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Abstract
Object-oriented, persistent programming languages offer a simple model for the pro-
grammer to write applications that share data, even among heterogeneous systems.
However, poor performance limits their general acceptance.

I present two independent but complementary techniques to speed up object op-
erations in Theta, a object-oriented, persistent programming language that is used
within the object-oriented database Thor. I examine the overhead that such a system
imposes on operations such as method calls and field accesses, and show how these
operations can be made fast without sacrificing the flexibility and extensibility of
Theta.

First, I describe a novel object layout that allows method dispatch as fast or faster
than C++ implementations, while keeping the fast field accesses associated with non-
object-oriented systems. This layout derives from insights about the separation of
subtyping and inheritance.

Second, I show how customization can be applied to Theta to avoid many method
dispatches. The statically-typed nature of Theta makes it possible to avoid dispatches
more effectively than in a dynamic system such as SELF. Dispatches can also be
avoided in a novel use of customization that depends on the set of objects actively
being used by an application, and which is applicable to persistent object systems.

Thesis Supervisor: Barbara Liskov
Title: NEC Professor of Software Science and Engineering
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Chapter 1

Introduction

Persistent programming languages are found at the heart of object-oriented databases

and interpreted programming environments. They conveniently bridge the gap be-

tween primary and secondary storage of data objects and provide a simple model for

writing applications that share data. Unfortunately, most persistent programming

languages do not perform as well as statically-compiled, non-persistent systems, lim-

iting their general acceptance.

Because persistent objects may exist for a long time, performance decisions may

need to be revisited. In programming languages like C++ [12] or Modula-3 [2],

programmers may increase performance by limiting the extensibility of programs-

for example, by exposing some implementation details of the types used. These

limitations are unacceptable in an evolving, persistent system. The goal of this thesis

is to show how good performance can be achieved without sacrificing extensibility.

In this thesis, I look at the distributed, object-oriented database Thor, and show

how the performance of its programming language, Theta, can be made comparable

to that provided by ordinary statically-compiled programming languages such as C or

C++. Since almost all computation in Theta is composed of a few primitive object

operations (for example, object method invocation), I focus on ways to make these

object operations as fast as possible.

In the rest of this chapter, I present some necessary background on Thor, par-

ticularly on the object-oriented, persistent programming language Theta (Since both

Thor and Theta are still being designed at the time of this writing, they are likely

to differ in small ways from what is described here). I then explain the set of object

operations that I have worked to optimize.
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OR 1

FE

Figure 1-1: Structure of Thor

1.1 A Sketch of Thor

Thor provides persistent storage for a large number of objects that are stored in

reliable servers called object repositories (OR's). An object has encapsulated state

and is accessed only through a set of methods. The object state may contain references

to other Thor objects, even those located in other repositories.

Thor is based on a client-server model. The servers only store objects; compu-

tation is performed on persistent objects at the clients, which are called front ends

(FE's). The FE is a piece of Thor that executes on the client machine. A user appli-

cation can exist partly outside Thor, on the same client machine as the FE, but for

safety all method calls on Thor objects execute within the FE.

As an application executes, the FE fetches copies of those persistent objects that

it needs from the repositories (Figure 1-1). In this figure, object copies at the FE

are represented by gray circles; white circles represent objects stored persistently at

a repository. An object copy is fetched when a reference is followed from an object

at the FE to an object that is still only at an OR, e.g. object y in the figure.

When computation completes at a front end, changes to the persistent objects

are sent back to the repositories to be stored permanently. Computation at an FE is

divided into a series of transactions. A transaction can perform an arbitrary amount

of computation, but its modifications to object state are committed atomically to the

repositories.

8
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This thesis is primarily concerned with making code run fast, and so it focuses

almost exclusively on what happens at a front end.

1.2 Theta Language Features

The Theta programming language is used to describe computations that occur at the

FE. Theta is used to specify object methods, to describe the state encapsulated by

objects, and to implement methods using that state.

Theta is statically typed, because static typing aids in building reliable systems;

however, this type information also helps in making the optimizations described here.

The limitations of static typing are ameliorated in Theta through parametric poly-

morphism and more expensive mechanisms like casting down and class evolution-

topics beyond the scope of this thesis.

At the time of this writing, Theta has not been completely specified; however, a

reference manual is forthcoming [9].

1.2.1 Types and Classes

Theta is an object-oriented language, with multiple supertypes and single inheritance.

A type specifies an interface: a set of methods that can be performed on objects of

that type. However, types do not specify the implementations of those methods. In

fact, a type may have multiple implementations, or classes that implement it. In this

thesis, the terms implementation and class are used interchangeably.

Theta supports the ability to add new interfaces or implementations incrementally,

so that entirely new kinds of objects can continue to be added to the system.

Types exist in a type hierarchy. Each type has zero or more supertypes, creating

a directed acyclic graph. A subtype supports all the methods of its supertypes, and

extends their interfaces by adding new methods. An object of type T can be accessed

through the interfaces of any of the supertypes of T. The ability to have multiple

supertypes is not unusual, although many object-oriented programming languages

restrict types to having a single supertype.

One example of a type is rotation, which represents a rotation in ordinary three-

dimensional space. A rotation has four methods, named compose, apply, axis, and

angle. An informal specification is provided for each method of the type in the Theta

declaration that follows.
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rotation = type
% A "rotation" represents a rotation in 3-space
compose(r: rotation) returns(rotation)

. Return the "rotation" that is the composition of this rotation
% with "r".

apply(p: point) returns(point)
% Rotate "p" by this rotation and return the result.

axis() returns(point)
% Return a normalized vector that is the axis of the rotation.

angle() returns(float)
% Return the amount of the rotation, which is a number in

/ [-pi, pi).

end

In addition to the arguments listed in the specifications above, all these methods

have an implicit argument named self, whose type is rotation. The apply method,

for example, applies the rotation self to the point p, producing a new point. The

argument self is called the method's receiver. In most object-oriented languages,

the receiver is denoted by a special variable within the code of a method, such as

self or this.

A class is an implementation of a type. A class provides code to implement the

methods of its type, and defines object fields that the code manipulates. In addition

to providing the methods of the implemented type, a class may have additional private

methods that are only used internally.

There are several ways to write a class that implements rotation. One possible

implementation of rotation looks like:

quaternion = class rotation
r,i,j,k: float

angle() returns(float)
return 2.0 * arccos(self.r)

end angle

maker xrot(float angle)
init { r := cos(angle / 2.0),

i := sin(angle / 2.0),

j :=0,
k := 0}

end xrot
end quaternion

10



where all the interesting aspects of the quaternion implementation have vanished into

the "...". Note that objects of the class quaternion have four fields, or instance

variables, which can be accessed in the methods of these objects. For example, the

angle implementation accesses the r field.

The maker (or constructor) xrot is not defined in the type, because it is not a

method of objects of class quaternion. Calling a constructor is much like calling a

procedure to create a new object. An example of a constructor is presented here only

to illustrate where objects come from in the first place.

In Theta, objects are only manipulated through calls to methods that are de-

scribed by a type interface, such as rotation. This abstraction barrier allows the

interface to be reimplemented by a new class or classes, without breaking any code

that is a client of the interface. Some object-oriented languages, such as C++, allow

more information about a class, such as its instance variables, to be exported to the

outside world. When instance variables are used by clients, the clients become de-

pendent on the internal structure of objects. New implementations of the interface

cannot be created unless they have the same instance variables, because otherwise

the client code would break.

For example, if the quaternion implementation served as the rotation abstraction,

new implementations of rotations would be forced to have the four instance variables

of quaternion, because client programs might access these instance variables directly

and would otherwise break.

1.2.2 Method Dispatch

Let us consider what it means to invoke an object method in a type hierarchy, where

a given type may have multiple implementations. Given an object x of declared type

T, the compiler cannot statically determine the proper code to run when a method

is invoked; although x is declared to be of type T, the implementation of x may be

any of the potentially many implementations of T or of some subtype of T. Each

implementation may have its own code for each method described by T. Knowing

the declared type of x does not provide precise information about the correct code to

run.

Instead, the decision about what code to run must be made at runtime. This

runtime decision is called dynamic dispatch, and it is the source of both the power

of object-oriented languages and of the loss of performance often associated with
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them. Dispatching is the operation that fundamentally distinguishes object-oriented

languages from strictly procedural languages.

In the following example, the call to the method apply performs a dynamic dis-

patch on an object of type rotation. In general, the compiler cannot determine

which of the two possible implementations (quaternion and rotmatrix) the variable

x refers to. Only at runtime can the system make the determination.

x: rotation

if (complex-condition) then

x := quaternion.xrot(pi/2)
else

x := rotmatrix.makerot('x', pi/2)
end

p2: point := x.apply(pl)

Note that within one execution of this program, the variable x can refer to objects of

several different implementations.

Dynamic dispatch is important because it provides extensibility. A programmer

can write code using an existing interface (a type), intending to use the code with

a particular implementation of the interface; yet, later the implementation of that

interface can be changed. In fact, multiple implementations of that interface can be

used in the same piece of code.

Dynamic dispatch requires that the correct implementation procedure be looked

up for the object on which the method is being invoked. Programming languages

use different approaches to speeding up this lookup, but dispatch is always more

expensive than a procedure call.

Some conventional programming languages, such as C++, allow the programmer

to annotate methods to indicate whether they should be subject to dynamic dispatch

semantics. These non-virtual methods are only as expensive to call as a procedure

because the correct implementation can be determined at compile time, based on the

static type of the object. Non-virtual methods can even be inlined in C++, although

the programmer is again required to indicate this explicitly.

The use of non-virtual and inlined non-virtual methods in C++ can provide a

significant performance improvement. For example, the Richards benchmark[4] runs

50% faster when inlined non-virtual methods are used. The data from this simple

experiment, which was performed on a DEC AXP 3000/400 system, are shown in

12



Virtual methods 201 ms
Non-virtual methods 104 ms

Figure 1-2: Richards benchmark times with and without method dispatching

Figure 1-2. In both cases, the benchmark was compiled by the DEC C++ compiler

cxx, with optimization.

These data suggest that eliminating some of the overhead of method dispatch can

result in significant performance improvements. However, non-virtual methods are

not a good way of eliminating this overhead; they restrict the set of valid extensions

of a type. If a new implementation of the type is added, the non-virtual method

will no longer work properly, because static type information will not be sufficient

to determine the correct method implementation. The effect of this restriction on

new implementations is that the programmer is forced to trade off extensibility for

performance.

Trading off extensibility for performance is a trademark of the C++ philosophy,

but it is not suitable for a persistent object database, where assumptions about needed

functionality may become invalid as the system evolves. Because the system is long-

lived, extensibility must always come first; we must look for ways to achieve good

performance without sacrificing extensibility.

1.2.3 Inheritance

Theta supports inheritance, a feature which allows one class to inherit code from

another class, called its superclass. Rather than implement a method in its type in-

terface, it can simply use the superclass implementation. The subclass object inherits

all of the fields of superclass objects, since otherwise the inherited methods might not

make sense. The subclass may also add more fields and override methods. When

a subclass overrides a method, this affects the behavior of other inherited methods.

If another inherited method calls the overridden method, it will invoke the subclass
implementation of the method rather than the superclass implementation.

A subclass need not implement a type that is related to the type that the superclass

implements. The superclass methods that are inherited might not even appear in the

interface of the subclass's type. In this case, inheritance is being used purely as a

implementation shortcut, though a very useful one.

Note that subtyping and inheritance differ in Theta. Subtyping is generally con-
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sidered to be the essential contribution of object-oriented programming. In a system

with subtyping, a single object can satisfy interfaces presented by multiple types

- a powerful form of polymorphism. Inheritance, on the other hand, is a useful

mechanism for producing classes that implement these interfaces.

