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Abstract

This paper describes a programming language, Javari, that is capable of expressing
and enforcing immutability constraints. The specific constraint expressed is that the
abstract state of the object to which an immutable reference refers cannot be modified
using that reference. The abstract state is (part of) the transitively reachable state:
that is, the state of the object and all state reachable from it by following references.
The type system permits explicitly excluding fields from the abstract state of an
object. For a statically type-safe language, the type system guarantees reference
immutability.

The type system is distinguishes the notions of assignability and mutability; in-
tegrates with Java’s generic types and with multi-dimensional arrays; provides a
mutability polymorphism approach to avoiding code duplication; and has type-safe
support for reflection and serialization. This paper describes a core calculus including
formal type rules for the language.

Additionally, this paper describes a type inference algorithm that can be used
convert existing Java programs to Javari. Experimental results from a prototype
implementation of the algorithm are presented.
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Chapter 1

Introduction

The Javari programming language extends Java to allow programmers to specify

and enforce reference immutability constraints. An immutable, or read-only, refer-

ence cannot be used to modify the object, including its transitive state, to which it

refers. A type system enforcing reference immutability has a number of benefits: it

can increase expressiveness; it can enhance program understanding and reasoning by

providing explicit, machine-checked documentation; it can save time by preventing

and detecting errors that would otherwise be very difficult to track down; and it can

enable analyses and transformations that depend on compiler-verified properties.

Javari’s type system differs from previous proposals (for Java, C++, and other

languages) in a number of ways. First, it offers reference, not object, immutability;

reference immutability is more flexible, as it provides useful guarantees even about

code that manipulates mutable objects. For example, many objects are modified

during a construction phase but not thereafter. As another example, an interface can

specify that a method that receives an immutable reference as a parameter does not

modify the parameter through that reference, or that a caller does not modify a return

value. Furthermore, a subsequent analysis can strengthen reference immutability into

stronger guarantees, such as object immutability, where desired.

Second, Javari offers guarantees for the entire transitively reachable state of an

object— the state of the object and all state reachable by following references through

its (non-static) fields. A programmer may use the type system to support reasoning

13



about either the representation state of an object or its abstract state; to support

the latter, parts of a class can be marked as not part of its abstract state. Third,

Javari combines static and dynamic checking in a safe and expressive way. Dynamic

checking is necessary only for programs that use immutability downcasts, but such

downcasts can be convenient for interoperation with legacy code or to express facts

that cannot be proved by the type system. Javari also offers parameterization over

immutability.

Experience with over 160,000 lines of Javari code, including the Javari compiler

itself, indicates that Javari is effective in practice in helping programmers to document

their code, reason about it, and prevent and eliminate errors [5]. Despite this success,

deficiencies of a previous proposal for the Javari language limit its applicability in

practice. Many of the limitations of [5] were addressed in [48], an abbreviated version

of this paper. In addition to the contributions of [48], this paper describes a type

inference that is capable of converting Java programs to the Javari language and

discusses the results of a prototype implementation of the analysis. Furthermore,

this paper rectifies a flaw in the core calculus that was previously presented.

This paper demonstrates that it is possible to implement a usable extension to

Java that enforces reference immutability. In particular, for the language to be useful

to programmers it must obey the following design goals.

Non-conversion Must disallow the conversion, through assignment or unsafe casts,

of a read-only reference to a mutable reference. This goal allows reference im-

mutability serve as a way to protect the abstract state of objects from mutation.

Transitive Provide transitive (deep) immutability that protects the entire abstract

state of an object. This goal enables programmers to use reference immutability

as a means to reason abstractly about the mutation of objects.

Flexible Allow programmers sufficient means to exclude an parts of an object’s

concrete state from the object’s abstract state. This goal ensures that the

language is usable in real-world programs that cache information, use complex

data structures, and use utility and debugging classes such as loggers.

14



Compatible Be backwards compatible with existing programs to allow programmers

to easily move to Javari without losing current programs.

Usable Naturally extend the Java language in a way that is intuitive to current

programmers. This goal is a necessity for the language to be adopted by the

mainstream Java programing community.

The rest of this document is organized as follows. Chapter 2 presents examples

that motivate the need for reference immutability in a programming language. Chap-

ter 3 describes the Javari language. Chapter 4 formalizes the type rules of Javari.

Chapter 5 discusses extensions to the basic Javari language to make the language more

useful in practice. Chapter 6 presents a type inference algorithm used to automati-

cally add Javari’s immutability constraints to an existing Java program. Chapter 7

discusses related work, including a previous dialect of the Javari language. Chap-

ter 8 concludes with a summary of contributions. Appendix A gives examples of each

of Javari’s assignability and mutability types being used. Finally, appendix B ex-

plains why Java’s annotation mechanism is not expressive enough to encode Javari’s

constraints.
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Chapter 2

Motivation

Reference immutability provides a variety of benefits in different situations. Many

other papers and books (see chapter 7) have justified the need for immutability con-

straints. The following simple examples suggest a few uses of immutability constraints

and give a flavor of the Javari language.

Consider a voting system containing the following routine:

ElectionResults tabulate(Ballots votes) { ... }

It is necessary to safeguard the integrity of the ballots. This requires a machine-

checked guarantee that the routine does not modify its input votes. Using Javari,

the specification of tabulate could declare that votes is read-only:

ElectionResults tabulate(readonly Ballots votes) {
... // cannot tamper with the votes

}

and the compiler ensures that implementers of tabulate do not violate the contract.

Accessor methods often return data that already exists as part of the represen-

tation of the module. For example, consider the Class.getSigners method, which

returns the entities that have digitally signed a particular implementation. In JDK

1.1.1, its implementation is approximately:

17



class Class {
private Object[] signers;
Object[] getSigners() {
return signers;

}
}

This is a security hole, because a malicious client can call getSigners and then add

elements to the signers array.

Javari permits the following solution:

class Class {
private Object[] signers;
readonly Object[] getSigners() {
return signers;

}
}

The readonly keyword ensures that the caller of Class.getSigners cannot modify

the returned array.

An alternate solution to the getSigners problem, which was actually implemented

in later versions of the JDK, is to return a copy of the array signers [6]. This works,

but is error-prone and expensive. For example, a file system may allow a client

read-only access to its contents:

class FileSystem {
private List<Inode> inodes;
List<Inode> getInodes() {
... // Unrealistic to copy

}
}

Javari allows the programmer to avoid the high cost of copying inodes by writing the

return type of the method as:

readonly List<readonly Inode> getInodes()

18



This return type prevents the List or any of its contents from being modified by

the client. As with all parameterized classes, the client specifies the type argument,

including whether it is read-only or not, independently of the parameterized typed.

A similar form of dangerous, mutation-permitting aliasing can occur when a data

structure stores information passed to it (for instance, in a constructor) and a client

retains a reference. Use of the readonly keyword again ensures that either the client’s

copy is read-only and cannot be modified, or else the data structure makes a copy,

insulating it from changes performed by the client. In other words, the annotations

force programmers to copy only when necessary.

As a final example, reference immutability can be used, in conjunction with a

subsequent analysis, to establish the stronger guarantee of object immutability: a

value is never modified, via any reference, if all references are immutable. For example,

there is only one reference when an object is first constructed. As another simple

example, some data structures must be treated as mutable when they are being

initialized, but as immutable thereafter; an analysis can build upon Javari in order

to make both the code and the reasoning simple.

Graph g1 = new Graph();
... construct cyclic graph g1 ...
// Suppose no aliases to g1 exist.
readonly Graph g = g1;
g1 = null;
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Chapter 3

Language Design

In Java, each variable or expression has an assignability property, controlled by the

final keyword, that determines whether it may be the lvalue (left-hand side) of an

assignment. In Javari, each (non-primitive) reference additionally has a mutability

property that determines whether its abstract state may be changed (for example,

by setting its fields). Both properties are specified in the source code, checked at

compile time, and need no run-time representation. The assignability and mutability

properties determine whether various operations, such as reassignment and calling

side-effecting methods, are permitted on a reference.

Javari extends Java by providing additional constraints that may be placed on

the assignability and mutability of a reference. Javari’s keywords are those of Java,

plus five more: assignable (the complement of final); readonly and its comple-

ment mutable; romaybe, a syntactic convenience that reduces code duplication; and

? readonly, which is used to create wildcards that vary over mutability.1

For ease of presentation, this chapter introduces the various aspects of the Javari

language incrementally then concludes with a summary of the language as a whole.

While some aspects of the language are explained in great detail, they are merely

results of the application of Javari’s simple design goals: preventing the conversion

of a read-only reference into a mutable reference, providing transitive immutability,

1For ease of reading, we present Javari’s immutability as keywords; however, as discussed in
appendix B, Javari can be implemented using extended Java annotations.
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allowing programmers the flexibility to exclude parts of an object’s concrete state from

the object’s abstract state, provide backwards compatibility, and naturally extending

Java.

The rest of the section explains how Javari’s assignability and mutability concepts

interact with the constructs of Java. Sections 3.1 and 3.2 introduce the concepts of

assignability and mutability, respectively, and discuss their application to local vari-

ables. Section 3.3 introduces read-only methods and section 3.4 presents immutable

classes. Section 3.5 discusses the assignability and mutability of fields. Section 3.6

applies assignability and mutability to generic classes, and section 3.7, to arrays.

Finally, section 3.8 summarizes Javari’s syntax.

3.1 Assignability and final references

Assignability determines whether a reference may be reassigned. By default, a local

variable is assignable: it may be reassigned. Java’s final keyword makes a variable

unassignable: it cannot be reassigned. Javari retains the final keyword, but provides

greater control over the assignability of references via the assignable keyword (see

section 3.5.3) and the concept of this-assignability (see section 3.5.1). The following

is an example of assignable and unassignable references.

final Date d = new Date(); // unassignable
/*assignable*/ Date e = new Date(); // assignable
e = new Date(); // OK
d = new Date(); // error: d cannot be reassigned

Above, “/*assignable*/” is not a part of the program’s semantics but a comment

to remind the reader that Java references are assignable by default. Except in sec-

tion 5.3.5, all errors noted in code examples are compile-time errors.

Assignability does not affect the type of the reference. Assignability constraints

add no new types to the Java type hierarchy, and there is no type final T (for an

existing type T).
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3.2 Mutability and read-only references

Mutation is any modification to an object’s abstract state. The abstract state is

(part of) the transitively reachable state, which is the state of the object and all

state reachable from it by following references. It is important to provide transitive

(deep) immutability guarantees in order to capture the full abstract state represented

by a Java object. Clients of a method or other construct are typically interested in

properties of the abstraction, not the concrete representation. (Javari provides ways

to exclude selected fields from the abstract state; see section 3.5.3.)

Javari’s readonly type modifier declares immutability constraints. A reference

that is declared to be of a readonly type cannot be used to mutate the object to

which it refers. For example, suppose a variable, rodate, is declared to have the type

readonly Date. Then rodate can only be used to perform actions on the Date object

that do not modify it:

readonly Date rodate = ...; // readonly reference to a Date object
rodate.getMonth(); // OK
rodate.setYear(2005); // error

For every Java reference type T, readonly T is a valid Javari type and a supertype

of T; see figure 3-1. A mutable reference may be used where a read-only reference is

expected, because it has all the functionality of a read-only reference. A read-only

reference may not be used where a mutable reference is expected, because it does not

have all the functionality of a mutable reference: it cannot be used to modify the

state of the object to which it refers.

The type readonly T can be thought of as an interface that contains a subset of the

methods of T (namely, those that do not mutate the object) and that is a supertype

of T. However, Java interfaces are less powerful and cannot be used in place of the

readonly T construct; see section 7.2 for details.

Given the type hierarchy shown in figure 3-1, Java’s existing type-checking rules

enforce that mutable methods cannot be called on read-only references and that the
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readonly
Date

readonly
Object

Date

Object

Figure 3-1: A portion of the Javari type hierarchy, which includes read-only and
mutable versions of each Java reference type. Arrows connect subtypes to supertypes.

value referenced by a read-only variable cannot be copied to a non-read-only variable

(non-conversion).

readonly Date rodate = new Date(); // read-only Date
/*mutable*/ Date date = new Date(); // mutable Date

rodate = date; // OK
rodate = (readonly Date) date; // OK
date = rodate; // error
date = (Date) rodate; // error: Java cast cannot make a read-only reference

// mutable. See section 5.3.5 for details.

A read-only reference type can be used in a declaration of any variable, field,

parameter, or method return type. Local variables, including method parameters

and return types, are by default mutable (non-read-only). Primitive types, such as

int, float, and boolean, are immutable — they contain no modifiable state. Thus, it

is not meaningful to annotate them with readonly, and Javari’s syntax prohibits it.

Note that final and readonly are orthogonal notions in a variable declaration:

final makes the variable not assignable, but the object it references remains mutable,

while readonly makes the referenced object non-mutable (through that reference),

but the variable may remain assignable. Using both keywords gives a variable whose

transitively reachable state cannot be changed, except through a mutable aliasing

reference.
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3.3 Read-only methods (this parameters)

Just as readonly may be applied to any explicit formal parameter of a method, it

may be applied to the implicit this parameter by writing readonly immediately

following the parameter list. For example, an appropriate declaration for the String-

Buffer.charAt method in Javari is:

public char charAt(int index) readonly { ... }

Such a method is called a read-only method. In the context of the method, this

is readonly. Thus, it is a type error for a read-only method to change the state of

the receiver, and it is a type error for a mutable (non-read-only) method to be called

through a read-only reference.

3.3.1 Overloading

Javari’s immutability annotations should not affect the runtime-behavior of programs.

This approach allows class files generated by Javari to be backwards compatible and

for Javari to be implemented using erasure, as parametric types are implemented in

Java 1.5. One consequence of this approach is that two overloaded methods can-

not differ only in the mutability of its parameters. For example, the following pair

methods are can not overload one another:

void foo(/*mutable*/ Date d) { ... }
void foo(readonly Date d) { ... }

This restriction is similar to Java’s restriction that overloaded methods may not

differ only by type arguments. For example, the following methods may not overload

one another:

void baz(List<Date> x) { ... }
void baz(List<Integer> x) { ... }
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Similarly, methods cannot be overloaded based on the mutability of the methods’

receivers. For example, the following methods may not overload one another:

void bar() /*mutable*/ { ... }
void bar() readonly { ... }

3.4 Immutable classes

A class or an interface can be declared to be immutable via the readonly modifier in

its declaration.2

This is a syntactic convenience: the class’s non-static fields default to read-only

and final, and its non-static methods (and, for inner classes, constructors) default

to read-only. As a further syntactic convenience, every reference to an object of im-

mutable type T is implicitly read-only. For example, String means the same thing as

readonly String (the latter is forbidden, for syntactic simplicity), and it is impossible

to specify the type “mutable String”.

An immutable class may extend only other immutable classes. Furthermore, sub-

classes or subinterfaces of immutable classes and interfaces must be immutable.

3.5 Fields

Controlling mutation is a central theme of Javari; therefore, Javari’s handling of fields

is of key importance to the language design. This section begins by discussing how

Javari reaches its goal of providing transitive immutability using fields that default

to being this-assignable and this-mutable (section 3.5.1). Next, this section shows

how Javari naturally handles field accesses that occur within methods (section 3.5.2).

Third, this section shows how Javari reaches its flexibility design goal by provid-

ing assignable and mutable fields (section 3.5.3). Finally, this section concludes by

demonstrating the details of the Javari type system that ensure fields cannot be used

2A “read-only type” is readonly T, for some T. An “immutable type” is a primitive type, or a class
or interface whose definition is marked with readonly.
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as a mechanism to convert a read-only reference into a mutable reference; thus, sup-

porting Javari’s non-conversion design goal (section 3.5.4).

3.5.1 This-assignability and this-mutability

One of the design goals of Javari is to provide transitive immutability; therefore, a

field reached through a read-only reference should not be modifiable by reassignment

or mutation. Javari fulfills this goal, by defaulting fields to inherit their assignabil-

ity and mutability from the mutability of the reference through which the field is

reached. These defaults are called this-assignability and this-mutability, respectively.

Transitive immutability is ensured because a this-assignable, this-mutable field read

through a read-only reference is unassignable and read-only. The same field read

through a mutable reference is assignable and mutable, however. The behavior of

this-assignable and this-mutable fields is illustrated below.

class Cell {
/*this-assignable this-mutable*/ Date d;

}

/*mutable*/ Cell c; // mutable
readonly Cell rc; // read-only

c.d = new Date(); // OK: c.d is assignable
rc.d = new Date(); // error: rc.d is unassignable (final)

c.d.setYear(2005); // OK: c.d is mutable
rc.d.setYear(2005); // error: rc.d is read as read-only

This-assignability and this-mutability can only be applied to fields. The default

of this-assignability can be overridden by declaring a field to be final (section 3.1)

or assignable (section 3.5.3). The default of this-mutability can be overridden by

the declaring a field to be read-only (section 3.2) or mutable (section 3.5.3). This-

assignable, final, and assignable are the three kinds of assignabilities in Javari, and

this-mutable, read-only, and mutable are the three kinds of mutabilities.

Section 3.5.4 gives additional information about assignable (section 3.5.3), this-

mutable fields.
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3.5.2 Field accesses within methods

No special rules are needed for handling field accesses within method bodies. Within a

read-only method, the declared type of this is read-only; therefore, all this-mutable

fields are read as read-only and all this-assignable fields are unassignable. Within

a mutable method, the declared type of this is mutable; therefore, all this-mutable

fields are mutable and all this-assignable fields are assignable. These rules are demon-

strated below.

class Cell {
/*this-assignable this-mutable*/ Date d;

/*mutable*/ Date foo() readonly { // this is readonly
d = new Date(); // error: this.d is unassignable
d.setYear(2005); // error: this.d is read as readonly
return d; // error: this.d is read as readonly

}

/*mutable*/ Date bar() /*mutable*/ { // this is mutable
d = new Date(); // OK: this.d is assignable
d.setYear(2005); // OK: this.d is mutable
return d; // OK: this.d is mutable

}
}

3.5.3 Assignable and mutable fields

Javari gives programmers the flexibility to exclude fields from the abstract state of

an object by using the assignable and mutable keywords. By default, fields are this-

assignable and this-mutable. Under these defaults, all the fields are considered to be

a part of the object’s abstract state and, therefore, can not be modified through a

read-only reference. The assignable and mutable keywords override these defaults

by excluding specific fields from an object’s abstract state. assignable and mutable

can also be used when the relationship between the object’s abstract state and a field

is too complicated to be captured by the Javari type system.
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assignable fields

Declaring a field assignable specifies that the field can always be reassigned, even

through a read-only reference. This can be useful for caching or specifying that the

identity of a field is not a part of the object’s abstract state. For example, hashCode

is a read-only method: it does not modify the abstract state of the object. In order to

cache the hash code, a programmer can use the assignable keyword as shown below.

class Foo {
assignable int hc;
int hashCode() readonly {
if (hc == 0) {

hc = ... ; // OK: hc is assignable
}
return hc;

}
}

mutable fields

The mutable keyword specifies that a field is mutable even when referenced through

a read-only reference. A mutable field’s value is not a part of the abstract state of

the object (but the field’s identity may be). For example, in the code below, log

is declared mutable so that it may be mutated within read-only methods such as

hashCode.

class Foo {
/** A Log of the method call history. */
final mutable List<String> log;

int hashCode() readonly {
log.add("hashCode() invoked"); // OK: log is mutable
...

