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Abstract
The purpose of this thesis is to assess the feasibility of using semiconductor lasers
and a monolithic KNbO 3 cavity to generate squeezed states of light. An experi-
mental setup designed to detect amplitude squeezing via second harmonic generation
from a doubly resonant KNbO 3 monolithic cavity was constructed. Based on the ex-
perimentally determined cavity parameters, a critical power of 3.5mW and a critical
frequency of 400MHz are predicted. The maximum achievable amount of amplitude
squeezing at an input power equal to the predicted critical power is determined to
be 31% at the fundamental and 79% at the second harmonic. Excess noise from the
diode laser prevented observation of squeezing.
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Chapter 1

Introduction

Random fluctuations of electromagnetic fields, dictated by the uncertainty principle

in quantum mechanics, set the ultimate limit on the amount of precision possible

in transmitting information by photons, or light. It is anticipated that, in the near

future, many communications sytems which use light to transmit information will

progress to the point where the accuracy of the transmitted information is limited by

the random fluctuations in the optical field. Is there a way to reduce such fluctuations?

Squeezed light allows one to redistribute the noise in an optical field such that the

noise in one component of the field is less than that for classical light while the noise

in the other component exceeds that of classical light. This offers the potential for

using only the squeezed part of the light to transmit the information, thus improving

the precision beyond that for classical light.

1.1 Thesis Outline

This thesis describes an experimental setup aimed at generating squeezed light from

a potassium niobate crystal via the nonlinear optical process of second harmonic gen-

eration. The thesis is organized into the following chapters. The rest of this chapter

consists of three sections. Section 1.2 provides a qualitative description of squeezing.

In particular, a distinction is drawn between quadrature and amplitude squeezing.

Also, some potential applications of squeezed light are discussed. In section 1.3 the
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various physical processes that produce squeezed light are described, followed by a

discussion of past experimental results by others in the generation of squeezed light.

Section 1.4 discusses the motivation and general features of this experiment. Chapter

2 provides an extensive treatment of squeezing via second harmonic generation inside

a doubly resonant cavity. The experimental setup is described in Chapter 3. Chapters

4 through 9 outlines the general progress of the experiment. The results achieved in

the experiment will also be discussed in these chapters. A summary of the experiment

and the results will be included in Chapter 10 along with a few concluding remarks.

1.2 Squeezed States

1.2.1 Qualitative description

At a given point in space a monochromatic electromagnetic wave of frequency w can

be specified by its amplitude and phase or by its sine and cosine components:

E(t) = Acos(wt + )

E(t) = acoswt + bsinwt (1.1)

According to quantum theory, the two components A, qb or a, b that specify the field

are noncommuting operators and are therefore subject to the constraints of Heisen-

berg's uncertainty principle. That is, the two components cannot be known with

absolute certainty simultaneously. In fact the product of their uncertainties must

always be equal to or larger than a fundamental constant proportional to Planck's

constant h. It is possible, however, to manipulate the field in such a way that the un-

certainty in one component is reduced at the expense of increasing the uncertainty in

the other component while the product of their uncertainties remain unchanged. The

component whose uncertainty is reduced is appropriately described as the "squeezed"

component [28].

In classical light, such as light emitted by a coherent laser, the uncertainties in the
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sine and cosine components of the field are equal, and the uncertainty in the amplitude

of the field obeys a Poisson distribution. In quadrature-squeezed light the uncertainty

in either the sine or cosine component is decreased while that in the other component

is correspondingly increased. In amplitude-squeezed light, the uncertainty in the

intensity number is reduced to below the shot noise limit characteristic of classical

light at the expense of increasing the uncertainty in the phase of the field. It is

also possible to generate phase-squeezed light, the direct counterpart to amplitude-

squeezed light.

1.2.2 Applications of squeezed states of light

Amplitude-squeezed light finds potential use in communications systems or in mea-

surements that require very high precision[28][22]. In optical communications sys-

tems, for example, the information to be transmitted can be encoded on the amplitude

(squeezed) quadrature of light. A detection scheme that is sensitive to the amplitude

but not to the phase of the transmitted light would then record the information and

thus improve the signal-to-noise ratio beyond that for a shot-noise-limited system.

Other applications of squeezed light involve areas such as gravitational wave detec-

tion and optical ring gyroscope, where squeezed light offers a potential improvement

by increasing the sensitivity of the detection scheme.

1.3 Methods of Generating Squeezed Light

1.3.1 Possible Methods In General

Experimentally, squeezed states of light have been generated since 1985[30]. Both

quadrature-squeezed and amplitude-squeezed light have been produced by a variety

of experimental configurations. Up to the present squeezed light has been generated

by various forms of three-wave or four-wave mixing nonlinear optical processes and

also by diode laser outputs which are below shot-noise[31][14]. In a four-wave mixing

process, as shown in Figure la, four lightwaves interact via a nonlinear medium. The

8



nonlinear medium is often in the form of a nonlinear crystal, but the medium can

be gaseous or liquid as well. Two strong counterpropagating pump fields El, E2 of

angular frequencies wl, W2 and two other fields E3, E 4 of frequencies w3, w4 interact

in the nonlinear medium. The fields obey energy conservation w1 + w2 = W3 + w4 and

momentum conservation kl + ck2 = 1c3 + kc4 . Assuming w1 = w2 = w, a weak input field

E 3 of frequency w will give rise to an output field E 4 whose frequency is w4 = w and

whose complex amplitude is everywhere the complex conjugate of E3. Adding the two

fields E3 and E4 interferometrically results in a new field that is quadrature-squeezed.

The general class of nonlinear optical processes called three-wave mixing has also

produced both quadrature- and amplitude-squeezed light. Some of the best results in

squeezing were achieved with optical parametric oscillation. In optical parametric os-

cillation (Figure lb) an input field of frequency wp interacts with a nonlinear medium

to produce two output fields of frequencies 1o and w2 such that wp = Wo + w2. In

the so-called dengerate optical parametric oscillator, w1 = 2 = 1wp. Anticorrelation

in the distribution of photons from the two output fields gives rise to quadrature- or

amplitude-squeezing in the two output fields. The type of squeezing that is manifested

depends on the specific detection scheme used.

Second harmonic generation, another three-wave mixing process, has also been

employed to generate amplitude-squeezed light. In second harmonic generation (Fig-

ure lc) an input field at frequency w gives rise to a second field at frequency 2w inside

a nonlinear medium. The output consists of both the second harmonic field and a

residual field at the fundamental frequency w. The nonlinear interactions introduce

anticorrelation in the distribution of photons in both the fundamental and the sec-

ond harmonic output fields such that both fields are amplitude-squeezed. Second

harmonic generation is the method used in this work for generating squeezed light.

A more detailed discussion of amplitude-squeezeing via second harmonic generation

follows in the next chapter.
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1.3.2 Past Experimental Accomplishments By Others

The first experimental demonstration of squeezed light was achieved by R. Slusher

et. al. in 1985[26]. In their setup quadrature-squeezed light was generated by non-

degenerate four-wave mixing due to sodium atoms in an optical cavity. A balanced

homodyne detection system was used to measure the quadrature components of the

output beam from the cavity. It was found that the fluctuation of one of the two

quadratures was below the vacuum noise level. A modest amount of noise reduc-

tion (7%) below shot noise level was observed. Several other groups also generated

squeezed states around the same time, all involving four-wave mixing of some kind

but showing only modest amounts of noise reduction[15][23][21].

The most spectacular results in squeezing to date involve the process of parametric

downconversion as described in the previous section. Wu et. al. demonstrated a

60% reduction in quadrature noise below the shot noise level in 1987[29][30]. In

their setup the output of a Nd:YAG laser at a wavelength of A = 1062nm was

frequency doubled inside a Ba 2NaNb 5 015 crystal to generate a second harmonic beam

at A = 531nm. This beam served as the pump field to the optical parametric oscillator.

A lithium niobate crystal doped with magnesium oxide (LiNbO 3 :MgO) was used as

the nonlinear medium for parametric downconversion. The crystal was placed inside

an external cavity to increase the efficiency of conversion. The quadrature-squeezed

signal field was then detected by balanced homodyne detection.

In 1989 T. Debuisschert et. al. reported a setup that exploits the anticorrelation

in photon distribution between the signal and idler outputs generated by a non-

degenerate optical parametric oscillator[4]. A noise reduction of 69% was observed in

the difference in the intensities of the signal and idler outputs. Amplitude squeezing

was generated in this case, since the noise reduction involves the relative intensities of

the two outputs. The pump field was driven by an argon ion laser at a wavelength of

A = 528nm. The optical parametric oscillator consists of a KTP crystal placed inside

an external cavity. The wavelengths of the signal and idler fields were at A, = 1048nm

and Ai = 1067nm, respectively. The two output fields were separated by a polarizer

and detected by separate photodetectors. Intensity noise reduction below the shot
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noise level in the difference between the two photodetector outputs was then observed

on a spectrum analyzer. Other published results in squeezing using the parametric

downconversion process are given in the bibliography[25] [7] [27] [16] [17].

Squeezing via second harmonic generation was first reported by S. Periera et. al.

in 1988[18]. Their setup consists of a LiNbO 3:MgO crystal placed inside an external

cavity and pumped by a Nd:YAG laser at a wavelength of A = 1062nm. A second

harmonic output beam at a wavelength of A = 531nm was generated. The reflected

fundamental field was detected, and a 13 % reduction in the intensity fluctuation

below the shot noise level was observed.

More recently, in 1992, Kurtz et. al. reported a 40% reduction in the intensity

fluctuation of the second harmonic mode below the shot noise level[24][11]. In their

setup a monolithic LiNbO 3:MgO cavity was used as the medium for second harmonic

generation. The pump field at A = 1062nm was generated by a Nd:YAG laser. The

ends of the crystal were coated to resonate strongly at both the fundamental and the

second harmonic wavelengths. The transmitted second harmonic output field was

detected by balanced homodyne detection.

In the aforementioned setups involving squeezing via second harmonic generation,

the nature of the squeezing generated is amplitude squeezing, since the second har-

monic generation process introduces anticorrelation in the photon number distribution

at both the fundamental and second harmonic wavelengths.

