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ABSTRACT

The treatment of manufacturing problems, whether in process control, process
optimization, or system design and planning, can be helped by input-output models,
namely, relationships between input and output variables. Artificial neural networks
present an opportunity to "learn" empirically established relationships and apply them
subsequently in order to solve a particular problem. In light of the increasing amount of
applications of neural networks, the objective of this thesis is to evaluate the ability of
neural networks to generate accurate models for manufacturing applications. Various
neural network models has been tested on a number of "test bed" problems which represent
the problems typically encountered in manufacturing processes and systems to assess the
reliability of neural network models and to determine the efficacy of their modeling
capabilities.

The first type of problem tested on neural networks is the presence of noise in experimental
data. A method to estimate the confidence intervals of neural network models has been
developed to assess their reliability, and the proposed method has succeeded for a number
of the models of the test problems in estimating the reliability of the neural network models,
and greater accuracy may be achieved with higher-order calculations of confidence intervals
which would entail increased computational burden and a higher requirement of precision
for the parametric values of the neural network model.

The second type of problem tested on neural networks is the high level of nonlinearity
typically present in an input-output relationship due to the complex phenomena associated
within the process or system. The relative efficacy of neural net modeling is evaluated by
comparing results from the neural network models of the test bed problems with results
from models generated by other common modeling methods: linear regression, the Group
Method of Data Handling (GMDH), and the Multivariate Adaptive Regression Splines
(MARS) method. The relative efficacy of neural networks has been concluded to be
relatively equal to the empirical modeling methods of GMDH and MARS, but all these
modeling methods are likely to give a more accurate model than linear regression.

Thesis Supervisor: Professor George Chryssolouris

Title: Associate Professor of Mechanical Engineering
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CHAPTER 1

INTRODUCTION

A large variety of manufacturing processes are used in industrial practice for transforming

material's shape, form, and properties. In the metalworking industry, there are more than

200 well established processes used for such purposes [Chryssolouris, 1992]. Modeling

of manufacturing processes refer to the creation of the set of relationships that relate input

to the process and its outputs. Such descriptions of manufacturing processes are very

useful in terms of optimizing the process as well as in terms of controlling it. Very often in

industry, the lack of an adequate process model leads to extensive trial and error

experimentation, suboptimal processes, and waste of material, labor, and energy.

Manufacturing problems, whether in process control, process optimization, or system

design and planning, can be solved only with the help of appropriate models, namely,

some sort of a relationship between input and output variables. Such a relationship can be

constructed either analytically, on the basis of analysis of the interactions between the input

variables, or empirically, on the basis of experimental/historical data. For manufacturing

problems, the analytical route is often difficult to take because the relevant input-output

relationship may be a product of many complex and interacting phenomena. For this

reason, over the past years, researchers active in the field of manufacturing have pursued a

variety of empirical approaches to manufacturing modeling. The main drawback of these

approaches is that they have relied on regression techniques, which require an a priori

knowledge of the general algebraic form of the input-output relationship. While such

knowledge may be available for particular manufacturing problems, it is very difficult to

generalize to other problems.
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The analytical route in solving manufacturing problems in process optimization, system

design and planning, and process control is often difficult to take because the relevant

input-output relationship may be a product of many complex and interacting phenomena.

The advent of neural networks presents an opportunity to overcome this difficulty for

manufacturing problems.

Modeling of many manufacturing processes often involves an extensive analysis of a

physical behavior of the process to derive a mathematical model. Creating a precise and

accurate model of the manufacturing process often results in a model which requires a

sizeable amount of computation. Simplifying a model to reduce the computational size

sacrifices the accuracy of the model. When developing a model for a manufacturing

process, accuracy conflicts with workability. A modeling technique for manufacturing

processes which can compromise the characteristics of an accurate and a manageable model

is needed. A possible approach involves the use of artificial neural networks, which is a

computational tool used in artificial intelligence.

There are two specific classes of problems in manufacturing where neural networks can be

applied:

* The first class of problems involves process diagnostics, process

control, and process optimization. Most control schemes for

manufacturing processes use a single sensor to monitor a machine or a

process. In many cases, this approach is inadequate primarily due to

inaccurate sensor information and the lack of a single process model

which can sufficiently reflect the complexity of the process.

· The second class of problems involves manufacturing system design

and planning. The design of a manufacturing system can be viewed as

11



the mapping of the system's performance requirements onto a

description of a system which will achieve the required performance.

Presently, there are only few, highly specialized methods which support

such a mapping process, and due its the complexity, global optimization

cannot be obtained effectively by trial-and-error methods. System

designing normally compromise between quality of the solution and

design effort.

Current applications include the development of neural network technology for

manufacturing applications, particularly related to process diagnostics, control, and

optimization, as well as to system planning and design. A new approach to process control

and optimization is to synthesize the state variable estimates determined by the different

sensors and corresponding process models using neural networks. For system design and

planning, neural networks can be used to provide an efficient method of supporting the

optimization of a manufacturing system design in a "closed loop" by learning from selected

"experimental" values (can be obtained by simulation) which show the interdependencies

between decision variables and performance measures. Neural networks can therefore be

seen as catalysts for greater CIM capability.

In light of the increasing amount of possible applications of neural networks, the objective

of this thesis is to evaluate the ability of neural networks to generate accurate models of

physical systems typically encountered in manufacturing. By determining the reliability of

neural network models and by comparing the efficacy of neural networks with other

methods of empirical modeling as criterions, an assessment of the modeling abilities of

neural networks can be formed.
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Various neural network models will be tested on a number of "test bed" problems which

represent the problems typically encountered in manufacturing processes and systems to

determine the efficacy of their modeling capabilities. The problems chosen for the test bed

are the following:

* two arbitrary multivariate functions

· laser through-cutting and laser grooving

· the manufacturing system design of an automobile steering column.

The first type of problem to be tested on neural networks is the presence of noise in

experimental data. Systems have error associated with it due to the dependence of the

output on uncontrollable or unobservable quantities, and the quality of the model developed

from data containing such errors will be compromised to a certain degree. A method to

estimate the confidence intervals of neural network models will be developed in order to

assess their reliability. For a desired degree of confidence (i.e., for a given probability), a

confidence region can be calculated for a parameterized model. Treating the neural network

as a parameterized model, the confidence intervals can be estimated with this approach.

The second type of problem to be tested on neural networks is the high level of nonlinearity

typically present in an input-output relationship due to the complex phenomena associated

within the process or system. The relative efficacy of neural network modeling will be

determined by comparing results from the neural network models of the test bed problems

with results from models generated by other common empirical modeling approaches:

linear regression., the Group Method of Data Handling (GMDH), and the Multivariate

Adaptive Regression Splines (MARS) method. The GMDH is a modeling technique that

groups the input variables in a form of a polynomial regression equation to predict the

output of a multi-input single-output (MISO) system, and MARS is a modeling technique

13



which combines recursive partitioning (the disjointing of the solution space for the model

into different subregions) and spline fitting.

By exploring these two types of problems applied to the test bed problems mentioned, an

assessment of the modeling abilities of neural networks can be formed. Following the

introduction, Chapter 2 will provide an overview of neural networks. Chapter 3 will cover

current applications of neural networks in manufacturing. Chapter 4 will explain the

proposed method of estimating confidence intervals for neural networks. Chapter 5 will

provide the results in estimating confidence intervals on neural network models. Chapter 6

will provide the results in comparing the relative efficacy of neural networks. Finally, the

conclusion for this thesis will be given in Chapter 7.
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CHAPTER 2

NEURAL NETWORKS FOR EMPIRICAL MODELING

Throughout various industries, such as the manufacturing and chemical industries, artificial

neural networks have been successfully used as empirical models of processes and

systems. This chapter will begin by discussing the advantages and disadvantages of

empirical modeling versus analytical modeling. An introduction to artificial neural

networks for empirical modeling follows, then the chapter will conclude by overviewing

the current uses of artificial neural networks for industrial applications.

2.1. Empirical vs. Analytical Modeling

Analytical modeling of physical systems is the development of a mathematical expression

for the system based on knowledge of the physical phenomenons occurring within the

system. In general, development of an analytical model of a system entails simplification

of the true behavior to make possible the arrival of a manageable and tractable solution,

where often the simplification is a gross assumption which can produce enormous errors in

the model. After making simplifications and assumptions of the system to arrive to an

analytical model representing the physical system, there is still no guarantee that the

analytical approach to obtain a model can be used. Although the advent of high speed

processors for computers make numerical methods for solving highly complex and

nonlinear functions possible, the amount of time required to solve such functions may still

be too much for on-line use of models, such as those used for on-line plant monitoring and

control. Another reason that analytical models may not be useful is that the simplifications

and assumptions required to develop the model may cause gross errors in the predictions,

thus making the model useless.
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Empirical modeling of physical systems is the development of a model based on

experimental observations and either interpolating or extrapolating the behavior of the

system outside of the conditions given in the prior observations. Empirical modeling does

not necessarily depend on a knowledge of the physical phenomenons that determines the

behavior of the system, which can make empirical modeling the better (or sometimes the

only) option in modeling. Empirical modeling requires the proper amount of "adequately"

distributed observations of the physical behavior of the system, which is not always

possible to obtain. If the cost of obtaining each experimental observation is relatively large,

then the adequate amount of observations may be too costly to obtain. Also, some a priori

knowledge of the physical phenomenons which determines the behavior of the system is

required in order to determine the parameters necessary to include in the model because the

inclusion of parameters which has no bearing on the behavior of the system can produce an

invalid model.

When trying to obtain a model to predict a behavior of a system, the analytical approach

would be the ideal approach, but if the cost and effort causes this approach to be either

impractical or impossible, the empirical approach would be either the better or only choice.

The benefits, along with the shortcomings, of the two approaches must be weighed when

selecting the modeling approach.

2.2. Neural Network Background

According to Hecht-Nielsen, neurocomputing is the technological discipline concerned with

parallel distributed information processing systems that develop information processing

capabilities in response to exposure to an information environment [Hecht-Nielsen, 1990].

Neural networks are the primary information processing structures of interest in

neurocomputing. The field of neural networks emerged from the developments of the

neurocomputers, and today, development and implementation of neural networks span
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across the boundaries of neurocomputers and cross into numerous disciplines for many

different applications. The evolution of neural networks can be traced back to

approximately half a century, which reveals the amount of history behind the relatively new

field of neural networks.

2.2.1. The Pursuit of Pattern Recognition

The work which lead to the 1943 paper "A Logical Calculus of the Ideas Immanent in

Nervous Activity" by McCulloch and Pitts has been credited by many to be the beginning

of neurocomputing [McCulloch and Pitts]. This work inspired the concept of a "brain-like"

computer, but the concept was purely academic and there were no direct practical

applications suggested. The developments of the network which uses the Adaptive Linear

Element (ADALINE) by Widrow and the perceptron network by Rosenblatt in the late

1950's produced some of the first useful networks [Widrow][Rosenblatt].