The class inheritance mechanism in most object-oriented languages is very power-

ful. Two distinct major uses of inheritance have been identified [1]: interface inheri-

tance, and implementation inheritance. Interface inheritance is identical to subtyping

- that is, interface A inherits from interface B if the type A is a subtype of B. Thus,

interface inheritance is a relation between types. The C++ facility of abstract super-

classes, allowing a class to inherit only the interface of its superclass, is an example

of interface inheritance.

Implementation inheritance is the ability to implement one interface by reusing

code that was written for a different interface. Implementation inheritance is a rela-

tion between classes. However, implementations often are inherited from a class that

implements a related type.

Implementation inheritance has two major benefits: programmer convenience and

code sharing.

Inheriting an implementation is convenient because it means that code does not

have to be rewritten for a subclass when it would be mostly identical to the superclass

code. This situation is quite common in object-oriented systems, especially when the

subclass and superclass implement interfaces that are in a subtype relationship.

Implementation inheritance also reduces the total amount of code in the system,

since multiple classes can use the same piece of code. This reduction in total code

size can result in better code cache and virtual memory performance. However, code

sharing is only a performance optimization. Inheritance can still provide programmer

convenience if the inherited code is recompiled for the inheriting class.

From this point forward, I will use the term "inheritance" to mean "code-sharing

implementation inheritance," and the term "supertype" to mean "the type from which

the interface is inherited."

1.3 Theta Object Operations

Computation in Theta consists almost entirely of a series of primitive object opera-

tions. There are four different operations that user code can perform on objects, and

an operation that the garbage collector performs on objects. Making Theta run fast

14



is largely a matter of making these primitive object operations run fast individually.

In addition to methods, Theta objects also have fields, sometimes called instance

variables or member variables. A field is a mutable slot in the object that can be

accessed by object methods, but not from outside the object's implementation.

Most of the computation in Theta consists of four ordinary object operations:

* Executing an object method (dispatching)

Example: x: rotation

x. apply(pl)

* Reading from an object field, which is allowed only within the implementation

of that object's class.

Example: y: float := x.r

* Writing to an object field - also allowed only within class implementations.

Example: x.j := 0

* Viewing an object by a different interface than the current one: casting up the

type hierarchy. In the example, the type any is the universal supertype.

Example: z: any := x

Reading or writing object fields is exactly like reading or writing fields in records

of ordinary programming languages, except that the object's implementation may

have inherited some fields from a superclass.

Casting up is an operation that is usually invoked implicitly, when an object

is passed as a formal parameter to a method expecting a type different from the

known type of the object. In object-oriented systems with only single inheritance,

casting up is usually a free operation. In a system with multiple inheritance and

method renaming, casting up must have some cost, as it changes the interface though

which the object is viewed. Implementations of C++ have shown that allowing this

operation to have a one-instruction cost can yield significant speedup in dispatching

[24]. An object reference can be represented as any of a number of distinct memory

15



pointers, depending on the declared type of the object. Casting up can be performed

by offsetting a pointer by a fixed constant. The details of this scheme will be examined

in Chapter 2.

A fifth object operation is provided by some object-oriented programming lan-

guages, such as Trellis/Owl [22, 23] and Modula-3 [18]. This is the operation of

casting down the type hierarchy, sometimes provided as a typecase, and sometimes

as a simple cast that is allowed to fail when the object is not of the desired type.

Although casting down is an important operation in some programming styles, it

is usually infrequent. Optimizing such casts is a separate problem, and beyond the

scope of this thesis.

The garbage collector implicitly performs a kind of casting-down operation. Given

an object pointer, the garbage collector must be able to locate the beginning of the

object and the fields of the object. Although it only affects garbage collection, this

operation must also be supported efficiently.

1.4 Outline of the Thesis

In this thesis, I look at the basic object operations of method dispatching and access-

ing fields, to see how they can be made efficient. Since almost all computation within

Theta is composed of these primitive operations, reducing the amount of time spent

per operation is very important.

The expected amount of time per operation is on the order of a few machine

instructions. Thus, removing even a single instruction from the standard instruc-

tion sequence for method dispatch can have a noticeable impact on overall system

performance.

Because I measure time in machine instructions, it is worthwhile to discuss what

machine is under consideration. I assume a fairly standard RISC architecture, and

use the MIPS R3000 as an example of such an architecture. Most current RISC

architectures do not differ significantly with respect to the instructions used here, so

the particular choice of RISC architecture is not very significant.

My approach to making Theta run fast has been twofold. First, I have inves-

tigated how objects can be structured so as to minimize the length of the most

time-consuming code needed to perform the basic operations. I describe the object

layout I have designed in Chapter 2.

Second, I have examined the object operations and looked for special cases that
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turn out to be common in practice, that can be identified statically by a compiler,

and that can be implemented more efficiently by the compiler than the general case.

Such special cases can be exploited to produce faster code overall. I describe this

compiler support in Chapter 3.

In Chapter 4, I summarize my design and its benefits, and describe some of the

ways that this work could be extended or improved.
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Chapter 2

Making Dispatch Fast

2.1 Overview

This chapter addresses the problem of making object operations - particularly,

method dispatch - fast in those cases when it is unavoidable. The next chapter

looks at ways to avoid method dispatch when it is not really needed; however, in a

program that uses method dispatch heavily, making it fast is critical.

A great deal of work has been done to make method dispatch fast in various object-

oriented languages. The object layout that I have developed for Theta is based on the

object layout and dispatch mechanism of C++. Both of these mechanisms depend on

the static typing of their respective languages. For this reason, I begin by discussing

dispatch tables, a technique common to most fast dispatch mechanisms. I then cover

the C++ dispatch mechanism, which is an refinement of the simple dispatch-table

approach for supporting multiple inheritance.

In Section 2.5, I explain the bidirectional object layout that I have developed for

Theta, and how it refines the C++ object layout for a persistent object system with

separate inheritance and supertype hierarchies. It provides slightly faster method

dispatch and a more compact object layout.

Finally, in Section 2.6, I discuss the current implementation of the Theta dispatch

mechanism and provide some performance results.

2.2 Issues

At the same time that method dispatch is made fast, we must consider the impact

on the other object operations described in section 1.3: accessing fields, locating the

beginning of the object, and casting the object up the type hierarchy.
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Before discussing my approach to object layout, and various approaches that lead

up to it, it is worthwhile to articulate some of the assumptions I use in analyzing the

performance of a solution.

2.2.1 Memory Usage

Memory usage is an issue for object layouts. Most fast dispatching schemes share

a table or set of tables among all objects of a class. Some researchers have been

concerned about making these tables as small as possible [11, 20]. However, since

dispatch tables are shared, they consume a small fraction of memory, assuming that

there are a reasonable number of objects per dispatch table. This is a good assumption

in class-based object-oriented languages, although it may be untrue for systems such

as SELF, where individual objects can rewrite their method implementations. I do

not place a high priority on minimizing per-class memory usage, but minimizing the

amount of per-object overhead is very important.

2.2.2 Instruction Sequences

Analyzing the length of instruction sequences for performing method dispatch is

tricky. The usual conceptual model of RISC architectures is that each instruction

takes one cycle. However, certain instructions can result in pipeline stalls, effectively

increasing the duration of the instruction.

For example, any reasonable dispatch sequence must contain a jump to an ad-

dress specified by a register. This instruction may cause pipeline stalls, because the

instruction-fetching unit of the processor is not able to determine the target of the

jump. Jump instructions can also cause instruction cache misses for similar reasons.

However, since all dispatch sequences considered in this chapter contain this instruc-

tion, I ignore the effect of the jump instruction for purposes of comparison.

Another problematic instruction is a load from memory, which can generate a

data cache miss and subsequent stall while the memory subsystem obtains the data

value from a secondary cache or main memory. For this reason, I separate loads into

two classes: loads that are expected not to generate a cache miss, because they access

a frequently-used location; and loads that are likely to generate a cache miss. Loads

that hit in the cache cost only a single cycle. Loads generating a cache miss can

be expected to take significantly longer than one cycle, although how much longer

depends on details of the architecture.

20



2.2.3 Statically-Typed vs. Dynamically-Typed

Object-oriented programming languages are divided into two major camps: statically

typed vs. dynamically typed. In the former camp are languages such as C++ [12],

Modula-3 [18], and Trellis/Owl [22]. In the latter are Smalltalk [13], SELF [5], and

Objective C [8]. Dynamically-typed languages provide greater polymorphism, since

there is no type system to limit the kind of object that can be provided as a method

argument. However, these languages do not have the advantages of compile-time

type-checking.

Performing method dispatch is a more complex process in dynamically-typed lan-

guages. In a language like Smalltalk or SELF, there is no guarantee that an object

will even understand a method called on it. The system must always be ready to

detect an invalid method call and generate an appropriate exception or error - a

capability with some runtime cost.

An invalid method call cannot occur in statically-typed languages, as the type sys-

tem guarantees that the object will understand the method being called on it. Static

type-checking, as in Theta, simplifies the problem of performing method dispatch

quickly.

2.3 Dispatch Tables

The dispatch table is a basic mechanism that is used in some form by many language

implementations. It was originally used for statically-typed programming languages

with single inheritance, such as early versions of C++. Dispatch tables are discussed

here in the context of C++ in order to facilitate the next section, in which more

advanced C++ dispatch mechanisms are covered. This discussion applies to any

statically-typed language with single inheritance.

Early versions of C++, such as the AT&T C++ 1.2 compiler, allowed only single

inheritance and single supertypes, making possible a particularly simple form of dis-

patch. Each method of a type is assigned a unique small integer index (Note that in

C++, types and classes are identical). The root classes number their methods con-

secutively, starting from zero, and a subclass's lowest-numbered additional method

has an index one greater than its superclass's highest. Thus, an object of class C

supports a set of n methods, each of which has a unique method index in the range

O... n - 1. For each of these methods, its index in the superclass of C is the same as
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in C. Applying this rule transitively, we can see that the method's index is the same

all the way to the top of the type hierarchy.

For example, consider the following type specifications. For uniformity, all type

specifications in this document will be written in Theta syntax, even when C++ is

under discussion.

point = type
x() returns(int)
y() returns(int)

end point

cpoint = type supers point
getcolor() returns(color)
setcolor(c: color)

end cpoint

A point only supports the x and y methods. Because c_point is a subtype of

point, it supports x and y. It also has an associated color that can be observed or

changed by getcolor and set_color. Since point has no supertypes, its methods

will be assigned the indices x = 0, y = 1. Objects of type cpoint must agree with

point objects about the indices of x and y, so getcolor = 2 and setcolor = 3.

Each class has a dispatch table that is shared by objects of that class. The objects

start with a one-word header that points to this shared dispatch table (Figure 2-1).

Objects also have a non-shared portion, in which the fields of the object are stored.

In the figure, this portion of the object is shaded in gray.

A subclass must conform to the layout of its superclass so that inherited methods

can work properly. Only limited changes to the dispatch table format are allowed -

specifically, the dispatch table may only be extended in order to add new methods.

Note that in Figure 2-1, the dispatch table for c_point starts out with the same

methods as point.

As shown in Figure 2-2, an entry in a class's dispatch table contains a pointer to

the class's code for the method of that index, represented by an irregular balloon-

shape. The notation C.M denotes class C's implementation of method M.

