
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-067 September 25, 2006

Ubiquitous Memory Introspection 
(Preliminary Manuscript)
Qin Zhao, Rodric Rabbah, Saman Amarasinghe, 
Larry Rudolph, and Weng-Fai Wong



Ubiquitous Memory Introspection (Preliminary Manuscript)

Qin Zhao1,3, Rodric Rabbah2,
Saman Amarasinghe1,2, Larry Rudolph1,2, Weng-Fai Wong1,3

1 Singapore-MIT Alliance
2 Massachusetts Institute of Technology

3 National University of Singapore

Abstract

Modern memory systems play a critical role in the performance of applications, but a detailed un-
derstanding of the application behavior in the memory system is not trivial to attain. It requires time
consuming simulations of the memory hierarchy using long traces, and often using detailed modeling.
It is increasingly possible to access hardware performance counters to measure events in the memory
system, but the measurements remain coarse grained, better suited for performance summaries than pro-
viding instruction level feedback. The availability of a low cost, online, and accurate methodology for
deriving fine-grained memory behavior profiles can prove extremely useful for runtime analysis and
optimization of programs.

This paper presents a new methodology for Ubiquitous Memory Introspection (UMI). It is an online
and lightweight mini-simulation methodology that focuses on simulating short memory access traces
recorded from frequently executed code regions. The simulations are fast and can provide profiling re-
sults at varying granularities, down to that of a single instruction or address. UMI naturally complements
runtime optimizations techniques and enables new opportunities for memory specific optimizations.

In this paper, we present a prototype implementation of a runtime system implementing UMI. The
prototype is readily deployed on commodity processors, requires no user intervention, and can operate
with stripped binaries and legacy software. The prototype operates with an average runtime overhead of
20% but this slowdown is only 6% slower than a state of the art binary instrumentation tool. We used
32 benchmarks, including the full suite of SPEC2000 benchmarks, for our evaluation. We show that
the mini-simulation results accurately reflect the cache performance of two existing memory systems, an
Intel Pentium 4 and an AMD Athlon MP (K7) processor. We also demonstrate that low level profiling
information from the online simulation can serve to identify high-miss rate load instructions with a 77%
rate of accuracy compared to full offline simulations that required days to complete. The online profiling
results are used at runtime to implement a simple software prefetching strategy that achieves a speedup
greater than 60% in the best case.

1 Introduction

The migration from offline to runtime optimizations provides the unique ability to perform workload-specific

optimizations that are tailored to end-user scenarios. This paper presents a practical simulation-based pro-

filing methodology for use in a pervasive online setting. The methodology calls for i) identifying frequently

executed program regions during execution, ii) selectively instrumenting some of their operations and pro-

filing their execution, and iii) periodically triggering an online fast simulator to analyze the traces and
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record the derived performance profiles. It is not uncommon for offline simulators to use similar techniques

to reduce simulation times with sampling and functional fast forwarding [4]. A key observation inspiring

this work is that similar ideas and even simpler heuristics are possible at runtime.

The paper is focused on delivering detailed, instruction-level, profiles of the application behavior in the

memory hierarchy. Virtually all optimizations that attempt to mitigate the memory bottleneck rely on ac-

curate application-specific profiles of the memory hierarchy performance. For example, data prefetching

techniques are up to 60% more effective when they are targeted at high-miss rate memory references. Simi-

larly, locality enhancing optimizations can significantly benefit from accurate measurements of the working

sets size and characterization of their predominant reference patterns. Ubiquitous Memory Introspection

(UMI) provides online and application-specific profiling information that is necessary for runtime memory-

centric optimizations. As a result and for the first time, UMI makes it possible for traditionally offline

simulation-based optimizations to run online.

1.1 Common Practice

It is not uncommon to use simulators to model the memory system behavior of benchmarks and application

codes. Simulators are versatile and malleable, and can provide a wide range of profiling detail. They

are however invariably slow, and often prohibitively time consuming for large and realistic applications.

For example, Cachegrind [22] requires days to fully simulate the SPEC benchmark suite using the reference

input workloads. As a result, detailed simulations are used for offline performance tuning and optimizations.

They remain impractical for runtime memory optimizations whether in a virtual machine, or in a general-

purpose code manipulation environment.

1.2 A Worst Case Scenario For Hardware Counters

Increasingly, researchers have turned to hardware performance counters to quickly generate performance

profiles that identify opportunities for optimizations. The counters are extra logic added to the processor to

track events (e.g., cache misses) with little overhead. Many existing processors provide hardware counters,

and because of their low overhead, they may naturally complement online optimization systems. However

counters are designed to provide coarse-grained summaries that span thousands of instructions. They add

significant overhead to provide context-specific information, and gathering profiles at instruction granularity
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Table 1: Running time for a range of counter sample sizes, compared to UMI.
sample size 0 (native) 10 100 1K 10K 100K 1M 1 (UMI)
time (s) 35.88 773.81 152.71 48.21 39.20 36.30 36.24 35.90
% slowdown – 2056.66 325.61 34.36 9.25 1.17 1.00 1.18

is an order of magnitude more expensive. This is because the counters generate interrupts when they saturate

at a specified limit known as the sample size. The runtime overhead of using a counter increases dramatically

as the sample size is decreased. A case study using one of the more memory intensive applications from the

SPEC2000 benchmark suite shows a 20× slowdown compared to native execution when operating at near

instruction level granularity. Table 1 summarizes the benchmark running time for 181.mcf operating on its

training input, with a single counter for measuring the number of primary cache misses it suffers. The sample

size is varied from an allowed minimum size of 10 to an arbitrary chosen maximum of 1M. The results were

collected using PAPI [25] on a 2.2GHz Intel Xeon processor. It is readily apparent from the results that

hardware counters are not well suited for the extraction of low level details such as context information

surrounding a cache miss (e.g., an address trace leading to a cache miss for individual instructions).

