 5.4.3 Let Ym,n denote the number of empty bins in the (m, n)-occupancy
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problem. Then,

E [ 1 ]E ¥n,n+ 
em/n

n

Proof. Let Pr(m, n) be the probability that exactly r bins are empty in the (m, n)-

occupancy problem. Then Po(m, n), the probability of no empty bin, can be written

as the following summation by the principle of inclusion-exclusion.5

n

P0(m, n) = -(-1)i 1
i=o

(5.4)

The probability P(m, n) of exactly r empty bins can be written in terms of the

probability of no empty bin in the (m, n - r)-occupancy problem:

Pr(m,n)= ( )(1 -r )mo(m,n- r).
n (5.5)

By equations 5.4 and 5.5,

n-r
Pr(m n) = (

i=O
(r,i) (1

r+i)m 
n ,

(5.6)

denotes the multinomial coefficient a!nb!(na-b)!. Using equation 5.6 and

the definition of expected value we have,

n

r+lPr(m,n)
r=O

nra (_1)i ( n(
r=O i=O r + 1 r, i

(5.7)

-r+i
n 

n n-r( K

r=O i=O

n+l n+l-r

= E
r=l i=O

It is probably impossible to

-r+i)m
n 

n

simplify the above summation as a closed-form formula.

dividing a well-known formula for Stirling numbers of the second
by nm .

156

where (anb)
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5 This can also be derived by
kind (see, for example, [51, 114])

+1 1

(-l)i n + 1 1f



Therefore, we use the following trick: we consider another summation S with the same

number of terms, and bound the ratio between the corresponding terms in these two

summations. This gives us a bound on the ratio of the summation in equation 5.7

to the summation S. The value of S can be bounded easily using a combinatorial

argument.

Consider the (m, n + 1)-occupancy problem. The probability that at least one bin

is empty is the sum, over r = 1,..., n + 1, of P(m, n + 1). We denote this probability

by S. By equation 5.6 we have

nln+l-n+l -r

r=l i=O

where the inequality follows from the fact that S is the probability of an event. The

summation in equation 5.7 and S have the same number of terms, and the ratio of

each term in the summation in equation 5.7 to the corresponding term in S is equal

to (1 r+i-l)m n-r-i+)(1 n-

(n + 1)(1- +im (n + 1)(n+l-r-i) m n + 1

Therefore,

m,n + 1Yn+l n+ n n

as desired. ED

Lemma 5.4.1 immediately follows from Lemmas 5.4.2 and 5.4.3.
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Chapter 6

Conclusion

In this dissertation, we studied mechanism design for various combinatorial opti-

mization problems in the presence of strategic agents. We considered four important

settings - limited demand and limited budget multi-unit auctions, procurement auc-

tions, cost-sharing auctions, and two-sided markets. In each setting, we proposed

and/or studied mechanisms to solve the allocation problem with respect to a partic-

ular equilibrium concept.

In the first three settings, our goal was to derive revenue-maximizing (or payment-

minimizing) auctions. For multi-unit auctions (Chapter 2), we studied implementa-

tion in dominant strategies, following a competitive auction framework. In the limited

demand setting, our auctions are the first provably competitive deterministic auctions.

In the limited budget setting, we give the first competitive auction, although it is ran-

domized. This chapter also contains a powerful auction derandomization technique

that, given any truthful multi-unit auction for limited demands, computes a deter-

ministic one with approximately the same revenue guarantee by using asymmetry.

For procurement auctions (Chapter 3), we studied implementation in variants of

Nash equilibria. We proved that the strong e-Nash equilibria of first-price flow auc-

tions for publicly known demands are approximately efficient and produce payments

which, in the limit as - 0, are at most (and sometimes much less than) those of

the VCG mechanism. We then provided an implementation in e-Nash equilibria with

approximately the same payment properties. In the unknown-demand model, we de-
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signed an auction whose e-Nash equilibria had expected payments similar to that of

the known-demand model. However, we were unable to prove that this auction can

be implemented in polynomial time.