Rosenblatt's primary interest was pattern recognition. He invented the perceptron, which

is a neural network that had the ability to classify linearly separable patterns. Figure 2.1

illustrates two linearly separable patterns (classes A and B). The patterns are a function of

the two inputs xl and x2, and because a straight line is able to distinguish the class of the

outputs of xl and x2, the produced pattern is said to be linearly separable.

17



X1

0

0.
0 * ·

* 0so0 0
*·· 0 00

* o .@ .

_%> X2

N% >Class B

Class A 

Figure 2.1: Example of a linearly separable pattern.

The perceptron did not have the ability to identify patterns which were not linearly

separable, and this weakness was pointed out by Minsky and Papert [Minsky]. The

famous example used by Minsky and Papert was the exclusive OR (XOR) problem. The

XOR is a two input function with binary inputs which gives a binary output when only one

of the inputs are on, either (1, 0) or (0, 1). If both are on (1, 1) or off (0, 0), an output

would not be given. Figure 2.2 illustrates how the XOR problem is not linearly separable.

No line can separate the O class and the X class.

Work done by Rumelhart, Hinton, and Williams [Rumelhart] in 1986 demonstrated how a

network can develop a mapping which separates the two classes. The network architecture

contained hidden processing units, or nodes, which allowed nonlinear input-output

mapping. By solving the XOR problem, the possibilities of neural networks to learn the

mapping of an arbitrary input-output relationship were realized.

18
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Figure 2.2: The exclusive OR problem.

2.2.2. Backpropagation Neural Networks

According to Hecht-Nielsen [Hecht-Nielsen, 1990], a neural network is a parallel,

distributed information processing structure consisting of processing elements (which can

possess a local memory and can carry out localized information processing operations)

interconnected via unidirectional signal channels called connections. Each processing

element has a single output connection that branches ("fans out") into as many collateral

connections as desired; each carries the same signal - the processing element output signal.

The processing element output signal can be of any mathematical type desired. The

information processing that goes on within each processing element can be defined

arbitrarily with the restriction that it must be completely local; that is, it must depend only

on the current values of the input signals arriving at the processing element via impinging

connections and on values stored in the processing element's local memory.

Although the definition of a neural network given is to some extent restrictive, the possible

architectures for a neural network vary widely. A commonly used network architecture is

the feedforward neural network. The structure of the feedforward neural network is a

19
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connection of nodes arranged in hierarchical layers. The first layer contains the nodes

which accept the input signals and send these signals to the nodes in the next layer through

the connections (also known as links). The links from the nodes in each layer are connect

to the nodes in the following layer up to the final layer, where the input signals are sent in a

feedforward manner from the input layer to the output layer. Weight values are associated

with each link which can be "corrected" to allow learning for the network. Figure 2.3

gives an illustrative example of a feedforward neural network. The unidirectional flow of

the signals from the input to the output nodes classify this network structure as a

feedforward neural network, but network structures classified as recurrent neural networks

permit signals to flow to nodes within the same layer and to nodes in a previous layer in

addition to the forward direction of flow.

Input
0 Nodes

Output
Links

Figure 2.3: An example of a feedforward neural network.

Learning (also called training) is the process of conforming a neural network to map an

input-output relation, where for a feedforward network, the conformation is the correction

to the weight values to generate the correct input-output relationship. A common learning

20



algorithm for feedforward networks is the error-backpropagation algorithm, which

iteratively corrects the values of the weights by propagating an error signal backwards from

the output layer to the input layer. Feedforward networks trained by the error-

backpropagation algorithm are also known as backpropagation networks.

The outputs from a neural network are a conglomeration of nested nodal functions, and the

sigmoidal function is a common choice for the nodal function. The mapping accuracy can

be increased by introducing bias values to each nodes, which can also be viewed as a

constant input to a node in addition to the inputs from the nodes in the previous layer.

Equation (2.1) gives the sigmoidal function for a typical neural network with biases, and

Equation (2.2) gives the neural network function for the simple 1-1-1 structure shown in

Figure 2.4, where the input and output nodes implement linear functions and the middle

node implements the sigmoidal function. The node in the second layer illustrates the

sigmoidal function.

I + exp(-w-x+ b) (2.1)

Y = W2 
1 I )+b 2\1 + exp(-wlx+ bl) (2.2)
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Layer 1 Layer 2 Layer 3

Figure 2.4: A 1-1-1 neural network with linear input and output nodes.

2.2.3. Other Neural Network Architectures

As opposed to supervised learning for multilayer perceptrons, the self-organizing network

corrects itself by reading in only the input. This network has several links connecting the

input and the output layer, but unlike the perceptron, there are recurrent links which

connect the output nodes, or units, which composes the final layer. The input data is read,

and the network determines the link with the least distance (the difference between the

weight of the link and of the input value) and assigns the the region of the output node with

the least distance to the input node. The trained network consists of an input-output layer,

where the nodes of the output layer have been properly associated with its respective input

nodes. In essence, the self-organized network is a heuristic lookup table, which is optimal

for pattern identification used in speech and vision recognition, but is not as efficient for

function mapping as the multilayer perceptron [Hecht-Nielsen, 1990][Lippmann].

The counterpropagation network, devised by Robert Hecht-Nielsen, is a synthesis of the

self-organizing network and the Grossberg learning network, which is a network

consisting of multiple input-output nodes with weighted links that are adjusted by the

Grossberg Learning Law [Hecht-Nielsen, 1990]. An assessment of this network given by

22
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its creator reveals that the network is optimal for real-time analysis and implements an

algorithm similarly used for pattern classification for mapping functions, but a direct

comparison to a multilayer perceptron reveals its weakness in generalization, due to its

architectural characteristic as a table lookup function [Hecht-Nielsen, 1987].
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CHAPTER 3

NEURAL NETWORKS IN MANUFACTURING

In this chapter, a discussion of the industrial applications for neural networks is given. The

chapter will begin by addressing the areas of applicability in manufacturing for neural

networks and will conclude by overviewing the current applications of neural networks in

manufacturing.

3.1. Areas of Applicability

There are two specific classes of problems in manufacturing where neural networks can be

applied. The first class of problems involves process diagnostics, process control, and

process optimization, and the second class of problems involves manufacturing system

design and planning. This section will discuss the applicability of neural networks in these

two classes.

3.1.1. Process Control, Diagnostics and Optimization

Most control schemes for manufacturing processes use a single sensor to monitor the

process. In many cases, this approach is inadequate primarily due to inaccurate sensor

information and the lack of a single process model which can sufficiently reflect the

complexity of the process. As an alternative to the typical approach to process monitoring,

a multiple sensor approach which is similar to the method a human uses to monitor a

manufacturing process can be implemented with neural networks. In such an approach, the

measurement of process variables is performed by several sensing devices which in turn

feed their signals into different process models which contain mathematical expressions

based on the physics of the process.
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Synthesis of sensor information can provide a number of benefits for process monitoring

as opposed to the current state of the art approach of using a single sensor. This is

especially so for processes and systems that are difficult to model and monitor.

A considerable amount of work regarding the control of the manufacturing equipment and

processes has been done over the past two to three decades. A major effort has been

focussed on applying the scientific principles of control theory to manufacturing processes.

Despite the high quality of work in this area, it appears that in reality the vast majority of

manufacturing processes remain uncontrolled or empirically controlled due to the lack of

two necessary elements for applying control theory principles to the control of

manufacturing processes. The first element corresponds to sensing devices that will be

robust and reliable enough to provide the necessary signals from the manufacturing process

and/or equipment. The second element corresponds to comprehensive process models that

will reflect the complexity of the manufacturing process.

Numerically controlled machine tools generally use predetermined parameters such as feed

and speed as well as an open-loop control system, which has as inputs the machining

parameters normally determined off-line during the process planning stage. These

parameters are often determined with the aid of tables, machineability standards, and

experience. Due to the fact that these parameters are determined well before the actual

manufacturing process occurs, there is no way that automatic adaptation to the actual

process can be achieved. Since factors disrupting the process are, for the most part,

unpredictable, the choice of machining parameters must be made in such a manner that

production is executed without breakdowns, even under the worst possible circumstances.

Consequently, the capabilities of the machine are not fully utilized, and the manufacturing

process is not efficient. Whenever adaptation to the actual situation or requirements of the

process is needed, human intervention is required, often arriving too late or inefficiently.
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Adaptive control schemes for the machining process have been researched over the past

twenty years. In Adaptive Control Constraint (ACC), the goal of the controller is generally

to adjust the machine tool's setting parameters in order to maintain a measured quantity,

such as the cutting force, at a specified value. ACC controllers are primarily based on

closed-loop control theory. In its most basic form, this scheme has a single input and

single output and employs fixed proportional and integral control gains. For the machining

process, the input may be the feed rate or cutting speed and the output may be the cutting

force. More complex schemes adjust the controller gains on-line in order to improve the

control performance. Regardless of the complexity of the scheme, the goal is usually to

drive a measured or estimated state or set of states to a desired set point. The general

drawback of any ACC system is that maintaining a variable such as the cutting force at a

given set point will generally not optimize the process. Indeed, the significant optimization

objectives for machining are generally a function of the tool wear and wear rate as well as

the process input parameters, rather than direct functions of measured process variables

such as the cutting force or tool temperature. Functions relating these objectives with a

measured quantity, such as the cutting force, would undoubtedly be very complex and

nonlinear, since the cutting process is highly nonlinear. The optimization objectives may

not even be a monotonically increasing or decreasing function of the process input

parameters. This characteristic is in sharp contrast with standard transfer functions used in

linear control design, where provided the system is stable, the quasi-static output of the

plant is assumed to be a linear function of the input. In addition, linear control design is

primarily effective for time-invariant systems, while the machining process is a complex

time-varying system. Furthermore, linear control theory was primarily developed to

maintain an objective at a specified set point; however, the goal of a process optimization

scheme is not to maintain an objective at a preset value, but rather to obtain the maximum

(or minimum) of the objective over the feasible range of process input parameters. For
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these reasons, classical and modern control theory can be rendered inadequate for

optimizing not only the machining process but manufacturing processes in general.

Adaptive Control Optimization (ACO) schemes have been researched in an effort to

optimize the machining process. The major obstacles to successful in-process optimization

of machining operations have been the lack of sensing devices that can reliably monitor the

process and the lack of a single process model which can comprehensively reflect the

complexity of the machining process. With a few exceptions, most machining control

schemes use a single sensor to monitor the process and therefore consider a single process

model. Past research has shown that accurate process models are difficult to build and are

generally unreliable for machining control over a wide variety of operating conditions. In

contrast, if information from a variety of sensors and sensor-based models is integrated,

the maximum amount of information would be used for making control decisions and thus

the quality of the decisions would likely be better than decisions based on information from

a single sensor. Ideally, different sensor-based models should provide the same estimates

for the machining parameters. However, these estimates would generally include a

significant amount of random noise. Utilizing several simultaneous sensor-based estimates

can be considered analogous to taking several samples from a random distribution.