A subclass may inherit method implementations directly from the superclass. In

this simple dispatch-table model, inheritance is implemented simply by making the

dispatch table for the subclass point to the code for the superclass methods. For

example, in Figure 2-2, the y implementation from point is inherited by c_point,

whereas the x implementation is not. Of course, a subclass can always override the
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Figure 2-1: Objects and dispatch tables

c_point object

Figure 2-2: Dispatch tables and code
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load t, (aO) % load the dispatch table address
load t2, i(tl) % load the method code pointer

jalr t2, ra % jump to the method

Figure 2-3: MIPS code for a simple dispatch

code pointers in its dispatch table to point to code different from the superclass's.

The subclass then provides a different implementation of those methods.

From here on, the actual code implementing a method will not be illustrated in

the figures. When applicable, the C.M notation will be placed in the dispatch table

slots to indicate which code is being pointed to.

In order for inherited methods to work properly, the fields of the subclass must also

be compatible with the superclass fields. The inherited code will expect to find fields

at particular locations in the object, so the fields must also be inherited. Therefore,

the subclass must retain all the fields of the superclass. It may also add new fields to

the end of the object. An object of the subclass looks exactly like an object of the

superclass as far as any inherited superclass method is concerned. For example, the

cpoint object begins with point fields, but adds some fields of its own to the end.

So any method inherited from point will find that the cpoint object exactly meets

its expectations.

When method i is invoked on an object, the address of the dispatch table is loaded

from the header of the object. The address of the code for method i is then loaded

from index i in the dispatch table, and control is transferred to that loaded address.

The assembly language describing this process is shown in Figure 2-3. The code

assumes that register aO contains the object pointer, and tl and t2 are temporary

registers.

In some later figures, the dispatch tables will be elided, and implied through the

more compact notation shown in Figure 2-4. Any slots in the object that point to

dispatch tables are indicated by writing a sequence of types or classes, like A / B / C,

in the slot. This notation indicates that the slot points to a dispatch table containing

pointers to methods of the types or classes A, B, and C. Additionally, it implies that

the method indices of A start at 0; that B's methods follow sequentially after A's;

and similarly, C's follow B's.

For single-superclass systems, this dispatching and inheritance technique works

extremely well, as a dispatch costs only three instructions. Field accesses require
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point object

point

pointifiels'ds.

c_point object

Figure 2-4: A more compact notation

only a single load or store, just as in non-object-oriented systems. And casting up is

a free operation. The limitation of this approach, addressed by newer C++ imple-

mentations, is that classes can have only a single superclass.

2.4 Multiple Superclasses in C++

The technique described above for implementing dispatch in a single-superclass sys-

tem does not work for systems where a type can have multiple supertypes. In modern

versions of C++ with multiple inheritance, the simple dispatch table is not sufficient.

Consider what happens when a new class with multiple superclasses is introduced

to the system. Each of the superclasses has its own mapping from method indices

to methods, and they may use the same method index to refer to different methods.

Unless the rule for assigning method indices is changed, the method indices of the

superclasses may conflict. The dispatch tables of the superclasses are not, in general,

compatible. Simple method indices cannot be assigned in a non-conflicting way in

a system of separate compilation, assuming that a class implementation is compiled

using only information about classes above it in the hierarchy.
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Collisions could be made unlikely by assigning method indices from a very large

space, but this approach would result in very large dispatch tables and inefficient

use of memory. Dense assignment of method indices is desirable in order to make

dispatch tables compact.

2.4.1 Embedded Objects and Pointer Offsets

The dispatch table technique can be extended to solve the problem of colliding method

indices by using multiple dispatch tables [24]. This is the technique used in the AT&T

C++ 2.0 compiler and other C++ compilers. The basic idea is to embed superclass

objects within the subclass format. As described earlier, in a single-superclass system,

the superclass object can be embedded at the beginning of the subclass, and the two

dispatch tables can be merged into a single dispatch table in which the superclass's

methods come first.

Additional superclasses can be placed sequentially after the subclass information

(Figure 2-5). In the figure, D is a class with three superclasses: A, B, and C. The

fields for the superclasses B and C are embedded after the fields for D, whereas the

fields and dispatch pointer of A have been merged with those of D.

The pointer to an object encodes which of the several possible supertype interfaces

the object is being viewed through. For example, a D object can be viewed as an A,

B, C, or D. A D object viewed as a D is represented by a pointer to the beginning

of the object, whereas a D object viewed as a C is represented by a pointer into the

middle of the object, to the embedded C object within the D.

When the object is viewed as a member of one of its superclasses ("casting up"),

the object pointer must be offset so that it points to the appropriate embedded object.

If the superclass being cast to is the first or only superclass (class A in the figure), then

the offset is zero, and can be omitted. I refer to this class as the primary superclass.

The proper offset for converting to any of the superclasses is a constant and can be

determined statically. Correct representations of the D object as B and C objects can

be produced simply by adding fixed constants to the D object pointer.

For example, if x is a variable of type D and y has type B, then the Theta assign-

ment x := y compiles to an assembly-language statement equivalent to

x := address(y) + (fields(A) + fields(D) + 1)

In order to generate this statement, the compiler must know the size of the fields

in the classes A and D. Because the calling code uses a variable of type D, information
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D

A D

Figure 2-5: Multiple Inheritance with Embedded Objects

about the structure of D and its superclass A is available - either at compile time

or at link time, depending on the linkage model. If the information is available at

compile time (as in C++), the fields of the superclass must be publically declared.

If the resolution of the offset is delayed till link time (as in Modula-3), it becomes

difficult to eliminate the add in the common case where the offset is zero.

Now, consider what happens when a method is invoked on an object. The actual

class of the object may be any subclass of the known class of the expression. In

addition, the method being invoked may actually be inherited from a class higher in

the class hierarchy than the actual class of the object. Regardless, this method code

needs to be handed a proper object of the class from which the code was inherited.

For example, consider invoking a method on an object of apparent type B. Even

given just the limited class hierarchy depicted in Figure 2-5, the actual receiver object

may be of class B or class D; and, even if the object is a D, the code invoked may
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expect an object of class B or D. Since the compiler cannot determine statically from

the invocation code whether the method expects a B or a D object, the proper offset

to apply to the object also cannot be determined statically.

In fact, the proper offset may be different for different methods, even on the same

object. For example, the dispatch table for D may contain methods that have been

inherited from any of the superclasses A, B, or C. The offset will be determined by

the superclass from which the method was inherited.

Therefore, the proper pointer offsets for each method are placed in the dispatch

table, and added to the object pointer as part of the dispatching operation. Figure 2-6
shows the resulting dispatch table layout. In this figure, the class box has overridden

method area from class rect, but inherited x and y unchanged from point. Because

there is a four-word offset between the rect and box representations of the object,

this offset is entered into the dispatch table for rect that is contained in the box

object.

As before, I use the notation rect. area to denote rect's implementation of area,
and box. area to denote box's implementation. A pointer to box. area shows up twice

in the dispatch tables of this figure because area is a method of both box and rect.

Each of these classes has its own dispatch table within the layout of box, so box. area

appears in each of them, in the slot corresponding to the area method.

The dotted rectangles in the figure indicate what would happen if box inherited

the method rect. area directly. The code pointers for area in the box dispatch tables
are changed to point to rect. area. The corresponding offsets are different as well.

The offset for the box/point section of the object is +4, and the offset for the rect

section is 0. These offsets guarantee that the rect.area method always receives an

object compatible with the rect layout.

2.4.2 The Dispatch Sequence

Loading and adding the non-constant offset from the dispatch table adds another
two instructions to the dispatching process, so dispatching becomes a five-instruction

sequence. Since single supertypes are more common than multiple supertypes, most

of the dispatch table offsets are zero - but this cannot be known statically. Also,

because each entry in the dispatch table must have its own associated offset, dispatch

tables are twice as large.

On the MIPS R3000, the dispatch sequence is as shown below. I assume that a
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point = class
xO, yO: int
x() returns(int)
y() returns(int)

end point

box = class
c: color
draw ()
intersect

}

point

rect

T
box 4 words

A_

rect = class
height, width: int
area() returns(int)

end rect

inherits point, rect

:(b: box) returns(box)

: rect.area I +4 :
re......c... __...._.area . 0...........

..................... .....

Figure 2-6: Pointer offsets in dispatch tables
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pointer to the object is located in register tO, and that method 3 is being called. As in

the previous code example, the tn are temporary registers, and aO represents the first

argument register. For simplicity, all offsets are in words rather than bytes. Note that

the method index is doubled to account for the two columns in the dispatch table. In

the actual machine code, some reordering of the instructions would be necessary.

load t, O(rO) % load the dispatch table address
load t2, 6(tl) % load the pointer to the code (6 = 2*3)
load t3, 7(tl) % load the pointer offset
add aO, rO, t3 % offset the object pointer
jalr t2, ra %. jump to subroutine

Just as in the simple dispatch table model, objects are kept smaller by merging

the dispatch tables of a class and its primary superclass. Otherwise, the size of an

object would grow by one word for each level of the type hierarchy, even with only

single supertypes.

Some concern has been voiced about the impact of embedded objects in a garbage-

collected language, since finding the outermost object (with which the garbage col-

lector is concerned) becomes more difficult [4]. However, this difficulty can be easily

resolved by including the offset to the outermost object directly in the dispatch table.

As shown in the following instruction sequence, the cost of finding the outermost

object will then be 3 RISC instructions - faster than a method dispatch because no

jump is required'l:

load t, O(rO) 7. load the dispatch table address
load t2, (ti) % load the offset to the start of the object

add rO, t2, rO 7. apply the offset to the object pointer in rO

2.4.3 Object Space Overhead

One problem with the C++ approach is that the use of multiple inheritance causes

the total amount of dispatch data per object to grow. With a complex inheritance

hierarchy n levels deep, the number of dispatch words per object can be exponential

in the number of superclasses. An example of such a hierarchy is shown in Figure 2-7.

Fortunately, such hierarchies seem to be rare.

However, a non-pathological but still problematic inheritance hierarchy, depicted

in Figure 2-8, has the effect of adding one new dispatch word per level of type hi-

erarchy. In this hierarchy, the Ti represent type interfaces or classes for which no

1The real reason that garbage collection is difficult in C++ is that C++ supports C's & operator,
allowing arbitrary pointers into objects.
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Figure 2-7: A pathological inheritance hierarchy

implementation or fields have been specified. These types are related only by a sub-

type relationship. On the other hand, the classes Ci represent implementations of

the corresponding Ti. These implementations of the more abstract types are actually

sharing code through inheritance, but the code sharing is not visible to a client who

only accesses objects through the Ti interfaces.

I expect this programming style to be very useful in a persistent programming

environment. Because the fields of the implementations do not appear in the Ti, it

provides a great deal of flexibility for reimplementing types. In a more usual C++

class hierarchy, the fields appear explicitly in the class interfaces, and new implemen-

tations cannot be added without changing the representations of all subtypes.

Unfortunately, this class hierarchy is not well-supported by the standard C++

object layout. As the object layout in the figure suggests, additional dispatch table

pointers appear for each level of the inheritance hierarchy.

2.5 Bidirectional Object Layout

The bidirectional object layout I have designed for Theta addresses many of the

problems outlined in the previous sections. This object layout can be viewed as

a variant of the C++ approach that optimizes the case where code and fields are

inherited from a single superclass. However, a type may still have multiple supertypes,

preserving the interface flexibility of a multiple-inheritance system.

The object layout has three advantages over C++: first, the object layout is

31

D" Elp Fos G"



T3

ml X ,.°

I TJ/CJCJ/CJC I

I . I

To. ._\ ,, 13/I2

T3 / T2 I/ T1

Figure 2-8: A class ladder and corresponding C++ object layout

more compact for some important kinds of type hierarchies (and never less compact).

Second, some method dispatches are faster than in the C++ layout. Finally, the

object layout is better suited to persistent storage of object data.