For cost-sharing auctions (Chapter 4), we derived a general technique to bound the

revenue properties of cross-monotonic cost-sharing schemes and used this technique to

derive tight or nearly tight bounds for many combinatorial optimization games. We

then explored the implications of our results on group-strategyproof mechanisms. We

derived a partial characterization of group strategyproof mechanisms in terms of semi-

cross-monotonic cost-sharing schemes. By imposing certain additional assumptions,

we were able to prove a complete characterization in terms of cross-monotonic cost-

sharing schemes. For mechanisms satisfying these additional assumptions, our bounds

on the budget-balance factors of cross-monotonic cost-sharing schemes indicate that

group-strategyproofness is incompatible with revenue goals for many combinatorial

optimization games.

In the last setting - that of two-sided markets (Chapter 5) -we studied the

stable marriage game in a probabilistic setting and showed that the expected fraction

of singles tends to zero as the size of the market grows. In doing so, we answered a

question asked by Roth and Peranson [99], and generalized their model to one where

women have arbitrary preferences and each man independently picks each women on

his preference list from an arbitrary fixed distribution. As discussed, this result has

a number of economic implications which indicate that dishonesty almost surely does

not benefit a player.

We conclude with some open questions related to each setting. Regarding limited-

demand multi-unit auctions, there are many interesting open questions surrounding

the issue of randomness (besides the obvious question of finding a polynomial-time

derandomization technique).

1. Revenue Guarantees in Mass Markets. One issue with the deterministic

auctions that we present is that their revenue is a constant factor away from

the optimal revenue even for markets in which the number of winners is large.

In such situations, the revenue of known randomized auctions asymptotically
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approaches the optimal revenue [50]. Is it possible to design deterministic auc-

tions that match this guarantee? More generally, in what sense are randomized

auctions provably more powerful than deterministic ones?

2. Derandomization in Multi-Parameter Settings. Another promising di-

rection for future research is an extension of the derandomization techniques

presented in this chapter. Can these techniques be extended to settings with

multi-parameter bids like the limited budgets setting of Section 2.3? What if

the demand limit is a private value?

3. Derandomization with Feasibility Constraints. Alternatively, one could

try to derandomize more general single-parameter auction settings with feasi-

bility constraints. For example, consider a related machine scheduling auction,

such as the setting studied by Archer and Tardos [5], where machines bid a

processing speed, and further suppose that the set of feasible allocations is re-

stricted (for example, perhaps jobs have precedence constraints). In settings

like these, even if the randomized auction observes the feasibility constraints,

the derandomized auction derived from the flow graph may violate these con-

straints as the set of allocations output by the derandomized auction is not

necessarily contained in the set of allocations output by the randomized one.

Perhaps the flow graph or the selection of the integral flow can be modified to

accommodate these constraints.

4. Hat Puzzles. Finally, we have left unsolved many intriguing hat puzzles. Can

the everywhere balanced k-coloring hat puzzle be solved in polynomial time for

k > 2? A positive answer to this question might lead to a polynomial-time

derandomization technique for auctions as well. Given the solution for k = 2

(that is, the deterministic coin flipping algorithm), one natural approach to this

question is to try and find a "perfectly alternating" deterministic assignment

of hat colors such that, when players are sorted according to their hat colors,

their guesses cycle through the list of possible colors (for example, Red, Green,

Blue, Red, Green, Blue, Red, Green, Blue).
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For the limited budget setting, our results and those in the literature are still quite

preliminary. In particular, the assumptions we make in deriving our impossibility

result are somewhat questionable. Both the strong non-bundling and independence

of irrelevant alternatives (IIA) assumptions are difficult to motivate in practice. Does

a similar impossibility result hold under weaker assumptions?