1.3 A Lightweight And Practical Alternative

UMI is based on the insight that memory references traces collected at runtime reasonably approximate

the underlying memory system behavior, and that mini-simulations using these traces can be performed at

runtime to provide parameters for an online performance tuning mechanisms.

Ubiquitous memory introspection is carried out by judiciously instrumenting hot code regions to profile

the memory references that occur while the code executes. The emphasis on frequently executed code lever-

ages the same insight at the heart of existing virtual machines and binary instrumentation and optimization

systems. The instrumented code regions run periodically, and in bursts, to produce very short traces of mem-

ory references. The traces provide a brief history of the memory reference patterns. They are periodically

analyzed using simple heuristics that are effective and practical for an online setting.

The analysis can provide a great level of detail, comparable to offline simulators. For example, a fast

cache simulator can process the traces to identify load instructions that are often likely to miss in the cache.

Alternatively, a trace may record the sequence of addresses referenced by a single instruction, and this trace

is analyzed to discover patterns suitable for prefetching. UMI provides a level of profiling detail that is not
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Table 2: Tradeoffs for different profiling methodologies.
Simulators HW counters UMI

Overhead very high very low low
Detail level very high very low high
Versatility very high very low high
Portability very high very low high

possible with hardware counters. Table 2 contrasts UMI to existing profiling methodologies.

1.4 Contributions

We present in this paper a conceptual framework for ubiquitous memory introspection. We also present an

implementation of UMI that is transparent, fully automatic, and lightweight. We used DynamoRIO [5] to

build a prototype, although implementations in similar binary instrumentation and optimization tools such

as Pin [19] or Valgrind [22], or in a Java Virtual Machine, are also feasible. The prototype does not require

any programmer or user intervention, and does not require any modification or knowledge of the program

source code or symbol information, and hence it works on any general purpose program, legacy and third

party binaries. Furthermore, the prototype does not rely on any operating system, compiler, or hardware

support, and can be readily applied to programs running on existing commodity hardware. It is adaptive,

accurate, inter-procedural in nature, and yields context and flow sensitive profiling information.

Our main observations and results are summarized as follows:

• Periodic online mini-simulations of short memory reference traces recorded from hot code regions is

sufficient to yield actionable profiling information for a runtime memory performance optimizer.

• We present a full prototype of a system implementing UMI. We show that the average runtime over-

head is less than 20% for the entire SPEC2000 benchmark suite using the reference input workloads,

but this overhead is only 6% greater than existing state of the art binary instrumentation tools.

• We show that for our two evaluation platforms (Intel Pentium 4 and AMD Athlon K7), there is a high

correlation between cache miss rates measured using UMI and hardware counters.

• We also show that UMI leads to high correlation with offline cache simulations. It identifies high-miss

rate load instructions with 77% accuracy compared to the Cachegrind cache simulator. The profiling

4



results are used in an online optimization scenario to implement a simple software prefetcher that

outperforms the Pentium 4 hardware prefetcher in the best case.

UMI offers a practical and versatile alternative to existing profiling methodologies because it judiciously

records memory reference traces and can subsequently analyze them for various purposes. UMI is unique

because it naturally complements runtime optimizations, and provides opportunities for new kinds of online

optimizations that are otherwise largely infeasible. Optimizations that use UMI can replace or enhance

hardware techniques such as prefetchers and cache replacement policies. UMI also provides opportunities

to introduce novel, dynamic, and adaptive optimization techniques. As a radical example, UMI can be used

to quickly evaluate speculative optimizations that consider multiple what-if scenarios. This can complement

not only simple online compilers, but may also create opportunities for online learning-based compilation

and optimization systems.

1.5 Roadmap

We present a conceptual overview of UMI in Section 2 and describe a prototype system in Sections 3-5. In

Section 6 we present an evaluation of our prototype with respect to performance, and correlation to hardware

counters. In Section 7 we present an application of UMI for identifying high-miss rate load instructions,

and in Section 8 we demonstrate how to use the online profiling information to implement a simple software

prefetcher. Sections 9 and 10 present related work and conclude the paper with final remarks.

2 Conceptual Framework

The thesis for this work is that online mini-simulations using short memory reference traces from hot code

regions is sufficient to yield useful profiling information. The key insight enabling UMI is that numerous

virtual machines and binary instrumentation and optimization systems already exist, and they provide a

natural setting for online introspection and profile-driven optimizations.

There are three basic components to a system that implements ubiquitous memory introspection. The

first is the hot code region selector. It dynamically identifies representative code regions to instrument.

Typically such regions are frequently executed code fragments in an application. They may encompass loops

or entire methods in a Java Virtual Machine, or sequences of basic blocks promoted to an instruction trace
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in binary code manipulation systems such as Pin or DynamoRIO. Virtually all runtime code manipulation

systems provide some form of hot code selection and optimizations. We believe they are readily amenable

for UMI, and in essence provide this first component for free.

The second component is the instrumentor. It operates on a hot region to insert new instructions that

instrument and profile the code. The application alternates between instrumented and native code regions.

When the instrumented code is run, short traces are generated to record instruction addresses as well as

the memory locations they reference. The instrumentor is commissioned with filtering the instructions in a

code region such that only informative operations are instrumented. The instrumentor also determines the

frequency with which to profile the code region, and when it is appropriate to trigger the trace analyzer.

The trace analyzer or mini-simulator is the third and final component in a system implementing UMI.

It analyzes the recorded memory reference profiles to provide various forms of information relevant to an

online optimizer. It is customizable and in this paper we present an example use of the analyzer as a fast

cache simulator. It can perform simple hit and miss accounting as a hardware counter does. It may also

simulate the hit and miss behavior for individual instructions to identity high-miss rate load instructions.

