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ABSTRACT

A frequency domain system modelling technique is developed for
mechanical systems. The technique is derived from Tellegen's Theorem for
electrical networks and is applied to discrete mechanical systems. The
elements are modelled in terms of their mechanical impedances. A global
system model is assembled from the constitutive impedances. The global
system model is used to determine the model exact pole locations and system
energy dissipation and storage properties. An approximate method for
finding modal frequencies and loss factors using the system impedance
matrix and assumed modeshapes is developed. This method reduces to
Rayleigh's Quotient in the case of an undamped system.

Impedance models for several damping enhancement mechanisms are
presented. Among these are models for viscoelastic materials, the classical
proof mass damper, and a new damping enhancement concept called the
shunted piezoelectric. The shunted piezoelectric damping mechanism is
based on a piezoelectric material which has its electroded surfaces shunted by
an arbitrary electrical circuit. Methods are developed for analyzing this
special damper and optimizing its damping properties in the case of shunting
by a resister or by a resonant circuit. Parallels are drawn between the resistive
shunted piezoelectric and viscoelastic materials and between the resonant
shunted piezoelectric and the classical proof mass damper.

Experiments were conducted on a 5 meter, 10 bay box truss with a quasi free-
free 3 dimensional suspension. A tunable, linear electromechanical driver
was implemented for use as a proof mass damper. Electrical feedback of the
proof mass position and velocity enabled accurate tuning of the dampers
resonant frequency and internal damping. Piezoelectric truss members were
designed and constructed for implementation of the shunted piezoelectric
damping concepts. These members could replace the standard aluminum
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truss members. In the resonant shunted piezoelectric experiments the tuning
of the piezoelectrics was accomplished by creation of an "active" variable
inductor.

Experiments were conducted to test truss structure dynamics and the
damping enhancement concepts. These tests were compared to the analytical
results obtained from the-frequency domain system modelling technique.
The proof mass damper implementation was found to increase system
damping from 0.6% of critical to 6.4% of critical with a system mass increase
of 2.7%. The resonant shunted piezoelectric increase system damping to 6.0%
with a similar mass penalty. These resonant dampers were found to have
negligible effect on the system modes other than the mode to which they
were tuned. The analytical model was found to be capable of predicting the
global system damping with these two concepts.

Thesis Supervisor: Dr. Edward Crawley

Title: Associate Professor of Aeronautics and Astronautics
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Nomenclature

a = number of independent forces
b = number of system branches

BPMD = magnetic field in gap of proof mass damper (Tesla)

C = generic damper or capacitance

Ceq = equivalent viscous damper for PMD
Cp = inherent capacitance of the piezoelectric
E = Young's modulus of material

Edis = energy dissipated in a cycle

Eoc = open circuit modulus of the piezoelectric material

Esc = short circuit modulus of the piezoelectric material
F = generic force

Fc = force through the mechanical side of the piezoelectric
transformer

Fe = vector of elemental forces
FP = vector of port forces

FG = vector of global point forces
FG-P = vector of global port point forces

FG-NL = vector of global point forces due to nonlinear elements
Fa = vector of branch forces

Fp = vector of independent branch forces

g = real nondimensional frequency ratio = c0/c0n

gm = piezoelectric stress constant = strain /charge per unit area
I = current

Ie = current flowing through the electrical side of the piezoelectric
transformer

K = generic stiffness

k31 = material electromechanical coupling coefficient
K31 = Generalized Electromechanical Coupling Coefficient (GECC)

L = piezoelectric bar length
L = system Lagrangian (T - U) or shunting inductance
M = generic mass
n = equivalent turns ration of piezoelectric transformer

-8-



nt = number of system nodes
P = real power

P = average power dissipation over a cycle

qe = charge on the piezoelectric's electrodes
r = resonant damper dissipation tuning parameter (has units of T1)

R = shunting resistance

s = number of independent networks or Laplace parameter
t = time
T = piezoelectric bar thickness
T = system kinetic energy or period
T = transformation matrix from elemental to global coordinates =

[TP TL TNL]T

U = system potential energy

v = velocity
VC = velocity across equivalent piezoelectric transformer

Ve = vector of elemental velocities
VG = vector of global point velocities

vp = velocity across the piezoelectric

Vp = vector of port velocities

va = vector of branch velocities
V = voltage

Ve = voltage across the equivalent piezoelectric transformer

w = piezoelectric bar width
X = reactive power
XG = vector of global point positions

Xst = static displacement of a system = F/K
Z = generic impedance, mechanical or electrical

Zeff = effective mechanical impedance of the shunted piezoelectric

Zelec = electrical impedance of the piezoelectric transformer consisting
of the shunting impedance parallel to the inherent capacitance

ZG = global impedance matrix

mech(s) = short circuit mechanical impedance of the piezoelectric
oam,Pn = viscoelastic material parameters

0 = mass ratio, proof mass/system mass

P3ap = Loop Matrix
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Y

8

E 

T1

1leff

AF

AV

pP

Co

con

= complex nondimensional frequency = s/cOn
= resonant damper frequency tuning parameter = wd/twn

= strain
= damping ratio
= loss factor
= effective equivalent loss factor for PMD
= force operator
= velocity operator
= nondimensional resistance (or frequency) = RCpco
= stress = Force/Area
= frequency (radians/sec)
= natural frequency

Subscript
c = viscous damper
co = conservative
d = part of a -resonant damper
e,E = element
elec = electrical

G = global

I = imaginary
IN = inertial

K = stiffness

L = linear

M = mass
mech = mechanical
NC = non-conservative

NL = non-linear

opt = optimal

p,P = port or piezoelectric
PP = optimal by pole placement criteria
R = real
TF = optimal by transfer function criteria
visc = viscoelastic

a = branch

0 = independent branch force

-10-



Superscript
H = Hermetian
oc = open circuit quantity

SC = short circuit quantity
T = transpose

Aij = element in the ith row and jth column of matrix, A
= complex conjugate

= Laplace transformed quantity

Operations
Imag } = take the imaginary part of a complex quantity
Real{ } = take the real part of a complex quantity
I AI = determinant of matrix A

6( ) = variational
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Chapter 1
Introduction

The design of future space structures poses some interesting problems
for the structural dynamicist. The structures must be lightweight yet stiff.
The most common structural form envisioned is typically a lattice truss
structure in its various manifestations. This type of structure is central to
designs such as the proposed NASA space station or polar orbiting earth
observation platforms. Most designs for large or precision space structures
entail some variation of a trusswork skeleton linking the vital system
components. For applications involving antenna or observation equipment
pointing, it is important for this skeleton to provide a solid support for the
critical surface or device. Structural vibration can add noise to the sensitive

systems causing intolerable performance reduction.
The structures themselves are inherently susceptible to vibration

because of their light weight and extent. Structural mass conservation
produces a flexible structure which is typically very lightly damped due to its
isolation from any external contact. This combination of flexibility and light

damping contribute greatly to a vibration problem for space structures.
As a solution to this vibration problem and in an attempt to control

the shape of a structure in the presence of external disturbances, the
engineering discipline of structural control has arisen. Active control of a

structure can be designed to compensate for the inherently vibratory
dynamics to allow achievement of attitude changes or other performance
goals while minimizing structural system vibration.

Difficulty arises in the control of space structures due to their densely

spaced undamped modal nature. These difficulties center around the
interaction between the resonant modes and the control system. Potentially
some of these flexible modes fall within the bandwidth of the control system.
These must be included in the model of the dynamics of the controlled
structure. Since the actual system modes are rarely in complete agreement
with the model even these modelled modes pose some threat to the stability
of the closed loop system. In addition to this robustness consideration, lightly

damped modes can exist in the rolloff region of the control system. These
modes are not included in the model but are subject to control authority
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which has not yet rolled off. The rolloff modes pose another threat of
instability to the control designer. As a partial solution to these two control
problems, structural passive damping is important to the control designer
both in the accurate modelling of the structure and in the stability of
unmodelled modes.

The need for passive damping in space structures is presented in
numerous sources such as Ashley [1] or Sarver [2]. Passive damping of the
structural system can lead to great benefits for the control design and stability
of the closed loop system. It tends to displace the structural poles towards the
left in the typical s-plane representation giving more margin for
displacement toward the right hand plane stability boundary. This pole
movement is illustrated in Figure 1.1. This "extra room" gives the passively
damped system more robustness to modelling error in the control system and
helps alleviate the problems associated with structural modes in the rolloff
region of the controller.

T TIA lme1nA

Da:

Po
I

Real Axis

Figure 1.1 The Effect of Feedback on Both Lightly and Heavily Damped Mismodelled System

Poles Showing the Increased Gain Margin Offered by Passive Damping.
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There are several sources of passive damping on space structures. The

most prevalent is material damping by which structural strain energy is
dissipated. Damping is also inherent in the friction and impacting which
occur in the structural joints. The structural and material damping is
typically very small.

The inherent damping in a truss can be increased by using damping
enhancement schemes. These typically involve the the addition of damping
materials or devices to the structure. In this report, several methods of
damping enhancement will be examined. They will then be implemented on
a lightly damped truss structure. Those damping schemes that will be
examined most closely involve the use of resonant subsystems, both
mechanical, as in the proof mass damper, and electrical, as in the resonant
shunted piezoelectric. These concepts will then be implemented on a realistic
structure, and their effectiveness rated.

1.1 Motivation

The impetus of this report stems from a number of factors. Of primary

concern is the necessity for increasing structural damping for automatic
control systems. Congruent to this is the need to effectively model system
passive damping in a framework suitable for control design or system trades.
In light of this need, there has until now been little formalism in the design
of damping enhancement for structures. Passive damping design has for the
most part been an empirical "black art" with the design and assessment
resting heavily on structural testing and iterative techniques. Since accurate
1-G ground vibration testing is difficult for space structures as noted by Sigler
[3], an accurate design methodology using component information must be
developed.

The tight performance criteria which drive the design of space
structures has led to more complex system trade studies between system
components. The current disarray in damping enhancement analysis makes
it difficult to evaluate the relative effectiveness of a damping mechanism in
relation to other potential damping candidates. To effectively preform the
design trades, all the damping mechanisms must be expressed in the same
analysis/modelling framework.
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Several damping techniques are applicable to space structures. Some

viscoelastic techniques have been developed for trusses in Reference [4]. An
implementation of the proof mass damper technique on a model space
structure can be found in Crawley and Miller's Ref. [5]. This report will
attempt to unify these methods within a single modelling framework.

1.2 Objective

The intention of this report is to provide a systematic methodology for

the analysis of damped structures. It is intended to give the damping
designer increased flexibility by providing the analytical tools necesarry to
quickly evaluate the preformance of competing damping mechanisms in
structures. The investigation is also designed to provide experimental
verification of some promising damping enhancement mechanisms for
structures. The experiments were designed to provide data on the realistic
application of both conventional and non-conventional dampers. As a
consequence, some useful information on the practical aspects pertaining to
system trades with the various damping schemes is presented in the
following chapters.

1.3 Background

In order to develop a framework for the analysis of damped structures

which was sufficiently general to embrace the sundry damping devices, it was

necessary to parallel techniques used in the analysis of dissipative electrical
circuits. The core of this report is drawn from research conducted on
electrical circuit analysis. It will be shown that the theory for power flow in

electrical networks, known as Tellegen's Theorem, can be applied to
structural systems as well. This theory is presented in Reference [6] along
with associated theories on network sensitivities. The design of electrical
networks with resisters or nonlinear capacitors can be paralleled with the
design of structural systems with dampers and nonlinear elements. The
design of highly damped systems is not unusual for the electrical designer
and it is useful to draw on experience gained in this field. The key to the
usefulness of the electrical techniques lies in the parallel between mechanical
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and electrical systems which has been expressed in such discussions of
systems analysis as Ref. [7] and Ref. [8]. In these parallels, force is compared to

current, and velocity compared to voltage. This comparison preserves both
the dynamic nature and connective topology of the systems. With these
definitions a vast array of research on complex systems analysis opens to the

structural designer.
The frequency domain method used for modelling damped systems in

this report is rooted in the parallels of electrical circuit impedance and
structural impedance. The use of complex electrical impedances greatly
simplifies the determination of steady state performance for electrical
systems. The use of structural impedance can give the same result for
determining the performance and response of complex damped structural
systems. The structural impedance is the frequency dependant relationship
between an applied force and the resulting response at a point. It relies on the

Laplace or Fourier transform to create a compact frequency dependant
expression of system properties such as the stiffness or mass of a structural
element. Structural impedance is a well known concept to the dynamicist, it

being widely employed in complex system design in the 1950 and 1960, Ref.

[8]. The intent of this report is to exploit the parallels between electrical
impedance and electrical network analysis and mechanical impedance and
network analysis to provide a systematic method of analysis for damped
structural systems.

1.4 Approach

In this report, a frequency domain approach to damped structural
system design will be presented. First, the frequency domain results for
electrical systems will be generalized to discrete mechanical systems. The

frequency domain relations will be examined to determine some simple
approximate methods to quickly determine the effect of a damping
mechanism on a system by virtue of its impedance. To complement this,
several damper impedances will be derived. A set of experiments were
conducted to test this frequency domain modelling scheme and also to test
the relative merits of the various damping mechanisms.
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Chapter 2 is devoted to the development of frequency domain
modelling of damped structural systems based on Tellegen's Theorem. First
the framework for a structural network is introduced along with the concept
of structural impedance. Approximate expressions are developed to enable
the designer to easily evaluate the effectiveness of damping schemes. Finally,
an example of the frequency domain modelling technique is examined.

Chapter 3 presents the frequency domain impedances of various key
damping systems. Of particular import are the derivations done for the
optimum tuning of resonant damping devices in both their physical (proof
mass dampers) and electrical (resonant shunted piezoelectrics)
manifestations. The models of arbitrarily shunted piezoelectrics are
developed and applied to maximizing structural damping. Of particular
importance is a model for the effective impedance of a piezoelectric material
linked to an electrical "shunting" circuit. This piezoelectric element can be
applied to damping enhancement if the shunting circuit is appropriately
chosen.

Chapter 4 outlines the main design challenges of the experiment. In it
are presented the three major design projects involved with the experiments.
The first project entailed the design of the experimental testbed for the
damping experiments. This testbed was a freely suspended truss structure.
The second project involved the implementations of the damping devices
under investigation. These devices where a linear proof mass
damper/actuator and a piezoelectric truss member. Finally, the electrical
support circuitry which allowed efficient and easy tuning of the dampers is
described.

Chapter 5 presents the results of the experimental investigation. The
experimental results for the dynamics of truss structures with various
damping mechanisms are presented and compared to the analytical results
obtained from the frequency domain modelling. Some interesting work in
the sensitivities of these resonant dampers is presented showing the effect of
parameter variation on the total system damping levels. This can be useful
in determining the effects of mismodelling on the expected truss response.
The conclusions concerning the effectiveness of the frequency domain
modelling technique for damped structures are presented in this chapter.
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Chapter 2
Frequency Domain Analysis of Mechanical Systems

2.1 Overview

In this chapter the fundamental relations involved with frequency
domain modelling and analysis of structural systems will be presented, and
the tools used in subsequent chapters developed. The structural system will
be modelled as a discretized network of elements obeying force equilibrium
and displacement compatibility. All networks obeying these constraints
exhibit certain properties that can be exploited in system analysis. One such
property is a form of energy conservation throughout the network, an
expression of which is known as Tellegen's Theorem.

Tellegen's Theorem has been widely used for analysis of electrical
networks and here will be applied to mechanical networks. It relates the
energy flowing into a system to the energy flow within the system elements.
The frequency domain expression of Tellegen's Theorem is then coupled
with the traditional concept of structural impedance to derive an impedance
energy expression. In order to relate it to the conventional formulation for
mechanical system dynamics, this impedance energy expression will be used
to derive Hamilton's Theorem for dynamic systems. It will also be used to
derive expressions for system resonant frequencies and damping. Finally, the
sensitivity of system dynamic characteristics to variations in key system
parameters will be evaluated. These tools will be used for analysis and design
of complex damped systems in subsequent chapters of this report.

2.2 Structural Networks and Tellegen's Theorem

2.2.1 Definitions of Branches, Elements, and Ports

Any mechanical system can be modelled with varying degrees of
accuracy as a network of discrete elements. A network is defined to be a
collection of interconnecting branches which join at discrete nodes. The
branches are the components of the system and can represent a wide variety
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of mechanical, electrical, or thermal devices. In this chapter only mechanical
networks will be dealt with, although the equations can be easily generalized
to other types of system elements. A node is merely a reference point that
serves as a junction between branches of the network.

The branches will be divided into two groups which are called
elements and ports. The elements are the physical pieces of the system. The
ports are the branches through which external forces and displacements can
be imposed on the system. These concepts can be demonstrated with a simple
structural system in Figure 2.1:

Mechanical System Network Description

zi 'lmon, 1

I I

Port 1

Figure 2.1 Network Description of a Simple Mechanical System

This single degree of freedom (DOF) system can be modelled as having
2 nodes, and 3 branches. The 3 branches are composed of 2 elements and 1
port. It is important to note that the structural mass element has been
modeled as an element between the moving node, vG1, and the ground node,
vGo. All masses are modelled as elements to the ground node. This is due to
the dependence of inertial force on the absolute acceleration of the mass.

The two structural members, the mass and the spring can be thought of
as two branches of a network between the moving node, vG1, and the fixed
node, vGO. The applied force is represented by another branch through which
an external force acts between the nodes. It is said that the system has a port
through which F acts.
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In such generalized networks, every branch has two attributes known
as the through and across variables of the branch. In mechanical systems
these are the force that acts through the branch and the velocity that exists
across the branch. Thus, in mechanical systems, force is the through variable
and velocity is the across variable. The sign conventions are such that the
product of the force and velocity in an element is positive when work is being
done on the element. The positive velocity across the element is usually
associated with an increase in some physical dimension of the element but
can be an arbitrary assignment. The positive force assignment is made in
accordance with the power flow convention and the velocity assignment. For
ports the power flow convention will for now be taken as for elements. This
means that the product of force and velocity is defined to be positive when
work is being done on the port.

In electrical systems the through variable is commonly taken to be the
current, and the across variable is taken to be the voltage. This establishes a
correspondence between electrical and mechanical systems that can be stated:

Variable Mechanical Electrical
Through Force Current
Across Velocity Voltage

This convention is one of the two commonly used in comparing the
behavior of electrical circuits and mechanical systems, the other being the
comparison of force with voltage (the "effort" variables) and velocity with
current (the "flow" variables) as in Paynter [9]. Purely from the perspective of
comparing differential equations, both conventions are valid analogies. But
as is shown in Fig. 2.2, the correspondence used here preserves both the
dynamic behavior and the topology of the network, and is used in such
general discussions of system dynamics as Penfield, Ref. [6], and Cannon, Ref.
[7]. By choosing the through/across correspondence the rules for mechanical
network reduction follows the same rules as those more widely known for
electrical networks. This correspondence will be explained and exploited in a
later sections.
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Possible Network Descriptions

(a) Force - Current

Mechanical System -

VG3

(b) Force - Voltage

K3
V(

Figure 2.2 Possible Network Descriptions of a Simple Mechanical System Showing the

Networks Which Result from Comparing Force to Current (a) or Voltage (b)

2.2.2 Force Equilibrium and Displacement Compatibility

'There are constraint conditions that apply among the through and
across variables. As demonstrated in Ref. [10], these constraints are known as
force equilibrium at the nodes and displacement compatibility for the
branches in mechanical systems. In electrical systems, they are known as
Kirchoff's current and voltage laws respectively.

Force equilibrium is the statement that all the forces acting on a node
must sum to zero. This is true because inertial reactions have been
represented by D'Alembert forces acting through the mass elements. Force
equilibrium corresponds to Kirchoff's current law in electrical systems, and
the mathematical expressions of these constraints are identical. For
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mechanical systems, force equilibrium can be expressed by defining the vector
which contains the forces in all the branches (elements and ports) known as
the Branch Force Vector, Fa, in terms of a set of independent forces in the
Independent Force Vector, Fi.

Fa = BPF (2.1)

Where Fa is the Branch Force Vector, and Fp is the Independent Force Vector.
The matrix, B,p called the loop matrix in electrical circuit analysis, defines
the relationship between the independent and dependent forces. The
independent force vector can be composed of any group of port or element
forces which are not linearly related.

The number of independent forces can be found from network analysis
(Ref. [6]) to be:

a =b -n t + s (2.2)

where a is the number of independent forces, b is the number of system
branches (elements and ports), nt is the number of system nodes, and s is the
number of separate networks. The loop matrix, B, has the dimensions b by a.
The loop matrix is very useful in network analysis. An example of system
analysis where the loop matrix is derived is shown in Section 2.8. As can be
seen, it is directly attributable to the linear relationships which exist among
any system with redundant load paths.

The second constraint on the network variables is velocity
compatibility. In mechanical systems, it is the statement of the geometric
constraints of the system: that all the branches connecting two nodes must
have the same velocities across them. It's electrical analogy is Kirchoff's
voltage law. Mathematically, velocity compatibility can be expressed:

T
BaPVa = 0 (2.3)

Where B is found to be the same loop matrix as was used in the statement of
force equilibrium (Ref. [6]). These two expressions for force equilibrium and
displacement compatibility, (2.1) and (2.3), can be combined to derive
Tellegen's Theorem
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2.2.3 Tellegen's Theorem

Tellegen's Theorem is a convenient expression for the force and
velocity constraints on a system. Pre-multiplying equation (2.1) by vaT we
obtain:

VTFa =VTB F (2.4)

This can be simplified by noting that the right hand side of (2.4) is zero due to
(2.3). This reduction gives the simplest form of Tellegen's theorem.

vTFa = 0 (2.5)

Equation (2.5) represents a summation over all the network branches.
The branches can be divided into elements and ports. The ports can be
separated out to the right hand side of (2.5) leaving the summation over the
elements on the left. The sign convention for the ports will also be changed
so that now the product is positive if the port is doing work on the remainder
of the system. This yields:

veTFe = vTFp (2.6)

Where the subscript, e, represents the system elements; and the subscript, p,
represents the system ports. This equation represents summations over the
elements and ports of the system and relates the work done by the ports on
the system to the work done on the elements within the system.

Equation (2.6) can be generalized by introducing linear operators to act
on the forces and velocities. A justification for this generalization is
presented in Ref. [6]. The linear operators acting on the forces must be the
same for all the forces and the linear operators for the velocities must be
likewise the same for the velocities though not necessarily the same as those
for the forces. Some allowable operators are: integration, differentiation,
multiplication by a constant, Fourier or Laplace transforms, and complex
conjugation. By applying the linear operators to Equation (2.6) the general
form of Tellegen's Theorem is obtained.

AV vTAFFe= AVp AFFp (2.7)

This equation exhibits several properties useful for the analysis of
systems obeying the force and velocity constraints. The first property is a
result of the fact that nowhere in the derivation of the equation was it
assumed that the forces and velocities belong to the same load case. Thus
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forces and velocities from unrelated applications can be used to satisfy
Equation (2.7). The consistent elemental forces from some arbitrary loading
case can be combined with the consistent velocities from some unrelated
loading. When that unrelated load is applied at a node where the velocity
resulting from a complex loading are desired, this technique becomes the
dummy load method of elementary structural analysis as presented in Ref.
[10]. Being able to use unrelated cases can simplify the analysis of a system

greatly.
Another property arises from the fact that none of the constitutive

properties of the elements have been included in Equation (2.7). The only
required common point between the loading and velocity cases is that they
are from networks with the same topology and therefore have the same loop
matrix. Tellegen's Theorem is based on network properties and is
independent of the type of elements which make up that network. The actual

makeup of the network from which the consistent forces are taken and the
network from which the compatible velocities are taken need not be similar.
Dampers in the network to which the forces belong can be replaced by-springs

in the network to which the velocities belong. Nonlinear elements can be
replaced by linear ones and Equation (2.7) will still hold. This property opens

options for system analysis and has been applied fruitfully to electrical
systems.

Since the constitutive relations for the elements were not used in the
derivation, Tellegen's Theorem is valid for arbitrary systems including
structures with time varying, non-linear, and frequency dependent elements.
In fact it is frequently used to analyze electrical systems with nonlinear
capacitors or transistors as elements. For these systems it can be used to
establish bounds on the energy that is transferred to higher harmonics by
nonlinear elements (Ref. [11]). In this report, advantage will be taken of this
property to model and analyze the energy dissipation characteristics of
systems with frequency dependent elements or subsystems.

Specializing the general statement of Tellegen's Theorem, Equation
(2.7), by using the Laplace operator on the forces and velocities, a frequency

domain expression for Tellegen's Theorem can be obtained. Letting Av select
the complex conjugate of the Laplace transform and AF select only the Laplace

transform, Equation (2.7) becomes:
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V .() =�'(s)Fp(s) (2.8)

Where the tilde, ~, represents the Laplace transformed variable. From this
point forward all forces and velocities will be in the frequency domain and
the tilde will be omitted for simplicity.

If we consider the system to be operating in sinusoidal steady state (s =
io), then the Laplace transform can be thought of as the Fourier coefficients
representing the amplitude and phase of the sinusoidal signal. Throughout
the rest of the report, the Laplace transformed variables will be used. The
explicit dependence on the Laplace variable, s, may be omitted for simplicity
but the frequency dependence will be implicit.

2.3 Structural Impedance and System Modelling

At this point the relationships for the topology, ie. displacement
compatibility and force equilibrium, have been expressed by Tellegen's
Theorem; and it is desirable to introduce the constitutive relations for the
individual elements. Since Tellegen's Theorem will be employed in the
frequency domain, the constitutive relations will be introduced by using the
frequency dependent ratio of the velocity and force to eliminate the elemental
forces from Equation (2.8). The equations will then be converted from
elemental to global coordinates to give the system equations in their final
form.

In a mechanical system various names are given for the ratio between
the force in a system and various output variables. These names from have
been compiled by Ewins [12] and presented in Table (2.1). In this report, the
concept of mechanical impedance will be utilized for system modelling and
analysis since it relates the force and velocity in a system element. It is
expressed as the ratio of the Laplace transformed force over the Laplace
transformed velocity. For nonlinear systems, it may be amplitude dependent.
The mechanical impedance for a mass, spring, and damper are:

ZM(S) = M s (2.9a)

Zc(s) = C (2.9b)
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Response Parameter R/ F F / R
R

Receptance,
Displacement Admittance, Dynamic Stiffness

Compliance

MechanicalVelocity Mobility Impedance

Acceleration Inertance, Apparent Mass
Accelerance Apparent Mass

Table 2.1 Possible Frequency Domain Constitutive Properties

Zc(S) Ks (2.9c)

The impedance can be a more complicated function of frequency as in
the case with elements with resonant subsystems or viscoelastic behavior.
For general elements with connections to more than 2 system nodes the
concept of a impedance matrix can be used to relate the forces and velocities
associated with the element. Thus in general for the linear elements, the
constitutive relations can be written

FL (S) = ZL(S) VL (S) (2.10)

where FL is the vector of linear elemental forces, VL is the vector of linear
elemental velocities and ZL is the linear elemental impedance matrix.