1.4 Motivation and general features for this work

As mentioned previously, this work involves the generation of amplitude-squeezed

light via second harmonic generation inside a doubly resonant cavity. In this partic-

ular setup a monolithic cavity made up of potassium niobate (KNbO 3 ) serves as the

nonlinear medium for second harmonic generation. The pump field is produced by

a diode laser operating at a wavelength of A = 860nm. The monolithic cavity is de-

signed such that significant amplitude squeezing is expected at both the fundamental

and the second harmonic wavelengths.
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The primary motivation for this work is to design a setup that allows one to

produce a compact, efficient, and relatively inexpensive source of squeezed light that

may ultimately find use in optical communication systems. The diode laser's size

and cost, compared to those of other laser systems, make it the natural candidate for

such purposes. The use of KNbO 3 as the nonlinear medium provides two additional

advantages. First, the limited output power of the diode laser makes it imperative

that a material with a high optical nonlinearity be used. KNbO 3 possesses a strong

nonlinear optical coefficient that significantly exceeds that of most other commonly

used nonlinear materials such as LiNbO 3:MgO and KTP. As discussed in the previ-

ous chapter, there is an optimum power level (the critical power) at which the largest

amount of squeezing can be generated. For KNbO 3 the critical power level is quite

low, on the order of a few milliwatts. Of course, the critical power is also a sensi-

tive function of the cavity loss rates at the fundamental and at the second harmonic

wavelengths. Second, the phasematching temperature for KNbO 3 at a wavelength

of A = 860nm is around room temperature. Consequently, there is no need to heat

the crystal to high temperatures, as is the case for systems involving LiNbO 3, where

the phasematching temperature at A = 1062nm is about 123°C. The phasematching

consideration is also the main reason for selecting A = 860nm as the wavelength for

the pump field.

Table 1 provides a summary of the general features of past accomplishments in

squeezing via second harmonic generation and of the work described by this thesis.
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Table 1. Experiments Involving Squeezing Via
TT * /" j

Second

Harmonic eneration
Features Pereiva et. al. Kurz et. al. This work

(1988) (1992)

Material LiNbO3:MgO LiNbO3 :MgO KNbO 3

Cavity design external monolithic monolithic

Type of laser Nd:YAG Nd:YAG diode

Wavelength 1062nm 1062nm 860nm

Phasematching temperature 123°C 123°C 27°C

Critical power 1.6W 200mW 3.5mW

Observed squeezing 13% 40% -
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Chapter 2

Generation of Squeezed States Via

SHG Inside a Doubly Resonant

Cavity

The observation of second harmonic generation in the early 1960's marked the birth

of nonlinear optics. Second harmonic generation is the most fundamental and best

understood optical nonlinear interaction. In this chapter the basic theory of second

harmonic generation and a number of practical issues in nonlinear optics such as

phasematching and the use of a resonator to generate second harmonic generation

are discussed.

2.1 Mathematical Description of Second Harmonic

Generation

In a nonlinear medium the electric field of the incident radiation induces a nonlinear

polarization whose magnitude and phase are given by the product of the incident

fields. The expression for the nonlinear polarization is given as follows[31, p. 384]:

Pi = EoxijEj + 2odijkEjEk + 4EodijklEjEkE + .... (2.1)
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where Xij is the linear susceptibility tensor, and dijk, dijkl ..... are the optical non-

linearity tensors that relates the induced nonlinear polarization to the products of

the incident fields. In the special case of second harmonic generation, the relevant

nonlinear polarization is

Pi(w2 ) = odijkEj(Wl)Ek(Wl) (2.2)

where w2 = 2w1 [5]. The subscript i refers to the cartesian components of the polar-

ization vector.

From Maxwell's equations with the constitutive relation

D = EE + Pinar,, + Pnonlinear (2.3)

one obtains the wave equation

0 02 -02 -(
(V 2 - - e -o )E(2W) = o2PNL(2W) (2.4)

Mathematically the nonlinear polarization serves as the source term in the wave

equation for the second harmonic field. Assuming the fields propagate in the z-

direction and ignoring propagation losses, the steady state second harmonic field

amplitude is related to the fundamental field amplitude by

a (2w) = -j OdCff(w)()exp[(k - k)z]
TZ 2n

where kp = 2k(w), k = k(2w), and dff is the effective nonlinear coefficient. Note also

that the field amplitude E is related to the total field E by

E(z, t) = E(z)exp(jkz - wt) (2.6)
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2.2 Phasematching

Integrating (2.5) one can determine the second harmonic field amplitude as a function

of distance. The conversion efficiency to the second harmonic is optimized when the

two fields are phasedmatched. That is, when k(2w) = 2k(w) or n(2w) = 2n(w),

where n, the refractive index, is related to k by k = 2, A being the wavelength.

Physically, phasematching describes the condition at which the phase velocities of the

fundamental and the second harmonic fields are identical. For most commonly used

nonlinear materials, the index of refraction can be tuned by a number of parameters:

frequency (wavelength), temperature, orientation of the crystal axes with respect to

the incident wave, and electric field. In this work, the indices of refraction at the

fundamental and the second harmonic wavelengths are adjusted by temperature and

by an applied field across the nonlinear medium. The orientation of the crystal axes

with respect to the incident wave is fixed.

In normally dispersive materials the index of refraction decreases with the wave-

length of the field[31, p. 394]. In anisotropic materials two independent propagation

modes exist, each with a different index of refraction[31, p. 87]. The two modes cor-

respond to two orthogonally polarized electric displacement vectors D. The direction

of propagation specified by the k vector is normal to the plane formed by the two

allowed D vectors. Figure 2 shows how phasematching is possible. Provided that

the fundamental and second harmonic fields are polarized orthogonally to each other

and thus corresopond to the two independent popagation modes, phasematching is

achieved when the index of one mode at the fundamental wavelength is matched to

the index of the other mode at the second harmonic wavelength. The tuning curve of

one of the modes, the so-called extraordinary mode, is a function of the orientation

of the crystal axes with respect to the incident wave[31, p. 92]. While the orientation

is fixed in this experiment because of the use of a monolithic cavity, it is a tuning pa-

rameter for phasematching in many other applications. Figure 3 shows the nonlinear

KNbO3 crystal employed in this experiment and its corresponding crystal axes. The

crystal is biaxial with principal indices of refraction n, < n, < nb[1]. The indices of
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refraction of the two propagation modes can be determined from the principal indices

of refraction using the index ellipsoid method[31, p. 90]. The incident light propagates

along the a-axis and is polarized along the b-axis. The transmitted second harmonic

field is polarized along the c-axis, while the transmitted fundamental field remains

polarized along the b-axis. The two independent modes of propagation correspond

to the b-polarized fundamental wave and the c-polarized second harmonic wave with

indices of refraction nb and no, respectively.

2.2.1 Phasematching by temperature

To satisfy the phasematching condition the condition nb(w) = n0 (2w) must be sat-

isfied. In general, both indices of refraction are functions of temperature. That is,

nb(w) = nb(w, T) and n,(w) = n,(w, T). Shown in Figure 4 is the dependence of the

indices of refraction as a function of temperature for KNbO 3 at a wavelength A = 860

nm (or w = 2.19 x 1015/s). It is clear from the figure the phasematching condition

is satisfied around 270 C. It should be emphasized that Figure 4 is valid only at a

wavelength of A = 860nm. The phasematching temperature of KNbO 3 is a sensitive

function of wavelength, as shown in Figure 5.

2.2.2 Phasematching by electro-optic effect

The index of refraction of a nonlinear material can also be tuned by applying a dc

electric field. This effect is called the electro-optic effect. The change in the index of

refraction is related to the applied field by the following equation[31]:

1 1

2(n..j 2n rijEk (2.7)

Here rijk is the (third-ranked) electro-optic tensor, and the cartesian coordinate sys-

tem is that of the crystal axes of the nonlinear material. The indicies of refraction

are given as tensor elements in the above equation. To find the change in index of

refraction along a given direction, one must diagonalize the 3 x 3 tensor and determine

the new set of principal axes, which is generally different from the crystal axes of the
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nonlinear material. Assoicated with each principal axis is a new index that may be

a function of the applied electric field. The projection of the direction of interest on

the principal axes allows one to determine the index for a field polarized along that

direction. For an electric field applied across the c-axis as shown, the electro-optic

tensors that contribute to the index change are r 3, r 123, r133, r223, r233 and r333 In

the case of KNbO 3, all of the above tensor elements are identically zero except for

r 333. Therefore, the change in index is entirely along the c-axis, implying that n,(2w)

can be adjusted independently of nb(w) by the applied field. This is not the case for

temperature tuning, where both n¢(2w) and nb(w) vary with temperature.

2.3 SHG Inside A Doubly Resonant Cavity

In general the efficiency of second harmonic generation from a single pass crystal is

rather limited. One way to improve the efficiency of second harmonic generation is to

place the nonlinear crystal inside an optical resonator. In a resonator, light essentially

makes many passes through the nonlinear crystal before leaving the resonator, thereby

effectively increasing the interaction length. Furthermore, "mirrors" can be directly

deposited on the end facets of the crystal to form a resonator, such that physically the

crystal and the cavity are identical. Such "mirrors" are usually realized by depositing

a dielectric that is highly reflecting at the wavelength(s) of interest onto the crystal.

This type of cavity is commonly referred to as a monolithic cavity. In this experiment

a KNbO 3 monolithic cavity that is resonant at both the fundamental and the second

harmonic wavelengths is employed. The rest of the section will be devoted to a

discussion of second harmonic generation inside a doubly resonant cavity.

2.3.1 Achieving double-resonance and phasematching

At double-resonance the roundtrip phase of the fundamental and second harmonic

fields must each be integer multiples of 27r:

2=rnb-'4s = Ik(W)l = T = 2rN
A\
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2'rnTc2 w
2 = k(2w)l = -2-rM (2.8)

Here N, M are integers, and I is the length of the crystal. n 2 0 and nbW are indices of

refraction of the second harmonic field polarized along the c- and b-axis, respectively.

To satisfy the double-resonance and phase-matching conditions simultaneously, one

sets
nb N-- =-'1
n, 2 2M

By definition the two refractive indices are equal under phasematched condition.

However, phasematching is a sufficient but not a necessary condition for double reso-

nance, provided that the physical cavity length is identical for the two fields. Double

resonance can be achieved without phasematching (i.e. N 4 2M), the penalty being

reduced conversion efficiency to the second harmonic compared to the phasematched

case.

2.3.2 Equations of motion

The semi-classical equations of motion describing second harmonic generation inside

a Fabry-Perot resonator are[5]:

dt1 = j Al C 1 -- 71 a1 + Ka;a 2 + 1

d = j - (2.9)
denotes the complex conjugate. Here normalized electric field amplitudes

where * denotes the complex conjugate. Here normalized electric field amplitudes

cal, a 2, corresponding to the fundamental and second harmonic modes, respectively,

are used. el is the pump amplitude at the fundamental frequency. 71 and 72 are the

cavity loss rates for the two modes, and Al, A2 are frequency detunings from the

resonant frequencies of the two modes. The parameter r. is the coupling coefficient

between the two fields. It determines the amount of energy transfer between the two

fields. Experimental determination of 71, 72, and s is treated in Chapters 5 and 9.
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The normalized field amplitudes are related to the actual field amplitudes by

£ = 3jr 2w (2.10)

where V is the mode volume, and hv is the energy of a single photon of frequency v.