}
}

If log had the default this-mutability, the mutation of log would be a compile-

time error because within the body of a read-only method log would be read as a

read-only reference.
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3.5.4 Non-conversion

One design goal of the Javari language is to ensure that a read-only reference cannot

be converted to a mutable reference. This section discusses how Javari ensure that a

field is not used to undertake such a conversion. In short, a read-only reference can

not be assigned to a this-mutable field (even if reached through a read-only reference),

because the this-mutable field can be read as mutable when reached through a mutable

reference.

While a this-mutable field, reached through a read-only reference, is read as read-

only, it is incorrect to say that its type is read-only. As an rvalue (an expression in a

value-expecting context [1]), such a reference is read-only— it may be assigned to a

read-only reference but not a mutable reference. However, as an lvalue (an expression

in a location-expecting context, such as on the left side of an assignment [1]), such a

reference is mutable — it may be assigned with a mutable reference but not a read-only

reference. For example,

class Cell {
assignable /*this-mutable*/ Date d;

}

readonly Cell rc;

readonly Date rd;
/*mutable*/ Date md;

rd = rc.d; // OK: rc.d’s rvalue is readonly Date
rc.d = md; // OK: rc.d’s lvalue is /*mutable*/ Date

A this-mutable field has different rvalue and lvalue types because a read-only type

must be a supertype of the corresponding mutable type; else a type system loophole

that allows one to convert a read-only reference into a mutable reference would exist.

For a subtyping relationship to exist between two classes, the rvalue types of the fields3

must be covariantly related while the lvalue types of the fields must be contravariantly

3Note that this discussion is orthogonal to field shadowing, which involves two distinct fields (of
the same name) in classes within a subtyping relationship.
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related.4 Thus, if the field of the mutable version of the class has a mutable lvalue

type, then the lvalue type of the corresponding field in the read-only version of the

type must also be mutable. Otherwise, the lvalue types would not be contravariantly

related.

Furthermore, without making a this-mutable field’s lvalue type mutable, one could

use an assignable, this-mutable field to convert a read-only reference to a mutable

reference as shown below. (In the unsound type system, the compile-time error shown

below would not occur.)

class DateConverter {
assignable /*this-mutable*/ Date f;

}

readonly Date rd = ...; // Start with a readonly Date.
/*mutable*/ DateConverter mutView = ...;
readonly DateConverter roView = mutView; // Create a read-only alias.
roView.f = rd; // error: Would be allowed if lvalue type was read-only.
/*mutable*/ Date md = mutView.f; // Created a mutable reference to the Date.

The above loop-hole is prevented by not allowing read-only references to be written

to a this-mutable field.

Note, that this-mutable fields may always be assigned to other this-mutable fields

within the same object. For an example, see figure 3-2.

3.6 Generic classes

In Java, the client of a generic class controls the type of any reference whose declared

type is a type parameter. A client may instantiate a type parameter with any type

that is a subtype of the type parameter’s declared bound. One can think of the

type argument being directly substituted into the parameterized class wherever the

corresponding type parameter appears.

4Java normally imposes the even stricter requirement that field types must be invariantly related.
Javari loosens this rule only for a field’s mutability. Without doing so, Javari would be unable to
provide both mutable and read-only references to the same object.
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class Quadrilateral {
/*this-assignable*/ /*this-mutable*/ Line side1;
/*this-assignable*/ /*this-mutable*/ Line side2;
...

// Calculated if needed.
assignable /*this-mutable*/ Line longestSide;

readonly Line getLongestSide() readonly {
if (side1.longer(side2) && side1.longer(side3) ... ) {

longestSide = side1; // OK: this-mutable fields of the same object

} else if (...) {
...
}
...

}
}

Figure 3-2: An assignable, this-mutable field may be assigned with other this-mutable
fields even within read-only methods as shown in the example above.

Javari uses the same rules, extended in the natural way to account for the fact that

Javari types include a mutability specification (figure 3-1). A use of a type parameter

within the generic class body has the exact mutability with which the type parameter

was instantiated.

The rest of this section demonstrates how parametric types in Javari achieve

Javari’s design goals. First, section 3.6.1 gives basic examples Javari’s parameterized

types and demonstrates the intuitive nature of Javari’s type arguments. Section 3.6.2

show how Javari ensures that parametric types are not be used to violate the non-

conversion design goal. In section 3.6.3 we show how Javari provides the flexibility to

exclude the type arguments of a field from the abstract state of an object. Section 3.6.4

explains why allowing one to modify the mutability of a type variable results in

violating the non-conversion design goal.
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3.6.1 Type arguments

As with any local variable’s type, type arguments to the type of a local variable may

be mutable (by default) or read-only (through use of the readonly keyword). Below,

four valid local variable, parameterized type declarations of List are shown. Note

that the mutability of the parameterized type List does not affect the mutability of

the type argument.

/*mutable*/ List</*mutable*/ Date> ld1; // add/remove and mutate elements
/*mutable*/ List<readonly Date> ld2; // add/remove
readonly List</*mutable*/ Date> ld3; // mutate elements
readonly List<readonly Date> ld4; // (neither)

As with any instance field’s type, type arguments to the type of a field default to

this-mutable, and this default can be overridden by declaring the type argument to

be readonly or mutable:

class DateList {
// 3 read-only lists whose elements have different mutability
readonly List</*this-mutable*/ Date> lst1;
readonly List<readonly Date> lst2;
readonly List<mutable Date> lst3;

}

As in any other case, the mutability of a type with this-mutability is determined

by the mutability of the object in which it appears (not the mutability of the param-

eterized class in which it might be a type argument5). In the case of DateList above,

the mutability of lst1’s elements is determined by the mutability of the reference to

DateList, not by the mutability of lst1 itself. The following example illustrates this

behavior.

5There is no need for a modifier that specifies that the type parameter’s mutability should
be inherited from the mutability of the parameterized class. The declaration of a reference to
a parameterized class specifies the both parameterized class’s mutability, and the mutability for
the type argument. For example, a List where the mutability of the type parameter matches the
mutability of the List’s this type can be declared as: List<Date> or as readonly List<readonly Date>.
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/*mutable*/ DateList mutDateList;
readonly DateList roDateList;

// The reference through which lst is accessed determines
// the mutability of the elements.

/*mutable*/ Date d;
d = mutDateList.lst1.get(0); // OK: elements are mutable
d = roDateList.lst1.get(0); // error: elements are read as readonly

3.6.2 ? readonly

This section discusses how we prevent parametric types from being used to convert

read-only references into mutable references. Similar to the case of a top-level type

(section 3.5.4), a this-mutable type argument reached through a read-only reference

has different rvalue and lvalue types. Such a type argument’s rvalue (how it is read)

must be read-only to provide the transitive immutability provision. However, the

type argument’s lvalue (how it is written to) must be mutable. If the lvalue was read-

only a type loophole similar to the one shown earlier in section 3.5.4 would exist.

For an example of the different reading and writing behaviors of a this-mutable type

argument, see lines 16 through 20 of figure 3-3.

A type that is written as mutable and read as read-only can be represented using

wildcards that are bounded from above (extends) and below (super). For example,

the type of roBar.c (figure 3-3) can be written as:

readonly Cell<? extends readonly Date super mutable Date>

The upper bound on the wildcard is readonly Date while the lower bound is mutable

Date. Note that the bounds on the wildcard only differs in terms of mutability; Javari

does not need arbitrary two-sided wildcards.

Since Java does not allow a wildcard to have both an upper bound and a lower

bound, we use the ? readonly syntax to represent two-sided wildcards that differ

(only) in terms of mutability.6 We will also use ? readonly types as meta-syntax to

6? readonly T can be thought of as the bounded existential type, ∃ X extends readonly T super
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1 class Bar {
2 assignable Cell</*this-mutable*/ Date> c;
3 }
4
5 class Cell<T extends readonly Object> {
6 assignable T val;
7 }
8
9 // roBar.c’s rvalue type is readonly Cell<? readonly Date>
10 // roBar.c’s lvalue type is mutable Cell<mutable Date>
11 readonly Bar roBar;
12
13 readonly Date rd;
14 /*mutable*/ Date md;
15
16 rd = roBar.c.val; // OK: roBar.c.val is read as read-only
17 md = roBar.c.val; // error: roBar.c.val is read as read-only
18
19 roBar.c.val = rd; // error: elems are written to as mutable
20 roBar.c.val = md; // OK: elems are written to as mutable
21
22
23 // cell.val’s rvalue type is readonly Date
24 // cell.val’s lvalue type is mutable Date
25 readonly Cell<? readonly Date> cell = roBar.c;
26
27 rd = cell.val; // OK: elems are read as readonly
28 md = cell.val; // error: elems are read as readonly
29
30 cell.val = rd; // error: elems are written to as mutable
31 cell.val = md; // OK: elems are written to as mutable
32
33
34 mutable Cell<mutable Date> newCell;
35
36 // roBar.c lvalue type is mutable Cell<mutable Date>
37 roBar.c = newCell; // OK
38 roBar.c = cell; // error

Figure 3-3: Demonstration of a this-mutable field reached through a readonly ref-
erence. Bar.c and Cell.val are assignable so that the fields’ lvalue types can be
demonstrated.
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readonly List<? readonly Date>

readonly List<mutable Date> readonly List<readonly Date>

/*mutable*/ List</*mutable*/ Date>

/*mutable*/ List<? readonly Date>

/*mutable*/ List<readonly Date>

Figure 3-4: The Javari type hierarchy for Lists of Dates. Arrows connect subtypes to
supertypes.

represent top-level types that are read-only when read and mutable when written to.

However, as with all Java wildcards, ? readonly cannot appear as a top-level type

in source code. For example, from figure 3-3, the type of roBar.c can be written as

? readonly List<? readonly Date>.

Lines 23–31 of figure 3-3 give an example of a ? readonly type argument. roBar.c

is shown being used as an rvalue on lines 27–31 of the example and roBar.c is used

as an lvalue on lines 36–38.

Following the normal typing rules for Java, List<? readonly Date> is a common

supertype of List<readonly Date> and List<mutable Date>. Figure 3-4 shows a por-

tion of the Javari type hierarchy for lists of Dates.

? readonly can also be used in the case of nested parametric types. For example,

mutable T. This interpretation is expanded on in the core calculus; see chapter 4.
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class Baz {
/*this-mutable*/ List</*this-mutable*/ Set</*this-mutable*/ Date>> f;

}

readonly Baz rb;
readonly List<? readonly Set<? readonly Date>> lst = rb.f;

Figure 3-5: An example of nested this-mutable types.

in figure 3-5, the type

readonly List<? readonly Set<? readonly Date>>

desugars to

readonly List<? extends readonly Set<? extends readonly Date
super /*mutable*/ Date>

super /*mutable*/ Set</*mutable*/ Date>>

From the desugaring, one can see that the list may only have completely mutable

types, /*mutable*/ Set</*mutable*/ Date>>, added as elements. However, the list’s

elements are read as completely immutable: readonly Set<? extends readonly Date

super /*mutable*/ Date>>. The Set’s elements are declared to have type ? extends

readonly Date super /*mutable*/ Date to prevent a readonly Date from being in-

serted into the set. A complete desugaring of ? readonly into two-sided wildcards is

given in figure 4-13.

3.6.3 mutable type arguments

This section discusses how Javari gives one the flexibility to exclude a type argument

from a classes abstract state. A type argument to a field’s (parametric) type may be

declared mutable with the mutable keyword as shown below.

class MutDateList {
readonly List<mutable Date> lst; // read-only list of mutable items

}
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In this case, the mutability of the reference to the MutDateList object and the

mutability of lst have no effect on the mutability of the elements of lst because

they are explicitly declared mutable. The case that the elements of lst are declared

readonly is symmetric. The following example illustrates this behavior.

class DateList {
readonly List<mutable Date> lstOfMut; // read-only list of mutable items
readonly List<readonly Date> lstOfRo; // read-only list of readonly items

}

/*mutable*/ Date d;

/*mutable*/ DateList mutDateList;
readonly DateList roDateList;

// The mutability of the elements of lstOfMut is mutable regardless of
// whether the field is reached through a read-only or mutable reference.
d = mutDateList.lstOfMut.get(0); // OK
d = roDateList.lstOfMut.get(0); // OK

// The mutability of the elements of lstOfRo is read-only regardless of
// whether the field is reached through a read-only or mutable reference.
d = mutDateList.lstOfRo.get(0); // error
d = roDateList.lstOfRo.get(0); // error

3.6.4 Mutability modifiers on type variables

It may be tempting for some programmers to modify type variables with mutability

annotations. For example, one may wish to write mutable X, where X is a type

variable. Javari does not allow such types because (1) it is inconsistent with Java’s

notation of type variables and (2) such types can result in read-only references begin

converted into mutable references.

In Java, a client of a generic class controls the type that a type variable is instan-

tiated with. However, the generic class’s author can place bounds on what types a

type variable may be instantiated with. To maintain a intuitive integration with Java,

Javari exactly follows these principles. Since the client of a generic class controls the

type that a type variable is instantiated with, the author of the generic class should

not be allowed to change that type by modifying it with mutability modifiers. The
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author of the generic class can still place bounds on the mutability of a type variable,

however. For example, in the class declaration below, the author of the class allows

X to range over all Dates while Y can only range over mutable Dates.

class Foo<X extends readonly Date, Y extends mutable Date> { ... }

Additionally, allowing type variables to be modified with mutable allows one to

convert read-only references to mutable references. For the demonstration of this

loophole, assume that one could write mutable X, where X is a type variable. If X was

instantiated with a read-only type, an illegal downcast from a read-only type to a

mutable type would occur. The type loophole is demonstrated below:

class Convert<X extends readonly Object> {
X f;

/*mutable*/ Object convertF() {
mutable T val = f;
return val;

}
}

3.7 Arrays

As with generic container classes, a programmer may independently specify the mu-

tability of each level of an array. As with any other local variable’s type, each level

of an array is mutable by default and may be declared read-only with the readonly

keyword. As with any other field’s type, each level may be declared mutable with the

mutable keyword, read-only with the readonly keyword, or this-mutable by default.

Parentheses may be used to specify to which level of an array a keyword is to be

applied. Below, four valid array local variable declarations are shown.

Date [] ad1; // add/remove, mutate
(readonly Date)[] ad2; // add/remove

readonly Date [] ad3; // mutate
readonly (readonly Date)[] ad4; // neither
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The above syntax can be applied to arrays of any dimensionality. For example,

the type (readonly Date[])[] is a two-dimensional array with a read-only inner-array

and that is otherwise mutable.

Java’s arrays are covariant. To maintain type safety, the JVM performs a check

when a object is stored to an array. To avoid a run-time representation of immutabil-

ity, Javari does not allow covariance across the mutability of array element types.

(/*mutable*/ Date)[] ad1;
(readonly Date)[] ad2;

ad2 = ad1; // error: arrays are not covariant over mutability

As in the case with parametric container classes, arrays may use the ? readonly

syntax. For example,

class Foo {
/*this-mutable*/ (/*this-mutable*/ Date)[] dates;

}

readonly Foo rf;
readonly (? readonly Date)[] x = rf.dates;

3.8 Summary

Javari enables a programmer to independently declare the assignability and mutability

of a reference. Figure 3-6 summarizes the assignability and mutability keywords of

Javari:

final declares a reference to be unassignable.

assignable declares a reference always to be assignable even if accessed through a

read-only reference. Redundant for references other than instance fields.

readonly declares a reference to be read-only. Redundant for immutable types.

mutable declares a reference always to be mutable even if accessed through a read-

only reference. Redundant for references other than instance fields. Cannot be

applied to type parameters (see section 3.6).
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Assignability Mutability
unassign- this- this-

Construct assignable able assign. mutable read-only mutable
Instance fields assignable final (default) mutable readonly (default)
Static fields (default) final N/A (default) readonly N/A
Local variables (default) final N/A (default) readonly N/A
Formal param.s (default) final N/A (default) readonly N/A
Return values N/A N/A N/A (default) readonly N/A
this N/A (default) N/A (default) readonly N/A

Figure 3-6: Javari’s keywords. “N/A” denotes assignabilities or mutabilities that
are not valid for a given construct. “(default)” denotes that a given assignability or
mutability is the default for that construct; no keyword is required, and redundant
use of keywords is prohibited (a compile-time error), in order to reduce confusion.
This-assignable and this-mutable can only be applied to instance fields because other
references do not have a notion of this to inherit from. The mutability of this is
declared after the parameter list.

? readonly declares a type argument to have a read-only upper bound and a mu-

table lower bound.

Figure 3-7 briefly gives the semantics of the keywords. Appendix A gives examples

of each of the 9 combinations of assignability and mutability.

Javari is backward compatible with Java: any Java program that uses none of

Javari’s keywords is a valid Javari program, with the same semantics. Javari’s defaults

have been chosen to ensure this property.
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Resolved assignability of a.b
Declared assign- Resolved mutability of a
ability of b mutable read-only

assignable assignable assignable
unassignable unassignable unassignable
this-assignable assignable unassignable

Resolved mutability of a.b
Declared mut- Resolved mutability of a
ability of b mutable read-only

mutable mutable mutable
read-only read-only read-only
this-mutable assignable ? readonly

Figure 3-7: Semantics of Javari’s keywords: resolved type of the expression a.b, given
the resolved type of a and the declared type of field b. Also see figure 4-12, which
presents the same information in a different form.
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Chapter 4

Type Rules

This chapter presents the key type rules for Javari in the context of a core calculus,

Lightweight Javari, that captures the essential features of Javari. The core language

allows one to examine the underlying structure of Javari’s type system without being

overwhelmed with the complexity of the full language. Additionally, the core language

can be used to prove properties about the language.

Lightweight Javari builds upon Wild FJ (WFJ) [47], a core calculus for Java

including generic types. WFJ extends Featherweight Generic Java (FGJ) [22], with

wildcard types. WFJ is a functional language: it has no notion of assignment. There-

fore, Section 4.1 first introduces Lightweight Java (LJ), an extension of WFJ that

builds on ClassicJava [17] to support field assignment and the final keyword.

Then, Section 4.2 extends LJ to Lightweight Javari (LJR), which adds support for

reference immutability.

Before presenting our core languages, we explain, below, how WFJ models capture

/** Returns a shallow copy of lst */
static <T extends Object> List<T> copy(List<T> lst) { ... }

List<?> x;
copy(x); // Disallowed without capture conversion.

Figure 4-1: Without capture conversion, the type-safe method invocation of copy(x)
would be disallowed because, without conversion, List<?> is not a subtype of List<T>
(as explained in figure 4-2).