The elemental impedances can be substituted into equation (2.8) to
eliminate the explicit reference to the forces of the linear elements.

V H ZLV L+ NL FNL Fp (2.11)

A few moments should be taken to examine the structure of Equation
(2.11). The system described above will be defined to have b branches where b
is the sum of the number of linear elements, n, the number of nonlinear
elements, m, and the number of ports, k. The first term on the left is a
summation over the linear elements of the systems. For a system with n
linear elements, it can be represented

- 26 -



-ZL1 . . .

. ZL2

[VL 1 VL2 "' VLn*.

o . . . ZLI

Where the superscript, *, represents the complex conjugation. The elemental
impedance matrix is diagonal; and, when pre and post multiplied by the
elemental velocities, it represents a summation over the linear elements of
the system. The second term of (2.11) can be represented as a summation
over m non-linear elements

[VNL 1 NL 2 . . VNL m NLF N H FN (2.13)

NL

Likewise the third term can be represented as a summation over k system
ports

[V 1 vp2 . . . vp k F 1- =v HF (2.14)

These summations can be condensed and simplified if it is noted that
the elemental velocities, the relative velocities across the elements, can be
represented as linear combinations of the absolute velocities of the system
nodes relative to inertial space. The velocities at the nodes will be called the
global velocities which exist in the inertial frame in the global coordinate
system of the nodes. Fist a transformation between the global "point"
velocities and the elemental "across" velocities must be defined. The velocity
across the element can be thought of as the difference between the velocities
of the nodes of that element after an appropriate coordinate rotation. Thus a
transformation matrix can be defined:
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vp Tp

VL = TL VG=TvG (2.15)

VNL T -

where VG is the vector of absolute nodal velocities and vp, VL and VNL have

been previously defined. The various partitions of the transformation
matrix, T, can be used to convert the elemental forces and impedances of
Equation (2.11) into more easily conceptualized point forces and impedances.
Substituting the appropriate partitions of (2.15) into (2.11) gives us Tellegen's
Theorem in terms of point quantities

VHZ VG + VHFN = HF (2.16)G G G G-NL G G-P

where:

FGp = TP Fp (2.17a)

FG =T FNL (2.17b)

ZGL = TLZ LT L (2.17c)

Tellegen's Theorem is now in a form dependent only on the velocities

of the nodes, the global impedance matrix, ZG-L, which contains the elemental
constitutive relations in the global coordinate system, and the forces due to
the ports and nonlinear elements. At this point either the driving forces or
the nonlinear forces could also be eliminated by defining the appropriate port

or non-linear impedance matrix. For the nonlinear elements, the forces can

be described by state dependant impedances

FGNL = ZGNL(VG, 'S) VG (2.18)

This nonlinear impedance can be used to replace the nonlinear forces in

Equation (2.16) to obtain a global impedance matrix for the system.

VH Z S) VG =V v FG.P (2.19)

were:

ZG( VG, S) = ZGL(S) + ZG-NL(VG S) (2.20)
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The size of the resulting frequency domain system matrix might be
quite large for a system with many degrees of freedom. There are, however,
many techniques for reducing the sometimes cumbersome size of the global
impedance matrix. The ones described here are drawn from techniques used

for reduction of discrete time domain models. The first and probably most
useful is the elimination of degrees of freedom with no external forcing at
them by using static condensation on the global impedance matrix. Static
condensation is usually employed in the reduction of system stiffness
matrices and is customarily thought of as a quasi-static condensation for
dynamic systems. If, however, the frequency dependant system impedance
matrix is reduced using this method then the reduction is an exact dynamic
reduction since the mass information is included in the impedances. The
equations for the static condensation technique can be found in Ref. [13].
When the impedance matrix is reduced, a lower order but more complicated
frequency dependent matrix is the result. This matrix contains all the
information inherent to the larger model and the condensed information can
be recaptured if necessary.

The second reduction method is the assumed mode technique. The
global set of degrees of freedom is reduced to a smaller set of generalized

coordinates by assuming a linear relation among the global set. An example
of an application of this method is the assumption of rigid body motion for
some set of the boundary nodes or a conversion to modal coordinates
common in dynamics. This type of reduction is not guaranteed to be exact but
can result in problem simplification. It usually does not greatly complicate
the frequency dependence of the impedance matrix. These two techniques
can be used to great advantage in complex system reduction and analysis.

2.4 Comparison of Tellegen's and Hamilton's Theorems

A version of Hamilton's Theorem can be derived from Tellegen's
Theorem for discrete systems. The derivation serves to highlight the
relationship between the various power products in Tellegen's Theorem and
the conventional kinetic and potential energies. The derivation will also
help place Tellegen's Theorem on more familiar ground for system
dynamicists. The key to the derivation lies in the proper choice of the linear
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operators in the general form of Tellegen's Theorem. If we recall the form of

the theorem presented in Equation (2.5):

vtaFa = 0 (2.21)

This form of Tellegen's Theorem has not yet been specialized to the frequency

domain by use of the Laplace operator nor have the branches been separated
into elements and ports by the sign convention. This form of Tellegen's
Theorem represents a summation over all the branches of a system.

The coordinate system of Equation (2.21) can be transformed from

elemental to global using the transformation technique outlined in the
previous section for Equation (2.15). The equation can also be generalized just

as was Equation (2.7) to allow operators on the forces and velocities. The

result is a generalized product of the nodal forces and velocities of the system.

A -V· AFFG=0 (2.22)

Any linear (and some nonlinear) operator or sets of operators may be

chosen as the A's of Equation (2.22) as is explained in the appendix of Ref. [6].

If Av is defined as the variational of an integral with respect to time then
Equation (2.22) becomes:

SxAFFG = (2.23)

Furthermore, taking the transpose of (2.23) and integrating from t to t2, a
variational equation emerges:

[FSXG]dt = (2.24)
ti

At this point it is necessary to consider the makeup of the nodal forces.

The global force vector, FG, represents at each degree of freedom the sum of

the elemental forces (for elements such as masses or stiffnesses) as well as the

externally applied forces at that particular degree of freedom. It is convenient

to divide the global force vector into its component parts: the conservative
forces such as spring forces or gravitation; the inertial forces due to the mass

elements; and the non-conservative forces arising from energy dissipation
elements and external forcing.
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t2

FIN SXG + FTO BXG + FNCXG] dt = (2.25)

tl

Each of these groups of terms has a specific relationship to the energy
in the system. The inertial forces relate to the kinetic energy and the
conservative forces relate to the potential energy. To determine exactly how
these terms relate to their respective energies, variational calculus must be
employed. If we assume that the conservative force can be associated with a

possibly time varying stiffness matrix and that the inertial force or
D'Alembert force can be associated with a mass matrix, we can obtain:

[- G(t) xG, G( = -U=- (2.26a)

[-MG(t),o']TxG =± 2 [M()] = (2..26b)

Substituting these expressions into Equation (2.25) and separating out the
non-conservative part gives us the well-known form of Hamilton's Principle:

8[T -U] dt+ [FCsx]dt = (2.27)

t1 ti

Thus, a version of Hamilton's Principle for discreet dynamic systems
can be derived from Tellegen's Theorem. The subtlety is in the choice of
appropriate linear operators to be used in the general form of Tellegen's
Theorem and in the recognition of the various contributions to the nodal
forces.

Many other variation expressions for dynamic systems can be
developed by starting with the general form of Tellegen's Theorem and using
alternate linear operators. In this work, the Laplace transform was chosen,
which has the effect of transforming the system equations into the frequency
domain. The choice of the linear operator in no way affects the amount of
information about the system that is contained in the equations. The
frequency domain representation of dynamic systems thus contains the same
fundamental information as the more common Hamilton's Principle and is
equally valid for dynamic systems.
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2.5 Conservation of Real and Reactive Power

In this section an attempt will be made to determine the nature of the

energy expressions inherent in the frequency domain statement of Tellegen's
Theorem. In Equation (2.8) both the force vector and the velocity vector for
the elements and the ports have real and imaginary parts. The product of
force and velocity is power. This product can also be divided into real and
imaginary parts. The real part is termed the real power, and the imaginary
part is termed the reactive power. Since the force/velocity product must be
equal for the ports and the elements, Tellegen's Theorem in the frequency
domain is sometimes referred to as the conservation of real and reactive
power.

Power is a time domain quantity and is calculated from the time
domain product of the instantaneous force and velocity. The terms of
Equation (2.19) are frequency domain products. Strictly speaking, the Laplace

transform of the time domain power would involve a convolution integral
of the transformed force and velocity since time domain multiplication
corresponds to frequency domain convolution. Therefore the product of the
transformed force and velocity does not represent the Laplace transformed
instantaneous power but rather some related quantity. The nature of this
relationship will be examined in the following section.

Two approaches will be taken to gain insight into the frequency
domain product of force and velocity. First a relationship will be derived
between the average energy dissipated in the elements during a cycle and the
real part of the frequency domain product of force and velocity. In the second

approach, a simple form will be assumed for the mechanical impedance and
the resulting contributions to the real and reactive power will be analyzed.
The forms of these contributions will be related to system energy terms and
used to derive approximate formula for system natural frequencies and loss
factors.

To begin the analysis of the physical significance of the real and
imaginary parts of the frequency domain system model proposed in Equation
(2.19), the various contributions of the terms of (2.19) to the real and reactive
power must be determined. Multiplying Equation (2.19) by a half and
dividing the products into their real and imaginary parts, Equation (2.19) can
be put in the form:
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(PP +iX) =(PE + iXE ) (2.28)

where Pp and Xp are the real and imaginary parts of:

P+ iX Re{ V FGP} + i Im{ V FP} (2.29)

and PE and XE are the real and imaginary parts of:

PE E=Re{ 2 G G(V )v + i m{ = HH ZG(v, s)V } (2.30)

These terms are all frequency dependant; and in the case of the system
impedance matrix, they can be amplitude dependant also.

At this point, it is desirable to gain some physical insight into the
source of these frequency domain power terms. To make this easier, some
simplifying assumptions will be made for the system in Equation (2.28). It
will be assumed now that the system is in steady state and the complex forces

and velocities of Equations (2.28) to (2.30) represent the magnitude and phase

of sinusoidal signals. It will also be assumed that the system is linear and
reciprocal. This means that the system can be represented by a symmetric
impedance matrix. This assumption will not limit the derivations
applicability for damped structural systems since systems with material
damping or internal resonances still maintain reciprocity.

We will examine the time domain expression for power dissipated in a

cycle first and relate this to the real part of the frequency domain product, PE.

The forces due to the system elements can be represented as a function of the

system velocity vector and the system impedance matrix using Equation
(2.10). For a linear system being forced at frequency, o, this frequency domain

force can be expressed in the time domain

FG.L(t) = FR coscot + FI sincot (2.31)

and likewise the velocity can be expressed

VG(t) = VR coscot + vI sincot (2.32)

Using these time domain expressions for the elemental forces and velocities,
the energy dissipated in the elements in a cycle of period T would be written:

T

Edi = J[T(t) F(t)]dt (2.33)

0
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When evaluating the integral, the terms containing a product of sine and
cosine integrate to zero leaving only terms with squares of sines or cosines.
These terms integrate to 1/2 T over one cycle leaving

Eds 1T.F vT. 1 HF
= = + I I = real G -L (2.34)

Since F can be expressed in terms of the impedances of the system and its
velocities, Equation (2.34) can be put into a quadratic form for the average
power dissipation in a cycle

T= Real ,2 vGs)G (2.35)

The right hand side of Equation (2.35) is identical in form to the first term on
the right hand side of (2.30). Therefore we can conclude that for linear
systems

Ed.is

PE PP T (2.36)

Thus the real part of the product of the Laplace transformed forces and
velocities is numerically equal to the average power dissipation in a cycle.
This explains why this term is named the real power when in fact its relation
to that time domain quantity was not obvious. This frequency domain
expression for energy dissipation will be used in developing an approximate
method for calculating the system loss factor in the next section.

Equation (2.35)'s validity for nonlinear systems is limited to the degree
that the elemental forces and velocities can be expressed as simple phase
shifted sinusoids with a single frequency component. If the nonlinearities
introduce higher order harmonics or other coupling which results in a more
complex time history, then Equation (2.32) and consequently (2.35) are not
strictly valid. If however the nonlinearities introduce only small
perturbations to the otherwise linear response, then Equation (2.35) can be
said to be approximately valid.

The nature of the complex part of the product, XE, is more subtle. It
represents the product of the forces and velocities that are in quadrature.
These power terms integrate to zero over a period of the system, although the
intermediate integrals can have some finite value.
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The physical significance of the reactive power will be interpreted in

terms of the contributions from the real and imaginary parts of the system
velocity vector and impedance matrix. As before, the system will be assumed
to be linear and reciprocal. A simple dynamic system impedance model will
be assumed in order to relate the components of the reactive power to kinetic
and potential energies. First, the real and reactive power in the elements can
be expressed for general systems in terms of the quadratic form involving the

system impedance matrix:

+ iXE G ,GHZV 2 V i (ZR+ iZXVR + i 1 ) (2.37)

expanding,we obtain
+VTz - VTZv +VTZRV (2.38a)

pE R V I RvR Z I RI) (2.38a)

and

X= T ZI R + V ZR I I ZR R +VI I 3 (2.38b)

If the previous assumption of a symmetric impedance matrix is applied, then

PE and XE reduce to

P = V TZR VR + ZR VI) (2.39a)

XE =(vT ZI VI + R ZI yVR ) (2.39b)

Notice that PE and XE involve only the real and imaginary parts of the global
impedance matrix respectively. This leads to some conclusions concerning
damping in structural systems. Since, by (2.36), PE is equivalent to the

average power dissipation in a cycle, we discover that the system's energy
dissipation at a particular frequency is dependant on two factors, the size of
the real portion of the system impedance matrix and its placement in relation
to the system modeshape at that frequency. Both factors are important in
maximizing the energy dissipation product in (2.39a).

At this point a form for the system impedance matrix must be assumed
in order to gain further insight into the nature of the reactive power.
Although the actual system impedance can be a complicated function of the
complex frequency, within a narrow frequency band the complicated
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expressions can be represented with varying degrees of accuracy by a simple
impedance model containing equivalent mass, stiffness, and damping
matrices. In this simple structural model, the global impedance matrix has
the form:

(S) =ZR(S)+iZI(s)= C +(Ms + ) = C + i0M (2.40)

where C is the equivalent damping matrix, M is the equivalent mass matrix,
and K is the equivalent stiffness matrix. Substituting Equation (2.40) into the
expression for real and reactive power, Equation (2.39) leads us to several
conclusions. The first is that the real power dissipated, PE, depends solely on
the complex modeshape and the equivalent system damping matrix, C. With
a more general form for the impedance, the dissipated power could also
depend on any complex part of the mass or stiffness matrix. These complex
parts can result from the complex modulus representation of material
damping or viscoelastic materials or from internal system resonances. They
contribute to the real part of the impedance matrix and thus to the power
dissipation as is demonstrated in equation (2.39).

Secondly, the reactive power in the elements, XE, is a function of the
effective mass and stiffness matrices and the complex velocity modeshapes.
This dependence on the mass and stiffness matrix is of a very specific form. If
the system modeshapes are assumed to be primarily real, then the first term
of Equation (2.39b) can be neglected and

1 T TV
VXE=±v ZvvR(4MV vR V 2RJ (KE PE) (2.41a)

XE-2 L (2.41b)

Where L is the well-known system Lagrangian. So for linear, reciprocal
systems which can be represented by the effective impedance of the form of
Equation (2.40) and which have predominantly real modeshapes, the
imaginary reactive power represents the average difference between kinetic
and potential energy at a given frequency. Systems with predominantly real
modeshapes are those with symmetric matrices and light damping. For
systems with very complex modeshapes (ie, highly damped) the definitions of
potential and kinetic energy become clouded since at no time in the cycle is all
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the energy either potential or kinetic. This is the result of different parts of
the structure being out of phase with each other in very complex
modeshapes. Expression (2.40) will be used to derive the effective mass and

stiffness matrix for a frequency dependent system as will be shown in Section
2.6

At this point the quadratic product of the frequency dependent
modeshapes and the system impedance matrix has been analyzed and
understood in terms of the energies in predominantly linear, lightly damped,
reciprocal systems. For such systems, the quadratic expression can be written:

IV HZV = (Edis + i2rL (2.42)

This compact form is very useful in determining properties of the system
such as modal frequencies and loss factors as will be discussed in the next
section.

2.6 Quadratic Approximations of Frequency and Loss Factor

In this section approximate methods for calculating natural frequency
and damping from the global impedance matrix will be developed. These
methods involve using approximate mode shapes in a manner similar to the
way in which they are used in the Rayleigh Quotient for natural frequencies.
These forms can be very useful for finding approximate poles of a system,
since finding the exact poles for the frequency dependent system can be
difficult (These difficulties are outlined by Anderson in Ref. [14]).

In general a natural mode of the system occurs when the determinant
of the impedance matrix equals zero, Ref [15].

ZG(s) =0 (2.43)

The process of finding the values of s in the complex plane is complicated by

several factors and usually requires a numerical procedure. The procedure
used in this report is presented in Appendix A, Section A.4. One
complicating factor is that Z is very often a complicated, non-linear function
of the complex frequency, s. It can involve transcendental expressions or
other nonlinear forms. Another complicating factor is that for higher order
systems the determinant of the impedance matrix can become extremely large
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and thereby cause computational difficulties. In the exact calculation of the
eigenvalues of the system, a good approximate initial value helps to
circumvent these difficulties. In this section, expressions will be derived for
these approximate values.

One common way of finding the approximate natural frequencies of an
undamped system is to employ the Rayleigh Quotient, Ref. [16]. The quotient
is expressed as the ratio of two quadratic forms, that of strain to reduced
kinetic energy:

1T
i e (2.44)

T21 MGC 

In practice, it makes no difference whether displacement or velocity
modeshapes are used in (2.44) since in steady state the frequency constant will
cancel out. Thus (2.44) can equally well be written in terms of velocity
modeshapes:

Re(- G ) (2.45)
2G

Re(ivTM v)2G G G

and corresponds exactly to the condition that the L in Equation (2.41b) equals
zero.

Now we are going to try to find a way to calculate the stiffness and mass
matrices used in (2.45) from the system or elemental impedance matrices.
This method is also presented in Appendix A. The impedance matrix is a
complex, non-linear function of frequency which can be obtained from a
simple dynamic test of a structure, whereas the stiffness and mass matrices for
complicated sub-structures with internal resonances or frequency varying
properties are sometimes difficult to model. The goal is to derive a simple
method for finding the equivalent system stiffness and mass matrices for
systems which contain elements with frequency variable properties and high
damping. This method will also be useful in analysis of lower order system
models which contain resonant subsystems due to the reduced out degrees of
freedom.

One way to accomplish this is to assume that in a given frequency
range the system impedance matrix can be modelled using equivalent mass,

-38-



stiffness, and damping matrices in the form presented in Section 2.5 in
Equation (2.40)

ZG(S) = ZR()+iZI(S)= C+Ms + (2.46)

The values for the equivalent matrices are dependant on the frequency range
in which the approximation is desired to be valid since the properties of the
impedance matrix do not necessarily have the same frequency dependance as
the assumed model.

To find these equivalent matrices from the impedance, the impedance
must be evaluated at s = io, where co is a frequency within the desired range,

and again at s = o. The resulting system of equations

Zc (ioj) =CG + it1 MG G (2.47a)

ZG(Co1) CG '1 MG 2 G(2.47b)

can be solved to find the values of the equivalent mass and stiffness matrices

at the initial assumed frequency.

M Re {ZG(c1) - Re {ZG(i(ol) + i ZG(icO1)} (2.48a)
- 2ol

co ( Re {ZG(R1) } + Re { i ZG(iol)- ZG(iol)}) (2.48b)
KG - (2.48b)

K- 2

For accurate approximations, the frequency, cot, in (2.48a) and (2.48b)

should be close to the mode of interest. It can be chosen by visual inspection

of the system transfer function as done in the procedure outlined in
Appendix A Section A.3. The value for the mass and stiffness matrices can

then be substituted into Rayleigh's Quotient to obtain a closer approximation
for the resonant frequency to which that modeshape belongs using Equation
(2.45)

Now that an approximate natural frequency has been found using
(2.45), that frequency can be used for calculating the system loss factor. The
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loss factor is proportional to the ratio of energy dissipated in a cycle divided by

the maximum strain energy in the system.

Ed.
i d2isU (2.49)

where U is the maximum strain energy in the system. As shown before in

Equation (2.35), the energy dissipated in a cycle, Edis, can be represented by a

quadratic form. This expression along with the expression for the strain
energy derived in both (2.41) and (2.26) gives a simple approximate expression

for the system loss factor:

Real { 1 (ZG(i 2)) V}
1Imag { v! J vG} (2.50)

i K
Imag v -vH Giv

where C02 is the approximate natural frequency calculated from Equation
(2.45).

The collection of terms on the bottom represents the strain energy
portion of the Lagrangian derived from the system impedance matrix in
Equation (2.41). The period of the vibration cancels on the top and the bottom
and the extra 2 factor is accounted for by Expression (2.49). Equation (2.50)

allows the designer to make a quick estimate of the system loss factor once a

mode shape is assumed. Assumed or experimentally determined impedances
or modeshapes can be used in Equation (2.50) to determine system loss factor.
The modeshapes used in (2.50) can be complex but the imaginary part must be

small since the expression for strain energy is inaccurate for very complex
modeshapes as is explained for (2.41). Equation (2.50) is also valid for systems

with slight nonlinearities using the nonlinear impedances defined in
Equation (2.18). In the special case of a proportionally damped, linear,
reciprocal system, Equation (2.50) is valid for large amounts of damping.

Since Equation (2.50) is not constrained to linear viscous or
proportional damping, it is very useful in evaluating unusual damping
schemes such as resonant dampers or viscoelastic materials.
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2.7 Frequency and Loss Factor Sensitivities

In this section, the sensitivities of various system properties to
variations of the network constitutive properties or mode shapes will be
examined. A good source for a more in depth exposure to network
sensitivities is Ref. [6]. This section will not attempt to derive the formulas
but merely apply the formulas already developed for electrical networks to
mechanical systems. The first items considered will be the frequency and loss
factor sensitivities to variations in the system impedance matrix. Later the
port impedance matrix sensitivities to variations of the system parameters
will be analyzed using Cohn's Theorem, a derivative of Tellegen's Theorem
and presented in Ref. [6].

The quadratic forms used in Rayleigh's Quotient, Equation (2.45) and
in the approximate expression for the system loss factor, Equation (2.50)
possess sensitivity properties that make them useful for approximate analysis.
The frequency and loss factor obtained through this method is insensitive to
first order variations in the modeshapes (Ref. [16]). This gives some freedom
in the choice of modeshape that still give accurate results for the quantity. An
approximate modeshape such as one derived from an undamped model can
be used with confidence. In particular for loss factor calculation, this implies
that the complete complex modeshape need not be used in Equation (2.50).
Instead the real part of a slightly complex modeshape can be used to obtain a
reasonable estimate of modal damping.

The frequency and loss factor are very sensitive, however, to variations
of the system properties. The sensitivity depends on how the variation is
weighted by the mode shape, e.g. in areas of high strain, changes in stiffness
can produce large chances in frequency and damping. The sensitivities can be
useful for determining the best placement of damping treatments and
devices.

To determine the sensitivities of the system frequencies and loss factors
to variations in the system properties, we will first examine a general
variation for any ratio of quadratics and apply this general form to the
quotients for loss factor and frequency in Equations (2.45) and (2.50)
respectively. If we assume a general form

xT A x
Y xT A x (2.51)

xT B x
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then letting

y = Y + y,A = A + A,and B = B + B (2.52)

a solution for by can be obtained.

[xT 8A x xT BB x

BY YL xT A x xT B x (2.53)

Applying this general formula to the approximate quadratic expressions for
system loss factor and frequency leads to the sensitivities of these parameters
to changes in the system properties. The variation of the loss factor for
system parameters variation can be derived from (2.50) using (2.53) as

[ mHSZ (s)v 1
81 =-Real{VG ZG(S)VG}I ImagV Sztif ) 25

L Real{HZG(S)VG Imag{V Stif(S (2.54)

where Zstif is defined:

KG
Zstif(s) - K (2.55)

Variations of frequencies can be found in a like manner from (2.45).

R[ 8 KG Re { M G (2.56)

where KG and MG are defined from Equation (2.48).
The form of (2.53) is interesting because all the variations appear as

ratios over the unvaried quantity. The expression for the variation of loss
factor is also insensitive to first order variations of the modeshapes just as is
the expression for the loss factor.

An expression can also be derived for the sensitivity of the port
impedance of a system to variations of the internal elements of the system.
This expression can be quite useful in system analysis where one would like
the driver and port impedances to be matched for maximum power flow at
the junction. This impedance matching concept is very applicable to actuator
placement and structural design for ease of control - concepts found in
intelligent structures. By determining the sensitivities of the port
impedances to changes of the system properties, these properties can be
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designed to maximize the imaginary part of the port impedance matrix and
thus maximize the real power flow in that particular port.

The port impedance is defined like the elemental impedances as the
ratio of complex force to velocity at the ports. A global port impedance matrix

can be defined just as the elemental impedance matrix to describe the external
forces at the nodes in terms of the nodal velocities of the system. Therefore, a
global port impedance matrix can be defined to replace the vector of port
forces in Equation (2.19)

FG;P(S) = ZG-P(S) VG (2.57)

Replacing these port forces, Tellegen's Theorem expressed in Equation (2.19),
becomes:

VHZ (S)VG = VHZG(S)VG (2.58)

Now a sensitivity theorem used in electrical network analysis, Cohn's
Theorem, Ref. [6], can be applied to the system in (2.58) to determine the
relationships between changes in the elemental impedance matrix and
changes in the port impedance matrix. For a given element of the global

impedance matrix, Z a' the change in port element, Zoa , can be evaluated:

8ZG- = ZG (2.59)

The - and A symbols specify velocity modeshapes from two different
experiments. The - signifies the velocity modeshape which results with only
the port at node a free to move, all other ports are fixed. Likewise the A

velocity modeshape is taken with only the port at node y free and all other
ports fixed.