The equations of motion can be linearized around the steady state fields inside the

cavity. In obtaining the steady state, one setsdal = 0 and d 2 = 0 and solves fordt CYI dt/2 - and s ve s frt
the al and a 2. The second harmonic amplitude can be shown to be a single-valued

function of the normalized driving field E1:

2 2 Ca2 13 + 4l721ca 2 12 + 2l 2 Y2 Ka 2I = I rl2 (2.11)

Here we have assumed zero detunings for simplicity. By carrying out an eigenvalue

analysis of the equations of motion around the steady state operating point, one

can show that the second harmonic mode becomes unstable and exhibits self-pulsing

instability above a critical pump field[5]

=2272(71 +72) (2.12)

The angular frequency at which this instability takes place is

fcrit 72(71 + 72) (2.13)

The normalized quantity e is related to the actual power (in units of Watts) by the

following expression:

pin,= hw A tflJ2 (2.14)

where At = 2n is the cavity roundtrip time; Ri, is the power reflectivity of theC

input facet at A = 860nm; n is the index at A = 860nm; and I is the cavity length.

This critical pump power is a key piece of information in the analysis of amplitude

squeezing as described in the following section.

20



2.4 Amplitude squeezing via SHG

In the quantum mechanical description, second harmonic generation involves the

simultaneous creation of one second harmonic photon and the annihilation of two

photons from the fundamental mode. The incident driving field has Poissonian pho-

ton statistics. That is, the arrival rate of photons is perfectly random, exhibiting a

Poissonian distriution:
< n >n ezp[-< n >] (2.15)

n!

where < n > is the average photon number detected in a given detection time in-

terval. The second harmonic process converts photon-pairs in the fundamental mode

to second harmonic photons. The photocounting distribution of the photon-pairs is

sub-Poissonian, where its field fluctuation is less than that of the fundamental driving

field. The photocounting distribution of second harmonic photons is related to that

of the incident fundamental photons by

Pn(2w) = P2n(w) + P2n+l(W) (2.16)

since for a given detection interval n second harmonic photons can be detected given

2n or 2n + 1 fundamental photons in the same time interval. The intensity noise

can be expressed as the mean square deviation from. the average number of detected

photons in a given detection interval. That is, An = Vn2 - < n >2. For a Poissonian

distribution the uncertainty in the number of photons is equal to the average number

of photons:

An =< n >

Straightforward algebraic manipulation shows that the uncertainty in the photocount-

ing distribution of the second harmonic photons is less than that for a Poissonian

distribution. That is,

An(2w) << n(w) >

Therefore, the second harmonic field exhibits sub-Poissonian photon statistics.
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The photon statistics of the output fundamental field are also sub-Poissonian. One

can view the second harmonic process as a process that selectively converts photons

that are spaced closely together in a given detection interval. The second harmonic

process thus removes bunched photons from the fundamental beam. This results in

a more evenly spaced distribution of photons, implying reduced fluctuation in the

average number of photons. By this argument the photon distribution is expected to

be sub-Poissonian for the output fundamental field as well.

Mathematically, from the linearized equations of motion for a doubly resonant

cavity discussed previously, the intensity fluctuation spectrum (in W/m2) of the fun-

damental and second harmonic fields can be expressed as a function of the frequency

Qf at which the spectrum is observed[10]:

/< a ,(f)l2 > =< I > (1- -Yl7l '2l + )2

/< IA I2 (Q)12 > =< I2 > (1 -72 Ia 2 D ) (2.17)

where

D2 = [I1 2+ 72(71 + ( + a2) - 2]2 + (1 + 72 + Ila21)202

Here < I >, < 12 > denote the average output intensities of the two modes. For

frequencies much higher than the cavity loss rates 71, 72 the field fluctuations ap-

proach the shot-noise value characteristic of classical light. Since high measurements

frquencies correspond to short observation time intervals, the amount of squeezing is

degraded for observation time intervals shorter than the cavity lifetimes at the fun-

damental and the second harmonic because interactions between light and the cavity

do not have time to occur. Shown in Figure 27a is a plot of the expected amplitude

squeezing spectra as a function of measurement frequency for a set of experimentally

determined parameters. Here V represents the noise powers of the fundamental and

the second harmonic modes normalized to their shot noise values. At V = 0 perfect

squeezing is obtained as the noise power approaches zero. It is clear that the choice

of frequency at which the spectrum is observed depends on one's interest in observing
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squeezing in the fundamental mode or in the second harmonic mode. The loss rates

71, 72 depend on the coated reflectivities of the two facets and absorbtion within the

crystal, and the coupling coefficient KE is determined from the amount of depletion

of the fundamental mode power by second harmonic generation. As expected, both

the fundamental and second harmonic noise powers approach the shot noise level for

frequencies larger than the cavity bandwidth.

Amplitude squeezing is also a function of the input power to the crystal. As

mentioned in the previous section, the system exhibits self-sustained oscillations for

e > E,. The intensity fluctuation at the second harmonic wavelength decreases as is

increased until the critical power ec is reached (Figure 28c). Hence, the critical pump

power sets the power required for optimum amplitude squeezing.

A more complete discussion of the expected amount of amplitude squeezing as a

function of measurement frequency and of input power to the crystal is provided in

Chapter 9.
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Chapter 3

Experimental Setup And

Procedure

The complete experimental setup described by this thesis is shown in Figure 6. The

diode laser output is driven by a constant current source and focused by a lens onto

the monolithic cavity. Two Faraday isolators serve the purpose of preventing back

reflections into the laser cavity. The incident beam is polarized vertically (normal

to the page). After the incident beam passes through the polarizing beam splitter,

the Faraday rotator rotates the polarization of the incident field by 45 degrees. The

half-wave plate rotates the polarization of the incident field to the horizontal orien-

tation, parallel to the b-axis of the KNbO 3 crystal. The transmitted fundamental

and second harmonic outputs from the cavity are separated by a filter and detected

by separate photodetectors. The reflected output from the cavity consists mainly

of the fundamental field. Since the Faraday rotator is a non-reciprocal device, the

reflected field, after passing back through the Faraday rotator, has orthogonal polar-

ization with respect to the incident field. The polarizing beam splitter then steers

the back-reflected field onto a photodetector. An rf synthesizer modulates the laser

output. A set of locking electronics amplifies and demodulates the photodetector

output to produce an error signal that feeds back to the laser bias current and thus

stabilizes the frequency of the incident field. This frequency stabilization scheme for

the fundamental field is commonly known as the Pound-Drever locking scheme and
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will be discussed in more detail in Chapter 6[20].

A second set of locking electronics is used to stabilize the intensity of the second

harmonic output to its peak. That is, to maintain phasematching between the funda-

mental and the second harmonic fields. The KNbO 3 crystal is temperature-controlled

such that the two fields are in the vincinity of phasematching. A programmable high

voltage supply produces a field which fine-tunes the phasematching via the electro-

optic effect. An rf signal is superimposed on the dc field across the crystal, thereby

modulating the intensity of the transmitted second harmonic output. A portion of the

transmitted output is detected by a photodetector and then demodulated to give an

error signal that progams the high voltage supply. Further discussion of this intensity

stabilization scheme is provided in Chapter 6.
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Chapter 4

Alignment of Crystal

4.1 Linear vs. Ring Resonator

The KNbO 3 crystal used in the experiment is configured as shown in Figure 7. The

crystal can be used as either a ring resonator or a linear resonator as shown in

the figure. The advantage of using the crystal in the ring configuration is that the

reflected beam travels a different path from that of the incident beam. Therefore, no

additional optics is necessary to separate the indident beam from the reflected beam.

The drawback of using the ring cavity resonator is that the the fundamental and the

second harmonic fields cannot be completely phasematched because the beam paths of

the two fields do not overlap. This effect is illustrated in Figure 8. While it is possible

to achieve phasematching between the fundamental and the second harmonic along

the cavity axis using temperature and electro-optic tuning, the same is not true for

the direction normal to the cavity axis (the b-axis). In the ring cavity design, parts of

the beam path for the fundamental and the second harmonic have components along

this transverse direction. Therefore, the two fields travel at different velocities inside

the crystal even if they are phasematched in the longitudinal direction. Consequently,

the two beams map out slightly different paths circulating the cavity.

Initially, the monolithic KNbO 3 crystal was set up as a ring cavity for the advan-

tages mentioned previously. However, the problem of non-overlapping beams made it

necessary to revert to the linear cavity set-up, which necessitates the addition of the
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isolators to prevent feedback into the laser, of the polarizing beam splitter to steer the

reflected beam into the photodetector, and of the polarizer and the half-wave plate

to rotate the polarization of the reflected beam to 90 degrees relative to that of the

incident beam.

4.2 Modematching

One major difficulty encountered in the experiment involves the modematching of the

incident beam to the monolithic KNbO 3 cavity. The optimum beam waist inside a

cavity depends on the geometry and size of the cavity as well as the laser wavelength.

When modematched, the beam waist of the incident laser beam matches the optimum

beam waist defined for the particular cavity in question. This normally involves using

a carefully chosen focal lens to focus the incident beam to the desired beam waist

inside the cavity. Failure to achieve modematching results in the presence of higher-

order radial sidemodes as well as drastically reduced efficiency in the conversion to

the second harmonic.

For an incoming gaussian beam of radius r focused by a lens of focal length f, the

minimum spot size is[6, p. 141]

=- (4.1)
7rr

where A is the wavelength of the beam. The gaussian intensity profile of the optical

beam assumed in (4.1) is, for all practical purposes, an adequate approximation of

the diode laser output.

For a symmetrical optical cavity, the optimum beam waist for modematching is

given,by[31, p. 140]

ro = [R ]4 (4.2)

Here R is the radius of curvature of the symmetric cavity; I is the physical length

of the cavity; and n is the index of refraction of the cavity medium. For potassium

niobate, n = 2.28. The KNbO 3 cavity employed in this experiement has a radius of

curvature of 5cm and a cavity length of 7mm. The beam waist required for mode-
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matching is determined to be 16.4im. The incident laser beam has a beam radius

of approximately mm. The beam is focused by a lens onto the monolithic cavity.

The focal length necessary to achieve the desired beam waist of 16.4,/m is calculated

from (4.2) to be 6cm. In practice several lenses with different focal lengths were tried

out one at a time. The lens with a focal length of 5cm gives the best conversion

efficiency. Alignment of the cavity using focal lengths that give poor modematching

is extremely difficult. Scanning the transmission spectrum reveals that the output

intensity of the main mode is only slightly higher than that of the side modes under

poor modematching. Under good modematching, the ratio between the main mode

and side mode intensities is more than 10:1, although it is virtually impossible to

completely extinguish the sidemodes.
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Chapter 5

Determining Cavity Losses

The cavity loss rates Y1, 72 are two of the key parameters used in determining the

critical power for onset of self-pulsing oscillations and the amount of achievable am-

plitude squeezing. The cavity loss rates characterize the roundtrip loss of light inside

the cavity due to transmission of power from the end mirrors and to absorbtion within

the crystal. It is defined mathematically by the following equation:

dE = -E (5.1)
dt

in the absence of any external driving term. Here E is the optical field inside the

cavity.

