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Abstract

A combination of bulk carbon, biomarker and compound specific isotopic analyses
were used in order to investigate the changes which accompanied the deposition of

black shales during the upper tenuicostatum and lower falciferum zones of the Toar-

cian (early Jurassic, 183 Ma) ocean anoxic event (OAE).
In this study, we reveal that apparent negative isotopic excursions in bulk organic

and carbonate carbon were the result of compositional changes of organic matter
and diagenesis, respectively. Organic petrology and Rock-Eval pyrolysis of organic

matter from the Jet Rock, Hawsker Bottoms, Yorkshire, England, show that the
upper tenuicostatum zone contains very large amounts of terrigenous debris. A careful
review of the carbonate carbon record, as reported in the literature, indicates that a

large negative isotopic excursion in bulk carbonate is likely the result of diagenesis,
rather than reflective of seawater isotopic conditions.

Biomarker distributions and isotopic composition of primary production biomark-
ers show little variation during the largest changes in the bulk records. Biomarker

source indicators vary little throughout the section, indicating little change in biota

or redox structure of the water column during this widespread deposition of black
shales. Isotopic compositions of algal short chain n-alkanes, pristane and phytane
also remain steady across the section. Long chain n-alkanes, biomarkers for higher

plants, also do not change during the event. Isorenieratane, a biomarker for green

sulphur bacteria and an indicator of photic zone euxinia, however, show a strong peak

in concentration coincident with the maximum abundance of organic carbon.
Because we have found no evidence for significant isotopic variation on land or in

the ocean, we must infer that there were no major redistributions of carbon in the

ocean-atmosphere system during the Toarcian OAE. Therefore, oceanic overturn or

large input of methane are not plausible explanations for this event. This deposition

of black shales was a result of periodic episodic euxinia, which resulted in the increased

preservation of organic matter. We believe that this event was not a large, one-time

occurence, but a characteristic response to paleogeography and oceanic circulation

patterns of the Mesozoic.
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Chapter 1

Introduction

Widespread deposition of organic-rich rocks, known as black shales, over specific time

intervals has long received much attention in the geologic community. When such a

deposition is accompanied by a global increase in the abundance of 13 C in carbonate

carbon, these time periods have been named 'Ocean Anoxic Events' (OAE's) [42].

Originally, several such periods were recognized in the Cretaceous.

Jenkyns (1988) [18] recognized global deposits of black shales and a positive iso-

topic excursion in carbonate carbon in Tethyan Europe during the Toarcian period of

the early Jurassic (183 Ma), leading to its classification as an OAE. Subsequent work

on this event, however, revealed that its geochemical signature is not so straightfor-

ward. Carbonate records show both negative and positive excursions in the abundance

of 13C, while the organic carbon record demonstrates a 6%o negative excursion. The

conflicting carbonate signals and the large and rapid nature of the organic carbon

excursion have caused much speculation as to the causes, consequences and extent of

this event.

A combination of bulk-rock analysis coupled with biomarker and compound-

specific isotope analysis of organic matter has yielded insight into changes which oc-

cured during several environmental and evolutionary events in earth history (e.g. [14,

13]) and which bulk organic matter analyses alone could not reveal. Here, such a

multi-faceted approach is undertaken in order to better understand the biogeochem-

ical processes which occured during the deposition of black shales in the Toarcian



period.

First, bulk composition data is presented which reveals that just before the peak

of the black shale deposition, the organic matter contains a large terrigenous com-

ponent. Then, the carbonate carbon record is investigated in detail in attempt to

determine the true, oceanic isotopic signal of carbonate carbon. Biomarker ratios

and compound-specific isotope data from samples spanning the event are presented.

Best estimates are made for the isotopic composition of terrestrial organic carbon,

marine organic matter and marine carbonate across the Toarcian OAE.

1.1 Background

Early Jurassic paleogeography and environment were fundamentally different from

the modern world. The Tethys Ocean, enclosed on the north and south by a single,

arid supercontinent, Pangaea, touched the global ocean to the east. The west side

of this ocean bordered what is now northern Europe. The region had broad, shallow

epicontinental seas containing numerous small islands. This area was newly open to

the Arctic Ocean via the Viking Straits [3]. Temperatures are thought to have been 5-

10'C warmer than today [1], with a vast amount of land at low latitudes and probable

temperate high latitudes [1]. The average isotopic composition of carbonate carbon

deposited from the oceans was +2%o, compared to O%o today [48]. Organic carbon was

significantly depleted in 13C, averaging -30%o, compared to -22%o today [15]. Thus,

the average fractionation between inorganic and organic carbon, known as Etoc, was

a staggering 32%o (compared to 25%o today).

This black shale event, which endured 500 to 700 k.y. [18, 1, 28], witnessed signifi-

cant volatility in the environment and the biota. The rift between North America and

Europe/Asia had begun to form the proto-Atlantic Ocean. The Karoo-Ferrar flood

basalt province is dated to this very time, 183±2 m.y., indicating major volcanism in

southern Africa, possibly related to the breakup of the continent [32]. In this short

interval of time, sea level rose 10-50 m [12], temperature warmied about 6-7'C [1, 38],

and a mass extinction affected benthic fauna [25].



Black shales were deposited most intensely in norhtern Europe. The Toarcian

OAE includes extremely organic-rich deposits in famous sections in England, Ger-

many and France, known as the Jet Rock, Posidonienscheifer and Schistes Carton,

respectively. In contrast, Tethyan sections at open-ocean settings, show lower abun-

dances of organic matter [18, 19].

Several different hypotheses have been posed to explain the geological and geo-

chemical signals in sections which include this event. The deposition of black shales

was originally thought to stem from increased productivity sparked by sea-level rise

across the falciferum zone, causing increased burial of organic carbon and a positive

excursion in the "C abundance of carbonate carbon [18, 19]. Other studies, which

found coinciding negative excursions in carbonate and organic carbon, concluded that

the event stemmed from density stratification, which was followed by basin stagnation,

recycling and upwelling of bottom waters rich in isotopically depleted CO 2, causing

negative excursions in both global reservoirs [24, 40, 43]. The most well-known recent

hypothesis holds that very large amounts of carbon from methane hydrates entered

the oceanic and atmospheric carbon reservoirs, causing coincident negative excur-

sions in the isotopic composition of fossil wood and bulk organic carbon through the

Jet Rock section [16, 2]. Most recently, however, a new study has retreated from the

methane-hydrate hypothesis but poses that magmatic intrusions in southern Pangaea

caused the release of large amounts of thermogenic methane, ultimately leading to

the OAE [29].

Because these theories pose widely divergent causes and consequences, the bulk

and compound-specific properties of the organic matter during the Toarcian black

shale deposition were studied in order to narrow the range of possible interpretations

of geochemical signals during this event.



1.2 Materials and methods

1.2.1 Samples

Samples for the current study come from the outcrops of Jet Rock at Hawsker Bot-

toms, Yorkshire, England, which was located in the northern European epicontinental

seas described above. They are a subset of the samples used in Ref. [21]. The samples

are carbon-rich, millimeter-laminated black shales with intercalated layers of calcite

concretions. The thickness of section is 14 m, with sampling approximately every

meter. The Jet Rock section yields a high-resolution dataset across the black shale

deposition. As a result, however, a longer-term view of the entry into and recovery

from the event is sacrificed.

1.2.2 Experimental methods

Rock-Eval pyrolysis

1 g aliquots of crushed sample were sent to University of Newcastle for Rock-Eval
pyrolysis. This analysis ascertains the temperature of maximum hydrocarbon (HC)
generation Tmax, which indicates the degree of thermal maturity of the kerogen. In
addition, the HC generation potential, or the hydrogen index (HI), and the abundance
of organic matter (TOC%) help chemically characterize the organic matter. Standard
notations are used: Si and S2 are in mg of hydrocarbons (HC) per gram of dry
sediment and Tmax is expressed in 'C. The hydrogen index (HI = S2/TOC x 100) is
expressed in mg HC per 100 grams of TOC.

Bulk isotope analysis

Bulk sediment samples were powdered, then acidified in 37% HCl overnight at room
temperature. Samples were rinsed with deionized water and centrifuged and rinsed
again, until neutrality was reached. They were dried at 100'C and then weighed
into tinfoil cups. Each sample was run in triplicate, so that 0.1, 0.2 and 0.5 mg of
organic carbon was analysed using a Carlo Erba Elemental Analyzer connected to
a Thermo-Finnigan Delta plus XP Isotope Ratio Mass Spectrometer. Sandards of
known isotopic composition were interspersed with samples in order to check results.
Isotopic compositions are expressed relative to the Vienna PDB standard.