5. Ad Auction Design. Internet ad auction design was a main motivation be-

hind our study of limited-budget multi-unit auctions, but budget constraints

are just one of a myriad of issues related to ad auction design. Other important

considerations in this market include the matching algorithm (which advertisers

are interested in a particular web surfer?), the ranking algorithm (who should

be displayed and where?), click fraud (how can we discourage advertisers from

clicking on their competitors' advertisements?), and reserve prices (how should

reserve prices be set for different keywords and how do they impact the rev-

enue?). Our results do not even fully address the issue of budget constraints

in ad auctions, for ad auctions are combinatorial. How should an advertiser's

budget be allocated across multiple keywords?

In the chapter on procurement auctions, we showed that first-price auctions entail

potentially lower payments than VCG mechanisms. However, they suffer from one

major drawback, in that the solution concept (strong e-Nash equilibrium) requires

agents to know all costs, and coordinate on the choice of an equilibrium. This is

much more demanding than the dominant-strategy solution concept, and could lead

to inefficiency and high payments in practice. Thus, the auction models analyzed here

are not completely satisfying, as there is no mechanism prescribed for the agents bids

to reach equilibrium. This is true even for the weaker concept of C-Nash equilibrium.

6. Convergence to Equilibria. A promising direction for future research is to

find bargaining mechanisms that enable the bidders to converge to an equi-

librium. When the edges all know each others' costs, an n-party bargaining

protocol, such as the one in the Krishna and Serrano [75], could be used. When

there is uncertainty, the situation is more complex. Such a mechanism may
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be subsidized; for example, the links may be given an additional payment that

decays with time, to incentivize them to quickly reach an agreement. As long

as the subsidy is smaller than the VCG premium, it may be a better alterna-

tive. See the book by Fudenberg and Levine [38] for a discussion of convergence

problems in general settings.

In the setting of cost-sharing auctions, there are two main directions for future

research - the study of cost-sharing schemes and the study of group-strategyproof

auctions.

7. Budget-Balance Factor of Other Combinatorial Optimization Games.

In this chapter, we presented a technique for proving bounds on the budget-

balance factor of cross-monotonic cost-sharing schemes for a variety of combi-

natorial optimization games. Our technique was quite general and may prove

applicable to a variety of other combinatorial games. For example, the facility

location game restricted to a tree always has a budget-balanced cost allocation

in the core [45], but we do not have a tight lower and upper bound on the

budget-balance factor of the best cross-monotonic cost sharing schemes for this

game. For the facility location game on the line, we have an upper bound of 7'

8. Characterization of Group-Strategyproof Mechanisms. Another signif-

icant open question is to fully characterize cost-sharing schemes that can arise

as (v for some group-strategyproof mechanism -X. Our characterization in

terms of cross-monotonic cost-sharing schemes imposed a technical condition

on group-strategyproof mechanisms which we called upper-continuity. Is this

essential to this equivalence result? Are there other well-motivated axioms that

can be imposed on group-strategyproof mechanisms which would then imply

the equivalence result?

9. Budget-Balance versus Efficiency. Moulin and Shenker [87] investigate

the tradeoff between exact budget-balance and efficiency in group-strategyproof

mechanisms. It would be interesting to extend their results by exploring the
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possible budget-balance factor of group-strategyproof mechanisms that are in

some sense close to efficient.

In the chapter on centralized two-sided markets, our main motivation was the

National Residency Matching Program (NRMP). We studied the incentive issues

facing participants in stable matching mechanisms. However, there are many other

economic considerations surrounding the NRMP.

10. When Doctors Get Married. Since its conception, the NRMP market was

redesigned to accommodate couples among students who want to live in the

same city. We studied this problem in Appendix C when couples want to work

at the same hospital. However, in general, such couples can submit a joint

preference list of pairs of hospitals, and the algorithm has to match them to one

of the pairs in their list. With this extra twist, there are instances for which

no stable matching exists. However, so far every year the NRMP algorithm

has been able to find a stable matching. A theoretical justification for this

(in a reasonable probabilistic model), and a study of incentive properties in

mechanisms with couples are interesting open directions for future research.