2.8 Mechanical System Example

In this section the global impedance matrix for a simple dynamic
mechanical system will be derived. The purpose of this derivation is to
provide some insight into the techniques described in the previous sections.
The dynamic system modelled in this example is presented using the
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traditional symbology in Figure 2.3a. This dynamic system can be represented

by the network in Figure 2.3b which contains 4 nodes and 7 branches.

System A: Mechanical Description
v

G2

r 

I 'D I I

i V0
4- - ·G1 VG3

FW Initial direction of positive force

System B: Network Description

Port f
take

Va 7

V a

locity Across
Branch 7

locity
tion

Figure 2.3a & b Sample Mechanical System (a) and its Network Counterpart (b) Showing the

Sign Conventions for Forces and Velocities
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There are some interesting points to consider in the conversion from
the dynamic system in Figure 2.3a to the network in Figure 2.3b. The first
point is that all the masses correspond to branches to ground as was described
in Section 2.2.1. The second point is that the force (on mass-I) is represented
as a port between the node-i and the ground node-0. For each branch there is
a positive velocity differential defined by the signs at the nodes. The positive
force is represented as an arrow in the direction from the positive node to the
negative node of the element. This symbol represents a restorative force
through the element. The port has been represented in Figure 2.3b as having
the same sign convention as the other branches just as it was in the initial
derivation of Tellegen's Theorem. This convention will later be reversed
when the ports are separated from the elements of the system.

The force compatibility relations can be calculated in a manner exactly
analogous to the calculation of the currents in an electrical network. The
sum of the forces going into and out of a node must equal zero. Those
leaving a node are counted as negative, and those going into a node are taken
as positive. It is important to notice that the absolute direction of the force is
not important to the expression of force compatibility only the force flow
relative to the node is important. Thus, only the topology, the
interconnections between the nodes, is important to the network diagram
and not the specific layout of the diagram.

From Equation 2.2 in Section 2.2.2, there are 4 independent forces in
the network in Figure 2.3b. This number can be derived by noting that there
are 7 branches, 4 nodes and just one separate network (7 - 4 + 1 = 4). This
means there must be 3 linear relations relating the branch forces. These can
be found by taking the force balance at 3 nodes. The force summation at the
first node, vG1, can be written

- F 1 - Fa2 - FOa + F + Fa = (2.60a)

Likewise for node 2,

Fa7 - F 6 = 0 (2.60b)

and node 3,

- Fa4- F5 F =0 (2.60c)
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If we take the force in the port at branch-I and the forces at branches 2, 5, 6 to

be the independent forces, then the loop matrix can be found in the form of

Equation 2.1

m 0 0 07

0 1 0 0

-1 - 1 1 1

0 0 -1 -1

O 0 1 0

0 0 0 1

-0 0 0 1

F,FalFat

Fa5

_Fa6.

(2.61)

FFal

_Fa7_

The relationship for velocity compatibility, Equation (2.3), can be derived by

taking the transpose of the loop matrix and multiplying it by the vector of
branch velocities.

-1 0 -1 0 0 0 0-

0 1 -1 0 0 0 0

0 0 1 -1 1 0 0

.0 0 1 -1 0 1 1_

r al

L Va7

O

0O

O

0
- 0-m

(2.62)

Each row of the transposed loop matrix can be seen to represent a looped path
over certain branches in the network around which the velocities across the
branches must sum to zero. The sign of the velocities is taken with respect to

the orientation of the positive and negative nodes of a branch. At this stage,

the first form of Tellegen's Theorem, Equation (2.5), can be expressed for this

system as a summation over the branches. In matrix form this summation
becomes

- 46 -

_ _



[Val · . . Va7

Fa

LFa7_

vTFa -o (2.63)

Now by redefining the port at branch-1 to have the opposite sign convention
from the elements at the other branches, the port can be separated to the right
hand side of the equality.

[Va2 ·. . Va7]

Fa2

Fa7.

=Val Fa (2.64)

Until this point, the fact that some of the branches are springs and other are
masses or dampers has not been introduced. We can now define the
elemental impedance matrix, ZL based on the constitutive relations of the
various branches in accordance with Equation 2.10.

Fa2

Fa4

a7

This matrix can

'K

s
0 0 0 0 0

0 MlS 0 0 0 0

0 0 0 0K 0 0

0 0 0 0 K K 0
s

be re

v

a2

Va3

Va4

Va5

V7-r

(2.65)

0 0 0 0 C3

'duced if it is transformed from an element by
element representation to the global coordinate system of the nodes. This is
accomplished using the transformation matrix, T, defined in Equation (2.15).
The transformation matrix is constructed by noting that the velocity across
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the elements is the difference of the absolute velocities at the end nodes of the

elements. The transformation matrix can thus be defined:

Vp

LVL

-1 1 0 0

-1 1 0 0

-1 1 0 0

-1 0 0 1

0 -1 0 1

O -1 1 0

0 0 -1 1_

VG0

VG1

VG2

VG3_

(2.65)

Since VGO is always equal to zero, the first column of the transformation

matrix can be eliminated to produce a 7 by 3 matrix. The upper partition of

the transformation matrix represents Tp from Equation (2.17a). The lower
partition of the reduced transformation matrix, TL can be used to determine
the global impedance matrix for the system by employing Equation (2.17a).
This yields

K +K +K K K3 K K 2
SfK 3 C3'K3 C3 + s3

K2 -C K2
- S3 M2 s + C3 + -_

(2.67)

Finally, we shall illustrate one of the reduction techniques discussed in

Section 2.3, known as static condensation. Using this technique, we can
eliminate the massless degree of freedom at node-2 by noting that no external

force is applied at that node. Static condensation reduces a system in the form

[6 r =ZRD-T ZMDT-RED~l RE 1 (2.68)

I onRE in RD REDJ
to one in the form
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FM =ZMVM v(2.69)FRET = ZRET VRET (2.69)

where

(2.70)
RE = ZE - ZRET-RED REDZRED-RE (2.70)

Applying static condensation to eliminate node-2, the final reduced form of
the global impedance matrix is obtained

G-L(s) =

K+ K2 CK, K2 C3 K

1 M C3 +K3 C3s+K3

2 C3 K3 2 s C3 K3
sCs+K 2 C3S+K 

-~ 3a 3 3aMs __cK

(2.71)

This reduced global impedance matrix can be used in the frequency domain
form of Tellegen's Theorem expressed in Equation (2.19) once the forces and
velocities have been transformed to the Laplace domain.

2.9 Summary

In this chapter the fundamental relations for frequency domain
analysis of mechanical systems have been presented based upon Tellegen's
Theorem. The analysis of a structural system as a network of impedances was

presented. Using the force equilibrium and displacement compatibility
conditions for the system, a network power theorem, Tellegen's Theorem
was derived. This theorem was applicable for general non-linear, time
varying systems. The constitutive relations for the elements of the network
were incorporated into Tellegen's Theorem in the frequency domain. The
resulting terms were analyzed for their relation to common power quantities
of a mechanical system. These quantities such as energy storage and
dissipation were then used to form approximate expressions for the system
frequencies and loss factor. The frequency domain analysis can be useful for

complex damped systems such as for viscoelastic materials and resonators
where properties of the system vary with frequency. The approximate
methods allow efficient evaluation of the most common damping techniques
for comparison and system damping enhancement design.
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Chapter 3
Damping Mechanisms for Structural Systems

3.1 Overview

In this chapter models will be developed for some common damping
enhancement methodologies applicable to space structures. The damping
schemes of interest include viscoelastic surface treatments, tuned mechanical
resonators called Proof Mass Dampers (PMDs), and a new resonant damping
technique for structures which employs piezoelectric materials. Frequency
domain models will be developed for these three methodologies, which can
be incorporated into the system framework developed in the previous
chapter.

Viscoelastic materials can be used to add damping to structures due to
their high inherent loss factor. Their low stiffness, however, tend to limit
their usefulness to non-structural surface treatments. A trade must be
conducted between inherent loss factor and stiffness for determination of the
optimum damping treatment for a given system. In addition to viscoelastic
damping treatments, models of resonant dampers have been developed in
this report. The resonant dampers discussed here are the classical proof mass

damper and a unique application of shunted piezoelectrics which involve
shunting the piezoelectric with a resonant circuit. Parallels will be drawn
between these two resonant damping methods. Optimal tuning criteria for
maximum energy dissipation will be derived for the resonant dampers and
discussed in terms of their effect on the total system loss factors.

These two systems can be thought of as complementary since the proof
mass damper appears as a point impedance in system modeling and thus
damps out only the available kinetic energy. On the other hand, shunted
piezoelectrics are modeled as multi-port impedances which derive their
dissipation from the relative motion of two system nodes. Thus they can be
thought of as dissipating structural strain energy. This differences will reflect
on the optimum placement of the actual dampers.
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3.2 Viscoelastic Material Damping

One method of increasing the damping in structural systems is to
employ viscoelastic materials. Viscoelastic materials typically have a high
material loss factor, and can be employed in high strain areas of the structure

to increase the total structure loss factor, Ref. [17]. The relation between the
high loss factor of a structural component and the loss factor of the total
structure can be represented as an average of the system component loss
factors weighted by the strain energy in the respective members (Ref. [17])

X UeiemnTelem

Itot U (3.1)
Tod =tsX Uetements

Where U is the peak strain energy in the element of the structure.
Techniques for improving structural damping with viscoelastics typically
employ the viscoelastics in areas of high strain energy to take advantage of
this weighting. The stiffness and loss factor of viscoelastic materials is also

typically frequency and temperature dependent making a complete analysis of
the system difficult. The use of frequency domain modelling of the
viscoelastic greatly simplifies the analysis.

The form of the frequency dependence of the viscoelastic can be seen in
Fig 3.1 for a typical damping material. The peak loss factor occurs in a narrow

frequency range where the viscoelastic is in transition from its rubbery state to

its glassy state. The stiffness of a viscoelastic material can be represented as a

frequency dependant generalization of the complex material modulus:

E(co) = E0(o).[1 + il()] (3.2)

A typical model of the frequency dependence can be determined by examining

one of the models for viscoelastics, the Standard Linear Model (Figure 3.2).
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Figure 3.1 Viscoelastic Damping Material Design Monograph for Antiphon-13 Showing the

Dependance of the Material Properties on Temperature and Frequency
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Figure 3.2 Standard Linear Model of a Viscoelastic Material
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This mechanical model can be represented by a differential equation relating
stress and strain, Ref [17]

a + a = Ee + (3.3

Taking the Laplace transform of the above equation leads to the expression
for the frequency dependent ratio of stress to strain:

E(I+ s)
= E(s) = ((3.4)e -(1 + sa)

This expression can be put in a form comparable to (3.2) to arrive at the
frequency dependent expressions for stiffness and loss factor:

EO(co) -= - )c2(2 (3.5a)0 1+co 2 a 2

c ( - a)(3.5b)

1 + 02ap

The constants a, , and E are commonly found by regression analysis of
experimental data. Often three regression variables do not adequately reflect
the frequency variation of the material properties. In Ref [17], Equation (3.4)

was generalized using higher order derivatives of stress and strain than those
in (3.3). The stress strain relationship has been further generalized by
incorporating techniques from fractional calculus into Equation (3.3) to allow
more complicated variations of the modulus with frequency. The
generalized expression for the frequency dependent stiffness of a viscoelastic
is:

E(1+ A Osb_)

E(s) = (3.6)

Illm

Where the an and 13m are not necessarily integers. Equation (3.6) can also be

divided into real and imaginary parts and compared to (3.2) to give the
frequency dependant stiffness and damping.

Equation (3.6) presents an almost insurmountable problem for time
domain analysis because it entails non-integer order derivatives. The
equation lends itself very well to the Laplace domain system analysis outlined
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in the previous chapter. Equation (3.6) can be converted to an impedance for
a viscoelastic system element

Z.(s) = Kvsc(Evc(),geometry) (37)
S

where Evisc is from (3.6). The impedance of the viscoelastic element can then

be assembled into the global impedance matrix of the system. The global
system loss factor can then be found using the techniques presented in (2.50)
This equation can be shown to be analogous to Equation (3.1) above. The

matrix multiplications takes the place of the summations over the elements.
Frequency domain techniques can thus help model a useful damping
technique which would otherwise be intractable.

3.3 Proof Mass Dampers

Another commonly used damping enhancement mechanisms is the
classical Proof Mass Damper (PMD). This technique involves attaching a

resonant mechanical device to a structure at points of high absolute motion
of the structure. The resonant device is tuned both in its frequency and
damping to one of the modes of the base system. The tuning of the device is

done in such a way as to optimally damp the mode of the base structure.
Other modes derive smaller damping benefits from the tuned damper. The
PMD is very effective in damping the mode to which it is tuned. To
determine just how effective, the classical model of a resonant mechanical
system with an attached PMD will be examined. The model is shown
schematically in Fig 3.3.
This model can be placed in the frequency domain and analyzed using the
techniques outlined in Ref [18] and [19]. Using the structural impedances and
the system structure outlined in the previous chapter, the equations of
motion of this system can be represented:

K+Kd Kd
sM + Cd + s -Cd' d "--

-C - SMd + Cd +
d sd d

[0] (3.8)
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K 1

Cd

V2

F

Figure 3.3 Diagram of a Simple 1-DOF System with Attached PMD

Since there is no external force on the degree of freedom (DOF) associated
with the PMD, this node can eliminated from the vector of retained degrees

of freedom using static condensation. This leads to a single effective point
impedance relating the response of the main system to the forcing:

s K sMd(C s + K1
s Ms2 + Cs +K v Zeff(s)vl = F (3.9)

This reduced impedance can be seen to have terms which are related to the
main system elements, K and M, and a complicated, complex term related to
the resonant damping system. This term is the effective point impedance of
the PMD at the system node and can be normalized using the traditional
terms found in Ref. [18].

ZPMD(S) 3 ( 8ry + 2(3.10)=MD (3.10)
sM 72 + +8ry

where,

M Odd d 3.11)
Mcro= - (3.11)

Thus the PMD can be represented as a complex, frequency dependent point
impedance at its connection to a system. The difficulty is determining the
values of the non-dimensional parameters, and r, (given the mass ratio of
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the damper 3) which minimize the response of the structure to the forcing.
The 8 parameter represents the ratio of damper frequency tuning to system

target modal frequency and the r parameter is related to the damping of the
resonant subsystem.

The determination of the optimum parameter values is outlined in
great detail by Miller, Ref. [5] and Juang, Ref. [20]. The optimum damper

frequency ratio is found by examining two limiting cases for the system, the
one with no damper in the PMD and the one with an infinite damper in the

PMD. In the case with no damper there are two undamped resonances of the

system as shown in Fig. 3.4. In the case with infinite damping value (r =
infinity), the PMD is effectively locked to the base system and no energy is

dissipated. This results in a single mode system. The transfer functions for

these two systems intersect at two points , called the S and T points, which can

be found by equating the two transfer functions. Equating the magnitudes of

the transfer functions at these intersection points leads to a value of 8 which

can be shown to be optimum:

8w l + p (3.12)
opt 1+1

Since the mass ratio 13 is always positive, this relation implies that the PMD

will always be tuned to a frequency below the main structure's resonance. In

the case of multi-mode systems, the system mass used in the mass ratio is the

effective modal mass of the system normalized to the point at which the PMD

is attached (Ref. [5]).

Having determined the optimum tuning ratio, the optimal damping
for the PMD must be found. The limiting cases of no damping in the PMD or

infinite damping in the PMD both produce system transfer functions with
infinite amplitudes. The objective is to find an optimum damper value, Cd,

between these two extremes which minimizes the maximum amplitude of
the system transfer function. This is called a min-max criteria. The effect of

damper values on the system transfer function can be seen in Fig. 3.5. The
traditional manner of achieving a min-max is to set the slope of the system

transfer function to zero at the S or T point. This produces the double
humped transfer function of the optimally tuned PMD. The expression for r,

though complicated, involves only 3.
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Figure 3.4 Transfer Function for a 1-DOF System with a PMD Attached Showing the Effect of

Varying the PMD Dashpot from 0 to Infinity at Non-optimal Tuning

Irot 
N -Q(X/X2M

P(X/Xd22 - M
(3.13a)

where:

41+ 2+]

M._ (3.13b)

(3.13c)N =

-57-



(1 + ) (2 + 3)

(2 + 0) 2+ + (1 +

(3.13d)

(3.13e)

(1 + p)2 (2 + )

X 2 2+3
Xst 1

(3.13f)

This expression for rpt and the previous one for 8opt define the system with
minimum steady state response for a given value of the mass ratio, 5. The
larger the mass ratio the more damping the PMD can introduce into the
system. The cost is obviously additional system mass.

PMD TRANSFER FUNCTION

0.90 0.95 1.00 1.05 1.10

g (Nondimensional Frequency)

1.15

Figure 3.5 Transfer Function of PMD Damped System at the Optimum Tuning Ratio and Various

Values of the PMD Internal Dissipation
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An alternative method for determining the optimum PMD damping is
described in Ref [5]. It entails finding the value of the damping which is
associated with the coalescence of the two system modes, i.e. the point of
furthest left excursion for the system poles in the s-plane. This technique
yields a higher steady state system response. The optimal damping parameter
in this respect is expressed as

r2 = 2 I4 p3 (3.14)
Opt-pp L %j[(1 + 13)

There are thus two alternatives for choosing the "optimal" damping value
for the PMD. The differences in the values tends to be small and so the
second, simpler Equation (3.14) is often used.

As a summary, the PMD can be modelled as a complex point

impedance which can be optimally tuned to give maximum energy
dissipation to a mode of the base structure. The PMD is effective at damping

over a very narrow bandwidth, and its effectiveness depends on 1) its mass
relative to the mass of the structure and 2) the relative tuning of the spring
and damper to the base structure.

3.3.1 Energy Based Reductions of Proof Mass Dampers

In this section an attempt will be made to model the amount of
damping that resonant subsystem dampers actually introduce into the system
modes. This modelling is complicated because the addition of resonant
subsystems alters the frequency response of the system, introducing new
modes and shifting the frequencies of others. Of course, these new system
modes can be identified for their individual damping ratios, but this requires
a complete analysis of the system with closely spaced modes every time a
resonant damper is introduced. It would be useful to be able to simply
evaluate the effect of the damper on the important modes of the system.
With resonant dampers, difficulty can arise in evaluating the effects of
mistuning on the damping levels of the modes since typically neither the
system nor the damper parameters are known with certainty. It would
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therefore also be useful to be able to evaluate the effects of mistuning on the
performance of the PMD.

System A: System B:
Single DOF with PMD attached Single DOF with equivalent dashpot

t
Ar F

Figure 3.6 Standard Model of a 1-DOF System with an Attached PMD (A) and the Equivalent

System with an Equivalent Dashpot (B)

One method of accomplishing these objectives is to model the resonant
PMD in terms of the structural energy that it dissipates rather than the details
of its effect on system response. This method involves conceptually replacing
the PMD shown in System A of Figure 3.6 with a simple dashpot shown in
System B which would dissipate the same amount of energy as the PMD. The
dashpot damping will have frequency dependance but the natural frequency
of the base system will remain unchanged. To do this, the energy dissipated
in the PMD can be evaluated using Equation (2.35). Noting that only the
dashpot built into the PMD in System A dissipates any energy, the average
power dissipation in a cycle for an undamped system with a PMD as shown in
System A of Figure 3.6 can be calculated using Equation (2.35).

- ( 1-v2) C d -2) (3.15)

Where the superscript, *, denotes the complex conjugation. Since there was
no external force on node-2, an expression can be found which was employed
in the static condensation used to derive Equation (3.9) relating vl to v2:
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(3.16)

This expression can be substituted into (3.15) to give an expression for the
energy dissipation in System A.

EA 2 sMd

T Cd 2 sMd +Cd +- (3.1

In System B there is only a single dashpot in the base structure. Again using
(2.35), the energy dissipated in System B can be written:

EB 2
dis (3.18)[= Ceq v(3.8

Now equating the energy dissipated in A to the energy dissipated in B and
cancelling the amplitude of vl from both sides of the equation, the equivalent
dashpot value can be found.

2

sMd

Ceq =Cd Kd (3.19a)

SMd + Cd + -

After nondimensionalizing in accordance with Equation (3.11)

2

Cd ' + ,g2 (3.19b)

This equation exhibits the dependencies of the system damping on the
PMD parameter values. For large values of Cd, the Ceq goes as 1/Cd since r =
Cd/MdOd. For large values of the dashpot internal to the PMD, the total
system damping actually decreases. This effect is evident in Fig. 3.5 which
shows the dependance of system amplitude on the value of r. The equivalent
dashpot in System B can be expressed as a system loss factor using the
equivalence between loss factor and damping ratio for a single degree of
freedom system

TI-DOF =2 CI-DOF g (3.20)
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Where g = co/on and is traditionally defined

C (3.21)
2M0i n

Using these equations and the nondimentionalizations of Equation (3.11),
Equation (3.19b) can be expressed as an effective loss factor for the base system.
This expression gives some important insight into the frequency dependant
effectiveness of the PMD.

Tleff = r 8 g (e2 2)2 + (r )2 (3.22)

The effective loss factor of the PMD reflects the system energy that the
PMD dissipates for frequencies which do not necessarily correspond to the
tuning frequency of the PMD. The expression for the effective loss factor can
thus provide information about the energy dissipation that the PMD provides
to modes to which it is not properly tuned or which have resonant
frequencies above or below the primary damped mode. The effective loss
factor of the PMD is plotted as a function of frequency in Figure 3.7 for
optimal values of the parameters to show the sensitivity of the PMD
effectiveness to mistuning. Several things can be seen from Figure 3.7. First,

T1 is very dependent on , the mass ratio. The more massive the proof mass
damper the more damping that can be introduced into the base system mode.
This suggests a damping-added mass trade in designing damped systems.
S_ condly, the effect of the PMD drops off to zero very quickly with frequency
below the damper tuning frequency. This implies that the modes below the
PMD's tuning frequency will derive almost no benefit from its presence.
Thirdly, the effectiveness of the PMD as a damper drops off rapidly to a small
residual level for frequencies above the damper tuning. Thus there is some
residual damping effect for modes above the damper tuning.

Some key values can be taken from (3.22). The first is the value of the
damping at base system resonance, g = 1:

ref 2 1)2 r for small 1 (3.23)
lieff =(2 -1) (r2)2 r)

This formula is useful for preliminary damping estimates for systems with
PMDs.
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The second value is the residual loss factor at frequencies much higher

than the PMD tuning:

1 residual = prCg (3.24)

The optimally tuned response of System A and B are shown in Fig. 3.8.

The equivalent energy reduction gives good estimates for the maximum
amplitude of the system if not for the total system transfer function. This
technique is because the transfer function value at resonance is typically
determined only by the system damping. This technique of using an
equivalent energy dissipation element for a resonant subsystems can be used
as an approximate method for estimating the transfer function and damping
of systems with attached PMDs or other resonant dampers.

3.4 Shunted Piezoelectric Dampers

3.4.1 Introduction

Another type of damping mechanism for structural systems uses
piezoelectric materials within a passive network. Piezoelectric materials
posses certain properties which make them useful as dampers or control
elements for structures. The first is that they strain when an electrical field is

applied across them. This property makes them well suited as actuators for

control systems where the control signal is typically some voltage. The
second is that they produce a voltage when they are strained. This property
makes them well suited for sensing strain in structural systems. In general,
piezoelectrics have the ability to efficiently transform mechanical energy to

electrical energy and vice-versa. It is this transformational ability which
makes them useful as elements in a damping network.

A typical piezoelectric and its constitutive relations is shown in Fig. 3.9.
The fundamental constitutive relations are the relation between strain and
applied field, known as the d constants, and between the charge density and
the applied strain known as the g constants. Another fundamental property
is the electromechanical coupling coefficient, k, which governs the energy
transformation properties of a piezoelectric. The constants are explained in

Ref. [21].
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Surfaces Electroded

In passive energy dissipation applications, the electrodes of the
piezoelectric are shunted with some electrical impedance. Hence the term
shunted piezoelectrics is used. The electrical impedance is designed to
dissipate the electrical energy which has been converted from mechanical
energy by the piezoelectric. If the shunting impedance is a resistor, the
piezoelectric material exhibits frequency varying structural properties very
similar to viscoelastic materials. If the shunting circuit is resonant, then the

piezoelectric exhibits optimal tuning properties similar to the PMD. The
advantage of using the piezoelectric and resonant circuit is that resonance is
achieved with lightweight electronics instead of complex mechanical devices.

In the following sections the shunted piezoelectric's interaction with
external circuits will be modeled, and the benefits that can be derived by
passive circuit shunting of piezoelectrics will be quantified. First, the
equivalent effective impedance of the shunted piezoelectric will be derived.

This expression will then be applied to the cases of resistive and resonant

circuit shunting. Expressions for the system damping will be derived, and
parameters will be found which maximize this damping.
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3.4.2 Modelling of Generally Shunted Piezoelectric Materials

Within the framework of systems analysis presented in Chapter 2, both
mechanical and electrical systems can be represented as networks of frequency
dependent impedances. The standard definitions of mechanical and electrical
impedances and the correspondence between these used in the previous
chapter:

Mechanical Electrical
force <=> current
velocity <=> voltage

can be employed to derive the equivalent network model of the piezoelectric
shown in Figure 3.10. The first step in the modelling is to note that the
piezoelectric in Figure 3.10 is a two port element. There is one mechanical
port and one electrical port. In parallel with the mechanical port through
which the external forces act on the piezoelectric, there is the inherent
mechanical impedance of the piezoelectric which consists primarily of the
piezoelectrics stiffness. In parallel to the electrical port through which applied
voltages act, there is an electrical impedance which consists primarily of the
piezoelectrics inherent capacitance and any impedance shunted across the
piezoelectric's electrodes.

The electrical and mechanical networks are linked by the piezoelectric
effect. The core of the piezoelectric can be modeled as a transformer (more
precisely, a gyrator since it converts an across variable, velocity, into a
through variable, current) converting electrical energy into mechanical and
vice-versa, Ref. [21]. The lossless transformation is defined by an equivalent
"turns ratio", n, for the piezoelectric:

vc(co) n = Ie()) (3.25a)

Fc(co) = Ve(co) (3.25b)

where vc is the velocity across the mechanical side of the transformer, Fc is the
force through the mechanical side of the transformer, Ie is the current
through the electrical side of the transformer and Ve is the voltage across that
electrical side. The turns ratio, n, is defined using the piezoelectric relation
relating charge per unit area to strain, Ref [21]
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qe 1

LW g31
(3.26)

where qe represents the charge on the piezoelectrics electrodes which is
produce by a strain, l1; w is the width of the piezoelectric bar; and L is it's
length. In the case shown in Fig. 3.10, the strain is in a direction
perpendicular to the poling axis, the 1 direction, while the charge is
developed such that the resulting field is parallel to the poling axis, the 3
direction. The g31 constant is the piezoelectric constant relating charge per
unit area on the open circuit piezoelectric (not shunted) to the strain in the
piezoelectric.