Biomarker analysis

Approximately 5 g of sample were used for biomarker analysis. Bitumen was extracted
from the powdered samples in a Dionex ASE 200 Accelerated Solvent Extractor us-

ing a mixture of 9:1 methanol:dichloromethane at 1000 psi and 100'C. Asphaltenes
were precipitated from the bitumen using n-pentane. Approximately 10 mg of the re-
maining maltene fractions were separated over a column of silica into their saturated,
aromatic and polar fractions using respectively hexane, hexane / dichloromethane
(DCM) 1:1 (v/v) and DCM / methanol 7:3 (v/v) as eluents.

n-Alkanes were separated from the non-linear saturated hydrocarbons using 5
angstrom molecular sieve. Activated molecular sieves were added to the saturated
hydrocarbon fractions dissolved in cyclohexane in a sealed reactive jar and heated at

80'C overnight. The molecular-sieve non-adduct (MSNA) fraction was removed and
prepared for GC-MS analysis. n-Alkanes were retrieved from the molecular sieve by
dissolving the pellets in hydrofluoric acid, subsequently extracted with pentane, and
prepared for GCMS analysis.

Extracted compounds were analyzed by gas chromatography - mass spectrometry
system composed of an Agilent 6890 gas chromatagraph with an Agilent 5973 mass
spectrometer. The saturated hydrocarbon samples were diluted to 1 mg/100 ptL in
hexane and transferred to a GC vial. Injections were made using an HP6890 au-
tosampler. The column was a 60 m Chrompack CP8744 CPsil-5CB with an internal
diameter of 0.32 mm, film thickness of 0.25 pm. The carrier gas was helium of a volu-

metric flow rate of 1.6 mL/min. The ion source temperature of the was 250'C source
temperature. Samples were analyzed using both full scans and selected-ion monitor-
ing methods for a more detailed analysis of specific compounds. Aromatic fractions
were spiked with 414 ng of D14 - p-terphenyl standard to facilitate quantification of
aromatic hydrocarbons such as isorenieratane.

Gas chromatography coupled to tandem mass spectrometry used a Hewlett-Packard
6890 gas chromatograph coupled to a Micromass Autospec Ultima operated in the
metastable-reaction-monitoring (MRM) mode. A 60-m J&W Scientific DB-1 fused
silica capillary column (0.25 mm i.d., 0.25 m film thickness) was used with helium as
carrier gas. Samples were injected in pulsed splitless mode. The column temperature
was programmed from 60'C (held for 2 min) to 150'C at 10 0C/min, then at 30C/min
to 315'C and held isothermal for 24 min. The source was operated in El mode at
250 0C, 70 eV ionization energy and 8000 kV acceleration voltage.

Peaks were identified using previously published elution times and mass spectra.
Isorenieratane peaks were identified by comparison of elution time with an authentic
standard, as well as previously published mass spectra.

Compound-specific isotope analysis

n-Alkane and MSNA fractions separated for biomarker analysis were also used for

compound-specific isotope analysis.
Isotope ratios were measured using gas chromatography - isotope ratio mass spec-

trometry (GC-IRMS) on a Finnigan MAT Delta Plus XL coupled to an Agilent 6890



GC via the Finnigan GCC III combustion interface. The column was a 30 m DB-5MS
320pm ID with a 0.25 pm film thickness. 61 3C values (versus PDB) were calculated
by integrating the mass 44, 45 and 46 ion currents of the CO 2 peaks produced by
combustion of the column effluent and those of either CO 2 spikes or an internal stan-
dard of a known 61 3C value. Accuracy was checked using an internal standard of a
known isotopic composition.

Raney nickel desulfurization

Polar fractions from four representative samples were selected (at heights -2.7 m, 0.6
m, +3.2 m and +6.1 m) for Raney nickel desulfurization in order to liberate and
analyze GC-amenable hydrocarbons linked to geomacromolecules by sulfur bonds.
10-30 mg of sample, combined with Raney nickel suspended in ethanol and toluene,
was brought to reflux for three hours under argon. After work up, the resulting
hydrocarbons were separated on a silica gel column into saturated, aromatic and
polar fractions. The hydrocarbons contained in the saturated fractions were then
further analyzed using GC-MS.

Organic petrology

Four representative samples (at heights -3.4 m, +0.3 m, +3.2 m and +5.1 m) were
chosen for studies of the organic petrology. Standard procedures were followed for
isolation of kerogen from 3 - 4 g aliquots of extracted rock. Samples were treated
overnight once with hydrochloric acid (HCl), twice with hydrofluoric acid (HF) and
once more with HCl. In between treatments, samples were centrifuged and rinsed.
Prior to analysis, samples rinsed three times with water and twice with methanol.

A sub-aliquot of homogenized dry kerogen was suspended in methanol and then
mounted onto a glass slide using mounting medium, and set at room temperature.
Duplicate slides were prepared for each sample. Samples were examined using a
Zeiss research microscope in white light and fluorescent light using a Zeiss x 40 Plan-
Neofluar objective. Photomicrographs were taken using a Zeiss Axioskop and Axio
Image D1. Fluorescence images were obtained using a Zeiss 18 filter set.



Chapter 2

Bulk carbon records

New data from Rock-Eval pyrolysis and organic petrology are used to elucidate the

different sources of the bulk organic matter. Then, a detailed literature review of the

carbonate carbon isotopic record is undertaken in attempt to recognize the authentic

marine signals in this record.

2.1 Results from bulk organic carbon analyses

2.1.1 Rock-Eval pyrolysis and bulk organic carbon isotopes

Table C.1 and Figure D-1 reveal changes in the bulk composition of the rocks as

the Toarcian OAE was traversed. The whole section is characterized by levels of

total organic carbon (TOC%) greater than 2%. Abundances gradually increase to a

maximum of 11% at height +3.2 m in the middle exaratum subzone before dropping

back to 5% at the top of the section.

The isotopic composition of bulk organic carbon, 3 toc, shows a 7%o negative excur-

sion, beginning at -25%o in the tenuicostatum zone. It drops to -32%o before recovering

to -27%o in the upper exaratum subzone. The bulk organic carbon isotopic composi-

tion is strongly negatively correlated to TOC% (r = 0.85).

Hydrogen index (HI) values range from 200 mg/g TOC in the tenuicostatum zone

to a maximum of 440. Generally, marine algal organic matter has high HI values,



whereas lower values indicate the presence of plant material, with low hydrocarbon

yields. The hydrogen index has a significant positive correlation with TOC% (r

0.68), and negative correlation with 3 toc (r = 0.67)1.

The relationship between HI and TOC% indicates that as the amount of or-

ganic matter increases, it tends to be more lipid-rich, and thus more marine-sourced.

In addition, the more marine-sourced the organic matter, the more depleted it is

isotopically. These relationships were noted in Cretaceous black shales in Dean

(1986) [8], and attributed to a decreasing terrestrial input in the more depleted and

more hydrocarbon-rich organic carbon.

2.1.2 Organic petrology

To assess the amount of terrigenous input in the kerogen, four samples were chosen

for organic petrological analysis. Results, shown in Figure D-1(e), indicate that

the tenuicostatum zone sample at -3.4 m is made up of 80% terrigenous matter.

Microscopic analysis reveals that this terrigenous matter consists of mostly inertinite

and vitrinite, as shown in Figure D-2(a) and (c). In contrast, the analyzed samples

in which organic carbon was most depleted in 13C (at +0.3 m and +3.2 m) are the

richest in amorphous algal organic matter, implying a marine source, as shown in

Figure D-2(b) and (d). These results agree with the conclusions from the Rock-Eval

pyrolysis, discussed above.

It appears that this terrigenous matter is not simply a local phenomenon in the

Hawsker Bottoms section, but is prevalent throughout the European Toarcian black

shales. The four studies which have reported hydrogen index values show low values

for the upper tenuicostatum zone (Germany [43, 36], Italy [10], England [47]), though

none discussed the possibility of terrigenous input.

'Excluding the sample at -2.7 m which has an anomalously high HI value, r = 0.79 and r = 0.84
for 6toc vs. HI and TOC% vs. HI, respectively.