Statistically, as more samples are taken, the confidence interval for the mean becomes

narrower. In the same way, as more sensor-based model estimates are considered, the

estimates for the machining parameters become more certain; the uncertainty due to

randomness in the estimates is reduced. In addition, if one sensor fails during the process,

a controller utilizing multiple sensors could probably continue to operate, while a controller

based on a single sensor would be forced to stop the process.
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3.1.2. System Design and Planning

Particularly in the metal working industry, parts usually spend 5 percent to 15 percent of

their time on the machinery and the rest of the time they move around on the factory floor

waiting for machines, transportation, etc. This leads one to believe that decisions that are

made regarding the design and operation of a production system can be vastly improved if

one can establish a framework for decisions in this environment and optimize it from a total

performance point of view.

A number of approaches have been proposed in the literature for the design of

manufacturing systems. Usually, the overall manufacturing system design problem is

decomposed into sub-problems of manageable complexity, meaning that only a single type

of decision variable and a single type of performance measure is considered for each sub-

problem.

* One sub-problem is the resource requirements problem. For this

problem, the task is to determine the appropriate quantity of each type of

production resource (for example, machines or pallets) in a

manufacturing system.

* The resource layout problem is the problem of locating a set of

resources in a constrained floor space.

* In material flow problems, the objective is to determine the

configuration of a material handling system.

* The buffer capacity problem is concerned with the allocation of work in

process or storage capacity in a manufacturing system.
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These sub-problems are usually treated separately. This neglects the inter-relationships that

exist between the different sub-problems (e.g., the required buffer capacity at a work center

in a manufacturing system depends on the number of machines in that work center).

Solution of this problem requires knowledge of the relationship between the performance

measures and the decision variables. This relationship is highly nonlinear and difficult to

establish for a number of reasons:

* Manufacturing systems are large-scale systems with many interacting

components.

* The parameters which are responsible for the behavior a manufacturing

system (e.g., processing times), are often uncertain and must be

characterized by distributions rather than constant values.

Existing methods address the difficulty of manufacturing system design by simplifying the

problem definition. Common strategies for doing so are:

* Restrict the structure of the material handling system. Many

approaches, for example, apply only to transfer lines, which have

purely serial material flow.

* Restrict the scheduling policies of the manufacturing system to simple

rules which are easier to characterize mathematically (e.g., first come,

first served).

* Consider only one fixed type of decision variable (e.g., buffer capacity)

and one fixed performance measure (e.g., production rate) that can be

easily expressed in terms of the decision variables.
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Most control schemes for manufacturing processes use a single sensor to monitor the

process. In many cases, this approach is inadequate primarily due to inaccurate sensor

information and the lack of a single process model which can sufficiently reflect the

complexity of the process. As an alternative to the typical approach to process monitoring,

a multiple sensor approach which is similar to the method a human uses to monitor a

manufacturing process, can be implemented with neural networks. In such a approach, the

measurement of process variables is performed by several sensing devices which in turn

feed their signals into different process models which contain mathematical expressions

based on the physics of the process.

In manufacturing, the primary decision-making tools for system design remain simulation

and analytical modeling. Each tool has a major weakness when it comes to the design of

complex manufacturing systems: simulation suffers from excessive computational expense,

while analytical modeling can be applied only to a very restricted subset of systems (e.g.,

systems such as transfer lines with purely serial material flow or systems with constant

work in process). The approach using neural networks can accommodate manufacturing

system design problems in which the performance requirements involve multiple types of

performance measures (e.g., production rate and average work in process), and in which

design solutions involve multiple types of decision variables (e.g., machine quantities and

machine layout and buffer capacities).

3.2. Current Applications of Neural Networks in Manufacturing

Neural networks have been used for many types of manufacturing application. In general,

input variables which affect the output of a manufacturing process or system are known,

but the input-output relationship is either difficult to obtain or simply not known. Neural

networks have served as a heuristic mapping function for various input-output
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relationships. In this section, an overview of industrial applications of neural networks is

given.

Neural networks have modelled the Electric Discharge Machining (EDM) process

[Indurkhya, Rajurkar]. EDM is a process by which high strength temperature resistant

alloys are machined by a very hot spark emanating from the tool to the workpiece across a

dielectric fluid medium. Presently, the relationships between the controllable inputs and

output parameters of the EDM process have not been accurately modelled due to their

complex and random behavior. A 9-9-2 backpropagation neural network has been

developed as the structure, where the nine inputs correspond to the machining depth, tool

radius, orbital radius, radial step, vertical step, offset depth, pulse on time, pulse off time,

and discharge current, which determines the two output parameters material removal rate

and surface roughness. The neural network model proved to be closer to the actual

experimental results when compared to multiple regression.

Neural networks have also been implemented to model the grinding operation. Standard

automated control was not possible due to the fact that there are so many factors which

affect the grinding process. Thus, the standard approach to control the grinding process

was the employment of a skilled operator who relies on considerable experience to

dynamically adjust the conditions to achieve the desired quality. A hybrid neural network

have been implemented for the decision-making model of the process [Sakakura, Inasaki].

The hybrid model consists of a feedforward neural network and a Brain-State in a Box

(BSB) network. The feedforward net serves as the input-output model of the grinding

process, and the BSB net, which functions as a classifier similar to the associative memory

of humans, serves to recall the most suitable combination of the input parameters for the

desired surface roughness.
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Neural networks have been used to model arc welding. The arc welding process is a

nonlinear problem, which makes this process difficult to model. Full automation of this

process has not yet been achieved due to the lack of knowledge of some of the physics in

arc welding. A backpropagation neural network has been used to model the arc welding

process as a multivariable system [Anderson, et al]. The outputs of the arc weld model

were the bead width and bead penetration, which help to define the characteristics of the

finished weld. The inputs of the model were the workpiece thickness, travel speed, arc

current, and arc length, and the model gave prediction errors on the order of 5% or less.

Some of the current works in this topic includes the implementation of a neural network

model for on-line control of the arc weld process.

Quality control of the injection molding operation has been implemented using a

backpropagation neural network [Smith]. The input parameters of the model based on the

equipment set-up were the temperatures of the four barrel zones along with the gate, head,

and die zones. The input parameters based on the runs were the screw speed, DC power,

the line speed, the quench temperature, and the head pressure. Other independent variables

used for the model were the die and tip diameters, the air pressure, and the time of each

sample since the line went up. A total of 16 input parameters were used to determine the

two output parameters, which were the mean and variance of the injection molded piece.

Results found were that neural networks perform comparably with statistical techniques in

goodness of output for process and quality control. The neural network performed

comparatively better when modeling quality/process control data which exhibits a nonlinear

behavior.

The predicting of wire bond quality for microcircuits has been aided with neural networks

[Wang, et al]. Wire bonding is the process by which a gold wire, where the thickness is in

the order of 0.001 in., is "thermosonically" welded to to a gold or metal oxide pad in the
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microcircuit. The costly testing of wire bond quality is traditionally implemented by the

wire pulling test, and neural networks would serve as a low-cost approach to process

control. The results show that the neural network can be used as an accurate and

inexpensive alternative for predicting wire bond quality.

Wave soldering has been another process which neural networks attempted to model

[Malave, et al]. The preheat temperatures and the conveyor speed are two of the machine

parameters determine the bond quality, where a total of 26 input parameters affect the

machine parameters. The neural network was not able to converge to a working model of

the system, but the inability of the neural network to converge has been traced to faulty

data. The data were collected randomly; no design of experiments were implemented to

ensure a proper representation of the physical system.

CMAC (Cerebella Model Articulation Controller) has been integrated with neural networks

for fault predictions in machinery during the manufacturing process [Lee, Tsai]. Through

statistical process control (SPC), future values and estimations of machine performance are

calculated from the derived performance model, but these are only superficial models of the

system. Through the aide of a CMAC, a network can be created with the ability to detect

faults by monitoring the output patterns from sensors and actuators. Thus by analyzing the

timing sequence, abnormal conditions in the machinery become detectable. The CMAC

model is a table-look up technique that provides an algorithm for random mapping of a

large memory space to a smaller, practical space. From the mapping, nearby states tend to

occupy overlapping memory locations and distance states tend to occupy independent

memory locations. This scheme provides a form of linearization between nearby input

vectors. The CMAC is not a method to process inputs into accurate outputs, but rather a

model for real-time control that a biological organism appears to follow, i.e., in problem

solving, a living organism first generates an approximately correct estimate that is sufficient
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for a response with the conditions at hand; after that, the situation is reassessed for the next

action. The important point is that the organism has the capability to generate outputs

continuously and that each new output moves the organism in the correct direction closer to

the goals. CMAC offers the advantage of rapid convergence, and integrated with neural

networks, allows the classification of failure based on pattern recognition by comparing the

input with that of a healthy subsystem to provide an indication of distress conditions.

Neural networks have been used as predictive models, but neural networks are also

appropriate for the control and optimization of plant dynamics. In supervisory

optimization, the optimizer (an expert) would make suggestions to the operator on how to

change the operating parameters of the plant so as to maximize efficiency and yet maintain a

smoothly running plant. When asked, it sometimes might be difficult for the expert to

explain his reasons for altering certain parameters on the plant. This kind of expertise

comes from experience and is quite difficult to incorporate into classical models or rule-

based systems, but is readily learned from historical data by a neural network [Keeler].

The neural networks can provide several useful; types of information for the plant engineer,

including:

a) Sensitivity analysis

b) Setpoint recommendations for process improvement

c) Process understanding

d) Real-time supervisory control

e) Sensor validation - the neural networks can learn the normal behavior of

sensors in a system and can be used to validate sensor readings or alarm

for sensors that are not functioning properly.
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f) Predictive maintenance - the neural networks can be used to predict

component failure so as to schedule maintenance before the failure

occurs.

As an adjunct technology to neural networks, fuzzy control is useful for implementing

default rules for data poor regions. In addition, fuzzy rules are useful at the data analysis

stage for screening data, at the modeling stage for describing behavior outside the data

region, for incorporation of constraints, and for generation of fuzzy rules describing plant

behavior and optimization procedures. Thus, fuzzy rule systems are ideal for bridging the

gap between the adaptive neural network systems and hard rule-based expert systems.

The steps taken for the application of neural network technology to plant dynamics are:

1) Extract data from the historical database and store files,

2) Examine the data graphically and screen out any bad data points or

outliers.

3) Estimate the time-delays of the plant dynamics ( by, e.g. asking the

plant engineers)

4) Train a neural network model to predict the future behavior of

interesting variables such as yield, impurities, etc..

5) Test accuracy of model versus new data.

Neural networks have also been implemented for identifying on-line tool breakage

in the metal cutting process [Guillot, El Ouafi]. A 20-5-1 structured perceptron neural

network was used for tool condition identification using time-domain force signal during

milling operations, where the dynamometer (or accelerometer or acoustic emission sensor)

is acquired and preprocessed according to a desired technique. In this case, the
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preprocessing technique of choice is a "signal first derivative" technique in which the signal

derivative is calculated and thus allowing us to view more distinctly the tool breakage signal

from the magnitude of the signal peaks. During testing, the network managed to easily

identify the tool breakage patterns learned from training as well as other breakage patterns

exhibited considerable differences. The network proved efficient in correctly assessing a

broad range of tool conditions using a small set of patterns.
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CHAPTER 4

CONFIDENCE INTERVAL PREDICTION FOR

NEURAL NETWORKS

The purpose of this chapter is to derive an estimate of a neural network's accuracy as an

empirical modeling tool. In general, a model of a physical system has error associated with

its predictions due to the dependence of the physical system's output on uncontrollable or

unobservable quantities. Neural network models have been used as a predictor for

different physical systems in control and optimization applications [Chryssolouris, 1990],

and a method to quantify the confidence intervals of the predictions from neural network

models is desired.