2.5.1 An Intuitive Description

As described earlier, a C++ class with multiple superclasses has an object layout

in which the primary superclass is embedded at the beginning of the object. The

headers and fields of the non-primary superclasses are appended after the fields of

the class. When an object is cast up to a non-primary superclass or used as a method

receiver, an offset must be added to the object pointer in order to view it as one of

the non-primary superclasses. When casting up, this offset is known statically by the

compiler, but it must be obtained dynamically in the case of a method dispatch.

If a C++ program uses only single inheritance, all of the superclasses will be

primary superclasses. All casts will be identity functions, and all offsets found in

dispatch tables will be zero. Unfortunately, the dispatch sequences will still be a full

5 instructions, of which two instructions have no effect, because they increment the

object pointer by zero.

Consider what happens to a C++ object if only the primary superclass is allowed

to have fields (Figure 2-9). In this case, the fields of the object extend predictably at

the beginning of the object. The headers of all the non-primary superclasses pile up

at the end of the object, and might as well be moved to the beginning of the object,
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B C

Figure 2-9: A C++ object with empty non-primary superclasses

before the header of the primary superclass. As with the C++ object layout, multiple

pointers may represent the same object, depending on the known type or class of the

object.

The figure demonstrates the layout of Theta objects in an intuitive way. As

shown, an object of class D is rearranged so that the dispatch pointers for its non-

primary superclasses B and C are placed before the rest of the object. The effect

is that the fields and dispatch pointers of the object are separated. As more levels

of type hierarchy are added, the dispatch pointers grow upward and the fields grow

downward.

This rearrangement of the object yields benefits in compactness of the object

layout, method dispatch speed, and persistent storage. The dispatch tables can be

merged in cases where the C++ layout required separate tables. Dispatches from the

bottommost object pointer always have an offset of zero, so pointer offsetting can be

avoided in this case. And because the data fields of the object are adjacent to one

another, the persistent form of the object can be the same as the in-memory form

without wasting any space.

This object layout makes the assumption that the non-primary superclasses have

no fields. Before looking at the details of how the object layout works, I justify this

assumption in terms of the uses of inheritance in object-oriented programming.
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2.5.2 Inheritance

Multiple inheritance produces performance problems in accessing both fields and

methods of an object. In a simple single-inheritance system (Section 2.3), both fields

and methods can be accessed quickly because, for a particular class, they can be

assigned unique small-integer offsets that hold for all subclasses of that class.

In a multiple-inheritance system, neither fields nor methods can be assigned glob-

ally unique offsets, so an additional level of indirection is required in each. In C++

implementations, fields are handled by an additional indirection when casting 2; meth-

ods, by having multiple dispatch tables and embedded objects.

However, multiple inheritance is a more powerful mechanism than what most pro-

grams need. Usually, all that is needed is the ability for a type to have multiple

supertypes. Theta supports multiple supertypes, but only single inheritance, separat-

ing the notions of subtyping and inheritance. This separation leads naturally to the

object layout I propose.

One of the key insights behind the bidirectional object layout is that more efficient

object layouts become possible when the system provides code-sharing inheritance for

only one superclass.

In Theta, a class implements a single type; this type functions as an empty non-

primary superclass in the description of Section 2.5.1. A class may also inherit from

a single superclass - the primary superclass of the previous example.

Since types in Theta correspond to empty superclasses, a real object cannot be

implemented by a type. A given object is always an instance of a particular class.

A class has a supertype DAG that may contain branches where there are multiple

supertypes. It also has a chain of superclasses, with no branches.

An example of a complex class and type hierarchy is shown in Figure 2-10. Given

an object of class C, the declared type of a program variable referring to the object

may be any of the types or classes depicted in the figure.

2.5.3 The Object Layout

In contrast to the rather complex C++ object layouts seen earlier, with intermixed

fields and dispatch pointers, the layout of a Theta object is quite simple when ex-

pressed in terms of its type and class hierarchy. An object of class C has three parts

2I have omitted discussion of the indirection in field accesses, which C++ introduces when "vir-
tual" superclasses are used, because it is not directly relevant to my object layout.
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Figure 2-10: Supertypes and superclasses of a class

(Figure 2-11):

* A type header. Pointers into the type header represent the object when it

is declared as one of the types Ti. The type header includes dispatch tables

not only for the supertypes of C, but also for the supertypes of each of the

superclasses of C.

* A class header. This header consists of just a single word, pointing to the

dispatch table for C. This dispatch table contains pointers to code for all the

methods supported by C, including methods from C's type and also from its

superclasses.

* The object's fields. The fields start with the fields for the topmost superclass,

and proceed down the inheritance chain till the fields for C are reached.

This object structure can be viewed as being a simple single-inheritance object (the

class header and fields) grafted onto a structure for supporting multiple supertypes

(the type header). Unlike the C++ object layout, the multiple-supertype structure
does not contain embedded fields. The class header is at the center of the object, and

the successive layers of class information, both type headers and object fields, grow

outward from this word. This structure is depicted in Figure 2-12, for an object of

the class C shown in Figure 2-10. The innermost core of the object is in the format

of the object's topmost superclass, C2.
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Figure 2-11: Memory layout of an object

- C object

Figure 2-12: An object of class C
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Consider what happens when a method is invoked on an object of a known class.

In Theta, this can occur only within the implementation of C or one of its super-

classes. The declared type of the object expression is either the class C or one of the

superclasses Ci. Within the implementation of the method, the code will expect to see

an object pointer to the same place: the class header. Therefore, the object pointer

does not need to be offset when the object is of a known class. In this case, method

dispatch takes three instructions, exactly as it does in the original single-inheritance

C++. On a MIPS, this instruction sequence is

1. load the dispatch table address

2. load the appropriate code address from the dispatch table

3. jump through the register containing the code address

Note also that when the class of the object is known, the fields of the object are

found at predictable constant offsets from the object pointer, since all embedded class

objects are found at the same place in this object structure. Thus all field accesses

require only a load or store instruction.

When the class of the object is not known, dispatch proceeds much as in C++

with multiple inheritance - a five-instruction sequence that offsets the object pointer

by a dynamic amount before jumping to the method code.

1. load the dispatch table address

2. load the appropriate code address from the dispatch table

3. load the object pointer offset from the dispatch table

4. add the offset to the object pointer

5. jump to the register containing the code address

Unlike in C++, the object pointer is offset by the same amount for all methods

in a particular dispatch table, because all methods expect to receive a pointer to the

same point in the object - the class header. In C++, the need for offsets individual

to each method arose from the fact that different methods required different pointers

to the receiver object.

Casting an object up to a supertype or superclass is roughly as costly as in C++,

since the offset between any two representations (type or class) is a statically com-

putable constant. If the two representations are both classes, the offset will be zero,

so no work needs to be done. 3

3If multiple inheritance is used in C++, casting up is generally more expensive.
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T= type
a(

end T T
T

C1 = class C1
x: int
mO C

end C1 C

C = class T inherits C1 Object pointer offsets
y, z: int
b(

end C

type header

class header

Figure 2-13: Pointer offsets in the dispatch table of an object of class C

2.5.4 The Type Header

Any type T has a dispatch header format whose size and structure depends on T's

location in the type hierarchy. If the type has no branches above it - that is, T and

all its supertypes have only a single supertype - the size of the dispatch header will

be a single word pointing to the type's dispatch table.

The straightforward way to lay out a type header for type T is to place in it the

dispatch headers for each of its supertypes T/ (Figure 2-14). This layout policy is

similar to the policy for C++, except that no fields are intermixed with the dispatch

pointers. The final entry in the dispatch header, which is also the final entry for

one of T's supertypes, is merged with T's final entry. Thus, the size of the dispatch

header for T is just the sum of the sizes of the dispatch headers for the T,. If T has

no supertypes, its dispatch header is just one word, pointing to a dispatch table for

T.

Because each type has a unique and completely-determined dispatch header lay-

out, casting an object to a supertype is either the addition of a constant, or is not

required. An object pointer of type T points to the bottom of a type header for T,

and headers for each of the supertypes of T are located at fixed negative offsets from
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Figure 2-14: Recursively constructing type headers

that point.

2.5.5 Merging Type Headers

In general, the dispatch tables for any two types T1 and T2 can be merged if their

common method indices always refer to the same method. As we just saw, merging

becomes particularly simple in the case where T1 is a supertype of T2, and the method

indices are assigned sequentially.

Ideally, method indices should be densely assigned, in order to keep dispatch tables

small. However, sequential allocation of method indices creates conflicts in a system

with multiple inheritance. Relaxing the requirement of sequential allocation, while

still keeping indices reasonably dense, may allow dispatch tables to be merged more

often.

The limit of merging is a system in which every two types can be merged. This

approach requires assigning method indices based on a global analysis of the type

hierarchy [11]. Unfortunately, the problem of allocating method indices for all classes

while minimizing the wasted dispatch table space is NP-hard [21]. Heuristics for

index assignment have been developed that reduce the wasted space to about 6%,

using two-directional record layout [20].

The wasted space in the object layout is less important than the dependency of the

method assignments on the entire type hierarchy. This dependency may be acceptable

when considered as a kind of global optimization in a small, non-extensible program.
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However, in a system in which new types may be added dynamically, it means that

every object in use could become invalid with the addition of a single type to the

system. All method index assignments potentially require recomputation, so that all

code and dispatch tables could have to be reworked.

In a large, distributed database, one must also question the assumption that all

classes are available for the computation of method index assignments. Yet any

attempt to compute method index assignment without complete information would

force the FE to interrupt computation and to perform large amounts of work if the

index assignments were then determined to be unworkable.

On the other hand, it seems likely that some simple heuristics for method index

assignment (making dispatch tables somewhat sparse) could yield greater ability to

be merged, and thus smaller objects.

For example, one such heuristic for easier merging is to populate only every nth

slot in the dispatch table, starting with a slot whose index is randomly chosen in

O... n - 1. In a system where multiple supertypes are rare, the adjacent supertypes

in Figure 2-14 can be merged roughly (n - 1)/n of the time. The effect of such a

heuristic would be to reduce the average object size at the cost of increasing the total

space consumed by dispatch tables. Also, having empty slots in the dispatch table

decreases the effectiveness of the data cache, as a cache line contains fewer useful

dispatch table entries.

2.5.6 Merging the Class Header

Even for simple, single-inheritance class structures, the Theta dispatch header is larger

than one word - as currently described. The reason is that the class header plus

the type header is least two words. This two-word overhead contrasts unfavorably

in size with the always-one-word dispatch header of the single-inheritance layout. In

addition, there is a performance loss in the casting operation, since there is an offset

of 1 between the type and class representations.

In some cases, however, the class header can be merged with the last dispatch table

in the type header. For example, if a class has no superclass, but a single supertype,

the methods of the class can be assigned indices after the supertype's methods. This

trick allows the dispatch tables to be merged (Figure 2-15). If the class inherits from

a superclass, the dispatch tables cannot be merged, in general.

A common structure we expect to see in Theta is parallel ladders of classes and
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Figure 2-15: Result of merging type and class headers

types (Figure 2-16). As discussed in Section 2.4.3, the usual C++ object layout

introduces an amount of object overhead that is linear in the depth of the type

hierarchy.

In the bidirectional object layout, the dispatch header for an object from the class

ladder will have at most two words in it: one for the type header and one for the

class header. This object layout is depicted in Figure 2-16.

A simple heuristic for method index assignment allows these two dispatch tables

to be merged, reducing the size to one word for most such classes. Method indices for

class methods (methods not exported to the corresponding type) are assigned starting

at some minimal index N (a value of N = 100 may be reasonable). This heuristic

allows the type dispatch table to be merged with the class dispatch table, so long as

the bottom-most type in the type ladder has at most N methods (Figure 2-17). Below

this point in the type hierarchy, the two dispatch tables will have to be separated.