11. When Hospitals Lie. In this chapter, we proved that individual participants

probably can not benefit by altering their preference lists. However, hospitals

have another possible strategic manipulation; namely, they can withhold de-

mand. Is there some way to quantify how much a hospitable can benefit from

this manipulation? An answer to this question involves first proposing a model

for comparing allocations of varying size.

12. Salary Considerations in the NRMP. The stable marriage mechanism, as

we have presented it, does not have any provision for salary negotiations. In

fact, salaries are announced by the hospital together with the position before

the preferences are formed. In a recent lawsuit, medical students argue that this

has the effect of decreasing their wages below the levels they could achieve in the

absence of the match. It would be very interesting to provide a theoretical model
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and analysis of salary considerations in stable matching markets and perhaps

present mechanisms which admit salary negotiations. For more information, see

the discussion paper by Bulow and Levin [15].

The techniques we developed to address incentive issues in the NRMP might prove

useful in the study of matching markets in the presence other rules. Some matching

markets restrict participants to submit complete preference lists and/or allow indiffer-

ences in the preference lists, as is the case in the New York City public school matching

system [1]. One could also consider incentives in one-sided centralized markets like

college dormitory assignments or the kidney exchange market [100].
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Appendix A

Group-Strategyproof Mechanisms

and Cost-Sharing Schemes

In this appendix, we show that not all group-strategyproof mechanisms are cross-

monotonic and not all semi-cross-monotonic cost-sharing schemes give rise to group

strategyproof mechanisms.

A.1 A group-strategyproof mechanism with no

cross-monotonic cost-sharing scheme

As the following example shows, for some cost functions, group-strategyproof mech-

anisms do not correspond to cross-monotonic cost-sharing schemes.

Example A.1.1 Suppose there are three agents, 1, 2, and 3, with a cost function

given by

C(S) 2 iif ISl = 3,

CS 1 otherwise.

We consider the following mechanism for this cost function:
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Mechanism W:

If bl > 1 then

If min(b2, b3) > 2 then Q {1, 2, 3 and x = (1, ),

else if max(b2, b3) < then Q = {1} and x = (1,0, 0),

else if b2 > b3 then Q = {1,2) and x = (, 0),

else if b3 > b2 then Q = {1, 3 and x = (, 0, 1),

else if 2 < b < 1 then

If min(b2, b3) > then Q = {2, 3} and x = (0,

else if max(b2, b3) < then Q = 0 and x = (0, 0, 0),

else if b2 > b3 then Q = {1, 2} and x = (, , 0),

else if b3 > b2 then Q= {1, 3} and x = (1, 0, ),

else if b < then

If min(b2, b3) > then Q = {2, 3} and x = (0, , ),

else if b2 > 1 then Q = {2} and x = (0, 1, 0),

else if b3 > 1 then Q = {3} and x = (0, 0, 1),

else Q = 0 and x = (0, 0, 0).

The cost-sharing scheme ~ is not cross-monotonic since, for example, the cost-

share (1, { 1, 2, 3}) of agent 1 in the set {1, 2, 3} is strictly greater than his cost-share

Cg(1, {1, 2}) in the subset {1, 2}. In fact, it is not hard to see that no cross-monotonic

cost-sharing scheme for C exists. Still, as the following lemma shows, the mechanism

4' is group-strategyproof.

Proposition A.1.1 The mechanism 4 in Example A.1.1 is group-strategyproof.

Proof. Let ui denote the true utility of i for receiving the service, bi denote his bid,

and xi(b) denote his payment when the bids are b. Note xi(b) = 0 if and only if i

does not receive the service.

