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Abstract

A test input for an object-oriented program typically consists
of a sequence of method calls that use the API defined by the pro-
gram under test. Generating legal test inputs can be challenging
because, for some programs, the set of legal method sequences is
much smaller than the set of all possible sequences; without a for-
mal specification of legal sequences, an input generator is bound
to produce mostly illegal sequences.

We propose a scalable technique that combines dynamic analy-
sis with random testing to help an input generator create legal test
inputs without a formal specification, even for programs in which
most sequences are illegal. The technique uses an example execu-
tion of the program to infer a model of legal call sequences, and
uses the model to guide a random input generator towards legal
but behaviorally-diverse sequences.

We have implemented our technique for Java, in a tool called
Palulu, and evaluated its effectiveness in creating legal inputs for
real programs. Our experimental results indicate that the tech-
nique is effective and scalable. Our preliminary evaluation indi-
cates that the technique can quickly generate legal sequences for
complex inputs: in a case study, Palulu created legal test inputs in
seconds for a set of complex classes, for which it took an expert
thirty minutes to generate a single legal input.

1. Introduction
This paper addresses the challenge of automatically generat-

ing test inputs for unit testing object-oriented programs. In this
context, a test input is typically a sequence of method calls that
creates and mutates objects via the public interface defined by
the program under test (for example,List l = new List();
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TextFileDriver d = new TextFileDriver();
Conn con = d.connect("jdbc:tinySQL",null);
Stmt s1 = con.createStmt();
s1.execute(

"CREATE TABLE test (name char(25), id int)");
s1.executeUpdate(

"INSERT INTO test(name, id) VALUES(’Bob’, 1)");
s1.close();
Stmt s2 = con.createStmt();
s2.execute("DROP TABLE test");
s2.close();
con.close();

Figure 1. Example of a manually written client code using the tinySQL
database engine. The client creates a driver, connection, and statements,
all of which it uses to query the database.

l.add(1); l.add(2) is a test input for a class that implements
a list). Automatic generation of method sequences is an active
research area [20, 21, 14, 7, 18].

For many programs, most method sequences are illegal; for
correct operation, calls must occur in a certain order with specific
arguments, and techniques that generate unconstrained sequences
of method calls are bound to generate mostly illegal inputs. For
example, Figure 1 shows a test input for the tinySQL database
server1. Before a query can be issued, a driver, a connection, and a
statement must be created, and the connection must be initialized
with a meaningful string (e.g.,"jdbc:tinySQL" ). As another
example, Figure 7 shows a test input for a more complex API.

Model-based testing [8, 12, 17, 4, 10, 16, 11, 15, 5, 13] of-
fers a solution. A model can specify legal method sequences (e.g.,
close() cannot be called beforeopen() , or connect() must
be called with a string that starts with"jdbc:" ). But as with
formal specifications, most programmers are not likely to write
models (except perhaps for critical components), and thus non-
critical code may not take advantage of model-based input gener-
ation techniques.

To overcome the problem of illegal inputs, we developed a
technique that combines dynamic analysis and random testing.
Our technique creates a model of method sequences from an ex-
ample execution of the program under test, and uses the model to
guide a random test input generator towards the creation of legal

1http://sourceforge.net/projects/tinysql
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method sequences. Because the model’s sole purpose is aiding a
random input generator, our model inference technique is different
from previous techniques [6, 19, 1, 22] which are designed primar-
ily to create small models for program understanding. Our models
must contain information useful for input generation, and must
handle complexities inherent in realistic programs (for example,
nested method calls) that have not been previously considered. At
the same time, our models need not contain any information that
is useless in the context of input generation such as methods that
do not mutate state.

A random generator uses the model toguide its input genera-
tion strategy. The emphasis on “guide” is key: to create behav-
iorally diverse inputs, the input generator may diverge from the
model, which means that the generated sequences are similar to,
but not identical to, the sequences used to infer the model. Gener-
ating such sequences is desirable because it permits our test gener-
ation technique to construct new behaviors rather than merely re-
peating the observed ones. Our technique creates diverse inputs by
(i) generalizing observed sequences (inferred models may contains
paths not observed during execution), and (ii) omitting unneces-
sary details from models (e.g., values of non-primitive, non-string
parameters), and (iii) diverging from model by randomly insert-
ing calls to methods not observed in during execution. (Some of
the generated inputs may be illegal—our technique uses heuristics
that discard inputs that appear to be illegal based on the result of
their execution.)

