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Abstract

A comparison of tapered roller bearings and angular contact ball bearings as the support
bearings in a machine-tool ballscrew application was performed. The application
requirements of high axial stiffness, low running torque, space minimization, and cost
effectiveness were used to design a two-row tapered roller bearing solution to compare
against a widely used three-row 'triplex' angular contact ball bearing solution. Theoretical
axial stiffness and torque analyses of both bearing packages were challenged and found to
be sound models of the physical systems. Incorporating the theoretical characteristics of
the ballscrew and ballnut stiffnesses and torques, predictions were made and tested on an
assembled machine-tool axis for both bearing types.

The worst case system stiffness when using the triplex angular contact ball bearings as the
ballscrew support bearings was 1.439x106 lb/in compared to 1.355x106 lb/in when using
the two-row tapered roller bearing solution. In both cases the experimental results were
within 2.5% of the theoretical predictions.

The worst case system torque when using the triplex angular contact ball bearings was 51
in-lb at start-up and 47 in-lb at constant speed compared to 80 in-lb for the two-row tapered
roller bearing solution at start-up and 75 in-lb at constant speed. The experimental torque
results fell within 10% of the theoretical predictions.

Thesis Supervisor: Alexander H. Slocum
Title: Associate Professor of Mechanical Engineering
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Introduction.

The necessity of evolution continues to push the envelope of

machine-tool design. A globally competitive marketplace has

driven the machine-tool industry into the arms of those

capable of harnessing every ounce of performance from their

machines. Designs must be better, faster, and cheaper if

they are to impact the already clouded machine-tool arena.

The next generation of machine-tools are being designed for

faster axis actuation with greater positioning accuracy under

increasingly hostile conditions. This calls for enhancement

of the ballscrew actuation systems that are commonly used to

propel carriages along their respective axes.
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1.1 Background.

A large percentage of machine-tools employ ballscrew driven axes because of their ability

to accurately transmit rotational motion into linear motionl. A typical ballscrew axis can be

seen in Figure 1-1.

Camge

Roary Encod

J

I

AC Brushless Motor / El',',,,''''''' ',,,, ...

Flexible Coupling S
Bearing Housing Ballscrew Ballnut Support Bearings

Figure 1-1. Typical Ballscrew Driven Axis.

Linear actuation is accomplished by the ballnut which rides back and forth along the

ballscrew. The motion arises from the fact that the ballnut is constrained in all directions

except along the axis of the ballscrew. Within the ballnut are tracks of recirculating steel

balls that come into rolling contact with the precision thread along the ballscrew. When the

ballscrew is rotated the ballnut traverses along the axis. With the thread direction in Figure

1-1, if the ballscrew is viewed from the motor end, and the ballscrew is turned clockwise,

the ballnut and carriage will traverse towards the motor.

The carriage is supported by linear guides which provide two key features allowing the

operation of the ballscrew system. First, the linear guides allow free, uninhibited travel in

the direction of the ballscrew axis. Secondly, they bear the load components that are

oriented perpendicular to the axis of the ballscrew. Therefore, when a ballscrew is

properly aligned, it will only experience the thrust components of the applied loads.

1 See also: A. H. Slocum. Precision Machine Design. Prentice Hall, New Jersey. 1992 pp. 719-727
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The ballscrew is able to rotate as a result of the support bearings that are located on both

ends. These bearings are critical components and are responsible for a variety of functions.

They must maintain precise rotational motion with minimal rotational resistance while

handling the axial loads that the ballscrew is subjected to during operation.

A typical drive system incorporates a servomotor that is closed-loop controlled by a rotary

encoder. The servomotor is affixed to the ballscrew via a flexible coupling that allows

rotational motion to be transmitted while allowing for some axial misalignment due to

mounting tolerances.

To achieve the best operating conditions possible, each component of the ballscrew axes

must be optimized. The ballscrew, by virtue of its geometry and nature of operation

represents the limiting component. Hence, much work has been done to improve ballscrew

efficiency. Several design options involve surface finish, helical thread angle, and

tolerancing that directly affect performance. An additional area of optimization involves the

mounting of the ballscrew in the machine-tool application.