43



/** Adds val to lst. */
static <T extends Object> void insert(List<T> lst, T val) {

lst.add(val);
}

List<Date> lstOfDates;
List<?> lstOfUnknowns = lstOfDates; // OK
insert(lstOfUnknowns, ‘‘hi’’); // error: Would be legal if List<?> was

// a subtype of List<T>

Figure 4-2: A demonstration of why it would be unsound for List<?> to be a subtype
of List<T> where T is any type variable. In the code above, allowing lstOfUnknown,
which has type List<?>, to be passed as a List<T> to method insert results a String
being inserted into a list of dates, lstOfDates.

conversion and wildcard capture, two of the most complex aspects of Java’s type

system.

Java’s capture conversion makes wildcards more useful by replacing top-level type

argument wildcards with globally fresh type variables. To understand the utility of

this technique, consider the method definition and invocation shown in figure 4-1. It

appears that the method copy can not be used on list x because x’s type, List<?>, is

not a subtype of List<T>. An explanation for why a list with a wildcard type card

type argument, e.g. List<?>, is not subtype of a list with an invariant type argument,

e.g. List<T> is given in figure 4-2. Using capture conversion, one can convert x’s type

from List<?> to List<X> where X is a fresh type variable. Since List<X> is a subtype

of List<T> (when T is inferred to be X), the invocation of copy(x) succeeds. Note that

capture conversion does not allow the method invocation shown in figure 4-2 because

String is not a subtype of the type variable created by capture converting List<?>.

While implementing capture conversion by creating globally fresh type variables

is a realist strategy for a compiler, it conflicts with the compositionality of the type

rules. Therefore, WFJ models capture conversion using existential types. An exis-

tential type, written as ∃∆.K, consists of (1) a type environment, ∆, which contains a

mapping from the the fresh type variables to their bounds of, and (2) a type, K, which

is free of any top-level wildcards, K. The typing of an expression (section 4.1.3) re-

turns a existential type where the type environment contains any fresh type variables
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that were created during capture conversion, and the top-level wildcard free type rep-

resents the type of the expression. Existential types only serve as meta-syntax and

does not appear in the source language. WFJ’s implementation of capture conversion

is given in section 4.1.2.

A concept related but distinct from capture conversion is wildcard capture. In the

example given in figure 4-1, we did not discuss how the method invocation inferred

that T, the method’s type parameter, should be instantiated with X, the type argument

of x’s of capture-converted type. This process is called wildcard capture. Normally,

in WFJ, a method invocation must supply a type argument for each of the method’s

type parameters. For example, in the method invocation shown below, the type

variable, T, of copy is explicitly instantiated with the type Integer.

// Same method as from figure 4-1.
static <T extends Object> List<T> copy(List<T> lst) { ... }

List<Integer> integers = ... ;
List<Integer> myCopy = <Integer>copy(integers);

However, since the fresh type variables created by capture conversion can not be

referred to by the source code of a program, it is impossible to supply a correct type

argument. For example, below, it is impossible for the method invocation to supply

the correct type argument.1

List<?> lstOfUnknowns = ... ;
List<?> myCopy = </*Unknown fresh type variable*/>copy(lstOfUnknowns);

To solve this dilemma, a programmer is allowed to pass the special symbol ! as

the type argument to such a method invocation. ! serves as a request for wildcard

capture.

Wildcard capture allow capture converted types to serve as type arguments to

methods by inferring the correct type arguments to a method invocation. The type

inference is implemented by examining the types of actual arguments to a method

to determine the type arguments of the method invocation. Since the types of the

1Note that is it incorrect to use ? as the type argument to copy because ? is not a type.
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method’s actual arguments have already been capture converted, wildcard capture is

capable of inferring the fresh type variables that were created by capture conversion.

WFJ’s implementation of wildcard capture is given in section 4.1.2.

4.1 Lightweight Java

Lightweight Java (LJ) extends WFJ to include field assignment, expressed via the

“set” construct. Fields may be declared final; to make LJ’s syntax fully explicit,

non-final fields must be declared assignable. LJ does not permit parameters to

be reassigned: such an extension is straightforward and does not demonstrate any

interesting aspects of the Javari type system. LJ omits casts because they are not

important for demonstrating the assignability and mutability rules of Javari.

4.1.1 Syntax

The syntax of LJ is largely identical to that of WFJ, with the exception of the new

set expression and the assignability modifiers, final and assignable. The syntax of

LJ is shown in figure 4-3.

The metavariable C ranges over (unparameterized) class names; X, Y, and Z over

type variables; m over method names; f over field names; and x over formal parameter

names. Q ranges over class declarations; M over method declarations; and e over

expressions. AF (assignability for fields) ranges over assignability modifiers.

S, T, U, and V range over types, which may be either a parameterized type, C<A>,

or a type variable, X. A ranges over type arguments to parametric types, which may

be either a type, T, or a wildcard, ? B or ? readonly T. B ranges over type bounds and

includes both an upper bound, B!, and a lower bound B". An upper (lower) bound is

either an extends (super) cause, " T (# T), or is absent, •. The notation " stands

for “extends” (LJ has no interfaces), and # stands for “super”. Parametric method

invocations must be provided an explicit type argument, P, which is either a type,

T, or a special marker, !, that is resolved by wildcard capture. N ranges over class

types, which are nonvariable types which do not have wildcards as a top-level type
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T, S, U, V ::= C<A> | X types

A ::= T | ? B| ? readonly T type arguments

P ::= T | ! method type parameters
N ::= C<T> class types
K ::= N | X class types and var .s
B ::= B! B" bounds
B! ::= " T | • upper bounds
B" ::= # T | • lower bounds

Q ::= class C<X B> " N { AF T f; M} class declaration
M ::= <X B> T m(T x){ return e; } method declarations
e ::= x expressions

| e.f
| e.m<P>(e)
| new N(e)
| set e.f = e then e

AF ::= final | assignable assignabilities

E, F ::= ∃∆.K existential types
∆ ::= ∅ | ∆, X ∈ B type environments

C class names
X, Y, Z type variables

m method names
f field names
x variables

Figure 4-3: Syntax of Lightweight Java (LJ). Changes from WFJ are shown in boxes.
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arguments. K ranges over the union on of class types, N, and type variables, X.

x serves as shorthand for the (possibly empty) sequence x1 . . . xn with the appro-

priate syntax separating the elements. In cases such as T f, the items are grouped

in pairs: T1 f1 . . . Tn fn. The empty sequence is written as •, and sequences are

concatenated with a comma.

[a/b]c denotes the result of replacing b by a in c.

this is considered a special variable implicitly bound to the receiver of a method

invocation.

A class is considered to have all the fields that are declared in its body and its

superclasses’ bodies. The field names of a class must be distinct from the field names

of its superclasses— there is no field shadowing. Additionally, there is no method

overloading.

WFJ does not model constructors because they do not demonstrate any interesting

properties of the type system.

LJ introduces the set construct to FGJ. “set e0.f = ev then eb” reassigns the

field f of the object to which e0 evaluates. The field’s new value is the value to which

ev evaluates. The set expression then evaluates the body expression eb. The set

expression’s value is the value to which eb evaluates. The set syntax was chosen to

avoid the complications of allowing multiple expressions within a method. Method

arguments and assignment expressions are evaluated left-to-right (see figure 4-10).

4.1.2 Auxiliary functions

Bound calculation

The subtyping rules use the following auxiliary functions to calculate the bounds of

type variables. bound1
∆(X) calculates the upper bound of X in type environment ∆. If

the upper bound is absent, Object is returned. lbound1
∆(X), returns the lower bound

of X in ∆. lbound is undefined if the lower bound is absent. bound∆(T) when T is a

type variable, X, recursively applies bound1 until a nonvariable upper bound of X is

found. In the case that T is the nonvariable type C<A>, bound returns that type, C<A>.
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bound1

∆(X) = • B"

bound1
∆(X) = Object

∆(X) = " T B"

bound∆(X) = T

lbound

∆(X) = B! # T

lbound1
∆(X) = T

bound

bound1
∆(X) = C<T>

bound∆(X) = C<T>

bound1
∆(X) = Y bound∆(Y) = C<T>

bound∆(X) = C<T>

bound∆(C<T>) = C<T>
bound∆∆′(K′) = C<T> snap(C<T>) = ∃∆′′.N

bound∆(∃∆′.K′) = ∃∆′∆′′.N

Figure 4-4: Bound calculation functions. These functions are unchanged from those
of WFJ.

See figure 4-4 for the definitions of the bound calculation methods. For convenience,

bound is also defined on existential types, E; see below.

Existential type creation: Snap

The auxiliary functions of figure 4-5 are used to create existential types. Existential

types are used to model the capture conversion of wildcards (see the introduction of

this chapter). Through the use of existential types the subtyping rules are simplified

and do not need to directly deal with wildcards. snap(T) creates an existential type,

∃∆.K, from a type, T. snap replaces each top-level wildcard, ? B, with a fresh type

variable, which is added to the type environment of the existential type. For example,

snap(C<? B! B">) = ∃X ∈ B! B".C<X> where X is fresh. snap uses fix (A, B) to produce

the new type variables, including bounds, for each wildcard type. merge is used by

snap to combine the wildcard’s bounds with the declared bound of the relevant type

parameter.
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Snap:

snap(X) = ∃∅.X

class C<Y B0> " N {. . .} fix (A, B0) = (T, X, B) ∆ = X ∈ [T/Y]B

snap(C<A>) = ∃∆.C<T>

Fix:

fix (A, B0) = (T, X, B)

fix (T :: A, B0 :: B0) = (T :: T, X, B)

fix (A, B0) = (T, X, B) X fresh

fix (? B :: A, B0 :: B0) = (X :: T, X :: X,merge(B, B0) :: B)

fix (•, •) = (•, •, •)

Merge:

merge(• •, B! B") = B! B" merge(" T •, B! B") =" T B"

merge(• # S, B! B") = B! # S merge(" T # S, B! B") =" T # S

Figure 4-5: Auxiliary functions for existential type creation. These functions are
unchanged from those of WFJ.
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Capture:

capture∆(U, X, T, K) = U

Ti = C<A> Aj = X ∆ % Ki <: C<A′> A′
j = V

capture∆(!, X, T, K) = V

Figure 4-6: Wildcard capture auxiliary function. These functions are unchanged from
those of WFJ.

Wildcard capture

Wildcard capture is used to allow capture converted types to be passed as type

arguments to method invocations (see the introduction of this chapter). Wildcard

capture enables this action by inferring the correct type arguments of a method

invocation when those types cannot be expressed in the source language. The function

capture∆(P, X, T, K) of figure 4-6 is used to perform wildcard capture on a method

invocation where P is the actual type parameter to a method. In the case that P is a

type, T, then wildcard capture is not needed and P is returned unchanged. However,

if P is a type capture marker, !, then wildcard capture is performed. X is the type

parameter from the signature of the method being invoked. T is the parameter types

from the signature of the method. K is the types of the actual arguments to the

method. The definition of capture is given in figure 4-6.

Class member lookup

The typing and reduction rules use the following auxiliary functions. The function

fields(C<T>) returns a sequence of triplets, AF T f, with the assignability modifier,

type, and name of each of the fields of the nonvariable type C<T>.

The function mtype(m, C<T>) (figure 4-7) returns the type of method m of the

nonvariable type C<T>. The type of a method is written as <X B>U→ U where X, with

the bounds B, are the type parameters of the method, U are the types of the method’s

parameters, and U is the return type of the method. Because there is no overloading

in LJ, mtype does not need to know the types of the arguments to m.
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Method type lookup:

class C<X N> " B{AF T f; M} <Y B′> U m(U x) ML { return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y B′>U → U)

class C<X N> " B{AF T f; M} m /∈ M

mtype(m, C<T>) = mtype(m, [T/X]N)

Valid method overriding:

mtype(m, N) = <Y′ B′>T′ ML′ → T′ implies
B = [Y/Y′]B′ and T = [Y/Y′]T′ and Y ∈ B % T<: [Y/Y′]T′

override(m, N, <Y " B>T ML→ T)

Figure 4-7: Lightweight Java (LJ) auxiliary functions. These functions are unchanged
from those of WFJ.

The function mbody(<V>m, C<T>) returns the pair x.e where x are the formal

parameters to m in C<T> and e is the body of the method.

Finally, override(m, N, <Y B>T→ T) (figure 4-7) declares that method m with type

<Y B>T → T) correctly overrides any methods with the same name possessed by the

nonvariable type N.

Details on these auxiliary functions can be found in [47].

4.1.3 Static semantics

Subtyping

WFJ subtyping and typing rules operate over existential types, E ::= ∃∆.K. ∆ is the

type environment, a mapping from type variables, X, to bounds, B. Although used

in the static semantics, existential types cannot appear in an WFJ program’s source.

The use of existential types is needed for modeling wildcard capture conversion.

The (reflexive, transitive) subtyping relationship is denoted by “<:”. The subtyp-

ing rules of LJ are unchanged from WFJ and are shown in figure 4-8. The subtyping

rules operate on existential types, E; however, WS-Syntactic is provided as a con-

venient short hand for applying the subtyping rules to types, T.
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Subtyping:

∆ % E<: E′′ ∆ % E′′<: E′

∆ % E<: E′ (WS-Trans)

∆ % ∃∆′.X<: ∃∆′.bound1
∆∆′(X) (WS-Var)

∆ % ∃∆′.lbound1
∆∆′(X)<: ∃∆′.X (S-LVar)

class C<X B> " N {. . .}
∆ % ∃∆′.C<T><: ∃∆′.[T/X]N

(WS-Subclass)

∆∆′ % U ∈ [U/X]B

∆ % ∃∆′.[U/X]K<: ∃X ∈ B.K
(WS-Env)

∆ % snap(S)<: snap(T)

∆ % S<: T
(WS-Syntactic)

Bound Containment:

∆ % T ∈ • • (WB-None)

∆ % S<: T

∆ % T ∈ • # S
(WB-Lower)

∆ % T<: S ∆ % T ∈ • B"

∆ % T ∈" S B"

(WB-Upper)

Figure 4-8: LJ’s subtyping rules. The rules are the same as WFJ’s.
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Typing judgements

LJ’s typing rules calculate existential types for expressions. Γ is defined as the envi-

ronment, a mapping from variables to types, T. The typing rules are shown in figure

4-9.

The judgment ∆ % A ok declares that the type or wildcard A is well-formed under

context ∆. A type is well-formed if its type parameters respect the bounds placed

on them in the class’s declaration. A wildcard is well-formed if its bounds are well

formed. The judgment M OK IN C declares that method declaration M is sound in the

context of class C. The judgment C OK declares the class declaration of C to be sound.

These judgments are unchanged from WFJ and can be found in [47].

4.1.4 Operational semantics

To support the assignment of fields, we introduce a store, S, to WFJ’s reduction rules.

As in ClassicJava [17], the store is a mapping from an object to a pair containing

the class type, N, of the object and a field record. A field record, F , is a mapping

from field names to values.

The reduction rules are shown in figure 4-10. Each reduction rule is a relationship,

〈e, S〉 −→ 〈e′, S ′〉, where e with store S reduces to e′ with store S ′ in one step.

The addition of the assignment statement requires new reduction and congruence

rules to be added to those of WFJ. The reduction rule for set binds the field to a

new value, then evaluates the “then” part of the expression.

4.1.5 Properties

First we state by a type soundness theorem for LJ. If a term is well typed and reduces

to a normal form (an expression that cannot reduce any further and, therefore, is an

object, v) then it is a value of a subtype of the original term’s type. Put differently,

an evaluation cannot go wrong, which in our model means getting stuck.

Theorem 1 (LJ Type Soundness). If ∅; ∅ % e : E and 〈e, S〉 →∗ 〈e′, S ′〉 with e′

a normal form, then e′ is a value, v, such that S ′(v) = 〈N, F〉 and ∅ % ∃∅.N <: E.
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Expression typing:

∆; Γ % x : snap(Γ(x)) (T-Var)

∆; Γ % e0 : E0

bound∆(E0) = ∃∆0.N0 fields(N0) = AF T f snap(Ti) = ∃∆′.K

∆; Γ % e0.fi : ∃∆0∆
′.K

(T-Get)

∆ % P ok ∆; Γ % e0 : E0 bound∆(E0) = ∃∆0.N0 ∆; Γ % e : ∃∆.K
∆1 = ∆∆0∆ mtype(m, N0) = <Y B>U→ U V = capture∆1(P, Y, U, K)

∆1 % V ∈ [V/Y]B ∆1 % K<: [V/Y]U snap([V/Y]U) = ∃∆′.K

∆; Γ % e0.<P>m(e) : ∃∆0∆∆′.K
(T-Invk)

∆ % N ok fields(N) = AF T f ∆; Γ % e : E ∆ % E<: snap(T)

∆; Γ % new N(e) : ∃∅.N
(T-New)

∆; Γ % e0 : E0

bound∆(E0) = ∃∆0.N0 fields(N0) = AF T f AFi = assignable

snap(Ti) = ∃∆i.K ∆; Γ % ev : E ∆∆0 % E<: ∃∆i.K eb : E′

∆; Γ % set e0.fi = ev then eb : E′ (T-Set)

Method typing:

∆ % B′, T, T ok ∆ = Y ∈ B′, X ∈ B
∆; x : T, this : C<X> % e0 : E ∆ % E<: snap(T)

class C<X B> " N {. . .} override(m, N, <Y B′>T→ T)

<Y B′> T m(T x){ return e0; } OK IN C<X B>
(T-Method)

Class typing:

X ∈ B % B, N, T ok M OK IN C<X B>

class C<X B> " N { AF T f; M} OK
(T-Class)

Figure 4-9: Lightweight Java (LJ) typing rules. Changes from WFJ are indicated by
boxes.
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v ::= an object
Computation:

S(v1) = 〈N, F〉 F(fi) = v2

〈v1.fi, S〉 −→ 〈v2, S〉
(R-Field)

S(v) = 〈N, F〉 S(v) = 〈N, F〉 mtype(m, N) = <Y B>U→ U
V = capture∅(P, Y, U, N) mbody(<V>m, N) = x.e0

〈v.<P>m(v), S〉 −→ 〈[v/x, v/this]e0, S〉
(R-Invk)

v /∈ dom(S) F = [f *→ v]

〈new N(v), S〉 −→ 〈v, S[v *→ 〈N, F〉]〉
(R-New)

S(v1) = 〈N, F〉
〈set v1.fi = v2 then eb, S〉 −→ 〈eb, S[v1 *→ 〈N, F [fi *→ v2]〉]〉

(R-Set)

Congruence:

〈e0, S〉 −→ 〈e′
0, S〉

〈e0.f, S〉 −→ 〈e′
0.f, S〉

(RC-Field)

〈e0, S〉 −→ 〈e′
0, S〉

〈e0.<P>m(e), S〉 −→ 〈e′
0.<P>m(e), S〉

(RC-Invk-Recv)

〈ei, S〉 −→ 〈e′
i, S〉

〈v.<P>m(v, ei, e), S〉 −→ 〈v.<P>m(v, e′
i, e), S〉

(RC-Invk-Arg)

〈ei, S〉 −→ 〈e′
i, S〉

〈new N(v, ei, e), S〉 −→ 〈new N(v, e′
i, e), S〉

(RC-New-Arg)

〈e0, S〉 −→ 〈e′
0, S〉

〈set e0.f = ev then eb, S〉 −→ 〈set e′
0.f = ev then eb, S〉

(RC-Set-LHS)

〈ev, S〉 −→ 〈e′
v, S〉

〈set v.f = ev then eb, S〉 −→ 〈set v.f = e′
v then eb, S〉

(RC-Set-RHS)

Figure 4-10: Lightweight Java (LJ) reduction rules. Unlike WFJ, LJ’s reduction rules
contain a store.
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The soundness of LJ can be proved using the standard technique of subject re-

duction and progress theorems. A sketch of the proof is given below, a full proof is

not currently available for WFJ or LJ.