Obviously, N should be chosen carefully, as too large a value will waste space,

and too small a value will have no effect. Since dispatch tables are shared among all

objects of a class, the problem of wasted space is not critical, again assuming that

the number of objects at the FE greatly exceeds the number of classes in use at the

FE.

2.5.7 Avoiding Offsets

Using the optimization from the previous section to merge the type and class headers,

most object dispatches will have a zero offset because most objects will have only a
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Figure 2-17: Merging the class and type header from a class ladder

single dispatch word. In this case, the cost of applying the offset may be avoided

by factoring the offsetting code into a separate procedure. This technique is actually

used by the DEC C++ compiler cxx, but it has not been described elsewhere to my

knowledge.

Recall that an offset must be applied to an object pointer during dispatch because

the method code expects to see a view of the object consistent with the class of the

method. In the dispatch sequence described earlier, two instructions are devoted to

applying this offset.

The trick is to give the responsibility of applying the offset to the called code

rather than to the caller. For each method, different stub procedures are created for

each subclass that inherits the code. Instead of placing pointers to the real method

code into dispatch tables, pointers to the stub procedures are placed there instead.

A stub procedure applies an offset to the receiver-object pointer, then jumps directly

to the real method code. Each stub procedure applies the offset appropriate to the

class for which it has been generated.

Of course, if the offset to be applied is zero, then the pointer to the method code

can be placed in the dispatch table, and no stub procedure is called. For these method

dispatches, the cost of dispatch has been reduced to three instructions, exactly as in
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the simple single-inheritance dispatch.

The delay introduced by a stub procedure is small, since the stub procedure

contains just two instructions:

1. offset a register by a small constant

2. perform a direct jump to the method code

Assuming that the jump does not cause any pipeline stalls (a good assumption

on many architectures, because it is a direct jump), this stub procedure has only a

two-instruction overhead - no more overhead than in the original dispatch sequence.

Thus, this optimization is likely to improve performance.

2.5.8 Expected Performance

As long as implementations are not multiply-inherited, the bidirectional object lay-

out dispatch technique is superior to the usual C++ layout. Costs for the various

primitive object operations are shown in figure 2-18.

A cost of L represents the cost of a load from a memory location that is reasonably

likely not to be in the data cache. The value of L depends on the degree of data locality

in the application - basically, on the overall hit rate in the data cache. If the entire

application data set (or at least the working set) fits in the data cache, the cost of

L will be just a single instruction. If the application's data locality is poorer, cache

misses result. On the Decstation 5000/200, using a MIPS R3000, a cache miss causes

a 15 cycle delay while a new cache line is fetched [6]. At the next level, TLB misses

can add another 9 cycles or so. Finally, a thrashing application will experience very

large values of L as pages are swapped between primary and secondary storage.

I assume that loads from data fields or the dispatch headers of objects cost L,

whereas loads from dispatch tables are cache hits, costing 1. Since a moderate-

sized application manipulates perhaps tens of dispatch tables, the dispatch table

data should fit into the data cache.

In addition to cache misses, loads can also generate pipeline stalls because of

data dependencies. On the R3000, the result of a load is not available to the next

instruction. Unfortunately, the dispatch sequence has no instruction that can be

placed in the slot immediately following the load of the dispatch table pointer. If the

compiler cannot move an instruction from some other computation into that position,

it will be filled by a nop instruction, wasting a cycle. The estimated value of L must

be increased by a fraction of a cycle to account for these nop's.
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Figure 2-18: Operation costs in C++, Theta, and single-table systems

In the row for the dispatch operation, the cost of the indirect jump instruction

is written as J. An indirect jump instruction will cause a pipeline stall on some

architectures. The load of the instruction following the jump must take place at the

same time that the jump instruction is being decoded. Therefore, the target of the

jump instruction is not available, causing a pipeline stall. The MIPS R3000 addresses

this problem by always executing the instruction following the jump; this instruction

is said to reside in the branch delay slot.

Just as with the load instruction, the delay slot can often be filled at code gen-

eration time by reordering the instruction sequence. However, the average cost of

a jump of a instruction must be considered to be somewhere between one and two

instructions on the MIPS. The more deeply pipelined DEC Alpha Architecture does

not have delay slots, as the number of delay slots needed increases with the pipeline

depth. This means that a jump through a register causes pipeline stalls on the Alpha,

just as does a mis-predicted conditional branch. On this architecture, the cost of an

indirect jump is certainly larger than 1, and may be as large as 10 cycles [7].

The third column in Figure 2-18 represents a hypothetical system that assigns

both methods and fields indices in such a way that all dispatch tables can be merged.

This condition yields the performance of the early, single-inheritance versions of C++.

It is hard to imagine how these performance numbers could be improved upon. Even

copying the dispatch table into every object would would yield only a L + J dispatch

cost, which is little better than the L + 1 + J shown. Except for this rather profligate

use of memory, the third column represents a generally-accepted lower bound for

object operation costs in a system with separate compilation.

As described earlier, the sparse method approach must examine the entire class

hierarchy in order to assign method and field indices efficiently. The global nature of

such a system makes it unworkable for large, distributed type hierarchies. The Theta

implementation is closer than C++ to this optimum, without sacrificing the ability

to assign method and field indices locally.
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2.5.9 Persistence Considerations

The Theta object layout is well-suited to a persistent object system. All of an object's

fields are packed together in the same portion of the object. For persistent storage

or garbage collection - two subsystems that are concerned only with the fields of

the object - this layout offers advantages over the C++ layout, in which dispatch

pointers are found throughout the object.

The dispatch pointers of an object do not need to be stored persistently as long

as the class of the object is stored, since the dispatch tables can be reconstituted

from class information. If dispatch pointers are found throughout the object, there

are two possible ways to store the object: leave empty regions where the pointers are

normally found, or expand the objects when copying them to volatile memory in the

FE. In the bidirectional object layout, the fields are contiguous and can be written

to storage as a single chunk.

Similarly, in the C++ layout, a garbage collector must spend time skipping over

the dispatch pointers while scanning the fields of an objects. In the bidirectional

layout, there are no dispatch pointers to avoid.

The garbage collector must be able to locate the object's fields. This goal can be

accomplished by placing the offset to the object's fields in each dispatch table of the

object, just as is the offset to the class header. If the address of the beginning of the

object is needed, an offset to it can also be placed in the dispatch table. Both of these

techniques are used in the Thor implementation.

2.6 Implementation and Performance

The object layout and dispatch methodology described up to this point has been fully

implemented and is being used as part of the continuing Thor implementation project.

This implementation of Theta objects is written in C and runs on both Alpha-based

and MIPS-based workstations from DEC. It supports dispatching on parameterized

types [22, 16] as well as on the ordinary object types described here.

To test the performance model described in Section 2.5.8, I measured the overhead

incurred on the MIPS R3000 when using each of the standard method call mechanisms

discussed here.

The experiment was performed on a Decstation 5000/200, with a 25 MHz R3000.

I measured the amount of time required to perform the dispatch mechanism used
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in the Theta implementation, using the optimization described in Section 2.5.7. For

comparison, I also measured the performance of the dispatch mechanism used in the

C++ 2.0 implementation, and the cost of two non-dispatching call mechanisms: a

direct procedure call to the method, and inlining the method in the calling code.

The most interesting parameter to vary while studying the performance of these

mechanisms was the number of objects in the working set. Increasing the number

of objects whose data was loaded into the data cache might cause the full dispatch

mechanisms to become disproportionately slower than the non-dispatch mechanisms.

This effect is plausible because the full dispatch mechanisms perform an extra load

on each object to obtain the dispatch table pointer. As more objects contend for the

data cache, the cost of this extra load could increase. The Decstation 5000/200 is

equipped with a 64K direct-mapped cache, with a line size of 4 words, and a cache

miss penalty is 15 cycles [6].

The data for the experiment are shown in Figure 2-19. This graph compares four

different procedure-call mechanisms, of which two are full dispatches. The lower two

curves represent the overhead of a procedure call, and of inlining the procedure body.

The procedure body was designed so that inlining it yielded no performance benefit

other than elimination of the procedure call itself. The cost of an "inlined call" is

defined to be zero, so the results for the other call mechanisms include the cost of a

return instruction.

The vertical axis represents the average cost in cycles of the call mechanisms, and

the horizontal axis indicates the number of objects, over which the method calls were

evenly distributed.

The measured results do not show a significant difference between the two full

dispatch sequences (Theta and C++ 2.0). However, the measurement technique

tends to inflate the cost of the Theta dispatch mechanism because it contains three

nop instructions in the measurement code, as compared to only one nop instruction in

the C++ 2.0 sequence. These nop instructions correspond to load and branch delay

slots, as discussed in Section 2.5.8.

In the measurement program, only the dispatch sequence is being measured, and

so the compiler has no other useful instructions to place in these delay slots. However,

in real programs, the compiler usually will be able to fill one or more of the delay slots,

replacing the nop instructions in the benchmark code. If these nop's can be replaced

by useful instructions, then the Theta dispatch sequence is overestimated by three
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Figure 2-19: Call mechanism overhead on the MIPS R3000

instructions, but the C++ 2.0 sequence is only overestimated by one instruction.

Therefore, the Theta sequence can be expected to perform better than the C++

sequence in real use.

As can be seen from the figure, the overhead for a dispatching operation does

not change significantly as the number of objects increases, despite considerable data

cache contention as the number of objects exceeds 10000. The only cache effect that

can be seen occurs when the number of objects in the working set is 100. With a

very small working set, the performance of the full dispatch mechanisms is somewhat

better. However, a working set size of 100 is unrealistically small.

Assuming that the delay slots in the full dispatch sequences can be filled with

useful instructions, the Theta dispatch sequence takes about 7 cycles with a reasonable

working set size. The C++ 2.0 dispatch sequence takes about 9 cycles. Note that

these cycle times include the cost of returning from the called method, which the

expected performance values of Figure 2-18 did not.

This lack of increased overhead can be partially attributed to the structure of the

method being invoked. This method was fairly typical: it loaded a field from the

object and performed a few non-memory instructions using that datum. The field

access had the effect that a cache line containing the field was needed regardless of
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the dispatch mechanism. Since the pointer to the dispatch table was likely to be in

the same cache line as the object field, the additional cost of loading the dispatch

table was only a single cycle. As long as object methods access a field of the object,

or call another method on the object, the overhead for using full dispatch mechanisms

should not depend on the application's data locality.

On the other hand, the average cost of accessing an object increases sharply for all

the call mechanisms as the total number of objects in the working set increases. As

the working set size increases, the primary cache is unable to satisfy memory requests,

and access costs are dominated by the lower levels of the memory hierarchy. Clearly,

if data locality is sufficiently poor, the slowdown caused by cache misses is such that

dispatch-mechanism overhead is no longer significant.
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Chapter 3

Avoiding Dispatch

In this chapter, I show how method dispatch often can be avoided entirely. The

cost of dispatch can be eliminated for a method invocation if the runtime linker can

determine that there is only one possible implementation of the method being invoked.

I explain how the Theta runtime system makes this optimization possible.

3.1 Related Work

The technique of customization was pioneered in the language SELF [26, 14, 25] to

avoid the cost of dispatch entirely in many situations.

The idea of customization is to generate multiple versions of the same piece of

code, depending on the environment in which the code is needed. The compiler

makes customized versions of the code that take advantage of facts known in the

code's caller. This contextual information allows optimization of that code version at

the expense of possible code duplication - a space/time tradeoff.