Such information is useful for optimizations that dynamically perform data prefetching.

3 Prototype System

We extended DynamoRIO to perform UMI. DynamoRIO is a dynamic binary rewriting framework for

runtime instrumentation and optimization [5]. The system performs bursty tracing on running applications

to collect memory reference traces for frequently executed code regions, and then uses a fast cache simulator

to collect cache statistics dynamically. While our prototype was implemented in DynamoRIO, UMI can be

realized in other similar systems or Java virtual machines.

DynamoRIO is a general-purpose runtime code manipulation system designed for transparency and

efficiency. It can run large real world applications on stock IA-32 hardware. DynamoRIO executes the input

application by copying the user code, one basic block at a time, into a code cache before executing the code

there. All runtime control flow is directed through the cache to provide a programmable mechanism for

instrumentation, profiling, and optimizations. DynamoRIO reduces its overhead by directly linking blocks

that are joined with direct branches, and using a fast lookup to transition between blocks that are linked

with an indirect branch. The system performs other optimizations that remove unconditional branches, and
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Figure 1: DynamoRIO and extensions for UMI.

stitches together frequently executed sequences of blocks into traces, also called code fragments. The traces

are kept in the trace cache with fast lookups for indirect branches.

Region Selector. DynamoRIO initially executes all user code from the basic block cache, until some set

of blocks are considered hot viz. they have executed often and warrant some optimization. At that point, the

set of hot blocks are inlined into a single-entry, multiple-exits trace, and placed in the trace cache via trace

builder.

We added two components to DynamoRIO: the trace instrumentor, and the trace analyzer. They are

highlighted in Figure 1. The figure also shows the other main components of DynamoRIO. It is during the

trace promotion that the instrumentor operates.

Trace Instrumentor. The trace instrumentor performs the following operations for every code trace T

that is produced by DynamoRIO:

1. It creates a clone Tc of the trace. The clone allows us to quickly turn the profiling on and off.

2. The instrumentor then scans T for potentially interesting memory operations. The candidates are

instrumented and profiled. This filtering step serves to reduce the profiling overhead.

3. A prolog is added to T in order to update various book-keeping counters, and to determine when to

trigger the trace analyzer.

Trace Analyzer. The trace analyzer is a fast cache simulator. When it is triggered, a context switch is

performed to save the application state. It then simulates the cache behavior using the recorded memory
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reference profiles as input. At this stage, we can obtain detailed memory behavior information at instruction

granularity.

After simulation, control is relinquished to DynamoRIO, and the instrumented code fragment (T ) is

replaced with its clone (Tc), and the application continues to execute without any profiling. The context

switch from the analyzer back to DynamoRIO provides a natural boundary to replace a trace with a newly

optimized one, i.e., before replacing T with Tc, one can perform optimizations on Tc based on results

provided by mini-simulating traces recorded from profiled executions of T .

4 Trace Instrumentor

The instrumentor carefully manages the instrumentation overhead so that the introspection remains practical.

First, we describe a filtering step designed to reduce the number of memory operations to profile, and then

we describe some important implementation details. Due to space consideration, some details are omitted

as they do not significantly contribute to the discussions here.

4.1 Operation Filtering

Some architectures such as the Intel x86 platform allow most instructions to directly access memory. As a

result, profiling all instructions that access memory is prohibitively expensive. The instrumentor uses two

simple heuristics to prune the set of memory operations that are profiled.

The first is straightforward: only frequently executed code is instrumented. This is easily achieved by

instrumenting only hot code regions. In DynamoRIO, these are the instruction traces that are formed from

smaller basic blocks.

The second heuristic excludes from instrumentation any instruction that references the stack or a static

address. The underlying assumption is that such references typically exhibit good locality behavior. In x86

architectures, stack references use the esp or ebp registers. Hence, any memory access instruction whose

operands are either a static label, esp or ebp is ignored.

These simple heuristics reduce the set of potential candidate instructions for instrumentation by nearly

80%, as shown in Table 3. Each row shows the total number of static instructions that perform loads or

stores, and the number of instructions selected for profiling. The resulting reduction in profiled operations
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Table 3: Profiling statistics.
# of # of # of profiled # of # of trace

Benchmark loads stores memory % profiled traces analyzer
in code in code operations collected invocations

164.gzip 3607 2745 931 14.66% 264 42
175.vpr 10937 8501 2359 12.14% 525 89
176.gcc 84642 69350 35079 22.78% 11188 254
181.mcf 3785 2377 1554 25.22% 237 60

186.crafty 23669 16237 6541 16.39% 1468 88
197.parser 18399 13916 10081 31.20% 3337 197

252.eon 20026 30287 5934 11.79% 579 56
253.perlbmk 34748 27951 12149 19.38% 3513 98

254.gap 26032 20489 11256 24.20% 2560 292
255.vortex 38264 56499 9120 9.62% 2307 83
256.bzip2 4956 3490 1619 19.17% 378 65
300.twolf 20059 12544 8289 25.42% 1498 220

168.wupwise 6416 5148 1739 15.04% 285 36
171.swim 6285 4246 2688 25.52% 279 38
172.mgrid 5651 3615 2691 29.04% 318 27
173.applu 12277 6753 5578 29.31% 379 62
177.mesa 7163 5411 2050 16.30% 272 34

178.galgel 27306 18402 13951 30.52% 1226 331
179.art 3601 2254 1178 20.12% 188 73

183.equake 5571 3270 1950 22.06% 293 47
187.facerec 10166 6798 3586 21.14% 581 67
188.ammp 7027 4198 3084 27.47% 388 82
189.lucas 8179 4016 1963 16.10% 158 41

191.fma3d 16109 16506 4043 12.40% 756 119
200.sixtrack 22033 28204 9349 18.61% 1358 110

301.apsi 16303 11545 8531 30.63% 1027 94
em3d 1435 812 410 18.25% 69 22
health 2008 1270 322 9.82% 75 19

mst 1327 828 140 6.50% 29 10
treeadd 1220 713 224 11.59% 41 10

tsp 1832 1092 374 12.79% 58 12
ft 1871 1156 489 16.15% 87 18

Average 19.42%

significantly lowers the profiling and analysis overhead. The last two columns of Table 3 show the number

of traces collected and the total number of analyzer invocations.