2.2 Marine carbonate isotopic record

The Toarcian OAE was originally identified in Jenkyns and Clayton (1986) [19] and

Jenkyns (1988) [18] by widespread black shale deposition accompanied by a positive

excursion in 6 carb. Although these original studies of the bulk carbonate of seven

Tethyan sections showed some negative excursions in bulk 3 carb, detailed examination

of these samples found 6180 isotopic compositions which strongly correlated with

6 carb These results, which have not since been refuted, led the authors to conclude

that each of the negative excursions were caused by early diagenetic effects and that

the true oceanic signal is a positive V1 C excursion of 2 to 3%o across the exaratum

subzone.

Since this original work, numerous studies have shown both positive [39, 22, 28,

37, 20, 21, 1] and negative excursions [20, 43, 21, 36, 47] in 3 carb. On first appraisal,

this record appears to be too inconsistent and too altered by local effects to distill

any global oceanic signal from it. A closer look, however, reveals that every negative

excursion reported is either (a) accompanied by evidence hinting it is most likely

diagenetic, or (b) supported by no evidence at all showing it is representative of

primary oceanic dissolved inorganic carbon and not a remnant of diagenesis. Here,

the 3 carb record is examined in detail, and we conclude that the primary oceanic record

is a positive excursion of 2 to 4%o in the exaratum subzone of the falciferum zone.

The bulk carbonate record of the Mochras Farm borehole in England exhibits a

sharp drop of 6% across the exaratum subzone from +2 to -4%c. This record was

shown originally in Jenkyns and Clayton (1997) [20], reprinted in Jenkyns et. al.

(2001) [21], and re-analyzed in van de Schootbrugge et. al. (2005) [471. Jenkyns

and Clayton (1997), the original study of this section, however, called the effects of

diagenesis 'so pervasive', that no primary oxygen isotopes could be discerned. They

conjectured that the unusually low 3 carb values stemmed from the input of carbonate

derived from reactive organic matter during early diagenesis. Trace element composi-

tions were not reported, and the weight percent CaCO3 was a suspiciously low 10-20%

during the negative excursion. These pieces of evidence, and the unrefuted conclu-



sions by the original authors lead us to the conclusion that the negative excursion in

6carb at Mochras Borehole is likely diagenetic.

A striking example of the mistaken identification of an 'excursion' is demonstrated

in the carbonate records of the D6tternhausern section of the German Posidonia shale,

where three different studies have measured carb. Schouten et. al. (2000) [43] and

R6hl et. al. (2001) [36] found a large negative excursion in bulk carbonate, extending

to -7 and -11%o, respectively, whereas Bailey (2003) [1], who analyzed the carbon

isotopic composition of belemnite shells, found a positive excursion with values no

lower than 0%c [1]. Neither of the bulk carbonate datasets was accompanied by

trace element analysis to assess the possible diagenetic contribution of the negative

excursion. In contrast, the belemnite study confirmed that the signal is of primary

origin using 6180, trace element concentrations and strontium isotopes. It is apparent

that the bulk carbonate record in England and Germany contains pervasive diagenetic

imprint, while primary oceanic signals may still be extracted from belemnite shells.

The remaining section showing a negative excursion in bulk carbonate is Belluno

Trough, near Dogna, Italy, shown in Jenkyns, et. al. (2001) [21]. The data, which

show a change from +3 to -1%o, were published without other supporting informa-

tion, such as oxygen isotopes or trace element analysis. Other information, however,

indicate that this signal may be of primary origin. Percentages of CaCO3 vary from

15 to 80% [10], unpublished oxygen isotopes show no correlation with 6carb (D.R.

Gr6cke, unpubl. data), and the excursion appears to be secular. The overwhelming

number of positive excursions documented, however, lead to the conclusion that this

negative excursion is controlled by local, rather than regional or global effects.

Several studies have found positive isotope excursions in shells of extinct belem-

nite rostrae, in both Tethyan and northern European sections. Their dense, low-Mg

calcitic shells, precipitated at or near isotopic equilibrium with ambient sea water,

are less susceptible to diagenesis than bulk carbonate [37]. Petrographic, cathodolu-

minescence and geochemical evidence, along with sampling targeted at assessing the

effects of inter-species and intra-sample variation give confidence that their isotopic

compositions are primary. Each Toarcian study analysing belemnite shells found



a positive excursion, with no hint of the sudden negative drop present in the bulk

carbonate record [1, 28, 39, 22, 37].

Finally, several sections for which bulk carbonate was analyzed, where the sup-

porting evidence did not hint at diagenesis, show a positive excursion similar to that

of the belemnites [18, 19].

Taking all of the above into consideration, we conclude that the primary signal

which best represents conditions in the water column through the Toarcian black

shales is the positive excursion in carbonate carbon from +2 to +5%c across the

exaratum subzone. The Hawsker Bottoms section exhibits a jump from +2 to +6%0

in belemnites in the upper exaratum subzone, as shown in Figure D-1 (d) [28).
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Chapter 3

Biomarker ratios

Branched alkane, aromatic and n-alkane fractions were separated, and analyzed us-

ing gas chromatography-mass spectrometry, as well as the highly specific metastable-

reaction-monitoring-GC-MS, for quantitative biomarker analysis. Peaks were identi-

fied as shown in Figures D-4, D-5, D-6 and D-7 using published peak-identification

criteria and elution times. Resulting data are shown in Table C.2.

3.1 Organic matter maturity

Biomarker ratios, shown in Table C.2, considered in concert with Rock-Eval pyrolysis

data from Table C.1, reveal that organic matter in these samples is in the very early

stages of oil generation. Complete hopane isomerization is indicated by the C31

22S/(22S+22R) ratio of 0.59 to 0.60 for all samples, indicating that the rocks have

entered the oil window [35]. Sterane isomerization, shown in the C29 20S/(20S+20R)

ratio, is also complete, at 0.51 to 0.53 [35]. Rock-Eval pyrolysis data, however, show

that the stage of oil generation is very early, as indicated by Production Index (PI)

values of greater than 0.1, but relatively low Tmax values (~430-440'C, Table C.1).

The Ts/(Ts+Tm) ratios, which approach 0 prior to the oil window and 1.0 upon

full maturation, range from 0.5-0.6, confirming early oil-generation maturity of the

samples [35]. Finally, the methylphenanthrene index (MPI), a maturity parameter

based on isomerization of specific polyaromatic hydrocarbons, yields values which are



approximately the same in all rocks, of about 0.5. Calibrations between MPI and

vitrinite reflectance (Rc) yield Rc values of approximately 0.7 [4]. Similar values of

Rc are calculated independently from Tmax, confirming our assessment of the sample

set at the early stage of oil generation [34].

3.2 N-alkane and isoprenoid distributions

The most abundant compounds in the saturated hydrocarbon fractions are n-alkanes,

as seen in Figure D-7. The n-alkane distributions are generally unimodal, showing a

maximum at nC 17 and nC18 , extending out as far as C38 in some cases. Odd or even

predominance of carbon numbers was not observed (carbon preference index ~ 1 for

all samples), probably a result of thermal processes [34]. Distributions of n-alkanes

show little variability through the section.

3.3 Source indicators

Two characteristics stand out when examining the source biomarker ratio changes

through the OAE, shown in Figure D-8. The most striking observation is that the

ratios change little through this event which is marked so distinctly in the bulk organic

carbon isotopic record. The other important observation is the extreme difference

exhibited by the single sample at -4.0 m.

The biomarker ratios of this sample indicate that the organic matter derives from

a very different environment from the rest of the section. A much higher pris-

tane/phytane ratio, more C29 steranes, lower steranes/hopanes, gammacerane and

dinosteranes all indicate that this sample comes from an oxic or terrigenous environ-

ment [34]. Its stratigraphic proximity to the nearby sample at -3.4 m, which was

found to be 80% terrigenous, as discussed in Section 2.1, along with a low HI value

(240 mg HC/g TOC), lead to the assessment of this sample as being dominantly

terrigenous.

Biomarker ratios for the rest of the section, however, reflect a more marine en-



vironment, though not one that demonstrates a shift into and out of anoxia. The

section is characterized by steady algal productivity (steranes/hopanes ratio) and

salinity (gammacerane index). The 2a-methylhopane index, a well-constrained indi-

cator of cyanobacterial input, is low (1 to 2.5%), as observed in other Phanerozoic

marine black shales [45]. Its 3# isomer, which has been isolated in methanotrophs [7],

appears in similar concentrations, indicated in a 2aMeH/3#MeH ratio of about one

throughout the section, until the uppermost sample, when 30-MeH is more abundant.