For a desired degree of confidence (namely, for a given probability), a confidence interval

is a prediction of the range of the output of a model where the actual value exists. With an

assumption of a normal distribution of the errors, confidence intervals can be calculated for

neural networks.

The chapter begins by giving the background of a method of calculating confidence

intervals for arbitrary parameterized models. The analysis is extended to include the

calculation of confidence intervals for models obtained from corrupted or noisy data. The

analysis continues with the derivation of confidence intervals for neural networks.

4.1. Confidence Intervals for Parameterized Models

For a given system with output y, the model for the system is given to bef(x; 08*), where x

is the set of inputs and 0* represents the true values of the set of parameters for the

function which models the system [Seber]. The error e associated with the function in
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modeling the system is assumed to be independently and identically distributed with

variance c2 , where the distribution has the form N(O, a 2). With n observations, where i =

1, 2, ..., n, the system is represented by Equation (4.1).

Yi =f(xi;0*) + i , i= 1,2,...,n (4.1)

The least-squares estimate of 8* is a, which is obtained by minimizing the error function

given in Equation (4.2) (for neural networks, the error backpropagation algorithm is a

common method for minimizing the error function). The predicted output from the model

is yi, as shown in Equation (4.3).

s(O) = [- i - xi;o)]
i=l (4.2)

Yi =f(xi; 0) (4.3)

If the model gives a good prediction of the actual system behavior, then 8 is close to the

true value of the set of parameters 8* and a Taylor expansion to the first order can be used

to approximate fxi; 8) in terms offTxi; 08*) (Equation (4.4)).

Axi ;,) = i );0') + o ( -*) (4.4)

wherefT (axi;01 ) aAxi; ') aAxi;0)
De, a 02 a OP

By using Equation (4.1) and (4.4), Equation (4.5) gives the difference between the true

value y of the system and the predicted value y, and Equation (4.6) gives the expected
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value of the difference. The subscript value of 0 is given to denote the set of points other

than that used for the least-squares estimation of 0*.

Yo -Yo Yo -xo;) - fo - )= o- - fo(0- ) (4.5)

E- - E[EO] - =0 -0 ) O4yo-~oN Ete0 -f4Ei-0)Nl o (4.6)

Because of the statistical independence between 0 and so, the variance can be expressed as

Equation (4.7).

var[yo - o] varlo] + vaf. ( - 0-)] (47)

For an error eo with a normal distribution with a mean of 0 and a variance of a 2 (N(O,

o 2In)), the distribution of 0 - 0 can be approximated to have the distribution Np(O,

a2F.(6)T F.(8)). The Jacobian matrix F.(8) has the form shown in Equation (4.8),

where the single period has been placed to keep in accord with the notations used from the

reference [Seber] which denotes that the matrix has first order differential terms.

F.() af(x,)
a

a191- aO2(af1(xl, 0) af 1(x 1, 0)
ae I aV 

af2(x 2, 0)

ai ̂ l

afn(xn, 0) f(n, 0)
ael a^2

iafi (x, e0)e

af (2, ) 0)
aop

af2(X, 0)

V aop

Oafn(x., O) 

aop
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var[yo- Yo] - 2 + a2f0oFTF.) (fo
YO ~a2P~IFTFS'r, (4.9)

The matrix has the dimensions n by p, where n is the number of samples used to obtain 0,

and p is the number of parameters Oi which composes 0. Hence, Equation (4.10) gives the

unbiased estimator of c 2 , and using this equation, the Student t-distribution is given in

Equation (4.11). Equation (4.12) gives the confidence interval 100*(1 - a) for the

predicted value y.

s2 _lIY- x,)l 2
n-p (4.10)

Yo -Yo Yo - Yo Y - Yotn -
nIp varyo-Yo zs+s2FF.)( fo s(l + f(FTF.)1fo) (4.11)

+ )/ (4.12)
Other methods for estimating confidence intervals are available which uses a different(4.12)

Other methods for estimating confidence intervals are available which uses a different

approach to determine the variance-covariance matrix used in Equation (4-12). The

proposed method differs from the existing methods for neural network confidence interval

derivation because it does not require information about the second derivatives of the neural

network output, and because it accounts for the accuracy of the data with which the neural

network model is trained.

4.1.1. Selection of the Variance-Covariance Matrix

From a Monte Carlo study of constructing confidence intervals for parameterized models

estimated by nonlinear least squares [Donaldson, Schnabel], three variants of determining

the variance-covariance matrix V of the estimated parameters were studied. The three
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approaches were given to be the following, where s2 is the estimated residual variance,

J() represents the Jacobian matrix or the function with respect to the parameters 9,and

H(0) represents the Hessian matrix:

~a = s2(J(8)TJ(8))-I

fip = s2H(9)-1

X = s2H(8)-1(J(9)TJ(g))H()- 1

Results from the Monte Carlo study revealed that the Va estimation of the variance-

covariance matrix gave the best results with minimal efforts, since determining the Jacobian

matrix J(8) required ony first-order differentiation, while determining the Hessian matrix

H(8) required additional differentiation up to the second order, which is a less stable matrix

to invert compared to the Jacobian. Thus, the Pa estimation was employed, but with a
A A

more detailed and with a higher degree of effort, V and VX may be employed.

4.2. Derivation of Confidence Intervals for Models Derived from

Noisy Data

The purpose of this section is to derive an estimate of a neural network's accuracy based on

the accuracy of the data that it is trained with. Discrepancy between the true output of the

system and the observed output of the system may exist, due to inaccuracies in

measurement of the output. Such an estimate may be used to predict the domain of the

input over which a neural network model will adequately model the output of the system.

Equation (4.13) gives the equation which represents the system, and Equation (4.14) gives

the equation which represents the observed output of the system. The error value 1
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(-N(O, a12 )) is the difference between the true output value and the neural network output,

arising from the limitations from the model to capture the unobservable and uncontrollable

error. The error value e2 (-N(O, 022)) is the difference between observed values and the

true values, arising from inaccuracy of the observation. The error value e (-N(O, a02 +

'22) = N(O, a)) given in Equation (4.15) is the sum of the errors due to the modeling

inaccuracy and the observation inaccuracy.

y =f(x; 0*) + E1 (4.13)

Yobs = Y + E2 (4.14)

Yobs =fJx; 0*) + 1 + E2 =f(x; 0*) + e (4.15)

Following the analysis in the previous section, the variance of [yo - o] is given in Equation

(4.16). Thus, by using s 2, which is the unbiased estimator for 12 given in Equation

(4.17), the confidence interval for a parametric model derived from noisy data is given in

Equation (4.18). When the noise level is zero, Equation (4.18) collapses into Equation

(4.12).

A A
var[y - yo] var[y] + var[yo] (4.16)

= var[el] + var[foT.(0 - 0*)]

- a12 + C2fOT(F.TF.)-lfO

= a12 + (T12 + 2 2)foT(F.TF.)-lfo

S2=II Yobs - 1x f)||
n-p (4.17)

%YO + tn!2 (sl + (s+a I r (FTF4'o)~ l (4.18)
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4.3. Derivation of Confidence Intervals for Neural Networks

Equation (4.12) states the confidence interval for a model used as a predictor for y, which

was derived from noiseless data. This form of the confidence interval will be applied to a

feedforward artificial neural network model being used as a predictor for y. The term t!2p

can be found for a given a and the degrees of freedom n - p (where p is the number of

weights and bias terms employed by the neural network), and s can be computed from

Equation (4.10). The task is now to find the derivative terms in the F. and the foT

matrices.

The outputs from a neural network are a conglomeration of nested sigmoidal functions.

Equation (4.19) gives the sigmoidal function for a typical neural network, and for

demonstrative purposes, Equation (4.20) gives the neural network function for the simple

1-1-1 structure shown in Figure 4-1, where the input and output nodes implement linear

functions and the middle node implements the sigmoidal function.

o=1 + exp(-w-x+ b) (4.19)

Figure 4-1: A 1-1-1 neural network with linear input and output nodes.

43

Layer 1 Layer 2 Layer 3

1 W 2

1 b

-



Y W- Iw-- + b2
1 + exp(-wlx+ bl) (4.20)

The F. and foT matrices are the matrices containing the derivatives of the output y and yo

with respect to the parameters Oi. Equation (4.20) gives the full sigmoidal equation of the

1-1-1 neural network shown in Figure 1. To obtain the values of the elements in the F.

and foT matrices, the changes in the output y with respect to the weights (a) and the bias

terms (E3) must be found.

Two terms must be defined before the analysis of computing the partial derivatives of the

output y. The first term to be defined is the neti[] quantity. This term is summation of the

outputs from the nodes of layer --1 entering node j in layer . The expression for netj[l3]

is given in Equation (4.21), where n is the number of nodes in layer 1-1, and bj is the bias

term for node j.

netj'' (i -bj

ietJOp]=(, W[.5 ]o' )-bl (4.21)

The second term to be defined is the layer[13] quantity. This term characterizes the response

of layer P for a given set of inputs, and this term is defined to be the summation of the

netj[] functions for layer 3. Equation (4.22) gives the expression for layer[S], where m is

the number of nodes in layer 13.

layer[P] = net ]

j=1 (4.22)
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With the terms netj[P] and layer[B] defined, the derivatives of the output y with respect to the

weights and the biases can be analyzed. Equation (4.23) expresses the derivative aa1,,

where y is the specific weight value of layer a, and m denotes the total number of layers in

the neural network.

ay ay anet[m] layer[m-1 alayer[a+31 layer[a+2 1 anet[a+1]

aw[an] anet[m] alayerm-1l alayer[m-2] alayer[a+ 2 ] ane[a+l] aw[a]~~~Y t l rY2 wY (4.23)

For a neural network which has an output node with a linear linear function, an[m] is simply

net[ml
1, and for an output node with a sigmoidal function is y(1 - y). The term alaye[m-l can be

alayerlm-lc
broken down into the form given in Equation (4.24). The derivative alaye{m-21 can be

expressed in the form given in Equation (4.25), where p is the number of nodes in layer m-

alayerfa+21

1. Equation (4.26) gives the expression for an4+] ,, and Equation (4.27) gives the

anea+] ane4f+ ]
expression for al.. . Equation (4.28) gives the general form of anet', where e is an

arbitrary layer, X is an arbitrary node in layer { + 1, r is an arbitrary node in layer 4, and A

is the number of nodes in layer 4.

anet[m] anet[m] anet[m] anet[m] = anet[m]
=-layr-m'1 + + -net-m' l + -n e= ' l

alayer[m-l] anet[m-l] anerm-l] anetm] = -l (4.24)

alayer[m-1] anetm-] I=e anet.ml 2] )

alayerm-2] j=1 alayer[m2] j=1 i= aneti m (4.25)

alayer[a+ 2] P anetj a+ 2

anetya+l] j=1 anet+ (4.26)
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anet[ a +
1

l ]

[']Y =., a
wY (4.27)

anet A A a (
anet a b) (w[*]o0) - = b (w[']o[4](i - o[1)) 

anetO] ane C0 l a=l
~et' ntg; \(4.28)

For the neural net shown in Figure 4.2, the Equations (4.29) through (4.32) give the

values for the derivatives of the output with respect to each of the parameters based on

Equation (4.23).

ay w2x e-wI + bl

awl (1 +e- bly (4.29)

ay -W2 e-W + bl

bl (1 + e-w + bl)2 (4.30)

ay 1

aw 2 (1 + e-w +b) (4.31)

y -1
a =b2 (4.32)
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CHAPTER 5

APPLICATION OF CONFIDENCE INTERVAL

PREDICTION FOR NEURAL NETWORKS

To determine the efficacy of the modeling capabilities of neural networks, various neural

network models will be tested on a number of test bed problems which represent the

problems typically encountered in manufacturing processes and systems. In this chapter,

the first type of problem to be tested on neural networks is the presence of noise in

experimental data. Systems have error associated with it due to the dependence of the

output on uncontrollable or unobservable quantities, and the quality of the model developed

from data containing such errors will be compromised to a certain degree. The method

developed to estimate the confidence intervals of neural network models in section 4.3 will

be used to assess the reliability of neural network models.