4.2 Instrumentation Details

There are two components to the instrumentation code. The first is a prolog that conditionally triggers

the mini-simulator. The second consists of profiling instructions that create a record of accessed memory

locations. Memory references are recorded in a two-level data structure. On every execution of a trace, a

new entry is allocated in the trace profile. This entry points to a address profile which is a two dimensional

table. The columns represent the addresses referenced by a single instruction, and each row element records

the address referenced during a specific execution of the trace.

The prolog code initiates the simulator when either the trace profile, or any of the address profiles are

full. The prolog requires two conditional jumps. We can reduce this overhead to a single conditional jump

by observing that in the common case, the cap on the size of address profile triggers the analyzer. The list

of trace profiles are recorded in a page protected region of memory. When the page is full, the simulator is

automatically triggered. The prolog then only checks for available slots in the address profile.
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The length of the trace profile is limited to 8,192 entries. The address profile is limited to 256 operations

and 128 entries per operation (i.e., 128 iterations of the code fragment). In the worst case, the space overhead

is 32 KB of storage for the trace profile, and 128 KB for each reference profile. Another 64 KB is needed for

the simulation, leading to a total space overhead of 1 GB if all 8,192 distinct profiles are live simultaneously.

In our experiments, we found that an average of three trace profiles are used at any given time, with an

average of five instrumented instructions per code fragment. Thus, our scheme adds between 80-128 KB of

memory overhead. This includes the 64 KB required for the profile analysis.

A naive injection of instrumentation code to record the memory reference information is potentially too

expensive. A memory reference is the tuple (pc, address), and to record this information requires about

nine operations in a straight forward approach. We implemented a number of optimizations to reduce this

to between four to six operations. These details are omitted here.

5 Trace Analyzer

The analyzer is a fast cache simulator. For the evaluations in this paper, it is configured to match the number

of sets, the line size, and the associativity of the secondary cache on the host machine. The simulator

implements an LRU replacement policy, although other simpler schemes are also possible. The simulator

tracks the miss ratios for individual operations, and also maintains coarser level performance details.

During simulation, each reference is mapped to its corresponding set. The tag is compared to all tags in

the set. If there is a match, the recorded time of the matching line is updated. Otherwise, an empty line, or

the oldest line, is selected to store the current tag. We use a counter to simulate time.

Since not all memory references are profiled, the simulated results are approximations of the application

behavior. Furthermore, because only a small fraction of the memory references is simulated, the simulator

must be tuned to account for the high number of compulsory misses, and the low number of conflict and

capacity misses that would otherwise arise. Thus, in order to improve the simulated results, cache miss

accounting only starts after the first few accesses in the address trace, typically two iterations of the code

region. This has the effect of warming up the cache, and is akin to functional warming in offline cache simu-

lations that use fast forwarding. We also periodically flush the cache state to avoid long term contamination.

In our experiments, the flush occurs whenever the analyzer is triggered and more than 1M processor cycles

(obtained using rdtsc) have elapsed since it last ran.
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Figure 2: Runtime overhead on Pentium 4 with hardware prefetching enabled.

6 Experimental Setup and Performance Analysis

This section considers the overhead for UMI and its overall effectiveness. We ran the experiments on a

3.06 GHz Intel Pentium 4 with 1 GB of RAM. The operating system is Linux Fedora Core 1. The memory

hierarchy of the processor consists of an 8-way associative L1 instruction cache, with a capacity to hold

12 K micro instructions. The L1 data cache is an 8 KB 4-way associative cache with 64-byte cache lines.

The L2 cache is a 512 KB, 8-way associative unified cache with 64-byte cache lines. The benchmarks are

x86 binaries compiled with gcc version 3.3 using the -O3 flag. We used all of the benchmarks from SPEC

CPU2000 [27] and their reference input workloads. We also selected em3d, health, mst, treeadd,

and tsp from Olden [23], and ft from the Ptrdist [3] benchmark suite. Olden and Ptrdist are commonly

used in the literature when evaluating dynamic memory optimizations. The other benchmarks from these

suites have too short a running time (less than 5 seconds) for meaningful measurements, and were therefore

omitted. Most of the experiments were also repeated on an older AMD Athlon MP 1400+ (1.2 GHz K7

architecture) which has a 64 KB, 2-way associative L1 data cache, a 64 KB L1 instruction cache, and a

256 KB L2 unified cache that is 16-way associative. Both levels of caches has 64-byte cache lines.

6.1 UMI Runtime Overhead

Figure 2 shows the overhead of our framework compared to native execution. In native execution, the ap-

plication is compiled with -O3 and executed without DynamoRIO. The first bar shows the relative running

time of the application running with DynamoRIO. A value greater than one implies performance degrada-

tion, and a value less than one implies a speedup. The second and third bars show the relative performance
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for UMI (i.e., application running time with DynamoRIO augmented with our profiling and analysis). These

two bars differ only in the sampling strategy used for UMI as detailed in Section 7. Note that for UMI, the

overhead is dependent of the size of the collected profile. In our experiments, we used 128 rows for each

address profile and 8,192 entries for the trace profile.

It is evident from the data that, with some exceptions, DynamoRIO has little overhead in general, with an

average overhead less than 13%. There are some benchmarks that ran faster compared to native execution

because they benefit from code placement and trace formation optimizations performed by DynamoRIO.