Dinosteranes, a reliable biomarker for dinoflagellates [46] with possibly some diatomic

input, occur in steady amounts throughout the section, excepting the one sample at

-4.0 m.

3.4 Isorenieratane

Isorenieratane is a C40 diaromatic carotenoid which is produced by green sulphur

bacteria (Chlorobiaceae) photoautotrophic organisms which need light and H2S. The

presence of this compound in a geologic sample is a highly specific indicator for periods

when euxinic conditions extended into the photic zone, indicating a very shallow oxic

water column. This compound has been identified in other studies of Toarcian black

shales, both in Germany and England [43, 23, 5], indicating widespread photic zone

euxinia. Here, isorenieratane was identified through matching elution times with

an authentic standard and published mass spectra. Figure D-9 shows the m/z 134

selected ion chromatogram of the sample at +6.9 m, along with the isorenieratane

standard.

Figure D-10 shows changes in concentrations of isorenieratane normalized to to-

tal organic carbon through the section. Increasing concentrations are interpreted as

increased intensity of photic zone euxinia. In contrast to the biomarker ratios, isore-

nieratane concentrations show significant change in the upper exaratum subzone, in-

creasing to almost 1pg/g TOC, which approaches levels found at the Permian-Triassic

boundary [11].
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Chapter 4

Compound-specific isotope analysis

(CSIA)

4.1 Results of CSIA analyses

Compound-specific isotope analysis was undertaken in order to obtain more informa-

tion about relationships between compounds and about sources of specific compounds.

Attention was focused on the primary production biomarkers pristane and phytane

and the n-alkanes. Data are presented at the bottom of Table C.2 and plotted in

Figure D-11, with 6toc as a reference.

Several immediate inferences about the source of these compounds can be drawn

from this isotopic information. Once again, the sample at -4.0 m exhibits anomalous

characteristics compared to the rest of the section. Isotope ratios of its n-alkanes,

pristane and phytane are all 2 to 3%o more enriched than in its nearest neighbor.

In the early Jurassic, average marine organic carbon was significantly depleted in

13C relative to terrigenous organic matter[15, 44]. The average o vale was -30%o,

compared to -22%o today. Thus, the relative isotopic enrichment of the sample at -

4.0 m supports the conclusion that organic matter from this sample has a dominantly

terrigenous source.

Above this sample, however, the isotopic compositions of n-C 17 , n-C 18 , pristane

and phytane vary little through the middle of the section. Pristane and phytane vary



together with a constant offset, and can thus be attributed to a common source. This

source is most likely photosynthetic producers, as these compounds are thought to

be largely derived from the phytol side-chain of chlorophyll [13].

The striking characteristic of this section is that the isotopic composition of the

biomarkers analyzed do not vary with the bulk 6toc. toc and 6 values of specific

compounds must therefore represent different sources, except in the sample at -4.0 m.

The upper part of the section displays a change in 'isotopic ordering'. Until the

upper exaratum subzone, pristane and phytane are consistently 1 to 2%o heavier than

n-C 17 and n-C 18 , consistent with known biosynthetic offsets in algae and cyanobac-

teria [30]. In the two samples above height +6.0 m, however, while n-C 17 and n-C 1 8

remain relatively steady at 32 to 33%c, pristane and phytane become extremely de-

pleted, at -36 and -35%o, respectively. In these samples, pristane and phytane become

notably lighter than the n-alkanes, causing a change in 'isotopic ordering'. No known

biosynthetic pathway can produce such isotopic ordering, though this relationship has

been found in Proterozoic sediments [26, 27], as well as around other OAE's, includ-

ing the Permian-Triassic boundary [11]. This switch has previously been attributed

to extensive heterotrophy in the water column, resulting in isotopically enriched n-

alkaanes relative to pristane and phytane.

4.2 Chromatography of desulfurized samples

To insure that the pristane and phytane observed in the free fraction were in fact

the dominant marine signal, we desulfurized four samples and analysed the resulting

saturated hydrocarbons by GC-MS. The sample at +3.2 m, shown in Figure D-12,

which is at the maximum of organic carbon abundance, shows low concentrations of

short chain marine n-alkanes and isoprenoids relative to UCM and long chain alkanes

and more complex compounds. Thus, we feel confident that the isotopic signal from

pristane and phytane in the extractable fraction is representative of a marine source.



4.3 The isotopic composition of terrestrial organic

matter

Figure D-13 shows the isotopic compositions of all the n-alkanes of three representa-

tive samples. Short chain n-alkanes (n-C 17 to n-C 21) are probably most represen-

tative of algal inputs, whereas long chain n-alkanes (n-C 27 to n-C 31) contain input

from higher plant waxes [34]. Results reveal distinctly different isotopic compositions

for the short and long chain n-alkanes, indicating that algal inputs were depleted by

1 to 2 %o relative to plants.

Using n-C 27 to n-C 31, we can infer the change in isotopic composition of higher

plants through this event. Figure D-14 shows their isotopic composition as a function

of stratigraphic height. Like the short chain alkanes, n-C 27 to n-C 31 vary only

slightly. In direct contrast, Hesselbo (2000) [16] reported a 6%o change in the isotopic

composition of fossil wood over the same stratigraphic range as this study. The

former study contained no supporting evidence to assure that this change was not a

result of any of the numerous parameters that can affect 6t, such as plant type, plant

part or temperature [31]. The isotopic composition of the lowest sample, however,

is anomalously heavy compared to the rest of the section. Because this sample is

different in biomarker ratios and bulk organic matter composition as well, we believe

this change is due to a change in vegetation and not a secular change in the isotopic

composition of the atmosphere.





Chapter 5

Discussion

5.1 Estimate of 6m, the isotopic composition of ma-

rine organic carbon

As discussed in Section 2.1, samples in the upper tenuicostatum zone of the studied

section contain significant inputs of terrestrial organic matter. Land-derived plant

material, which contains different isotopic characteristics to marine material, may

mask the true nature of the excursion in bulk toc.

Using new data from this study, we can estimate the isotopic effect of the terrige-

nous input on the bulk 6toc. Here, a simple model is presented, similar in approach to

that of Jasper and Gagosian (1990) [17], where a mixed source of bulk organic matter

is assumed, containing a weighted average of marine and terrigenous end members.

The isotopic composition of bulk organic carbon, toc, is given by

6toc = ftot + (1 - ft)6m, (5.1)

where 3 toc is the isotopic composition of bulk organic matter, ft is the fraction of

organic matter that is terrigenous, 6t is the isotopic composition of terrestrial organic

matter, and 6 m is the isotopic composition of marine organic matter. Solving for 6 m

yields



m = ft  (5.2)
1 - ft

Thus, to assess the effect of the terrigenous matter on bulk t0c, we require knowledge

of 6toc, 6t and ft. 6toc was measured directly in this study, but the other two require

some further calculations.

As discussed above, isotopic compositions of n-C 2 7 to n-C 31 may be used as

a proxy for 6t. These long chain alkanes, however, are remnants of plant waxes,

whose isotopic composition varies from bulk terrestrial organic carbon due to further

fractionation in their production. A constant offset between waxes and bulk plant

matter has been found to be between 5 and 6%o [33]. Thus we add a constant 5.5%c

to the average of onC-27 to nC-31 to estimate 6t across the section.

Regression analysis of HI on ft was used to determine ft for all samples across

the section. The four samples analyzed by organic petrology were the basis of the

regression line. Then, values of HI were placed on that line to calculate the equivalent

ft. Results of these calculations are shown in Table C.1.

Using these estimates of 6t and ft for all samples in the section, the isotopic

composition of marine organic carbon, 6m, could then be estimated. Values for ft, ot
and toc were inserted into Equation (5.2) to yield a value for 6m. The uncertainty in

the regression line was used to calculate uncertainties in the values of ft estimated

from measurements of HI. In turn, the uncertainties in 6t and ft were combined in a

conventional error-propagation treatment to determine the uncertainties in computed

values of 6m.

In addition, C, the fractionation between marine inorganic and organic carbon,

defined as

6 carb - 6m, (5.3)

was calculated for the whole section. For ocarb, we chose to use obelemnites from

McArthur (2000) [28], for reasons discussed in Section 2.2.