In this paper, we make the following contributions:

• We present a dynamic model-inference technique that infers
call sequence models suitable for test input generation. The
technique handles complexities present in real programs such
as nested method calls, multiple input parameters, access
modifiers, and values of primitives and strings.

• We present a random test-input generation technique that
uses the inferred models, as well as feedback obtained from
executing the sequences, to guide generation towards legal,
non-trivial sequences.

• We present Palulu, a tool that implements both techniques
for Java. The input to palulu is a program under test and
an example execution. Palulu uses the example execution to
infer a model, then uses the model to guide random input
generation. Palulu’s output is a collection of test inputs for
the program under test.

• We evaluate Palulu on a set of real applications with con-
strained interfaces, showing that the inferred models are cru-
cial when generating inputs for these programs. Our tech-
nique achieves better coverage than purely random test gen-
eration.

The remainder of the paper is organized as follows. Section 2
presents the technique. Section 3 describes an experimental eval-
uation of the technique. Section 4 surveys related work, and Sec-
tion 5 concludes.

2. Technique
The input to our technique is an example execution of the pro-

gram under test. The output is a set of test inputs for the program

under test. The technique has two steps. First, it infers a model
that summarizes the sequences of method calls (and their input ar-
guments) observed during the example execution. Section 2.1 de-
scribes model inference. Second, the technique uses the inferred
models to guide random input generation. Section 2.2 describes
test input generation.

2.1 Model Inference
For each class observed during execution, our technique con-

structs a model called acall sequence graph(Palulu records method
calls, including arguments and return values, and field/array writes
in a trace file created during the example execution of the program
under test.) Call sequence graphs are rooted, directed, and acyclic.
The edges represent method calls and their primitive and string
arguments. Each node in the graph represents a collection of ob-
ject states, each of which may be obtained by executing any the
method calls along some path from the root to the node. Each path
starting at the root corresponds to a sequence of calls that operate
on a specific object—the first method constructs the object, while
the rest of the methods mutate the object (possibly as one of their
parameters).

For each class, the model inference algorithm constructs a model
in two steps. First, it constructs a call sequence graph for each ob-
ject of the class, observed during execution (Section 2.1.1). Sec-
ond, it creates the model for the class by merging all call sequence
graphs of objects of the class (Section 2.1.2). Thus, the call se-
quence graph for the class is a summary of call sequence graphs
for all instances of the class.

For example, part (b) of Figure 2 shows the call sequence for
s1, an object of class ofStmt in the program of Figure 1. Part
(c) of Figure 2 shows the call sequence graph corresponding to the
call sequence in part (b). The graph in part (c) indicates, for exam-
ple, that it is possible to convert state A to state C either by calling
s1.execute() or by callingTS.parse(s1, DR) and then call-
ing s1.setStmt(SQLStmt) .

Figure 3 shows merging of call sequence graphs. The left and
center parts show the graphs fors1 ands2 , while the right part
shows the graph that merges thes1 ands2 graphs.

2.1.1 Constructing Call Sequence Graph
A call sequenceof an object contains all the calls in which the

object participated as the receiver or a parameter, with the method
nesting information for sub-calls (e.g., part (b) of Figure 2 shows
a call sequence). Acall sequence graphof an object is a graph
representation of the object’s call sequence—each call in the se-
quence has a corresponding edge between some states, and calls
nested in the call correspond to additional paths between the same
states.

The algorithm for constructing an object’s call sequence graph
has three steps. First, the algorithm removes state-preserving calls
from the call sequence. Second, the algorithm creates a call se-
quence graph from the call sequence. For nested calls, the algo-
rithm creates alternative paths in the graph. Third, the algorithm
removes non-public calls from the graph.

1. Removing state-preserving calls.The algorithm removes
from the call sequence all calls that do not modify the state
of the (Java) object.