The overheads incurred for UMI (i.e., trace instrumentor and analyzer) are not much higher, averaging

a 15-20% slowdown overall, and merely 6% over DynamoRIO. These results suggest that online mini-

simulations and detailed introspection will become increasingly practical since the performance of binary

instrumentation tools like DynamoRIO have steadily improved over the years.

6.2 Correlation to Hardware Counters

To demonstrate the effectiveness of UMI, we compare the simulated cache miss ratio to the actual miss

ratio as reported by the Pentium 4 and K7 hardware performance counters. The overall miss ratio reported

by the simulations will differ from the actual values, but what is important is whether there is a strong

correlation between what UMI reports and the actual situation. We divide the benchmarks into three groups,

namely SPECFP, SPECINT and Olden (which includes ft for convenience). Then, let si equal the software

cache miss ratio reported by UMI, and hi equal the cache miss ratio obtained through reading the hardware

performance counters. Also, let s̄ and h̄ be the respective averages of si and hi in a group. The coefficient

of correlation C(s, h) is computed as follows:

C(s, h) =

∑

i(si − s̄)(hi − h̄)
√

∑

i(si − s̄)2(hi − h̄)2
.

The results are reported in Table 4. The actual miss ratio for the Pentium 4 was obtained by dividing

the total L2 load miss counts with the total number of load (micro) instructions. On the AMD K7, there

is no counter to obtain the total number of load instructions or the number of L2 load misses. Instead we

had to use the total number of accesses to the L1 data cache and the number of cache refills from memory,

respectively, in place of these. Therefore, the miss ratio for the K7 is computed over all memory accesses, i.e.
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Table 4: Coefficient of correlation with hardware counters.
Cachegrind UMI

Platform SPECFP SPECINT Olden Overall SPECFP SPECINT Olden Overall
Pentium 4
with h/w 0.99 0.99 0.93 0.93 0.95 0.84 0.94 0.92

prefetching
Pentium 4

without h/w 0.99 1.0 0.98 0.99 0.95 0.85 0.93 0.91
prefetching
AMD K7 - - - - 0.90 0.80 0.94 0.92

both reads and writes. On the Pentium 4 with hardware prefetching disabled, UMI achieved a correlation of

0.95 and 0.84 for SPECFP and SPECINT respectively. The correlation is higher for the SPECFP and Olden

benchmarks. They are loop intensive applications, and we expect the simulations from short memory traces

to extrapolate well for the application as a whole. In contrast, the SPECINT benchmarks are more control

intensive with irregular access patterns that may require longer simulations to improve the correlation.

7 UMI applied to Delinquent Loads Identification

This section presents an application of UMI to identify high-miss rate load instructions in a given program.

Such profiling information can greatly improve the performance of data prefetching strategies as it helps

to focus the optimizations on memory references that are likely to miss in the cache. For example in our

own work, we were able to implement a simple software prefetcher that achieved an average speedup of

11% on two different architectures, with a best case performance gain of 64%. It is worthwhile to note

that information of such fine granularity is hitherto only available through full cache simulation or with

specialized hardware.

We used Cachegrind, a cache profiler and simulator distributed with Valgrind [22], as a baseline for

evaluating the quality of our online analysis. Cachegrind simulates the memory hierarchy using a complete

trace. It runs with a severe penalty, typically slowing down execution between 20-100×. We modified

Cachegrind to report the number of cache misses for individual memory references rather than for each

line of code in the source program. Since there does not exist a formal definition of a delinquent load in the

literature, we define the set of delinquent load instructions, C, as the minimal set of instructions that accounts

for at least x percent of the total number of load misses. We report results for x = 90%. We can calculate

C by sorting the instructions in descending order of their total number of L2 load misses, as reported by

Cachegrind. Then, starting with the first instruction, we add instructions to the set until the number of misses

in the set is at least 90% of the total number of misses reported for the entire application.
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Table 5: Quality of prediction without sampling.
Ratio of P Miss 90% delinquency

Benchmark |P| |P| to total Coverage |C| |P ∩ C| |P ∩ C| P ∩ C |P − C|

# of loads |C| Miss Coverage |P|

164.gzip 24 0.67% 0.00% 1 0 0.00% 0.00% 100.00%
175.vpr 96 0.88% 97.50% 26 26 100.00% 90.67% 72.92%
176.gcc 10 0.01% 0.00% 293 0 0.00% 0.00% 100.00%
181.mcf 171 4.52% 99.40% 15 15 100.00% 90.24% 91.23%

186.crafty 62 0.26% 93.48% 25 20 80.00% 87.29% 67.74%
197.parser 599 3.26% 83.21% 117 102 87.18% 77.40% 82.97%

252.eon 12 0.06% 0.00% 47 0 0.00% 0.00% 100%
253.perlbmk 99 0.28% 56.18% 81 28 34.57% 54.65% 71.72%

254.gap 216 0.83% 87.31% 10 6 60.00% 85.01% 97.22%
255.vortex 60 0.16% 70.93% 21 17 80.95% 69.01% 71.67%
256.bzip2 136 2.74% 91.17% 27 21 77.78% 83.80% 84.56%
300.twolf 246 1.23% 98.17% 38 37 97.37% 89.67% 84.96%

168.wupwise 22 0.34% 78.53% 11 7 63.64% 70.33% 68.18%
171.swim 154 2.45% 99.95% 32 32 100.00% 90.23% 79.22%
172.mgrid 121 2.14% 99.91% 18 18 100.00% 90.59% 85.12%
173.applu 451 3.67% 99.97% 75 75 100.00% 90.26% 83.37%
177.mesa 59 0.82% 74.66% 10 7 70.00% 72.83% 88.14%

178.galgel 274 1.00% 99.27% 10 10 100.00% 90.08% 96.35%
179.art 193 5.36% 96.60% 43 41 95.35% 87.96% 78.76%