Equation (3.26) can be differentiated and compared to Equation.(3.25a)
to give the "turns ratio" for the piezoelectric

Wn=
931

(3.27)

At this point, an equivalent impedance for the piezoelectric shunted by
any electrical circuit can be derived by applying Tellegen's Theorem to the
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system in Fig. 3.10. The network which represents the piezoelectric consists
primarily of two elements. The first is the element which represents the
inherent mechanical impedance of the piezoelectric. Ignoring inertia terms,
the mechanical impedance of the piezoelectric can be represented by the short
circuited stiffness of the piezoelectric

ZShC(s) = E W (3.28)

where ZSCmech is the short circuit mechanical impedance of the piezoelectric
which is based on the short circuit stiffness, Es. The short circuit stiffness is
used to separate the effects of the electrical circuit from the inherent stiffness
of the piezoelectric.

The second important element in the network that represents the
piezoelectric is the equivalent electrical impedance of the circuit on the
electrical side. Since the piezoelectric's surfaces are coated with a conducting
layer, it will always posses some inherent capacitance which depends on the
geometry and dielectric properties of the piezoelectric. The electrical
impedance of the piezoelectric consists of this inherent capacitance combined
with the electrical impedance of other components shunted across the
piezoelectrics electrodes. Thus an expression for the total electrical
impedance used in the network analysis is written:

Zsh(s)

CS
Zec(s)= 1 S (3.29)

+ Zsh(S)

where Cp represents the inherent piezoelectric capacitance. Throughout the
remainder of this chapter the subscript, ()p, will signify piezoelectric and not
port as in Chapter 2.

The transformer does not appear in the system formulation using
Tellegen's theorem because it neither stores nor dissipates energy. It
therefore doesn't contribute to the summations over the elements. It will be
useful to define a variable transformation, however. Finally, if the external
force on the piezoelectric in Fig. 3.10, Fp, is thought of as an system port in
parallel with the mechanical impedance, the network summation can be
performed.
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vpHFp = vpHZmech(S)Vp + HI Z leH(s)I (3.30)

where vp, the velocity across the piezoelectric, is equal to vc, the velocity
across the transformer element, because the transformer is arranged in
parallel with the mechanical impedance. The variable, Ie, which represents
the current flowing through the electrical impedance is equivalent to the
current generated by the piezoelectric under strain. It can therefore be
eliminated using the transformer relation (3.25a). Finally, substituting the
elemental impedances and cancelling vp ,leads to an expression for the
equivalent mechanical impedance of the piezoelectric

Fp (s)= -[E +( Zec()] vp = Zeff(s). Vp (3.31)

The total electrical impedance is taken to be the shunting impedance in
parallel with the piezoelectrics inherent capacitance, Equation (3.29). At this
point, it is convenient to introduce the piezoelectric property known as the
electromechanical coupling coefficient. It is defined as the ratio of the peak
energy stored in the capacitor to the peak energy stored in the material strain
with the piezoelectric electrodes open. Physically it represents the percentage
of energy present in the mechanical strain which is converted into electrical
energy and vice versa.

1 c
2%

k2-- Cp (3.32)

Using Equation (3.26), this expression can be reduced to:

k2 = LW (3.33)

31 ECPT

Also, noting that:

ZeC(s) = short circuit electrical impedence = 0 (3.34a)

Z(ec(s) =.open circuit electrical impedance - C (3.34b)

An expression to relate the open and short circuit stiffnesses of the
piezoelectric can be derived by using (3.34b) and (3.31). First Equation (3.31) is
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used to find the effective impedance of the piezoelectric when the electrodes

are left open. The open circuit electrical impedance is substituted into (3.31)
to give:

Z~fccS) = = + (335)
eff LS L[ Ls (3.35)

The expression for the electromechanical coupling coefficient, Equation (3.33)
is then substituted into the electrical contribution to the impedance. Finally,
the TW/LS is cancelled from both sides of (3.35) to give the expression relating
the open and short circuit impedances of the piezoelectric.

Esc =1-k 1)Ec (3.36)

This relation is the standard form for relating the short and open
circuit stiffnesses (Ref. 3.8). It is directly derivable from the form of the
effective impedance of the piezoelectric. Equations (3.28), (3.33), and (3.36) can
be substituted into Equation 3.35 to give the final form for the piezoelectric
effective impedance:

Zeffms) = ech + 2 Z j (3.37a)

() 1 + ZS mod )] (3.37b)

where ZSCmech is defined in (3.28).

Thus, The impedance of the piezoelectric can be expressed as the
product of its short circuit mechanical impedance (just a stiffness) and a
nondimensional modifying term which reflects the effect of the electrical
circuit shunting the piezoelectric's electrodes. The effects of the electrical
circuits are modified by the electromechanical coupling coefficient, which
limits the influence that the electrical portion of the circuit has on the
effective impedance. The impedance derived in (3.37) can be thought of as an
effective mechanical impedance since it relates velocity to force. The
electrical terms therefore appear only as modifiers to the inherent mechanical
stiffness of the piezoelectric. Since the impedance represented in (3.37) is
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effectively only a stiffness, it can be expressed in the form commonly used for
viscoelastic materials [Eq. (3.2)]:

Eeff(co) = Eo(co)[1 + i(co)] (3.38)

This reduction leads to frequency-dependent equations for the complex
modulus of the shunted piezoelectric. Putting Equation (3.37) into the form
of Equation (3.38) gives the frequency-dependant equivalent material
properties for an arbitrarily shunted piezoelectric.

I(c) = Imag{Zmod(S)} (3.39a)

Real)1 + Zmod(S) (

E0(co) = E. Real{1 + Zmod(S) } (3.39b)

These equations, as well as (3.37), can be applied to arbitrary shunting
conditions for parameter optimization of the material loss factor at a critical
frequency. The expression for the effective impedance of the shunted
piezoelectric can be used along with the impedances of the other damping
devices in the frequency domain system analysis described in the previous
chapter.

3.4.3 Resistive Shunting

One circuit which can be coupled to a piezoelectric is that of a resistor
shunting the piezoelectric electrodes as shown in Figure 3.10. In this
shunting geometry, the resister is placed in parallel with the inherent
capacitance of the piezoelectric. The resistor provides a means of energy
dissipation on the electrical side and thus should increase the total
piezoelectric loss factor above the loss factor for the short or open circuited
piezoelectric. Its exact effect on the stiffness and dissipation properties of the
piezoelectric can be modelled by applying Equation (3.37). For the case of a
resistor across the piezoelectrics electrodes, the total electrical impedance used
in (3.37) is:

Zec (s) = Rps + 1 (3.40)
RCPS + 
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Inserting this into (3.37) gives the piezoelectric's effective mechanical
impedance.

)- [1k2 (3.41)

Since there are no internal resonances, it is convenient to use (3.39a)
and (3.39b) to express (3.41) as a frequency dependent stiffness and loss factor.
That is, the resistor can be thought of as changing the material properties of
the piezoelectric into those of a lossy material similar to a viscoelastic in
behavior. Using (3.39a) and (3.39b) to solve for nondimensionalized
expressions for Tj and E gives

11MC -O) k3l2 ) + (3.42a)
2 2

E(o) = Esc 1 + 31 J (3.42b)

Where p is the nondimensional frequency.

p = RCpCo = C , nondimensional frequency (3.42c)

These relations have been plotted versus p, the non-dimensional
frequency (or the nondimensional resistance) in Figure 3.11 for k31l = 38%.
These curves bear a marked similarity to the equivalent material curves for a
standard linear solid. Two things are obvious from the graph. First, for a
give resistance the stiffness of the piezoelectric changes from its short-circuit
value at low frequencies to is open-circuit value at high frequencies. The
location of this transition is determined by the shunting resistance. Secondly,
the material exhibits a maximum loss factor at this transition point. By
preforming an optimization, the location of this point of maximum loss
factor can be found to be:

Pop = RoptC 1 - k3 (3.43)

which yields:
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2

o=pt 11 (3.44)2 /
Thus by appropriate choice of resistor, the peak of the loss factor curve can be
moved to the desired frequency. It should be noted that the loss factor curve
takes the same form as the Zener curve for material damping but can lead to
material loss factors as high as 8.2% for commonly available piezoelectric
materials with coupling coefficients as high as 38%. This compares favorably
to the results obtained in Ref. [22] for the effective material loss factor for a
resistive shunted piezoelectric. While these loss factor levels are not as high
as those for viscoelastics, the piezoelectric material (typically a ceramic) is
much more stiff than a viscoelastic and thus stores more strain energy. The
net effect is that in most structural cases shunted piezoelectrics will provide
higher total structural damping levels. These results for the resistive shunted
piezoelectrics have been validated experimentally and will be presented in a
later section.

Resistive Shunted Piezoelectric Material Properties
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Figure 3.11 Effective Material Properties of a Resistive Shunted Piezoelectric
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3.4.4 Resonant Circuit Shunting

Another case of interest is to create a resonant circuit by shunting the
inherent capacitance of the piezoelectric with a resistor and inductor in series
forming a LRC circuit for Zelec. This circuit is shown in Fig. 3.10. This
resonant electrical circuit can be tuned to a mode of the underlying
mechanical system and thus greatly increase the attainable modal damping
ratio in an effect similar to the classical proof-mass damper (PMD) presented
previously.

With an inductor and a resistor in parallel with the piezoelectric's
inherent capacitance, the total electrical impedance can be written:

Ls + R
Z1(s) = Ls+ 2 (3.45)

1 + RCps + LCps2

were L in the shunting inductance and R is the shunting resistance. This
circuit is clearly resonant with some damping due to the resistance, R.
Expression (3.45) can be substituted into (3.37a) and the resulting expression
nondimensionalized to obtain: [: (s> ·t x + (31.

Z(S) = Zh(s) 1+ 2 (3.46)

where the nondimensionalizations are defined relative to some arbitrary
normalization frequency, COn

Ce= 1 = electrical resonant frequency (3.47a)

,w,= s -(3.47b)

(3.47c)= oe (3.47c)

r = RCpoe (3.47d)

Equation (3.46) is an expression of the effective mechanical impedance
of a piezoelectric element shunted by a resonant circuit. This impedance can
be included into the system framework described in the previous chapter for
estimates of the total system loss factor. The key parameters of (3.46) are the
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frequency tuning parameter, 8, and the damping parameter, r. These
parameters are directly analogous to the ones used in the PMD
nondimensionalization (Section 3.3, Equation 3.11). The 8 parameter reflects
the frequency to which the electrical circuit is tuned while the r parameter is
an expression for the damping in that circuit.

There are several ways to determine the optimal parameters of (3.46)
for energy dissipation. One of these involves treating the resonant shunted
piezoelectric as a material with frequency dependant properties in a fashion
analogous to the resistive shunting case. The expression for the effective
impedance of the piezoelectric can be put into a complex modulus form such
as (3.38). This leads to some very complex frequency dependant expressions
for the material loss factor and stiffness.

ESZw c· f kt2 X(arg)2_g(g2) l
ERC(CO) L + 'k 1k (rg)2 + (

82 g2)2J (3.48a)

k3(68 rg)
(cO)= 3 1 (3.48b)

LRC (8rg)2 + (82 - g2)2 - k2 (82 g2 )(1 + g2) (

where ELRC and 1LRC are the effective material properties of the resonant
shunted piezoelectric, and g is the real form of y (co/o,). These expressions can
be seen plotted in Fig. 3.12 for common values of the parameters. They can be
useful in system modelling if the values of the parameters are already
known. Both the effective material stiffness and the damping vary greatly
with frequency and tuning parameter values, 8 and r. This makes an
optimization for energy dissipation difficult. The equations nonlinear
dependance on the parameters also complicates matters. The actual energy
dissipated is dependant on both E and i.

The problems associated with the parameter optimization can be
greatly alleviated by observing certain key similarities between a system
containing resonant shunted piezoelectrics (RSPs) and a system containing
the previously analyzed PMD. The first step in this comparison involves an
examination of the system topologies. Both systems are shown in Fig. 3.13
along with the equivalent impedance network for each. Both systems contain
impedances for the mass and stiffness elements and both contain a single

- 75 -



Resonant Shunted Piezoelectric Material Properties

101

10

9 lo

] 10-2

10-3

10-4

10- 5

A

Ira.2

BY,

10'1 lo10 01
g (Nondimensional Frequency)

Figure 3.12 Effective Material Properties of a Piezoelectric Shunted by a Resonant LRC Circuit.

resonant impedance which acts as the damper. The damper impedances
occupy corresponding locations in the network. This suggest that the method
for obtaining the optimum parameters for the PMD can be applied to the RSP.

To determine he tuning and damping of the electrical subsystem
which maximizes the damping in a mode of the piezoelectric's base structure,
we must model the coupled system dynamics and draw analogies from the
classical proof-mass damper. The derivation for optimal tuning and damping
of the electrical circuit parallels the technique for determining the optimal
tuning and damping ratio of a PMD as outlined in Ref. [18] and [19].

The mass and stiffness can be used to model the modal mass and
stiffness of a multi-DOF system or any other equivalent system
representation. Since the form of the impedance network for both the tuned
piezoelectric and PMD cases is nearly identical, it is not surprising that the
expressions for the system responses are similar. For the piezoelectric system
the velocity at node-I can be expressed

F(s)
V (s) = Zmass (S) + Zstif(s) + ZRSP (S)
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Figure 3.13 Comparison of Resonant Damper Topologies between an RSP Damped System (A)

and a PMD Damped System (B)

Where Zmass is the impedance associated with the base system mass; Zstif is the
impedance associated with the base system stiffness; and ZRSP is the
impedance associated with the resonant shunted piezoelectric. After
reduction and nondimensionalization an expression for the position transfer
function of a mechanical system with a RSP in parallel with the base system
stiffness and a force acting on the mass can be found from (3.49):
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x (2+ 7y2)+8ry (3.50)

XSt (+Y(2+ A+y (l+ + 2) Ky(y+&)

where Xst is used for F/Ktot. The nondimensionalization is the same as that

used in (3.47a) and (3.47b). with the substitution of the mechanical systems
natural frequency for the normalization frequency used in (3.47). The
generalized electromechanical coupling coefficient, K31, is defined:

2 2 piezo 2 piezo (351)
K31 = k\3 k~Ksys +K e

The generalized coupling coefficient reflects the fact that the
piezoelectric is in parallel with some other stiffness. It is expressed as the

normal electromechanical coupling coefficient multiplied by the ratio of
piezoelectric open-circuit stiffness to total system stiffness with the
piezoelectrics shorted.

For the tuned PMD, the transfer function expression equivalent to
(3.50) is:

x_ (82+ y2)+ 6ry (3.52)
St y2) 2) + (1+ 2)(8ry) + 2(2s + rY)

By comparing the form of these two equations, (3.50) and (3.52), it becomes

clear that the generalized electromechanical coupling coefficient for the tuned

piezoelectric case, K31, serves the same function as the mass ratio, 3, in the

PMD case.
Two techniques for determining the "optimal tuning criteria will be

presented. The first technique parallels the min-max criteria (presented in
Ref. [18] for PMDs as well as Section 3.3 of this chapter) for minimizing the

maximum of the system transfer function by appropriate choice of the RSP

parameters. This technique will be referred to as transfer function
optimization, and the optimal parameters will have the subscript, ()TF. The
second technique will depend on pole placement techniques to choose system

pole locations which maximize the magnitude of the real part of the system

roots. The optimal parameters using this technique will bear the subscript,
()pp, to signify pole placement.
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At this point the optimal tuning ratio using the first technique can be
found by duplicating the argument for the PMD in Ref. [18]. The first step in
this process is to find the magnitudes of the transfer functions which
correspond to r = zero and r = infinity respectively. From (3.50) we can obtain
forr =0

(3.53a)
r=0

and for r = infinity

21 (3.53b)
r (1 K31) g2

These two transfer functions can be equated and a quadratic expression found
for the intersection points, called the S and T points in the PMD analysis.
This expression is

2 _A(1+K 31)+ +g4=o (3.54)

From the quadratic formula, the sum of the roots of this equation can be
found to be

2g-B 2 2
g +r= = - (1 + K3) + 6 (3.55)

Equation (3.53b) can be solved for the magnitudes at the S and T points. This
gives another expression for the sum of the two roots.

+ g = 2(1 +K31) (3.56)

Equating (3.55) and (3.56) leads to an expression for the tuning ratio which
equalizes the magnitudes of the S and T points. This is the optimum tuning
ratio.

8opt-TF = + 2 (3.57)

Since K31 is always positive, this equation implies that the electrical
resonator should always be tuned above the structural mode to be damped as

opposed to tuning below as in the PMD case.
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Once the optimal tuning has been found using the transfer function
criteria, there are several methods for determining the "optimal" damping in
the electrical circuit. One method entails setting the amplitude of the system
transfer function at the frequency to which the resonant electrical circuit is
tuned to the amplitude of the transfer function at the invariant frequencies,
the S and T points. The frequency corresponding to the electrical tuning
occurs at g = . The amplitude of the S and T points can be found by first
solving Equation (3.54) for the S and T frequencies. The roots of (3.54) are:

~'T = 1 2 2 

,T =(1+K3 1)+ K3 1+K31 (3.58)

This expression can be substituted into (2.53) to yield the amplitude at S or T.

(3.59)
S,T

Evaluating the system transfer function, Equation (3.50), at g = 8 and setting
this amplitude equal to (3.59) gives an equation that can be solved for a
simple expression for the "optimal " circuit damping:

ropt-T 2K (3.60)
1 + K31

The subscript, opt-TF, signifies that this expression was derived from transfer
function consideration. The effect of various circuit resistor values at optimal
tuning is shown in Figure 3.14.

The second technique for determining the optimal tuning parameters
is based on s-plane methods described in Ref. [5] for PMDs and outlined in
Ref. [22] for piezoelectrics. The s-plane diagram in Figure 3.15 shows the root
locus for the poles of the shunted piezoelectric system. Just as in the PMD
case, as the damping parameter is increased the distinct poles can coalesce into
double complex conjugate pairs if a special value of the frequency tuning
parameter, , is chosen. This is the point of leftmost excursion in the s-plane
described in Section 2.2. The method involves finding the value of the
frequency tuning parameter, , and the damping parameter, r, which gives
that point on the s-plane. The poles of the system are found from the
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Figure 3.14 Transfer Function for a Single DOF System Containing a RSP at Various Values of

the Damping Parameter, r

denominator of Equation (3.50). Assuming the coalesced poles are located at
the coordinates, s = a + ib, a - ib, a series of equations for a and b can be found

by equating corresponding terms of the characteristic polynomial found in the
denominator of (3.50).

Br = -4a (3.61a)

(1 +8 2 ) + +K = 6a2 + 2b (3.61b)

Br(1 +K3)=-4a(a2+b 2 ) (3.61c)

8 = a2 +b2 (3.61d)

These equation can be solved for the parameters, r and 8, to give the value

which results in the coalesced poles:

pp = 1 +K31 (3.62a)
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K2

ropt up = 2 2 (3.62b)
I + K31

The subscript, opt-PP, has been used to signify that the expressions were
derived from pole-placement considerations. The transfer function
corresponding to optimal tuning and this value of r is shown in Figure 3.14.
This method tends to give higher steady state responses than the first method
presented.
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Figure 3.15 Root Locus for a RSP Damped System at 2 Values of 6 as a Function of the Damping

Parameter, r, Showing the Pole Locations for the Pole Placement (0) and Transfer Function (X)

Optimal Tunings

As a practical point the various damper tuning criteria are
indistinguishable in all but the most sensitive experimental setups. The
ratios given for optimal tuning and electrical damping can now be used to
add maximum damping to targeted structural modes in a fashion analogous
to the PMD. Use of a tuned circuit can increase the structural mode damping
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several orders of magnitude above simple resistive shunting. The discussion
of the experimental validation of these concepts is presented in Chapter 5.

A technique has been developed to model piezoelectric materials
shunted by an electrical circuit. A model for general shunting was developed
and applied to the cases of resistive and inductive circuit shunting. The
optimal parameters for maximizing total system loss factor (or damping ratio)
were derived for these cases. Great benefits for base system energy dissipation
can be attained by shunting the electrodes of the piezoelectric material. The
energy transfer from the mechanical to electrical parts is governed by the
generalized electromechanical coupling coefficient and can be enhanced by
using tuned circuits.

3.5 Conclusions

In this chapter, the impedance models for three types of damping
mechanisms where developed. Models were developed for viscoelastic
materials, the classic proof mass damper, and shunted piezoelectric materials.
These models were developed in the frequency domain for incorporation
into the system models developed in Chapter 2. Expressions for the loss
factor attainable for each method were developed as a basis for comparison of
the three methods. These loss factors can be combined to determine the total

system loss factors for systems incorporating these or various other types of
damping methodologies. A typical system damping design methodology
might include the following steps:

1) Develop the global impedance matrix for the system by
assembling the system components using the framework
described in the previous Chapter 2.

2) Select an approximate undamped system modeshape to be used
in the approximate systems analysis.

3) Incorporate the selected damping impedances into the global
system model. The damping impedances for the more common
and effective damping methodologies are presented in this
chapter.

- 83 -



4) Calculate the approximate system frequencies and damping
using the undamped modeshape and Equations (2.45) and (2.50).

5) If the approximate values meet the desired design criteria
preform a complete eigenanalysis on the damped system by
solving (2.43) for the eigenvalues. If the design criteria are not
met choose a new damping arrangement and repeat Step 3
above.

By examining this methodology it can be seen that all the necessary

elements of a unified framework for evaluating and calculating the effect of

various damping schemes on a structure have been developed. The damper
impedance contains information necessary to calculate both the damper's
effects on the structural damping and its effects on the structural natural
frequencies. Therefore, the frequency domain system modelling is ideally
suited for the analysis of damped systems.
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Chapter 4
Experimental Design

4.1 Overview

In this chapter the hardware developed for the experimental program
will be discussed. This hardware falls into three categories: the underlying
structure to be tested, the actuators/dampers used to implement the damping
schemes, and the electronics necessary to support these dampers and gather
data for the investigation. The experiment had two main goals: to provide
actual data on the implementation of damping enhancement schemes on a
representative structure; and to test the utility of the frequency domain
systems analysis in modelling damped structures.

To accomplish these goals, a representative test structure was
constructed upon which damping enhancement schemes were implemented.
The structure was designed to be representative of a general space structure
and realistic enough to provide data on the practical aspects of damping
enhancement. On the other hand, it had to be simple enough to make the
results general and comparable to other structures. To meet these
requirements, a dynamically isolated truss structure was constructed which
provided the low inherent damping levels desirable for a damping
enhancement testbed. The details of this testbed design will be presented in
Section 4.2.

Two types of damping enhancement schemes were implemented on
the experimental truss. They were both resonant damping systems. These
systems are the classical proof mass damper and the resonant shunted
piezoelectric described in Chapter 3. These methods were chosen because they
provide the highest amount of damping for a given mass. The resonant
damping methodologies are mass efficient in the mode to which they are
tuned. The design for the hardware used to implement these schemes is
presented in Section 4.3.1. The PMD was implemented with a linear
electromechanical driver using materials and construction designed to
minimize weight. The resonant piezoelectric method was implemented
using a novel piezoelectric truss member which could be inserted in the truss
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in place of the standard members. The design for the truss member is also
described in Section 4.3.2.

In order to facilitate the experiments, electrical circuits were
constructed which enabled the resonant dampers to be tuned in the vicinity
of the structural modes of interest. For the PMD, this circuitry employed a
position and velocity feedback loop to create electrical stiffness and damping.
Thus, the PMD parameters could be changed simply by changing the electrical
gains in the circuit. The PMD was driven by a current source to simplify the
design of the tuning circuitry. For the piezoelectric, the ability to tune the
resonant behavior of the device in the vicinity of a structural mode of interest
was achieved with the aid of a variable resistor and a partially variable
inductor. This enable tuning of the resonant electrical shunting circuit. The
design for this circuitry as well as the circuitry for the PMD is presented in
Section 4.4. The data acquisition network is also presented in this section.

These three elements, the truss structure, the resonant dampers, and
the support electronics, are components of the experimental setup presented
in Fig. 4.1. They were designed to achieve the dual goals set forth earlier of
ascertaining the effectiveness of damping enhancement mechanisms on
space structures and testing the ability of the framework presented earlier to
model space structure damping.

4.2 Truss Design

A truss was designed and constructed for use as a test bed for the
damping enhancement schemes examined. The truss had to meet several
requirements. First, the truss had to exhibit stable, low inherent damping
levels. This was necessary so that the increase in damping due to the
damping schemes would be easily measurable. Secondly, it was desirable to
have a simple, understandable test structure so that physical insight could be
used to easily interpreted the results. Balancing this requirement was the
desire to test the damping schemes on a realistic structure in order to obtain
data applicable to actual large complex structures.

To meet these requirements, the truss structure presented in Fig. 4.2
was constructed. The truss was constructed from commercial hardware
available from MERO-Raumstruktur GMBH & Company, a display hardware
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company headquartered in Wuerzburg, Germany. The total experimental
truss length was 5 meters, consisting of 10 cubic bays of 0.5 meters. The bay
geometry and internal diagonal positioning is shown in Fig. 4.2. The
elements of the truss consisted of steel nodes and aluminum tubular
members for the battens, diagonals, and longerons. The members bolt into
the threaded nodes to create a tight, no-slop joint even under high excitation.
The complete specifications of the test article can be found in Ref. [23]. The
properties of the truss elements are presented in Table 4.1.