The first test problems for study are two arbitrary multivariate functions, the second test

problems for study are the laser machining processes of laser through-cutting and laser

grooving, and the final test problem for study is the manufacturing system design of an

automobile steering column. Only the test problems for the multivariate functions and the

manufacturing of a steering column will contain the two types of test problems, namely

data without noise and data with noise, since the sparseness of available data for laser

machining would not give a good statistical indication of the effects of noise on the

generated models.

5.1. Test Problem: Multivariate Test Functions

Two arbitrary, multivariate functions were developed to gain some basic understanding of

the nature of the confidence intervals for neural network models. The first equation, given

in Equation (5.1), is a three-input (w, x, y) and one-output (z) function containing linear
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and nonlinear terms. The second equation, given in Equation (5.2), was used by Friedman

as a test problem for his Multivariate Adaptive Regression Splines (MARS) algorithm,

which will be covered in Chapter 6 [Friedman, 1991]. This equation is a five-input (xl,

x2, x3, X4, X5) and one output (f) function also with linear and nonlinear terms.

sin(2w)z(w, , y)= 1 + sn w + exp(0. ly) cos(y) (-log[0.2(x + 1)]) + 0.2x

f(xl, x2, X3, X4, x5) = 10sin(7r X1X2) + 20(3 -)2 + 10x4 + (52)

5.1.2. Neural Network Modeling of the Multivariate Test Functions

The training data for the learning of the neural network for the test function given in

Equation (5.1) consisted of two sets of generated datapoints, where variable w ranged

between 0.1 and 1, variable x ranged between 1 and 10, variable y ranged between 0.01

and 0.1, and the output z varied between 1.0 and 2.5. Each set of data contained 125

datapoints, where the first set contained uncorrupted data, and the second set contained a

normally distributed noise with a standard deviation of 0.1611 added to the output. An

additional 27 datapoints were set aside for the testing of the models. A 3-7-1 structure for

the neural networks were used for modeling Equation (5.1). The predictions from the

neural network trained with noiseless data with 80% estimated confidence intervals are

shown in Figure 5-1, and the predictions from the neural network trained with noisy data

with 80% estimated confidence intervals are shown in Figure 5-2. For the neural network

modeling the noiseless data, only one of the 27 true values corresponding to the prediction

cases (case 6) lies outside of intervals, which translates to 96% of the points lie within the

confidence intervals. None of the true values corresponding to the prediction cases from

the model trained with the noisy data lied outside the confidence intervals, but it can be seen

that these confidence intervals span a much wider range than the intervals for the neural
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network trained with noiseless data.
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Figure 5-1: 80% confidence intervals for the neural network model of function 1.
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model of function 1 containing noise.
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The training data for the learning of the neural network for the test function given in

Equation (5.2) also consisted of two sets of generated datapoints, where variable xl, x2,

X3, X4, and X5 ranged between 0.1 and 1, and the output f varied approximately between

5.0 and 25.0. Both the uncorrupted and noisy data contained 243 datapoints, where the

noisy data set contained a normally-distributed noise with a standard deviation of 0.2756.

32 additional datapoints were set aside for the testing of the models. A 5-8-1 structure for

the neural networks were used for modeling Equation (5.2). The predictions from the

neural network trained with noiseless data with 80% estimated confidence intervals are

shown in Figure 5-3, and the predictions from the neural network trained with noisy data

with 80% estimated confidence intervals are shown in Figure 5-4. For the neural network

modeling the noiseless data, 17 of the 32 true values corresponding to the prediction cases

lie outside the confidence intervals, or 46.9% of the predictions lie within the confidence

intervals. For the neural network modeling the noiseless data, 20 of the 32 true values

corresponding to the prediction cases lie outside the confidence intervals, or 37.5% of the

predictions lie within the confidence intervals.
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Figure 5-4: 80% confidence intervals for the neural network model of function 2

containing noise.
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5.1.3. Neural Network Reliability

For the neural network model for Equation (5-1), since significantly more than 80% of the

predictions lie within the computed confidence intervals, conservative confidence intervals

were given. Nonconservative confidence intervals were computed for the neural network

model for Equation (5-2), since less than 80% of the predictions lie within the computed

confidence intervals. Table 5-1 summarizes this information.

Table 5-1: Summary of the predictions which lie within the 80% confidence

intervals and accuracy of fit for the models to the training data.

From Figures 5-1 to 5-4 and from Table 5-1, two observations can be made. First, the

confidence intervals for functions with noise are much wider than the intervals for

functions without noise. This behavior is due to the accuracy of the neural network model

in mapping the training data. Table 5-1 gives the RMS error of the neural network models

in fitting with the training data, and the trend of a more accurate mapping can be seen for

the models trained without noise when compared with the fit for the models trained with

noise.

The second observation from the results is that for the first function, the confidence
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Percentage of predictions which RMS error of the model
Neural Network Model lie within confidence intervals with training data

Equation (5-1) 96% 0.01

Equation (5-1) with noise of 100% 0.14

0.1611 standard dev.

Equation (5-2) 46.9% 0.19

Equation (5-2) with noise of 37.5% 0.29

0.2756 standard dev.



intervals do give consistently either a conservative or a nonconservative confidence

intervals. For the first function in both cases of with and without noisy data, the

confidence intervals were conservative estimates, while the second function in both cases

of with and without noisy data, the confidence intervals were nonconservative estimates.

5.2. Test Problem: Laser Machining

Another test problem for study entails the modeling of laser machining. Two specific laser

machining processes will be studied: laser cutting and laser grooving. For laser cutting,

the problem involves the prediction of the maximum cut velocity. For laser grooving, the

problem involves the prediction of the groove depth. This section will begin by covering

the background of these processes. Following will be the results of modeling experimental

data with neural networks will be given. Finally, results of determining the confidence

intervals of the neural network models will be given.

5.2.1. Background

Laser machining belongs to the large family of material removing or machining processes.

It can replace mechanical material removal methods in many industrial applications,

particularly in the processing of difficult-to-machine materials such as hardened metals,

ceramics, and composites. Furthermore, laser beams themselves make new material

removal methods possible, due to their unique characteristics. The following sections

provide background information on two laser machining processes studied for modeling.

A further reference on laser machining can be obtained from [Chryssolouris, 1991].

Cutting is the two-dimensional machining of a workpiece using laser. In the laser through-

cutting process, a kerf is created through relative motion between the laser beam and the

workpiece surface. This process allows intricate two-dimensional shapes to be cut on a flat

workpiece. The physical mechanisms for material removal and energy losses occur from
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the balance of energy from the incoming laser beam with the energy consumed by the

conduction heat, energy for melting or vaporization of material, and heat losses to the

environment (Figure 5-5). When material is removed through melting, a molten layer

forms at the erosion front. The accumulated molten material can be expelled out from the

bottom of the kerf with the aid of a coaxial gas jet.

Figure 5-5: Laser through cutting.

Laser grooving entails the material removal of a workpiece to a certain depth less than the

thickness of the workpiece. In the laser grooving process, a groove is produced by

scanning a laser beam over the workpiece surface, but the laser beam does not penetrate

through the entire workpiece thickness. The physical mechanisms of laser grooving are

similar to those of cutting. Using the process of laser grooving, the concept for three-

dimensional material removal has been developed to make laser machining more applicable

to bulk material removal. The three-dimensional material removal process uses two

intersecting laser beams to remove a volume of material. Unlike laser through-cutting

techniques, each beam creates a groove in the workpiece through either single or multiple

passes. A volume of material is removed when the two grooves intersect.
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Two such applications employing the laser grooving process are laser turning and laser

milling. Turning operations can be accomplished by ring removal or helix removal (Figure

5-6). The ring removal method uses two perpendicular beams to remove concentric rings

from a workpiece, and the helical removal method uses two angular beams to create a

continuous thread. For the case of laser milling, two laser beams are positioned at oblique

angles from the workpiece surface to create converging grooves in a workpiece (Figure 5-

7). The volume of material removed is prismatic in shape with a triangular cross sections.

Dimensional accuracy is related particularly to the taper angle for each of the two grooves.

Figure 5-6: Using three-dimensional laser grooving for ring removal.
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Figure 5-7: Using three-dimensional laser grooving for milling.

5.2.2. Neural Network Modeling of Laser Through-Cutting

For laser cutting, nine cutting experiments were performed to measure the cut velocity.

Two parameters were varied for each experimental setup. The laser power varied between

the values from 300 to 500 Watts, and the steel workpiece thickness varied between 0.76

and 1.91 mm. The gas jet pressures were set to 28 psi. and the nozzle distance was 1.3
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mm. Each experimental setup was repeated 10 times and the final data used for developing

the neural network models incorporated the mean cut velocity. The standard deviation from

the 10 experimental measures of the cutting velocity was treated as the standard deviation of

the noise to the output.

A 2-1-1 neural network model has been created to map the experimental data from the laser

cutting experiments. From the nine cutting experiments, seven were used to train the data,

and two were used for testing the accuracy of the neural network model. The size of the

neural network model was restricted to be small to allow the computation of the confidence

intervals of the neural network outputs. The value of the degree of freedom, which equals

the number of training datapoints minus the number of parameters (links) in the model

(from chapter 4, the value n - p), must be at least 1 to obtain the student's t-distribution

value used for Equation (4.12). Confidence intervals of 80% confidence level were

constructed, and the results are illustrated in Figure 5-8. From the figure, the estimated

confidence levels succeeded to contain the true values of the cut speed for both predictions.

5.2.2. Neural Network Modeling of Laser Grooving

For laser grooving, sixteen grooving experiments were performed to measure the groove

depth. Three parameters were varied for each experimental setup. The laser power varied

between the values from 400 to 600 Watts, the translational velocity of the laser varied

between 1 and 9 mm/s, and the off axial gas pressure varied between 0 and 70 psi. The

nozzle distance was 2.4 mm. Each experimental setup was repeated 20 times and the final

data used for developing the neural network models incorporated the mean groove depth.