5.1 Expression for Cavity Bandwidth

The cavity loss rates defined above is equivalent to the full-width-at-half-maximum

bandwidth of the cavity transmission spectrum AVFWHM. Assuming that the power

reflectivities of the cavity's input and output facets are R1 and R 2, respectively, and

that the length of the cavity is 1,

A VFWHM = 2(a - - I'RR2) (5.2)
2wn I
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under the approximations v - v << c/2rnl and cl - nVR-R2<< 1. Here a is the

distributed loss of optical power (with the unit cm- 1 ) due to absorbtion within the

crystal, and n is the index of refraction of the nonlinear material. Specifically, the

cavity loss rate and the cavity bandwidth are related by

= r A VFWHM (5.3)

Appendix 1 provides a detailed outline of the derivations for and AVFWHM.

5.2 Measurement of Cavity Bandwidth-Fundamental

Mode

In the fundamental mode, the cavity bandwidth is measured by scanning the fre-

quency of the laser across at least one free spectral range, the frequency spacing

between adjacent longitudinal cavity modes. The transmitted beam from the cavity

is detected directly by a photodetector, and the transmitted intensity as a function

of laser frequency is recorded on an oscilloscope. Figure 9 shows an oscilloscope trace

of the transmitted intensity spectrum. From the oscilloscope trace the full-width-

at-half-maximum bandwidth as a fraction of one free spectral range can be readily

determined. The free spectral range is given in terms of the length of the cavity and

the index of refraction n by the relation

C
VFSR = 2- (5.4)2ni

For the specific KNbO 3 cavity used in the experiment, the bandwidth was measured

to be 201 ± 18 MHz, from which the cavity loss rate is calculated to be

71 = (6.32 ± .57) x 108/s
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5.3 Measurement of Cavity Bandwidth-Second

Harmonic Mode

Determining the cavity bandwidth for the second harmonic mode is a more compli-

cated problem experimentally. Whereas for the case of the fundamental mode the

frequency of the laser can be tuned simply by adjusting the laser bias current, the

same tachnique cannot be applied to the second harmonic case because the amount

of conversion from fundamental to second harmonic is itself frequency dependent. A

frequency tunable source of second harmonic output is required to probe the cavity

at the second harmonic wavelength. Two methods have been attempted. In the first

method the cavity is probed directly with a tunable blue laser source realized by

sending the diode laser output beam through a single-pass KNbO 3 crystal to gener-

ate the second harmonic output. The frequency of the laser is then scanned across

one free spectral range, and the transmitted spectrum is analyzed. However, with

the available amount of input power from the laser, the amount of second harmonic

power generated turns out to be insufficient because the detected intensity of the

transmitted second harmonic beam is masked by the photodetector noise.

In the second method the index of refraction at the second harmonic wavelength is

tuned instead of the laser frequency. The index tuning, which is achieved by varying

the electric field applied across the crystal via the electro-optic effect, changes the

effective cavity length at the second harmonic wavelength but not the at fundamental

wavelength. The modulation of the effective cavity length implies a change in the

resonance frequency of the cavity. The optical frequency of the fundamental and

second harmonic fields are held fixed by feedback electronics. The two problems are

complimentary of each other. In the case for the fundamental, the cavity length is

fixed while the frequency of the optical field is varied. In the case for the second

harmonic, the frequency of the optical field is held constant, but the cavity length

is tuned. The voltage across the crystal is scanned across at least one free spectral

range, and the transmitted signal is detected by a photodetector. The transmitted

intensity as a function of the applied high voltage is recorded an the oscilloscope,

31



from which the full-width-at-half-maximum bandwidth can be measured directly. By

measuring the change in the location of the transmission peak for a given amount

of change in the applied voltage, one can convert the bandwidth to frequency units.

Experimentally, the bandwidth at the second harmonic wavelength was measured to

be 620 i 15 MHz, which gives a cavity loss rate of

72 = (1.95 ± .05) x 109 /s
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Chapter 6

Achieving Double Resonance Via

Frequency Locking

As mentioned in Chapter 3, two sets of locking electronics are used to stabilize the

frequency of the fundamental and second harmonic fields and the intensity of the

second harmonic field, respectively. In this chapter the principles involved in the two

locking schemes are discussed.

6.1 The Pound-Drever Locking Scheme

Shown in Figure 10 is a more detailed sketch of the setup for stabilizing the optical

frequency of the laser output to one of the resonance frequencies of the monolithic

cavity[2]. The frequency of the semiconductor diode laser is tuned by an injection

current to the laser diode. The laser is modulated by superimposing an rf current

signal to the injection current of the laser. In the frequency domain this modulation

induces sidebands to the carrier frequency. The total field including the sidebands is

given by[9]:

E oc j Jn(m)ezp[j(f + nw)t] + j E (-1)nJ(m)exp[Uj( - nw)t] + c.c. (6.1)
n=,oo n=l,oo
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where J,(m) are Bessel functions of integer order; m is the modulation index; and c.c.

denotes the complex conjugate. The monolithic cavity in this case serves as a filter

that transmits the carrier frequency but reflects the sidebands. This requires that

the modulation frequency be roughly equal to or larger than the bandwidth of the

cavity at the fundamental wavelength. The reflected field consists of the sidebands

and some residual carrier.

Also shown in Figure 10 is the frequency spectrum of the field at various parts

of the setup. The photodetector detects the beat signal between the carrier and the

sidebands. The output of the photodetector can be decomposed into two components

that are 90 degrees out of phase. One of the components is proportional to the

difference between the magnitudes of the reflected sidebands. The other component

is proportional to the difference between the phase of the carrier and the average of the

phases of the sidebands. The magnitude of this phase difference is a sensitive function

of the difference between the carrier frequency and the cavity resonance frequency.

As shown in the figure, the phase difference Ao has the properties of a discriminant

curve. Namely, its sign changes at the origin, and the slope of the curve is maximized

at the origin. The amplified photodetector output is then demodulated to baseband.

The phase of the demodulating signal is adjusted such that the demodulated signal

is proportional to the phase-sensitive component of the detector output. A loop filter

is constructed to ensure stable operation of the feedback system. The output of the

loop filter is summed with the bias current of the diode laser to adjust the frequency

of the laser output. The loop filter circuit is shown in Figure 11. It consists of

a gain stage followed by an integrator stage. The gain stage simply amplifies the

demodulated signal to increase the slope of the discriminant curve mentioned above.

The integrator stage provides the necessary compensation for stable operation of the

overall feedback loop.

An oscilloscope trace of vo- v vs. the dc output signal is shown in Figure 12.

How close the carrier frequency of the laser stays locked to the resonance frequency

depends on the slope of this discriminator curve and also on the noise of the curve.

The slope of the discriminator curve is a function of the modulation index which
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measures the strength of modulation. For each modulation frequency there exists a

modulation index which maximizes the slope of the discriminator curve[9]. However,

it may not always be desirable to use such an optimum modulation index. As the

moduation index is increased, power is transferred from the carrier to the sidebands,

reducing the transmitted power from the cavity. At the modulation frequencies nor-

mally used in the experiment (:200MHz) the carrier power is severely attenuated

as compared to the unmodulated case if modulated with the optimum modulation

index. As a compromise, the laser is only weakly modulated in this experiment such

that attenuation in the carrier power is low. A loop filter that follows amplifies the

discriminator signal and provide the necessary compensation for loop stability. The

price paid for by using electronic gain is that any noise associated with the discrimi-

nator curve will be amplified as well. In practice, this does not constitute a significant

problem. Experimentally, the frequency of the laser was successfully stabilized to the

cavity resonance for several hours without losing lock.

The treatment on the Pound-Drever locking scheme provided in this chapter is

mostly qualitative. A more quantitative discussion can be found in Reference 2[2].

6.2 Locking the Second Harmonic Intensity

The setup for locking the intensity of the second harmonic to its maximum is shown

in Figure 13. As mentioned in Chapter 2, the temperature of the crystal and the

electro-optic voltage applied across the crystal are adjusted such that the crystal is in

the vincinity of phasematching. An ac modulation signal at a frequency of 11.5MHz

is summed with the high voltage bias. At a fixed temperature the intensity of the blue

output is solely a function of the electro-optic voltage across the crystal. Therefore,

the 11.5MHz signal in effect modulates the intensity of the second harmonic output.

A portion of the modulated second harmonic output intensity is detected by a

photodetector, and the detected signal is then demodulated. As illustrated in Figure

13, the polarity of the demodulated output changes as the second harmonic intensity

crosses its maximum value. A loop filter amplifies and compensates the demodulated
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output before the signal is fed back to the programmable high voltage supply. The

sign of the loop filter output is adjusted such that the sign of the feeback signal will

always act to restore the intensity of the second harmonic field to its maximum.

Experimentally, the second harmonic output intensity was successfully stabilized

to its maximum, producing a stable blue output beam, while the laser frequency re-

mained locked to the cavity resonane. Uninterrupted "double-locking" was sustained

for more than two hours.

6.3 Thermal Effect

6.3.1 Asymmetry in SH intensity as a function of temper-

ature

A typical plot of the second harmonic output intensity as a function of temperature or

electo-optic voltage is shown in Figure 14. The intensity distribution is symmetrical

around its peak value. Experimentally it was found that such a symmetrical distri-

bution is only true for low input powers, on the order of 1 mW or less. As the input

power is increased, the intensity profile becomes increasingly asymmetrical, as shown

in the dotted curve in Figure 14. Assuming the temperature of the crystal lies on the

"flat" side of the curve initially, the intensity is gradually increased with decreasing

temperature until the maximum (phasematched condition) is reached. However, as

soon as the maximum is reached, the intensity drops precipitously even without any

further decrease in temperature set by the temperature controller. To return to the

phasematched condition again, the temperature needs to be increased by a certain

amount before the intensity increases sharply to its peak again. Such a "hystere-

sis" curve is sketched in Figure 15. This behavior can be qualitatively explained by

self-heating of the crystal. Along the path AB, the crystal is gradually cooled by

the temperature controller as its second harmonic output intensity increases. As its

output intensity increases, the crystal itself also generates some heat, even though

its overall temperature continues to drop. Once the peak intensity is reached, the
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continued cooling due to the temperature controller starts to decrease the output

intensity. The self-heating of the crystal is thus reduced, causing the crystal to cool

by itself. This cooling effect will act to further decrease the output intensity, which in

turn cools the crystal even further. Such a positive feedback effect triggers a dramatic

decrease in the output intensity (path BC), even if the temperature of the temper-

ature controller remains constant once the peak output intensity is reached. If the

temperature is now increased by adjusting the temperature controller, the crystal will

gradually heat up again until its self-heating is sufficient to cause significant positive

feedback, which results in a rapid increase in the output intensity (paths CD and

DE). The "hysteresis" effect is a manifestation of the amount temperature change

due to the crystal's self-heating.