Mass (Kg)

Stiffness, E (GPa)

Area (m 2)

Total Length (m)

Eff. Length (m)

Nodes

0.228

See Note

NA

NA

NA

Battens &
Longerons

0.202

68.8E9

6.31E-5

0.500

0.398

Diagonals

0.239

68.8E9

6.31E-5

0.707

0.604

Note: The steel nodes were assumed to be rigid

Table 4.1 Properties of the Truss Elements

There were several design requirements on the resonant frequencies of
the test article. It was desirable to maintain the overall truss frequencies as
low as possible to better simulate a generic space structure. The design
objective was also to insure that there were at least 3 structural modes below
the natural frequencies of the individual truss members. The first bending
mode of the tubular aluminum diagonals was estimated to be in the range
from 220 to 300 hertz depending on the fixity at the nodes. In this range, the
truss exhibits a multitude of closely spaced modes due to the element
vibration, Ref. [24]. To avoid interacting with these modes the truss was
designed to be as long as space permitted, 5 meters; and tubular elements with
low cross sectional area but high bending stiffness were used. Low overall
truss frequencies were also obtained by mass loading the truss. This was
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accomplished by using steel nodes for the truss construction. The truss
frequencies were predicted with a conventional finite element program,
NASTRAN, and are presented in Table 4.2 for the baseline aluminum-
member truss.

Table 4.2 Initial Estimates of Experimental Truss Structure Natural Frequencies Based on a

Finite Element Model

There were also several requirements on the suspension of the truss.
Since data was desired on damping enhancement of a realistic space structure,
unconstrained truss vibration was desirable to simulate the isolated
environment of space. Since the truss was by nature a three dimensional
article, the suspension should allow it to exhibit unconstrained motion in all
six rigid-body degrees of freedom. The truss also had to be isolated from the
external environment to prevent energy dissipation through the boundaries.
To meet these requirements, a suspension system (Fig. 4.3) was constructed.
The key design features are:

1) The truss is suspended from 10 locations by .010 inch diameter
piano wire.

2) The wires are 2 meters long, giving truss horizontal pendulum
modes < 0.35 Hz.
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Mode Frequen cy, o(Hz)

Horizontal Bending 51.11

1 Vertical Bending 51.22

Torsion 73.84

Horizontal Bending 116.4

2 Vertical Bending 116.9

Torsion 143.9

Horizontal Bending 183.4

3 Vertical Bending 185.8

Torsion 208.7



r 1
4 -- Soft Springs --*

4- Piano Wire -

C&.4
ID-

c 4

Figure 4.3 Truss Suspension System

3) The wires are connected to soft coil-steel springs to give a 1.2 Hz
vertical bounce mode.

4) The support wires are adjustable to evenly distribute the truss
weight among themselves, helping to eliminate support
deformations and reduce the peak strain in the truss due to the
support.

The frequency separation between the truss modes (first bending at 39 Hz) and
the low bounce (1.2 Hz) and pendulum support modes (0.35 Hz) helped to
dynamically isolate the truss from external interaction. The soft supports also
allowed the truss to exhibit essentially free-free behavior in the modes of
interest, the first three bending modes.
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4.3 Damper/Actuator Design

In the experiments, two types of resonant damper methodologies were
implemented. These were the classical Proof Mass Damper (PMD) and the
Resonant Shunted Piezoelectric (RSP). Both these devices could also be
employed as actuators to produce forces on the system. The PMDs were
implemented with an electromechanical DC direct drive motor; and the RSPs
were implemented with piezoelectric truss members. In the following
sections, the design and implementation of these devices will be reviewed.

4.3.1 Proof Mass Damper Implementation

One of the damping methodologies tested involved the use of the
classical proof mass damper. The analysis and conceptual model of this
device was presented in Section 3.3. It involves a proof mass connected to a
structure via a spring and a dashpot. The parameters of the spring and
dashpot can in principle be tuned for maximum energy dissipation. The
PMD actually implemented for damping enhancement experiments on the
truss was a tunable electromechanical device.

The design of the PMD presented in Fig. 4.4 centers around several
important components. The proof mass portion of the damper is made of a
large rare-earth magnet and surrounding magnet iron. These components
form the magnetic field and slide axially on linear bearings. This proof mass
is connected to the structure by steel coil springs which give the entire
damper some inherent mechanical stiffness. The stiffness of the mechanical
spring is augmented by a position feedback circuit. This feedback circuit is
presented in Section 4.4.2. The current passes through a coil located in the
magnetic field, and thus produces a force which can be used by the position
feedback to create an electrical spring. It is this electrical "spring" which
allows the damper to be easily tuned to the structural modes. The dashpot of
the classical PMD model is also provided in this implementation by electrical
feedback. Velocity is measured by a velocity transducer and fed back to
produce a velocity-dependant electrical force adjustable by the velocity
feedback gain. This allows easy variation of the damping parameter, r,
presented in Equation 3.11.
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Figure 4.4 Proof Mass Damper Schematic showing Drive Coil, Proof Mass, and Sensors (to scale)
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The heart of the PMD was a custom linear DC electric motor. A
permanent field, linear drive DC motor consists of two main elements: a
permanent magnet and surrounding magnetic material for the production of
a uniform magnetic field; and a drive coil through which current passes to
produce a reaction force against the magnetic field. The reaction force is
proportional to the product of the magnetic field strength in Tesla, the net
current flowing through the magnetic field coil, and the total length of coil
wire in the field. The direction of this force is defined from the vector
relation, Ref. [25]:

FPMD(newtons) = Ltot(m) I (amperes) x BpMD(Tesla) (4.1)

were the cross symbolizes the vector cross product. With the drive coil
circumferential and a radial magnetic field, Equation (4.1) results in a force in
the axial direction proportional to the sign and magnitude of the drive coil
current. This is the same principle of operation as a conventional acoustic
speaker or dynamic shaker.

In the linear PMD implementation of Fig. 4.4, the drive coil was
attached to the structure and the heavy magnet and magnetic material
necessary to produce a radial field served as the proof mass. This use of the
magnetic materials for the proof mass increased the PMD's mass efficiency.

The magnetic mass was supported by a stainless steel axial rod. The
entire damper (except for the displacement and velocity transducers) was
axially symmetric about this rod. The rod kept the magnetic field gap
concentric with the drive coil. The proof mass was free to move along the
axial rod on a set of precision linear bearings. The bearings were necessary to
minimize friction between the moving proof mass and the rod. Both the rod
and the matching precision bearings were manufactured by Thompson linear
bearings. The bearings were models XA-61014. The precision 60 case stainless
steal rod had a diameter of 3/8" with a .5 mil tolerance. This overall damper
design is similar to the one used for the Langley inertial actuator, Ref [26].

The control force is produced on the structure by reaction with the
proof mass through the spring and the electromagnetic force in the drive coil.
The mass efficiency of the actuator hinges on the magnitude and extent of the
magnetic field at the drive coil which can be produced for a given proof mass.
The proof mass consists almost entirely of the permanent magnet and
associated field conduction materials which concentrate the magnetic field
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into the gap occupied by the drive coil. The magnet and magnetic conducting
system can be thought of as a magnetic circuit conducting the magnetic field

from the source, the permanent magnet, to the load, the coil gap. The
actuators mass efficiency is optimized by minimizing the mass of this
magnetic circuit for a given field in the gap.

An attempt was made to minimize the magnetic circuit mass in the
implementation shown in Fig. 4.4 by the use of state-of-the-art magnetic
materials and by maximum efficiency design of the magnetic circuit. In the
magnetic circuit description, a permanent magnet can be thought of as a
power source supplying magnetic power to a load, the gap. Just as an
electrical source might have a maximum power output for a specified load, a

permanent magnet has an optimum size of the gap to be filled with field.
The gap and conducting path represent the load on the permanent magnet.
The magnetic field, B, can be compared to the current in an electrical system.

If the magnetic resistance is too great, then no magnetic current (B field) will

flow to the gap; and thus no force will be produced on the drive coils. Using

this circuit description and the properties of the permanent magnet, an
optimum gap size and magnetic conduction path can be designed. The design

of permanent magnet based magnetic circuits can be found in Ref. [27].

The total mass of the proof mass was minimized by use of high
permeability magnetic materials for the conduction path and high energy
permanent magnets. A Neodymium-Iron-Boron ring shaped rare earth
magnet custom manufactured by Magnet Sales and Manufacturing Company
was used as the core of the proof mass because of its high magnetic energy

density. The permanent magnet was a ring with 2 inch outer diameter, 1 inch

inner diameter, and an axial thickness of 0.5 inches. High permeability
magnetic materials were used for the magnetic circuit conduction paths since

they allow thinner magnetic field flux paths for a given magnetic resistance.

The magnetic flux paths were machined out of CMI-C magnetic iron
manufactured by Connecticut Metals Inc.. A comparison of the force to mass

ratios for several similar linear actuators and commercially available linear
dynamic shakers can be seen in Table 4.3. The present implementation can be

seen to be much more mass efficient for producing a force on a structure.
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Actuator/PMD Type

Proof Mass, Mpf(Kg)

Other Mass (Kg)

Total Mass, M t (Kg)

Peak Force, Fm (n)

Peak Current, I,, (amp)

Fmax/ Imax

.O M tot

Fmax /Mto t

Hagood

Linear

1.39

0.48

1.87

22.24

5.06

4.45

0.74

11.90

NASA
Ref. [26]

Linear

0.24

0.48

0.72

4.40

2.00

2.22

0.33

6.11

Miller
Ref. [5]

Pivoting

0.17

0.55

0.71

1.36

4.92

0.28

0.23

1.90

Ling
Model GWV

Linear 1

1.59

0.02

1.61

17.60

2.40

7.33

0.98

10.93

1: The Ling dynamic shaker cannot support its own weight in a 1-g environment

Table 4.3 Comparison of the Present Linear PMD Implementation with Similar Actuator

Implementations

The gap which held the drive coils was dimensioned using the
magnetic design rules referenced above. The gap was designed to be .156
inches wide radially with an average radius of 1.284 inches and a axial length
of 1 inch. Once the gap size was set, the coil could be optimized to the
parameters of a given drive amplifier so that the actuator produced the
desired force with a bandwidth of 300 Hz.. The bandwidth of the force is
limited by the amplifier voltage-current characteristics since at high frequency
the coil acts as an inductor to limit the current flow. The length of the coil is
set by the maximum stroke of the actuator at the peak operating force level at
low frequencies. In this case, peak amplitude occurs at the resonance of the
proof mass/restraining spring system with the amplitude of the proof mass as
high as +/- .75 inches. The coil was set to 2.5 inches long and consisted of 2
layers of 24 gauge magnet wire.

The proof mass was centered on the coil by two steel springs. The
springs provided the base stiffness for the PMD, creating a system with
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resonance at 11 Hz. The remaining stiffness and viscous damping necessary
to tune the PMD to the structural modes from 11 to 120 Hz were provided
electrically via position and velocity feedback. The position was measured by
a Trans-tek LVDT (linear variable displacement transducer), model 0243-000
mounted at the end of the central support rod and attached to the proof mass.
The velocity was measured by a Trans-tek LVT (linear velocity transducer),
model 0101-0000, mounted alongside the LVDT. Negative position and
velocity feedback to the drive current (and thus force) provided electrical
stiffness and damping proportional to their respective gains. The details of
this tuning system will be discussed in Section 4.4.2.

The net result of these considerations was to produce a tunable mass
efficient PMD which could be bolted to the truss nodes at almost any location
in almost any direction. The PMD was simple and fit closely with the
impedance model developed in Section 3.3. The device could be be used as
both a classical proof mass damper with appropriate tuning or simply as a
linear inertial actuator in its untuned state. If the coil current is determined
by the position and velocity feedback then the device is operating like a tuned
PMD. If, however, the the position and velocity feedback circuits are disabled
and the drive coil current is commanded by an externally applied voltage,
then the device is operating as an inertial actuator producing a prescribed
force upon the structure. The PMD built was used as both a driver and
separately as a damper in the experiments on the truss.

4.3.2 Piezoelectric Truss Member

The design and manufacture of the piezoelectric truss members used to
implement the Resonant Shunted Piezoelectric (RSP) damping enhancement
concept will be presented in this section. The use of piezoelectrics as resonant
dampers after the addition of appropriate circuitry has been presented
conceptually in Section 3.4.4. The implementation of this concept entailed
the construction of piezoelectric strut members which replaced the standard
aluminum strut members at key locations.

Four piezoelectric longeron truss members were manufactured to
replace four members in the center 2 bays of the truss as shown in Fig. 4.5.
The tubes were placed so as to best damp the first and third horizontal
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Experimental Truss (Top View)

Piezoelectric Truss Dummy Mass
- x _ / i _ _ .

NLinear PMD 3 Axis Accelerometer
(2 locations) (6 Locations)

Figure 4.5 Locations of the Driver PMD (1), Damper PMD (2), and Piezoelectric Truss Members

on the Truss

bending modes. The dampers would have little effect on the second
horizontal bending mode since this mode has little strain energy in the
central bays of the truss. The actuators can dissipate only the strain energy
which is present in the piezoelectric. For this reason, the piezoelectric truss
member was constructed so that most of its strain energy was focussed in the
piezoelectric material.

The design of the piezoelectric consisted of three main elements. The
first was a hollow piezoceramic tube extending the length of the member.
This was the active portion of the member. The second element in the design
was the fittings which attached to the ceramic stack and allowed the member
to be connected to the truss in the same fashion as the aluminum members.
The third element was the composite shell built up around the piezoceramic
stack and endpieces to provide continuity and strength to the member. These
elements are shown in the layout of the piezoelectric truss member shown in
Fig. 4.6.

The active element of the member was the piezoelectric stack. The
stack consists of five tubular piezoceramic tubes bonded together. The
piezoceramic tubes were made with PZT-5H material from Vernitron
Piezoelectric company. The individual piezoelectric tubes were 1.985 inches
long with an outer diameter of 1 inch, and a wall thickness of .030 inches.

-98-



'I.·rC

V C'

) C)a

a)

0)
- 4

;-u
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Five tubular elements were bonded endwise to create a total piezoceramic
stack 9.92 inches long. The individual cylinders are shown in Fig. 4.7. The
wall thickness (.030 inches) made the individual piezoceramics very fragile.
The cylinders were electroded on their interior and exterior surfaces and
poled in the radial direction. Thus when a field was applied across the
electrodes, the piezoelectric expanded axially in proportion to the d31

piezoelectric constant. There were also thickness and diameter changes.

1.985
.033 ~ -"'

I I

, I, I

I I

I M I

1.000

F

K lInternal silver electrode

Silver electroded external surface

Figure 4.7 Dimensions of Typical Piezoceramic Tube Element

In the stack construction, the individual ceramic elements were
aligned and bonded on a close fitting aluminum mandril. The internal and
external electrodes were each electrically connected to common internal and
external electrical busses. This enabled the entire stack to behave as one large
piezoelectric tube electroded on its inside and outside surfaces.

This piezoceramic stack was then fitted with the specially machined
aluminum endpieces shown in Fig. 4.8. The endpieces allow the truss
member to be inserted in the truss by bolting to the nodes. The connecting
hardware was identical to the connectors used in the standard aluminum
members from Meroform. The conductive layers on the exterior and interior
surfaces of the piezoelectric near the ends of the piezoelectric stack were then
removed to avoid shorting to the truss through the aluminum endpieces.
The stack and endpieces were then wrapped with a composite shell which
coats the piezoceramics and edges of the endpieces. The shell used for the
experimental truss members was glass/epoxy consisting of Owens-Corning
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Completed Connector Assembly
Connector Nut

Connector Bolt Aluminum Endpiece

Figure 4.8 Piezoelectric Truss Member Connector Assembly showing the Aluminum Endpiece of

the Ceramic Stack and the Bolt which Allows Truss Insertion

type 7781 Volan finish glass cloth with 0-90 fiber direction impregnated with
Miller-Stephenson 871 epoxy resin. In the manufacture, a large rectangular
piece of glass fiber cloth was cut so that, when the piece was rolled onto the
piezoelectric stack, there would be 6 cloth plies with the fibers oriented axially
and circumferentially about the piezoelectric tubes. The cloth was then
impregnated with the epoxy and rolled onto the stack to a thickness of .045
inches. Glass-epoxy composite material was used for ease of manufacture
and to prevent shorting between the truss and the external piezoceramic
electrode which graphite fibers would cause. The wrapped member was
allowed to cure at room temperature for 24 hours before use. The mass and

-ffness properties for the piezoelectric truss member are presented in Table
.. The stiffness of the piezoelectric truss members is very close to the

Jiffness of the aluminum truss member.
It is important to understand the role that the composite shell plays in

the piezoelectric truss member design. It serves primarily to increase the
strength of the member but not the stiffness. The piezoelectric material is by
nature very stiff and very brittle. On its own, it is unsuitable as a structural
material. The addition of the composite tends to increase the fracture
toughness of the member and thus make it useful as a structural member.
The stiffness of the member is still primarily due to the piezoceramic (80% of

the stiffness) since the composite (20% of the stiffness) tends to act only as a

shear layer to convey stress across the defects in the piezoelectric material.
This was discovered in the validation test for the piezoelectric truss members
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Mass (Kg)

Stiffness, E (GPa)

Area (m 2)

Total Length (m)

Eff. Length (m)

Piezoelectric
Cylinder

0.123

60.6

6.47e-5

0.252

0.252

Composite
Shell

0.049

9.7

1.02e-4

0.252

0.252

Endpieces

0.148

rigid

NA

0.248

0.00

Table 4.4 Breakdown of Piezoelectric Truss Member Properties

presented in the next chapter. The fact that the stiffness is primarily due to
the piezoelectric indicates that most of the member strain energy resides in
the piezoelectric material, which is important for damper effectiveness. The
loss factor that can be achieved with the member is the sum of the loss factors
for the ceramic and the composite weighted by the proportion of strain energy
in each, Equation (3.1). The fact that most of the strain energy is in he
piezoceramic leads to high electromechanical coupling coefficients and
damper effectiveness.

These elements act together for an efficient application of piezoelectric
elements to a truss structure. The damping is achieved by shunting an
electrical impedance across the electrodes of the ceramic stack. In the
resonant case this impedance is a resister and inductor which act with the
inherent capacitance of the stack to produce a resonant LRC circuit. The
parameters of this circuit can be tuned to a mode of the structure. This tuning
and the electrical support which enables it is described in the following
sections.

4.4 Electronic Measurement and Tuning Systems

In this section, the various electrical systems used in the experiment
will be described. These systems include the structural sensing apparatus, the
PMD drive and tuning circuitry, and the Resonant Shunted Piezoelectric's
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0.320

29.47

1.66e-4

0.500
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(RSP) support circuitry. The support circuitry for the resonant devices
consisted of state feedback circuits with variable gains. The gain calibrations

are discussed in Chapter 5. The tuning circuits used for the resonant dampers
were critical to damper performance.

4.4.1 Sensors for Truss Response

The truss was outfitted with 18 PCB Model 330A Accelerometers for

structural response sensing and modeshape imaging. The accelerometers
were organized into six 3 axis sets which were located on the truss as shown

in Fig. 4.5. The accelerometers were extremely sensitive with a gain of 0.2

volts/g. With the amplifier system this rises to 1 volt/g. This provided
excellent sensitivity for structural measurement.

4.4.2 Proof Mass Damper Electronic Support

There are two major elements to the PMD electronic support system.
The first is a voltage controlled current source intended to drive the main
PMD coil. The second is a position and velocity feedback loop necessary to
provide the electronic "spring" and "damper" to tune the resonant devices.
The design and function of these elements will be discussed here. The system

architecture is presented in Fig. 4.9.
A voltage controlled current source was designed to drive a controlled

current through the PMD coil. A Crown 300-IIA audio amplifier was used as

the core of the design. It was converted to a current source by the
introduction of high gain current feedback to the amplifier's input. The
output current of the amplifier passes through a small (0.1 Ohm) sensing
resistor where it creates a voltage proportional to the current. This voltage is

amplified and subtracted from the input command signal to produce a
negative current feedback loop. The system was marginally stable before a

low pass rolloff at 1000 Hz was introduced. High current-feedback gains
enabled this circuit to produce current signals which exactly tracked the input
voltage with a bandwidth of 500 Hz. The loop gain of the voltage controlled
current source was set via the feedback gains to 1.00 amperes per volt. The

circuit schematic is shown in Figure 4.9.
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The purpose of this circuit was to eliminate the need to consider the
effects of the coil and actuator dynamics in commanding the force produced
by the PMD damper/actuator. The force is a direct function of the coil
current. If the current is not controlled it can vary with both back EMF due to
proof mass motion and coil impedance. The current servo eliminates the
effects of back EMF and coil inductance on the force output and therefore
simplifies the system dynamics. The transition from command voltage to
applied force can now represented by a simple gain.

The tuning capabilities of the PMD are derived from a position and
velocity feedback circuit shown in Figure 4.9. The LVDT and LVT described
in Section 4.3.1 measure the position and velocity of the proof mass relative
to truss structure. These signals are conditioned with low pass filters and
amplified by gains Ke and Ce for the position and velocity respectively. The
amplified and negated signal is fed back to the input of the current source.
The current source outputs a signal which produces a force within the PMD.
Thus a negative force in proportion to the position or velocity differential
across the PMD is produced. This electrically derived force has components
which have the same position dependance as a mechanical spring and same
velocity dependance as a mechanical dashpot. These forces have the same
effect as would a spring and dashpot on the dynamics of the PMD. Thus the
linear spring and damping constants of the PMD can be tuned by simple
variation of the appropriate electrical feedback circuit gain.

The feedback forces due to the electrical stiffness and damping are
limited by the current drive capabilities of the Crown amplifier. The
undistorted AC current output of the amplifier was limited to + 10 amperes
which translated to an available PMD force of about +44 newtons. In the
feedback scheme described above, this available force was dependant on the
position and velocity of the proof mass. If at any gain setting the position of
the proof mass dictated an electrical restoring force which was above the 44
newton limit, the current output of the amplifier would saturate; and the
PMD would not behave linearly. The amplitude of vibration of the proof
mass which would cause this saturation is inversely proportional to the
feedback gain used. The electrical stiffness and damping in the PMD and thus
the resonant frequency and damping ratio of the PMD were directly
proportional to the feedback gains. Thus the current drive limitation places a
limitation on the range of available tunings of the PMD in a given vibration
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environment. The actuator frequency tuning was limited by this constraint
to 120 Hz. The base spring provided the stiffness necessary for a resonance at
11 Hz and the electrical system could provide the electrical stiffness necessary
to shift the PMD resonances up to 120 Hertz. Although higher tuning could
be obtained, the system was not robust to external excitations since under
these excitations the feedback signals would cause drive current saturation.
The actuator could be tuned to any structural mode in the range from 11 to
120 Hertz by simply changing the position gain. The damping ratio of the
PMD could likewise be varied over a range from 1% to 45% of critical by
varying the velocity gain.

These electrical support systems created the damper system flexibility
needed for optimal tuning to multiple structural modes and for testing the
effects of parameter variation on the global system response. Electrical
circuits were also used for tuning RSP and will be described in the next
section.

4.4.3 Resonant Shunted Piezoelectric Support Circuitry

The resonant shunted piezoelectric requires external circuitry in
addition to the piezoelectric capacitance to achieve the high damping levels
afforded by tuning. In the resistive shunting case, this circuitry is simply a
variable resistor. In the resonant case, this circuitry contains a variable resistor
and a variable inductor in series. The variable inductor is necessary for
tuning the electrical resonant frequency to the the vicinity of the truss modes.

The overall shunting circuit architecture is shown in Fig. 4.10. The
piezoelectrics are wired together so that a single voltage across the combined
electrode causes the two members on one side to contract while the other side
expands. In this way the piezoelectrics are arranged to be sensitive to bending
modes that have high strain in the central bays. The combined damper can be
left open, shorted, shunted with a resistor, or shunted with a resistor-inductor
circuit depending on the position of switch A (Figure 4.10). The piezoelectrics
were driven by a Crown 300-IIA voltage amplifier with voltages up to ±45
volts. This is far below the total voltage sustainable by the piezoelectric before
degradation of the piezoelectric properties.
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There were stringent criteria placed on the inductance necessary for the
construction of the resonant shunted piezoelectric. The low combined
piezoelectric capacitance (2.17 pgFarads) necessitated the use of large
inductances for tuning the piezoelectric to the lower structural modes. To
tune to the first structural mode at 39 Hz, a 7.0 Henry inductance was
required; while to tune to the third structural mode at 150 Hz, only 0.5
Henries were required. In simple coil inductors, such large inductances are
usually associated with high resistances due to the large amount of wire
needed to produce the inductance. The optimum tuning results for the RSP
presented in Section 3.4.4 require low resistances, however. For a given
piezoelectric capacitance lower tuning frequencies require larger inductance
while maintaining low electrical resistance. To circumvent this problem
high-Q inductors were used in series with an active variable inductor.

The high-Q inductors were copper windings around a toroidal iron
core. Seven Henries of inductance was used for the circuit to be tuned to the
first structural mode at 40 Hz. This base inductance was in series with an
active variable inductance. The active variable inductor used for tuning was
constructed using current rate feedback as shown in the Fig. 4.10. The current
was measured at the output of the amplifier and differentiated using a stable
differentiation circuit that limited the gain at high frequency. The
differentiated current signal was then amplified and fed into the input of the
inductor amplifier. This amplifier thus commanded a voltage across its
output which was proportional to the rate of current going through the
output stage of the amplifier. Thus the circuit reproduces the defining
relation for an inductor. In the Laplace domain it is:

VI = (Ls) II (4.2)

were V is the voltage across the inductor and I is the current through the
inductor. By varying the gain on the feedback current rate, the inductance for
this circuit could be varied. This enabled the resonant electrical circuit to be
tuned to the structural modes.
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4.5 Summary

In this chapter, the designs of the main experimental components were
reviewed. These components were the experimental truss test article, the
damping mechanisms, and their supporting electronics. The experimental
test article was designed to provide a low damping base structure upon which

the damping enhancement could be tested. There were a requirements for

dynamic isolation from the surrounding and three dimensional, free-free
behavior which lead to the construction of a soft spring support system. A
truss was chosen as the experimental article because a complex structure was

required to ascertain the practicalities of the damping enhancement
implementations.

The designs for both the PMD and the resonant shunted piezoelectric

where shown. The PMD consisted of a linear DC motor with the magnetic
circuit part of the motor serving as the proof mass. The consideration of the

actuator dynamics was eliminated by the use of current drive circuitry. The

actuator was made tunable by the addition of negative position and velocity
feedback to produce electrical springs and dampers for the system.

The design of a piezoelectric truss member was presented which
entailed the use of cylindrical piezoceramics and a fibrous composite outer
shell. These members replaced the standard aluminum members in the
truss. The electrodes of these members could be wired together and shunted

by electrical circuitry to maximize energy dissipation as was explained in
Chapter 3. The resonant electrical circuit was implemented with a variable

resistor and an variable inductor created by current rate feedback to an
amplifier. The resulting circuit allowed the resonant piezoelectric damper to

be optimally tuned to the structural modes.
These devices were calibrated and tested for the damping that they

could produce in the test truss. These test are presented in the next chapter.
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Chapter 5
Experiments and Results

5.1 Overview

In this chapter the experiments that have been conducted for the
verification of the damping enhancement methodologies discussed in the
earlier chapters will be presented. The experimental setups will be described
along with the data collection techniques used. The results of the various
experiments will be briefly discussed with reference to their implications for
damping enhancement of space structures.