3.1.1 Customization in SELF

The implementation of SELF uses customization in a way that is applicable to Theta,

though in fact I use a different technique. In SELF, inherited methods are customized

for each of the inheriting classes - essentially recompiling the inherited code for each

inheriting environment [4, 5]. Within the customized version of each method, the

implementation of the receiver object is known - it must be the class for which the

method is being customized. Therefore, for any method call on the receiver, the actual

code implementing its methods can be determined at compile time. Any dispatches

on this object from within one of its methods can be turned directly into procedure
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calls, or inlined.

This technique provides performance improvements, but its applicability is lim-

ited. SELF only optimizes method invocations that occur within methods of the same

class as the method being invoked - only a fraction of all the method invocations

in our system. In SELF, even optimizing a small fraction of the method invocations

is useful, because full dispatches are very slow. Also, since SELF treats fields and

methods similarly, this customization is needed in order to obtain fast field accesses.

In a system like Theta, where field accesses are not treated as method calls, and full

dispatches are already fairly fast, customizing only a few of the method invocations

is unlikely to yield significant performance gains.

This customization technique can also result in a code explosion, because inherited

methods are implicitly recompiled for each distinct class that inherits them. This in-

crease in code size can reduce VM performance and instruction cache performance. To

reduce the effect of code duplication, SELF also uses dynamic translation, originated

in the Deutch/Schiffman implementation of Smalltalk-80 [10]. Dynamic translation

means that code is stored in a compact intermediate form and, when needed, trans-

lated on the fly into an efficiently executable form such as machine code. In SELF,

customized code generation is performed on methods only when those methods are

actually called using a new class. The customized code is stored in a customized code

cache that limits the total amount of generated code. Of course, dynamic translation

can also impose significant latency as code is generated.

SELF has another major optimization separate from customization for provid-

ing good numerical computation performance in a dynamically-typed system. Since

Theta is statically-typed, this optimization is much less important.

Because of the limited performance gains expected and the code duplication of

the SELF customization approach, it does not seem directly applicable to Theta.

3.1.2 Customization in C++

Douglas Lea has proposed that customization can be used as an extension to C++,

a statically-typed and separately-compiled language [15], by adding static user an-

notations to C++ class definitions. While his proposal is a form of customization

intended to avoid method dispatches, it is quite different from the SELF customiza-

tion strategy. Unlike SELF, his proposal has not been implemented, so performance

results are not available.
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The use of customization in Lea's proposal is somewhat different from that in

SELF. Rather than generating customized versions of inherited methods for each

inheriting class, he suggests that procedure code be customized at each location where

it is called, based on the types of the arguments. A special annotation, template,

is used to indicate which procedures should be customized. Each call site generates

its own version of that procedure, optimizing the procedure body according to the

actual argument types passed in.

Knowing the types of the arguments to a procedure is only useful if one knows the

exact implementation of those arguments. Lea proposes a type annotation, exact, to

serve this purpose and allow customization to proceed. A variable of an exact class

must refer to an object of exactly that class, and not of any subclass. Knowledge

about exact types can be propagated using dataflow techniques similar to those in

the Illinois Concert compiler [19].

The source of knowledge about exact types is objects produced by constructors,

where the precise implementation returned is known. However, this knowledge is lost

as soon as control passes a method-dispatch boundary. Knowledge about exact types

can be preserved only by customizing called procedures for different call sites.

Lea proposes that when procedures are customized, information about the actual

implementations of the return values should be used in the calling procedure. This

technique allows some propagation of exact type information. The limitation of this

technique in a separately-compiled language is that this information can only propa-

gate across a procedure that has been marked for customization. In order to secure

significant benefits from customization, virtually every procedure must be marked

as a template procedure, duplicating its code at every call site. Non-trivial use of

method dispatch will prevent return-value information from propagating upward, and
will tend to eliminate customization.

Lea's customization proposal is intended to recover the efficiency of directly-called

or inlined procedures in a system with subtyping. In his system, programmers are

forced to limit the flexibility of their code in order to obtain performance benefits.

The use of explicit annotations to control performance decisions is a frequent theme in

C++. As noted earlier, it is not an approach that is consistent with a large, persistent

object database.

Because the performance benefits of Lea's proposal are unclear, and the approach

explicitly trades extensibility for performance, his work is not suitable for use in
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Theta. Some of his ideas for applying customization based on argument types may

ultimately be useful in Theta, though, like the SELF optimizations, they involve code

duplication.

3.2 Customization in Theta

I propose using the technique of customization to Theta in a way different from

Chambers' application of customization to SELF. Customization is used in a way

that applies to many more of the object dispatches than in SELF. The customizations

used are similar to those sketched by Lea, but are performed automatically and

dynamically, allowing dispatching to be avoided without any explicit user annotation.

As I will show, the embedding of the runtime system in a persistent object system

allows useful customizations that would not be possible in either of the two systems

discussed above.

As in SELF, the technique of customization is used to avoid full method dis-

patches. In fact, Theta's static typing helps greatly in identifying locations for useful

customization, with the practical effect that customization becomes a more powerful

and generally-applicable technique than it was in SELF.

3.2.1 The Essentials

Subtyping and the ability to reimplement an interface are very important to the long-

term extensibility of a persistent object system. But in most applications, interfaces

have only a single implementation. Even in object-oriented applications like user-

interface toolkits, where flexibility and extensibility are important, most method calls

do not require a dispatch, as suggested by the extensive use of C++ non-virtual

methods in many of these toolkits.

The observation underlying my customization technique is this: if only a single

implementation of a type interface is in use, there is no need to pay the cost of

dispatch. Any method call on objects of that type must result in invoking the method

code of that single implementation. Therefore, a direct procedure call to the code

would have the same effect.

This observation leads directly to a simple and effective customization: the method

call can be converted to a direct procedure call without loss of correctness. In fact,

the method code can even be inlined at the call site.
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Note how this use of customization differs from SELF. In SELF, code that imple-

ments class C is customized so that within that code, method calls on the receiver

object (of class C) are made faster. In Theta, code is customized if it uses any type

that C implements, regardless of what that code is implementing. Calls on self

within the implementation of C are optimized according to the same condition that

applies outside the implementation of C - C must have no subclasses.

Thor is a large, distributed object repository, so it is unreasonable to expect that

only one implementation exists for a given type. In addition, new implementations

of types may be added to the object repository at any time. How can the cost of

method dispatch be avoided in such a system?

The implementation of persistence in Thor can be used as an aid to the customiza-

tion process. As described earlier, the portion of Thor that contains running objects

for a particular user is the front end, or FE. At a given FE, only a fraction of the total

object universe is cached and immediately accessible. The FE is able to distinguish

between objects that are present and objects that are not, and can determine which

implementations are actively used in the FE at any given moment. This allows cus-

tomization to be performed on a type that has multiple implementations, provided

only one of those implementations is accessible at the FE.

Because Thor is a distributed system, multiple FEs may be running the same code

simultaneously. In fact, they may even be running that code in environments that

differ in the set of available implementations. These FEs may simultaneously choose

different customized versions of the code, based on their differing environments.

Because an FE can be a long-running system, and new type implementations can

be added to Thor, code may become invalid. When code that is in use becomes

invalid, the FE must automatically and gracefully change the customized code in use.

Invalid code is replaced by modifying the dispatch tables, described in Chapter 2,

that are associated with each class and shared by all objects of that class. Dispatch

tables contain a pointer to the code that implements each method; changing these

pointers changes the set of method code that implements a class. The system uses

this basic mechanism to switch between method versions with different levels of cus-

tomization.

The transactional model of computation in Thor makes one aspect of invalidation

fairly simple. A transaction is an arbitrary computation that can be bundled up and

treated as a single atomic unit that either entirely succeeds, or else has no effect. In
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practical terms, this means that a transactional system can roll back the system state

to the beginning of the current transaction. Although aborting transactions can be
used to preserve correctness, it will exact a performance penalty.

3.2.2 An Illustration

Consider a simple heterogeneous singly-linked list type named list, with two meth-

ods named first and rest:

list = type
first () returns (any)
rest () returns (list)

end list

The simplest and most common implementation of the list type is as a pair. The

class pair implements list and provides a constructor, prepend, for producing new

lists.

pair = class list
head: any, tail: list

first() returns(any)
return self. head

end first

rest () returns (list)
return self.tail

end rest

maker prepend(t: list, a: any)
init { head := h, tail := t }

end prepend
end pair

However, pair is not the only reasonable implementation of list. For example,

classes can be implemented that efficiently provide infinite lists of repeated values,

subranges of integers, and lists of items meeting some particular property - while

delaying creation of list nodes until they are actually needed.

My customization techniques allow applications that use only the pair implemen-

tation to inline calls to both the first and rest methods, turning them into single
load instructions. If the FE then encounters a special infinite list object, all depen-

dent dispatch tables will be modified, gracefully changing all calls on list methods to

full method dispatches.
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For example, the type stack is conveniently implemented in terms of lists. Below,

we see the definition of the type stack and the class liststack that implements

it. In Theta, the expression list.prepend invokes the constructor pair.prepend

defined above. A call to list. prepend is implemented as an ordinary procedure call.

stack = type
push(x: any)
pop() returns (any)

end stack

list_stack = class stack

items: list

push(x: any) items := list.prepend(items, x) end push

pop() returns(any)
1: list := items

top: any := l.first()
items := l.rest()

return(top)

end pop

end liststack

Clearly, this implementation of the pop method would be much faster if the list

methods first and rest were inlined, as it would become the code

pop() returns(any)
1: pair := self.items %/ load
top: any := l.head % load
items := l.tail % load, store
return (top)

end pop

which is essentially just three load instructions, a store, and a return. This method

implementation will be substantially slower with the overhead incurred by using

full method dispatch (at least 12 additional instructions: two method dispatches,

two return instructions, and some register saves) Therefore, the implementation of

liststack.pop will run about three times faster if the list methods can be inlined.

Two versions of liststack.pop will exist: a generic version that performs full

dispatches on list objects, and a customized version that assumes list objects are

pair's. Only one of these versions will be in use at any given time. The version in
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use will be installed in the shared liststack dispatch table (and the dispatch tables
of any classes that inherit liststack.pop).

This example demonstrates the basic idea behind customization. However, many

of the details of the system remain to be described. In Section 3.3, I look at the

structures needed to maintain a database of customized code and select from it. In

Section 3.4, I show how the cache of currently-used customized code is maintained

and code is invalidated when necessary. Finally, in Sections 3.5 and 3.6, I discuss the

performance of this approach and the state of the current implementation.

3.3 Producing Code

One piece of customized code can only call another piece of customized code directly

if the conditions for customizing the called code are met. Customized callers are

indirectly dependent on the same conditions required for customization of the callees.

This dependency propagation has implications for the management and creation of

customized code. Consider the following example.

3.3.1 Propagation

In the example of list_stack and list from Section 3.2.2, consider what happens

if liststack has no subclasses.

Other code - say, the parser class - may be customized on the uniqueness of

the stack implementation - either calling liststack.pop directly, or else inlining

it. In either case, a choice must be made about which liststack.pop code to use:

the generic version or the customized version. Note that the generic version may

always be used, but that the customized version can be used whenever it is valid, in

order to improve performance.

If the customized version of liststack.pop (which depends on the assumption

that pair is the unique implementation of list) is used, then the correctness of

parser will also depend on the assumption that list has only a single implementa-

tion. The dependency will have propagated up another calling level, even though the

implementor of parser may not know even that list is used.

This propagation of customization dependencies has both its good and bad as-

pects. On the one hand, it means that multiple levels of inlining can take place,

even across object dispatches, with consequent opportunities for performance en-
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hancement. Inlining across abstraction boundaries improves performance without

sacrificing abstraction.