State-preserving calls are of no use in constructing inputs
and omitting them reduces model size and search space with-
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TS≡tinySQL Conn≡Connection

Stmt≡Statement

DR≡"DROP TABLE test"

CR≡"CREATE TABLE test (name

char(25), id int)"

DR≡"DROP TABLE test"

IB≡"INSERT INTO test (name, id)

VALUES(’Bob’, 1)"

(a) Class and string literal abbreviations

1. s1 = Conn.createStmt()
2.→ s1 = new Stmt(Conn)
3. s1.execute(DR)
4.→ TS.parse(s1, DR)
5.→→ TSParser.DropTable(s1)
6.→→→ new DropTableStmt(s1)
7.→ s1.setStmt(SQLStmt)
8. s1.close()

A

s1=Conn.createStmt() s1=new Stmt(Conn)

C

s1.execute(DR) B

TS.parse(s1,DR)

D

s1.close()

s1.setStmt(SQLStmt)

A

s1=Conn.createStmt() s1=new Stmt(Conn)

C

s1.execute(DR) B

TS.parse(s1,DR)

D

s1.close()

(b) Call sequence for objects1 (c) Call sequence graph fors1 (d) Public-call sequence graph fors1

Figure 2. Constructing a call sequence graph for an object. (a) Abbreviations used in Figures 2 and 3. (b) Call sequence involving objects1 in the code
from Figure 1. Indented lines (marked with arrows) represent nested calls, shaded lines represent state-preserving calls, and lines in bold face represent
non-public calls. (c) Call sequence graph fors1 inferred by the model inference phase; it omits state-preserving calls. The path A-B-C represents two calls
(lines 4 and 7) nested in the call in line 3. (d) Public call sequence graph, after removing from (b) an edges corresponding to a non-public call.

A

s1=Conn.createStmt() s1=new Stmt(Conn)

C

s1.execute(DR) B

TS.parse(s1,DR)

D

s1.close()

+

A

s2=Conn.createStmt() s2=new Stmt(Conn)

C

s2.execute(CR)

B

TS.parse(s2,CR)

E

s2.executeUpdate(IB) s2.execute(IB)

F

TS.parse(s2,IB)

G

s2.close()

→
A

s=Conn.createStmt() s= new Stmt(Conn) 

C

s.execute(DR|CR) (edge A)

B

TS.parse(s, DR|CR)

D

s.close()

E

s.executeUpdate(IB) s.execute(IB) 

F

TS.parse(IB, s) 

G

s.close()

Figure 3. Call sequence graphs fors1 (from Figure 2(c)),s2 (not presented elsewhere), and the merged graph for classStatement .

out excluding any object states. Use of smaller model con-
taining only state-changing calls makes test generation more
likely to explore many object states (which is one goal of test
generation) and aids in exposing errors. State-preserving
calls can, however, be useful as oracles for generated inputs,
which is another motivation for identifying them. For exam-
ple, the call sequence graph construction algorithm ignores
the calls in lines 5 and 6 in Figure 2(b).

To discover state-preserving calls, the technique performs
a dynamic immutability analysis on the example execution.
A separate paper discusses this analysis in detail. A method
parameter (including the receiver) is considered immutable
if no execution of the method changes the state of the ob-
ject passed to the method as the actual parameter. “State of
the object” is the part of the heap that is reachable from the
object when following field references.

2. Constructing call sequence graph.The call sequence graph
construction algorithm is recursive and parameterized by the
call sequence, a starting node and an ending node. The top-
level invocation (for the whole history of an object) uses the
root as the starting node and a dummy as the ending node2.

Figure 4 shows a pseudo-code implementation of the algo-
rithm. The algorithm processes the call sequence call by
call, while keeping track of the last node it reached. When
a call is processed, a new edge and node are created and the
newly created node becomes the last node.

Nested calls are handled by recursive invocations of the con-
struction algorithm and give rise to alternative paths in the
call sequence graph. After a call to methodc is processed
(i.e., an edge between nodesn1 andn2 is added to the graph),

2Dummy nodes are not shown in Figures 2 and 3.
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// Insert sequence cs between nodes start and end.
createCallSequenceGraph(CallSequence cs,

Node start, Node end) {
Node last = start;
for (Call c : cs.topLevelCalls()) {

Node next = addNewNode();
addEdge(c, last, next); // add "last --c--> next"
CallSequence nestedCalls = cs.getNestedCalls(c);
createCallSequenceGraph(nestedCalls, next, last);
last = next;

}
replaceNode(last, end); // replace last by end

}

Figure 4. The call sequence graph construction algorithm written in Java-
like pseudo-code. The algorithm is recursive, creating alternative paths in
the graph for nested calls.

the algorithm creates a path in the graph starting fromn1

and ending inn2, containing all calls invoked byc.