6.3.2 Asymmetry in SH intensity as a function of electro-

optic voltage

This asymmetry in second harmonic intensity exists for temperature tuning as well

as for electro-optic voltage tuning. The qualitative behaviors are essentially the same

for the two cases, even though the physical mechanisms by which the crystal is tuned

are different. Currently there is no satisfactory explanation for this effect.

The steepness of the tuning curve on one side creates a slight problem for locking

the second harmonic intensity. At low input powers the feedback electronics is capable

of stabilizing the intensity to its maximum value. At high input powers, however, the

gain of the locking loop is insufficient to hold the second harmonic output intensity

from falling off the steep side of the tuning curve. Consequently, the intensity is

stabilized to a point slightly on the flat side of the tuning curve. Experimentally, the

second harmonic intensity could always be locked to within 10% of its true maximum.
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Chapter 7

Noise Measurement and Analysis

One of the most important prerequisites to observing squeezed light is to ensure that

the system is free of excess noise. The signature of amplitude squeezed light is the

reduction of its intensity fluctuation below that of the shot noise level for classical

light. It is therefore crucial that the noise detected by the detection scheme be

dominated by the shot noise as opposed to other noise sources.

7.1 Shot Noise, Thermal Noise, RIN, and Ampli-

fier Noise

The noise detection scheme for the reflected and the transmitted fields from the cavity

is shown in Figure 16. Light is incident on a photodetector, generating a photocurrent.

The photocurrent is then amplified by an ac-coupled rf amplifier. The output of the

rf amplifier is then fed to a spectrum analyzer, from which the noise spectrum can be

observed. The noise that is measured at the spectrum analyzer is dominated by four

major noise sources, namely shot noise, thermal noise, relative intensity noise (RIN),

and noise from the rf amplifiers.

The term "shot noise" used so far in this work refers to the Poissonian fluctuation

in the photocurrent arising from the detection of classical light. This fluctuation is

fundamental in nature. That is, it is governed by the fundamental laws of physics, in
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particular, the Heisenberg uncertainty principle. In most literature "shot noise" refers

to the noise associated with an electric current. Physically the noise is due to the

random nature in which electrons in a current are emitted. Statistically the electron-

arrival rate in a current also follows a Poisson distribution, and the mean-square

current fluctuation is given by the following equation:

i2,.ot = 2eIDc A B (7.1)

Here IDC is the average current; e is the electron charge; and AB is the measurement

bandwidth.

Comparing this expression for the shot noise to the expression for the shot noise

of light, one sees that the two forms are identical. The detection scheme used to

detect squeezed light is simply a square-law photodetector that is sensitive only to the

amplitude of the incoming light. The output current of the photodetector is directly

proportional to the intensity of the incident light.. Consequently, the detected current

fluctuation is given by its shot noise provided that the incident light is also shot noise

limited. Since the noise of light has no meaning until it is detected-as a current

fluctuation-shot noise is, strictly speaking, a current noise only.

The relative intensity noise (RIN) characterizes fluctuations in the optical intensity

emitted by a laser due to spontaneous emission[19]. It is defined as follows:

RIN = 2 < AP(Wm) > AB (7.2)< P >2

where < P > denotes the mean optical power, and P(w,) is the noise spectral

density evaluated a measurement frequency w,,,. RIN is measured as a noise current

after the incident light is detected by a photodetector. The noise current is given by

the following expression:

i2RIN = (RIN)IDc 2AB (7.3)

The detected RIN noise current is proportional to the square of the square of the

dc photocurrent. Because of the square dependence, one expects that at sufficiently
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high photocurrent levels the noise contribution from RIN will dominate over that

from shot noise. The photocurrent level at which this condition takes place depends

on the relative intensity noise defined in (7.2).

Thermal noise is another fundamental noise source. It is due to the thermal

motion of electrons in a resistor and is given by the following expression:

- 4kT
i2thermal = AB (7.4)

Here R is the resistance of the resistor; T is the temperature; and k is the Boltzmann

constant.

The noise power at the input of the rf amplifiers (prior to amplification) is given

by the sum of the shot noise, the relative intensity noise, and the thermal noise due

to the rf amplifier's input resistance R,, which is 50,

Pp,iotoamp = (4kT + 2eIDcRi,, + (RIN)ID 2Ri,,)AB (7.5)

The rf amplifiers shown in Figure 16 also contribute excess noise. Depending on

the type of the amplifier, the excess noise (referred to the input of the amplifier) due

to the amplifier ranges from approximately 1.5dB to 4dB above thermal noise. The

noise powers due to thermal noise and amplifier noise are often specified together as a

"noise figure", which specifies the ratio (in dB's) between noise power at the amplifier

output and the noise power due to a resistance R,, across the input terminals of

the amplifier. The noise power at the output of the rf amplifiers thus includes an

additional contrubution due to the excess noise from the amplifier itself:

Pafte,,amp = Ap(4kTlONF/1° + 2eIDcRin + (RIN)IDc 2Ri,)AB (7.6)

Here Ap is the power gain by the amplifier, and NF denotes the noise figure. Since

the output resistance of the rf amplifier is 501, and the input resistance of the spec-

turin analyzer is also 50, the rf amplifier and the spectrum analyzer are impedance

matched, in which case the power delivered to the load (the spectrum analyzer) is 
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of that given in (7.5),

Pmeasured = Ap(4kT1ONF/10 + 2eIDcRin + (RIN)IDc 2 R,)AB. (7.7)
4

Specifically, the measured noise power given in the following section refers to the

power delivered to the spectrum analyzer. The noise sources described so far all have

no dependence on frequency (up to the terahertz range). In the frquency range of

interest (20MHz to 1GHz) the measured noise is dominated by these noise sources.

7.2 Noise Measurement Results

As mentioned previously, the experiment employs a direct detection scheme. That

is, amplitude-squeezed light is directly detected by a photodetector whose output is

displayed on a spectrum analyzer after a certain amount of amplification. From the

predictions given in Chapter 8, significant squeezing can be observed for measurement

frequencies up to approximately 500MHz. It is therefore important that the system

be shot noise limited in this frequency range. In the experimental setup most of

the squeezed fundamental beam is reflected off the front facet of the crystal, and

only a small fraction is transmitted through the crystal. Therefore, the squeezed

fundamental field is detected from the reflected beam as shown in Figure 6. By

contrast, the squeezed second harmonic field is detected from the transmitted beam.

In this section, the noise measurement results for the fundamental and the second

harmonic output fields are discussed and compared to those for the incident laser and

for the reflected field in which the incident beam is reflected off a plain mirror instead

of the monolithic cavity.

Figure 17 shows the noise of the incident laser as a function of the dc photocurrent

generated by the photodetector. The noise is measured at a frequency of 160 MHz.

The measured noise is compared to the expected total noise level (shotnoise + ther-

mal noise + amplifier noise+RIN) (solid line) and to the shot noise level (dotted line).

One sees that the measured noise agrees closely with the total predicted noise for dc
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photocurrents up to 1.5mA. The parabolic dependence of the curve is due to RIN. A

RIN level of 1.31 x 10-l 6 /Hz is determined by curve-fitting the experimental data to

(7.6). The laser bias current is approximately 2.2 times that of the bias current at

threshold. For photocurrents beyond 1.5mA, the measured noise, instead of continu-

ing to increase parabolically, levels off somewhat. Note that, in combining different

noise contributions, one adds up the powers associated with each noise contribution.

Figure 18 shows the noise of the laser beam reflected from a mirror. The schematic

of the optical path is shown in Figure 19. The optical path is identical to the reflected

beam from the front facet of the crystal. The measured noise agrees closely with the

expected total noise for currents up to 3mA, the maximum current level at which the

noise measurement is taken. The difference in the noise power levels at (IDC = 0)

between Figures 17 and 19 is due to the fact that different rf amplifiers, each with a

slightly different gain and amplifier noise, are used. A RIN level of 1.18 x 10-16/Hz

is determined by curve-fittting the date from Figure 19.

The noise of the reflected beam from the crystal is shown in Figure 20. Even

at a moderate photocurrent level of mA, the measured noise is roughly 30dB, or a

factor of 1000, beyond the expected noise at a frequency of 180MHz. Furthermore,

the measured noise spectrum is no longer flat and has a slight bulge at low frequencies

(Figure 21). Figure 22 shows the noise of the transmitted second harmonic field. As

seen in the figure, there is significant excess noise at even very low dc photocurrent

levels for the transmitted output beam.

The frequency selectivity of the cavity is hypothesized to be the cause of the excess

noise, since the magnitude of the excess noise measured from the reflected beam from

the cavity far exceeds those measured from the incident laser beam or in the reflected

beam from a mirror. An attempt to account for the excess noise given the frequency

selective nature of the cavity will be treated in section 9.4.
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7.3 Mode Partition Noise

Mode partition noise refers to noise due to flucuations in the oscillating modes of a

semiconductor laser. The semiconductor diode laser used. in this experiment oscillates

primarily in only one mode. The side modes are much reduced in intensity compared

to the dominant mode. It has been shown that the fluctuations in the lasing mode

can follow those in the non-lasing modes in a semiconductor laser[8]. That is, the

total laser output contains less much less excess noise compared to the excess noise

of each individual mode because of the correlations among intensity flucutations in

the oscillating modes. However, if the laser output is passed through a frequency

selective filter such that the various modes are attenuated by different amounts, the

detailed balance among the partition noise components of the various modes is then

disturbed, and the resulting laser output from the filter can be subject to significant

excess noise. A simple semiquantitative model is presented in Appendix 2 to estimate

the amount of excess noise power at the spectrum analyzer for the reflected field from

the KNbO 3 cavity. The result will be compared to the excess noise power measured

by the spectrum analyzer.
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Chapter 8

Determination of Coupling

Coefficient /c And Critical Power

Taking a second look at the expressions for the intensity fluctuations at the funda-

mental and at the second harmonic modes, one finds that squeezing is a sensitive

function of the cavity parameters 71, 72, and K. The techniques of determining 71,

72 and the measured results are discussed in Chapter 5. In this chapter the method

of obtaining an experimental value for rK is discussed along with the measured re-

sults. A prediction of the critical power is calculated from the measured values for

71, 72, and rK. Furthermore, the amount of change in the critical power/critical fre-

quency as a function of the amount of frequency detunings from the cavity resonance

is numerically computed given the above cavity parameters.

8.1 Measurement of Coupling Coefficient e

The coupling coefficient is given by the nonlinear optical coefficient d32 of the

KNbO 3 crystal and by geometric factors. According to Drummond et. al.[5],

2d32( hW3 )1/2 (8.1)
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where h = h/27r is Planck's constant; w is the optical angular frequency; and V is

the mode volume inside the cavity. The d32 coefficient, obtained from literature[1], is

(1.81 ± .03) x 10- 2 2 F/V.