The reduction theorem states that each step taken in the evaluation preserves the

type correctness of the expression-store pair. During each step of the reduction, the

environment and type environment must be consistent, %σ, with the store:

∆; Γ %σ S ⇐⇒
S(v) = 〈N, F〉 ⇒

Σ1 : ∆ % N <: Γ(v)

Σ2 : and dom(F) = {f | AF T f ∈ fields(N)}
Σ3 : and rng(F) ⊆ dom(S)

Σ4 : and (F(f) = v′and AF T f ∈ fields(N)

⇒ ((S(v′) = 〈N′, F ′〉) ⇒ ∆ % N′ <: T))

Σ5 : and v ∈ dom(Γ) ⇒ v ∈ dom(S)

Σ6 : and dom(S) ⊆ dom(Γ)

Theorem 2 (LJ Subject Reduction). If ∆; Γ % e : E, ∆; Γ %σ S, and 〈e, S〉 −→

〈e′, S ′〉, then there exists a Γ′ and ∆′ such that ∆′; Γ′ % e′ : E and ∆′; Γ′ %σ S ′.

Proof. The proof can be done by induction on the derivation of 〈e, S〉 −→ 〈e′, S ′〉

with a case analysis on the reduction rule used. For each case, we construct the new

environment Γ′ and a new type environment ∆′ and show that (1) ∆′; Γ′ % e′ : E and

(2) ∆′; Γ′ %σ S.

The progress theorem states that a well-typed program can not get stuck. That

is, if a expression is well-typed and not a value, there exists some progress rule that

may be applied to the expression.

Theorem 3 (LJ Progress). If ∆; Γ % e : E and ∆; Γ %σ S, then either e is a value

or there exists an 〈e′, S ′〉 such that 〈e, S〉 −→ 〈e′, S ′〉.

Proof. The proof can be done by an analysis of the possible cases for the current

redex in e (in the case that e is not a value).
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The LJ Type Soundness theorem is immediate from the LJ Subject Reduction

and LJ Progress theorems.

In addition to type soundness we would like a guarantee that LJ obeys its assign-

ability rules. We state this property as the LJ Assignment Soundness theorem.

Theorem 4 (LJ Assignment Soundness). Outside of an object’s constructor,

assignments may only be made to assignable fields.

Proof. Immediate from T-Set.

4.2 Lightweight Javari

We add Javari’s concept of reference immutability to LJ to create the language

Lightweight Javari (LJR). In LJR, every type is modified by one of the mutabil-

ity modifiers: readonly, mutable, or (for field types only) this-mutable. In addition

to final and assignable, LJR also allows fields be marked as this-assignable with

the this-assignable keyword.

4.2.1 Syntax

The syntax of LJR is shown in figure 4-11. ML and MF are introduced to range over the

mutability modifiers that may occur in a program. ML ranges over the mutabilities

that may appear in local variables’ types: readonly and mutable. MF, mutability for

fields, additionally ranges over this-mutable. C continues to range over class names.

T now ranges over both read-only and mutable types. Thus, a type is a pair, ML C<A>,

consisting of a mutability and a “base” type.

F ranges over field type declarations, including those with this-mutability. A type

argument to a field may have this-mutability. We denote such type arguments as

FA. In addition to field types, FA ranges over wildcards. The definition of FA does

not allow the bound of a wildcard type to have this-mutability as such an extension

is cumbersome to the syntax. All type meta-variables other than F may not have

this-mutability.
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T, S, U, V ::= ML C<A> | X types
A ::= T | ? B type arguments
P ::= T | ! method type parameters
N ::= C<T> class types
K ::= ML N | X class types and var .s
B ::= B! B" bounds
B! ::= " T | • upper bounds
B" ::= # T | • lower bounds
F ::= MF C<FA> | X fieldtypes
FA ::= F | ? B field type arguments

Q ::= class C<X B> " C′<T>{AF F f; M} class declaration
M ::= <X B> T m(T x) ML { return e; } method declarations
e ::= x expressions

| e.f
| e.m<T>(e)
| new N(e)
| set e.f = e then e

AF ::= final | assignable| this-assignable assignabilities
ML ::= readonly | mutable local mutabilities
MF ::= this-mutable | ML field mutabilities

E ::= ∃∆.K existential types
∆ ::= ∅ | ∆, X ∈ B type environments

f field names
C, D class names

X, Y, Z type variables
x variables
m method names

Figure 4-11: Syntax of Lightweight Javari (LJR). Changes from Lightweight Java
(LJ, figure 4-3) are indicated by boxes.

59



Assignability resolving:

assignability(this-assignable, mutable) = assignable
assignability(this-assignable, readonly) = final
assignability(final, ML) = final
assignability(assignable, ML) = assignable

Mutability resolving:

mutability(F, mutable) = [mutable/this-mutable]F

mutability(F, readonly) = [? readonly/this-mutable]F

Figure 4-12: Lightweight Javari (LJR): Resolving assignability and mutability. Also
see figure 3-7, which presents the same information in a different form. For
assignability , the first parameter is the keyword with which the field is declared and
the second parameter is the mutability of the reference through which the field is ac-
cessed. The first parameter to mutability is the type of a field. The second parameter
is the mutability of the reference through which the field is accessed.

A mutability modifier, ML or MF, may not be applied to a type that is a type

variable (see section 3.6).

AL still ranges over assignable and final, modifiers applicable to method parameters

(local variables) and AF ranges over the assignabilities that a field may be declared

to have: assignable, final, and this-assignable.

4.2.2 Auxiliary functions

Resolving this-assignability and this-mutability

The assignability/mutability of a this-assignable/this-mutable field is determined by

the mutability of the reference used to reach the field (section 3.5).

The function assignability(AF, ML) (shown in figure 4-12) is used to resolve the

assignability of a field. A this-assignable field resolves to assignable, if reached through

a mutable reference, and to final, if reached through a read-only reference. Fields

that are declared final or assignable are trivially resolved to final and assignable,

respectively.

The function mutability (shown in figure 4-12) is used to resolve the mutability of
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a this-mutable type. If reached through a mutable reference, mutability replaces all

instances of this-mutable in the type with mutable. If reached through a readonly

reference, mutability replaces all instances of this-mutable in the type with readonly.

Unlike assignability , mutability must resolve the mutabilities of the type arguments

in addition to the top-level type.

Existential type creation: Snap

We extend LJ’s snap to handle ? readonly types. ? readonly types denote the resolved

(see previous section) type of this-mutable type (top-level or type arguments) reached

through a read-only reference. To ensure transitive immutability, a ? readonly type

can only be read (as determined by the type’s upper bound) as read-only. However,

a this-mutable type may be read as a mutable when reached through a mutable

reference; therefore, only mutable types may be assigned (as determined by the type’s

lower bound) to a ? readonly type.2 This intuition can be seen in the new snap rule

(shown, boxed, in figure 4-13). In the rule, a fresh type variable is created with a

readonly upper bound and a mutable lower bound. In snap, the upper bound’s type

arguments are set to the non-wildcard types calculated by fix . In the case of the

lower bound, all instances of ? readonly are replaced with mutable before snap() is

applied to the type arguments to ensure that only fully mutable types are contained

in the lower bound. The new fix rule (also shown, boxed, in figure 4-13) is similar

but simpler because it does not need to recurse into the type arguments—snap() is

only required remove wildcards from the top-level type.

Class member lookup

The other auxiliary functions that are changed from LJ’s are shown in figure 4-14.

The functions for method type lookup and valid method overriding must be modified

because the mutability of the receiver is part of a method’s signature. In the case

of method lookup, the function now returns the mutability of the receiver as a part

2Otherwise, a type loop would exist that could be used to convert read-only types to mutable
types; see section 3.
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Snap:

snap(X) = ∃∅.X

class C<Y B0> " N {. . .} fix (A, B0) = (T, X, B) ∆ = X ∈ [T/Y]B

snap(C<A>) = ∃∆.C<T>

class C<Y B0> " N {. . .}
fix (A, B0) = (T, X, B) B! = " readonly C<T>

fix ([mutable/? readonly]A, X, B) = (T′, X′, B′) B" = # mutable C<T′>
Z fresh ∆ = Z :: XX′ ∈ [T/Y]B! B" :: BB′

snap(? readonly C<A>) = ∃∆.Z

Fix:

fix (A, B0) = (T, X, B)

fix (T :: A, B0 :: B0) = (T :: T, X, B)

fix (A, B0) = (T, X, B) X fresh

fix (? B :: A, B0 :: B0) = (X :: T, X :: X,merge(B, B0) :: B)

fix (A, B0) = (T, X, B)
X fresh B′

! = " readonly C<A′> B′
" = # mutable [mutable/? readonly]C<A′>

fix (? readonly C<A′> :: A, B0 :: B0) = (X :: T, X, :: X, B′
! B′

" :: B)

fix (•, •) = (•, •, •)

Figure 4-13: LJR’s methods for creating existential types. Changes from LJ’s meth-
ods (figure 4-5) are indicated by boxes. The merge function is unchanged and not
shown.

62



Method type lookup:

class C<X N> " B{AF F f; M} <Y B′> U m(U x) ML { return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y B′>U ML → U)

class C<X N> " B{AF F f; M} m /∈ M

mtype(m, C<T>) = mtype(m, [T/X]N)

Valid method overriding:

mtype(m, N) = <Y′ B′>T′ ML′ → T′ implies

B = [Y/Y′]B′ and T = [Y/Y′]T′ and Y ∈ B % T<: [Y/Y′]T′ and ML′ = ML

override(m, N, <Y " B>T ML → T)

Figure 4-14: Lightweight Javari (LJR) auxiliary functions. Changes from Lightweight
Java (LJ) (figure 4-7) are indicated by boxes.

class C<X B> " N {. . .}
∆ % ∃∆′.ML C<T><: ∃∆′.ML [T/X]N

(WS-Subclass)

∆ % mutable C<T><: readonly C<T> (WS-Mutability)

Figure 4-15: Lightweight Javari (LJR) subtyping rules. Only changes from LJ’s
subtyping rules (figure 4-8) are shown.

of the method’s type. Because LJ and LJR do not allow method overloading, there

cannot be a read-only and a mutable version of a method; thus, the mutability of the

receiver does not need to be passed to mtype. The rule for valid method overriding

now checks that the mutability of the receiver in the overriding method matches the

mutability of the receiver in the overridden method.

4.2.3 Static semantics

Subtyping

The subtyping rules of LJ (figure 4-8) must be modified to include mutability. The

this-mutable construct is not a part of the type hierarchy and, thus, is not shown in

the subtyping rules. The mutability of a field declared this-mutable must be resolved
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before subtyping relations may be calculated.

As with LJ the subtyping rules are applied to existential types.

LJR’s subtyping rules (figure 4-15) are little changed from those of LJ. WS-

Subclass is modified to take the mutabilities of the subtype and supertype into

account. WS-Mutability is added to enforce the fact that a mutable version of a

type is a subtype of the readonly version of the type. The other LJ subtyping rules

are also subtyping rules of LJR with the exception that they now operate over LJR

types instead of LJ types.

Typing judgements

The type rules of LJR are shown in figure 4-16. The rules of LJ are augmented to

check that the mutability of an expression is correct for its context.

The RT-Get rule is changed to calculate the mutability of the field using the

mutability of the reference, e0, used to reach the field. RT-Invk is augmented to

check that the mutability of the receiver is legal for the declared mutability of the

method. The rule for new expressions require that the object created is mutable

because the object may be assigned to a mutable reference; therefore, when calculating

the mutability of this-mutable fields, the mutability of the reference through which

the fields are accessed is given as mutable. The changes to RT-Set are the same as

to RT-Get. The RT-Method rule assigns the receiver’s mutability to be equal to

the mutability with which the method is declared.

4.2.4 Operational semantics

Javari is only a change to Java’s type system3; therefore, Javari should not affect

the run-time behavior of a program. As expected, the reduction rules for LJR are

unchanged4 from those of LJ (see figure 4-10).

3An exception to this is the optional down casts, which are not modeled in LJR. See section 5.3.5.
4Technically, the call to capture is malformed because the last argument is a class type, which

does not contain a top-level mutability, instead of a normal LJR type. This could be fixed by
changing capture to accept class types for its last argument and replacing the predicate’s subtyping
judgement with a contains judgement on the class type’s type arguments. We do not make this
(solely syntactic) change to maintain similarity with WFJ’s presentation of capture.
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Expression typing:

∆; Γ % x : snap(Γ(x)) (RT-Var)

∆; Γ % e0 : E0 bound∆(E0) = ∃∆0. ML0 N0

fields(N0) = AF F f mutability(Fi, ML0) = A snap(A) = ∃∆′.K

∆; Γ % e0.fi : ∃∆0∆
′.K

(RT-Get)

∆ % P ok ∆; Γ % e0 : E0 bound∆(E0) = ∃∆0. ML N0

∆; Γ % e : ∃∆.K ∆1 = ∆∆0∆ mtype(m, N0) = <Y B>U ML′ → U

ML N0 <: ML′ N0 V = capture∆1(P, Y, U, K)
∆1 % V ∈ [V/Y]B ∆1 % K<: [V/Y]U snap([V/Y]U) = ∃∆′.K

∆; Γ % e0.<P>m(e) : ∃∆0∆∆′.K
(RT-Invk)

∆ % N ok fields(N) = AF F f

mutability(F, mutable) = A ∆; Γ % e : E ∆ % E<: snap(A)

∆; Γ % new N(e) : ∃∅.mutable N
(RT-New)

∆; Γ % e0 : E0 bound∆(E0) = ∃∆0. ML0 N0 fields(N0) = AF F f

assignability(AFi, ML0) = assignable mutability(Fi, ML0) = A

snap(A) = ∃∆i.K ∆; Γ % ev : E ∆∆0 % E<: ∃∆i.K eb : E′

∆; Γ % set e0.fi = ev then eb : E′ (RT-Set)

Method typing:

∆ % B′, T, T ok ∆ = Y ∈ B′, X ∈ B

∆; x : T, this : ML C<X> % e0 : E ∆ % E<: snap(T)
class C<X B> " N {. . .} override(m, N, <Y B′>T ML → T)

<Y B′> T m(T x) ML { return e0; } OK IN C<X B>
(RT-Method)

Class typing:

X ∈ B % B, N, T ok M OK IN C<X B>

class C<X B> " N {AF F f; M} OK
(RT-Class)

Figure 4-16: Lightweight Javari (LJR) typing rules. Changes from Lightweight Java
(LJ) (figure 4-9) are indicated by boxes.
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4.2.5 Properties

LJR has a similar Type Soundness theorem as LJ:

Theorem 5 (LJR Type Soundness). If ∅; ∅ % e : E and 〈e, S〉 →∗ 〈e′, S ′〉

with e′ a normal form, then e′ is a value, v, such that S ′(v) = 〈N, F〉 and ∅ %

∃∅.mutable N <: E.

In the final the subtyping judgement of the type soundness theorem, the class type

N is augmented with mutable. This step is needed so that the subtyping judgement

may be applied and is safe because every object is in fact mutable at runtime.

The changes to store consistency are similar: class types, N, are converted to types

by adding the fact that runtime objects are mutable. Additionally, field types, F, are

converted to types using mutability assuming that the reference that reaches the field

is mutable. This is a requirement to ensure that an object assigned to a field is saved

to be later read when the field is reached through a mutable reference.

∆; Γ %σ S ⇐⇒
S(v) = 〈mutable N, F〉 ⇒

Σ1 : ∆ % N <: Γ(v)

Σ2 : and dom(F) = {f | AF F f ∈ fields(N)}
Σ3 : and rng(F) ⊆ dom(S)

Σ4 : and (F(f) = v′and AF F f ∈ fields(N)

⇒ ((S(v′) = 〈N′, F ′〉) ⇒ ∆ % mutable N′ <: mutability(F, mutable)))

Σ5 : and v ∈ dom(Γ) ⇒ v ∈ dom(S)

Σ6 : and dom(S) ⊆ dom(Γ)

LJR’s subject reduction and progress theorems are unchanged from LJ’s.
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Chapter 5

Other Language Features

This chapter first discusses a simple template mechanism over mutability used to avoid

code duplication. Next, section 5.2 presents Javari’s mechanisms for dealing with

reflection and serialization. Finally, section 5.3 briefly discusses language features

adopted from Javari2004 [5], a previous dialect of Javari (see section 7.1). These

features include full interoperability with Java, type-based analyses that build on

reference immutability, handling of exceptions, and dynamic casts, an optional feature

that substitutes run-time for compile-time checking at specific places in the program.

5.1 Templatizing methods over mutability

to avoid code duplication

In Java, each (non-generic) class definition defines exactly one type. By contrast, in

Javari, class C { ... } creates two types: /*mutable*/ C and readonly C. The type

/*mutable*/ C contains some methods that are absent from readonly C, and a given

method may have different signatures in the two classes (even though the method’s

implementation is otherwise identical).

Javari permits a programmer to specify the two distinct types using a single class

definition, without any duplication of methods. (The alternative, code duplication,

is unacceptable.)

67



Javari provides the keyword romaybe to declare that a method should be tem-

plated over the mutability of one or more formal parameters. If the type modifier

romaybe is applied to any formal parameter (including this), then the type checker

conceptually duplicates the method, creating two versions of it. (It is not necessary

for two versions of a class or method to exist at run time.) In the first version of

the method, all instances of romaybe are replaced by readonly (or ? readonly in the

case of type arguments). In the second version, all instances of romaybe are removed,

corresponding to the mutability default case: mutable. For example, the following

code defines a DateCell class:

class DateCell {
Date value;
romaybe Date getValue() romaybe { return value; }

}

Its effect is the same as writing the following (syntactically illegal1) code:

class DateCell {
Date value;
readonly Date getValue() readonly { return value; }
/*mutable*/ Date getValue() /*mutable*/ { return value; }

}

As demonstrated above, the primary use of the romaybe keyword is to avoid declar-

ing two duplicate field accessor methods, one readonly and one mutable. However,

romaybe can also be used for static methods as shown below.

static |alert[romaybe] Date cellDate(|alert[romaybe] DateCell c) { return c.getValue(); }

Above cellDate, returns a mutable Date if invoked on a mutable DateCell and

returns a read-only Date if invoked on a read-only DateCell.