For example, part (c) of Figure 2 contains two paths from
state A to state C. This alternative path containingTS.parse(s1,
DR) and s1.setStmt(SQLStmt) was added because the
call to s1.execute() (line 3) in part (b) of Figure 2 in-
vokes those two calls (lines 4 and 7).

3. Removing non-public calls.After constructing the object’s
call sequence graph, the algorithm removes from the graph
each edge that corresponds to a non-public method. Thus,
each path through the graph represents a sequence of method
calls that a client (such as a test case) could make on the
class. It would be incorrect to ignore non-public calls in the
way that state-preserving calls are ignored.

For example, in part (c) of Figure 2, the edge correspond-
ing to the non-public methods1.setStmt(SQLStmt) gets
removed, which results in the graph presented in part (d) of
Figure 2.

2.1.2 Merging Call Sequence Graphs
After the algorithm creates call sequence graphs for all objects

of a class, it merges them into the class’s model by first merging
their root nodes. Whenever two nodes are merged, merge any pair
of outgoing edges (and their target nodes) if (i) the edges record
the same method, and (ii) the object appears in the same parameter
positions (if the object is the receiver of the first method it must be
the receiver of the second, similarly for the parameters); other pa-
rameters, including primitives and strings may differ. When two
edges are merged, the new edge stores their combined set of prim-
itives and strings.

For example, the call graphs fors1 and s2 can be found in
left and center parts of Figure 3, while the combined model is
on the right. The edges corresponding tos1.execute(DR) and
s2.execute(CR) are merged to create the edges.execute(DR|CR) .

2.2 Generating Test Inputs
The input generator uses the inferred call sequence models to

guide generation towards legal sequences. The generator has three
arguments: (1) a set of classes for which to generate inputs, (2)
call sequence models for a subset of the classes (those for which
the user wants test inputs generated using the models), and (3) a
time limit. The result of the generation is a set of test inputs for
the classes under test.

The input generator works by mixing pure random generation
and model-based generation, as we explain below. The genera-

tor is incremental: it maintains an (initially empty)component set
of previously-generated method sequences, and creates new se-
quences by extending sequences from the component set with new
method calls.

Generating test inputs works in two phases, each using a spec-
ified fraction of the overall time limit. In the first phase, the gen-
erator does not use the models and creates test inputs in a random
way. The purpose of this phase is initializing the component set
with sequences that can be used during model-based generation.
This phase may create sequences that do not follow the models,
which allows for creation of more diverse test inputs. In the sec-
ond phase, the generator uses the models to guide the creation of
new test inputs.

2.2.1 Phase 1: Random generation
In this phase, the generator executes the following steps in a

loop, until the time limit expires.

1. Select a method.Select a methodm(T0, . . . , TK) at ran-
dom from among the public methods declared in the classes
under test (T0 is the type of the receiver). The new sequence
will have this method as its last call.

2. Create a new sequence.For typeTi of each parameter of
methodm, attempt to find, in the component set, an argu-
ment of typeTi for methodm. The argument may be either
a primitive value or a sequencesi that creates a value of type
Ti. There are two cases:

• If Ti is a primitive (or string) type, then select a prim-
itive value at random from a pool of primitive inputs
(our implementation seeds the pool with inputs like0,
1, -1 , ’a’ , true , false , "" , etc.).

• If Ti is a reference type, then usenull as the argu-
ment, or select a random sequencesi in the component
set that creates a value of typeTi, and use that value
as the argument. If no such sequence exists, go back
to step 1.

Create a new sequence by concatenating thesi sequences
and appending the call ofm (with the chosen parameters) to
the end.

3. Add sequence to the component set.Execute the new se-
quence (our implementation uses reflection to execute se-
quences). If executing the sequence does not throw an ex-
ception, the add the sequence to the component set. Other-
wise, discard the sequence. Sequences that throw exceptions
are not useful for further input generation. For example, if
the one-method inputa = sqrt(-1); throws an exception
because the input argument must be non-negative, then there
is no sense in building upon it to create the two-method in-
put a = sqrt(-1); b = log(a); .