Using the above relationship ,K is calculated to be (2.17 ± .03) x 106 /s. The above

calculation, however, requires knowledge of the beam waist inside the crystal. A more

direct method involves measuring the conversion efficiency from the fundamental to

the second harmonic mode to determine the coupling coefficient. In this method,

the expression for re as a function of the conversion efficiency is derived from the

semiclassical equations of motion, and the result is given as follows and derived in

Appendix 3:

2cnhwl Pcavity,2w (8.2)
=72 (8.2)

Icavity,w

Here Pcavity,w, Pcavity,2w denote the power of the fundamental and second harmonic

fields inside the cavity, and wo is the angular frequency of the fundamental field.

From the expression one sees that the coupling coefficient is also proportional to the

cavity loss rate at the second harmonic wavelength. Since I. is a parameter that

is independent of input power to the cavity, the ratio Pavity,2w/P2cavity,w must be a

constant. Table 2 shows the measured ratio for three different input power levels and

demonstrates that the ratio is independent of input power level.

Table 2. Conversion Efficiency Calculation
Pincident

(mW)

6.1

9.0

12.2

Po,,w P2 Pcavity,2w Pcavityw Pcavity, 2w / 2 cavity,w

(OW) (PW) (mW) (mW)

69.6 14.2 4.35 9.48 6.96

125 19.8 7.80 13.2 6.69

180 23.7 11.2 15.8 6.71

Experimentally, the fundamental and second harmonic frequencies are locked on

resonance and phasematched to produce a stable second harmonic output beam. The

fundamental and second harmonic output fields are separated by a filter, and their

respective optical powers are measured. The power inside the cavity is related to the
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output power by the power reflectivity of the cavity output facet:

Pcvityw - t'.
Pout,t,

Pcavity,2 - Pot,2, (83)
1 - Rout,2w

The measured ratio Pc.aity,2w/P2cavity,w, along with knowledge of the cavity loss rate

72, determines K, which is calculated to be (2.74 ±.13) x 106 /s. This calculated value

based on the conversion efficiency is in good agreement with the value determined

from the theoretical expression for .

8.2 Dependence of Critical Power/Critical Fre-

quency on Frequency Detunings

With knowledge of the cavity loss rates -7, 2 and the coupling coefficient ar, the

critical power defined in Chapter 2 can be readily calculated. For 71 = 6.32 x 108/s,

72 = 1.95 x 109/s, and = 2.74 x 106/s, the expected critical power is calculated

to be 3.49mW, assuming zero frequency detunings. In practice, the the nonidealities

associated with the frequency locking schemes may result in the frequency of the

fields stabilized to a point slighly off the their respective resonances, resulting in

small frequency detunings.

The formulas given in equations and apply only to the special case in which the

frequencies of the fundamental and second harmonic fields are stabilized exactly on

their respective cavity resonances. In practice, there are always a small amount of

frequency detunings due to the nonidealities of the frequency locking electronics. To

predict the effect small frequency detunings have on the critical power and frequency,

the semiclassical equations of motion with non-zero detunings are solved, and critical

powers with non-zero detunings are numerically calculated. Plots of the expected

critical power and the corresponding critical frequency as a function of frequency

detunings at the fundamental and second harmonic wavelengths are given in Figures
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23a and 23b, respectively. Figures 24a and 24b give the same plots, except that

zero detunings are assumed in the fundamental mode. For detunings of '17, the

upper limit for this experimental setup, the critical power increases only slightly, to

3.55mW. Therefore, the amount of frequency detunings present in the experiment is

not expected to cause a significant shift in the critical power and critical frequency

from the nondetuned values. Appendix 4 details the derivations for the critical power

and frequency for zero detunings and the algorithm for numerically solving for the

critical power and frequency with non-zero frequency detunings.

8.3 Experimental Determination of Critical Power

From the discussion in Chapter 2, the critical pump power is the power level above

which self-pulsing oscillations take place and the linearized analysis from which the

intensity fluctuation spectrums are derived no longer applies. Also, the amount of

achievable squeezing improves as the input power is increased until the critical power

level is reached. Hence, the input power for optimum squeezing is one just under the

critical power level. From the previous section, a calculation of the input power level

yields 3.49mW with zero detunings. This power level is certainly within the capability

of the diode laser in use, which is capable of delivering approximately 20mW of

input power to the cavity. Experimentally, one looks for the critical power by raising

the input power until evidence of oscillation is detected. In this experiement the

photodetector output of either the reflected field or the transmitted field is displayed

on a spectrum analyzer. One then looks for oscillations in the frequency range within

which the critical oscillation frequency is predicted to lie. The experimental setups are

identical to the setups for noise detection (Chapter 7) and are shown in Figure 16. No

evidence of oscillation has been observed in either the reflected field or the transmitted

field spectrum for input powers up to 20mW. For the reflected field, where the large

amounts of optical power available provide a more promising setting for detecting

any oscillations, the enormous excess noise has probably swamped out any evidence

of oscillations. For the transmitted field, the limited optical power makes it likely
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that any oscillations would be dwarfed under the presence of other noise sources, i.e.

thermal noise, amplifier noise, and frequency partition noise.

An attempt was made to reduce the excess noise from the reflected field by reduc-

ing the linewidth of the semiconductor laser via optical feedback. Two schemes shown

in Figures 25a and 25b have been attempted. In the first a small portion of the laser

output is diverted by a beam splitter onto a mirror. The mirror is adjusted to reflect

the beam directly back into the laser. In the second scheme a confocal Fabry-Perot

cavity instead of a mirror is used[12] [3] [13]. As shown in Figure 25b, the Fabry-Perot

cavity is aligned off axis such that the reflected field amplitude is maximized at the

resonance frequency of the Fabry-Perot cavity. Both schemes result in a reduction

of the laser linewidth. The first scheme also results in a reduction of approximately

10dB in the excess noise power of the reflected field for frequencies up to 50MHz.

However, the excess noise actually increases for higher frequencies. Since the critical

oscillation frequency is predicted to be around 400MHz, the slight reduction in excess

noise power below a frequency of 50MHz is not expected to increase the likelihood

of observing the critical oscillation. Experimentally, no evidence of oscillation was

observed with the linewidth reduction schemes.
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Chapter 9

Detection Of Amplitude

Squeezing

In this chapter the amount of achievable squeezing for the KNbO 3 monolithic cavity

is discussed. The amount of achievable squeezing is based on the cavity parame-

ters measured experimentally. From Chapter 2 the intensity fluctuation spectrum

is expressed as a function of meausurement frequency and plotted in Figure 26a

using the experimentally determined parameters 71, 72, and . The plot assumes

that the input power to the cavity is at the critical power of 3.49mW. According

to Figure 27a, optimum squeezing occurs for measurement frequencies between 500

and 700MHz. A 31% reduction in intensity fluctuations below shot noise is predicted

for the fundamental mode at a measurement frequency of 590MHz. For the second

harmonic mode the best squeezing is achieved for measurement frequencies under

400MHz, where reduction in the intensity fluctuation of as much as 79% is predicted.

The intensity fluctuation spectrums for input powers at 10% and 1% of the critical

power are plotted in Figures 26b and 26c, respectively. At the lower input powers

the amount of squeezing is reduced at both the fundamental and second harmonic

wavelengths. As seen from Figures 26b and 26c, the frequencies at which optimum

squeezing is obtained are also reduced as the input power is decreased. At sufficiently

low input power, the best squeezing is achieved at dc for both wavelengths. Further

decrease in the input power results in reduction in the squeezing "bandwidth". That
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is, the frequency above which the intensity fluctuation asymptotically approaches the

shot-noise level. Figure 27a and 27b show the squeezing spectrum as a function of

input power for fixed measurement frequencies. At the second harmonic wavelength

(Figure 27a), the amount of squeezing decreases monotonically with increasing input

power. At the fundamental wavelength (Figure 27b), however, the amount of achiev-

able squeezing has a maximum. The location of the maximum is a function of the

measurement frequency. Figure 28 shows a plot of the frequency at which squeezing

is maximized as a function of input power. The results obtained are self-consitent

with the conclusions derived from Figures 26b and 26c. Shown in Figure 27c is a

plot of the amount of achievable squeezing as a function of input power, regardless of

measurement frequencies. At the second harmonic wavelength, the achievalbe squeez-

ing scales inversely with input power. At the fundamental wavelength, the amount of

achievable squeezing is largely insensitive to input power. From the above calculations

one can conclude that to optimize the amount of squeezing at the second harmonic

wavelength, it is imperative to set the input power close to the critical power. At the

fundamental wavelength, the input power level is not a crucial experimental param-

eter as far as achieving optimum squeezing is concerned. However, for other reasons

such as noise performance discussed in Chapter 7, it is generally desirable to operate

at an input power close to the critical power.

The enormous frequency partition noise present in the output fields of the cavity

renders it impossible to detect amplitude squeezing using the the current setup. As

discussed in Chapter 7 the frequency partition noise arises from the imbalance in

the noise distribution between the main mode and the longitudinal sidemodes of the

semiconductor laser. One of the possible future modifications to the current setup is

to replace the semiconductor laser with a "quieter" laser source, such as a titanium

sapphire laser.
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Chapter 10

Conclusion

An experimental setup aimed at generating squeezed light via second harmonic gen-

eration from a monolithic potassium niobate cavity was constructed. Active stabi-

lization of both the fundamental and second harmonic frequencies to their respective

cavity resonance frequencies was successfully implemented. The cavity loss parame-

ters Y1, 72, at the fundamental and second harmonic, and the nonlinear conversion

constant were determined from measurements of the bandwidth of the cavity at

the two frequencies and the conversion efficiency to the second harmonic. From the

cavity parameters the critical power and frequency can be calculated and used to

predict the achievable amount of amplitude squeezing as functions of measurement

frequency and input power. Table 3 provides a summary of the experimental results

obtained in this work. The results show that from the cavity design one expects to

observe significant amplitude squeezing at both wavelengths.

Expressions for the critical power and frequency as a function of cavity detunings

were derived. These results do not appear in the literature but are important for

relating theory to actual experimental conditions.
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Table 3. Summary of Results
Item

71

Bandwidth(fundamental)

72

Bandwidth(second harmonic)

Pcit

(predicted, no detuning)

Maximum predicted squeezing

at Pit (fundamental)

Maximum predited squeezing

at Pit (second harmonic)

Maximum length of time laser

frequency remains locked

Maximum length of time

second harmonic intensity

remains locked

Result

(6.32 : .57) x 108 /s

(201 ± 18)MHz

(1.95 ± .05) x 109/s

(620 ± 15)MHz

2.74 x 106 /s

3.49mW

31%

79%

>6 hours

,2 hours

An investigation of the noise of the output beams from the cavity reveals an

enormous amount of excess noise in the reflected beam from the cavity. The enormity

of this excess noise prevented experimental observation of amplitude squeezing with

the current setup.