1Method overloading based on parameter’s mutability is illegal. If given different names, these
methods would be legal.
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5.1.1 Parametric types

When used to modify a type argument, romaybe expands to ? readonly instead of

readonly. This behavior ensures that romaybe is useful for accessor methods of fields

with parametric types, as shown below.

class Wheel {
/*this-mutable*/ List</*this-mutable*/ Spoke> spokes;

romaybe List<romaybe Spoke> getSpokes() romaybe { return spokes; }
}

The above method declaration is equivalent to the following two (syntactically illegal)

method declarations, which are the correct type signatures for the accessors of spokes.

readonly List<? readonly Spoke> getSpokes() readonly {
return spokes;

}

/*mutable*/ List<mutable Spoke> getSpokes() /*mutable*/ {
return spokes;

}

If the romaybe expanded to readonly in the case of the type argument, the read-only

version of the method above would be illegally typed (see section 3). If this was

the case, two versions of the method would need to be written, resulting in code

duplication.

5.1.2 Discussion

In the majority of cases only one mutability type parameter (romaybe) is needed.

Within a templated method, the mutability of the method parameters, including

this, cannot affect the behavior of the method because the method must be valid

for both read-only and mutable types. However, templated parameters can affect the

types of the method’s references, including the method’s return type. Hence, the only

reason for a romaybe template is to ensure that the method has the most specific return

type possible. As shown above, if a method’s return type’s mutability (including type
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arguments) depend on only the mutability of a single parameter, then only a single

mutability type parameter is needed. Below is a contrived case that breaks this rule.

static Pair<romaybe1 Date, romaybe2 Date>
convert(romaybe1 DateCell c1, romaybe2 DateCell c2) {

Pair<romaybe1 Date, romaybe2 Date> ret = ... ;
ret.first = c1.getDate();
ret.second = c2.getDate();
return ret;

}

The return type’s mutability independently depends on both the mutabilities of c1

and c2. If the types of the arguments to convert were Dates instead of DateCells,

this method would not require multiple mutability type parameters because it could

be written using type parameters. We feel that rare cases, as the one above, do not

warrant a more complicated mutability templating mechanism.

5.1.3 Template inference

As an alternative to explicitly specifying method templates, Javari could instead use

type inference to create a version of a method with a read-only return type. Many

languages, such as ML [29], use type inference to permit programmers to write few

or no type annotations in their programs; this is especially important when the types

are complicated to write. Javari could similarly infer method templates, reducing the

number of template annotations (romaybe) in the code.

Lack of explicit immutability constraints would eliminate the documentation ben-

efits of Javari, or would cause method signatures to describe what a method does

rather than what it is intended to do. Furthermore, programming environments

would need to re-implement the inference, in order to present the inferred types to

users.

Despite these problems, there are countervailing advantages to inference. For

example, although we have not found it onerous in our experience so far, it is a

concern that many methods and arguments would be marked as read-only, cluttering
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the code. (Were backward compatibility not an issue, we would have chosen different

defaults for our keywords.) In future work, we plan to implement such an inference

and determine whether users find it helpful.

5.2 Code outside the type system

Certain Java constructs, such as reflection and serialization, create objects in a way

that is not checked by the Java type-checker, but must be verified at run time. We

discuss how to integrate checking of mutability with these mechanisms, even though

mutability has no run-time representation.

5.2.1 Reflection

Reflection enables calling a method whose return type (including mutability) is un-

known at compile time. This prevents checking immutability constraints at compile

time. We desire to maintain type soundness (reflective calls that should return a

readonly reference must do so) and flexibility (reflective calls that should return a

mutable reference can do so).

In particular, consider the invoke method:

package java.lang.reflect;
class Method {

// existing method in Java (and Javari):
/*mutable*/ Object invoke(java.lang.Object, java.lang.Object...);
// new method in Javari:
readonly Object invokeReadonly(java.lang.Object, java.lang.Object...);

}

The three dots at the end of the parameter lists are not an ellipsis indicating elided

code, but the Java syntax for variable-argument routines.

Javari requires programmers to rewrite some uses of invoke into invokeReadonly,

where invokeReadonly returns a readonly Object rather than an Object as invoke

does. For example:
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Method m1 = ...;
Method m2 = ...;
/*mutable*/ Object o1 = m1.invoke(...);
readonly Object o2 = m2.invokeReadonly(...);

invokeReadonly returns a read-only reference and does no special run-time check-

ing. invoke returns a mutable reference, but performs a run-time check to ensure

that the return type of the method being called is mutable. Note that this is a check

of the invoked method’s signature, not a check of the object or reference being re-

turned. This checking is local and fast2. To enable this check, the JVM can record

the mutability of the return type of each method as the method is loaded.

This proposal takes advantage of the fact that the type-checker knows the compile-

time types of the arguments to invoke. That is, in a call foo(d), it knows whether the

declared type of d is read-only. That information is necessary for (1) ensuring that

a readonly reference is not passed to a mutable formal parameter and (2) resolving

overloading: determining whether foo(d) is a call to foo(Date) or to foo(readonly

Date) when both exist.

5.2.2 Serialization

Like reflection, serialization creates objects in a way that is outside the purview of

the Java type system. However, deserialization (readObject) is guaranteed to return

a new object. Therefore, serializing a read-only object then deserializing the object,

does not violate immutability constraints. Hence, serialization demands no special

treatment by Javari.

5.3 Retained language features

This section briefly explains several Javari features that have not changed from the

Javari2004 dialect described in a previous paper and technical report [5, 4]. Full

details can be found in those references.

2Unlike the immutability checking that is required to support general downcasts; section 5.3.5.
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5.3.1 Interoperability with Java

Javari is interoperable with Java and existing JVMs. The language treats any Java

method as a Javari method with no immutability specification in the parameters

(including this) or return type (and similarly for constructors, fields, and classes).

Since the Javari type system does not know what a Java method can modify, it

assumes that the method may modify anything.

While all Java methods can be called from Javari, Java code can only call Javari

methods that does not use readonly in their return types. An implementation could

enforce this by using standard Java names for mutable types, methods, and classes,

and by “mangling” (at class loading time) the names of read-only types, methods,

and classes into ones that cannot be referenced by legal Java code.

5.3.2 Type-based analyses

Javari enforces reference immutability—a read-only reference is never used to side-

effect any object reachable from it. Reference immutability itself has many ben-

efits. However, other guarantees may be desirable in certain situations. Four of

these guarantees are object immutability (an object cannot be modified), thread

non-interference (other threads cannot modify an object), parameter non-mutation

(an object that is passed as a readonly parameter is not modified), and return value

non-mutation (an object returned as a readonly result is not modified). One ad-

vantage of reference immutability is that a subsequent type-based analysis (which

assumes that the program type checks [34]) can often establish these other properties

from it, but the converse is not true.

Extending reference immutability to stronger guarantees requires escape analysis

or partial information about aliasing. Determining complete, accurate alias informa-

tion remains beyond the state of the art; fortunately, the analyses do not require full

alias analysis. Obtaining alias information about a particular reference can be easier

and more precise than the general problem [2]. Programmers can use application

knowledge about aliasing, new analyses as they become available, or other mecha-
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nisms for controlling or analyzing aliasing, such as ownership types [12, 3, 7], alias

types [3], linear types [50, 16], or checkers of pointer properties [14, 19].

5.3.3 Inner classes and read-only constructors

Javari protects a read-only enclosing instance from being mutated through an inner

class. Placing readonly immediately following the parameter list of a method of

an inner class declares the receiver and all enclosing instances of the receiver to be

read-only.

Inner class constructors have no receiver, but placing the keyword readonly imme-

diately following the parameter list of an inner class constructor declares all enclosing

instances to be read-only. Such a constructor may be called a read-only constructor,

by analogy with “read-only method”. It is important to note that the “read-only” in

“read-only constructor” refers to the enclosing instance. Read-only constructors do

not constrain the constructor’s effects on the object being constructed, nor how the

client uses the newly-constructed object.

It is a type error for a read-only method or constructor to change the state of

the enclosing instance, which is read-only. Furthermore, a non-read-only method or

constructor cannot be called through a read-only reference.

5.3.4 Exceptions

Javari prohibits read-only exceptions from being thrown. This restriction, which has

so far caused no difficulty in practice, is caused by our desire for interoperability

with the existing Java Virtual Machine, in which (mutable) Throwable is a supertype

of every other Throwable. It is possible to modify Javari to lift the restriction on

throwing read-only exceptions, but the result is complicated, introduces possibilities

for error in the type system and the implementation, and provides little practical

benefit.
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5.3.5 Downcasts

Every non-trivial type system rejects some programs that are safe— they never per-

form an erroneous operation at run time —but whose safety proof is beyond the

capabilities of the type system. Like Java itself, Javari allows such programs, but re-

quires specific programmer annotations (downcasts); those annotations trigger Javari

to insert run-time checks at modification points to guarantee that no unsafe oper-

ation is executed. Among other benefits, programmers need not code around the

type system’s constraints when they know their code to be correct, and interopera-

tion with legacy libraries is eased. The alternatives— prohibiting all programs that

cannot be proved safe, or running such programs without any safety guarantee —are

unsatisfactory, and are also not in the spirit of Java.

If a program is written in the type-safe subset of Javari, then static type-checking

suffices. For our purposes, the unsafe operation is the downcast, which converts a

reference to a superclass into a reference to a subclass. (In Java but not in Javari

(section 3.7), these can also appear implicitly in certain uses of arrays of references, for

which Java’s covariant array types prevent sound static type-checking.) Java inserts

checks at each down-cast (and array store), and throws an exception if the down-cast

fails.

Javari provides the following syntax for downcasting from a read-only type to a

mutable type: “(mutable)expression”. Regular Java-style casts may not be used to

convert from read-only to mutable types:

readonly Date rd;
/*mutable*/ Date md;
md = (Date) rd; // error: A regular Java cast may not cast away read-only-ness.

Special downcast syntax highlights that the cast is not an ordinary Java one, and

makes it easy to find such casts in the source code.

Downcasting from a read-only to a mutable type triggers the insertion of run-time

checks, wherever a modification (an assignment) may be applied to a reference that

has had readonly cast away. (In the worst case, every assignment in the program,
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including libraries, must be checked.) The run-time checks guarantee that even if a

read-only reference flows into a mutable reference, it is impossible for modifications

to occur through the mutable reference. Thus, Javari soundly maintains its guarantee

that a read-only reference cannot be used, directly or indirectly, to modify its referent.

A previous paper [5] describes an efficient technique for checking these casts at run

time. It associates a “readonly” Boolean with each reference (not with each object).

The readonly Boolean is true for each non-read-only reference derived from a readonly

reference as a result of a downcast. The readonly Boolean is set when readonly is cast

away, is propagated by assignments, and is checked whenever a modification (i.e., a

field update) is performed on a non-read-only reference.

The following example illustrates the behavior of run-time casts.

class Foo {
Date d;
void setD() /*mutable*/ {
this.d = new Date();

}
}

Foo f1 = new Foo();
readonly Foo rf = f1;

Foo f2 = (mutable) rf;

f1.d = new Date(); // OK
f2.d = new Date(); // run-time error
f1.setD(); // OK
f2.setD(); // run-time error: at the first line of setD

In a previous experiment, there was approximately one cast per 1000 lines [5].

However, that experiment annotated existing code (without improving its design), did

not annotate all the libraries that were used, and used an earlier dialect of the Javari

language that extended Java 1.4 and many features that make casts less necessary.

Also lessening the need for casts, section 6 presents a technique for automatically

converting existing Java libraries to Javari. Just as most new Java 5 code contains

few Java casts, we believe that well-written new Javari code will contain few or no

mutability downcasts.
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Chapter 6

Type inference for Javari

For a programmer to gain the benefits of reference immutability constraints, he must

annotate his code with the appropriate immutability constraints. For existing code,

this can be a tedious and error prone task. Even worse, a programmer wishing to use

reference immutability constraints must first annotate (the signatures of) the libraries

he plans to use. Otherwise, a reference immutability type checker would be forced to

assume that all methods modify their arguments. Therefore, the programmer would

be unable to invoke any of the library’s methods on immutable references even if the

method, in fact, does not modify its arguments.

To aid programmers with adding reference immutability constraints to Java pro-

grams, we have created an algorithm to soundly infer immutable references from Java

code. Given a program, our algorithm calculates all the references, including local

variables, method parameters, and static and instance fields, that may have Javari’s

readonly, romaybe, or ? readonly keywords added to their declarations. Using this

algorithm, programmers can convert Java programs, including libraries, to Javari.

Javari’s other annotations, assignable and mutable, exclude parts of the concrete

representation from the abstract state and they cannot be soundly inferred because

they require knowing the intent of the programmer. However, without allowing these

annotations, the precision of our algorithm would suffer. This problem can occur

when a reference is used to modify a part of an object’s concrete state that was

not intended to be a part of the object’s abstract state. Such a reference would be
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inferred to be mutable when in reality, it should be read-only. Therefore, to improve

the results of our algorithm, we allow users to hand annotate references with Javari’s

immutability modifiers, including declaring fields as assignable or mutable.

We have implemented our algorithm in the form of the Javarifier tool. Given a

Java (possibly partially annotated) program in classfile format1, Javarifier calculates

and returns to the user the references that may be declared readonly, romaybe or

? readonly. An example Java program and the corresponding Javari program is

shown in figure 6-1.

The rest of this chapter is organized as follows. Section 6.1 explains the algo-

rithm which is used to soundly infer read-only references. Section 6.2 discusses how

our algorithm is soundly extended to infer romaybe references. Section 6.3 describes

the implementation of our algorithm within the Javarifier tool. Finally, section 6.4

provides our experience using Javarifier.

6.1 Inferring read-only references

We use a flow- and context-insensitive algorithm to infer which references may be

declared read-only. A read-only reference may have the readonly keyword added to

its Javari type declaration. The algorithm is sound: Javarifier’s recommendations will

type check under Javari’s rules. Furthermore, our algorithm is precise: declaring any

references in addition to Javarifier’s recommendations as read-only—without other

modifications to the code—will result in the program not type checking.

The read-only inference algorithm does not determine which fields should be de-

clared mutable or assignable; however, it is capable of inferring in the presence of

fields that have been declared mutable or assignable by an outside source. The read-

only inference algorithm declares all other fields not inferred to be read-only to be

this-mutable. This choice is made because declaring fields to be mutable states that

the field is not a part of the object’s abstract state—an exceptional case.

1It is important that Javarifier is able to operate on classfiles because programmers may wish
convert library code that they only have in classfile format.
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// Java
class Event {

Date date;

Date getDate() {
return Date;

}

void setDate(Date d) {
this.date = d;

}

}

// Javari
class Event {

/*this-mutable*/ Date date;

romaybe Date getDate() romaybe {
return Date;

}

void setDate(/*mutable*/ Date d) /*mutable*/ {
this.date = d;

}

}

Figure 6-1: A Java program (above) and the corresponding inferred Javari program
(below).
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For simplicity, we begin by describing our core algorithm (in section 6.1.1), i.e.,

the algorithm in the absence of unseen code, subtyping, user-provided reference im-

mutability annotations (including assignable and mutable fields), arrays, and para-

metric types. We then extend the algorithm to allowing unseen code (section 6.1.2),

subtyping (section 6.1.3), user-provided constraints (section 6.1.4), array types (sec-

tion 6.1.5), and parametric types (section 6.1.6).

6.1.1 Core algorithm

Our algorithm generates, then solves, a set of mutability constraints for a program.

A mutability constraint states when a given reference must be declared mutable. The

algorithm uses two types of constraints: unguarded and guarded. Unguarded con-

straints state that a given reference is unconditionally mutable, e.g. “x is mutable.”

Guarded constraints state that a given reference is conditionally mutable if another

reference is mutable, e.g. “if y is mutable then x is mutable.” We use constraint vari-

ables to refer to references in these constraints—x and y in the previous examples.

Unguarded constraints are represented by the constraint variable of the reference it is

constraining, e.g. “x.” Guarded constraints are represented as implications with the

guard reference’s constraint variable as the predicate and the dependent reference’s

constraint variable as the consequence, e.g. “y→ x”.

After generating the constraints, the algorithm solves the constraints yielding a

simplified constraint set. The simplified constraint set is the set of all the constraint

variables known to be true. A constraint variable is known to be true if it is present as

an unguarded constraint or if it is consequence of a guarded constraint that is satisfied

either directly by an unguarded constraint or indirectly though the consequence of a

different satisfied guarded constraint. The simplified constraint set contains the set

of references that must be declared mutable (or this-mutable in the case of instance

fields); all other references may safely be declared read-only.
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Q ::= class {f M}
M ::= m(x){s;}
s ::= x = x

| x = x.m(x)
| return x
| x = x.f
| x.f = x

Figure 6-2: Grammar for core language used during constraint generation.

Constraint generation

The first phase of the algorithm generates constraints for each statement in a program.

Unguarded constraints are generated when a reference is used to modify an object.

Guarded constraints are generated when a reference is assigned to another reference

or when a reference is used to reach a field of an object.

We present constraint generation using a core language. The core language is a

simple three-address programming language.2 The grammar of the language is shown

in figure 6-2. We use Q and M to refer to class and method definitions, respectively.

m ranges over method names, f ranges over names fields, and s ranges over allowed

statements. p, x, y, and z range over variables (method parameters and locals). We

use x as the shorthand for the (possibly empty) sequence x1...xn We also include the

special variable thism, which refers to the receiver of method m. Furthermore, we

assume any program that attempts to reassign thism is malformed. Otherwise, thism

is treated as a normal variable. Without loss of generality and for ease of presentation,

we assume that all references and methods are given globally-unique names.

Control flow constructs are not modeled because the our algorithm is flow-in-

sensitive and, therefore, unaffected by such constructs. Java types are not modeled

because the core algorithm does not use them. Constructors are modelled as regular

methods returning a mutable reference to thism. Static members are omitted because

do not demonstrate any interesting properties.

Each of the statements from figure 6-2 has a constraint generation rule, as shown

in figure 6-3. The rules make use of the following auxiliary functions. this(m) and

2Java source and classfiles can be converted to such a representation.
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params(m) return the receiver reference (thism) and parameters of method m, respec-

tively. retVal(m) returns the constraint variable, retm, that represents the reference

to m’s return value.

The constraint generation rules are described as follows:

Assign The assignment of variable y to x causes the guarded constraint x→ y to be

generated because, if x is a mutable reference, y must also be mutable for the

assignment to succeed.

Invk The assignment, to x, of the return value of the invocation of method m, on y,

with arguments y, generates three kinds of constraints. The guarded constraint

thism → y is generated because the actual receiver must be mutable if m requires

a mutable receiver. Similarly, the constraints p→ y are generated because the

ith actual argument must be mutable if m requires the ith formal parameter to

be mutable. Finally, the constraint x → retm is generated to enforce that m

must have a mutable return type if the value it returns is assign to a mutable

reference.