The standard deviation from the 20 experimental measures of the cutting velocity was

treated as the standard deviation of the noise to the output.
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Figure 5-8: 80% Confidence intervals for the neural network model of

laser cutting.

A 3-2-1 neural network model has been created to map the experimental data from the laser

cutting experiments. From the sixteen grooving experiments, fourteen were used to train

the data, and two were used for testing the accuracy of the neural network model. For the

same reason given for modeling the laser cutting process, the size of the neural network

model was restricted to be small. Confidence intervals of 80% confidence level were

constructed, and the results are illustrated in Figure 5-9. From the figure, the estimated

confidence levels again succeeded to contain the true values of the cut speed for both

predictions.
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Figure 5-9: 80% Confidence intervals for the neural network model of laser

grooving.

5.2.3. Neural Network Reliability

For the test problems of laser machining, the confidence intervals estimated for laser

through cutting and laser grooving succeeded to contain the true values for the test cases.

Thus, the proposed method of estimating confidence intervals for neural networks gave

appropriate intervals for the neural network models of laser machining.

5.3. Test Problem: The Manufacturing of an Automobile Steering Column

An example taken from the automotive industry used for this thesis deals with the assembly

of three different models of automobile steering columns belonging to the same general

product. It is a hypothetical example based on the assembly specifications of a real product

which also has been investigated in the research of Graves and Redfield [Graves]. The

goal is to estimate the performance of the manufacturing system for a given system design.

For this problem, a framework to determine the efficiency is required. In the following

sections, an overview of the basis for such a framework will be given, followed by an
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explanation of some the significant assembly specifications and assumed information

required for the example problem. Simulation was the approach used for generating

experimental data, and the final section gives the results of the neural network modeling

and prediction of the efficiencies for the manufacturing systems. The simulation package

used was WITNESS 5.0 by ISTEL Inc.

5.3.1. An Evaluation Framework for Manufacturing Systems

For this thesis, an evaluation framework encompasses the definition of manufacturing

system decision variables and the definition of a performance index [Chryssolouris et al.

1990], which differs from existing frameworks [Kaplan (1983), Suresh and Meredith

(1985), Wabalickis (1988), Swamidass and Waller (1990), Son (1991)] primarily in the

combination of specifically defined decision variables and the consideration of costs that

occur over the anticipated life of the system, particularly those due to part design changes.

A manufacturing system can be defined as a combination of humans with machinery and

equipment that are bound by a common material and information flow. The configuration

of a such a system can be viewed as the process of mapping the system's performance

requirements (specified via numerical performance measures) onto a description of a

physical system (specified via numerical decision variables) which will achieve the required

performance (Fig. 5-10).

Given performance requirements, the task of manufacturing system configuration requires

the description of a suitable physical system by specifying a body of information [Suh].

This body of information can be represented either symbolically, in the form of a drawing,

or numerically, in the form of values of a collection of decision variables. Symbolic

representations are advantageous because each symbol can represent a large collection of

information and because they are easily interpreted by humans. Numeric (decision
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variable-based) representations are advantageous because they can be easily stored and

manipulated by computers. For this thesis we will restrict our attention to numeric decision

variables, because they are easier to manipulate automatically and thus would easier to

incorporate into a procedure which automates the configuration process.

Figure 5-10: Configuration of a manufacturing system.

Once the decision variables are defined, an evaluation framework requires the definition of

a performance index. The performance index used in this thesis accounts for the inputs to a

manufacturing system in terms of the costs incurred over the life of the system -

particularly those related to part design change. Thus the evaluation framework considers

the flexibility of a manufacturing system. The performance index also accounts for the

output that is achieved by a manufacturing system, in terms of the number of parts that it

produces. This index is called efficiency, and has the general form output/input.

number of good parts produced during system life cycle (53)efficiency = y =(5-3)
total life cycle cost

The units of this index are [parts/$]. If a figure for the revenue per part is available, then e

can be converted to a unitless efficiency. The denominator, the total life cycle cost,

consists of acquisition costs, operation costs and system modification costs due to part
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design change. These costs are incurred over the life T of the system, which consists of nt

periods of duration t (T = ntt). The costs, described Figure 5-11, are broken down by

period and are incurred at the beginning of each period.

Figure 5-11: Summary of total life cycle costs

System acquisition cost is incurred not only when the system is first implemented, but also

when increased demand requires an expansion of system capacity. The system

modification cost due to part design change is an important and new contribution of the

efficiency definition, because it accounts for the flexibility of the system. This cost is a

function of the probability that at least one of the features worked on by a machine in the

system will be modified whenever the part design changes. This probability is a function

of the probabilities of individual features requiring change when the part design changes

and also of the number of features processed by the machine.

5.3.2. The Manufacturing of an Automobile Steering Column

This section will cover the significant assembly system specifications and assumed
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information made for generating the simulations. Three different models of steering

columns have to be assembled on one assembly line. Model 1 has most options which

includes a turn/cruise lever, a tilt lever and a hazard switch. Model 2 is the basic model,

which has no options. Model 3 is an alternative option, which has no tilt lever and hazard

switch. Because of the models belonging to one general product, they have most parts in

common. The general product consists of eleven different parts: steering column, bracket,

bolts for bracket, turn/cruise lever respectively turn lever (for model 2), steering wheel,

nut, retainer, damper, horn pad, hazard switch, and tilt lever. Except of the hazard switch

and the tilt lever, all parts are schematically shown in Figure 5-12.

For assembling the three models, 28 different tasks have to be processed. Three candidate

resource types are assumed to be available for the steering column assembly: an operator, a

robot and a paint machine. Each is able to process a particular set of tasks and requires

certain tools for processing these tasks. Table 5-2 gives an overview of the available

resource types, the task times, the tools required for processing the tasks and the cost of

each tool.
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Figure 5-12: Schematic of the automobile steering column (hazard switch

and tilt lever are not shown).

Except for task 6 (which has to be done by a paint machine), an operator can to process any

of the tasks given in Table 5-2. The alternative resource of the operator for processing

tasks 7 to 22 can be a robot . The processing times are given in the first of the three

columns belonging to each resource type. In the second and third column, the tools

required by each resource for processing each task and the acquisition costs of the tools are

listed.
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Task

time

Task no. and description (sec)

Tool Tool Task

no. cost time

($) (sec)

1 Schedule steering column

2 Bracket & bolt to column

3 Finger-start bolt #2

4 Finger-start bolt #3

5 Finger-start bolt #4

6

7

8

9

10

11

Paint steering column

Schedule steering wheel

Schedule horn pad

Steering wheel to column

Place damper to column

Drive steering wheel nut

12 Inspect nut torque

13 Install nut retainer

14 Inspect retainer

15 Install turn/cruise lever

16 Install turn lever

17 Horn pad to wheel

18 Install tilt lever

19 Secure bracket bolt #1

20 Secure bracket bolt #2

21 Secure bracket bolt #3

22 Secure bracket bolt #4

23 Test bracket secureness

24 Test horn pad secureness

25 Install hazard switch

26 Test turn/cruise lever

27 Test hazard switch

28 Electrical-test horn pad

23 100 0

8 100 0

3 100 0

3 100 0

3 100 0

43 401 7 875

17 100 0

9 100 0

7 100 0

7 102 9 975

6 103 9 975

2 103 9 975

2 104 1 313

2 100 0

14 105 525

8 100 0

8 100 0

7 100 0

3 108 6 825

3 108 6 825

3 108 6 825

3 108 6 825

2 100 0

2 100 0

9 109 1 313

21 110 15 750

7 110 15 750

12 110 15 750

20 201 5 675

11 201 5 675

6 202 8 925

6 203 12 600

3 204 12600

2 204 12600

1 205 5 775

5 206 12500

12 207 9 650

4 207 7 350

5 208 8 925

3 209 6 825

1 210 14 700

1 210 14 700

1 210 14 700

1 210 14 700

Table 5-2: Available resource types and required tools for processing the tasks.

Table 5-3 gives an overview of the costs for the resources. The costs considered are

acquisition costs, fixed maintenance costs, variable maintenance costs which occur during

break down times of resources, and the design change costs of the robot and the paint

machine. Furthermore, the labor cost rate for the operators is given. These costs are

estimated based on data provided by industry for similar equipment.
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robot I paint machine | operator

acquitsition cost ($) 527,900 141,300 -

fixed maintenance cost rate ($/year) 16,700 5,200 -

variable maintenance cost rate ($/hour) 50 50 -

design change costs ($) | 1,300 21,000 -

labor cost rate ($/hour) no labor required no labor required 30

Table 5-3: Costs of resources.

Additional information for calculating the efficiency is given in Table 5-4. The number of

working days per year is assumed to be 235, the number of shifts per day should be 2, and

the time duration of one shift is set to 8 hours. Thus, the total available working time is

3760 hours per year. With an assumed total annual volume of 500,000 units per year, the

system cycle time has to be less than 27 seconds per part. It is distributed in 63% for

model 1, 29% for model 2, and 8% for model 3. The tool change times of an operator are

given with 2.5 seconds, whereas a robot has a tool change time of 2.0 seconds.

number of working days per year 235
number of shifts per day 2

time duration of one shift (hours) 8

total available working time per year (hours) 3,760
total annual volume (parts) 500,000

fraction of the total annual demand for model 1 0.63

fraction of the total annual demand for model 2 0.29
fraction of the total annual demand for model 3 0.08

required system cycle time (seconds) 27
tool change time of an operator (seconds) 2.5
tool change time of a robot (seconds) 2.0

Table 5-4: Additional information for calculating the efficiency.

Table 5-5 gives the tasks required for each model. From the assumed total annual demand

of 500,000 units and the fractions of 63% for model 1, 29% for model 2, and 8% for

model 3, the annual demand of the model is 315,000 units of model 1 per year, 145,000

66



units of model 2 per year, and 40,000 units of model 3 per year.

Table 5-5: Task data per model.

The tardiness cost rate and the inventory carrying cost per part per period for each model

have to be set. Table 5-6 gives the assumed values of these rates. The design change costs

of tools are assumed to be equal to their acquisition costs. Furthermore, it is assumed that

a product design change occurs once every 3 years. The probability of individual feature

changing, when a product design change occurs, is set to 0.9 and the interest rate is

assumed to be 10%.

II Model 1 Model2 | Model 3

Tardiness Cost Rate ($/(parts*sec)) 12 9 11

Inventory Carrying Cost per part ($/year) 300 240 280

Table 5-6. Tardiness cost rates and inventory carrying costs.

Assembly systems used for the given steering column assembly problem are assumed to

consist of two main elements: work stations and buffers. For simplification, variations in
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Model 1 0.63 * (total annual demand) = 315,000 units/year

Tasks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 17 18 19 20 21 22 23 24 25 26 27 28

Model 2 0.29 * (total annual demand) = 145,000 units/year

Tasks: 1 2 3 4 5 6 7 8 9 11 12 13 14

16 17 19 20 21 22 23 24 28

Model 3 0.08 * (total annual demand) = 40,000 units/year

Tasks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 17 19 20 21 22 23 24 26 28



material handling systems will not be considered in the case study of the steering column.