Example. We illustrate random input generation using thetinySQL
classes. In this example, the generator creates test inputs for classes
Driver andConn. In the first iteration, the generator selects the
static methodConn.create(Stmt) . There are no sequences in
the component set that create a value of typeStmt , so the gener-
ator goes back to step 1. In the second iteration, the generator se-
lects the constructorDriver() and creates the sequenceDriver
d = new Driver() . The generator executes the sequence, which
throws no exceptions. The generator adds the sequence to the
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component set. In the third iteration, the generator selects the
methodDriver.connect(String) . This method requires two
arguments: the receiver or typeDriver and the argument of type
String . For the receiver, the generator uses the sequenceDriver
d = new Driver(); from the component set. For the argument,
the generator randomly selects"" from the pool of primitives. The
new sequence isDriver d = new Driver(); d.connect("") .
The generator executes the sequence, which throws an exception
(i.e., the string"" is not valid a valid argument). . The generator
discards the sequence.

2.2.2 Phase 2: Model-based generation
Model-based generation is similar to random generation, but

the generator uses the model to guide the creation of new se-
quences. We call the sequences that the model-based generator
createsmodeled sequences, which are distinct from the sequences
generated by the random generator. The model-based generator
keeps two (initially empty) mappings. Once established, the map-
pings never change for a given modeled sequence. Themo (mod-
eled object) mapping maps each modeled sequence to the object,
for which the sequence is being constructed. Thecn (current node)
mapping maps each modeled sequence to the node in the model
that represents the current state of the sequence’smo-mapped ob-
ject.

Similarly to the random generator from Phase 1 (Section 2.2.1),
the model-based generator attempts to create a new sequences by
repeatedly extending (modeled) sequences from the component
set. The component set is initially populated with the sequences
created in the random generation phase. The model-based gen-
erator repeatedly performs one of the following two actions (ran-
domly selected), until the time limit expires.

• Action 1: create a new modeled sequence.Select a class
C and an edgeE that is outgoing from the root node in
the model ofC (select both class and edge at random). Let
m(T0, . . . , Tk) be the method that edgeE represents. Cre-
ate a new sequences′ that ends with a call tom, in the same
manner as random generation (Section 2.2.1), i.e., concate-
nate sequences from the components set to create the ar-
guments for the call, then append the call tom at the end.
Executes′ and add it to the component set if it terminates
without throwing an exception. Create themo mapping for
s′—thes′ sequencemo-maps to the return value of the call
to m (model inference ensures thatm does have a return
value). Finally, create the initialcn mapping fors′—thes′

sequencecn-maps to the target node of theE edge.

• Action 2: extend an existing modeled sequence.Select a
modeledsequences from the component set and an edge
E outgoing from the nodecn(s) (i.e., from the node to
which s maps bycn). These selections are done at ran-
dom. Create a new sequences′ by extendings with a call to
the method that edgeE represents (analogously to Action
1). If a parameter ofm is of a primitive or string type, ran-
domly select, a value from among those that decorate edge
E. Executes′ and add it to the component set if it terminates
without throwing an exception. Create themo mapping for
s′—thes′ sequencemo-maps to the same value as sequence
s. This means thats′ models an object of the same type a
s. Finally, create thecn mapping fors′—the s′ sequence
cn-maps to the target node of theE edge.

Example. We usetinySQL classes to show an example of how
the model-based generator works. The generator in this exam-
ple uses the model presented in the right-hand side of Figure 3.
In the first iteration, the generator selects Action 1, and method
createStmt . The method requires a receiver, and the generator
finds one in the component set populated in the random genera-
tion phase (Section 2.2.1). The method executes with no excep-
tion thrown and the generator adds it to the component set. The
following shows the newly created sequence together with themo
andcn mappings.

sequences mo(s) cn(s)

Driver d = new Driver();
Conn c = d.connect("jdbc:tinySQL");
Statement st = c.createStmt();

st A

In the second iteration, the generator selects Action 2, and
methodexecute . The method required a string parameter and the
model is decorated with two values for this call (denoted byDRand
CR in the right-most graph of Figure 3). The generator randomly
selectsCR. The method executes with no exception thrown and the
generator adds it to the component set. The following shows the
newly created sequence together with themo andcn mappings.

sequences mo(s) cn(s)

Driver d = new Driver();
Conn c = d.connect("jdbc:tinySQL");
Statement st = c.createStmt();
st.execute("CREATE TABLE test name\

char(25), id int)");

st C

3. Evaluation
This section presents an empirical evaluation of Palulu’s abil-

ity to create test inputs. Section 3.1 shows that compared to undi-
rected random generation, test inputs created using Palulu yield
better coverage. Section 3.2 illustrates how Palulu can be used to
create a test input for a complex data structure.