Figure D-15 shows a summary of our best estimates of 6m, 6t, 6carb and c through



the Hawsker Bottoms section, as well the error ascribed to our calculation of 6m and

c. These plots show a rough parallel between the 6m and the ocarb curves from 0 to +6

m, reflected in an c value of about -34%o through this interval. Below 0 m, however,

a trend in 6 m is difficult to resolve due to the uncertainty in these measurements.

The large error in the sample at -4.0 m is due to the strongly dominant component

of terrestrial organic matter in that sample. Because there is little variation in 3 carb,

6t or the isotopic compositions of the primary production biomarkers below 0 m, we

believe that with the exception of the sample of -2 m, the isotopic composition of

total marine organic carbon hovers abetween -31 and -33 %.

In summary, we conclude that the authentic isotopic signals - C, 6 of pristane,

phytane and marine n-alkanes, and 6t - remain flat through this OAE where the bulk

organic signal undergoes a large change.

5.2 Periodic euxinia

Because we have found no evidence for significant isotopic variation on land or in the

ocean, we must infer that there were no major redistributions of carbon in the ocean-

atmosphere system during the Toarcian OAE. Therefore, oceanic overturn or large

input of methane are not plausible explanations for this event. This deposition of

black shales was a result of periodic episodic euxinia, which resulted in the increased

preservation of organic matter. We believe that this event was not a large, one-time

occurence, but a characteristic response to paleogeography and oceanic circulation

patterns of the Mesozoic.

The presence and widespread distribution of aryl isoprenoids, which require eux-

inia for their production, indicate that a sulfidic photic zone was a common occurence,

before, during and after the OAE at Hawsker Bottoms and in other sections [431.

Isorenieratane maximum abundance is near the maximum in TOC, implying that

strengthening euxinia was responsible for increase in organic carbon burial. The

presence of benthic fauna, and low TOC abundance before the event, however, leads

us to a conclusion reached in Schouten et. al. (2000) [43], that this euxinia was



periodic prior to the main deposition of black shales. Even during the most intense

deposition, both benthic fauna and short periods without lamination are present,

suggesting that there were brief oxic events interrupting the OAE.

The occurence of such frequent shifts into and out of anoxia, as well as several

oceanic anoxic events in the Mesozoic, infers that the paleogeography of the time

may have caused the oceans to be prone to anoxia. Quantitative models have pre-

dicted that paleogeography which included large spans of epicontinental seas could

result in a change in oceanic circulation such that oceanic deep waters are formed in

tropical areas [6, 49]. In such a scenario, periods of large evaportion due to global

warming would cause oceanic deep water to be warm and saline rather than cold and

oxygenated, as they are today. Sarmiento et. al. (1988) [41] determined that oxygen

concentrations in the waters which feed the deep ocean exert the major control on

ocean anoxia. Thus, an earth with the paleogeography similar to that of the Toar-

cian, with low-latitude shallow seas, would be particularly susceptible to short periods

of ocean anoxia. Bailey et. al.(2003) [1] and McElwain et. al. (2005) [29] identi-

fied a global warming and significant CO 2 increase in the Toarcian, which possibly

jump-started this shift into anoxia.

Our findings do not support a major event of oceanic overturn, as supported in

former studies [24, 43]. These former models were based on apparent negative excur-

sions in the isotopic composition of bulk organic carbon, bulk carbonate carbon and

several specific organic compounds. Our results differ starkly. Isotopic composition of

surface-water biomarkers show no negative change. Authentic carbonate and organic

carbon bulk signals were altered by diagenesis and terrigenous input, respectively,

and reveal no negative excursion. The isotopic composition of plant wax biomarkers,

which should roughly vary with the isotopic composition of the atmosphere, showed

little variation through the section. Evidence for major oceanic overturn across the

Toarcian OAE is absent.



5.3 Implications for the methane hypotheses

Hesselbo et. al. (2000) [16] postulated that coincident negative excursions in bulk

organic carbon and fossil wood isotopes signified a common, major perturbation to

the oceanic and atmospheric carbon reservoirs in the form of a release of 1500 to

2700 Gt of methane hydrates. Beerling et. al. (2002) [2] increased this estimate to

a release of 5000 Gt of methane based on modeling results. Most recently, however,

McElwain, Wade-Murphy and Hesselbo (2005) [29] found that the catastrophic release

of methane hydrates is not supported by their results. As an alternative, however,

they offer that the release of thermogenic methane due to magmatic intrusion into

Gondwanan coals as a more plausible hypothesis.

Biomarker, CSIA and bulk carbon isotopic results from our investigation, how-

ever, do not support the presence of large amounts of methane in the water column.

Predominantly, the abundance of the 3#-methylhopane biomarker, an indicator of

methanotrophs, in relation to both C3 o hopane or 2a--methylhopane, does not change

significantly through the section. Methanotrophic bacteria or archaea would be ex-

pected in the event of high concentrations of methane in the water column. There

is no hint of extreme depletion or a significant change in the isotopic composition in

the short or long chain n-alkanes, or pristane and phytane, as one might expect from

an ocean and atmosphere strongly effected by methane and its anaerobic oxidation.

The total marine organic carbon record does not demonstrate a large and rapid nega-

tive excursion, and carbonate records from belemnite rostra across the Toarcian OAE

show no negative excursion in ocarb.
The most well-documented release of methane hydrates in earth history, the Late

Paleocene Thermal Maximum (LPTM), is recorded by a negative excursion in both

6carb and 6toc(e.g. [9]). Hesselbo et. al. postulated that high CO 2 production

from methane oxidation would cause increased acidity in the water column and thus

increased carbonate dissolution. Though this explanation is a plausible one, it is not

clear why the apparent negative excursion in carbonate at the LPTM is so strong,

and why such a change would not be recorded across the Toarcian.
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Chapter 6

Conclusion

Bulk carbon, biomarker and compound-specific isotopic analyses, have shown that

none of the authentic marine signals undergo significant variation across the Toarcian

OAE. The isotopic compositions of surface ocean biomarkers and higher plant bio-

markers, as well as the fractionation between inorganic and organic carbon remain

relatively steady, indicating that there were no major redistributions of carbon in

the ocean-atmosphere system. Our results differ significantly from other studies. We

strongly believe that apparent negative isotopic excursions in organic and carbonate

carbon were the result of compositional changes of organic matter and diagenesis,

respectively. This investigation highlights the importance of using caution in the

interpretation of bulk carbon isotopic signals to infer large changes in the carbon

cycle.





Appendix A

Abbreviations



Table A.1: Abbreviation for compounds identified in Figures D-4 and D-5.

Abbrematton Compound

Steranes
C27 steranes

C27 diast. 3a20S/R
aaaS/R
a#3#S/R

C28 steranes
C28 diast. Oa20S/R
acaaS/R
a##31S/R

C29 steranes
C29 diast. Oa20S/R
aaazS/R
a#3#S/R

C3 o steranes
C3 0 diast. Oa20S/R
aaaS/R
a3S/R

Hopanes
C27 hopanes

Ts
Tm

C28 hopanes
29,30 BNH
28,30 BNH

C29 hopanes
C29 diahopane
C29H
C29Ts
C29 H

C3 0 hopanes
C30 diahopane
C30 H
C30 moretane

C 3 1 hopanes
C3 1 diahopane
C3 1op-22S/R

C32 hopanes
C3 2ao-22S/R

13J(H),17a(H)-diacholestane (20S/R)
5a(H),14a(H),17a(H)-cholestane (20S/R)
5a(H),14,3(H),1713(H)-cholestane (20S/R)

130(H),17a(H)-24-methyldiacholestane (20S/R)
5a(H),14a(H),17a(H)-24-methylcholestane (20S/R)
5a(H),143(H),170(H)-24-methylcholestane (20S/R)

130(H),17a(H)-24-ethyldiacholestane (20S/R)
5a(H),14a(H),17a(H)-24-ethylcholestane (20S/R)
5a(H),143(H),17,3(H)-24-ethylcholestane (20S/R)

131(H),17a(H)-24-propyldiacholestane (20S/R)
5a(H),14a(H),17a(H)-24-propylcholestane (20S/R)
5a(H),140(H),17/3(H)-24-propylcholestane (20S/R)

18a(H)-22,29,30-trisnorneohopane
17a(H)-22,29,30-trisnorhopane

17a(H),21#(H)-29,30-bisnorhopane
17a(H),18a(H),213(H) and
17#(H),18a(H),21a(H)-28,30-bisnorhopane

17a(H)-diahopane
17a(H),210(H)-30-norhopane
18a(H),21,(H)-30-norneohopane
170(H),21a(H)-30-norhopane

17a(H)-diahopane
17a(H),210(H)-hopane
17,3(H),21a(H)-hopane

17a(H)-diahopanes
17az(H),210(H)-homohopane (22S/R)

17a(H),2103(H)-bishomohopane (22S/R)



Appendix B

Definitions of biomarker ratios

Table B.1: Calculation of biomarker ratios shown in Table C.2 and Figure D-8.