We first prove by contradiction that any successful coalition must include 1. Sup-

pose not (that is, bl = ul). First consider the case u1 > . Note that for i E {2, 3},
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whenever i receives the service, he pays 1. Therefore, i can benefit only if ui > 

and he is not receiving service. However, in any input bid vector with b1 > , bi > 2

implies that i receives the service, so i can not benefit in any coalition. Next suppose

ul < . Consider the cross-monotonic cost-sharing scheme : {2, 3} R+ where for

i E {2, 3}, (i, {2, 3}) = 1 and ((i, {i}) = 1. The Moulin mechanism 14 is equivalent

to X/ when u 1 < and so Theorem 4.3.1 implies that there is no subset of {2, 3} can

form a successful coalition in this case.

Now consider any coalition including 1. Suppose ul < . If bl < 1, then the

outcome does not change if we set b = ul. Thus, we only need to consider coalitions

in which bl > 2. As u < and the minimum non-zero price of 1 is , it must

be that 1 Q(b) even though bl > 2. This happens only when < b < 1 and

max(b2, b3) < or min(b2, b3) > 4. In the first case, as no agent receives service, all

utilities are zero and so no one can benefit. In the second case, for i E {2, 3}, the

payment of i is . Therefore, if i is in the coalition, it must be that ui > 2. If i is not

in the coalition, then ui = bi > by assumption. Thus min(u2, u3) > 4. But then

x(b) = x(u) and so no agent's utility for the outcome changes.

Next, suppose ul > . For i E {2, 3}, in the truthful scenario i pays at most

.As i's payment is always at least , i can not benefit from a decrease in price.

Therefore i can benefit only if ui > and i 0 Q(u). But this is impossible for any

vector with u1 > , so i can not benefit in any coalition. Therefore, 1 must be the

agent that benefits from the coalition. As the minimum price for 1 is , in order for

1 to benefit, it must be that u1 > but either 1 ' Q(u) or x1 (u) = 1. This means

that either min(u2 , U3) > (case one) or max(u 2, U3) < (case two). Furthermore, 1

can only benefit if xl(b) = 4 since, when ul > 1, 1 is receiving the service at price 1

and so the price must decrease, and when < ul < 1, 1 is not receiving the service

but can not afford to pay 1 and so must receive the service at price . Now, in case

one (min(u 2, u3) > ), in the truthful scenario 2 and 3 have positive utility. In order

for xl(b) = , i for i = 2 or i = 3 must lower his bid to bi < . But then if the

coalition consists of just i and 1, i X Q(b) and so i's utility decreases. Similarly, if

the coalition is {1, 2, 3}, then 1 only benefits if {2, 3} 0 Q(b) and so the utility of 2
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or 3 decreases. In case two (max(u 2 , U 3 ) < ), 1 can only benefit if i for i = 2 or i = 3

raises his bid to bi > 1. But then if the coalition consists of just i and 1, xi(b) = 1

and so i's utility becomes negative. Similarly, if the coalition is {1, 2, 3}, then at least

one of 2 or 3 must pay , and so his utility becomes negative. O

A.2 A semi-cross-monotonic cost-sharing scheme

with no group-strategyproof mechanism

Suppose there are just two agents, 1 and 2. The cost of servicing both agents is 6 while

the cost of servicing either agent individually is 1. The following is a budget-balanced

semi-cross-monotonic cost-sharing scheme:

s(1, {1, 2}) = ~(2, {1, 2}) = 3, ~(1, {1}) = ~(2, {2}) = 1

However, this scheme can not correspond to the payments in any group-strategyproof

mechanism. First consider the bid vector b1 = (3,3). By group-strategyproofness,

the mechanism must service exactly one of the agents; otherwise they could collude

and bid either (-1, 2) or (2, -1). Without loss of generality, suppose it services agent

2. Now consider the bid vector b2 = (3, 2). Again, the mechanism must service agent

2 since otherwise he could bid 3 and get the service at price 1. Finally, consider

the bid vector b3 = (bt, 2), where b is as in the proof of Theorem 4.3.2. Now the

mechanism must service just agent 1 at price 1. But this implies that in bid vector

b2, agent 1 could have profitably deviated by bidding b.