3.1 Coverage
We compared using our call sequence models to using univer-

sal models (that allow any method sequence and any parameters)
to guide test input generation in creating inputs for programs that
define constrained APIs. As a measure of test suite quality, we use
block and class coverage. Our hypothesis is that test generated by
following the call sequence models will be more effective, since
the test generator is able to follow method sequences and use in-
put arguments that emulate those seen in an example input. We
measure effectiveness via coverage, since a test suite with greater
coverage is generally believed to find more errors. (In the future,
we plan to extend our analysis to include an evaluation of error
detection.)

3.1.1 Subject programs
We used four Java programs each of which contains a few

classes with constrained APIs, requiring specific method calls and
input arguments to create legal input.
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classes for which technique block coverage
tested generated at least one input

Program classes Universal model Call sequence model Universal model Call sequence model
tinySQL 32 19 30 19% 32%
HTMLParser 22 22 22 34% 38%
SAT4J 22 22 22 27% 36%
Eclipse 70 46 46 8% 8.5%

Figure 5. Classes for which inputs were successfully created, and coverage achieved, by using following call sequence models and universal models.

• tinySQL 3 (27 kLOC) is a minimal SQL engine. We used
the program’s test suite as example input.

• HTMLParser 4 (51 kLOC) is real-time parser for HTML.
We used our research group’s webpage as an example input.

• SAT4J5 (11 kLOC) is a SAT solver. We used a file with a
non-satisfiable formula, taken from DIMACS6, as an exam-
ple input.

• Eclipse compiler7 (98 kLOC) is the Java compiler supplied
with the Eclipse project. We wrote a 10-line program for the
compiler to process, as an example input.

3.1.2 Methodology
As the subset of classes to test, we selected from the program’s

public non-abstract classes, those classes that were touched during
execution. For classes not present in the execution, call sequence
models are not created and therefore the input generated by the
two techniques will be the same.

The test generation was run in two phases. In the first phase,
seeding, it generated components for 20 seconds using universal
models for all the classes in the application. In the next phase,
test input creation, it generated test inputs for 20 seconds for the
classes under test using either the call sequence models or the uni-
versal models.

Using the generated tests, we collected block and class cover-
age information with emma8.

3.1.3 Results
Figure 5 shows the results. The test inputs created when fol-

lowing the call sequence models achieve better coverage than those
created by following the universal model on all subject programs.
For example, without the call sequence models, a valid connection
or a properly-initialized database are never constructed, because of
the required initialization methods and specific input strings. This,
in turn, affected the coverage achieved when following the univer-
sal model on tinySQL. Allocating more time did not close the gap:
generation using the universal models for 100 seconds achieved
less coverage than generation using the call sequence models for
10 seconds.

3.2 Constructing a Complex Input
To evaluate the technique’s ability to create structurally com-

plex inputs, we applied it to theBinaryCore class within Daikon [9],
a tool that infers program invariants.BinaryCore is a helper class
3http://sourceforge.net/projects/tinysql
4http://htmlparser.sourceforge.net
5http://www.sat4j.org
6ftp://dimacs.rutgers.edu
7http://www.eclipse.org
8http://emma.sourceforge.net

Class Description Requires
VarInfoName Variable name
VarInfo variable description VarInfoName

PptTopLevel

PptSlice2 Two variables from a pro-
gram point

VarInfo
PptTopLevel
Invariant

PptTopLevel Program point PptSlice2
VarInfo

LinearBinary Linear invariant
(y = ax+ b) over two
scalar variables

PptSlice2

BinaryCore Helper class LinearBinary

Figure 6. Some of the classes needed to create a valid test input for
Daikon’sBinaryCore class. For each class, therequires column contains
the types of all valid objects one needs to construct to create an object of
that class.

that calculates whether or not the points passed to it form a line.
Daikon maintains a complex data structure involving many classes
to keep track of the valid invariants at each program point. Some
of the constraints in creating a valid BinaryCore instance are (see
Figure 6):

• The constructor to aBinaryCore takes an object of
type Invariant , which has to be of run-time type
LinearBinary or PairwiseLinearBinary , subclasses
of Invariant . Daikon contains 299 classes that extend
Invariant , so the state space of type-compatible but in-
correct possibilities is very large.