Ratzo name Definitzon GC-MS ion / reaction

Ts/(Ts+Tm)
Hop maturity index
Ster maturity index

MPI (methylphenanthrene index) 1

prist / phyt
sters / hops

%C27 St

%C29 St

homohopane index

2aMeH index

33MeH index
gammacerane index

4-Methylsterane index

C3 1 H 22S22R

C2 9 St 20S 20R
1 89 x(3MP+2MP)

P+1 26x(9MP+1MP)
pristane / phytane

EC27 -C 2 9St
C 2 7 Tm+28,30BNH+C 2gH+C 3 oH+C 3 1 (S+R)H

EC2 7St X 100
CC7 C St X 100

C 3 5 (S +R) X 100
C 32aC eH X 1002a C 3 CeH+GC30H
39C"MeC3H X 100

30C 3 IMeH+C 3 oH
gammacerane X 100

C 3 0 H
4Me-C

3 oSt(R) X 100
C 2 9 St(R)

MRM 370--*191
MRM 426-191
MRM 400-*217

m/z 192 of aromatic full scan
GC-MS full scan of MSNA fraction
MRM M+ ->191 and 217

MRM M+ -- 217
MRM M+ ->217

MRM M+ ->191
MRM 426-205

MRM 426->205
MRM 412--*191

MRM 412-231





Appendix C

Tables

Table C.1: Bulk geochemic

ENRO05
ENRO15
ENRO04
ENR003
ENRO02
ENROO
ENRO06
ENRO07
ENRO08
ENRO13
ENRO12
ENRO11
ENRO1O
ENR017
ENR016
ENR009
ENR018
ENR019

TOC
%7

5.2
4.0
4.9
4.7
4.7

10.7
8.5
6.6
6.8
5.7
5.3
3.4
4.4
2.2
2.0
1.7
1.9
1.7

HI
mg HC/g TOC

343
395
330
331
403
431
435
417
324
366
341
259
305
444

220
240
182
192

al data for the sample suite.
Tmax P12  6 toc fterrestrial

C %o measured, %
432
433
434
436
435
437
436
434
429
437
436
433
440
437
438
440
438
439

0.17
0.18
0.18
0.17
0.15
0.14
0.12
0.12
0.16
0.11
0.12
0.18
0.14
0.15
0.13
0.12
0.12
0.11

fterrestrial
calculated', %

-27.4

-27.5
-26.9
-28.5
-28.8
-31.0
-32.2
-31.0
-30.8
-31.0
-30.3
-27.3
-26.8
-26.6
-25.9
-25.9
-25.8
-26.0

'Based on stratigraphy from Ref. [28] and subsequently Ref. [21].
2The production index (PI) is a measure of thermal maturity and is calculated as PI

S1 /(S 1 +S 2 ), where Si and S2 are peak heights from Rock-Eval pyrolysis.
3

fterrestrial was calculated for all the samples using regression analysis as described in Section 5.1.

height' sample
(m) name

+6.9
+6.1
+5.9
+5.1
+4.4
+3.2
+2.0
+1.2
+0.4
+0.3
-0.6
-1.0
-2.0
-2.7
-3.4
-4.0
-4.5
-5.3



Table C.2: Biomarker ratios and compound-specific isotope data for sample suite (shown in stratigraphic order from lowest to

highest. For parameter definitions and ratio calculations, see Appendix B).

0.46
0.60
0.53
0.49

2.1
0.54
26.5
52.2
3.6
2.4
2.2

0.85
0.25
26.8

carbon isotopic compositions of
opristane -30 3
6

phytane -29.0

4on- C17 -31.3

6n-C18 -30.4

6n-c19 -30.5
6n-C20 -30.3

6n-C21 -29.8

6n-C22 -29.6
6n-C23 -29.1
6.-C24 -28.9

Cn-C25 -28.8

6n-C26 -28.5
6n-C27 -28.6

on-C28 -28.7
6n-C29 -28.7
6n-C30 -29.9
6n-C31 -29.7

6n-C32 -30 6

6n-c33 -30.0
average of on-C17-19 -30.7
average of 

6
n-C27-31 -29.1

ENRO09 ENRO10 ENR011 ENRO13 ENRO08 ENRO07

-4.0 -2.0 -1.0 0.3 0.4 1.2

0.57 0.60
0.60 0.60
0.51 0.52
0.53 0.55

0.8
1.71
33.0
43.9
71
2.1
1.8

2.47
0.58
287.6

different
-32.4
-32.2
-33.0
-32.9
-32.9
-33.0
-32.6
-32.4
-32.1
-31.9
-31 7
-31.4
-31.2
-30.9
-31.0
-31.0
-31.2
-31.2
-31.1
-32.9
-31.1

1.1
1.94
32.9
43.9
7.0
2.1
1.5

2.48
0.58
170.0

biomarkers,
-32.3
-31.9
-33.0
-32.9
-32.4
-32.9
-32.7
-32.9
-32.6
-32.7
-32.4
-32.2
-31.9
-31.6
-31.7
-31.8
-31.7
-31.4
-31.5
-32.8
-317

0.56
0.59
0.51
0.53

0.8
1.84
33.2
44.2
6.8
1.8
1.4

2.55
0.63
150.8

in units

-31.1
-31.9
-32.6
-32.8
-32.8
-32.9
-32.8
-32.7
-32.5
-32.4
-32.6
-32.1
-31.8
-31.6
-31.5
-31.5
-31.8
-31.9
-31.7
-32.7
-31.6

0.57
0.59
0.51
0.49

1.0
1.84
33.2
43.1
7.3
2.0
1.8

3.13
0.54

239.3

of %o, with
-32.6
-32.0
-33.3
-33.2
-33.1
-33.2
-32.9
-33.1
-32.9
-33.1
-32.7
-32.5
-32.1
-32.2
-32.1
-32.0
-31.8
-31.7
-31.9
-33.2
-32.0

ENRO06 ENRO01 ENRO02 ENRO03 ENRO04
2.0 3.2 4.4 5.1 5.9

0.56 0.56 0.55 0.56 0.55 0.59
0.60 0.59 0.60 0.59 0.60 0.60
0.52 0.51 0.50 0.51 0.52 0.52
0.50 0.52 0.49 0.54 0.53 0.53

1.1
2.05
35.6
41.4
6.9
1.6
1.5

2.85
0.61
140.7

0.9
1.72
32.7
43.4
7.6
2.1
1.8

3.09
0.64

139.8

a pooled standard deviation
-32.7 -32.0
-32.1 -31.8
-33.0 -33.3
-32.9 -33.1
-32.8 -33.1
-32.8 -33.0
-32.8 -32.9
-32.8 -33.0
-32.7 -32.8
-32.9 -32.9
-32.5 -33.1
-32.5 -32.5
-32.2 -32.1
-32.1 -31.8
-31.9 -31.2
-32.1 -31.0
-32.0 -30.8
-32.0 -30.5
-31.7 -30.1
-32.9 -33.2
-32.1 -31.4

1.1
1.77
32.7
44.4
6.9
1.8
1.7

2.66
0.57

184.0

of 0.3%o
-32.1
-31.6
-34.1
-33.9
-33.8
-33.6
-33.3
-33.3
-33.0
-33.1
-32.5
-32.4
-31.8
-31.6
-31.4
-31.4
-31.3
-31.2
-31.1
-33.9
-31.5

sample no.
hezght (m)'

maturity parameters
1 Ts/(Ts+Tm)
2 Hop maturity index
3 Ster maturity index

4 MPI
source indicators
5 prist / phyt
6 ster / hop
7 %C27 St
8 %C29 St
9 homohopane index (%)
10 2aMeH index
11 30MeH index
12 gammacerane index
13 4-Methylsterane index

14 isorenieratane (ng/g TOC)

1.0
1.93
32.1
45.1
7.4
1.9
17

2.72
0.55

985.8

-33.2
-32.2
-33.9
-33.6
-33.6
-33.5
-33.3
-33.3
-33.0
-33.1
-32.8
-32.5
-32.0
-31 7
-31.7
-31.7
-31.6
-31.6
-31.5
-33.7
-31.8

1.0
2.46
34.6
42.1
6.8
1.8
1.8

2.84
0.57

487.3

-35.0
-35.0
-32.7
-32.5
-32.5
-32.6
-32.5
-32.6
-32.5
-32.8
-32.3
-32.3
-31.9
-31.7
-31.7
-31.9
-31.6
-31.9
-32.0
-32.6
-31.7

aStratigraphy from Refs. [28] and [21].