183.equake 66 1.18% 84.83% 34 27 79.41% 80.55% 59.09%
187.facerec 87 0.86% 98.08% 12 11 91.67% 89.42% 87.36%
188.ammp 334 4.75% 94.83% 101 96 95.05% 88.16% 71.26%
189.lucas 249 3.04% 99.27% 70 70 100.00% 90.27% 71.89%

191.fma3d 146 0.91% 87.09% 45 43 95.56% 78.92% 70.55%
200.sixtrack 92 0.42% 82.82% 37 33 89.19% 75.63% 64.13%

301.apsi 308 1.89% 99.53% 69 69 100.00% 90.22% 77.60%
em3d 31 2.16% 85.14% 3 2 66.67% 84.94% 93.55%
health 35 1.74% 82.58% 3 2 66.67% 78.35% 94.29%

mst 21 1.58% 78.46% 5 4 80.00% 77.89% 80.95%
treeadd 5 0.41% 49.99% 2 1 50.00% 49.98% 80.00%

tsp 44 2.40% 50.39% 7 3 42.86% 44.19% 93.18%
ft 22 1.18% 99.90% 1 1 100.00% 99.84% 95.45%

Average 1.66% 78.72% 75.12% 73.39% 82.61%

An offline technique that identifies delinquent loads in this manner uses global information about all

memory references in the application. In contrast, a runtime system with memory introspection needs

immediate profiling results that it can readily act on for optimizations. Therefore, it must identify delinquent

loads with only local knowledge. In our prototype, at the end of a mini-simulation, the trace analyzer labels

memory load instructions with a miss ratio higher than a delinquency threshold (α) as a delinquent load.

The value of α is initialized to 0.1 in our experiments. A high threshold means relatively few loads are

labeled as delinquent. If it is set too low, then it leads to many false positives with a large number of loads

erroneously labeled as delinquent. False positives are also more likely when a memory reference executes a

few times and misses, resulting in a high miss rate. The analyzer requires that instructions are observed to

execute at least 64 times before they are labeled. Let P be the set of memory load instructions identified by

UMI as delinquent. That is, any instruction with a miss rate greater than 10% is added to P .

Table 5 evaluates the quality of the results. The size of C and P is |C| and |P|, respectively. The set

P ∩ C represents loads found to be delinquent by exhaustive simulation and online introspection. The miss

coverage of P represents the fraction of the total number of misses in the application that members of the

set account for. Similarly, the coverage of P ∩ C represents the fraction of the total number of misses in the
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application that the members of the sets account for. |P ∩ C|/|C| and |P − C|/|P| represent the correctness

and false positive rates respectively. Ideally, these values are 100% and 0%, respectively.

In summary, the coverage is near 70% or greater for most of the benchmarks, with a few notable ex-

ceptions which have 0% coverage: 164.gzip, 176.gcc, and 252.eon. These benchmarks have low

miss rates in general. We also found that in these benchmarks, the instructions that cause most cache misses

have a relatively low cache miss rate. For example, in 164.gzip, one instruction causes more than 90% of

the cache misses, but that instruction performs a byte-by-byte memory copy and has a mere 2% miss ratio

as reported by Cachegrind. In 176.gcc, the cache misses are distributed across 293 memory references,

each having a very low miss rate. 252.eon is computationally intensive and exhibits very good reference

locality. The other benchmarks such as 253.perlbmk, treeadd and tsp exhibit similar patterns.

We can improve the results by dynamically adjusting the delinquency threshold. One problem with the

above approach is that although the code traces are frequently executed, they may not execute for a signifi-

cant amount of time. This results in many false positives (i.e., loads are incorrectly labeled as delinquent).

To alleviate this problem, the introspection can perform periodic sampling to adjust α as the application exe-

cutes. The sampling serves to bias the profiling results toward frequently occurring instructions, and lessens

the likelihood of erroneous classification. We use the program counter (time) sampling utility provided by

DynamoRIO to implement our sampling strategy. The trace instrumentor is not only invoked when the code

fragment is first built, but also when that trace is encountered again during the sampling intervals. We trig-

ger a new sample collection every 10 milliseconds. The repeated instrumentation and profile analysis of the

code fragments accelerates the convergence of miss rates to their expected values. In addition, the sampling

methodology provides a natural mechanism to adapt to the various phases of the application lifetime. The

overhead of this time sampling approach is small, as is observed from the third bar in Figure 2.

The sampling-based introspection inspects traces that execute more frequently and for longer durations.

In this approach, we initialize trace-specific αs to 0.9. The instrumentor is first triggered when the trace is

sampled for the 4th time. Subsequently, it is triggered once every 16th sample. These values were arbitrarily

chosen, and the results do not show much sensitivity if they are varied. On every triggering, α is reduced by

0.1, down to a minimum value of 0.1. The results for this scheme are shown in Table 6. It is also possible to

use other forms of triggering. For example, we can configure the performance counter to count the L2 cache

misses, and generate an interrupt when the counter exceeds a threshold. Such a scheme has the advantage of

15



Table 6: Quality of prediction with time sampling.
Ratio of P Miss 90% delinquency

Benchmark |P| |P| to total Coverage |P ∩ C| |P ∩ C| P ∩ C |P − C|

# of loads |C| Miss Coverage |P|

164.gzip 6 0.17% 0.00% 0 0.00% 0.00% 100.00%
175.vpr 80 0.73% 98.14% 26 100.00% 90.67% 67.50%
176.gcc 15 0.02% 4.81% 10 3.41% 4.78% 33.33%
181.mcf 119 3.14% 99.44% 15 100.00% 90.24% 87.89%

186.crafty 28 0.12% 80.98% 14 56.00% 78.91% 50.00%
197.parser 366 1.99% 87.97% 99 84.62% 83.70% 72.95%