• To create a legalLinearBinary , one must first create a le-
gal PptTopLevel and a legalPptSlice2 . Both of these
classes require an array ofVarInfo objects. TheVarInfo
objects passed toPptSlice2 must be a subset of those
passed toPptTopLevel . In addition, the constructor for
PptTopLevel requires a string in a specific format; in
Daikon, this string is read from a line in the input file.

• The constructor toVarInfo takes five objects of different
types. Similar toPptTopLevel , these objects come from
constructors that take specially-formatted strings.

• None of the parameters involved in creating aBinaryCore
or any of its helper classes can benull .

We used our technique to generate test inputs forBinaryCore .
We gave the input generator a time limit of 10 seconds. During this
time, it generated 3 sequences that createBinaryCore objects,
and about 150 helper sequences.

Figure 7 (left) shows a test input that creates aBinaryCore
object. This test was written by a Daikon developer, who spent
about 30 minutes writing the test input.
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Manually-written test input (written by an expert) Palulu-generated test input
VarInfoName namex = VarInfoName.parse("x"); VarInfoName name1 = VarInfoName.parse("return");
VarInfoName namey = VarInfoName.parse("y"); VarInfoName name2 = VarInfoName.parse("return");
VarInfoName namez = VarInfoName.parse("z");
ProglangType inttype = ProglangType.parse("int"); ProglangType type1 = ProglangType.parse("int");
ProglangType filereptype = ProglangType.parse("int"); ProglangType type2 = ProglangType.parse("int");
ProglangType reptype = filereptype.fileToRepType();
VarInfoAux aux = VarInfoAux.parse(""); VarInfoAux aux1 =

VarInfoAux.parse(" declaringClassPackageName=, ");
VarInfoAux aux2 =

VarInfoAux.parse(" declaringClassPackageName=, ");
VarComparability comp = VarComparability comp1 =
VarComparability.parse(0, "22", inttype); VarComparability.parse(0, "22", type1);

VarComparability comp2 =
VarComparability.parse(0, "22", type2);

VarInfo v1 = VarInfo v1 =
new VarInfo(namex, inttype, reptype, comp, aux); new VarInfo(name1, type1, type1, comp1, aux1);

VarInfo v2 = VarInfo v2 =
new VarInfo(namey, inttype, reptype, comp, aux); new VarInfo(name2, type2, type2, comp2, aux2);

VarInfo v3 =
new VarInfo(namez, inttype, reptype, comp, aux);

VarInfo[] slicevis = new VarInfo[] {v1, v2 }; VarInfo[] vs = new VarInfo[] {v1, v2 };
VarInfo[] pptvis = new VarInfo[] {v1, v2, v3 };
PptTopLevel ppt = PptTopLevel ppt1 =

new PptTopLevel("StackAr.StackAr(int):::EXIT33", new PptTopLevel("StackAr.push(Object):::EXIT", vs);
pptvis);

PptSlice2 slice = new PptSlice2(ppt, slicevis); PptSlice slice1 = ppt1.gettempslice(v1, v2);
Invariant proto = LinearBinary.getproto(); Invariant inv1 = LinearBinary.getproto();
Invariant inv = proto.instantiate(slice); Invariant inv2 = inv1.instantiate(slice1);
BinaryCore core = new BinaryCore(inv); BinaryCore lbc1 = new BinaryCore(inv2);

Figure 7. The first code listing is a test input written by an expert developer of Daikon. It required about 30 minutes to write. The second listing is a test input
generated by the model-based test generator when following the call sequence models created by a sample execution of Daikon. For ease of comparison, we
renamed automatically-generated variable names and grouped method calls related to each class (but we preserved any ordering that affects the results).

Figure 7 (right) shows one of the three inputs that Palulu gener-
ated forBinaryCore . For ease of comparison between the inputs
generated manually and automatically, we renamed automatically-
named variables and reordered method calls when the reordering
did not affect the results. Palulu successfully generated all the
helper classes involved. Palulu generated some objects in a way
slightly different from the manual input; for example, to generate a
Slice , Palulu used the return value of a method inPptTopLevel
instead of the class’s constructor.

Without an invocation model, an input generation technique
would have little chance of generating this sequence; the specific
primitive parameters, the fact that aBinaryCore requires aLinear-
Binary , not just anyInvariant , are all crucial pieces of infor-
mation without which a search through the space of possibilities
would be infeasible. Moreover, the path to a legalBinaryCore is
highly constrained: there is not an easier way to obtain aBinary-
Core .