This excess noise can be attributed to the mode partition noise inherent in semi-

conductor diode lasers. Therefore, despite its compact size and relative inexpen-

siveness, the diode laser is not suitable as a source for amplitude squeezed light.

Nevertheless, the low critical power calculated based on the measured cavity param-

eters suggests that the monolithic KNbO 3 cavity remains an attractive choice for the

generation of squeezed light from a low-power laser source.

52



Bibliography

[1] J. C. Baumert, J. Hoffnagle, and P. Gunter. Nonlinear optical effects in KNbO 3

crystals at Al=Gal_.As, dye, ruby, and Nd:YAG laser wavelengths. In SPIE

Volume 492 ECOOSA '84, Amsterdam, the Netherlands, 1984.

[2] G. C. Bjorklund and M. D. Levenson. Frequency modulation (fin) spectroscopy.

Applied Physics B, 32:145, 1983.

[3] B. Dahmani, L. Hollberg, and R. Drullinger. Frequency stabilization of semicon-

ductor lasers by resonant optical feedback. Journal of Optical Society of America

B, 12:876, 1987.

[4] T. Debuisschert, S. Reynaud, A. Heidmann, E. Giacobino, and C. Fabre. Obser-

vation of large quantum noise reduction using an optical parametric oscillator.

Quantum Optics, 1:3, 1989.

[5] P. D. Drummond, K. J. McNeil, and D. F. Walls. Non-equilibrium transitions in

sub/second harmonic generation. 1. semiclassical theory. Optica Acta, 27(3):321,

1980.

[6] H. A. Haus. Waves and Fields in Optoelectronics. Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1984.

[7] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, and C. Fabre. Obser-

vation of quantum noise reduction on twin laser beams. Physical Review Letters,

59(22):2555, 1987.

53



[8] C. H. Henry, P. S. Henry, and M. Lax. Partition fluctuatios in nearly single-

longitudinal-mode lasers. Journal of Lightwave Technology, LT-2(3):209, 1984.

[9] D. Hills and J. L. Hall. Response of a fabry-perot cavity to phase modulated

light. Rev. Sci. Instrum., 58(8):1406, 1987.

[10] R. J. Horowicz. Quantum correlation between fundamental and second harmonic

in shg. Europhysics Letters, 10(6):537, 1989.

[11] P. Kiirtz, R. Paschotta, K. Fielder, A. Sizmann, G. Leuchs, and J. Miynek.

Squeezing by second harmonic generation in a monolithic resonator. Applied

Physics B, 55:216, 1992.

[12] W. D. Lee and J. C. Campbell. Frequency stabilization of an external-cavity

diode laser. Applied Physics Letters, 57(21):2181, 1990.

[13] H. Li and H. R. Telle. Efficient frequency noise reduction of gaalas semiconductor

lasers by optical feedback from an external high-finesse resonator. IEEE Journal

of Quantum Electronics, 25(3):257, 1989.

[14] S. Machida, Y. Yamamoto, and Y. Itaya. Observation of amplitude squeezing in

a constant-current-driven semiconductor laser. Physical Review Letters, 58:1000,

1987.

[15] M. W. Maeda, P. Kumar, and J. H. Shapiro. Observation of squeezed noise

produced by four-wave mixing in sodium vapor. Optics Letters, 12(3):161, 1987.

[16] J. Mertz, A. Heidmann, C. Fabre, E. Giacobinao, and S. Reynaud. Observation of

high intensity sub-poissonian light using an optical parametric oscillator. Physical

Review Letters, 64(24):2897, 1990.

[17] C.D. Nabors and R.M. Shelby. Two-color squeezing and sub-shot noise signal

recovery in doubly resonant optical parametric oscillators. Physical Review A,

42(1):556, 1990.

54



[18] S.F. Pereira, M. Xiao, H.J. Kimble, and J.L. Hall. Generation of squeezed light

by intracavity frequency doubling. Physical Review A, 38(9):4931, 1988.

[19] K. Petermann. Laser Diode Modulation and Noise. Kluwer Academic Publishers,

Boston, 1988.

[20] R. V. Pound. Rev. Sci. Instrum., 17:490, 1946.

[21] M. G. Raizen, L. A. Orozco, M. Xiao, T. L. Boyd, and H. J. Kimble. Squeezed-

states generation by the normal modes of a coupled system. Physical Review

Letters, 59(2):198, 1987.

[22] E. A. Saleh and M. C. Teich. Can the channel capacity of a light-wave com-

munications system be increased by the use of photon-number-squeezed light?

Physical Review Letters, 58:2656, 1987.

[23] R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls.

Broad-band parametric deamplification of quantum noise in an optical fiber.

Physical Review Letters, 57(6):691, 1986.

[24] A. Sizmann, R.J. Horowicz, G. Wagner, G. Leuchs, and J. Miynek. Observation

of amplitude squeezing of the up-converted mode in second harmonic generation.

Optics Communications, 80(2):138, 1990.

[25] R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, and M. J. Potasek. Pulsed

squeezed light. Physical Review Letters, 59(22):2566, 1987.

[26] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley. Ob-

servation of squeezed states generated by four-wave mixing in an optical cavity.

Physical Review Letters, 55(22):2409, 1985.

[27] P. R. Tapster, J. G. Rarity, and J. S. Satchell. Use of parametric down-conversion

to generate sub-poissonian light. Physical Review A, 37(8):2963, 1988.

[28] M. C. Teich and E. A. Saleh. Squeezed and anibunched light. Physics Today,

6:26, 1990.

55



[29] L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu. Generation of squeezed states

by parametric down conversion. Physical Review Letters, 57(20):2520, 1986.

[30] L.A. Wu, M. Xiao, and H.J. Kimble. Squeezed states of light from an optical

parametric oscillator. Journal of Optical Society of America B, 4(10):1465, 1987.

[31] A. Yariv. Quantum Electronics. John Wiley and Sons, New York, 1989.

56



Appendix A

I. Derivation of Expression For Cavity Loss Rate ?

The derivation below largely follows that given in Yariv's text[31, p. 147]. Consider

the intensity I of an optical beam. Let If denote the intensity after one roundtrip

through the cavity:

If = R1R2e-2alIi = e-2(-ln )Ii (.1)

Recall from Chapter 7 that a is the distributed loss per unit length; R1, R2 are the

mirror reflectivities of the input and output facets, respectively; and I is the cavity

length.

If one defines the loss per pass (as opposed to the loss per roundtrip) of the beam

to be L, such that

L = 1 e- e(a l- lnRR2) (.2)

the power loss per unit time of the beam is L x where n is the index of the medium.

The cavity loss rate y defined in (5.1) can also be defined by

dI = -27I (.3)
dt

since intensity is proportional to the square of the field. Hence, the power loss per

unit time is
c

27 = L (.4)
nl

Substituting (.2) into (.4), one obtains

= C [1- e-(l'-'"n)] (.5)
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For the case of L << 1,

-(1 -al + In R1Rt)= cal-InRR

Under this approximation,

c

in-

(.6)

(.7)
11 R

-- InVRR 2)
T

which is identical to (5.2)

II. Relating y to the Cavity Bandwidth AvFwHM

The Q-factor of the resonator is defined as

w£ wE
P d£/dt (.8)

Here refers to the stored energy, and P refers to the dissipated power. Since the

energy inside the resonator is proportional to its intensity,

gEld/dt
I 1

= I =
d~lldt 2-f

One thus obtains,
w
27

The full-width-at-half-maximum bandwidth AvFWHM is given in terms of Q as

(.9)

(.10)

One gets, from (.11),

which is identical to (5.3)
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Appendix B

Estimation of Mode Partition Noise

Following the treatment used in Henry et. al.[8], a linearized model is used to

estimate the amount of excess noise power at the spectrum analyzer, following de-

tection of the reflected laser light from the cavity. The calculation assumes a modest

input optical power of 1.6mW and mode intensity fluctuation levels typical of diode

lasers. For simplicity one assumes that only two modes-the main mode and the first

sidemode-of the diode laser contribute to the mode partition noise.

The intensities of the two modes are denoted as follows:

I(t) = Io + AI(t)

J(t) = Jo + AJ(t) (.13)

I(t), J(t) are the intensities of the main mode and side mode, respectively, and

AI(t), AJ(t) are the intensity fluctuations in each mode. In the following analysis

it is also assumed that Io J and Io > AI,AJ. Henry et. al.[8] showed that

AI(t) = -AJ(t) using the simplified model. This requires that the total output

power is a constant in time:

I(t) + J(t) = Io + J (.14)

The above conclusion is not true, strictly speaking, since it does not account for the

the excess noise associated with the total laser output (RIN) observed experimentally.

However, since the excess noise of each mode far exceeds that of the total laser

output for typical diode lasers, the assumption of a constant total power is considered

reasonable.

The monolithic KNbO 3 cavity serves as a frequency selective filter. When the laser
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is locked on resonance, the sidemode power is assumed to be completely reflected, but

only a fraction of the incident main mode power is reflected. The ratio of the reflected

power to the incident power is measured to be .72. The reflected power from the cavity

can thus be expressed as

Preflcted = .72I + J = .72(Io + AI) + (Jo + AJ)

Using the assumption AJ = -AI, one gets

Preflectd = (.72I + Jo) - .28AI (.15)

The reflected power thus contains a fluctuating term that is proportional to the

intensity fluctuation of the main mode only. The excess noise power of the reflected

field is thus

Poie,,op = .28AI (.16)

Referring to the noise detection scheme given in Figure 17, the fluctuation in the

intensity of the reflected field is detected by a photodetector, amplified by an rf-

coupled amplifier, and displayed on the spectrum analyzer. The noise power measured

at the spectrum analyzer can be expressed as follows:

Proiae,electl/AB = 42 B (.28)[r.pA] 2RiiGp (.17)

Here r,,,p is the responsivity of the photodetector; R, is the input impedance of

the rf-coupled amplifier; Gp is the power gain of the rf amplifier; and AB is the

measurement bandwidth of the spectrum analyzer. The fractional intensity fluctuaion

of the lasing mode is on the order of 10- for an input optical power of 1.6 mW. That
is, ~ .~10 - 3. Using this value for 'x

is, 10- Using this value for we obtain an estimate for the excess noise

power at the spectrum analyzer and compare it to the value measured experimentally.

For an input optical power of 1.6 mW, AI = 16tW. Given that r,,.p = .613 A/W,

R, = 501, Gp = 57 dB, and AB = 741 kHz, the noise power is calculated from (.16)

to be -86 dBm/Hz. This estimated noise power is compared to the measured noise
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power of approximately -85 dBm/Hz given in Figure 20. According to the presently

used model, as the input optical power increases, the power fluctuation is correspond-

ingly increased, giving rise to enhanced excess noise at higher photocurrents. This

behavior is not observed experimentally. As shown in Figure 20, the excess noise

power saturates to approximately -80 dBm/Hz for for photocurrent levels above 1

mA.