The experiments conducted in this investigation fell into three general
categories. The first set entailed the calibrations of the mechanisms used to
both drive and damp the structure. Such tests were conducted on the proof
mass actuator/damper as well as the piezoelectric truss member. These tests

were designed to establish the fundamental parameters such as inherent
damping and force sensitivities that would later be used in the system
modelling. The second group of tests was designed to measure the structural

parameters in the "undamped" baseline trusses. These tests were also
conducted to verify the frequency domain modelling technique before more
complicated impedances were introduced. Finally, the last set of tests
involved adding two types of resonant damping schemes to the truss. Both
resonant PMDs and piezoelectrics were added, in order to collect data on their
effectiveness as system dampers and sensitivity to tuning parameter
variation.

The experiments outlined above were designed as a test of the
frequency domain modelling techniques for damping enhancement
methodologies. The test were conducted on a realistic 3 dimensional, 10 bay

truss suspended in a simulated free-free condition using space-realizable
actuators, sensors, and dampers. This realistic implementation of damping
techniques gave many useful insights into the practical aspects of damping
design and complex structural dynamics in general. This data on the practical
implementation of damping methodologies for space structures should
hopefully prove valuable for the designer.
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5.2 Damper/Driver Calibration Tests

Tests were conducted on the PMD and piezoelectric truss member
described in Chapter 4 in order to determine the static and dynamic properties
of the devices. These properties included the force levels attainable for a
given voltage or current, the damping levels and natural frequencies of the
PMD in free vibration, as well as other measurable quantities necessary for
the impedance models of the driver/damper elements of the system. These
parameters were used in the design of the servo loops to create tunable
damping properties as described in Section 4.4. They were also used in the
global system models for prediction of the structural behavior.

5.2.1 Proof Mass Actuator/Damper Calibration

The calibration tests on the PMDs can be divided into three
classifications. To the first group belong those test which were conducted
with the resonant part of the damper fixed. These are called the static tests.
The second group contains dynamic tests of the dampers without position or
velocity feedback. These tests are called open-loop dynamic tests. The third
group contains tests on the PMDs with the position and velocity feedback
loops described in Section 4.4 closed to enable the devices to be tuned. These
tests are the closed-loop dynamic tests.

The static tests on the PMD calibrated the damper for the force produce
for a given driving current while the proof mass was fixed. These test
established the manufacturing integrity of the actuator as well as the
attainable force output. This information was fundamental to the design of
the control systems used for damper tuning.

The setup used in the static tests for the PMD is shown in Figure 5.1.
The PMD is mounted vertically, and the drive coil was connected to ground
through a PCB force transducer model #208A02. The proof mass is fixed to a
rigid cross bar to prevent its motion. The force produced on the transducer is
then measured as a function of current over the range from 0.1 to 5 Amperes.
The current is provided by a voltage controlled current source as described in
Section 4.4.2. The force to current relation is shown by the curve in Fig. 5.2
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Figure 5.1 Static Test Setup for PMD Force/Current Sensitivities

for actuator #1. This curve is representative of the PMD damper/actuators. It
illustrates the linear dependance of actuator force on current. The average
ratio of force to current for the proof mass actuators/dampers was 4.64
newtons/ampere with an upper limit of 5.0 amperes imposed by drive
circuitry limitations.

The open-loop dynamic properties tests of the proof mass dampers
were conducted to determine the devices' natural frequencies and damping.
The setup for this experiment is shown in Figure 5.3. The proof mass was
free to vibrate in the vertical direction. The amplitude and velocity of the
proof mass relative to the base was measured with the LVDT and LVT
described in Section 4.4.2. In these tests, the device was excited with a pulse
current and the ringdown of the proof mass was recorded using a Nicolet
digital oscilloscope. The ringdown traces were then analyzed to determine
the device's natural frequencies and damping. The linear decay envelop of
the ringdown response indicated that the primary source of inherent
damping in the device was friction. The measured natural frequencies and
the Coulomb friction forces of the devices are presented in Table 5.1 along
with the force/current sensitivities of the devices measured in the static tests.
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Figure 5.2 Static Force vs. Drive Current for PMD-1

PMD Damper/Actuator Properties

PMD Force Sensitivity Natural Frequency Friction Force
(N/Amp) (Hz) (N)

1 4.72 11.11 0.55

2 4.82 11.07 1.17
3 4.41 11.52 0.33

__4 4.73 11.20 0.47

Table 5.1 Properties of PMD Actuator/Dampers Including Force to Current Conversion Factors,

Inherent Natural Frequencies and Sliding Friction Forces
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Figure 5.3 PMD Dynamic Test Setup for Determining Device Natural Frequencies and Damping

Ratios

In the closed-loop dynamic tests, the resonant frequencies and damping
of the device were measured with the position and velocity feedback loops
closed. The dependance of the PMD's resonant frequency and damping ratio
on both the position and velocity feedback gains was quantified. The designs
for these feedback systems were presented in Section 4.4.2. The setup was the
same as that used for the open-loop dynamic calibration tests shown in Figure
5.3 with the exception that the feedback electronics were active in the closed-
loop dynamics tests. The position feedback gain was varied to produce device
natural frequencies and damping which varied from 20 to 120 Hz for the
natural frequencies and from 45.0% to 2.0% of critical for the damping ratios.

The data from the closed-loop dynamic tests consisted of position and
velocity gain pairs and the corresponding PMD natural frequency and
damping ratios. These data points were used to determine the PMD's
frequency and damping at arbitrary feedback gain settings via interpolation.
Within the gain space noted above, the natural frequencies and damping of
the device which resulted from known position and velocity feedback gains
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could be found by bilinear interpolation with the experimental data from
dynamic tests at nearby gain settings. Figure 5.4 illustrates this concept of
bilinear interpolation to determine the dynamic properties of the PMD device

at gain settings which did not correspond to the tested points. An analytical
model was used to determine the rough values of the feedback gains
necessary for actuator tuning. The actual behavior of the feedback circuits was

sufficiently complicated to warrant the use of the database gathered in the
closed loop dynamic tests to predict actuator tuning rather than an inaccurate

and complex analytical model.

Experimentally

Value to be De

Position Fe
Gait

y Feedback
Gain

Figure 5.4 Determination of PMD Natural Frequency or Damping Ratio as a Function of Position

and Velocity Feedback Gain by Interpolation from Experimentally Determined Nearby Points

5.2.2 Piezoelectric Truss Member Calibration

Several tests were preformed on the piezoelectric truss members to
determine their static and dynamic properties. The first was a static test to
determine the amount of force that the member could exert against a fixed
boundary as a function of the driving voltage. The second was a dynamic test

to determine the performance of the resonant circuit used in the resonant
shunted piezoelectric application described in Section 4.4.3. Specifically, this
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Figure 5.5 Static Force Sensitivity Test Setup for Piezoelectric Truss Member

second test was used to calibrate the performance of the active inductor part of

the shunting circuit presented in Figure 4.10 of Section 4.4.3.
The experimental setup used in the static test of the piezoelectric truss

member is shown in Figure 5.5. Just as in the PMD static tests, the
piezoelectric truss member is mounted vertically onto a force transducer
attached to a rigid base. The top of the device was then attached to a rigid
cross bar to constrain axial expansion of the piezoelectric truss member. The
force generated by the member was then measured as a function of a
sinusoidal voltage applied across the piezoelectric electrodes. The voltage was
supplied by a Crown DC-300IIA audio amplifier in the range from 0.1 to 40
volts RMS. The results for this test, shown in Figure 5.6 for the first
piezoelectric truss member, demonstrate the linearity of the piezoelectric
truss member performance. On average, a piezoelectric truss member was
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Piezoelectric Truss Member Static Force Calibration
Truss Member #1

i1 - I I I I

10 20 30 40
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Figure 5.6 Piezoelectric Truss Member Static Force/Applied Voltage Curve for Truss Member #1

Piezoelectric Truss Member Force Sensitivities

Piezoelectric Force Sensitivity
Member (N/Volt)

1 0.319

2 0.293

3 0.331

4 0.291

Table 5.2 Comparison of Piezoelectric Truss Member Force Sensitivities

found to produce about 0.3 newtons/volt in these tests. The
sensitivities for each of the four members is shown in Table 5.2.

actual
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Dynamic tests were conducted on the piezoelectric truss members to
calibrate the shunting impedance used in the resonant shunted piezoelectric
application for the members. In this application, presented in Section 4.4.3,
an inductor and resistor shunt the inherent capacitance of the piezoelectric to
produce a resonant LRC circuit. The inductor consists of a fixed passive

inductor and a variable "active" inductor to allow variable tuning of the LRC

circuit's resonant frequency. The tests were designed to provide data on the
actual inductance of the "active" inductor as a function of the variable current
feedback gain used to adjust that inductance as described in Section 4.4.3.

In these dynamic calibration tests, the piezoelectric members are
installed in the experimental truss structure as shown in Figure 5.7c. The
members are wired together so that the capacitances of the individual
members appear in parallel to each other creating an total capacitance which
is the sum of the member capacitances. This total capacitance is shunted by a

variable resistor in series with a passive and active inductor as shown in
Figure 4.10. This circuit was driven by a voltage applied across the capacitor
via a Crown DC-300IIA amplifier. The ratio of the drive voltage to the drive
current was measured as a function of frequency to produce a transfer
function for the LRC circuit. This transfer function was then identified to
find the natural frequency and damping of the LRC circuit. This test was
preformed at several values of the gain of the current feedback loop of the
active inductor to produce a formula for the effective circuit inductance as a
function of gain

Ltot = Lpas + 0.0021.(gain setting)

where the gain was variable from 0 to 600. The total capacitance of the circuit

was measured with a Continental Specialties Corporation model 3001
capacitance meter to be 2.17 gfarads. These experimentally determined values
were necessary to provide effective tuning of the electrical resonance to the
structural modes of the truss to achieve damping in a manner described in
Section 3.4.4.
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5.3 Truss Model Validation Tests

5.3.1 Overview

Several tests were preformed to establish the dynamic properties of the

unenhanced truss structure, and also to verify the system modelling
techniques described in Chapters 2 and 3. These tests involved the
identification of the first 3 bending modes of a truss structure in three
configurations. The experimental truss structure is described in Chapter 4,
Section 4.2. The first configuration was a truss composed entirely of
aluminum members. The second configuration was the baseline aluminum
truss with four aluminum members of the center two bays replaced by plastic

members. The third configuration was the aluminum truss with four
aluminum members of the central two bays replaced by the piezoelectric truss

members described in Section 4.3.2. Only those tests with the piezoelectric

members' electrodes shorted or resistively shunted are included in this
section. Resonant damping enhancement schemes such as the proof mass
damper or resonant shunted piezoelectric are covered in Section 5.4.

The modal frequencies and damping ratios for the first 3 bending
modes of the experimental article in the various configurations were
measured in the tests on the structures. The data for the tests consisted of

time domain signals and frequency domain transfer functions between the
driver current and the accelerometer signals at 18 locations throughout the
truss. The truss was excited by pulsed psuedo-random white noise centered

around the particular mode being investigated. In all structural experiments,
the excitation signal was produced and the data was collected by a Signology

SP-20 digital data logger. The structural modal frequencies and damping
ratios were calculated from the time domain signals using a Recursive Lattice

Least Squares (RLLS) identification algorithm, Ref. [28].

The results from the structural tests are compared to the natural
frequencies and damping ratios produced by the frequency domain system
analysis. The techniques for frequency domain system modelling described in

Chapter 2 have been implemented in a computer program. The program
allows complete frequency domain modelling of complex structural systems
including calculation of approximate or exact frequencies and damping ratios
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using equations 2.45 and 2.50, respectively. The techniques implemented for
calculating both the "exact" and approximate system eigenvalues are
presented in Appendix A. The model used for experimental comparison
comprised 44 network nodes and 256 DOF. This model was then reduced
exactly to an 18 by 18 system impedance matrix via a static condensation of

certain unforced nodes. The retained DOF corresponded to the locations of
the accelerometers on the test specimen.

The approximate and exact values of the system natural frequencies
and damping as well as analytical modeshapes were calculated for the first 3
structural bending modes for comparison to the experimental data. In the
aluminum, plastic, and piezoelectric model validation tests, unknown
parameters in the truss model, such as the unenhanced truss' base structural
damping or the effective length of the aluminum members, were varied so as
to fit the frequency and damping of the model's first mode to the
experimental data. This "calibrated" the unenhanced baseline models to the
experiment test article in the first bending modes. The remainder of the
model modes were -not so adjusted and therefore represent the actual
deviation of the model from the experimental article. Once the parameters
such as base damping and effective length were calibrated for the first modes
of these model validation tests, they were included unchanged in the
enhanced damping truss models.

5.3.2 All Aluminum Truss Tests

The purpose of the tests on the unenhanced all-aluminum member
truss was to provide information on the baseline truss dynamic properties for
comparison with the enhanced damping cases. As a second consideration,
the data gathered on the undamped truss was used to fine tune the
impedance models for the truss elements and the driving mechanism.

The experimental setup used in all the truss model validation tests is

shown in Figure 5.7a. For the model validation tests the end masses shown
in this figure were dummy masses place to give the truss symmetry. The
truss was excited using the PMD/driver #4 at node 1. The inherent resonance
of the PMD actuator was tuned to 11 hertz, far below the first structural mode
at 39 hertz. The 3 bending modes examined throughout the experiment were
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Figure 5.7a: All-Aluminum Truss Dynamic Test Setup (Top View)

Dummy Mass
(3 locations)

IAX_

PMD Driver (6 locations)

Figure 5.7b: Model Validation Tests for Truss With Plastic Members

Figure 5.7c: Truss Setup for All Tests with Piezoelectric Truss Members

Figure 5.7d: PMD Damping Test Setup

PMD Damper /

Figure 5.7 Setups for Truss Dynamics Experiments showing the All-aluminum Truss Setup (a),

the Truss with Plastic Members in the Center Bays (b), the Truss with Piezoelectric Members in

the Center Bays such as in the Shorted Piezoelectric or RSP Damping Experiments (c), and the

Truss for PMD Damping Experiments (d)
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primarily in the plane horizontal to the ground although in the higher
modes some coupling appeared to the modes in the vertical plane.

The natural frequencies and damping ratios for the undamped
aluminum truss are presented and compared with the analytical prediction in
Table 5.3. The truss has bending modes at 39, 99, and 149 hertz with 0.6%,
0.5%, and 0.3% critical damping respectively. These low damping ratios
enabled the measurement of small changes in the damping levels as damping
mechanisms were tested.

All-aluminum Truss

Frequencies (Hz)

Analytical modelMode Experimental
Approximate Exact

1 39.23 39.90 39.23

2 99.42 91.35 91.10

3 149.01 145.60 146.58

Damping Ratios ()
Mode Experimental Analytical model
Mode Experimental

Approximate Exact
1 .00632 .00632 .00613

2 .00482 .00530 .00400

3 .00304 .00723 .00364

Table 5.3 Comparison of the Experimental Frequencies and Damping Ratios with the Model

Values for the First Three All-aluminum Truss Bending Modes

As can be seen in Table 5.3, the approximate analytical formulas can
give good estimates for the global system frequency and damping levels. The
approximate values were calculated using the technique described in
Appendix A. The analytical mode shapes (1St, 2nd, and 3rd bending) from a
completely undamped finite element model were used in the Rayleigh
Quotient analysis for the approximate frequency and damping.

The approximate first mode frequency and damping fit the
experimental data well. This was expected since the model parameters were
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adjusted so that the exact algorithm frequencies and damping agreed with the
data in the first mode. This implies that the approximate algorithms can
reproduce the performance of the exact algorithms in determining a model's

frequency and damping. The second mode frequency is 8.1% lower than the

experimental value while the analytical damping coefficient is 8.4% higher
than the experimental. The approximate value for the frequency of the third

mode is 2.3% lower than the experimental, while the damping is 138%
higher. In general, the errors in the approximate method are due to
modelling errors. The results obtained using the approximate techniques
correlate very well with the results obtained from the exact analysis but not as

well with the experiment data as shown in Table 5.3. This implies that the

approximate technique accurately reflects the model poles but that the model

poles themselves are inaccurate.
The exact values were found by searching for the zeros of the

determinant of the system impedance matrix. This entails a numerical search
in two dimensions and is implemented using a gradient search method as
described in Appendix A. The results of the search represent the true poles of

the model in the s-plane and reflect the accuracy of the model to this extent.
The model first mode frequencies and damping were roughly fit to the

experimental results by varying certain model parameters such as aluminum
tube stiffness and structural damping. The error between the calibration tests

first mode predictions and the experimental values were thereby maintained
to within 0.1 Hz difference in natural frequency and 0.05% of critical in the

damping ratios. The model exhibited slight variation from the test results for

the upper two modes. The differences in frequency predicted and measured
can probably be attributed to interaction of the horizontal and vertical
bending modes. Since the truss is a true three dimensional structure, it
contains nearly identical modes at the same frequencies in the horizontal and

vertical planes. Ideally, only the horizontal ones are excited in this test setup.

In a real structure with dimensional irregularities and suspension loading
effects these modes couple. This interaction causes one of the modes to be at a

higher frequency while the other is at a lower frequency than would be
expected. This effect causes the actual frequencies to vary from the expected
natural frequencies. The effect can be seen in several of the global transfer

functions seen in Figure 5.8, most notably the 3rd bending for the plastic truss.

- 123 -



10

0

-10

(U

Cu
I-

E,,,

-20

-30

-40

-50

-60

-'7n
100

Frequency (Hz)
A) Global Transfer Function for All-aluminum (solid) and Shorted Piezoelectric (dash)

Trusses
5

0

-5

-10

W
c2

C)

-15

-20

-25

-30

-35

-40

-45

-50
10 100

Frequency (Hz)

B) Global Transfer Function for Truss With Plastic Members in Central Bays

Figure 5.8 Global Transfer Functions of the Three Validation Test Setups: The All-aluminum

and Shorted Piezoelectric Trusses (A) and the Plastic Truss (B)

- 124 -



In conclusion, after the model had been calibrated to the experimental
first bending, the frequency domain modelling technique modelled the
natural frequency and damping in the higher two modes very well. The exact
pole locations in the model matched the experimental pole locations very
closely. The approximate techniques for determining the structures pole
natural frequencies and damping predicted the truss's pole locations less
accurately but with far less effort than the exact pole search.

5.3.3 Tests on Truss With Plastic Central Bay Members

Tests were next conducted on the aluminum truss with 4 members of
the central 2 bays replaced by plastic members as shown in Fig. 5.7b. The tests
were conducted in the same manner as the all-aluminum truss tests described
above. The purpose of the tests was to validate the frequency-dependant
analytical model's capability to analyze structures with diverse impedances
and high loss members. This provides information on the frequency domain
modeling methods ability to assimilate the damping from discrete devices
into the global system damping.

The plastic tubes were constructed from General Electric Lexan
Polycarbonate, a structural plastic with stiffness of 2.4 GPa and a material loss
factor of about 0.02. The tube cross sectional area was 112 square millimeters
with an effective length the same as for the aluminum members. The
insertion of plastic members greatly effected the truss's dynamic properties.

The results from the dynamic experiments can be seen in Table 5.4
compared to the analytical model, and in Table 5.5 where they are compared
to the other validation tests. Several effects are evident. The first mode of
the truss experienced a large frequency reduction (57% less than the all
aluminum truss) and a large increase in modal damping (102% higher than
the all aluminum truss) as a result of the inclusion of the softer, lossy
members. The higher modal frequencies experienced less of a frequency
reduction with the 3rd mode shifting only 6% from the aluminum truss.
This decrease in effect can be attributed to the fact that the strain energy is
more evenly distributed throughout the truss in the higher bending modes as
opposed to being concentrated in the central bays as in the first mode. For the
same reason, the damping increase attainable by the damped element
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Truss with Plastic Members

Frequencies (Hz)

Analytical modelMode Experimental
Approximate Exact

1 17.00 - 18.27 16.35

2 58.10 54.30 53.94

3 141.85 146.59 139.08

Damping Ratios (r)
Analytical model

Mode Experimental t
Approximate Exact

1 .0126 .0115 .0126

2 .0089 .0066 .0057

3 .0052 .0060 .0036

Table 5.4 Comparison of Experimental and Analytical Modal Frequencies and Damping for the

Truss with 4 Plastic Members in the Central Bays

Model Validation Tests Experimental Results

Frequencies (Hz)

ShortedMode All-aluminum Plastic Members P oePiezoelectrics

1 39.23 17.00 39.41

2 99.42 58.10 99.05

3a 149.01 141.85 145.47

3b 152.76

Damping Ratios () 
Shorted

Mode All-aluminum Plastic Members PiezoeectricsPiezoelectrics

1 .0063 .0126 .0119

2 .0048 .0089 .0062

3a .0030 .0052 .0095

3b .0115

Table 5.5 Comparison of the Experimental Frequencies and Damping Ratios for the Three

Model Validation Configurations
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inclusion decreases with the higher modes from a damping increase of 100%

over the aluminum in the first mode to only 68% in the third.

The analytical model can be seen to handle simple changes of material

loss factor or stiffness fairly well with the major discrepancies corresponding

to the original modelling errors for the aluminum truss. No frequency
dependance was assumed for either the loss factor or stiffness of the plastic

material since it was in its stable glassy region.

One interesting point was the difficulty experienced in experimentally

determining the frequency of the second bending mode from visual
inspection of the transfer function data. The transfer function from the
forcing at node 1 to the acceleration in the z direction at node 1 for the all-

aluminum, plastic, and shorted piezoelectric configurations can be seen in
Figure 5.8. The difficulty in identifying the second bending mode can be
attributed to two causes. First, the large frequency shift associated with the

inclusion of the plastic members placed the second bending mode in the
vicinity of a torsional mode making it hard to differentiate between the two.
Secondly, a change in the second mode shape decreased the second mode
response at node 1. The mode was identified by looking at the acceleration
signals coming from other locations on the truss and by comparison with the
model.

5.3.4 Tests on Trusses with Shorted and Resistively Shunted Piezoelectrics

Tests were conducted on the aluminum truss with piezoelectric truss
members replacing 4 aluminum members in the central bays of the truss in

the same configuration as the plastic members. The configuration used in
these tests is shown in Figure 5.7c. Two tests will be discussed in this section.

Those with the piezoelectric member's electrodes shorted and those with a
resistor placed across the electrodes as described in Section 3.4.3.

The purpose of the tests with shorted electrodes was to provide a
baseline "undamped" comparison for the resistive and resonant shunted
piezoelectric tests to follow. The shorted electrode tests also provide needed

information on the stiffness and inherent damping levels of the piezoelectric

actuators, data that was not obtained in the previously discused calibration
tests. By finding the values of the piezoelectric truss member parameters,

-127-



such as total stiffness and material loss factor, which enabled the model to

best fit the tests in the first bending mode, an accurate model could be
developed for the truss members. Thus the tests provided data on the base
structure for the piezoelectric damping tests to follow and helped complete
the piezoelectric truss member model.

At this point the wiring of the piezoelectrics used in both the resistive
and resonant shunted piezoelectric experiments will be discussed. The
electrodes for the four piezoelectric truss members were wired together to
achieve a single bending actuator or damper. They were electrically
connected so that a voltage placed across the combined damper would apply
opposite polarity voltage to the members on opposite sides of the truss. Thus,
the two members on one side would contract while the other two on the
opposite side would expand. The total piezoelectric damper was only
sensitive to bending stresses and strains; and, in this configuration, was
suitable as a damper only in regions of high curvature.

The dynamic properties of the shorted piezoelectric truss are shown
along with the model results in Table 5.6 and in comparison to the other
validation tests in Table 5.5. The first mode frequency of the experimental
truss with the piezoelectric truss members substituted into the central bays is
39.41 Hz as compared to 39.23 for the all-aluminum truss. This small shift in
the resonant frequency implied that the piezoelectric members had been
manufactured with approximately the same stiffness as the aluminum
members. As shown in Table 4.4 in Chapter 4, this stiffness is almost entirely
due to the piezoelectrics inside the composite member rather than the
composite itself. Thus, more of the member strain energy is located in the
piezoelectric for conversion to electrical energy.

The third bending mode splits into two closely spaced modes at
separate frequencies as a result of the coupling caused by the insertion of the
slightly-more-stiff piezoelectric members, as was described in Section 5.3.2.
Both the third horizontal and vertical bending modes are now partially
observable from the accelerometer located at node 1 measuring acceleration
in the z direction. This partial observability is reflected in the increase of
measured damping in this mode since it is difficult for the RLLS
identification routine to distinguish damping from unobservability. As a
result, the discrepancies between the experimental and analytical prediction
of the third mode damping are understandable in terms of the artificial
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Truss with Shorted Piezoelectric Members

Frequencies (Hz)

Analytical modelMode Experimental
Approxima te Exact

1 39.41 - 40.62 40.01

2 99.05 91.70 91.46

3a 145.47 144.48 145.48

3b 152.76 136.15 not found

Damping Ratios (r)

Mode Experimental Analytical modelMode Experimental
-Approximate Exact

1 .0119 .0125 .0117

2 .0062 .0073 .0056

3a .0095 .0079 .0044

3b .0115 .0094 not found

Table 5.6 Comparison of Experimental and Analytical Modal Frequencies and Damping Ratios

for the Truss with Shorted Piezoelectric Members in the Center 2 Bays

damping inserted into the experimental measurement by the identification
algorithm as well as the fact that the model, being completely symmetric,
would naturally not reflect the coupling of the two bending modes.

Tests were also conducted on the truss when the electrodes of the
piezoelectric members were shunted by a variable resistor. These tests were
only conducted on the first mode. Their purpose was to validate the concept
of shunted piezoelectric damping. By comparing the increase in damping
afforded by the shunting resistor, the value of the Generalized
Electromechanical Coupling Coefficient (GECC) for the first mode could be
found. The GECC, described in Equation 3.5.1, is the fundamental constant
determining the effectiveness of the shunted piezoelectric on the structure.

The tests were conducted by measuring the first mode natural
frequencies and damping at various shunting resistances. This data can be
represented as a curve of damping in the first mode versus
nondimensionalized resistance. This experimental curve can be compared to

-129-



the curve generated by Equation 3.42a, the material loss factor for a resistive
shunted piezoelectric.