252.eon 7 0.03% 0.00% 0 0.00% 0.00% 100.00%
253.perlbmk 25 0.07% 54.27% 20 24.69% 54.25% 20.00%

254.gap 103 0.40% 88.30% 8 80.00% 86.32% 92.23%
255.vortex 27 0.07% 64.59% 14 66.67% 63.62% 48.15%
256.bzip2 69 1.39% 87.96% 19 70.37% 81.92% 72.46%
300.twolf 201 1.00% 98.16% 37 97.37% 89.67% 81.59%

168.wupwise 17 0.26% 78.53% 7 63.64% 70.33% 58.82%
171.swim 95 1.51% 99.88% 32 100.00% 90.23% 66.32%
172.mgrid 117 2.07% 99.62% 18 100.00% 90.59% 84.62%
173.applu 302 2.46% 99.94% 75 100.00% 90.26% 75.17%
177.mesa 33 0.46% 59.27% 5 50.00% 59.26% 84.85%

178.galgel 127 0.47% 97.38% 9 90.00% 88.92% 92.91%
179.art 150 4.17% 96.59% 41 95.35% 87.96% 72.67%

183.equake 56 1.01% 84.78% 27 79.41% 80.55% 51.79%
187.facerec 61 0.60% 97.81% 11 91.67% 89.42% 81.97%
188.ammp 263 3.74% 94.52% 96 95.05% 88.26% 63.50%
189.lucas 239 2.92% 99.02% 70 100.00% 90.27% 70.71%

191.fma3d 144 0.89% 86.87% 43 95.56% 78.92% 70.14%
200.sixtrack 53 0.24% 74.82% 29 78.38% 71.61% 45.28%

301.apsi 263 1.61% 99.22% 69 100.00% 90.22% 73.76%
em3d 12 0.84% 99.86% 3 100.00% 94.76% 75.00%
health 36 1.79% 87.20% 2 66.67% 78.35% 94.44%

mst 8 0.60% 95.56% 5 100.00% 94.75% 37.50%
treeadd 3 0.25% 99.98% 2 100.00% 99.97% 33.33%

tsp 21 1.15% 87.47% 6 85.71% 87.47% 71.43%
ft 1 0.13% 99.90% 1 100.00% 99.84% 0.00%

Average 1.13% 81.34% 77.33% 76.44% 66.56%

focusing the introspection on the code fragments that likely caused the bulk of the cache misses. We found

that this approach leads to a significant reduction in the percentage of false positive from 82% to 66% with

a slight increase in accuracy. A straightforward comparison to Moshovos et al.’s work [21] shows that we

report eight times fewer false positives. Most other papers report only performance speedups and cannot be

directly compared. We believe that for delinquent load identification, UMI delivers the best results so far

relative to all published data we found.

8 Example Runtime Optimization Using UMI

We illustrate an example use scenario for UMI by implementing a simple stride prefetching optimization in

software. The optimization issues L2 prefetch requests for loads labeled as delinquent by the introspection

phase. We modified the trace analyzer to also calculate the stride distance between successive memory

references for individual loads. The profiling information is used online to modify the instruction code trace

to inject prefetch requests. Of the 32 benchmarks in our suite, we discovered prefetching opportunities for

11 of them. The results are shown in Figures 3 and 4 for the Pentium 4 and AMD K7 processors respectively.

The figures report the normalized running time compared to native execution. The first bar shows the running
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Figure 3: Running time on Pentium 4 with hardware
prefetching disabled.
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Figure 4: Running time on AMD K7.
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Figure 5: Running time on Pentium 4.
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Figure 6: L2 misses on Pentium 4.

time when the introspection is carried out and no optimizations performed. The runtime is normalized to

native execution (with hardware prefetching turned off) hence lower values indicate a greater speedup. The

second bar indicates the normalized running time with online introspection and software prefetching. The

results show an 11% average performance improvement on both processors.

We investigate the efficacy of the prefetching further by comparing against the hardware prefetching

strategies available on the Pentium 4. It implements two prefetching algorithms for its L2 cache. They are

adjacent cache line prefetching and stride prefetching [15]. The latter can track up to 8 independent prefetch

streams. They can be disabled independently but for our experiments, adjacent line prefetching is always

on. The AMD K7 does not have any documented hardware prefetching mechanisms.

Figure 5 shows the running time for the same benchmarks when the Pentium 4 hardware prefetchers are

enabled. The performance is normalized to native execution. The first bar shows the performance of UMI

with our software prefetching scheme. The second bar shows the performance of the hardware prefetcher,
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and the third bar combines UMI with software and hardware prefetching. We note from the data that while

software prefetching is effective on its own, the combination with the hardware prefetcher does not lead to

cumulative gains for many of the benchmarks. It is plausible that the software and hardware prefetchers are

occasionally redundant. In other words, the software prefetcher requests the same references as the hardware

prefetcher.

We examine if this is the case using the hardware counters to measure the number of L2 misses on the

Pentium 4. This provides a measure of prefetching coverage. The results are reported in Figure 6. The

data shows the number of misses normalized to native execution, with lower ratios indicating a greater

reduction in misses. We observe that there is a cumulative effect in reducing the number of cache misses.

In other words, the combination of software and hardware prefetching leads to a greater reduction in the

number of L2 cache misses. This is observed for most of the benchmarks; we have not yet determined the

reasons for any exceptions. Since the results show that the combination of prefetching schemes does lead

to fewer misses, it is likely that the combination of prefetching strategies somewhat increases contention for

resources, and affects timeliness.

We attempted the same coverage experiment on the AMD K7. It lacks a counter for L2 misses, and as a

result, we approximated them with a counter for the number of refills from the memory bus. Unfortunately

we cannot distinguish between refills due to L2 misses and prefetching, and as a result we observed no

significant differences between the refill counts when software prefetching was enabled. We therefore do

not present the graph here.