However, dependency propagation also causes larger and larger amounts of code to

depend on a particular assumption about the state of the front end - an assumption

whose validity might change at any time.

Avoiding dependency propagation is easy - as described, one simply uses the

generic version of a unique implementation, rather than the most customized version

available. Using the generic version would probably be preferable when the gain

from using a more customized version is small compared to the time spent in the

customized version.

3.3.2 Bookkeeping

The Theta runtime system maintains information about the dynamically available

types and implementations in order to allow customization.

A given class, such as list_stack, stores information about each of the methods

it implements. These methods are stored in a generic intermediate code form in which

all object methods, including methods of primitive types (e.g. int), are represented

as full method calls. This generic intermediate code is not executable; in fact, it is

architecture-independent.

A special code generation phase, the customizer, takes in generic intermediate

code and some information about the environment in which the method is being

used, and produces customized versions of the code that take advantage of types with

only one available implementation. These customized versions contain executable

machine code.

The customized code versions produced by the customizer are stored in the class

that owns the method. Each class maintains information about each of the avail-

able customized versions of its methods (Figure 3-1). In this figure, we see that

liststack.pop has two customized versions, whereas liststack.push has only

one. However, the intermediate code for each method is stored only once.

Customized versions are stored on a per-method basis, rather than on a per-

class basis. Customizing methods independently is best because the set of useful

customizations depends on what types and classes those methods use. Different

methods use different underlying types, so they should be customized differently.

For example, customizing list_stack. push with the assumption list-+pair would
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Figure 3-1: The information attached to methods

be pointless. Since push does not invoke any list methods (pair.prepend is not a

method), customizing it would yield exactly the same code as the generic version.

Customized versions, like the intermediate code, are stored persistently and fetched

from the object repository when needed. Unlike the intermediate code, customized

versions may also be discarded without loss of correctness. Given an object at the

FE, one or or more customized versions may be present at the FE at a time for each

of the methods in its class, though usually only one version is present. For classes

not being used at the FE, none of the class's code is present.

3.3.3 Assumptions

Each customized version keeps a set of the assumptions on which it is customized.

An assumption is simply a condition of the runtime system or calling environment

that allows some customizations to be performed. A customized version is valid if all

the assumptions used to customized it are true in the current environment. Because

a customized version lists all of the assumptions on which it depends, the runtime

system can pick out the customized versions that are currently valid.

The customizer generates this set of requisite assumptions. Thus, customization

can be described as a function that takes in a piece of generic intermediate code,

and produces customized code to which is attached the complete set of assumptions

used to produce the code. Because of the propagation of assumptions, the set of

attached assumptions may include some hidden assumptions - assumptions derived

from called code. The customizer is represented schematically in Figure 3-2.
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Each method always has a customized version in which the only customizations

are to eliminate dispatch for primitive types such as integers. Primitive built-in types

never cause a dispatch because the customizer always recognizes them as opportunities

for customization. These generic versions are labeled 0 in Figure 3-1 - since a

generic version is always valid, its set of requisite assumptions is empty. I use the

notation T - C to denote an assumption that C is the unique implementation of T.

For example, the notation list-pair denotes the assumption that pair is the only

available implementation of list.

In order to determine when a method call can be optimized, types are annotated

by the FE to indicate whether there is only a single implementation of that type

active at the FE. Similarly, classes are annotated to indicate whether they have any

subclasses. Consider the example of Section 3.2.2. When the customizer examines a

call on a method of type list, it can easily check the annotations for list and discover

that pair is its only implementation. This annotation requires only a small, fixed

amount of space per type. Note that any subclass of pair would also be considered

an implementation of list when maintaining annotations.

When a piece of customized code is produced, the customizer considers each

method dispatch to determine whether it can be optimized into a procedure call.

The annotations on the type of the receiver expression are examined to determine

whether that type has a unique implementation.

When a method call found in the generic intermediate code is optimized, substitut-
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ing for it a direct call on a customized procedure P (or inlining P), any assumptions

attached to P are automatically propagated to the calling code.

Note that if method calls are customized into calls to the generic versions, the

customized code does not acquire any hidden assumptions. The generic versions are

not dependent on any assumptions, so no additional assumptions propagate to the

caller. The set of output assumptions only contains assumptions that correspond to

the types directly used in the method.

3.3.4 When to Customize

In the previous section, I described how customization is performed. Here, I discuss

the problem of when to customize.

The system decides whether to customize when it populates a class dispatch table

with method code pointers. For each method in the dispatch table, there are a

number of customized versions, at least one of which is valid. Each customized

version corresponds to a distinct code pointer that could be installed in the dispatch

table. The system may either install one of the existing valid versions or produce a

new version and install it.

The philosophy for customization in the current implementation is to customize

aggressively, perhaps resulting in too much code duplication. A new customized

version is generated when the customizer can determine that it would have fewer full

dispatches than in any valid, existing version.

As part of the production of generic intermediate code for each method, a special

type use compiler phase processes the intermediate code and identifies all the distinct

types (and classes) that are used in that method. The intermediate code is annotated

with this information for later use by the customization decision process. For example,

when the compiler examines the method list_stack. pop, it determines that the type

list is used in that method. Therefore, customization on list may be useful when

list has only one implementation, and so list_stack.pop is annotated to indicate

this fact.

Whenever a customization is being considered, some subset of the types used in

the intermediate code have only one implementation. In the current prototype cus-

tomizer, a new customized version is generated when no existing customized version

takes advantage of all of the types in this subset.

Although I term this strategy "aggressive," it may miss some opportunities for
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useful customization. For example, it may fail to generate a version that fully opti-

mizes inlined code, because the type use phase analyzes only the intermediate code

of the method, before any inlining. Types used in the inlined code are not neces-

sarily used in the intermediate code, and may not be recognized as opportunities for

customization.

The aggressive strategy is almost certainly overkill. Customizing most methods

will produce a negligible overall performance benefit, simply because most time is

spent in a fraction of the code. In fact, customizing some methods may reduce

overall system performance, for one of the following reasons:

* Code duplication: The repository might end up storing many different versions

of the same code, which will compete for space with the FE's cache for storing

other objects.

* Latency: Compiling takes time, especially when optimizing extensively. The

opportunity to produce new code versions occurs in the middle of computation

- a particularly bad time for a lengthy interruption.

* Invalidation: The more customized a method is, the more likely that it will be

invalidated, and invalidation can be expensive. In the worst case, invalidation

could happen repeatedly on the same method, with a less-customized version

being selected at each iteration. This scenario could conceivably occur at appli-

cation startup time, when new type implementations are being rapidly added

to the FE.

For these reasons, methods must be selected carefully for customization. The

effect of customizing a method is to make it run faster, since dispatch sequences

within it will be simplified. Therefore, the methods most worth customizing are

those methods in which the most time is spent. Unfortunately, the compiler cannot

determine a priori which methods are performance-critical.

One way to select methods worth customizing is to use profiling information.

Using profiling feedback to automatically control optimization is not a new idea; the

MIPS code-ordering tool cord is an example of such a code optimizer.

In fact, the system can automatically profile itself by sampling the program

counter periodically as it performs computation. The sample program counters can

then be mapped back to the method code they correspond to and used to identify

the performance-critical methods that are worth customizing. Simple experiments
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indicate that the cost for using PC sampling with 10 ms resolution is less than 1% on

a DEC Alpha running OSF 1.2, so using PC sampling at all times may be reasonable

on modern architectures.

Since only a fraction of the methods will be customized, the problem of code

duplication will be greatly lessened. Also, customization will not occur until a generic

version has been used many times, so repeated invalidation is made much less likely.

Finally, the problem of latency can be addressed by performing customization

in background. The production of new customized versions based on the profiling

information can be delayed until the FE is not busy with client requests.

3.3.5 Inlining

Two options have been mentioned for optimizing method calls: direct procedure calls

and inlining. From the standpoint of customization and assumption propagation,

these two options are identical. Therefore, inlining in Theta creates no special new

problems that are not associated with other dynamically compiling systems, such as

SELF. Inlining is performed at the intermediate-code level of customized code, and

can provide substantial performance improvements for short methods.

3.4 Invalidation

Thor is a dynamic system. Consider the example of Section 3.2.2. Even if pair

was the only implementation of list when the dispatch tables of list_stack were

initialized, objects of a second list implementation may be fetched at any time. As

soon as such objects are known to exist, the dispatch table for liststack becomes

invalid and must be updated to point to the generic versions, or at least to versions

of the list_stack methods that do not depend on list-+pair.

3.4.1 The Assumption Registry

The dispatch tables of classes contain pointers to appropriate versions of the corre-

sponding methods, so the correctness of these tables is dependent on the validity of

the assumptions that were used in the installed method versions. When an assump-

tion becomes invalid (because a new implementation of a type has been fetched into

the FE), the system must be able to find all the dispatch tables that are dependent

on a particular unique-implementation assumption.
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Figure 3-3: Assumption registry

This functionality is provided by the assumption registry: a mapping from as-

sumptions about the runtime state to classes whose dispatch tables are dependent on

those assumptions (Figure 3-3).

For example, the assumption registry allows rapid location of all the classes whose

dispatch tables are dependent on list-+pair, so these dispatch tables can be updated

to point to valid versions of the methods.

When the dispatch tables of a class are filled in, a class/method pair is entered

in the assumption registry for each assumption used in any of the method versions

installed in the dispatch table.

In an earlier example, the class list_stack implemented the type stack by using

the type list. The pop method of liststack may be dependent (as we saw earlier)

on list-+pair, because it uses methods of the type list:

liststack = class stack

pop() returns(any)
1: list := items

top: any := l.first()
items := l.rest()
return (top)

end pop

We hypothesized a class parser whose implementation uses stack.pop, perhaps
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in the pass1 and pass2 methods. Because of assumption propagation, these methods

of parser may also be dependent on the list-+pair assumption, as depicted in the

figure.

If the dispatch table of a class is updated, the assumption registry must also be

updated to reflect the new situation. Since the class contains the set of assumptions

used by each version of its methods, the class/method pair can be removed from the

registry wherever it occurs and re-entered with the information corresponding to the

currently installed method versions.

3.4.2 Detecting and Handling Invalidation

Even running code may become invalid. For example, a method customized to assume

only one implementation may cause an object of a second implementation to be

fetched. If the customized method then invokes a method on the new object using

the old assumption, it will directly call the original implementation's code, handing

it an object of a different implementation. Obviously this must be prevented.

It is straightforward to determine that invalidation is necessary. The Theta run-

time system can detect when a new implementation is being used by objects in the FE

cache. When the implementation becomes available, the runtime system scans up the

type hierarchy, examining every supertype or superclass of this new implementation.

Since every type is annotated to indicate whether it has a unique implementation, it

is easy to determine whether some current code may need to be invalidated.

I make some assumptions about what changes are acceptable as part of invali-

dation. Changes that scale with the number of accessed objects are not acceptable.

For example, changing the dispatch headers in every object is a bad strategy. I also

assume that invalidation is infrequent.

There are three important ways that the runtime system can be using customized

code when it becomes invalid.

The invalid code can be executing. Conceivably the runtime system could patch

both the current program counter and the return addresses in the program's

stack. But even if the invalidated code is not the currently executing procedure,

the new version of the code may have a different stack layout, and returning the

flow of control into that stack frame will cause havoc. Mapping the old stack

frame layout into the new layout is tricky, especially in the face of arbitrary op-

timizations and inlining. This technique is used in SELF, but creates significant
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implementation problems [3]. Using this technique in Thor would make it less

portable, since rewriting the stack usually depends on details of the machine

architecture.