There are several difficulties in this comparison, however. Equation
3.42a represents the material loss factor of just the resistive shunted
piezoelectric and not the total loss factor of a structure incorporating the
piezoelectric. As shown by Equation 3.1, the total structural loss factor is the

average of the loss factor of the structures constitutive materials weighted by
the proportion of the strain energy in the material. The problem can be
circumvented by using the generalized piezoelectric coupling coefficient in
Equation 3.42a rather than the coupling coefficient for the material. The
generalized coupling coefficient includes the ratio of the total structural
stiffness to the stiffness of the piezoelectric and thus compensates for the fact
that not all of the structure's strain energy is in the piezoelectric material.
Another problem in the comparison between the theoretical curve and the
experimental data is the fact that the structure has energy loss which is not
due to the piezoelectric. This component of the total system loss factor must
be removed from the experimental data before comparison with the
theoretical curves for resistive shunted piezoelectrics. Fortunately, the base
system loss factor was previously identified in the shorted piezoelectric tests.

The experimental and analytical model damping curves can be seen
compared in Fig. 5.9. The base damping of the shorted piezoelectric test
structure has been subtracted from the data for the resistive shunting case to
leave only the damping increase due to the resistive shunting. The form of
the experimental damping increase shows remarkable correlation with the
shunted piezoelectric model lending credence to the analysis technique used
for shunted piezoelectrics in Chapter 3. The resistively shunted piezoelectrics
contribute about 0.01 to the loss factor of the truss which is the value that
would be expected if 14.3% of the strain energy in the first mode was resident
in the piezoelectric truss member. As predicted by theory, the loss factor
afforded by the resistively shunted piezoelectrics rolls off for values of the
shunting resister either smaller or larger than optimal. In this case the
optimal resistance value for the first bending mode at 40 HZ was 1963 Ohms.
The exact value of the GECC for the first mode was found from the data by
fitting the theoretical curve to the data. This fitted value, K31 = 0.146 (shown
in Figure 5.9), was used in subsequent modelling of the resonant shunted
piezoelectrics.
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First Mode Damping vs. Nondimensional Resistance
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Figure 5.9 First Mode Damping Experimental Results for Resistively Shunted Piezoelectrics

Fitted with the Analytical Model in Equation 3.42a
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5.4 System Damping Enhancement Tests Using Resonant Dampers

5.4.1 Overview

At this point, the tests on the damping enhancement mechanisms
implemented on the experimental truss will be discussed. Two types of
resonant damping devices were implemented on the truss for damping
enhancement. The two devices considered were proof mass dampers and
resonant shunted piezoelectric truss members. Both devices relied on
electrical state feedback systems to give them the capability of easily variable
tuning as described in Section 4.4.

The tests conducted with these damping mechanisms were twofold.
The first involved optimally tuning the damper to the structural mode of
interest and measuring the resultant modal frequencies and damping of the
truss. This type of test was directly comparable to the validation test
procedure presented in the previous section. The second type of test on the
resonant dampers entailed varying the tuning and internal damping
parameters of the devices in the vicinity of the optimal tuning conditions and
recording the resulting variation of the global system frequencies and
damping. This type of test provides sensitivity information useful in
damping enhancement system design and verification.

The purposes for the resonant damper tests were:

1) to gain insight on the system damping enhancement afforded
by resonant dampers.

2) to investigate the problems associated with realistic
implementation of these schemes on complex structural
systems.

3) to investigate the fundamental factors common to resonant
damping schemes with particular emphasis on providing a
common framework for comparison of the PMD and the
resonant shunted piezoelectric.

The following sections will attempt to address these goals in the light of
practical damping enhancement.
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5.4.2 System Damping Tests with Proof Mass Dampers

5.4.2.1 Tests with Optimally Tuned Proof Mass Dampers

For the optimally tuned PMD tests, the damper described in Section
4.3.1 was placed at node 11 in Figure 5.7d replacing the dummy mass used in
the calibration tests. The PMD #1 was connected to the truss with the main
axis oriented in the z direction in a position to damp the horizontal bending
modes. As described in Section 4.4.2 and Figure 4.10, the mechanical PMD
was embedded within an electrical state feedback scheme which provided
electronic stiffness and damping to the inherent mechanical stiffness and
damping of the device. This enabled the device to be easily tuned to the first
two horizontal bending modes of the truss. The PMD could not be tuned to
the third mode because of power limitations of the electrical drive system.

The first test in this series was to tune the damper to the first bending
mode of the all-aluminum truss at 39 Hz. The optimal tuning of the damper
to the test structure was found by visual inspection of the experimental
transfer function. The transfer function from forcing at node 1 to acceleration
in the z direction at node 1 was recorded and displayed by the Signology data
acquisition system. The peak value of the displayed transfer function was
minimized by comparing successive transfer functions while varying the
feedback gains. The following PMD tuning parameters were obtained:

o pO955
opt-exp O%

C

ddr .2962
which compares favorably to the theoretical values obtained with a mass
ratio, 5, of 4.7%. This mass ratio implies an optimal tuning, 8 = .955, and an

optimal damping, r = 0.4238. The optimal damping is lower than expected.
Beta is the ratio of damper mass to system modal mass not system total mass.

The results from the damping enhancement tests with the PMD tuned
to the first mode are shown in Table 5.7 with comparisons to theory and in
Table 5.8 with comparisons to the all-aluminum truss dynamic tests. As
expected the PMD replaces the structural mode with two highly damped
modes. The PMD is very effective on the mode to which it is tuned, giving
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Truss with PMD Tuned to Mode 1

Frequencies (Hz)

Analytical modelMode Experimentalc
Approximate Exact

la 35.71 38.09 36.49

lb 43.46- 40.14 42.95

2 99.90 92.70 92.42

3 151.58 146.93 147.43

Damping Ratios ()
Analytical model

Mode Experimental 
Approximate Exact

la .0619 .0819 .0727
lb .0642 .0915 .0885

2 .0065 .0087 .0063

3 .0101 .0086 .0035

Table 5.7 Comparison of Experimental and Analytical Modal Frequencies and Damping Ratios

for Truss with PMD Damper at Node 11 Tuned to the First Mode

Experimental Results for Baseline and PMD Damped Trusses

-- --

PMD tuned to PMD tuned to
Mode All-Aluminum Mode 1 Mode 2

la 39.23 35.71 38.60

lb 43.46
2a 99.42 99.90 95.05

2b 106.58

3 149.01 151.58 150.82

Damping Ratios (r)
PMD tuned to PMD tuned to

Mode All-Aluminum Mode 1 Mode 2

la .0063 .0619 .0090

lb _ .0642
2a .0048 .0065 .0413

2b .0562

3 .0030 .0101 .0085

Table 5.8 Comparison of Experimental Frequencies and Damping Ratios for the Undamped All-

aluminum Truss, the Truss with PMD Tuned to the First Mode, and the Truss with the PMD

Tuned to the Second Mode
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damping levels as high as 6.4% of critical. It does not provide this high level

of damping to all the modes. There is almost no spillover of damping into
the second mode. The third mode damping is the result of damper rattle at
that high frequency and cannot be attributed to conventional PMD residual
damping.

The experimental results can be seen compared to both the exact and
approximate analytical pole locations in Table 5.7. The model modes reflect
the presence of two modes at first bending due to the PMD, but these modes
are more highly damped than the experimental modes identified by the RLLS
algorithm. The exact model frequencies for the first mode are within 2.1% of
the experimental frequencies. The frequencies for the higher modes reflect
the errors present in the initial modelling of the all-aluminum truss from the
previous section. The damping predicted from the pole locations is slightly
higher than the experimental damping but correctly predicts the large
increase in first mode damping due to the PMD. The errors in the damping
in the lower and upper branches of the first mode, 17.4% error between the
model and the experiment for the lower branch and 37.5% for the upper,
could be manifestations of the RLLS identification algorithm since the modes
are so closely spaced. The errors in damping represent a small absolute
change in pole location, less than 2.5% in either branch.

Another point of interest is the "fallout" damping afforded to the
second bending mode by the damper tuned to the first mode. The
experimental second mode damping rose from 0.49% critical in the all-
aluminum truss to 0.65% in the PMD damped truss in the second mode. The
model correctly predicts this increase in the second mode damping as shown

in Tables 5.3 and 5.7. The model damping rises from 0.40% of critical to 0.63%
representing a 2.6% error from the experimental for the damping in the
second mode of the PMD damped truss.

The approximate technique for estimating the frequencies and
damping of the structural modes reproduced the frequencies found from the
exact model pole locations very well. The maximum deviation from the
frequencies of the model poles occurred in the upper branch of the first mode

with a 6.5% error. The predictions for the modal damping ratios was
consistently higher than the the damping associated with the model pole
locations as it was in the all-aluminum truss tests. The predictions for the
first mode damping compare well with the exact pole locations, however.
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The maximum relative error between the exact and approximate damping
coefficients occurs in the third mode with a relative error of 145% and an
absolute increase from the exact to the approximate of 0.50% of critical.

The system transfer function for the first mode from the forcing point

to the z direction acceleration at node 1 can be seen compared to the
equivalent all-aluminum truss transfer function and the analytical model
results in Figures 5.10a & b. The PMD decreases the amplitude of structural

response in the first mode by over 22 db with a total system mass increase of

only 3.2%. This damping efficiency is what makes PMDs so attractive as

structural dampers.
The analytical transfer function for the damped and undamped first

mode compares very well with the test results. The analytical model is
consistently 2.5 DB below the corresponding test result which is well within
the experimental error encountered in characterizing either the driver or the
accelerometers. The close correlation between the experimental and
theoretical transfer functions implies that the frequency domain modelling
technique accurately models the PMD damped structure.

The PMD in node 11 was also tuned to the second structural mode via

the feedback circuitry previously described. The damper parameters at
optimal tuning were found as before by visual inspection of the experimental
transfer function to be:

optx = .977

r = .2720
opt-exp

which compares favorably to the theoretical values obtained if a modal mass

ratio, 3, of 2.4% is assumed. This mas ratio implies an optimal tuning, 6 =
.977, and an optimal damping, r = 0.306. The slightly lower value of the

experimentally determined optimal r could be due to errors in the
interpolation for the experimental values.

The results for the dynamic characteristics of the truss test modes are
presented compared to the analytical model results in Table 5.9 and the all

aluminum truss test results in Table 5.8. From this data, the effectiveness of
the PMD in damping the second mode is evident. The damper tuned to the
second mode increased the second mode damping from 0.49% of critical in

the all-aluminum truss experiments to 4.1% and 5.6% for the upper and
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Figure 5.10 Comparisons between the All-aluminum Truss and the Truss Damped by a PMD

Tuned to Mode 1: Experimental (A) and Analytical (B) First Mode Responses
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Truss with PMD Tuned to Mode 2

Frequencies (Hz)

Analytical modelMode Experimental
Approximate Exact

1 38.60 ' 39.74 39.08

2a 95.05 89.31 89.19

2b 106.58 83.04 not found

3 150.82 147.12 147.42

Damping Ratios ()

Mode Experimental Analytical modelMode Experimental
Approximate Exact

1 .0090 .0070 .0066

2a .0414 .0323 .0210

2b .0562 .0590 not found

3 .0085 .0132 .0035

Table 5.9 Experimental and Analytical Modal Frequencies and Damping Ratios for the Truss

with PMD Tuned to the Second Mode

lower branches of the second mode of the PMD damped truss, respectively.
The damper has little effect on the first and third modes of the truss.

The experimental results for the truss frequencies and damping are
compared to the model in Table 5.9. The model does not reflect the splitting

of the second truss bending mode due to the tuning of the PMD. The model

contains only one mode at second bending with a frequency approximately
equal to the model frequency of the undamped truss. Although the PMD is

optimally tuned to the experimental second bending mode, it is not optimally
tuned to the model second mode because the model mode has a frequency
different from the experimental mode. As a result, the PMD is tuned far

above the second model mode and does not influence the global structural

dynamics other than to increase the second mode damping by a small
amount. In resonant damper applications where the damping device is
tuned to a structural mode, the mode must be well modelled for the analysis

to accurately predict the global damping. This is due to the relatively narrow
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frequency range of the effectiveness of the resonant devices for providing
damping.

The system transfer function from the driver to the horizontal
acceleration at node 1 can be seen compared to the analytical model and the
all-aluminum truss results in Figures 5.11a & b. The experimental transfer
function depicts the 20db reduction in modal amplitude from the undamped
to the PMD damped truss. The model mode is 10 Hz below the actual mode
so a PMD tuned optimally to the experimental second mode gives only
secondary effects for the model second mode.

These tests on the effectiveness of proof mass dampers at optimal
tuning yield some interesting insights into some practical aspects of damping
enhancement for space structures. First, the proof mass dampers are mass
efficient contributing an average of 6.3% critical damping for a total system
mass ratio of about 2.7% with little variation of the base structures modes.
This mass did not include amplifier and feedback circuitry masses. Secondly,
it is difficult to tune the resonant dampers accurately to the truss using the
analytical model alone since small variations in the model produce large
variations in the damping levels realized on the truss. This necessitates some
sort of manual tuning scheme to get the most out of the dampers. More on
the sensitivity of the system damping levels to parameter variation will be
presented in the next section.

5.4.2.2 Frequency and Damping Sensitivities to PMD Parameter Variation

Tests were conducted on the truss structure with the PMD parameters
tuned in the vicinity of but not at optimum tuning for the first truss bending
mode. Once the optimal tuning parameters had been determined in the
previous test, the tuning parameters of the PMD were varied in a pattern
about this optimum. The purpose of the test was to determine the effect of
mistuning on the damping afforded by the resonant device. Since tuning is
required with resonant devices and the structural parameters can vary from
the model used in analysis, it is useful to determine the sensitivity of the
truss damping levels to mistuning.

These tests where conducted using the techniques described for the
optimum tuning experiments. The feedback tuning circuit was used for the
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parameter variation. This test was only conducted for parameter variation
about the first mode. In one variation series, the damper was set to the
optimum frequency tuning, 8, and the damper's internal dissipation, r, was
varied from underdamped to overdamped. In the other series, the damper
was set to the optimum internal dissipation and the frequency tuning was
varied from below to above optimal.

The series of transfer functions associated with the first series of
damper dissipation parameter, r, variations is presented in Fig. 5.12a and the
second series with frequency tuning variation is shown in Fig. 5.13a. Several

trends are apparent. First, at optimal frequency tuning, the transfer function
changes with increasing r from two undamped modes through optimal
damping to one undamped mode as the damper internal dissipation rises.
The root locus for the identified system modes for r variation is shown in

Figure 5.12b alongside the theoretical root locus calculated from the
denominator of Equation (3.50). A mass ratio of 4.7% was used in this
calculation. The experimental roots were identified using a Recursive Lattice

Least Squares (RLLS)-routine on the data from the first parameter variation

test. As can be seen the RLLS routine has a difficult time tracking the damped

root after frequency coalescence, preferring to fit the visible mode with two

lightly damped poles rather than a heavily damped mode superimposed
upon a lighter damped one. This is a common problem for identification
schemes.

Some interesting trends are also visible in the frequency tuning
variation tests at optimal damper internal dissipation levels. The transfer
functions and root locus associated with this test are shown in Figures 5.13a

and 5.13b, respectively. As the tuning goes from below optimal to above
optimal the system transfer function lowers on the right to the optimal value
then rises on the left. The primarily structural mode moves out from the
imaginary axis and becomes more highly damped as the PMD mode becomes

less damped and eventually replaces it. The experimental modes loosely
follow this trend since there is a difficulty in the identification of the modes

from the experimental data. As seen in the transfer functions, a small
variation in the tuning parameters can result in a large increase of system
response for PMDs.
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5.4.3 System Damping Tests with Resonant Shunted Piezoelectrics

5.4.3.1 Tests with Optimally Tuned Resonant Shunted Piezoelectrics

The piezoelectric truss members described in Section 4.3.2 were used as
elements of a resonant damping enhancement scheme for space structures.
Four piezoelectric truss members replaced 4 members in the central bays of
the all-aluminum truss in the exact configuration used in the shorted
piezoelectric experiments described in Section 5.3.4 and Fig. 5.7c. The truss
was otherwise undamped and driven by a PMD driver at node 1. The
piezoelectrics where shorted with an electrical circuit which, when combined
with the inherent capacitance of the piezoelectric, produced a resonance
which could be tuned to a structural mode as described in Chapter 3, Section
3.4.4.

The electrodes of the piezoelectrics were arranged as for the resistive
shunting case. The truss members on opposite sides of the truss were wired
with opposite polarity so as to cause the members on one side to expand as
the others contracted. The four piezoelectric members were thus wired to
create one combined piezoelectric damper which was sensitive to bending.
This total damper was shunted with a variable resistor and variable inductor
in series to create, along with the total inherent capacitance of the
piezoelectric, a resonant circuit coupled to the structure through the energy
transformation properties of the piezoelectric. Experiments were conducted
to determine the natural frequencies and damping ratios of the truss when
the piezoelectric damper had been optimally tuned to the truss structure's
first or third bending modes. Tests were not preformed on the second
structural mode since in this mode there is little bending strain energy in the
central 2 bays of the structure. The tuning was done in accordance with the
guidelines given in Section 3.4.4.

The first resonant piezoelectric experiment entailed tuning the damper
to the first structural bending mode for the shorted-piezoelectric structure at
40 Hz. The shorted piezoelectric structure is the comparable undamped
system for these tests since it reflects the piezoelectrics inherent stiffness and
damping without the electrical interaction under study. The electrical tuning
which was found to give the lowest amplitude of structural response was at
an inductance of 7.29 Henries and resistance of 248.7 Ohms along with the
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inherent capacitance of the 4 piezoelectric members of 2.17 Farads. The
resulting parameters are:

8 = 1.0149
opt-EXP

r E= .1336
opt-EXP

Since 8 is found to be larger than 1, these results verify the contention
made in Chapter 3 that the optimum condition is to tune the shunted
piezoelectric resonance above the resonant frequency of the structure. These
tuning criteria correspond to the optimum tuning conditions for a system
with a coupling coefficient, K31, of 0.173. This is in fair correlation with the
value of K31 presented in the resistive shunting case (Section 5.3.4). In that
experiment, the value of K31 was determined to be 0.146. The experimentally
determined damping parameter is lower than the optimum value expected
with a K31 of 0.173 determined from the experimental tuning ratio. The
expected value of the optimal dissipation parameter, r, is 0.24. The damping
parameter is very sensitive to changes in the frequency tuning ratio. Since
the tuning can only be pinpointed to within a few tenths of a hertz this can
lead to large variations in rpt. The lower experimental value of r implies a
smaller coupling coefficient and less damping capability than would be
expected from the experimental value of the frequency tuning parameter, 6.

The results for the truss structure frequency and damping ratios can be
seen compared to the other piezoelectric tests in Table 5.10 and compared to
the analytical model, both exact and approximate methods, in Table 5.11. The
resonant shunted piezoelectrics increase the first mode system damping from
1.1% critical in the shorted case to an average of 5.5%. This damping increase
is only apparent in the first mode just as in the PMD case. The third mode
damping ratios have increased due to interaction between the two modes
shifting the third mode toward unobservability. Consequently, the
identification routine attributes this lessened amplitude response to a virtual
damping which doesn't really exist in the structure.

The experimental results are compared with the model results in Table
5.11. The model reflects well the changes in the dynamic characteristics of the
truss caused by tuning the RSP to the first truss mode. In the experiments,
the piezoelectrics are optimally tuned to minimize the amplitude of the
system transfer function. The experimentally determined tuning parameters
were then used in the analytical model. Since the analytical model
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Experimental Results for Baseline and RSP Damped Trusses

Frequencies (Hz)

Shorted RSP tuned to RSP tuned to
Piezoelectrics Mode 1 Mode 3

la 39.41 38.31 39.49

lb 43.66
2 99.05 99.28 99.15

3a 145.47 145.15 144.41

3b 152.76 151.98 151.99

Damping Ratios (r)

Shorted RSP tuned to RSP tuned to
Mode Piezoelectrics Mode 1 Mode 3

la .0119 .0418 .0108

lb .0599
2 .0062 .0056 .0057

3a .0095 .0113 .0132

3b .0115 .0100 .0121

Table 5.10 Comparison of the Experimentally Determined Modal Frequencies and Damping

Ratios between the Baseline Shorted-piezoelectric Truss and the Trusses with Resonant

Shunted Piezoelectrics (RSPs) Tuned to the First or Third Mode

Truss with RSP Tuned to Mode 1

Analytical model
Mode Experimental

Approximate Exact
la 38.31 35.99 34.72

lb 43.66 43.57 43.43

2 99.28 92.39 92.16

3a 145.15 145.75 145.99

3b 151.98 138.48 not found

Damping Ratios ()

Analytical model
Mode Experimental Approximate e

Approximate Exact

la .0418 .0889 .0580

lb .0599 .0401 .0252

2 .0056 .0071 .0054

3a .0113 .0077 .0044

3b .0100 .0091 not found

Table 5.11 Experimental and Analytical Modal Frequencies and Damping Ratios for Truss with

RSP Tuned to the First Mode
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frequencies do not necessarily match the experimental truss frequencies, the
tuning parameters which produces optimal results on the experimental truss
will not necessarily produce optimal results in the model. This accounts for
the discrepancies between the actual and the model first mode frequencies
and damping. The model predicts higher damping in the lower branch of the
first mode as opposed to the experimentally obtained result of higher
damping in the upper branch, 6.0% of critical. There was little damping
"spillover" to the second and third truss bending modes in either the model
or the experiment. This lack of spillover is typical for resonant dampers.

The system transfer functions of the first mode can be seen for the

shorted and resonant shunted piezoelectrics compared to the analytical
results in Figures 5.14a & b. The 15 db reduction in system response can be
clearly seen in Fig. 5.14a. The optimally tuned piezoelectric damper can thus
be used as a modal damper with performances comparable to a PMD's. While
there is good agreement between the experimental and analytical undamped
truss transfer functions, the damped transfer functions differed greatly. The
appearance of two widely spaced modes in the damped analytical transfer
function implies that the model demonstrates a higher coupling coefficient
and hence more damper authority than does the experiment. Since the
optimum tuning depends on the value of the coupling coefficient, this
mismodelling leads to inaccurate tuning in the model as opposed to the
optimal tuning demonstrated by the experimental transfer function. In all,
the resonant shunted piezoelectrics were clearly effective as modal dampers.
More work needs to be done on modelling the structural aspects of the
piezoelectric truss members.

Experiments were also conducted with the piezoelectric truss members
tuned to the third bending mode of the truss. All arrangements were as
before for the first mode tuning. The variable inductor and resistor described
in Section 4.4.3 were employed to obtain the optimum tuning conditions.
These were found to occur with the inductance at 0.51 Henries, the resistance
at 19.5 Ohms, and the capacitance as before. The damping parameters are
difficult to calculate since there are two modes in the vicinity of 150 hertz
which were simultaneously damped.
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If we use the highest mode as a reference:
8optEx = 0.993

- = 0.0402
opt-EXP

These values reflect the fact that the electromechanical coupling coefficient is

low for the third mode. This is so for two reasons. First, the third mode has

relatively less strain energy in the central 2 bays of the truss than the first
mode. Secondly, the modeshapes for the third bending modes in the vertical

and horizontal directions have shifted toward unobservability from the
piezoelectric truss members making the coupling coefficient even smaller
than would be expected.

The experimental results can be seen compared to the other
piezoelectric cases in Table 5.10 and with the analytical model in Table 5.12.

Although the third mode split makes it hard for the analytical model to track

the damping, a few points are clear. The shunted piezoelectric does increase

the damping in the experimental truss in the third modes by about 0.4% of
critical for the lower mode and about 0.1% for the upper. This is probably

because the piezoelectric is more strongly coupled to the lower mode. It is

interesting to note that the optimum internal damping level, r, was very low

in this case, implying, from Equation (3.60), a low coupling between the
piezoelectric and the structure.

The model for the RSP tuning to the third truss bending mode suffers,

as does the second mode PMD tuning, from inaccurate modelling of the
mode to which the RSP was to be tuned. As a consequence, the experiment

exhibits two modes where the model exhibits only one. The model does
predict an increase in the damping of the third mode from 0.4% in the
shorted piezoelectric calibration test presented in Section 5.3.4 to 2.07% for the

RSP tuned to the third mode. Thus, although the double mode typical of
resonant dampers does not appear, the increase in damping afforded by a
mistuned damper does.

The experimental and analytical system transfer functions for the third

mode can be seen in Figures 5.15a & b. The 5 db reduction in third mode

amplitude is clearly visible in Fig. 5.15a. As expected the model does not
reflect the coupling of the horizontal and vertical third bending modes which

result in a much broader experimental transfer function. The location and
amplitude of the lower of the two modes is reflected accurately in the model.
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Truss with RSP Tuned to Mode 3

Frequencies (Hz)

Analytical model
Mode Experimental

Approximate Exact
1 39.49 - 40.54 39.93

2 99.15 91.26 91.02

3a 144.41 132.37 139.55

3b 151.99 147.29 150.54

Damping Ratios ()
Mode Experimental Analytical model
Mode Experimental

Approximate Exact
1 .0108 .0128 .0121

2 .0057 .0082 .0062

3a .0132 .0852 .0207

3b .0121 .0250 .0155

Table 5.12 Experimental and Analytical Modal Frequencies and Damping Ratios for the Truss

with RSP Tuned to the Third Mode

As was evident in the first mode test, the model exhibits a higher coupling
coefficient. The damped model therefore exhibits the mode splitting
associated with higher authority resonant dampers.

The low damping authority of the experimental RSPs in the third
mode can be explained by two factors. First, the stain energy in the third
mode is not as concentrated into the central 2 bays as it is in the first mode.
Secondly, in the experimental truss the horizontal bending modes in the
vertical and horizontal planes coupled to produce two modes shifted from
these. These shifted modes were not as observable from the piezoelectrics as a
pure horizontal mode would have been.

In the course of the resonant piezoelectric experiments, several lessons
were learned for the practical implementation of this damping scheme.
There were several difficulties associated with the tuning process. Since the
native piezoelectric capacitance is so low, a very large inductance must be
used to get an electrical resonance in the range of the structural modes.
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Putting more capacitance in the electrical circuit cuts the performance. Large
inductors (greater than 5 Henries) are commercially available. These
inductors usually posses inherent resistance which is above the optimum
value. The solution is to use high-q (low resistance) inductors to get the
inductance while preserving low resistance. Another option which was
partially employed is to use active inductor circuits based on high voltage
amplifiers. This method was employed to make the variable part of the
inductor used in the tuning experiments. In the experiments, there was a
large high-q inductor with a small variable active inductor in series. Since
active inductors ideally posses no resistance, this helped meet the tuning
requirements for the damping parameter, r.