These constraints are extensions of the Assign rule when method invocation

is framed in terms of operational semantics: the receiver, y, is assigned to

thism, each actual argument is assigned to the method’s corresponding formal

parameter, and the return value, retm, is assigned to x.

Ret The return statement return x adds the constraint retm → x because, in the

case that the return type of the method is found to be mutable, all references

returned by the method must be mutable.

Ref The assignment of y.f to x generates two constraints. The first, x → f, is

required because, if x is mutable, then the field f cannot be read-only. The

second, x → y, is needed because, if x is mutable, then y must be mutable to

yield a mutable reference to field f (the core algorithm assumes all non-read-only

fields are this-mutable).
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x = y : {x→ y} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {thism → y, p→ y, x→ retm}
(Invk)

retVal(m) = retm

return x : {retm → x}
(Ret)

x = y.f : {x→ f, x→ y} (Ref)

x.f = y : {x, f→ y} (Set)

Figure 6-3: Constraint generation rules.

Set The assignment of y to x.f causes the unguarded constraint x to be generated

because x has just been used to mutate the object to which it refers. The

constraint f → y is added because if f is found to be this-mutable, then a

mutable reference must be assigned to it.

The constraints for a program is the union of the constraints generated for each line

of the program. Figure 6-4 shows constraints being generated for a sample program.

Simplifying constraints

The second phase of the algorithm is to simplify the constraint set. Constraint set

simplification checks if any of the unguarded constraints satisfies, i.e. matches, the

guard of a guarded constraint. If so, the guarded constraint is “fired” by removing

it from the constraint set and adding its consequence to the constraint set as an

unguarded constraint. The new unguarded constraint can then be used to fire other

guarded constraints. Once no more constraints can be fired, constraint simplification

terminates. The unguarded constraints in the simplified constraint set is the set of

references that cannot be declared read-only. They must be declared this-mutable

for instance fields, and mutable in the case of all other types of references. All other

references are safe to be declared read-only.

The constraints generated from the example program in figure 6-4 will be simpli-
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class {
f;
foo(p) {

x = p; // Assign: {x -> p}
y = x.f; // Ref: {y -> f, y -> z}
z = x.foo(y); // Invk: {this_foo -> x, p -> x, z -> ret_foo}
this.f = y; // Set: {this_foo, f -> y}
return y; // Ret: {ret_foo -> y}

}

Program constraints:

{x→ p, thisfoo → x, p→ x, z→ retfoo,

y→ f, y→ z, thisfoo, f→ y, retfoo → y}

Figure 6-4: Example of constraint generation. After each line of code, the constraints
generated and the constraint generation rule used for is shown.

fied as shown below. (For clarity, the unguarded constraints are listed first.)

{thisfoo, x→ p, thisfoo → x, p→ x, z→ retfoo,

y→ f, y→ z, f→ y, retfoo → y} ⇒

{thisfoo, x, p}

At the end of simplification, the unguarded constraints thisfoo, x and p are present

in the simplified constraint set. These references may not be declared read-only. All

the other references, y, z, retfoo, and f, can be declared read-only. Figure 6-5 shows

the result of applying our algorithm to the example program.

6.1.2 Unseen code

Our algorithm as previously described makes the closed-world assumption. That is, it

assumes that all code is seen and, therefore, it is safe to change public method return

types and types of public fields. In the case that a user is running the algorithm

on the whole program, the closed world assumption allows the results to be more

precise. However, in order to support analyzing library classes which do not have
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class {
readonly f;
readonly foo(p) {
/*mutable*/ x = p;
readonly y = x.f;
readonly z = x.foo(y);
this.f = y;
return y;

}
}

Figure 6-5: The result applying our algorithm’s output to the program originally
shown in figure 6-4.

access to their clients, our algorithm needs to be sound even without the presence

of all client code. Thus, all non-private3 fields and the return types of non-private

methods must be mutable because an unseen client may rely on a mutability of the

field or return value. Our algorithm is easily modified to enforce this restriction: an

unguarded constraint for every non-private field and non-private method return value

is added to the constraint set. Depending on the needs of the user, the algorithm can

be executed either under the closed-world assumption or not.

6.1.3 Subtyping

Java and Javari allow subtyping polymorphism, which enables multiple implemen-

tations of a method to be specified through overriding4. Javari requires that all

implementations of an overridden method have identical signatures, including the

mutability of parameters. Therefore, our algorithm must infer the same mutabili-

ties for the parameters of all implementations of overridden methods. Overridden

methods are also restricted to have covariant return types.

To ensure that our algorithm does not infer different signatures for polymorphic

methods, we must place an additional set of constraints in the constraint set. For

3In the case that an entire package is being analyzed, package-protected (default access) methods
and fields may be processed as under the closed world assumption.

4We use the term overriding to specify when a method implements a method from an interface,
implements an abstract method, or overrides a concrete method in a superclass. Furthermore,
for brevity and to highlight their identical treatment, we will refer to both abstract methods and
interface methods abstract methods.

85



every parameter of a overloaded method, we add the constraint that it is equal in

mutability to every other implementation of the method. Equality is represented

by two guarded constraints, one indicates if the first constraint variable is mutable

then the second constraint variable is mutable, the other specifies that if second

constraint variable is mutable then the first is mutable. For example, below, the

method toString is overloaded.

class Event {
Date d;
String toString() {
return d.toString();

}
}

class Birthday extends Event {
int age;
String cachedStr;
String toString() {
if (cachedStr == null) {

cachedStr = "I’m " + age + " on " + d + "!";
}
return cachedStr;

}
}

Thus, the mutability of the this parameter of Event’s and Birthday’s toString

methods must be the same. This requirement generates the constraints:

thisEvent.toString → thisBirthday.toString

thisBirthday.toString → thisEvent.toString

Although, to preserve overloading, both methods are declared to have mutable

this parameters, only Birthday’s toString method actually mutates its receiver.

One implementation of the method mutating the receiver while another does not is

disconcerting because overloaded methods are suppose to both be implementations

of the same specification. Therefore, our algorithm should issue a warning in such
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cases.

6.1.4 User-provided annotations

Our read-only inference algorithm can be extended to incorporate user-provided an-

notations. This capability is required because the read-only inference algorithm is

not capable of directly inferring the assignable and mutable keywords. Additionally,

user-provided annotations are needed for native method invocations, on which our

algorithm cannot operate. Finally, a user may, using knowledge of the program, wish

to override the annotations inferred by our algorithm.5

A user may specify that instance fields are this-mutable, read-only, or mutable

and that other references (static fields, local variables and parameters) are read-only

or mutable.

A user declaring a reference to be read-only causes the algorithm, upon finishing,

to check if it is safe to declare the given reference as readonly. If not, the algorithm

issues an error, stating the conflict with the user annotation. It is expected that

this type of declaration will be particularly useful for overridden methods (see sec-

tion 6.1.3) because declaring a supertype’s method to be read-only would propagate

to all the subtypes. For example, a user could annotate Object’s toString, hashCode,

and equals methods as having read-only this parameters. The user would then be

notified if any class’s implementation of the above methods are not read-only. Such

cases may arise from errors or the usage of a cache fields that should be declared

assignable.

A user declaring a non-field reference mutable or a field this-mutable results in

the system adding an unguarded constraint that the reference cannot be read-only.

This specification is useful when a programmer knows that a certain reference is not

currently used to modify its referent, but that it may be used to do so in the future.

This case is expected to be particularly relevant for method return types when running

5It is save for a user to override our analysis by stating that a reference inferred to be read-only
should be declared mutable. However, overriding our analysis by stating that a reference inferred to
be mutable should be declared readonly would result in a type error.
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the algorithm with the closed world assumption (see section 6.1.2). For example, a

user may wish to annotate an program under the closed world assumption but specify

that certain public methods return mutable references.

Finally, a user may declare fields to be assignable or mutable. These annotations

are particularly important because our algorithm cannot soundly infer fields to be

assignable or mutable as it would require knowing which fields the programmer

intended to be a part of an object’s abstract state. Our algorithm, however, can be

extended to work with fields that are declared, by an outside source, to be assignable

or mutable. This ability is needed because fields may be determined to be mutable or

assignable by hand.

To extend our algorithm to handle mutable and assignable fields, the constraint

generation rules are extended to check the assignability and mutability of fields be-

fore adding constraints. The algorithm is given the set of fields that are declared

to be assignable, AS, and the set of fields that are declared to be mutable, MS.

The auxiliary functions assignable(f) and mutable(f) return true if and only if f is

contained in AS or MS, respectively. The changes to the constraint generation rules

are shown in figure 6-6 and are described below.

To handle assignable fields, the Set rule is divided into two rules, Set-A and

Set-N, which depend on the assignability of the field. If the field is assignable, Set-

A does not add the unguarded constraint that the reference used to reach the field

must be mutable: an assignable field may be assigned through either a read-only or

mutable reference. If the field is not assignable, Set-N proceeds as normal.

To handle mutable fields we add the constraint generation rule Mutable, which

adds an unguarded constraint for each mutable field. The Ref rule is again divided

into two rules: Ref-M and Ref-N depending on the mutability of the field. If the

field is mutable, then Ref-M does not add any constraints because, when compared

to the original Ref rule, (1) the consequence of the first constraint, x → f, has

already been added to the constraint set via the Mutable rule, and (2) the second

constraint, x→ y, is eliminated because a mutable field is mutable regardless of how

it is reached. If the field is not mutable, then Ref-N proceeds as normal.
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assignable(f)

x.f = y : {f→ y}
(Set-A)

¬assignable(f)
x.f = y : {x, f→ y}

(Set-N)

mutable f; : {f} (Mutable)

mutable(f)

x = y.f : {}
(Ref-M)

¬mutable(f)
x = y.f : {x→ f, x→ y}

(Ref-N)

Figure 6-6: Modified constraint generation rules for handling assignable and mutable
fields. The original Set rule (shown in figure 6-3) is replaced by Set-A and Set-N.
The original Ref rule is replaced by Ref-M and Ref-N. Finally, Mutable is added
to the remaining rules from figure 6-3.

Grammar:
s ::= ...

| x[x] = x
| x = x[x]

Figure 6-7: Core language grammar extended for arrays. The original grammar is
shown in figure 6-2

6.1.5 Arrays

Next, we extend our algorithm to handle arrays. First, we extend our core language

grammar to allow storing and reading from arrays. The extended grammar is shown

in figure 6-7.

Javari allows array elements to have two-sided bounded types (section 3.7). For

example, the array (? readonly Date)[] has elements with upper bound readonly

Date and lower bound mutable Date. All array element types can be written in the

form of having an upper bound and a lower bound. For example, (readonly Date)[]

has elements with upper bound readonly Date and lower bound readonly Date. Our

algorithm will infer an upper bound and a lower bound for the type of an array’s
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T, S ::= A | C types
A, B ::= T[] array types
C, D class names

Figure 6-8: Type meta-variables.

elements.

In the initial core algorithm, a reference could only have a single read-only-ness

annotation; therefore, using a single constraint variable for each reference sufficed.

The introduction of arrays, however, enables multiple read-only-ness annotations to

be placed on a reference’s type: the array’s elements’ type can be annotated in

addition to the array type. Therefore, our analysis must constrain every part of a

type. By “part”, we refer to a reference’s top-level array type; the upper and lower

bounds of the elements of the top-level array type; if the elements of the top-level

array are array themselves, then the upper and lower bounds of elements of the

elements; and so on. For example, the type Date[][] has seven type parts: Date[][],

the top-level type; Date[]!, the upper bound of the element type; and Date[]", the

lower bound of the element type, and then four Date types corresponding to the upper

bound of the upper bound, the upper bound of the lower bound, the lower bound of

the upper bound, and the lower bound of the lower bound. To constrain each part

of the type, we will use each type part as a constraint variable. To distinguish type

parts of an upper bound from the corresponding lower bound, we subscript upper

bounds with ! and lower bounds with ". Additionally, we assume within a program,

textually different instances of the same type are distinguishable.

As in section 4.1, T and S ranges over types, and C and D over class names. We add

A and B to range over array types. The type meta variables are shown in figure 6-8.

Our type constraint generation rules use the auxiliary function type, which returns

the declared type of a reference.

Constraint generation

The constraint generation rules are extended to enforce subtyping constraints. For

the assignment x = y, where x and y are arrays, the extension must enforce that
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S[]→ T[] T ⊂: S

T[]<: S[]

D→ C

C<: D

T! <: S! S" <: T"

T ⊂: S

Figure 6-9: Simplified subtyping rules for mutability in Javari.

x = y : {type(y)<: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y)<: type(thism), type(y)<: type(p), type(retm)<: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x)<: type(retm)}
(Ret)

x = y.f : {type(f)<: type(x), type(x) → type(y)} (Ref)

x.f = y : {type(x), type(y)<: type(f)} (Set)

x = y[z] : {type(y[z])<: type(x)} (Array-Ref)

x[z] = y : {type(x), type(y)<: type(x[z])} (Array-Set)

Figure 6-10: Constraint generation rules in presence of arrays.

y is a subtype of x. Simplified subtyping rules for Javari are given in figure 6-96.

The simplified rules only check the mutabilities of the types because we assume the

program being converted type checks under Java. An array element’s type, T, is said

to be contained by another array element’s type, S, written T ⊂: S, if the set of types

denoted by T is a subset of the types denoted by S.

We modify the constraint generation rules to use types as constraint variables

and to enforce the subtyping relationship across assignments including the implicit

assignments that occur during method invocation. The extended rules are shown in

figure 6-10.

6In Java, arrays are covariant; however, in Javari, array are invariant in respect to mutability
(see section 3.7), therefore, we use the contains relationship as Java’s parametric types do.
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Type well-formedness constraints

In addition to the constraints generated for each line of code, our algorithm adds

constraints to the constraint set to ensure that every array type is well formed. Array

well-formedness constraints enforce the fact that an array element’s lower bound must

be a subtype of the element’s upper bound.

Constraint simplification

Before the constraint set can be simplified as before, subtyping and contains con-

straints must be reduced to guarded constraints. To do so, each subtyping or con-

tains constraint is replaced by the corresponding rule’s predicates (see figure 6-9).

This step is repeated until only guarded and unguarded constraints remain in the

constraint set. For example, the statement x = y, where x and y has the types T[]

and S[], respectively, would generate and reduce constraints as follows:

x = y : {type(y)<: type(x)}

: {S[]<: T[]}

: {T[]→ S[], S ⊂: T}

: {T[]→ S[], S! <: T!, T" <: S"}

: {T[]→ S[], T! → S!, S" → T"}

In the final results, the first guarded constraint enforces that y must be a mutable

array if x is a mutable array, while second and third constraints constrain the bounds

on the arrays’ elements types. T! → S! requires the upper bound of y’s elements

to be mutable if the upper bound x’s elements is mutable. This rule is due to co-

variant subtyping between upper bounds. S" → T" requires the lower bound of x’s

elements to be mutable if the lower bound y’s elements is mutable. This rule is due

to contravariant subtyping between lower bounds.

After eliminating all subtyping or contains constraints, the remaining guarded and

unguarded constraint set is simplified as before.
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T, S ::= C<T> | X types
C, D class names
X, Y type variables

Figure 6-11: Type meta-variables.

Applying results

Finally, we must apply the results back to the initial Java program. The results are

applied to top-level types, the same way they were before. However, for element

types, we must map the constraints on the upper bound and type lower bound to

a single Javari type. If the upper bound and lower bound are both present in the

constraint set, the element’s type is annotated as mutable. If the upper bound and

lower bound are both not present, then the element’s type is annotated as read-only.

If the lower bound is present, but the upper bound is not, then the element’s type is

annotated as ? readonly. Finally, the case that the upper bound is present and the

lower bound is not, cannot occur due to the well-formedness constraints.

6.1.6 Parametric types

Parametric types are handled in a similar fashion as arrays. For a parametric type,

constraint variables must be made for the upper and lower bound of each type ar-

gument to a parametric class. As with arrays, we will use type parts as constraint

variables.

We will use the following meta-syntax to represent parametric types. As in sec-

tion 4.1, T and S will range over types, X and Y over type variables, and C and D over

class names. We do not model wildcard types other than ? readonly; however, they

are a simple extension. The type meta-variable definitions are shown in figure 6-11.

As with arrays, we will use ! to denote type argument’s upper bounds and " to

denote their lower bounds.
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D→ C T′ ⊂: S′

T<: S where bound∆(T) = C<T′> and bound∆(S) = D<S′>

T! <: S! S" <: T"

T ⊂: S

Figure 6-12: Simplified subtyping rules for mutability in the presence of parametric
types.

x = y : {type(y)<: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y)<: type(thism), type(y)<: type(p), type(retm)<: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x)<: type(retm)}
(Ret)

x = y.f : {type(f)<: type(x), type(x) → type(y)} (Ref)

x.f = y : {type(x), type(y)<: type(f)} (Set)

Figure 6-13: Constraint generation rules in presence of parametric types.

Auxiliary functions

Our type generation rules uses the auxiliary function, bound∆, as previously presented

in section 4.1. bound∆(T) returns the declared upper bound of T if T is a type variable;

if T is not a type variable, T is returned unchanged. In our formulation, we assume

access to a global type environment, ∆, that maps type variables to their declared

bounds. bound ignores any upper bound or lower bound subscripts present on the

type.

As with arrays, our type constraint generation rules use the auxiliary function

type, which returns the declared type of a reference.

Constraint generation

As with arrays, the constraint generation rules (shown in figure 6-13) use subtyping
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class Week<X extends /*mutable*/ Date> {
X f;
void startWeek() {
f.setDay(Day.SUNDAY);

}
}

Figure 6-14: The results of applying our type inference to a program containing a
mutable type variable bound. Since the field f is mutated, X’s upper bound is in-
ferred to be /*mutable*/ Date. Note that one may not apply the mutable annotation
directly to the f’s type because a type parameter cannot be annotated as mutable
(section 3.6.4).

constraints. However, the subtyping rules (shown in figure 6-12) are extended to deal

with type variables. A type variable is not allowed to be annotated as mutable (see

section 3.6.3); therefore, type variables can not occur in the constraint set. In the case

of a type variable appearing in a subtyping constraint, bound is used to calculate the

upper bound of the type variable and the mutability constraints are applied to the

type variable’s bound. Therefore, the mutation of a reference whose declared type is

a type variable results in the type variable’s bound being constrained to be mutable.

An example of this behavior is shown in figure 6-14.

Type well-formedness constraints

As with arrays, in addition to the constraints from the constraint generation rules,

well-formedness constraints are added to the constraint set. As before, a constraint

is added that a type argument’s lower bound must be a subtype of the type argu-

ment’s upper bound. Parametric types, additionally, introduce the well-formedness

constraint that a type argument’s upper bound is a subtype of the corresponding type

variable’s declared bound.

Constraint simplification and applying results

As with arrays, subtyping (and contains) constraints are simplified into guarded con-

straints by removing subtyping constraint from the constraint set and replacing it

with the subtyping rule’s predicate.
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The results of the solved constraint set are applied in the same manner as with

arrays.