1.0
1.94
32.1
44.1
8.1
1.9
1.8

2.79
0.63
108.3

-33.0
-32.3
-33.3
-33.1
-33.2
-33.1
-33.0
-33.1
-32.9
-32.9
-32.8
-32.5
-32.2
-32.1
-31.9
-32.1
-32.0
-32.0
-31.8
-33.2
-32.0

Stable
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

ENRO05
6.9

0.56
0.60
0.51
0.53

0.9
2.18
32.3
43.8
6.7
1.2
1.7

3.00
0.62

270.0

-35.9
-35.1
-32.7
-32.5
-32.4
-32.3
-32.1
-32.4
-32.1
-32.3
-31.8
-31.8
-31.2
-31.3
-31.0
-31.2
-31.0
-31.2
-30.8
-32.5
-31.1
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Figure D-1: Bulk data from the Hawsker Bottoms section of the Toarcian black shale deposition. Section is thought to last
500-700 k.y. [18, 1]. (a) Percent total organic carbon, (b) isotopic composition of total organic carbon, 6 toc, (c) 6 belemnites, isotopic
composition of belemnite fossils, (d) hydrogen index (HI), and (e) percent of bulk composition that is terrigenous matter as
determined through organic petrology. Chemostratigraphy as shown in Refs. [28] and [21]. 5belemnites data from Ref. [28].
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Marine

(a) +0.3 m, transmitted

(c) +3.2 m, blue light

Terrigenous

transmitted

(d) -3.4 m, blue light

Figure D-2: Marine and terrigenous microfossils from the Jet Rock, Hawsker Bottoms, Yorkshire, England from kerogen isolates.
Scale bars are 50pm. (a) and (b) Comparison of marine (25% terrigenous) and woody (80% terrigenous) end members under
transmitted light; and (c) and (d) in fluorescing light.
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Figure D-3: Estimate of 6 m, the isotopic composition of marine organic carbon, using Equation (5.2) and different assumptions
for the isotopic composition of terrestrial material, 6t. Light grey lines are 6 toc and 6 t. ot data is from Hesselbo (2000) [16].
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Figure D-4: Distribution of hopanes and other pentacyclic triterpanes in the saturated
fraction of sample ENR004, at height +5.9 m. Data was obtained by GC-MS MRM
transitions M+ -+191. Compounds are identified by carbon number and relative
elution times. For abbreviation definitions, see Appendix A.
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Figure D-5: Distribution of steranes in the saturated fraction of sample ENR004, at

height +5.9 m. Data was obtained by GC-MS MRM transitions M+ -- 217. Com-

pounds are identified by carbon number and relative elution times. For abbreviation

definitions, see Appendix A.
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Figure D-6: Distribution of methylhopanes in the saturated fraction of sample
ENR004, at height +5.9 m. Data was obtained by GC-MS MRM transitions
426-+205. Compounds are identified by carbon number and relative elution times.
For abbreviation definitions, see Appendix A.



+ 6.9 m

+1.2 m

0

-0

)

-2.7 m

Figure D-7: Selected saturate fraction distributions through the section. Labelled
peaks are (a) n-C 17 (b) pristane (c) n-C 18 and (d) phytane, along with n-C 25
through n-C 31.

1



6 .. .... ...

E 0z4 ..........A
4 --

A

F44
A*

CG

4
j~ I

flu I

020
U L)

-I -

-4 -A -- - - - -- - - - - -

-6
- 01 2 3

-*-2MeH index
4- -S3MeH index

- -steranes/hopanes
A -- 4MeSt index

Figure D-8: Ratios of selected source biomarkers across the section. Calculations of
biomarker parameters are found in Appendix B.
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Figure D-9: Identification of isorenieratane,
in sample ENR005, at height +6.9 m.

a biomarker for green sulphur bacteria,
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Figure D-10: Isorenieratane concentration normalized to total organic carbon abun-
dance.
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Figure D-12: Saturated fraction of desulfurized hydrocarbons, from sample ENRO01
at +3.2 m.
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Figure D-13: 61 3C of all the n-alkanes of selected samples.
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Figure D-15: Best estimates of 6m, total marine organic carbon and the error ascribed to it, 6t bulk terrestrial organic carbon,
6 carb marine carbonate and c through the Hawsker Bottoms section. Calculations and assumptions are described in Section 5.1.
6 carb from McArthur (2000) [28].

) -37

-4w

38 40

(permil)

l I

..........

I I I I





Bibliography

[1] T. R. Bailey, Y. Rosenthal, J. M. McArthur, B. van de Schootbrugge, and M. F.

Thirlwall. Paleoceanographic changes of the late Pliensbachian - early Toarcian

interval: a possible link to the genesis of an oceanic anoxic event. Earth and

Planetary Science Letters, 212:307-320, 2003.

[2] D. J. Beerling, M. R. Lomas, and D. R. Gr6cke. On the nature of methane

gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events.

American Journal of Science, 302:28-49, 2002.

[3] C. L. Bjerrum, F. Surlyk, J. H. Callomon, and R. L. Slingerland. Numerical

paleoceanographic study of the early Jurassic transcontinental Laurasian seaway.

Paleoceanography, 16:390-404, 2001.

[4] C. J. Boreham, I. H. Crick, and T. G. Powell. Alternative calibration of the

Methylphenanthrene Index against vitrinite reflectance: Application to maturity

measurements in oil and sediments. Organic Geochemistry, 12:289-294, 1988.

[5] S. A. Bowden. The molecular characterisation of sedimentary organic matter

and petroleum by catalytic hydropyrolysis. PhD thesis, University of Newcastle

upon Tyne, 2003.

[6] G. W. Brass, J. R. Southam, and W. H. Peterson. Warm saline bottom water

in the ancient ocean. Nature, 296:620-623, 1982.



[7] J. J. Brocks and R. E. Summons. Sedimentary hydrocarbons, biomarkers for

early life. In H. D. Holland and K. Turekian, editors, Treatise on Geochemistry,

pages 63-115. Elsevier, 2003.

[8] W. E. Dean, M. A. Arthur, and G. E. Claypool. Depletion of 1 3C in Cretaceous

marine organic matter: Source, diagenetic or environmental signal. Marine Ge-

ology, 70:119-157, 1986.

[9] G. R. Dickens, M. M. Castillo, and J. C. G. Walker. A blast of gas in the

latest Paleocene: Simulating first-order effects of massive dissociation of oceanic

methane hydrate. Geology, 25:259-262, 1997.

[10] P. Farrimond, D. C. Stoddart, and H. C. Jenkyns. An organic geochemical profile

of the Toarcian anoxic event in northern Italy. Chemical Geology, 111:17-33,

1994.

[11] K. Grice, C. Cao, G. D. Love, M. E. B6ttcher, R. J. Twitchett, E. Grosjean,

R. E. Summons, S. C. Turgeon, W. Dunning, and Y. Jin. Photic zone euxinia

during the Permian-Triassic superanoxic event. Science, 307:706-709, 2005.

[12] A. Hallam. Estimates of the amount and rate of sea-level change across the

Rhaetian-Hettangian and Pleinsbachian-Toarcian boundaries (latest Triassic to

early Jurassic). Jounal of the Geological Society, London, 154:773-779, 1997.

[13] J. M. Hayes, K. H. Freeman, Brian N. Popp, and C. H. Hoham. Compound-

specific isotope analyses: A novel tool for reconstruction of ancient biogeochem-

ical processes. Organic Geochemistry, 16:1115-1128, 1990.

[14] J. M. Hayes, B. N. Popp, R. Takigiku, and M. W. Johnson. An isotopic study

of biogeochemical relationships between carbonates and organic carbon in the

Greenhorn Formation. Geochimica and Cosmochimica Acta, 53:2961-2972, 1989.