Another approach is to abort the current computation (erasing its effects) and

restart it from scratch. Aborting the current computation is only required if one

of the procedures on the stack is invalid, though technically an abort is always

a safe maneuver. Avoiding aborts is desirable for performance reasons, since an

abort means that some computation must be repeated.

Aborting requires runtime support for transactions, so that objects modified by

the partially-completed computation can be reverted to their pre-computation

state. Because Thor is a persistent, distributed system, transactions are already

a part of the Theta computational model.

· Class dispatch tables may contain pointers to the invalid code. This problem is

easily solved by rewriting the appropriate entry of the dispatch table to point

to a valid version of the code. Since dispatch tables are shared by all objects of

that implementation, the cost does not grow with the number of objects.

When a second implementation of a type T becomes available, the assumption

registry is checked to see if the dispatch tables of any classes are dependent

on the assumption T-+I, where I is the current unique implementation. The

dispatch tables for dependent classes are rebuilt under the new assumption set,

replacing affected methods with new, valid customized versions. The assump-

tion registry is then updated appropriately.

The new version of the code installed in a dispatch table always can be the

generic version of that method - the always-valid version that is based on no

assumptions, and only customizes operations on primitive types. Using this

version allows computation to continue immediately in the case that the most-

customized valid version is not available at the FE.

· Other code may contain direct pointers to the invalid code, or inlined versions

of it. This can happen in two ways: either the other code has been customized

and a method call was optimized to invoke the code directly, or else the invalid

code is a procedure that is being called in the usual way, like list. prepend in

the earlier example.
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In either case, assumption propagation will ensure that the other code will also

be dependent on the same assumptions that were used to generate the invalid

code, so both the caller and the callee will be invalidated. No special action is

needed for this use of customized code.

When an assumption is invalidated, the runtime system needs to locate all of the

invalid code currently in use. It must rewrite any dispatch tables pointing to the

code, and restart the current transaction if any invalid code is on the call stack.

To handle running code that has been invalidated, the runtime system must be

able to determine what code is currently executing. This is accomplished by walking

up the stack and extracting the program counter values that have been pushed onto

it when procedure calls were made. The actual executing code is then located using

these PC values. As mentioned earlier, the machinery for mapping PC values back

to the corresponding code objects is also useful for automatic profiling.

3.5 Performance

The effects of optimizing away dispatch compare well to the performance results from

section 2.5.8. For example, when a dispatch is converted into a procedure call, it

becomes a two-instruction sequence: one instruction to properly offset the object

pointer as described in section 2.4.1, and a second instruction to jump directly to the

implementing code.

In the full dispatch sequence on an object of type T, the object pointer was added

to an offset that had to be loaded from the dispatch table. In the optimized dispatch

sequence, this offset must still be applied to the object pointer. However, the object

offset can be determined statically, because the unique implementation of T is known.

The proper object offset is just the inverse of the offset applied to cast an object of this

implementation to type T. This inverse offset is a peculiarly efficient implementation

of casting down. In many cases, the object offset will be zero, and can be avoided

altogether.

In terms of the constants defined in section 2.5.8, the cost of a procedure call

dispatch is 2 (or 1 if the offset is zero). The J cost is avoided because the direct,

unconditional branch allows the pipeline to process instructions in the subroutine

without stalling.

Inlining has a negative cost, because no return instruction is needed. It also allows
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Figure 3-4: Dispatch costs, revisited

the procedure body to be optimized in its calling context, so the compiler can avoid

the cost of setting up argument and return-value registers. This benefit is dependent

on the number of arguments and return values. Inlining code also increases the

amount of code in the system, possibly making the instruction cache less effective

and counteracting the more obvious benefits in a way that is difficult to quantify.

Note that both inlining and direct calls bring the cost of dispatch below that of

the "optimum" column, as shown in figure 3-4. This fact suggests that judicious use

of customization might bring the average cost of method dispatches, including those

dispatches that cannot be avoided, down to the point where the performance of Theta

is similar to that of non-object-oriented languages.

3.6 Implementation

The implementation of customization has been prototyped in Modula-3, including a

customizing compiler that aggressively converts generalized intermediate code into

customized code by performing both inlining and direct-call substitution.

The current prototype implementation does not perform automatic inlining. Inlin-
ing is performed according to a user directive, and on methods of the primitive types

such as integers. This user-directed inlining is still more flexible than C++-style inlin-

ing, as customization allows it to be performed even when multiple implementations

of a type exist.

I have also implemented a code generator that converts customized code into

working C code. Although the customizing compiler works, certain key pieces of

the running system are still missing. The profiling support and the facilities for

dynamically loading, managing, and relocating code objects are incomplete. However,

I feel that the level of design and prototyping that I have done are enough to indicate

that this customization technique is both feasible and useful.
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Chapter 4

Conclusion

I have presented two independent but complementary techniques for speeding up

object operations in a persistent programming language. Together, these techniques

address much of the concern for performance in a persistent programming language.

In Chapter 2, I described a novel object layout that speeds up method dispatch

and field accesses as compared to the usual C++ layout. The core idea is to take

advantage of the separation of inheritance and subtyping. When code-sharing inher-

itance is allowed only with a single superclass, objects can be rearranged to make

object operations more efficient. For persistent and garbage-collected systems, the

object layout provides additional benefits because the fields of the object are packed

together. I also showed how multiple inheritance can be implemented in this scheme

without slowing down single inheritance.

I implemented this object layout as part of the Thor system, currently under

development. The measured performance results for this object layout indicate that

dispatch is fast and causes minimal extra load on the data cache.

In Chapter 3, I showed how customization can be applied to a statically-typed,

persistent object-oriented language to avoid many method dispatches. The called

code can be called via the ordinary procedure-call mechanism, or inlined directly in

the calling code. The statically-typed nature of Theta makes it possible to avoid

dispatches that could not be avoided in SELF. The fact that Thor is a persistent

object system is exploited to eliminate dispatches based on the state of the current

computation at the FE, so that rarely-used additional implementations do not vitiate

dispatch avoidance.

I wrote a prototype customizing compiler for Theta intermediate code that elim-

inates method dispatches when possible, replacing them either with direct procedure
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calls or the inlined code of the method being called.

There are many ways in which this work can be extended or improved.

4.1 Merging Type Headers

One of the defects of the object layout scheme described in Chapter 2 is that the per-

object dispatch information can become fairly large if the type hierarchy is complex -

a problem shared by C++. This problem is exacerbated by the presence of surrogates,

which have all the per-object dispatch information of the real objects, without the

fields. I expect that this storage overhead will not be a problem in practice, because

the most common objects tend to have simple types. As I have shown, only one or

two words of dispatch information are contained in objects from type hierarchies with

single supertypes.

However, it would be desirable to reduce the dispatch overhead in objects from

more complex hierarchies. As suggested in Section 2.5.4, some simple techniques for

assigning elements in the dispatch table can yield greater mergeability of dispatch

table. These technique would reduce the per-object overhead while allowing indices

to be assigned locally - in contrast to the sparse table schemes, which are unsuitable

for a large system.

More investigation is needed to determine the right tradeoff between sparseness

in the dispatch table, locality of index assignment, and the performance of the data

cache in the presence of sparse tables.

4.2 Customization

More performance studies of the customizing compiler would be helpful in understand-

ing some of the issues of the design. Although I have prototyped the customizer, the

Theta compiler is incomplete.

Some of the issues that performance measurements would be helpful in resolving

are:

* When should new customized versions of a method be generated, in order to

optimize performance?

* How much assumption propagation should the customizer allow?

* When should inlining be used?
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4.3 Individual-Method Customization

In the work described, customization can be performed when a type has a single imple-

mentation, represented by the notation T -+ I. Another way to customize is to notice

when a single method has a unique implementation, and substitute direct procedure

calls for the method calls on that method. While all methods have the potential for

being overridden by a subclass, some methods are never actually overridden. There-

fore, more call sites will be customizable under this approach. This extension could

provide performance equivalent to non-virtual methods in C++, though it would also

increase the complexity of the system and possibly cause more invalidations.

4.4 Customizing Surrogate Checks

The customization machinery described in Chapter 3 can be used to optimize opera-

tions other than method dispatches. The bookkeeping of assumptions and dependen-

cies, and the techniques for recovering from invalidation, apply to other optimizations

as well.

To implement orthogonal persistence, Thor uses surrogate objects [17]. A surrogate

object exists only at the FE, as a placeholder for a real, persistent object. It is able

to accept method calls, like the object that it represents, but it does not contain the

real object's data. Instead, invoking a method on the surrogate object causes the real

object to be fetched from the object repository.

Before any operation can be performed on an object, a surrogate check must be

performed to determine whether the object is actually a surrogate, and if so, convert it

into a real object. Ultimately, references to the surrogate are patched by the garbage

collector, redirecting them to the true object. Surrogates can be also be created

by the FE when memory is scarce - the FE shrinks objects, replacing them with

surrogates [17].

Surrogate checks are a performance problem unique to persistent languages. But

in many contexts, an object is known not to be a surrogate. For example, the re-

ceiver object of a method is never a surrogate, nor is an object just produced by a

constructor.

In order to avoid surrogate checks, the compiler can annotate the types of expres-

sions to keep track of which expressions might refer to surrogates. This annotation

looks like a simple extension to the type system used by the compiler. These surro-
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gate annotations are propagated through the intermediate code, so as long as it is

not assigned to, a variable is only checked once to see if it refers to a surrogate.

There are three major weaknesses of this approach:

1. The FE can shrink objects asynchronously, so reasoning about surrogate anno-

tations may be difficult.

2. Surrogate annotations are lost when making a method call, unless that method

is inlined. If the method was called directly, it does not know whether the

arguments to the method are surrogates or not, and must assume the worst.

3. Unlike variables, object fields are difficult to usefully annotate, because any

method call might result in a change to the value of that field. Therefore, they

are a major source of surrogate checks.

The problem of shrinking can be addressed by preventing the FE from shrinking

objects that running code might care about. For example, local variables can be

prevented from turning into surrogates if the FE checks the stack and register set

before turning an object into a surrogate.

To avoid the second limitation, the system can use customization on procedure

argument types, allowing surrogate information to cross procedure boundaries at the

cost of duplicating the called code. The idea is that different callers use different

versions of the code, depending on which of their arguments are known not to be

surrogates. The idea of automatically customizing on procedure argument types

has been suggested as an extension to customization in SELF [4], although the idea

was not seriously explored there. Considerably more work needs to be done here to

understand the time/space tradeoffs and the additional runtime bookkeeping.

Avoiding the problem with object fields is more problematic. In order to know

that a field is not a surrogate, the compiler must be able to determine that the field

is unchanged since the last time it was checked. More investigation needs to be done

to determine when this is feasible in a system like Thor.

4.5 Class Evolution

Very long-term extensibility in Theta requires a form of schema reconfiguration: ob-

jects should be able to change their implementations without changing their identi-

ties. One quasi-linguistic mechanism toward this end is class evolution - allowing
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changes to an existing class. Ideally, it should be possible to completely change the

implementation of a class, adding or removing fields or private methods.

Class evolution can be effected by obsoleting one class, and providing a description

of how to convert objects of that class into objects of the new class. Simultaneously

changing the class of all objects in a large distributed system is obviously infeasible.

However, this conversion can be performed lazily at the time that the FE fetches

objects from the OR. If surrogates are equipped with appropriate dispatch tables,

class conversion can even be delayed until the object is actually used, reducing the

cost of class evolution even more.

However, class conversion will also affect the use of customization, since cus-

tomized methods may use information about the old class in order to speed up code.

For example, customized methods may directly call the methods of the old class, or

even inline their implementation. Further investigation is needed to understand what

effect the presence of class evolution has on the customizations described here.
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