Limitations

Firstly, Javari does not allow raw types, and, therefore, our analysis is incapable of

operating on code that contains raw types.

Secondly, in the case of poorly parameterized code, this approach is not guaranteed

to always provide the most general methods7, or, therefore, the maximum number

of read-only annotations. We are unable to always infer the most general method

because in some cases one does not exist. For example, take the Java method below:

void addDate(List<Date> l, Date d) {
l.add(d);

}

Three type-correct Javari methods can be inferred (our algorithm as stated above

infers the first):

addDate(/*mutable*/ List<readonly Date> l, readonly Date d)
addDate(/*mutable*/ List<? readonly Date> l, /*mutable*/ Date d)
addDate(/*mutable*/ List</*mutable*/ Date> l, /*mutable*/ Date d)

The last method is strictly less general than the second because the second can

be applied to list of read-only elements in addition to lists of mutable elements.

However, the first and second methods are incomparable. The first method allows a

more general type for d because could be applied to readonly or mutable Dates. The

second method, on the other hand, allows a more general type for l because it can be

applied to lists with readonly, mutable, or ? readonly type arguments. Thus, neither

the first or second method is the most general and, therefore, there does not exist a

most general method signature to be inferred.

7The most general method is the method that accepts the most types of arguments. For example
foo(readonly Date) is a more general method than foo(/*mutable*/ Date), because it can take read-only
Dates in addition to mutable Date’s.
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However, parameterizing the method would make the method more general than

all three of the previous methods:

<T extends readonly Date> void addDate(/*mutable*/ List<T> l, T d) {
l.add(d);

}

Thus, in the case that programmers follow good method parameterization prac-

tices, our algorithm is capable of always providing the most general methods.

6.2 Inferring romaybe

Our core read-only inference algorithm can be extended to infer the romaybe keyword.

Doing so allows more precise immutability annotations to be inferred.

romaybe is used to create two versions of a method: a read-only version, which

takes a read-only parameter and returns a read-only type, and a mutable version,

which takes mutable parameter and returns a mutable type (see section 3). For

example, in figure 6-15, the getSeat method could be declared to have a romaybe

this parameter and return type. Declaring getSeat to be romaybe allows the mutable

version to be used by lowerSeat, which mutates the returned Seat object, and the

read-only version to be used by printSeat, which does not mutate the returned Seat

object. Providing both versions of the method is beneficial because it allows a more

precise type to be inferred for printSeat’s parameter. By using the read-only version

of the getSeat method, printSeat’s parameter may be declared readonly, as one

would expect, since printSeat does not modify its argument. The results of the our

analysis when getSeat is declared to be romaybe are shown in figure 6-16.

Without the ability to infer romaybe, our algorithm would infer that getSeat has

a mutable return type and a mutable formal parameter. In this case, methods such

as printSeat will be forced to supply getSeat with a mutable argument even though

printSeat does not mutate the object returned by getSeat. The results of this type-

safe, but imprecise analysis is shown in figure 6-17.
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class Bicycle {
private Seat seat;

Seat getSeat() {
return seat;

}
}

static void lowerSeat(Bicycle b) {
Seat s = b.getSeat();
seat.height = 0;

}

static void printSeat(Bicycle b) {
Seat s = b.getSeat();
System.out.prinln(s);

}

Figure 6-15: For the above Java code, our analysis should declare the getSeat method
to have an romaybe receiver and return type.

class Bicycle {
private Seat seat;

romaybe Seat getSeat() romaybe {
return seat;

}
}

static void lowerSeat(/*mutable*/ Bicycle b) {
/*mutable*/ Seat s = b.getSeat();
seat.height = 0;

}

static void printSeat(readonly Bicycle b) {
readonly Seat s = b.getSeat();
System.out.prinln(s);

}

Figure 6-16: Sound and precise Javari code which gives getSeat romaybe type.
lowerSeat uses the mutable version of the method while printSeat uses the read-
only version.
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class Bicycle {
private Seat seat;

/*mutable*/ Seat getSeat() /*mutable*/ {
return seat;

}
}

static void lowerSeat(/*mutable*/ Bicycle b) {
/*mutable*/ Seat s = b.getSeat();
seat.height = 0;

}

static void printSeat(/*mutable*/ Bicycle b) {
/*mutable*/ Seat s = b.getSeat();
System.out.println(s);

}

Figure 6-17: Sound but imprecise Javari code, which does not use romaybe. getSeat
is given the imprecise mutable type instead of the precise romaybe type.

6.2.1 Approach

We extend our read-only inference algorithm to infer romaybe by recognizing that

romaybe methods have two contexts. In the first context, the romaybe return type and

romaybe parameters are mutable. In the second context, the romaybe return type and

romaybe parameters are read-only. Since our analysis does not know which methods

are romaybe before executing, it creates both contexts for every method. In the case of

a method that should not have romaybe parameters, the two contexts are redundant:

the mutabilities of parameters from each context will be identical. However, in the

case of a method that should have romaybe parameters, the parameters will be mutable

in the mutable context and read-only in the read-only context.

To create two contexts for a method, we create two constraint variables for every

method-local reference (parameters, local variables, and return value). To distinguish

each context’s constraint variables, we superscript the constraint variables from the

read-only context with ro and those from the mutable context with mut. Constraint

variables for fields are not duplicated as romaybe may not be applied to fields and,

thus, only a single context exists.
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this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {x? → thismutm → y?, x? → pmut → y?, x→ retm}
(Invk-romaybe)

Figure 6-18: The core algorithm’s Invk rule is replaced by Invk-romaybe, which is
used for method invocation in the presence of romaybe references.

Constraint generation rules

With the exception of Invk, all the constraint generation rules are the same as before,

except now they generate (identical) constraints for constraint variables from both the

read-only and mutable versions of the methods. For example, x = y now generates

the constraints:

{xro → yro, xmut → ymut}

For shorthand, we write constraints that are identical with the exception of constraint

variables’ contexts by superscripting the constraint variables with “?”. For example,

the constraints generated by x = y can be written as:

{x? → y?}

The method invocation rule (shown in figure 6-18) must be modified to invoke

the mutable version of a method when a mutable return type is needed and to invoke

the read-only version otherwise. That is, for the method invocation, x = y.m(y), the

mutable version of the method is used when x is mutable. Otherwise, the read-only

version of the method is used. The invocation rule checks whether x is mutable, and

in the case that it is, adds constraints that the actual arguments must be mutable if

the formal parameters of the mutable context of the method are mutable. The rule

also, without checking the mutability of x, adds the constraints that the the actual

arguments must be mutable if the formal parameters of the read-only context of the

method are mutable. The check can be skipped because it is guaranteed that the

parameters of the mutable version of the method are mutable if the parameters of

the read-only version of the method are mutable.
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The constraints are solved as before.

Interpreting the results of the solved constraint set

Once the constraint set is solved, the results are applied to the program. For method-

local references, the two constraint variables from the read-only and mutable method

contexts must be mapped to a single method-local Javari type: read-only, mutable,

or romaybe.

A reference is declared mutable, if both the mutable and read-only context of the

reference’s constraint variable are found to be in the simplified, unguarded constraint

set. A reference is declared read-only, if both mutable and read-only contexts of the

reference’s constraint variable is absent from the constraint set. Finally, a reference

is declared read-only, if the mutable context’s constraint variable is in the constraint

set but the read-only constraint variable is not in the constraint set, because the

mutability of the reference depends on which version of the method is called.8

It is possible for a method to contain romaybe references but no romaybe param-

eters. For example, below, x and the return value of getNewDate could be declared

romaybe.

Date getNewDate() {
Date x = new Date();
return x;

}

However, romaybe references are only allowed, or useful, if the method has a romaybe

parameter. Thus, if none of a method’s parameters are romaybe, all the method’s

romaybe references are converted to mutable references.

8The case that read-only constraint variable is not found in the constraint set but the mutable
context’s constraint variable is not cannot occur by the design of the Invk-Romaybe constraint
generation rule.
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read-only mutable this-mutable romaybe ? readonly Total
field 2 0 19 2 0 23
receiver 18 30 N/A 6 0 54
parameter 32 13 N/A 0 0 45
return 4 13 N/A 12 0 29
local 4 48 N/A 2 0 54
Total 60 104 19 22 0 205

Figure 6-19: For each kind of reference in Java (fields, method receivers, parameters,
and return values, and local variables), the table shows number of those references
declared with a given Javari modifier. In the case of parametric types, each type
argument is treated as a separate reference from the top-level type. Thus, List<Date>
is counted as two references. Note that romaybe occurs on two fields. Although not
discussed in this paper, romaybe can occur on fields of method-local classes.

6.3 Implementation

We have implemented the read-only and romaybe inference algorithms as described

in this paper as the Javarifier tool. To enable the annotation of library class-files in

the absence of source code, Javarifier takes classfiles as input. Javarifier can either

output its results to text files or applied the results directly to class files in the form

of classfile attributes.

6.4 Evaluation

To evaluate Javarifier we compared Javarifier’s output against hand-annotating the

Barnes-Hut (BH) benchmark from the JOlden benchmark suite [11]. The BH bench-

mark contains 1130 (non-comment, non-whitespace) lines of code among 7 classes.

The BH benchmark is written using raw types, therefore, before we hand-annotated

or ran Javarifier, we converted the BH source code to use generics.

To evaluate the results of hand-annotation and Javarifier, we produced a set of

“ideal” annotations. These annotations where created by comparing the hand anno-

tations against Javarifier’s annotations. Wherever a difference occurred, we further

examined the code to determine which annotation was correct. Although it is possi-

ble that the hand annotations and Javarifier erred in the same way, we have a high
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degree of confidence that the ideal annotations are correct. Figure 6-19 summarizes

the ideal results.

Hand annotation of the BH benchmark took 30 minutes and contained 22 (11%)

errors. Five of the errors were due to the tedium of the task: the annotater forgot to

annotate obviously read-only methods such as toString. The remainder of the errors

were due not investigating the program sufficiently.

Javarifier was able to annotate the BH benchmark in under three minutes (3.6GHz

Pentium 4, 3GB of RAM). Javari’s erred in 35 (17%) of cases. The majority of

cases (21) were due to Javarifier inferring a field or method’s return type to be read-

only when it would be reasonable to mutate the reference. In these cases, Javarifier

executed as expected: those references were not mutated in the program. However,

an inspection of the code shows that it would be reasonable for an unseen client

to mutate the references. This is a problem with the closed-world assumption is

discussed in section 6.1.2.

The remaining errors where to due to our implementation being incomplete.
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Chapter 7

Related Work

This paper is an extended version of a previous paper by same author [48]. The main

changes from [48] are:

1. Introduction of the ? readonly keyword for handling this-mutable type argu-

ments (section 3.6.2).

2. An improved core language which handles the ? readonly keyword (section 4).

3. A type inference to convert Java programs to Javari, including a discussion of

a prototype implementation of the analysis (section 6).

4. A discussion of how Javari could be implemented using annotations (section B).

7.1 Javari2004

The Javari language presented in this paper and [48] is an evolutionary improvement

of an earlier dialect [5], which we call “Javari2004”.

Experience with 160,000 lines of Javari2004 code indicated that Javari2004 is

an easy-to-use language that retains the flavor and style of Java while providing

substantial benefits, including improved documentation, extended ability to reason

about code, and detecting errors in well-tested code. However, the Javari2004 design

is deficient in a number of ways.
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1. Conflates notions of assignability and mutability

2. Incompatible with generic types

3. Inflexible multi-dimensional arrays

4. Extra-linguistic macro-expansion templates

5. No support for reflection

6. No formal type rules

The current Javari language corrects these problems. The changes are significant

but are relatively small from the point of view of a user: most uses of the language,

and its overall character, remain the same.

Distinguishing assignability from mutability

Javari2004’s mutable keyword declares that a field is both assignable and mutable:

there is no way to declare that a field is only assignable or only mutable. Javari’s

assignable and mutable keywords (section 3.5.3) highlight the orthogonality of assign-

ability and mutability, and increase the expressiveness of the language. See appendix

A for examples of the use of assignable and mutable.

Generic types

This paper provides a detailed treatment of generic classes that smoothly integrates

reference immutability into them. Javari2004 does not supports generic classes,

though the OOPSLA 2004 paper speculates about a macro expansion mechanism

that is syntactically, but not semantically, similar to the way that Java 5 treats type

parameters. Java 5 compiles type parameters via type erasure, but Javari2004 treated

the mutability parameters (which appeared in the same list as the type parameters)

via code duplication; this distinction complicates implementation, understanding, and

use.

Javari2004 also proposed that a generic class could declare whether a field whose

type is a type parameter is a part of the object’s abstract state. We have discovered

that such a declaration makes no sense. For a field whose type is a type parameter
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to be a part of the object’s abstract state, it must be this-mutable; however, such a

field cannot be this-mutable (section 3.2). Javari also disallows type parameters be

modified with the mutable keyword (section 3.6).

Arrays

As with generic classes, Javari permits programmers to independently specify the

mutability of each level of an array (section 3.7). By contrast, Javari2004’s speci-

fication states: “readonly int[][] and readonly (readonly int[]) are equivalent,”

forbidding creation of a read-only array of mutable items.

Method templates

Javari2004 integrated the syntax for templating a method over mutability with the

syntax for Java 5’s generic types. Whether a parameter is intended to be a nor-

mal type parameter or a mutability type parameter must be inferred from its usage,

greatly complicating a compiler (and the prototype Javari2004 implementation re-

quired distinct syntax to ease the compiler’s task [4, 5]).

Furthermore, Javari2004 allows declaring a multiple mutability type parameters.

As noted in section 5.1, only a single mutability type parameter is sufficient, so Javari

uses a much simpler mechanism (romaybe) for indicating a variable mutability. This

new approach highlights the orthogonality of the Java 5’s generic types and Javari’s

mutability polymorphism for methods. Furthermore, it does not require any run-time

representation of the polymorphism.

Reflection

Reflection create objects whose types are not known to the static type checker. In

Javari2004 (as in many other proposed type systems for Java), reflection create loop-

holes in the type system. The current Javari language is sound with respect to

reflection by introducing quick, local checks that can be performed at run time. See

section 5.2.
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Formal type rules

Javari2004’s type-checking rules [5, 4] are stated, for the full Javari2004 language

(including inner classes and other Java idiosyncrasies) in the semi-formal style of

the Java Language Specification [21]. This formulation is natural for many Java

programmers, but it unsatisfying to others. This paper formalizes a core calculus

for the Javari language. It builds on Wild FJ (WFJ) [22], adding side effects and

assignability and mutability type modifiers. By presenting the typing rules for a

language that is stripped to the bare essentials, we have made it easier to grasp

the key features of Javari. Equally importantly, the formalization can enable a type

soundness proof for the Javari type system.

7.2 Other immutability proposals

Many other researchers have noticed the need for a mechanism for specifying and

checking immutability. This section discusses other proposals and how ours differs

from them.

Similarly to Javari, JAC [23] has a readonly keyword indicating transitive im-

mutability, an implicit type readonly T for every class and interface T defined in

the program, and a mutable keyword. However, the other aspects of the two lan-

guages’ syntax and semantics are quite different. For example, JAC provides a

number of additional features, such as a larger access right hierarchy (readnothing

< readimmutable < readonly < writeable) and additional keywords (such as

nontransferrable) that address other concerns than immutability. The JAC au-

thors propose implementing JAC by source rewriting, creating a new type readonly T

that has as methods all methods of T that are declared with the keyword readonly

following the parameter list (and then compiling the result with an ordinary Java com-

piler). However, the return type of any such method is readonly. For example, if class

Person has a method public Address getAddress() readonly, then readonly Person

has method public readonly Address getAddress() readonly. In other words, the

return type of a method call depends on the type of the receiver expression and may
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be a supertype of the declared type, which violates Java’s typing rules. Additionally,

JAC is either unsound for, or does not address, arrays of readonly objects, casts,

exceptions, inner classes, and subtyping. JAC readonly methods may not change

any static field of any class. The JAC paper suggests that readonly types can be

supplied as type variables for generic classes without change to the GJ proposal, but

provides no details. By contrast to JAC, in Javari the return type of a method does

not depend on whether it is called through a read-only reference or a non-read-only

one. Javari obeys the Java type rules, uses a type checker rather than a preproces-

sor, and integrates immutability with type parameterization. Additionally, we have

implemented Javari and evaluated its usability [5].

The above comments also explain why use of read-only interfaces in Java is not

satisfactory for enforcing reference immutability. A programmer could define, for

every class C, an interface RO C that declares the readonly methods and that achieves

transitivity through changing methods that returned (say) B to return RO B. Use

of RO C could then replace uses of Javari’s readonly C. This is similar to JAC’s

approach and shares similar problems. For instance, to permit casting, C would need

to implement RO C, but some method return and argument types are incompatible.

Furthermore, this approach does not allow readonly versions of arrays or even Object,

since RO Object would need to be implemented by Object. It also forces information

about a class to be maintained in two separate files, and it does not address run-

time checking of potentially unsafe operations or how to handle various other Java

constructs. Javari sidesteps these fundamental problems by extending the Java type

system rather than attempting to work within it.

Skoglund and Wrigstad [43] take a different attitude toward immutability than

other work: “In our point of [view], a read-only method should only protect its

enclosing object’s transitive state when invoked on a read reference but not necessarily

when invoked on a write reference.” A read (read-only) method may behave as

a write (non-read-only) method when invoked via a write reference; a caseModeOf

construct permits run-time checking of reference writeability, and arbitrary code may

appear on the two branches. This suggests that while it can be proved that read
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references are never modified, it is not possible to prove whether a method may

modify its argument. In addition to read and write references, the system provides

context and any references that behave differently depending on whether a method

is invoked on a read or write context. Compared to this work and JAC, Javari’s type

parameterization gives a less ad hoc and more disciplined way to specify families of

declarations.

The functional methods of Universes [31] are pure methods that are not allowed

to modify anything (as opposed to merely not being allowed to modify the receiver

object).

Pechtchanski and Sarkar [36] provide a framework for immutability specification

along three dimensions: lifetime, reachability, and context. The lifetime is always

the full scope of a reference, which is either the complete dynamic lifetime of an

object or, for parameter annotations, the duration of a method call. The reachability

is either shallow or deep. The context is whether immutability applies in just one

method or in all methods. The authors provide 5 instantiations of the framework,

and they show that immutability constraints enable optimizations that can speed up

some benchmarks by 5–10%. Javari permits both of the lifetimes and supplies deep

reachability, which complements the shallow reachability provided by Java’s final

keyword.

Capabilities for sharing [10] are intended to generalize various other proposals for

immutability and uniqueness. When a new object is allocated, the initial pointer

has 7 access rights: read, write, identity (permitting address comparisons), exclusive

read, exclusive write, exclusive identity, and ownership (giving the capability to assert

rights). Each (pointer) variable has some subset of the rights. These capabilities give

an approximation and simplification of many other annotation-based approaches.