It is also assumed that each work station can hold one or more resources and that no two

different resource types can be assigned to one work station. The fact that task 6 and only

this task has to be performed by a pain machine, the minimum number of work stations is

three. Tasks 1 to 5 can only be performed manually. Therefore, it is reasonable to assign

these tasks to one work station. Thus, all assembly systems generated in the given

example of the steering column are assumed to have the first two work stations in common,

at which tasks 1 to 6 are processed. The maximum number of work stations is set to eight.

Buffers are characterized by the buffer capacity and the buffer frequency. The capacities of

all buffers in one assembly system are assumed to be equal. In general, the capacity is

assumed to vary in the interval between 10 and 100 parts per buffer. The buffer frequency

depends on the number of work stations used in one assembly system. It represents the

quotient of the number of installed buffers in the assembly system to the potential number

of buffer locations which is x- 1 in case of an assembly system with x work stations.

The convention for setting buffers used for this problem is illustrated in Table 5-13. In the

first tow column the number of work stations and the number of installed buffers are used

for identifying the different cases. The corresponding buffer frequency is given in the third

column. The next seven columns build up a matrix which is characterizing the assignment

of buffers to buffer locations. Buffer locations marked by a black circle signalize that a

buffer is installed. If the circle is white the corresponding location is not occupied by a

buffer. In case of an assembly system with less than eight work stations the infeasible

buffer locations are marked by a stroke.
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number buffer buffer buffer buffer buffer buffer buffer
number of between between between between between between between
of work installed buffer WS1 and WS2 and WS3 and WS4 and WS5 and WS6 and WS7 and
stations buffers fequenc WS2 WS3 WS4 WS5 WS6 WS7 WS8

3 2 1.000 · ·
3 1 0.500 · 0 -
4 3 1.000 · · ·
4 2 0.667 0· · O
4 1 0.333 O · 0
5 4 1.000 0· · · ·
5 3 0.750 0 - -
5 2 0.500 0 0 - -
5 1 0.250 0 0 0 0 - -
6 5 1.000 · · · · ·
6 4 0.800 0 0· · ·
6 3 0.600 · O · · -
6 2 0.400 0O O 0- 
6 1 0.200 O O · 0 0
7 6 1.000 · · · · · ·
7 5 0.833 · · · · · O
7 4 0.667 · · O 0 ·0
7 3 0.500 · 0 · O · C
7 2 0.333 0 O O0 __
7 1 0.167 0 0 0 O O O
8 7 1.000 · · · · · ·
8 6 0.857 0· · · · · ·
8 5 0.714 0 · · · · · O
8 4 0.571 0 0 C) 0 0 O
8 3 0.429 0 0 0 · 0 0
8 2 0.286 O · 0 O O 0 0
8 1 0.143 O O 0 0 0 O O
WS: work station

0 buffer installed 0 buffer not installed - no feasable buffer location

Figure 5-13: Convention for setting buffers.

A total of 279 simulations were generated for this problem, where 225 points were

designated for training and 54 for testing the neural network model. The problem has been

broken down into a five variable problem for determining the efficiency:

1) Task allocation (15 possible allocations for a system to select)

2) Resource allocation (11 possible allocations for a system to select)

3) Buffer capacity

4) Buffer frequency

5) Steering wheel model
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5.3.3. Neural Network Modeling of the Manufacturing of the Steering

Column

Figure 5-14 shows the plot of the predictions from a 5-8-1 neural network. The figure also

shows the estimated envelope calculated for 80% confidence intervals. 8 of the 54

predictions (85%) lie outside the confidence interval. Figure 5-15 shows the plot of the

predictions from a 5-8-1 neural network trained with a normally distributed noise added to

the output of the training data with a 0.0183 standard deviation. 78% of the predictions lie

outside the confidence interval.

Figure 5-14: 80% confidence intervals for the neural network model

predictions.
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Figure 5-15: 80% confidence intervals for the neural network model

predictions trained from noisy data.

For the neural network model trained with and without noisy data, the 80% confidence

intervals gave expected results, since the estimated intervals did not include a significant

amount of predictions above or below 80%. Table 5-7 summarizes this information.

Percentage of predictions which
Neural Network Model lie within confidence intervals

Trained without noise 85%

Trained with noise of 76%

0.0485 standard dev.

Table 5-7: Summary of the predictions which lie within the 80% confidence intervals.

5.3.4. Neural Network Reliability

For both neural network models trained with data containing noise and not containing

noise, the confidence intervals estimated for the predicted values of efficiency contained the
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expected level of true values for the test cases. Approximately 80% of the computed

efficiencies lie within the 80% confidence intervals. Thus, the proposed method of

estimating confidence intervals for neural networks gave the appropriate levels of

confidence for the neural network models for the networks trained with uncorrupted data

and the network trained with data containing noise. The confidence intervals can then be

used for assessing the reliability of the neural network predictions.
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CHAPTER 6

RELATIVE PERFORMANCE OF NEURAL NETWORKS

In this chapter, the second type of problem tested on neural networks is the high level of

nonlinearity present in an input-output relationship within manufacturing processes and

systems. The relative efficacy of neural network modeling of nonlinear systems is

determined by comparing results of the neural network models with results from models

generated by other common empirical modeling approaches on the test bed problems. A

direct comparison of results from three different modeling methods will be conducted for

the assessment of the relative capability of neural networks as a modeling tool. The

modeling methods used for comparison are linear regression, the Group Method of Data

Handling (GMDH), and the Multivariate Adaptive Regression Splines (MARS) algorithms.

This chapter begins by providing an overview of the three modeling methods.

Subsequently, after presenting the results of modeling the test bed problems presented in

Chapter 5, the assessment is given of the relative efficacy for each algorithm.

6.1. Linear Regression

For the case of one input variable x, and assuming that the statistical relationship between

the response variable y and the input variable x is linear, a model of the relationship can be

written as

Yi = Po + oxi + Ei, i = 1, 2, ..., n. (6-1)

The following are the usual assumptions made for the parameters and variables in this

model:
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1) xi is the ith observation on the input variable, where xl, x2, ..., Xn

correspond to particular settings of the input variable chosen a priori to the

observation.

2) yi is the output response that corresponds to the settings xi of the input

variable.

3) Po and ji are the coefficients, or parameters, in the linear relationship; o

is the intercept and PI is the slope.

4) The random variables Eo, el, ..., En are errors that create the scatter around

the linear relationship Po + fBoxi, i = 1, 2, ..., n, respectively. We assume

that these errors are identically and independently distributed with mean of

zero and a variance a2

To obtain an estimate for the parameters in the model such that S(fio, /31), which is the sum

of squares of the deviations of the model with respect to the observations and is given by

Equation 6-2, the method of least squares can bed used. A multivariate linear regression

model is obtained in the same method and the relationship is in the form similar to that

given in Equation (1), but the variables and coefficients are replaced by vectors and

matrices.

s( 0, 1) = [yi -(o + Pxi)(6-2)
(6-2)

6.2. Group Method of Data Handling

The Group Method of Data Handling (GMDH) is a modeling technique which groups the

input variables in a form of a polynomial regression equation to predict the output of a

MISO system [Farlow]. Developed by Alexey Ivakhnenko, the transfer function for a

GMDH model consists of a network of polynomial functions arranged in layers (or
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generations). In essence, this network consists of units which performs a series of second-

order regression, where the form of the second-order equation is shown in Equation (6-3).

The polynomial equation of the form given in Equation (6-3) has been often referred to as

the Ivakhnenko polynomial The complete network is in essence a combination of

Ivakhnenko polynomials, creating an empirical regression model of the function it is

mapping.

u = A + Bxi + Cxj + Dxi2 + Exj2 + Fxixj (6-3)

In the first generation, two of the input variables are used to obtain an Ivakhnenko

polynomial equation based on the training data collected to develop the model, and a root-

mean square error is computed for that particular polynomial. Another pair of input

variables are used to obtain an Ivakhnenko polynomial with a computed RMS error

associated with that equation, and this process is repeated until all paired combinations of

the input variables have been used. For m input variables, (m(r 1) polynomial equations

can be developed. This equation is often presented in the form 2 )

After the algorithm computes an Ivakhnenko polynomial for all possible pairs of input

parameters, the fist generation of equations have been developed. The output from the first

generation of polynomials will be used as the input variables of the second generation of

polynomials, where the RMS error is computed for each polynomial. Figure 6-1 illustrates

how the output of the second generation Ivakhnenko polynomial can be determined from

the input variables. The output from the second generation of polynomials will be used as

the input for the third generation, and generations will continue to be developed until the

GMDH obtains the optimal model. Figure 6-2 gives an illustration of how a GMDH model

is structured.
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Figure 6-1: The second generation output y as a function of the

input parameters xi, xj, xk, and xl.

Final
Generation

O

Higher Order 0 * * S*
Generation

Second
Generation

First
Generation

.. L_-

(m 2 )nd
egression equation

"Lero X1 X2 X3 X(m-l) X(m
Generation X X2 X3 0 0 0 X(m1) X(m)

Figure 6-2: A complete GMDH model, showing the relationship

between the input variables and the output y.
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The method relies on having a large number of input variables, where the minimum number

of input variables for the GMDH algorithm to work effectively is three. The method

creates a number of polynomial combination of two of the input variables and combine

these equations further until a final grand equations has been derived. It has been

demonstrated that the GMDH algorithm can be used for modeling functions [Chen,

McAulay] [Madala].

The GMDH algorithm can be viewed as a polynomial neural network, where the

processing function of the nodes is a polynomial rather than a sigmoidal function. The

algorithm also has a self-organizing nature; the GMDH automatically develops the

structure of the regression model. One advantage of the GMDH is that optimization is

based on a series of least-squares fitting rather than an iterative method of minimizing the

errors like the error backpropagation. Training is a matter of performing linear algebra

rather than a numerical method which requires a large amount of time for convergence.

Also, since least-squares fitting is implemented for GMDH (as opposed to the iterative

approach of learning algorithms for neural networks), less effort is required in developing

the model. Another advantage of the GMDH is that it cannot overtrain. Overtraining a

neural network can be a problem when not enough points are given and too much iteration

is used to train the network, and this is one point to consider when comparing the two

methods. Due to the training algorithm for the GMDH model, training stops when it

reaches the best possible configuration. Figure 6-3 summarizes this algorithm.
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STEPS TO DEVELOP THE GMDH ALGOR

1. Construct the new variables Zl, z2, ..., z (1 with the standard regression

polynomial form:

y = A + Bu + Cv + Du2 + Ev2 + Fuv

There will be ( -m(m 1)equations, where m is the number

original input variables used for the model.

of

2. Screen out the least effective variables using the criteria j < R, where R

is the predefined RMS tolerance, and rj is the RMS value of the

particular regression equation.

3. Test the optimality (is the lowest RMS value in this iteration smaller or

larger than the lowest RMS value of the last iteration?):

Figure 6-3: Steps to develop the GMDH algorithm.