From the above calculations one finds that to within an order of magnitude the

estimated excess noise power agrees with the measured excess noise power for an

input optical power of 1.6 mW. The calculated result shows that mode partition

fluctuations do indeed produce enormous excess noise power when the laser output

field is filtered.
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Appendix C

Determining K From Amount of Second Harmonic Conversion

We first derivee a relationship between the normalized field variable a and the

physical power P.

The intensity of a plane wave propagating in a medium of index n is

E2

I =< S > 2, (.18)

where E is the electric field, and v = F is the characteristic impedance. Since the

index n is related to the permittivity e by e = n2 Ce, (.18) can be expressed as

I =< S >= -cne0lE12 (.19)
2

From (2.10) the electric field £ is related to the normalized field amplitude a by

2g 1
Substituting (2.10) into (.19), one obtains

cnhw
I = -- lal2 (.20)

The power, obtained by integrating over the area of the beam, is given in terms of

the normalized field variable a as

P = cnhl,2 (.21)
1

The power P derived above denotes the circulating power inside the cavity, and I is

the cavity length.
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In the steady state, the time derivatives in the equations of motion given in (2.9)

vanish. That is, ddal = = . Assuming further that there are no frequency

detunings, A = 2 = 0, r; can be expressed as a function of the normalized field

variables:

K = 2Y2 (.22)
a1 0

Here alo and a20 denote the steady-state normalized field amplitudes at the funda-

mental and second harmonic frequencies, respectively. By expressing clol and la 20o

in terms of physical powers using (.21), (.22) becomes

2cnhlwlPcavity,2w (.23
t~ = 2 (.23)

IP cavity,w

where Pcavity,w and Pcavity,2w denote the optical power inside the cavity at the funda-

mental and second harmonic wavelengths, respectively.
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Appendix D

I. Derivation of Expression For Critical Power With No Frequency

Detunings

From the equations of motion given in (2.9), expressions for small perturbations

6al, 6a2 around steady state values a10 and a20 can be obtained (with the additional

assumption of zero frequency detunings A1, A 2):

d
d6al = -7 16al + Ka20oal1 + Kaclo6a2dt

d
~fal = Ka2o*fal - 716al1 + cKalOc6a2*

didc a2 = -Caloal - 72 a2 )

dtd 6a2' = -Calo* - 72Ea2' (.24)

Assume Sal, 6a 2 oc et, where A are the eigenvalues of the 4th-order matrix given

above. Solving for the eigenvalues, one obtains

]\1, 2- [-KCa2 01 + 71 + 72] [(-I 201 + I - 72)2 - 4alo2]

34 = - -a 2o0 + 7 + 721 ± [(a 20 + 71 -2) - 4Kalo2]2 (.25)

These eigenvalues are used to determine the stability of the solutions.

Under the conditions of steady state and zero frequency detunings:

dar cao*a 20 + 1
= 0 = -7'a 0Ylo + r-l 2 + dt

da 2z 1
a2 = 0 = -2a2o- alo 2 (.26)
dt 2
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Rearranging, one gets

61 = 7110 - alo0*a20 (.27)

2 2
a1 0o -- 2020 (.28)

Multiplying (.27) by its own complex conjugate and then substituting (.28) into re-

sulting expression, one obtains, after some algebraic manupulation, an expression

relating the second harmonic field amplitude to the input pump power:

Ies 12 = -272 (Ka20) 3 + 47172 (a 2 0)2 - 2 272 (na 20) (.29)

The expressions for Al, A2 become, upon substituting (.28) into (.25),

A1, A2 = -[-Kla 2 0o + sy + 12] i [±[Ia2012 + (1 - 2)2 - 2lIa2ol(yl + 3y2)]2 (.30)For small, 2 small. In this regime A, contain negative real parts, and

For El small, Kra20o is small. In this regime A1, A2 contain negative real parts, and

the solution of a 2 converges to a20 as t -== oo. As ta20 == -(-1 + 72), the negative

real parts of A1, A2 vanish, leaving purely imaginary parts:

A1 ,A2 = +i[Y2(2- 1 + 2)]½2 (.31)

The magnitude of the purely imaginary parts of A1, A2 is the critical oscillation

frequency:

crit, = /( + '2) (.32)

The pump power at which A1, A2 become purely imaginary is the critical pump power.

Subsituting Ka20 = -(,1Y + 2) into (.29), one gets

IElc12 = 272(71 + 72)(271 + 72)2 (.33)

Taking the square root and dividing by K, one obtains the expression for the critical
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pump power in terms of 71, 72, and :

Ificl = IC FY272(71+72) (.34)

II. Algorithm for Determining Critical Power and Frequency With

Nonzero Frequency Detunings

The linearized equations around the steady state solutions a1 0 , a 2 0 with nonzero

frequency detunings are

6al = -(71 + iA 1)6al + Ka20oal* + lo*10Sa20

al* = -(71 - iAl)al* + Ka20*6al + Csal0 a2*

fa2 = -(72 + iA2 )6a2 - Kcal06al

5a2' =-(72 - i 2)6a2' - al06al (.35)

The eigenvalues of this 4th-order matrix equation are given by the roots of the fol-

lowing 4th order polynomial:

A4 + [2(71 + 7 2)]A3 + [(722 + 22 ) + 47172 + (712 + A1
2 ) + 21ralol 2 - IKa2 ol]2 A2

+[27(722 + A2
2) + 272(712 + A1

2) + 21alo 2(7l + 72) - 21Ka2o1272]A

+ (712 + A1
2 )(7 2

2 + A2 ) + 21Ca1ol2(7l7 2 - A1 A2) - Ka2012(72
2 + A2

2 ) + Ialol4 (.36)

Again, by assuming steady state, one can set the time derivates equal to zero in the

equations of motion and obtain the following expression for alo and el:

2
a10o -- (72 + iA 2)a2o (.37)

el = (71 + iAl)aio + ca10o'a 20 (.38)
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Taking the modulus of (.37), one obtains

l 1J02 = 2 722 + 6221a 201 (.39)
K

Multiplying (.38) by its complex conjugate and substituting (.39) to eliminate ao0,

one obtains an expression for 1 112 as a function of a20 1,

EI1 =- 2_ ( + A1 )722 + 2
2 1a2o01 + 4(7172- AA 2)la 2 01 + 2JV722 + Al22 a2o01

(.40)

Note that (.40) is the same as (.29) except that frequency detuning terms are included.

Finally, one needs to relate the normalized pump field 1 (in units of inverse time)

to the input optical power. From Drummond et. al.[5] the input power is related to

i1 by the following equation:

Pi, = iw(t) l 12 (.41)
1 -Rn

where the roundtrip time At around the cavity is given by At = 2'. Here, w is

the angular frequency of the optical field; RP, is the power reflectivity of the input

facet; n is the index of refraction; and is the cavity length. In this experiment,

wl = 2.19 x 1015/s; Ri, = 0.9; n = 2.28; and I = 7.2 mm. Substituting these values

into (.41), one obtains

Pin = 2.52 x 10- 281l 112(Watts) (.42)

Given that the parameters 71, 72, and are already known, (.36), (.39), (.40), and

(.42) enable one to compute the critical power as a function of frequency detuning by

iteration. The procedure is outlined as follows:

1. Determine the critical power and frequency with no frquency detunings from

(.32), (.34), and (.42). From (.28) and (.29), determine Jlalo and a2o01

2. Using the values for alol and Ia2o0 obtained in step 1, solve for the roots of

(.36).

3. After examining the real and imaginary parts of the roots, increase Pin slightly
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from the critical power with no frequency detunings. Recalculate ailol and a 20o and

solve for the roots of (.36) again to obtain a new set of roots (eigenvalues). Continue

the iteration process until the real part of one of the conjugate pairs of roots vanish.

The value of Pin for which this condition is satisfied is the new critical power. The

imaginary part of the roots becomes the new critical frequency.
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Figure 1. Three processes from which squeezing has been generated.
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Figure 2. Dependence of index of refraction on wavelength for an anisotropic medium.
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Figure 3. Doubly resonant monolithic cavity for second harmonic generation.
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Figure 4. Phasematching by temperature and by electro-optic effect.
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Figure 5. Temperature dependence of the phasematching wavelength for the nonlinear

optical coefficient d32 of KNbO 3.

71

E
C

C
0

0

c

-

CL

A m , -



bias T network

plate

Figure 6. Experimental setup.
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Figure 7. Two possible resonator configurations.
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Figure 8. Nonoverlapping beam paths in the ring resonator.
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diode laser bias current ramp

Figure 9. Cavity transmission as a function of frequency detuning from cavity resonance.
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Figure 10. Pound-Drever locking scheme.
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Figure 11. Loop filter circuit.
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Figure 13. Setup for locking the second harmonic output intensity.
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Figure 14. Temperature dependence of second harmonic intensity in the vincinity

of phasematching.
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Figure 15. Hysteresis effect of second harmonic intensity as a function of temperature.
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Figure 16. Noise detection scheme.
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Figure 17. Noise power of laser output field.
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Figure 18. Noise power of laser output field following reflection from a mirror.
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Figure 19. Optical path of laser beam reflected from a plain mirror.
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Figure 20. Noise power of reflected fundamental field.
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Figure 21. Measured noise spectrum of reflected fundamental field. The detected

photocurrent is 1.6 mA (upper trace). The lower trace shows the noise spectrum

with the laser beam blocked from the photodetector.
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Figure 23a. Critical power as a function of frequency detuning.
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Figure 23b. Critical oscillation frequency as a function of frequency detuning.

82

12

10

E

o3a00.

U
I-u
m
. E

8

6

4

2

0

bUU 

500 -

400

300

Nz

I.
I.0
cicu5rr.
C.

200

100

0

.

_ r I I ! I & i I I
I W I

r-
f-

t

I I I



1Z

1 0

E 8

U
o 6

o
. 4

2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency Detuning as a Fraction of Gamma (f)

Figure 24a. Critical power as a function of frequency detuning in the second harmonic

mode only.
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Figure 24b. Critical oscillation frequency as a function of frequency detuning in the

second harmonic mode only.
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Figure 25a. Laser linewidth reduction scheme. Optical feedback is provided by

plain mirror.
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To cavity

.Scanning Fabry
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Figure 25b. Laser linewidth reduction scheme. Optical feedback is provided by

Fabry-Perot resonator.
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Figure 27a. Power dependence of squeezing in the second harmonic mode at 20MHz.
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Figure 27b. Power dependence of squeezing in the fundamental mode at 20MHz, 380MHz,
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and second harmonic modes.
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Figure 28. Optimum measurement frequency for squeezing as a function of input power.
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