[15] J. M. Hayes, H. Strauss, and A. J. Kaufman. The abundance of 13C in marine

organic matter and isotopic fractionation in the global biogeochemical cycle of

carbon during the past 800 Ma. Chemical Geology, 161:103-125, 1999.



[16] S. P. Hesselbo, D. R. Grdcke, H. C. Jenkyns, C. J. Bjerrum, P. Farrimond,

H. S. M. Bell, and 0. R. Green. Massive dissociation of gas hydrate during a

Jurassic oceanic anoxic event. Nature, 406:392-395, 2000.

[17] J. P. Jasper and R. B. Gagosian. The sources and deposition of organic matter in

the Late Quarternary Pigmy Basin, Gulf of Mexico. Geochimica et Cosmochimica

Acta, 54:1117-32, 1990.

[18] H. C. Jenkyns. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedi-

mentary and geochemical evidence. American Journal of Science, 288:101-151,

1988.

[19] H. C. Jenkyns and C. J. Clayton. Black shales and carbon isotopes in pelagic

sediments from the Tethyan Lower Jurassic. Sedimentology, 33:87-106, 1986.

[20] H. C. Jenkyns and C. J. Clayton. Lower Jurassic epicontinental carbonates and

mudstones from England and Wales: chemostratigraphic signals and the early

Toarcian anoxic event. Sedimentology, 44:687-706, 1997.

[21] H. C. Jenkyns, D. R. Grdcke, and S. P. Hesselbo. Nitrogen isotope evidence

for water mass denitrification during the early Toarcian (Jurassic) ocean anoxic

event. Paleoceanography, 16:593-603, 2001.

[22] A. P. Jimenez, C. Jimenez de Cisneros, P. Rivas, and J. A. Vera. The early

Toarcian anoxic event in the westernmost Tethys (Subbetic): Paleogeographic

and paleobiogeographic significance. The Journal of Geology, 104:399-416, 1996.

[23] M. P. Koopmans, J. Kdster, H. M. E. van Kaam-Peters, F. Kenig, S. Schouten,

W. A. Hartgers, J. W. de Leeuw, and J. S. Sinninghe Damst6. Diagenetic

and catagenetic products of isorenieratene: Molecular indicators for photic zone

anoxia. Geochimica et Cosmochimica Acta, 60:4467-4496, 1996.

[24] W. Kiispert. Environmental changes during oil shale deposition as deduced from

stable isotope ratios. In G. Einsele and A. Seilacher, editors, Cyclic and event

stratification, pages 482-501. Springer-Verlag, New York, 1982.



[25] C. T. S. Little and M. J. Benton. Early Jurassic mass extinction: A global

long-term event. Geology, 23:495-498, 1995.

[26] G. A. Logan, J. M. Hayes, G. B. Hieshima, and R. E. Summons. Terminal

Proterozoic reorganization of biogeochemical cycles. Nature, 376:53-536, 1995.

[27] G. A. Logan, R. E. Summons, and J. M. Hayes. An isotopic biogeochemical

study of the Neoproterozoic and early Cambrian sediments from the Centralian

Superbasin, Australia. Geochimica and Cosmochimica Acta, 61:5391-5409, 1997.

[28] J. M. Mcarthur, D. T. Donovan, M. F. Thirlwall, B. W. Fouke, and D. Mattey.

Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event,

the duration of ammonite biozones and belemnite palaeotemperatures. Earth

and Planetary Science Letters, 179:269-285, 2000.

[29] J. C. McElwain, J. Wade-Murphy, and S. P. Hesselbo. Changes in carbon dioxide

during an oceanic anoxic event linked to intrusion into gondwana coals. Nature,

435:479-482, 2005.

[30] K. D. Monson and J. M. Hayes. Carbon isotope fractionation in the synthe-

sis of bacterial fatty asics. Ozonolysis of unsaturated fatty acids as a means of

determining the intramolecular distribution of carbon isotopes. Geochimica et

Cosmochimica Acta, 46:139-149, 1982.

[31] A. P. Murray, D. Edwards, J. M. Hope, C. J. Boreham, W. E. Booth, R. A.

Alexander, and R. E. Summons. Carbon isotope biogeochemistry of plant resins

and derived hydrocarbons. Organic Geochemistry, 29:1199-1214, 1998.

[32] J. Palfy and P. L. Smith. Synchrony between Early Jurassic extinction, oceanic

anoxic event and the Karoo Ferrar flood basalt volcanism. Geology, 8:747-750,

2000.

[33] R. D. Pancost and C. S. Boot. The palaeoclimatic utility of terrestrial biomarkers

in marine sediments. Marine Chemistry, 92:239-261, 2004.



[34] K. E. Peters, C. C. Walters, and J. M. Moldowan. The Biomarker Guide, Volume

1: Biomarkers and Isotopes in the Environment and Human History. Cambridge

University Press, Cambridge, UK, 2005.

[35] K. E. Peters, C. C. Walters, and J. M. Moldowan. The Biomarker Guide, Vol-

ume 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History.

Cambridge University Press, Cambridge, UK, 2005.

[36] H-J. R6hl, A. Schmid-R6hl, W. Oschmann, A. Frimmel, and L. Schwark. TheP-

osidonia shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem

controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology,

Palaeoecology, 169:273-299, 2001.

[37] I. Rosales, S. Robles, and S. Quesada. Primary and diagenetic isotopic signals

in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain.

Sedimentology, 48:1149-1169, 2001.

[38] I. Rosales, S. Robles, and S. Quesada. Elemental and oxygen isotope composi-

tion of early Jurassic belemnites: Salinity vs. temperature signals. Journal of

Sedimentary Research, 74:342-354, 2004.

[39] G. Smlen, P. Doyle, and M. R. Talbot. Stable-isotope analyses of belemnite

rostra from the Whitby Mudstone Fm., England: surface water conditions during

deposition of a marine black shale. Palaios, 11:97-117, 1996.

[40] G. Solen, R. V. Tyson, N. Telnos, and M. R. Talbot. Contrasting watermass

conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kim-

meridge Clay (Upper Jurassic) formations, UK. Palaeogeography, Palaeoclima-

tology, Palaeoecology, 163:163-196, 2000.

[41] J.L. Sarmiento, T.D. Herbert, and J.R. Toggweiler. Causes of anoxia in the world

ocean. Global Biogeochemical Cycles, 2:115-128, 1988.

[42] S. 0. Schlanger and H. C. Jenkyns. Cretaceous ocean anoxic events: Causes and

consequences. Geologie en Mijnbouw, 55:179-184, 1976.



[43] S. S. Schouten, H. M. E. van Kaam-Peters, W. I. C. Rijpstra, M. Schoell, and

J. S. Sinninghe-Damst6. Effects of an oceanic anoxic event on the stable carbon

isotopic composition of early Toarcian carbon. American Journal of Science,

300:1-22, 2000.

[44] H. Strauss and W. Peters-Kottig. The Paleozoic to Mesozoic carbon cycle revis-

ited: the carbon isotopic composition of terrestrial organic matter. Geochemistry,

Geophysics, Geosystems, 4:1083, doi:10.1029/2003GC000555, 2003.

[45] R. E. Summons, L. L. Jahnke, J. M. Hope, and G. A. Logan. 2-Methylhopanoids

as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400:554-557,

1999.

[46] R. E. Summons, J. K. Volkman, and C. J. Boreham. Dinosterane and other

steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum.

Geochimica et Cosmochimica Acta, 51:3075-3082, 1987.

[47] B. van de Schootbrugge, T. R. Bailey, Y. Rosenthal, M. E. Katz, J. D. Wright,

K. G. Miller, S. Feist-Burkhardt, and P. G. Falkowski. Early Jurassic climate

change and the radiation of organic-walled phytoplankton in the Tethys Ocean.

Paleobiology, 31:73-97, 2005.

[48] J. Veizer, D. Ala, K. Azmy, P. Bruckschen, D. Buhl, F. Bruhn, G. A. F. Carden,

A. Diener, S. Ebneth, Y. Godderis, T. Jasper, C. Korte, F. Pawellek, 0. G.

Podlaha, and H. Strauss. 87Sr/ 86Sr, 613C and 6180 evolution of Phanerozoic

seawater. Chemical Geology, 161:59-88, 1999.

[49] R. Zhang, M. J. Follows, J. P. Grotzinger, and J. Marshall. Could the late

Permian deep ocean have been anoxic? Paleoceanography, 16:317-329, 2001.

68

320c - SO0