We probed further into the performance of ft and found that it was very sensitive to the choice of

prefetch distances. It turns out that UMI was able to pick a prefetch distance that is closer to the optimal

prefetching distance compared to the hardware prefetcher. This highlight an important advantage of UMI,

namely that a more detailed analysis of the access patterns is possible in software than is usually feasible in

hardware.

The goal of this paper is not to champion a better software prefetching algorithm. We present these

results only as a demonstration of the potency of the information afforded by UMI. We believe that other

performance enhancing mechanisms (e.g., [7, 26, 18]) can potentially benefit from UMI.
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9 Background and Related Work

Cache Modeling and Evaluation. There are three approaches for evaluating or modeling the performance

of memory systems: hardware monitoring, software simulation, and analytical modeling. Hardware mon-

itoring has the advantages of being accurate with relatively low runtime overhead. There are a number of

proposals for architectures to monitor cache behavior [9, 30]. However, hardware-based approaches lack

generality because they require non-trivial architectural changes. Modern processors support a restricted set

of mechanisms that sample and count certain hardware events. This form of sampling lacks contextual infor-

mation, and is generally only suitable for computing statistical summaries, rather than fine-grained analysis

of individual memory access operations. Some researchers have successfully used the performance mon-

itoring units to collect performance profiles and identify delinquent loads on specific processors [17, 18].

Such schemes however are generally not portable across platforms.

Software simulators such as SimpleScalar [6], Cachegrind [22] and Dinero [13] are able to simulate

detailed cache behaviors. However, the associated overhead is often too significant to evaluate realistic

workloads. Often it takes hours to complete the entire process, even for medium-sized workloads. So it is

hard to scale this approach to large real-world applications.

There is a large body of work on analytical cache models (see [1] and [16] and for examples). Generally

these models suffer from the same set of problems—they are built on probabilistic assumptions that may not

hold in practice; they require entire traces to be stored in some cases; are only useful for general trends; and

they do not provide fine grained details.

Delinquent Load Identification. Nearly all prefetching techniques [26, 20, 7] necessitate some form of

delinquent load identification [29]. Typically this is done using profiling and complete cache simulations,

both of which are very time and resource consuming, and can only be used offline as part of a profile-guided

optimization framework.

A common strategy to reduce the overhead relies on periodic sampling of the memory references [2]. An

implementation in Jalapeño achieved an average overhead of 3%, but it did not explore the ideas of recording

traces and using online mini-simulations. Hirzel and Chilimbi [14] implemented the same scheme for x86

binaries and found the average overhead to be between 6-35%. They managed to reduce the overhead to

3-18% by coalescing dispatchers, but their scheme requires some static code analysis.
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Others have proposed static techniques [28] to identify delinquent operations without simulation, while

some schemes use profiling to improve accuracy [24]. These strategies require suitable training data that

are representative of real workloads. To reduce the overhead, many hardware based delinquent load iden-

tification and prefetch schemes were proposed [10, 8, 11, 21, 12], but they suffer from the need of specific

hardware support.

In contrast to previous work, UMI does not rely on any operating system, compiler or specialized hard-

ware mechanism, and does not require any static analysis of the source code. Furthermore, it works on the

entire program, including dynamically loaded modules. It can be readily applied to programs running on

stock hardware, without any modifications.

10 Conclusion

This paper contributes a lightweight and practical alternative to offline profiling with simulators, and per-

formance tuning using hardware counters. We introduced Ubiquitous Memory Introspection (UMI) as a

new methodology that provides online and application-specific profiling information that is necessary for

runtime memory-centric optimizations.

UMI is based on the insight that memory references traces collected at runtime reasonably approximate

the underlying memory system behavior, and that mini-simulations using these traces can be performed at

runtime to provide parameters for an online performance tuning mechanisms. UMI permits the development

of online tools that have the new capability of inspecting memory performance at its finest granularity (in-

structions and addresses). Runtime optimizers have the unique advantage of customizing optimization plans

in a workload-specific manner, and can lessen the impact of offline performance tuning that may have used

training workloads that do not accurately reflect actual use scenarios. UMI fills a gap between time consum-

ing software simulations and hardware counters designed for medium to large granularity monitoring.

Our implementation of UMI has a low overhead and naturally complements runtime optimizations tech-

niques.We presented three applications of UMI that we can verify against actual systems. First, we showed

that UMI can accurately model the cache performance on existing memory systems for 32 benchmarks,

including the full suite of SPEC2000 benchmarks. On a Pentium 4 and an AMD K7, we observed a high

correlation between the software measured miss rates, and the actual hardware measured miss rates. Next,

we presented an application of UMI at a much finer level. Specifically, we showed that we can use UMI to
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identify the high-miss rate (delinquent) load instructions in a program. We validated our results against full

cache simulations. We showed that we can accurately identify 77% of the delinquent loads in the program.

Although there is a 66% false positive rate, we believe future evolutions of this work will improve these

results. Last, we used the results of the introspection to implement a runtime software prefetcher. The opti-

mization was competitive with a hardware prefetcher, achieving an 11% performance gain. In the best case,

the software prefetcher discovered a prefetching opportunity that outperformed the Pentium 4 prefetcher.

We believe that UMI provides a versatile framework that naturally complements a large suite of new and

powerful online or offline memory optimizations. It is an extensible, transparent, and efficient framework

for analyzing memory performance at customizable granularity. UMI runs on existing stripped binaries and

commodity processors without any additional steps in the execution process or any user visible artifacts.

The end-users execute their programs as they normally do. UMI is also readily applicable to existing archi-

tectures and platforms, and presents new opportunities in the context of emerging multicore architectures

where the memory performance poses a serious challenge to performance scalability.
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