Porat et al. [37] provide a type inference that determines (deep) immutability of

fields and classes. (Foster et al. [18] provide a type inference for C’s (non-transitive)

const.) A field is defined to be immutable if its value never changes after initialization

and the object it refers to, if any, is immutable. An object is defined to be immutable if

all of its fields are immutable. A class is immutable if all its instances are. The analysis
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is context-insensitive in that if a type is mutable, then all the objects that contain

elements of that type are mutable. Libraries are neither annotated nor analyzed:

every virtual method invocation (even equals) is assumed to be able to modify any

field. The paper discusses only class (static) variables, not member variables. The

technique does not apply to method parameters or local variables, and it focuses on

object rather than reference immutability, as in Javari. An experiment indicted that

60% of static fields in the Java 2 JDK runtime library are immutable. This is the

only other implemented tool for immutability in Java besides ours, but the tool is not

publicly available for comparison.

Effect systems [25, 46, 33] specify what state (in terms of regions or of individual

variables) can be read and modified by a procedure; they can be viewed as labeling

(procedure) types with additional information, which the type rules then manipulate.

Type systems for immutability can be viewed as a form of effect system. Our system is

finer-grained than typical effect systems, operates over references rather than values,

and considers all state reachable from a reference.

Our focus in this paper is on imperative object-oriented languages. In such lan-

guages, fields are mutable by default. In our type system, when a type is read-only,

the default is for each field to be immutable unless the user explicitly marks it as

mutable. Functional languages such as ML [28] use a different policy: they default all

fields to being immutable. OCaml [24] combines object-orientation with a mutable

annotation on fields (for example, references are implemented as a one-field mutable

record). However, without a notion of read-only types, users are forced to hide mu-

tability via use of interfaces and subtyping, which is less flexible and expressive than

our proposal.

A programming language automatically provides a sort of immutability constraint

for parameters that are passed, or results that are returned, by value. Since the value

is copied at the procedure call or return, the original copy cannot be modified by the

implementation or client, respectively. Pass- and return-by-value is typically used for

values that are small. Some programming languages, such as Pascal and Ada, permit

variables to be explicitly annotated as in, out, or in/out parameters; this is an early
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and primitive form of compiler-enforced immutability annotation.

7.3 C++ const

C++’s const keyword is intended to aid in interfaces, not symbolic constants [45].

Our motivation is similar, but our notion of immutability, and our type system, differ

from those of C++, thus avoiding the pitfalls that led Java’s designers to omit const.

Because of numerous loopholes, the const notation in C++ does not provide

a guarantee of immutability even for accesses through the const reference. An

unchecked cast can remove const from a variable, as can (mis)use of type system

weaknesses such as unions and varargs (unchecked variable-length procedure argu-

ments).

C++ permits the contents of a read-only pointer to be modified: read-only meth-

ods protect only the local state of the enclosing object. To guarantee transitive non-

mutability, an object must be held directly in a variable rather than in a pointer. How-

ever, this precludes sharing, which is a serious disadvantage. Additionally, whereas

C++ permits specification of const at each level of pointer dereference, it does not

permit doing so at each level of a multi-dimensional array. Finally, C++ does not

permit parameterization of code based on the immutability of a variable.

By contrast to C++, Javari is safe: its type system contains no loopholes, and its

downcast is dynamically checked. Furthermore, it differs in providing guarantees of

transitive immutability, and in not distinguishing references from objects themselves;

these differences make Javari’s type system more uniform and usable. Unlike C++,

Javari permits mutability of any level of an array to be specified, and permits param-

eterization based on mutability of a variable. Javari also supports Java features that

do not appear in C++, such as nested classes.

Most C++ experts advocate the use of const (for example, Meyers advises using

const wherever possible [26]). However, as with many other type systems (including

those of C++ and Java), some programmers feel that the need to specify types out-

weighs the benefits of type checking. At least three studies have found that static
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type checking reduces development time or errors [30, 20, 38]. We are not aware of

any empirical (or other) evaluations regarding the costs and benefits of immutability

annotations. Java programmers seem eager for compiler-checked immutability con-

straints: as of March 2005, support for const is the second most popular Java request

for enhancement. (See http://bugs.sun.com/bugdatabase/top25_rfes.do. The most

popular request is “Provide documentation in Chinese.”)

A common criticism of const is that transforming a large existing codebase to

achieve const correctness is difficult, because const pervades the code: typically, all

(or none) of a codebase must be annotated. This propagation effect is unavoidable

when types or externally visible representations are changed. Inference of const

annotations (such as that implemented by Foster et al. [18]) eliminates such manual

effort. Even without a type inference, we found the work of annotation to be greatly

eased by fully annotating each part of the code in turn while thinking about its

contract or specification, rather than inserting partial annotations and attempting to

address type checker errors one at a time. The proper solution, of course, is to write

const annotations in the code from the beginning, which takes little or no extra work.

Another criticism of C++’s const is that it can occasionally lead to code dupli-

cation, such as the two versions of strchr in the C++ standard library. Mutability

templates (section 5.1) make the need for such duplication rare in Javari. Finally,

the use of type casts (section 5.3.5) permits a programmer to soundly work around

problems with annotating a large codebase or with code duplication.

7.4 Related analyses

Reference immutability can help to prevent an important class of problems, in a

simple and intuitive way. However, it is no panacea. Other techniques can address

some of these issues, and there are many software engineering challenges that reference

immutability does not address. We mention just a sample of other techniques.

Boyland [9] observes that mutational representation exposure (in which external

code can corrupt a data structure) and observational exposure (in which external

113



code can observe an internal representation changing) are duals: in each case, modifi-

cations on one side of an abstraction boundary are observable on the other. Reference

immutability does not address observational exposure. Boyland argues that a lan-

guage extension should not solve one of these problems without also solving the other.

However, the problems are arguably different, since the latter is a result of a client

improperly retaining a reference “too long,” and even a value returned from size()

may become out of date if it is retained too long (though it will never become an

invalid integer). Mechanisms for solving all representation exposure problems are less

mature, and it may be valuable to solve some important problems without solving

them all.

Ownership types [12, 3, 7] provide a compiler-checked mechanism for preventing

aliasing to the internal state of an object. As noted previously, alias, escape, and

ownership analyses can enhance reference immutability. However, they do not di-

rectly address issues of immutability, including those not associated with abstraction

boundaries. Ownership type annotations such as rep describe whether a reference

is part of the object’s state, whereas mutability annotations such as readonly in-

dicate whether it can be modified; each approach has its advantages, and it would

be interesting to combine them. Fractional permissions [8] are another mechanism

for helping to avoid representation exposure. Finally, a type system based on linear

logic [50, 16] can prevent multiple uses of a value, which may be useful, for example,

when preventing representation exposure through constructor arguments.

Effect analyses for Java and in general [13, 41, 39, 40, 32, 27] have been widely

studied. An effect analysis returns the set of references that initially refer to objects

that are not mutated in a given scope such as a particular method invocation. Similar

to our algorithm’s read-only parameters, effect analysis can be used to determine

which method parameters are “safe”[42]. A method parameter is safe if the method

never modifies the object passed to the parameter during method invocation. Unlike

read-only references, a parameter is not safe if the method mutates the object to

which the parameter refers through a different aliasing reference. An example of this

difference is shown in figure 7-1. On the other hand, if a safe parameter is reassigned
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/** Copies of the day of d1 into d2. */
void copyDay(readonly /*unsafe*/ Date d1, /*mutable, unsafe*/ Date d2) {

d2.setDay(d1.getDay());
}

Date d = new Date();
copyDate(d, d);

Figure 7-1: In the presence of the method invocation shown, copyDay’s d1 parameter
is read-only but not safe. Effect analysis determines d1 to be unsafe because of the
method invocation shown passes the same Date object to both parameters; thus, the
object referred to by d1 is mutated through the alias d2. The read-only-ness of method
parameters, as expected for type system, can not be affected by the particular manner
in which the method is invoked.

/** Returns a copy of d with the month set to m */
Date copy(/*mutable*/ /*safe*/ Date d, readonly /*safe*/ Month m) {

d = new Date(d); // Assume copy-constructor’s parameter is read-only and safe.
d.setMonth(m);
return d;

}

Figure 7-2: d is safe because any object passed to d will not be modified; however,
d is not read-only because it is used to modify a different object—the newly created
Date returned by the method.

with a different object, the parameter remains safe even if it mutates that object. A

read-only parameter, on the other hand, may not be used to mutate any object. This

difference is shown in figure 7-2 Safety and read-only-ness are orthogonal: safety is a

property over objects while read-only-ness is a property over references.

Additionally, our algorithm has a much lower complexity than effect-analyses,

which must be context-sensitive to achieve reasonable precision.
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Chapter 8

Conclusion

We have presented a type system that is capable of expression, compile-time verifi-

cation, and run-time checking of reference immutability constraints. Reference im-

mutability guarantees that the reference cannot be used to perform any modification

of a (transitively) referred-to object. The type system should be generally applica-

ble to object-oriented languages, but for concreteness we have presented it in the

context of Javari, an extension to the full Java 5 language, including generic types,

arrays, reflection, serialization, inner classes, exceptions, and other idiosyncrasies.

Immutability polymorphism (templates) for methods are smoothly integrated into

the language, reducing code duplication. We have provided a set of formal type rules

for a core calculus that models the Javari language.

Javari provides a practical and effective combination of language features. For

instance, we describe a type system for reference rather than object immutability.

Reference immutability is useful in more circumstances, such as specifying interfaces,

or objects that are only sometimes immutable. Furthermore, type-based analyses

can run after type checking in order to make stronger guarantees (such as object

immutability) or to enable verification or transformation. The system is statically

type-safe, but optionally permits downcasts that transform compile-time checks into

run-time checks for specific references, in the event that a programmer finds the type

system too constraining. The language is backward compatible with Java and the

Java Virtual Machine, and is interoperable with Java. Together with substantial
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experience with a prototype for a closely related dialect [5], these design features

provide evidence that the language design is effective and useful.

Additionally we have designed and implemented an analysis to convert Java pro-

grams to Javari. This analysis is necessary for converting legacy programs and li-

braries such as the JDK to Javari. Experience with the analysis indicates that Javari

is practical type system is practice.
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Appendix A

Assignability and Mutability

Examples

As shown in figure 3-6, each instance field can be declared with one of three assignabil-

ities (assignable, unassignable, or this-assignable) and also with one of three muta-

bilities (mutable, read-only, and this-mutable). This appendix illustrates the use of

Javari’s reference immutability system through examples of all nine possibilities. As

with the rest of this paper, we omit most visibility modifiers (public, private, . . . )

for brevity. Furthermore, for brevity this appendix does not explicitly address uses

of type parameters.

A.1 this-assignable, this-mutable

This is the standard type for a field in a possibly-mutable class. All fields not declared

final in Java code are interpreted as this type.

Suppose there is a class Wheel that is mutable (its pressure can change) and a class

Bicycle that contains two Wheels that may be changed (different wheels for different

terrains).

class Wheel {
int pressure;

}
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class Bicycle {
Wheel frontWheel;
...

}

A read-only reference to a Bicycle cannot be used to modify the Bicycle by

reassigning frontWheel or mutating frontWheel by reassigning pressure. A mutable

reference can modify Bicycle by reassigning frontWheel or changing its pressure.

A.2 final, this-mutable

Consider a file abstraction that contains a StringBuffer holding the contents of the

file.

class MyFile {
final StringBuffer contents;

}

The contents of a read-only file cannot be changed. contents should not be

reassigned, and StringBuffer operations can be used to alter mutable files’ contents

as needed.

A.3 assignable, this-mutable

assignable fields can be used for caching. In the case of an assignable this-mutable

field, it is caching an object that is this-mutable. For example, recall the Bicycle

example from above. Suppose one wished to provide a method that returned the

wheel with the greatest aerodynamic drag. If this method was costly to execute, one

would wish to cache the result until one of the Wheels changed.

class Bicycle {
Wheel frontWheel;
Wheel backWheel;
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private assignable Wheel mostDrag;
romaybe Wheel mostDrag() romaybe {
if (mostDrag == null || /*wheels have changed*/) {

mostDrag = ...;
}
return mostDrag;

}
}

Even when the reference to the Bicycle is read-only, mostDrag can be assigned with

the result of the method. The cache and what it is caching— one of the Wheels— are

this-mutable.

A.4 this-assignable, readonly

Consider a class, ChessPiece, that represents a chess piece including the piece’s posi-

tion on a board. The position field, pos, should be modifiable for mutable references

but not for read-only references. If the programmer wishes to reassign pos, instead

of mutating the object assigned to the field, each time the piece is moved, then the

field should be declared to be this-assignable and read-only.

class ChessPiece {
readonly Position pos;

readonly Position getPosition() readonly {
return pos;

}

void setPosition(readonly Position pos) {
this.pos = pos;

}
}

A.5 final, readonly

final readonly fields are useful for state that should never change, including con-

stants. A ChessPiece’s color should never change.
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class ChessPiece {
final readonly Color color;

}

A.6 assignable, readonly

Suppose that ChessPiece has a costly method, bestMove, that returns the best possible

move for that piece. Since the method is costly, one would like the method to cache

its result in case it is called again (before anything on the board has altered). Calling

the bestMove method does not change the abstract state of the class, so it should be

a readonly method. However, to allow the bestMove method to assign to the field

that caches its result, the field must be declared assignable. Furthermore, since

there is never a reason to mutate the position calculated, the field should be declared

readonly to avoid programmer error.

class ChessPiece {
private assignable readonly Position bestMove;
readonly Position bestMove() readonly {
if ((bestMove == null) || /* board changed */) {

bestMove = ...;
}
return bestMove;

}
}

A.7 this-assignable, mutable

Suppose one wishes to represent a set by an array and, for efficiency, move the last

successfully queried item to the beginning of the array. The author must declare

the array to be mutable to allow moving the last successfully queried item to the

beginning of the array even when the set is read-only. The array must be declared

this-assignable to allow reassigning the array when it reaches its capacity due to calls

to addElm.
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class MoveToFrontSet {
private mutable Object[] elms;
private int size;
boolean contains(Object obj) readonly {
for (int i = 0; i < size; i++) {

if (elms[i].equals(obj)) {
// should also check for null
moveToFront(elms, i);
return true;

}
}
return false;

}

// Be sure to not declare method readonly
void add(Object elm) {
if (elms.length == size) {

Object[] tmp = new Object[2*elms.length];
for (int i = 0; i < elms.length; i++) {
tmp[i] = elms[i];

}
elms = tmp;

}
elms[size] = elm;
size++;

}

// Be sure to return readonly Object[]
readonly Object[] toArray() readonly {
return elms;

}
}

The order that the elements appear in elms is not a part of the abstract state of

the Set object; however, the fact that they are contained by the array assigned to

elms is a part of the abstract state. This relationship is too complicated for the type

system to capture, so the field must be declared mutable.

elms must be mutable so that the elements can be rearranged even when the

instance of Set is read-only. Unfortunately, methods that add or delete elements

could be declared readonly and still type check. Therefore, when writing code such

as this, the programmer must be careful not to declare those methods read-only and

to ensure that a mutable reference to elms does not escape.
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A.8 final, mutable

Suppose one wishes to monitor the users who access a file. A simple way to do this

is to require a user ID to be passed as an argument to the file’s accessors and then

record the ID in a set.

class File {
final mutable Set<UserID> accessedFile;
StringBuffer contents;

readonly StringBuffer
getContents(UserID id) readonly {
accessed.add(id);
return contents;

}
}

The set accessedFile must be mutable so that a users ID may be added to it

within the read-only method getContents.

A.9 assignable, mutable

Consider an implementation of a splay tree [44]:

class SplayTree<T extends readonly Comparable> {

// The internal representation of a splay tree
assignable mutable BinarySearchTreeNode<T> root;

// Adjusts the tree so that newRoot becomes the root.
splay(BinarySearchTreeNode newRoot) { ... }

void insert(T val) { root.insert(val); }
void delete(T val) { root.delete(val); }

boolean find(T val) readonly {
BinarySearchTreeNode node = root.find(val);
if (node == null) {

return false;
} else {
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splay(node);
return true;

}
}

}

In this example assignable and mutable are used because the type system is

unable to capture how the abstract state of the class relates to its data structure at

the field root. Without the assignable keyword, the root of the tree could not be

reassigned by the splay method. The mutable keyword is also needed because the

splay method needs to mutate the nodes rooted at root while rearranging the nodes

within the tree.
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Appendix B

Annotations

It is impractical to implement reference immutability using Java’s current annotation

system. Alternatively, Javari can be implemented using new keywords (as assumed

in the description of the language up to this point) or through a extended annotation

system. This section discusses the issues involved. We believe that Javari should

either use all keywords or all annotations; it would be confusing, and would offer

little benefit, to mix the two.

Use of annotations is attractive. It ensures that Javari code is valid Java code.

This guarantees interoperability with existing tools: Javari code can be compiled

using any Java compiler, then run either by a JVM whose byte code verifier checks the

immutability types encoded in the annotations, or by any JVM (losing the benefits

of immutability checking). The Javari system could additionally work as a stand-

alone type-checker. There would be no worries about breaking existing code that

uses Javari keywords as identifiers. Avoiding changes to the programming language

could encourage programmers to adopt Javari.

Unfortunately, the current Java annotation system is too weak to use to implement

a reference immutability system. There are two main problems.

1. Annotations can only be applied to type declarations, not to other uses of types.

(a) Annotations cannot be applied to a cast.

(b) Annotations cannot be applied to the receiver (this) of a method. This
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could be worked around with a new annotation such as @rothis, which is

syntactically applied to the method return type but semantically applies

to the receiver type.

(c) Annotations cannot be inserted at arbitrary locations within arrays. To

express “(readonly Date[])[][]”, one would need to write something like

the (unintuitive) annotation @readonly(2) Date[][][] where the integer

argument to the annotation indicates at what level the read-only modifier

should be applied.

(d) Annotations are not permitted on type parameters, so expressing this type

would be difficult:

Map<List<readonly Date>, readonly Set<Number>>.

2. Annotations on local variables are not recorded within the classfile by the javac

compiler. Therefore, if we wish to use annotations and perform type checking

on classfiles, we would be required to extend the annotation system. This would

require changing the compiler, possibly by recording local variables’ annotations

within the local variable symbol table. A compiler change eliminates one of the

benefits of using annotations: not requiring people to use a new compiler to

check reference immutability constraints. (But the Javari code would remain

backward-compatible with other Java compilers.)

Currently, there is work on extending Java’s annotation system to overcome the

limitations discussed above [35]. If such an extended annotation system was adopted,

it would be practical to implement Javari in terms of annotations.

A language change could still achieve backward compatibility with standard Java

compilers by providing a special comment syntax where any comment that begins

with “/*=” is considered as part of the code by the Javari compiler. (This approach

was taken in LCLint [15], for example.) This feature allows the programmer to

annotate an existing Java program with Javari’s keywords without losing the ability

to compile that program with a normal Java compiler. That comment mechanism

could be supported by external tools, but should not be part of Javari proper.
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