Remark A.2.1 Notice that in this cost-sharing scheme, removing either agent from

the set {1, 2} decreased the cost share of the other agent. This property allowed us

to draw conclusions about the serviced set in bid vector b1 which led us to our con-

tradiction. This highlights the following general fact: if two agents i and j are both

negative in a set S, then either ((i, S \ {j}) = (i, S) or ~(j, S \ {i}) = S(j, S) (or

both).
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Appendix B

Expected Number of Singles in

Two-Sided Markets

In this appendix, we analyze the expected number of singles in a stable matching

when men have random preference lists of size k and women have random complete

preference lists.

Lemma B.0.1 Consider a collection of n men and n women, each man having a

random ordering of k random women, and each woman having a random ordering of

men. Let pk(n) denote the probability that in a stable matching with respect to these

preference lists a fixed man remains single. Then for k > 2, pk(n) > 2 (1 - o(1)).

In order to prove the above lemma, we first generalize the scenario to a case where

there are m men and n women (m < n). Let pk(m, n) denote the probability that

a fixed man remains unmarried in this scenario. Therefore, pk(n) = pk(n,n). We

start by proving that if the population of women remains constant, an increase in the

number of men can only make it harder for a man to find a stable wife.

Lemma B.0.2 For every k, n, m1, and m 2, if ml < m 2 then pk(ml, n) < Pk(m2, n).

Proof. It is sufficient to prove that for every k, n, and m, pk(m, n) < pk(m + 1, n).

Consider a fixed man, Cain, in the scenario where there are m + 1 men. We want

to compute the probability that after running the men-proposing algorithm, Cain
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remains single. By Theorem 5.1.2 we know that the order of proposals does not affect

the outcome of the algorithm. Therefore, we can assume that one of the m + 1 men,

say Abel, starts proposing to women only after everyone else is done with his or her

proposals. By definition, before Abel starts proposing, the probability that Cain is

single is precisely pk(m, n). If Cain is married at this point, then there is a chance he

becomes single after Abel starts proposing, since his wife might leave him. However,

if he is single before Abel starts proposing, there is no chance that he gets married.

Therefore, the probability that Cain remains single is at least pk(m, n). O

Proof of Lemma B.O.1. Let c < 1 be a constant that will be fixed later. By

Lemma B.0.2, we have pk(n) = pk(n,n) > pk(Ecnl + 1,n), so it is enough to prove

that Pk( Fcn] + 1, n) > E. The proof of this is based on the following inequalities.

Pk(cnl1 + 1,n) ( ( -pk(rcnl,in))) (B.1)

pk(icn n) < ck (B.2)

We start by proving inequality B.2. Consider the situation where there are cn

men and n women. Fix a man, say Abel. The probability that Abel remains single is

Pk( Fcnl, n). Now, consider the men-proposing algorithm. Since the order of proposals

does not change the outcome, we can assume that Abel will wait until everyone else

stops proposing, and then he will make his first proposal. Suppose there are s single

women at this point and let S denote the set of single women. At this moment, there

are at most cnl - 1 < cn women who are married, so s > (1 - c)n. Since Abel's list

consists of k randomly chosen women, the probability that his i'th choice is not in S

given that his first (i - 1) choices are not in S is n +. Therefore, the probability

that none of his choices are in S is at most ikl (n-y4) < (n-s) < ck. We claim

that if at least one of the women in Abel's list is in S then Abel will find a wife. The

reason is that every time Abel makes a proposal, if he proposes to a single woman,

the proposal will be accepted and the algorithm ends. But if he proposes to a married

woman, he might start a chain of proposals that will either end at a single woman,

in which case Abel ends up married, or gets back to Abel, in which case the set of
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single women does not change and we can repeat the same argument for the next

proposal of .Abel until he reaches a woman in his list that is in S. By this claim, the

probability that Abel remains single is upper bounded by the probability that none

of the women in his list are in S, which is at most ck.