The next step in the investigation of shunted piezoelectrics as damping
elements in space structures is to determine the sensitivities of the global
system damping to mistuning.

5.4.3.2 Sensitivities to Resonant Shunted Piezoelectric Parameter Variations

Test were conducted with the resonant shunted piezoelectric tuned at
various values in the vicinity of the optimum tuning for the first bending
mode. The variable tuning was achieved using the tuning electronics
described in Section 4.4.3 using the testing techniques common to all
piezoelectric tests. The purpose of the test was to determine the sensitivity of
the truss first mode damping level to variations in the resonant shunted
piezoelectric's tuning parameters away from optimum. This information is
important since optimum tuning can rarely be accomplished from the model
alone; and deviations from optimum values can result in great losses in
damper performance.

Two variation tests were conducted. The first involved setting the
inductor to obtain the optimum 8 value and then varying the resonant circuit
resistance, R. The second test entailed setting the damper to the optimum
value of the electrical circuit resistance and varying the inductor value from
below to above optimum, thus varying the frequency tuning ratio. The
results from these experiments are thus comparable to the results for the
parameter variation of the PMD.
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The system transfer functions which resulted from the first variation
of the damper resistance can be seen in Fig. 5.16a. The poles corresponding to
these systems can be seen plotted against the theoretical root locus obtained
from the denominator of Equation (3.50) in Figure 5.16b. The value of the
coupling coefficient used in the root locus was found in the resistive shunted
truss tests to be K31 = .1466. The resonant piezoelectric exhibits the same mode
coalescence present in the PMD variation. Increasing damping from below
optimum to above results in the convergence of two relatively undamped
modes into a single damped mode and finally into an single undamped
mode. As explained before in Section 5.4.2.2, the experimental poles do not
track the damped mode after coalescence due to inaccuracies in the RLLS
identification routine. Just as with the PMD, the single undamped mode is
fitted with two undamped poles side by side resulting in a good fit to the
transfer function data but not reflecting the actual dynamics.

The transfer functions and system poles which result from the
frequency tuning variation at optimal resistance are shown in Figures 5.17a
and b respectively. As the damper frequency is changed from below to above
optimal, the system mode drops on the right then rises on the left. The
system main structural pole moves out from the imaginary axis while the
lower damper pole moves up to replace it just as for the equivalent variation
of the PMD. Thus although the tuning requirements for the RSP are different
from the proof mass damper, the resonant shunted piezoelectric shares some
some fundamental properties with it. Among these are the sensitivities to
parameter variations and dependance on a single parameter for
determination of the damper performance. For PMDs, this is the mass ratio,
3; for piezoelectrics, it is the generalized electromechanical coupling
coefficient, K3 1.
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5.5 Conclusions

A complete testing plan has been executed with the purpose of
investigating damping enhancement schemes on a realistic 10 bay truss
structure. Various calibrations were preformed on the damping
enhancement devices to ensure the accuracy and comparability of the system
results. The nominally undamped systems were characterized for their
frequencies and damping to serve as comparisons with the damped cases and
to validate the frequency domain modelling technique presented in Chapter
2. Finally, two resonant damping schemes were implemented on the
experimental truss. The first scheme implemented entailed a space realizable
classical proof mass damper; the second employed the resonant shunted
piezoelectric truss member.

Several effects were noticed for the base truss structure. This first was a
phenomena referred to as mode splitting which involved the interaction
between the two identical modes in vertical and horizontal directions. This
effect occurred at the higher frequencies. Another effect was that introducing
softness in a limited section of the truss (as with the inclusion of plastic
members) has lessoning effects on the higher modal frequencies. Any
material damping introduced in such a way will also contribute less to the
higher structural modes.

The PMD and resonant shunted piezoelectric were shown to be
effective single-mode dampers. The PMD implementation was shown to be
able to achieve 6.5% critical damping in the first mode with a mass ratio of
only 2.7% (not including tuning circuitry and amplifiers). The resonant
shunted piezoelectric implementation was shown to be comparable with the
PMD in terms of achieving system damping. The piezoelectrics raised the
first mode system damping to 6.0%. Since this incurred a mass ratio of only
2.7% of the total system mass, the resonant piezoelectrics are competitive
with PMDs in mass efficiency and much simpler mechanically.

Finally, the experiments conducted with mistuned resonant dampers
revealed the sensitivities of the system total damping to variations of the
damper parameters. The damping enhancement obtainable was found to
decrease sharply with deviation from the optimal tuning parameters. The
system trends associated with a given mistuning were found to be the same
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for both the PMD and the RSP. The trends provide useful clues in how to
correct the tuning toward optimum.

The concept of piezoelectric damping was verified for both resistive
and resonant shunting. The shunted piezoelectric schemes were
implemented on the truss and shown to be a viable alternative to either
viscoelastic material damping methods in the resistive shunting case or
PMDs in the resonant shunting case.
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Chapter 6
Conclusions and Recommendations

6.1 Summary

The intent of the research presented is to further advance the area of
passive damping augmentation for space structures. Toward this goal, a
framework for the analysis of damped systems with frequency dependant
properties has been developed along with models for the most promising
damping augmentation schemes. These schemes have been implemented on
a realistic three dimensional structure in a space realizable fashion to
illuminate the key difficulties associated with passive damping augmentation
on complex structures.

The first step towards the development of a passive damping
methodology is consolidation of the sundry and disparate damping
enhancement mechanisms into a common analytical framework. This
framework for damped systems is provided by Tellegen's Theorem which has
been adapted to structural systems in this research. The framework is
specialized to the frequency domain to accommodate the frequency varying
impedances of common structural elements such as beams, viscoelastic
materials, proof mass dampers, and shunted piezoelectrics. Simple
techniques for calculating the damping and frequencies of complex damped
structures were developed to aid in damping design.

Models for three general types of damping augmentation devices were
presented. These devices were complex modulus viscoelastic materials, the
classical proof mass damper, and a new technique referred to as shunted
piezoelectrics. Shunted piezoelectrics involved shunting a complex
impedance across the electrodes of a piezoelectric material to achieve energy
dissipation. If a resistor is the shunting element, then the material is
comparable to a viscoelastic; and if the shunting impedance is resonant, the
device is conceptually similar to a resonant proof mass damper.

An experiment was designed to test these damping enhancement
concepts on a representative structure. The experiment involved dynamic
tests for frequency and structural damping of a 10 bay box truss. Preceding the
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primary structural tests, a series of calibration tests were performed on the

actuators and undamped truss to provide information on the initial dynamic
properties of these items. Following these tests, the damping of the truss was

augmented by two resonant damping schemes: proof mass dampers and
resonant shunted piezoelectrics.

The proof mass damper (PMD) implementation produced significant
increases in structural damping in the two cases of the PMD tuned to the first

and second mode. The frequency domain analytical model predicted the
PMD performance accurately for the fist mode tuning. The effects of damper
mistuning were measured and found to agree with analytically predicted
trends.

Finally, experiments were conducted with the resonant shunted
piezoelectric (RSP) truss members tuned to the first and third structural
bending modes. The tuning of the members was also varied in the vicinity of

the first mode as with the PMD. The tests validated the ability of resonant
shunted piezoelectrics to damp the structure. The performance of the RSP
depended strongly on the coupling between the shunted piezoelectrics and
the mode shape to be damped. The RSPs were found to exhibit tendencies
comparable to those of PMDs in the experiments on damper mistuning.

6.2 Conclusions Pertinent to Tellegen's Theorem and Frequency Domain
Modelling

In the second chapter of this report, a framework was presented within
which to analyze the dynamics of mechanical systems. The framework,
known as Tellegen's Theorem, has been previously applied to nonlinear,
frequency dependant dissipative electrical systems. It was here applied to

mechanical systems exhibiting these qualities by virtue of the analogy
between Kirchoff's voltage and current laws and their mechanical
equivalents, displacement compatibility and force equilibrium. The general
form of this theorem can be specialized to the frequency domain where the

structure is represented as a network of frequency dependant mechanical
impedances.

This framework is general enough to incorporate most of the popular

damping enhancement mechanisms such as viscoelastic materials or
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resonant dampers which exhibit frequency dependant behavior. This
behavior is encapsulated in the components complex impedance. These
component impedances can be assembled into a global system impedance
matrix which can be analyzed for its dynamic properties. The energy
dissipation in a system was found to be dependant on two factors:

1) The real components of the elements of the global impedance matrix
define in Chapter 2.

2) The motion at the nodes to which the real portions contribute.

These factors are most obvious in the approximate method for finding
the loss factor of a general frequency dependant mechanical system presented
in Equation (2.50). The energy dissipation is dependant on the real part of the
quadratic product of the impedance matrix and the complex velocity
modeshape. This product can be maximized by choosing elements with large
real parts or by placing these elements in locations which contribute to the
total by virtue of the large velocities present. For instance, if a damper which
can be represented by a point impedance is chosen, it should be placed in a
location of maximum absolute velocity since this will maximize the product.
On the other hand if a device which spans two nodes is chosen, it should be
placed in a location of maximum relative velocity between the nodes to
maximize the quadratic product.

These two generic types of dampers were employed on the
experimental truss. The implementation of the generic point damper was
the PMD and the across damper was the piezoelectric truss member. In both
cases, internal resonances in the damper were used to increase the real part of
the impedance at the frequency which corresponded to a structural mode
thus increasing the modal damping. The devices were also placed in
positions so as to maximize the quadratic product with the modeshape. The
PMD was placed at the tip which is the point of maximum amplitude
vibration for a free-free structure, while the RSPs where placed in the
location of maximum strain or relative velocity for the first mode, the central
bays of the truss.

The approximate formula for the system loss factor can be used to
calculate the contributions made to the system loss factor by a component
without solving an eigenvalue problem. Just as in the case of the Rayleigh
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Quotient for structural frequencies, the approximate formula for system loss
factor is expressed as a ratio of two quadratic products depending on the
assumed modeshapes. If the exact modeshapes are used the loss factor will be
exact while if approximate modeshapes are employed an approximate value
of the system loss factor will result. Just as the Rayleigh quotient, the formula
for loss factor is insensitive to first order variations in the assumed
modeshape. This leads to flexibility in the choice of modeshapes used in the
initial stages of analysis.

6.3 Conclusions Pertinent to the Damper Models

Several frequency domain models for common dampers were
developed in Chapter 3 to complement the frequency domain framework
presented in Chapter 2. These models were for viscoelastic materials, proof
mass dampers, and shunted piezoelectrics. The models were developed to
show how elements of a damping system could be advantageously
incorporated into the frequency domain framework.

The first damping method presented was viscoelastic materials. The
general model for these materials, taken from Ref. [17], employs fractional
powers of the Laplace parameter, s, to give the viscoelastic material properties
complicated frequency dependance. These fractional powers of the Laplace
parameter, while difficult to incorporate into time domain models, are
simply incorporated into the mechanical impedance of the viscoelastic
structural element.

The second damping device considered was the proof mass damper.
This device can also be represented by a frequency domain impedance, in this
case a point impedance. Parameters such as the natural frequency and
internal damping of the PMD resonator can be tuned to a structural mode to
minimize the modal response. The tuning parameters depend only on the
value of the mass ratio, 13, between the damper proof mass and the structural
modal mass. In Chapter 3 a method was presented for representing the
complex impedance of the PMD in terms of a simple dashpot which
dissipated a equivalent amount of energy. This analysis illustrated the
narrow frequency range of the damping afforded by the PMD as well as the
damping afforded to modes to which it is not tuned.
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The final damper model presented was for the shunted piezoelectric.
In this damping device, the electrodes of a piezoelectric material are shunted
by an electrical impedance designed to increase the structural damping by
dissipating structural energy which is converted into electrical energy by
virtue of the piezoelectric effect. The model developed for the arbitrarily
shunted piezoelectric illustrated some important properties of these damping
devices. The shunted piezoelectric material can be represented as having the
impedance of the shorted electrode piezoelectric, a pure stiffness, modified by
a nondimensional electrical term. The electrical term modifies the stiffness
of the piezoelectric through the effect of the piezoelectric electromechanical
coupling coefficient. This coupling coefficient is a material property of the
piezoelectric.

Two cases of the shunting impedance were modelled in detail. The
first involved a resister shunting the inherent capacitance of the piezoelectric.
This resistive shunting creates a material with high loss factor as well as high
stiffness, a combination of properties which make the resistive shunted
piezoelectric potentially more effective as a damper than viscoelastic
materials which suffer from their low stiffness. The material loss factor of
the resistive shunted piezoelectric can be optimized at a certain frequency by
appropriate choice of the shunting resister.

The second application of shunted piezoelectrics is the resonant
shunted piezoelectric (RSP), where an inductor and resister are placed in
parallel to the inherent piezoelectric capacitance to produce a resonant circuit
which can be tuned to the structural resonance to minimize the modal
response in a manner similar to the PMD. The frequency and internal
damping parameters which minimize the structural response are only
dependant on a quantity known as the Generalized Electromechanical
Coupling Coefficient (GECC). This coefficient depends on the material
coupling coefficient of the piezoelectric as well as the ratio of the modal strain
energy which is present in the piezoelectric material. Two methods for
tuning the RSP were presented. The first was based on minimizing the
system steady state modal response, while the second was base on
maximizing the magnitude of the real part of the system poles. In general,
the first method produces slightly superior system steady state and transient
response.
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6.4 Damper Implementation and Experimental Design

Discreet damping devices were developed for experiments on a
representative space structure. A 10 bay truss structure was designed and
suspended in such a way as to exhibit free-free behavior in 3 dimensions with
low damping. The damping devices implemented were the PMD and the
Resonant Shunted Piezoelectric (RSP). The dampers were designed to be
space realizable with no mechanical interface to the laboratory frame.

A linear proof mass damper/actuator was designed using electrical
principles similar to those employed in loudspeaker design to produce a force
linear with the current supplied to the devices drive coil. This linear PMD
was manufactured with the magnetic portion of the device used as the proof
mass to produce a high ratio of proof mass to total device mass. This ensured
that the device was mass efficient. The actuator also possessed a high ratio of
achievable force to total mass which is another measure of actuator mass
efficiency.

Piezoelectric truss members were designed to replace the standard
aluminum members of the truss. These piezoelectric truss members
consisted of 3 components: the active piezoelectric cylinder, the mounting
endpieces for truss inclusion, and a composite outer shell surrounding the
piezoelectrics to increase the devices strength. The piezoelectrics enabled the
member to expand or contract axially in response to an applied voltage. Four
members were manufactured and placed in the central bays of the truss in
order to actuate the bending modes of the truss.

Both the PMD and the RSP were augmented with feedback electronics
to enable the tuning of the devices internal resonances. Position and velocity
feedback was provide for the PMD to enable the device to be tuned to the
structural model from 20 th 120 Hertz. The position and velocity feedback
created an electric "spring" and "dashpot" which where dependant on the
feedback gains.

The RSPs were equipped with an active variable inductor in series
with the base inductance and a variable resister as the shunting impedance.
The active inductor could be varied to effect the frequency tuning of the
members while the variable resister could be changed to effect the damping of
the internal electrical resonance.
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In general for these resonant dampers, it was important to have the
ability to tune the dampers to the structural modes after they have been
installed since the dynamic properties of the structure are not known a priori.

6.5 Experimental Damper Performance and Comparison to Analysis

Tests were preformed on both the PMD and the piezoelectric truss
members to ascertain the static forces which could be produced by the
dampers/actuators and to calibrate the performance of the tuning circuitry
described in Chapter 4. Calibration tests were also preformed upon the
baseline truss structure in configurations containing all aluminum members
and plastic or shorted piezoelectric central bay members. These tests were
preformed to calibrate the model results to the undamped experimental
results in the first bending mode. This was done in order to isolate the effect
of the damping enhancement devices on the dynamics of the structure.

The frequency domain model for the baseline truss structures well
predicted the truss dynamic properties even before the fine tuning to the first
mode. There was difficulty in modelling the frequencies of the second truss
bending mode. The approximate method based on Rayleigh's Quotient for
finding the truss structures natural frequencies and damping was employed
using the nominally undamped modeshapes of the all-aluminum truss
model. This approximate analysis predicted well the natural frequencies and
damping in the baseline truss configurations.

The PMD tuned to the first truss mode produced dramatic increases in
modal damping, from 0.6% to 7-8% of critical, with a total system mass
increase of only 2.7%. The frequency domain model correlated very well
with these results leading to confidence in the ability to represent PMDs as
frequency dependant point impedances. The first mode test also proved the
efficiency of the PMD as a structural damping device. The experiments with
the PMD tuned to the second truss mode also produced dramatic increases in
the system second mode damping but with poorer agreement between the
analysis and the experiment.

The system response of a structure damped by a PMD was found to be
very sensitive to variations of either the frequency or internal damping
parameters of the PMD. Since tuning to the structural frequencies predicted a
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priori by a model does not provide the accuracy necessary to minimize the
structural response, some provisions must be made for variable tuning when
using these resonant dampers.

The Resonant Shunted Piezoelectrics were also tested for their ability
to increase the energy dissipation in the truss over the dissipation found in
the shorted piezoelectric case. The RSPs proved very effective in damping
the truss, producing a increase in the damping of the first mode to 5.0% of
critical with a system mass increase of only 2.0%. This test validated the
concept of tuning the resonant electrical part of the RSP to the structural
mode to achieve structural damping. The RSP's response to both frequency
and damping parameter mistuning was nearly identical to the mistuned
PMD. This leads to the need for variable tuning resonant circuits to achieve
the minimum structural response.

Tests on the third mode tuning of the RSP demonstrated the
importance of the degree to which the piezoelectric materials "participate" in
the modeshape to be damped. Low participation leads to low effectiveness for
the RSP.

The frequency domain analytical model for the truss and the RSP
accurately predicted the shunted piezoelectric effect but with a much higher
electromechanical coupling than exhibited by the experiments. This is
attributed to inaccuracies in the structural modelling of the piezoelectric truss
member rather than to the modelling of the shunted piezoelectric elements.

In all, the experiments preformed demonstrated the usefulness of
resonant devices such as the PMD or the RSP for providing damping to a
complicated structure. The experiments also illustrated the importance of
proper resonance tuning as well as the effects of damper mistuning. This
information can prove valuable for the subsequent tuning of resonant
dampers.

6.6 Recommendations for Future Work

The results of the previously presented research suggest some
possibilities for topics of future research. These topics are in the areas of more
accurate frequency domain modelling, further technology development for
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shunted piezoelectrics, and the generalization of optimal control strategies to
the frequency domain.

The frequency domain framework for system analysis was
implemented for only simple masses, stiffnesses, and damping models.
There exists the possibility of developing exact frequency domain models for

beams or plates which exhibit the behavior of continuous bodies with
internal resonances as opposed to discrete masses or stiffnesses. The
frequency dependance of the compliances of these elements could be easily

incorporated into the frequency domain framework presented in this report.

Another avenue of interest is the further generalization of the
frequency domain framework to non-linear systems. This would involve the
development of state dependant impedances and the associated analysis
techniques, but it could be a powerful tool for the analysis of nonlinear
contributions to damping.

The model for shunted piezoelectrics was applied to only two cases,
those of resistive and resonant circuit shunting. There could be benefit in
using shunting circuits with multiple resonances for simultaneous damping
in multiple structural modes. This multimode tuning could present
problems with decreased effectiveness for any single mode but would
increase the flexibility of the shunted piezoelectric. There is also the
possibility of using active shunting circuits to produce shunted piezoelectrics

with specially tailored frequency responses.
Finally, the principles of optimal multivariable control can be applied

to systems in the frequency domain. Frequency domain optimizations have

been presented previously in Ref. [29] as a generalization of time domain

optimal control and in Ref. [30] in the area of wave control. The control

problem could be formulated with the system represented by the global
impedance matrix and the costs associated with the energy dissipation or
input to the system using the quadratic forms presented in Section 2.6. In this
framework, an optimal feedback impedance matrix from the system velocity
vector to the forces could be defined. The constraint of causality must be

placed on the problem formulation since the feedback impedance must not be

allowed of used future velocity information. This constraint can be difficult

to apply in the frequency domain framework. The potential for control of
systems with frequency varying properties makes this topic of keen interest.
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Appendix A
Implementation of Frequency Domain Analysis

A.1 Overview

The frequency domain analysis techniques for structural systems
presented in Chapter 2 can be implemented numerically on a digital
computer. In this appendix, some aspects of that implementation will be
discussed. The general technique used to represent frequency dependant
materials will be discussed as well as the actual implementation of the
techniques for finding approximate and exact model frequencies and
damping.

The implementations of the formulae presented for calculating the
approximate or exact model frequencies and damping were used to provide
the comparison with the data from the experimental truss structure. An
understanding of the techniques used to derive these comparisons is
necessary for interpreting the validity of the analytical results.

A.2 Program Organization

A computer program was written in Fortran to model structures using
the frequency dependant impedances of the elements. In form, the program
resembles a conventional finite element program. The impedance matrices
of the elements are evaluated at a certain frequency, rotated into the global
coordinate frame and assembled into a global impedance matrix just as are
the element stiffness matrices in conventional finite element programs. The
restrained degrees of freedom are then eliminated and the global impedance
matrix is reduced to contain only the retained set of degrees of freedom (DOF)
using static condensation. The velocities at the retained DOF can then be
solved for by inverting the reduced impedance matrix and solving for the
velocities which result from a given forcing vector using linear algebra.

This process is essentially identical to static displacement solutions
using finite element procedures with the exception that the element
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stiffnesses are replaced by the element impedances evaluated at a single
frequency. The result is the system response for the retained DOF set at a
single frequency. The system responses as a function of frequency are created
by looping through the above solution procedure for multiple frequencies
within the desired range of the frequency response. The repetitive assembly,
reduction and inversion of the global impedance matrix can be quite time
consuming for large order systems. The analytical transfer functions
presented in Chapter 5 were calculated in this manner.

A.3 Algorithms for Approximate Frequencies and Damping

There are several difficulties associated with the implementation of the
approximate formula for frequencies and damping presented in Equations
2.45 and 2.50 respectively. These problems stem from the fact that the
matrices used in the approximate formula for frequencies and damping are
themselves dependant on the frequencies at which they are evaluated. This
creates a problem in the choice of the appropriate frequencies at which to
evaluate the approximate stiffness and mass matrices derived from Equations
2.48a and b.

In the computer implementation of the approximate formulae, this
problem was overcome by using successively more accurate estimates of the
frequencies. The algorithm for determining the approximate estimates
follows the following steps:

1) The initial estimate for the natural frequency of the system is found by
visual inspection of the analytical transfer function derived in the
manner described in Section A.2. The transfer function can be
computed over a broad frequency range and visually inspected for local
maxima which may correspond to the structural mode for which an
estimate of the natural frequency or loss factor is desired.

2) The initial estimate for the natural frequency is used to form the
imaginary part (real part remains zero) of an initial estimate of the
Laplace parameter, s. This Laplace parameter is in turn used in the
calculation of the global impedance matrix (GIM).

3) The initial estimate for the frequency is also used to form the real part
(imaginary part remains zero) of the Laplace parameter which is used
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in the calculation of the second impedance matrix needed for Equation
2.48 (The first is evaluated at io while the second is evaluated at co).

4) These two impedance matrices are used in Equation 2.48 a & b to
calculate a first guess at the approximate global stiffness and mass
matrices.

5) These stiffness and mass matrices are used along with an assumed
approximate modeshape in Rayleigh's Quotient [Equation (2.45)] to
create a more accurate estimate of the modal natural frequency. In the
implementation for the truss experiment, the vector of nodal velocities
for the all aluminum truss which resulted from forcing at node 1 was
used for the assumed modeshape. This vector was calculated at the
frequencies found from Step 1 above for the 3 bending modes.

6) This more accurate estimate of the frequency is used in another
calculation of the global impedance matrix which is then used in
Equation 2.50 for the calculation of the modal loss factor.

7) These final estimates of the modal loss factor and frequency can then be
used to compute the approximate pole locations. The approximate
pole locations are used as an initial guess for the exact pole search.

This procedure was used in the calculation of the approximate natural
frequencies and damping ratios presented along with the experimental data
in Chapter 5. Since it required only three executions of the assembly and
reduction loop for the GIM, it is a less time intensive method of finding the
system poles than the numerical search for the zero of the determinant of the
GIM used in determining the exact pole locations.

A.4 Algorithm for Determining the Exact Model Pole Locations

The exact model pole locations correspond to values of the Laplace
parameter,s, for which the determinant of the global impedance matrix is
equal to zero. This is expressed in Equation 2.43. As described in Section A.2
the impedance matrix can be evaluated for any given value of s. The
determinant at that value of s can also be calculated from the GIM. The
technique used to find that value of the Laplace parameter which zeros the
determinant involves a numerical search over the complex plane.
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The determinant of the GIM possesses several properties which make

this numerical search difficult. First, the determinant is a complex quantity.
It has real and imaginary parts which must both be identically zero at a system
pole. The determinant can be though of as a complex valued function over
the complex plane. The numerical search can be simplified by dealing with
only the magnitude of the determinant in the zero search since the
magnitude of the determinant will only equal zero if both the real and
imaginary parts of the determinant are equal to zero. Secondly, the
complicated nature of the elemental impedances, which can contain
transcendental functions of s, leads to highly nonlinear behavior for the
determinant function. The determinant can exhibit abrupt changes and other
phenomena which can seriously impede a numerical search. Finally, for
large systems, the determinant of the GIM can be quite large at higher
frequencies. Numerical problems can arise due to limitations of the size of
aumbers representable by the computer. For the truss structure model, the
determinant overflowed the limitations placed in Fortran for double
precision representations of real numbers at only 20 Hertz. Within this array
of large numbers the poles appear as extremely sharp spikes to zero, further
confounding the search algorithm.

The problems of size where overcome by converting the search for the
zero of the determinant into a search over the natural log of the magnitude of
the determinant. This made the problem more amenable to traditional
-'lmerical search routines. The problem of finding a zero of a complex

iued function was thus converted to one of finding a minimum of a real
alued function with two variables: the real and imaginary part of the

assumed pole locations.
This two dimension search for a minimum can be implemented in a

variety of ways. For the calculation of the exact pole locations presented in
Chapter 5, a simple gradient search in two dimensions was preformed using
as an initial estimate the pole location derived from the approximate
formulae described in Section A.3. While probably not the most
computationally efficient algorithm for finding minima in two dimensions,
it preformed satisfactorily for the relatively simple truss model.
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