6.3. Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is a new methodology for nonlinear

regression modeling. The model takes the form of an expansion in product spline basis

functions, where the number of basis functions as well as the parameters associated with

each one (product degree and knot locations) are automatically determined by the data. The
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recursive partitioning approach to regression motivates this procedure, but unlike recursive

partitioning, this method produces continuous models with continuous derivatives.

6.3.1. Recursive Partitioning Regression

In statistics, adaptive algorithms have been in long use in for function approximation,

where one of the paradigms seen is recursive partitioning. Adaptive computation is one

that dynamically adjusts its strategy to take into account the behavior of the particular

problem to be solved, and recursive partitioning is the recursive and optimal splitting of the

domain of interest into a good set of subregions. The recursive partitioning regression

model takes the form

if x E Rm, then fJ{x) = gm(x I (ajl)

x is the set of input variables and {Rm} are disjointed subregions representing a partition of

the domain of interest, where the gm(x I {aj}) are generally simple parametric functions.

The partitioning is accomplished through the recursive splitting of previous subregions,

where the starting region is the entire domain D. At each partitioning stage, the subregions

are formed into two "daughter" regions R1 and Rr which take the form

if x R, then

if x < t, then x RI

else x E Rr

end if

where v labels one of the covariates and t is a value on that variable. A goodness-of-fit

criterion is used to optimize the splitting process which determines the appropriate splint

points (or knots). The final procedure is the recombination of the subregions in a reverse

manner until an optimal set is reached, based on a criterion which penalizes both for "lack-

79



of-fit" (simply the quantification of the residual of the fit to the data) and increasing number

of regions.

Recursive partitioning is a very powerful methodology which can be rapidly computed.

However, in general, there are several drawbacks to using recursive partitioning as a

regression modeling technique:

* Recursive partitioning models have disjoint subregions and are usually

discontinuous at subregion boundaries.

* Recursive partitioning has an innate inability to adequately estimate functions

that are linear or additive. This behavior is due to the recursive division of

established subregions during the forward step procedure that automatically

produces predictor variable interactions unless all successive partitions occur on

the same predictor variable.

* The form of the recursive partition model, which is an additive combination of

functions of predictor variables in disjoint regions, makes estimation of the true

form of the unknown function difficult for large number of variables.

6.3.2. Adaptive Regression Splines

The basis function Bm(x), can allow a continuous model to be developed from the

partitioned regions with continuous derivatives (namely, functions with the absence

singularity regions) by incorporating a set of two-sided truncated power basis functions of

the form

B(q )(x ) = H [±+ (X(t) - t)] +

k= 1
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where q represents the order of the spline, and the quantity Km represents the number of

splits that gave rise to Bm. Figure 6-4 gives the forward stepwise portion of the MARS

algorithm, which determines the optimal knot locations for the partitioning of the domain.

Another algorithm called the backward stepwise MARS algorithm must also be

implemented, which prunes the basis functions obtained from the forward algorithm to

improve the lack-of-fit criterion.

Figure 6-4: The MARS forward algorithm.

6.4. Results of the Various Modeling Approach to the Test Bed Problems

In this section, a direct comparison with neural networks of the results from modeling

using linear regression, the Group Method of Data Handling (GMDH), and the Multivariate

Adaptive Regression Splines (MARS) algorithms will be applied for the assessment of the

relative capability of neural networks as a modeling tool. The test problems used for the
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comparisons are identical to the set of test bed problems presented in Chapter 5, namely the

multivariate test functions, laser machining, and the manufacturing of the automobile

steering column.

6.4.1. Modeling of the Multivariate Test Functions

The criterion for the comparisons of the different modeling approaches is the root-mean-

square (RMS) error of the predicted outputs from each model. Figures 6-5 and 6-6 show

the comparisons of the results of the different modeling methods applied to the test

functions given in Equation (5-1). The neural network gave the most accurate predictions

of the models developed from the uncorrupted data, and GMDH gave the most accurate

predictions of the models developed from data containing noise.
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Figure 6-5;: Comparison of results of the different models of Equation (5-1).
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Figure 6-6: Comparison of results of the different models of Equation (5-1)

containing noise.

Figures 6-6 and 6-7 show the comparisons of the results of the different modeling methods

applied to the test functions given in Equation (5-2). Linear regression gave the most

83

0
coI.u,
U3

rr

l-|--
L . l~~~~

_·

_



accurate predictions of the models developed from both the uncorrupted data and data

containing noise. Except for neural networks, all the models demonstrated approximately

the same level of accuracy.
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Figure 6-7: Comparison of results of the different models of Equation (5-2).
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Figure 6-8: Comparison of results of the different models of Equation (5-2)

containing noise.

6.4.2. Modeling of Laser Machining

In this section, the results from the neural network models generated in Chapter 5 are

compared with linear regression, MARS, and GMDH models. For some cases, working

models could not be generated due to the lack of sufficient amount of data or, for the case

of GMDH, there were not sufficient amount of input variables.

6.4.2.1. Laser Through-Cutting

A GMDH model was not made for the laser through-cutting problem, because minimum

number of input variables required for GMDH is three and only the power and workpiece

thickness were the only two variables. Also, the MARS model gave highly inaccurate

predictions which were approximately an order of magnitude greater than the true values;

thus left out of the comparison. The source of the large inaccuracy is due to the lack of a

sufficient amount of training data.
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Figure 6-9 shows the comparisons of the results of linear regression and neural network

models applied to laser cutting. Instead of using the RMS error as the criterion for

comparison, the figure includes the true values with the predicted cut velocities for both test

cases.

Figure 6-9: Comparison of results of modeling laser through-cutting.

6.4.2.2. Laser Grooving

The GMDH model gave highly inaccurate predictions which were on the order of 1012, and

similarly for the MARS model of laser through cutting, the source of the large inaccuracy is

due to the lack of a sufficient amount of training data. Figure 6-10 shows the comparisons

of the results of linear regression, MARS, and neural network models applied to laser

grooving. The figure includes the true values with the predicted groove depth for both test

cases the criterion for comparison. The comparison does not give a conclusive result, but it

does show that the neural network model was more consistent in predicting a close value of

the groove depth in comparison with the other models.
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Figure 6-10: Comparison of results of modeling laser grooving.

6.4.3. Modeling of the Manufacturing of an Automobile Steering Column

Figure 6-11 and 6-12 show the comparisons of the results of the different modeling

methods applied to the problem of the manufacturing of an automobile steering column.

The MARS model gave the most accurate predictions of the models developed from the

uncorrupted data and from data containing noise, but comparable accuracy was practically

achieved by all the models.
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6.4.4. Overall Assessment of the Relative Modeling Efficacy of

Neural Networks

A general assessment of the relative efficacy of neural networks cannot be made from the

results presented in this chapter, because the results are not conclusive. For the

multivariate test functions, neural network models gave the most accurate predictions for

the first function, yet gave the most inaccurate predictions for the second function. For the

laser machining problems, neural network models gave the most accurate predictions, but

for the problem regarding the manufacturing of a steering wheel column, neural networks

only outperformed linear regression for accuracy of predictions. In general, the results

show that all these modeling methods provide approximately the same level of accuracy for

a given application.
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CHAPTER 7

CONCLUSION

An approach to assess the reliability of neural network models has been introduced, namely

the estimation of confidence intervals of neural network models for a specified level of

confidence. In addition to the estimation of reliability, the relative efficacy of neural

networks as a modeling tool has been explored by comparing the accuracy of generated

models from different methods on a set of test bed problems.

7.1. Use of Confidence Intervals to Assess Neural Network Reliability

For a desired level of accuracy, a confidence interval can be computed for a neural network

model with the assumption of a normal distribution of error from the neural network, and

calculation of the confidence interval can include the effects of developing the model from

noisy data. In order to estimate the error in predicting the true output, a first-order

approximation of the error of the neural network model is estimated, which involves

computing the Jacobian of the neural network outputs with respect to the weights. Other

approximations of the variance of the neural network error which includes the computation

of the Hessian matrix of the neural network outputs may be used.

The proposed method of computing confidence intervals estimated both conservative and

nonconservative intervals for predictions from the neural network models of the

multivariate test functions. For the first test function, conservative confidence intervals

were estimated; a significantly larger than expected number of the predictions lied within

the intervals. For the second test function, nonconservative confidence intervals were

estimated; a significantly less than expected number of predictions lied within the intervals.

For the test problems of laser machining and manufacturing of the automobile steering
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column, the confidence intervals gave expected results. Thus, the proposed method has

succeeded for a number of the models of the test problems in estimating the reliability of the

neural network models, but were not consistent with all the models. Greater accuracy may

be achieved by using a higher-order approximation of the error of the neural network

model, but the drawbacks would entail increased computational burden and a higher

requirement of precision for the parametric values of the model.

In assessing the reliability of neural networks using the proposed method of estimating the

variance for parameterized model, the limits for the confidence intervals are dependent on

the closeness of the neural network model in mapping the training data and are also

dependent on the relative degree of freedom of the neural network model. If a close fit of

the model to the training data is achieved (i.e., if the neural network training converges)

and if the amount of training data samples substantially exceeds the number of links in the

neural network model, then the confidence interval sizes for the predictions should be small

and a reliable model should be generated for the neural network.

7.2. Relative Efficacy of Neural Network Models

The approach to determine the relative efficacy of neural networks has been to compare the

results of the neural network models from test bed problems with results from models

generated by other common empirical modeling approaches, specifically linear regression,

the group method of data handling (GMDH), and the multivariate adaptive regression

splines (MARS). Neural network models generated the most accurate models for some of

the test problems, but was not consistent in generating fairly accurate models for all the test

problems. In modeling one of the multivariate functions, the neural network gave the least

accurate model. Thus, the results are not conclusive to concede whether modeling with

neural networks are relatively effective.

91



From the comparisons, the results are also not conclusive to concede which of the

modeling methods is the most effective, because none of the modeling methods

consistently outperformed the others. In general, the accuracy of the models generated by

each of the modeling methods did not vary significantly with each other, although linear

regression models consistently gave poorer accuracy. The efficacy of neural networks is

relatively equivalent to the efficacy of GMDH and MARS, but these modeling methods are

likely to give a more accurate model than linear regression.

It should be noted that neural networks did not rely on a supple amount of data as much as

GMDH and MARS, which was evident in the laser machining problems. Neither GMDH

nor MARS were able to generate a model for the laser problems due to the highly inaccurate

models generated with the sparse amount of data. Thus, neural networks have a less

dependency on the amount of available data for generating a model as compared to GMDH

and MARS.

7.3. Summary

It has been noted that neural networks can be seen as a catalyst for greater CIM capablity,

due to the development of neural network technology for manufacturing applications,

particularly related to process diagnostics, control, and optimization, as well as to system

planning and design. The objective of this thesis has been to evaluate the ability of neural

network to generate accurate models of physical systems typically encountered in

manufacturing. An assessment of the reliability of neural network models can be made by

computing estimations of confidence intervals of neural network models, and the relative

efficacy of neural networks has been concluded to be relatively equal to the empirical

modeling methods of GMDH and MARS.
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