Now, we prove inequality B.1. Consider a situation where there are cnl + 1

men and n women, and fix a man, say Cain. We bound the probability Cain remains

single. Consider the men-proposing algorithm, and let everyone other than Cain make

proposals. Let M denote the set of married women at this point and s denote its size.

Then, let Cain enter and start proposing. The probability that Cain's i'th proposal

is to a married woman given that his first (i - 1) choices were married is -i+l

A married woman rejects a new proposal with probability at least 1/2. Therefore,

conditioning on the random choices of the other men, the probability Cain faces

rejection immediately after each of his proposals and therefore ends up single is at least

Iik s-i+1 > s-k+1 k=1 2(n-i+l) - (2(n--) > ( s-k) k Removing the conditioning, this probability

becomes the expectation E>[(sk)k] ( -k )k over the random choices of the other

men. The expected size E[s] of M is the same as the expected number of married

men, which, by the definition of pk(m, n), is (1 -pk( cnl, n)) [cnl > c(1 -pk( cn], n)).

Thus the probability that Cain ends up single is at least ( (1- k([cnl, n)) -

Inequalities B.1 and B.2 imply that pk([cn] + 1, n) > (c( - ck) - k. Choos-

ing c k- l /k, we see that for k > 2

Pk( [cnl + 1, n) > 2k (I1/k(1 - -)- -)

Ž k (1- ak-l/k(1- - ) > 1 1- k2 

- k2k+2 nk-/k(l - 1)
1

> k2k+2 (1-o(1)),

as desired. El
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Appendix C

Unsplittable Stable Marriage

Problems

In this appendix, we study unsplittable stable marriage problems.1 This problems ad-

dress situations in which each side of the market has a "size" or "capacity". Instances

of unsplittable stable marriage problems occur in situations like the assignment of

couples in the National Resident Matching Program (NRMP), where each student

submits a ranking over hospitals and each hospital submits a ranking over students

as well as a capacity governing the number of students it can accept. Unsplittability

constraints arise when pairs of students are married and wish to be similarly assigned

(as opposed to the more general setting in which they wish to be assigned to certain

pairs of hospitals).

We define the unsplittable stable marriage problem in terms of machine scheduling

on unrelated parallel machines where (job, machine) preferences are specified in an

ordinal setting, as in a stable marriage problem: rather than specifying costs for

every possible (job, machine) assignment, jobs submit ranked preference lists over

machines, and machines over jobs. In addition, each job i has a processing time ij

on machine j. For a generalized notion of stability (defined below) similar to that

from the classical stable marriage problem, we would like to compute a stable integral

assignment in which machines are "congested" beyond the minimum stable fractional

1 The results of this appendix are based on ongoing joint work with Dean and Goemans.
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makespan M by at most the processing time of a single job. That is, we would like

an integral assignment in which, for every machine j, the sum of the processing times

of jobs i assigned to j is at most M + maxpij. 2

Generalizing the stability property of one-to-one stable matchings in the natural

fashion, we declare a fractional assignment to be stable if it admits no blocking pair

(i, j), where either (i) both job i and machine j prefer each other more than some

of their current partners, or (ii) job i prefers machine j to some of its current part-

ners and j is not utilized fully up to the makespan of the schedule. The type (ii)

constraints assume that machines have complete preference lists, and this is without

loss of generality since we can transform an instance with incomplete preference lists

into an equivalent instance with complete preference lists by appropriately introduc-

ing "dummy" jobs whose processing times fill the under-capacitated machines with

incomplete preference lists.