4. Related Work
Palulu combines dynamic call sequence graph inference with

test input generation. This section discusses related work in each
area in more detail.

4.1 Dynamic Call Sequence Graph Inference
There is a large literature on call sequence graph inference; we

discuss some techniques most closely related to our work. Cook
and Wolf [6] generate a FSM from a linear trace of atomic, parameter-
less events using grammar-inference algorithms [2]. Whaley and
Lam [19] combine dynamic analysis of a program run and static
analysis of the program’s source to infer pairs of methods that can-
not be called consecutively. Ammons et al. [1] use machine learn-
ing to generate the graph; like our technique, Ammon’s is inexact

(i.e., the inferred state machine allows more behaviors than those
observed in the trace).

In all the above techniques, the intended consumer of the in-
ferred graphs is a person wanting to gain program understanding.
Our end goal is generating test inputs for object-oriented APIs; the
consumer of our graphs is a mechanical test input generator, and
the model is only as good as it is helpful to generate inputs. This
fact imposes special requirements that our inference technique ad-
dresses. To be useful for real programs, a call sequence graph
inference technique has to deal with realistic program traces that
include method with multiple input parameters, nested calls, pri-
vate calls, primitive parameters, etc. On the other hand, the size
of the graph is less crucial to us. In addition, the models of the
above techniques mostly discover rules effecting one object (for
instance, opening a connection before using it). In contrast, our
model inference discovers rules consisting of many objects and
method calls.

Another related project is Terracotta [22], which dynamically
infers temporal properties from traces, such as “eventE1 always
happens beforeE2.” Our call sequence graphs encode specific
event sequences, but do not generalize the observations. Using
inferred temporal properties could provide even more guidance to
a test input generator.

4.2 Generating Test Inputs with a Model

A large body of existing work addresses the problem of gener-
ating test inputs from a specification or model; below we survey
the most relevant to Palulu.

Most of the previous work on generating inputs from a spec-
ification of legal method sequences [8, 12, 17, 4, 10, 16, 11, 15,
5, 13] expects the user to write the specification by hand, and as-
sumes that all inputs derived from the specification are legal. In
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addition, many of these techniques are designed primarily for test-
ing reactive systems or single classes such as linked lists, stacks,
etc. whose methods typically can take any objects as parameters.
This greatly simplifies input generation—there are fewer decisions
to make, such as how to create an object to pass as a parameter.

Like Palulu, the Agedis [11] and Jartege [13] tools use random
test input generation; Agedis requires the user to write a model as a
UML diagram, and Jartege requires the user to provide JML speci-
fications. The tools can generate random inputs based on the mod-
els; the user also provides an oracle to determine whether an input
is legal, and whether it is fault-revealing. Compared to Palulu,
these tools represent a different trade-off in user control versus au-
tomation.

Since we use an automatically-generated model and apply our
technique to realistic programs, our test input generator must ac-
count for any lack of information in the generated model and still
be able to generate inputs for data structures. Randomization helps
here: whenever the generator faces a decision (typically due to
under-specification in the generated model), a random choice is
made. As our evaluation shows, the randomized approach leads
to legal inputs. Of course, this process can also lead to creation of
illegal structures. In future work, we plan to investigate techniques
to minimize this problem.

An alternative approach to creating objects is via direct heap
manipulation (e.g., Korat [3]). Instead of using the public interface
of an object’s class, Korat constructs an object by directly setting
values of the object’s fields (public and private). To ensure that
this approach produces legal objects, the user provides a detailed
object invariant specifying legal objects. Our approach does not
require a manually-written invariant to create test inputs. Instead,
it infers a model and uses it to guide the random search towards
legal object states.

5. Conclusion
We have presented a technique that automatically generates

structurally complex inputs for object oriented programs.
Our technique combines dynamic model inference with ran-

domized, model-based test input generation to create high-quality
test suites. The technique is targeted for programs that define con-
strained APIs for which random generation alone cannot generate
useful tests that satisfy the constraints. It guides random genera-
tion with a model that summarizes method sequencing and method
input constraints seen in an example execution.

We have implemented our technique for Java and we evaluated
our tool on a set of programs. Our experimental results show that
test suites generated by our tool achieve better coverage than ran-
domly generated ones. Our technique is capable of creating legal
tests for data structures that take a human significant effort to test.
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