Given a candidate makespan M, in finite (but not necessarily polynomial) time we

can compute a fractional stable assignment (if it exists) using a natural generalization

of the classical Gale-Shapley (GS) propose/reject algorithm [39]: jobs propose to

machines in order of their preferences, and in each step a non-fully-assigned job i

proposes all of its unassigned load to the next machine j on its list, which accepts

only as much load as allowed by the makespan constraint and its preference list,

possibly rejecting (fractionally) some of the jobs already assigned to it if they are

less preferred than the proposing job. Whenever a job is "split" due to a fractional

acceptance or rejection, it remains split into two "virtual jobs" for the remainder of

the algorithm, each of which carries out independent sequences of proposals. Just

as with the classical one-to-one stable marriage problem, one can show that order of

proposals and rejections does not matter - we always obtain a "job-optimal" stable

assignment in which for every job i simultaneously, the allocation of its load among

the machines in i's preference list is lexicographically maximal among all fractional

stable allocations.

2 The nonuniform capacities of the couples problem in the NRMP can be accommodated in our
setting by adjusting the pij's appropriately. The target makespan M then becomes the normalized
capacities as opposed to the minimum stable fractional makespan.
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Our goal is to compute an assignment in which each job is integrally assigned.

Assuming that a fractional stable solution of makespan M exists, we wish to round

it to an unsplit solution satisfying condition (i) for stability, where each machine is

"congested" by at most maxpij, and where each uncongested machine satisfies con-

dition (ii). We treat congested machines as stable with respect to condition (ii), even

though they may appear to have extra capacity from the perspective of an inflated

makespan. This makes sense particularly if we think in terms of machines having

specified capacities (as in the NRMP example mentioned above), since a machine

congested beyond its capacity will not want any new jobs assigned to it. Henceforth,

we refer to an unsplit rounding of a fractional stable solution satisfying stability

conditions (i) universally and (ii) for all uncongested machines as a proper unsplit

rounding.

Our algorithm, which we call the integral GS algorithm as it is a variant of the

fractional GS algorithm, computes a proper unsplit stable assignment of makespan

M + maxpij in which every job is assigned to a machine that is at least as good as

its best allocation in the fractional assignment. Assume the target makespan M is

known.3 Jobs issue proposals in sequence according to their preference lists. In each

step of the algorithm, an arbitrary unassigned job issues a proposal (all proposals and

rejections are integral this time) to the next machine on its preference list. The ma-

chine accepts, but then proceeds to reject in sequence the least favored jobs assigned

to it (possibly including the proposing job) until the machine is overcongested by at

most the processing time of a single job - that is, until rejecting the next job would

leave the machine being utilized at or below M units of load. If each machine stores

its accepted jobs in a heap based on preference list ranking, this variant of the GS

algorithm runs in O(mn log n) time.

Theorem C.0.1 Suppose that a fractional stable assignment of makespan M exists.

Then the integral GS algorithm computes a proper unsplit assignment of makespan

30ur integer GS algorithm does not know the minimum value of M for which a fractional stable
assignment of makespan M exists; however, this is not a problem, as we can apply the algorithm
inside a binary search on M (we know that a "guess" for M is too low if the integral GS algorithm
terminates with unassigned jobs).
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M + maxpij in which every job is assigned to a machine that is at least as good as

its best allocation in the fractional assignment.

Proof. Jobs are never fractionally assigned, and the rejection procedure ensures

that the resulting makespan is at most M + maxpij. After the integral GS algorithm

terminates, let each machine fractionally reject its least-preferred load until its uti-

lization drops to M. This current state of assignment is one that would be reachable

by the fractional GS algorithm via some sequence of proposals and rejections starting

from an empty assignment. Utilizing the crucial property that the proposal/rejection

sequence for the fractional algorithm does not matter, the fractional algorithm must

be able to continue from this point and terminate with a job-optimal assignment

(which we know exists by assumption), in which every job i's best fractional assign-

ment is no better than its original integer assignment. Hence, every job i's integer

assignment must be at least as good as its best fractional assignment in any fractional

stable assignment of makespan M. Fo

Remark C.0.2 Given an instance of the couples problem in the NRMP as described

above, the integral GS algorithm computes in O(mnlogn) time a stable assignment

such that every couple is assigned to the same hospital and hospitals are overcapaci-

tated by at most one position.
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