Ballscrews are stretched in many applications. This tensile mounting configuration

minimizes the effects of actuator thermal growth by 'burying' the thermal strain with an

induced elastic strain. As Section 4.0 will detail, stretching the ballscrew also improves the

operating characteristics of the ballscrew. However, by applying a stretch to the ballscrew,

the support bearings are forced to carry much higher axial loads causing additional

problems. First, several rows of ball bearings must be stacked to achieve the necessary

stiffnesses and load carrying capabilities of the ballscrew axes, but this is not a cost

effective solution as more parts and more space are necessary. Secondly, the sensitivity of

the bearings to varying operating conditions is a concern. Thermal growth of the ballscrew

and machine in general cause the loading conditions to vary across the bearings,

influencing their operating characteristics. The resulting change in axial stiffness affects the

positioning accuracy, repeatability, and controllability of the ballscrew driven axis.

Tapered roller bearings are being investigated as support bearings for ballscrew driven

systems as they offer excellent axial load carrying capabilities and maintain a constant axial

stiffness throughout their loading range.
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1.2 Bearing Overview.

The following section introduces the geometries and critical features associated with

angular contact ball bearings and tapered roller bearings. Also introduced is the concept of

bearing preload.

1.2.1 Angular Contact Ball Bearing Nomenclature.

The basic components of the angular contact ball bearing can be seen in Figure 1-1. The

bearing is composed of inner and outer raceways, balls, and a retainer. The retainer that is

used to keep the balls from rubbing against one another is not depicted in Figure 1-1 as

retainer styles can vary depending upon the application.

contact angle

ller eway

inner raceway

Figure 1-1. Angular Contact Ball Bearing Nomenclature.

The nominal 60° angular contact ball bearing used in ballscrew support applications is billed

as an anti-friction bearing. Through geometry, rolling motion is created between the balls

and the raceways. By establishing point contact between the balls and the raceways, lines

of contact can be drawn that extend through these contact points converging upon a single

location along the rotational axis of the ball bearing. These bearings have been adopted for

use in ballscrew support applications by virtue of their low operating torque, appreciable

axial load carrying capability, and axial stiffness when stacked in multiple row

arrangements.
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1.2.2 Tapered Roller Bearing Nomenclature.

Figure 1-2 shows the cross section of a tapered roller bearing. The cage is not shown in

the figure but it is an integral part of the geometry of the tapered roller bearing. The cage

prevents the rollers from coming into contact with one another as they roll around the

raceways.
Cup,

Roller , 

Bore

LCone- N Z

_v

Figure 1-2. Tapered Roller Bearing Nomenclature.

Figure 1-2 illustrates the basis behind the anti-friction nature of the tapered roller bearing.

The rollers rotate around the raceways in true rolling motion as the individual apices of the

rollers converge at one point along the rotational axis of the bearing. This creates a line of

contact between the rollers, the cup, and the cone allowing for very large axial load

carrying capabilities and stable axial stiffnesses which will be detailed in Section 3.1. This

bearing is very robust and well suited to aggressive applications requiring high axial

stiffnesses due to the large contact area between the rolling elements and the raceways.

As there is a greater contact area between the rollers and the raceways than there is for the

ball bearing under point contact, more effort is required to rotate the tapered roller bearing.

Ballscrew actuators are typically low-speed, intermittent motion applications. Therefore,

torque related concerns are minimized. Further torque minimization can be attained for the

tapered roller bearing through proper profiling, enhanced surface finishes, and proper

lubrication. Rotational resistance will be explained further in Sections 2.3 and 3.3.
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1.2.3 Bearing Preload.

'Preload' can be thought of as a load that is instilled upon the bearing prior to operation.

Preloading eliminates any floating ball or roller conditions, assuring that the rolling

elements are in contact with both the inner and outer raceways. This load is commonly set

by the bearing manufacturer who grinds the contacting faces of stacked bearings such that a

gap is created between the bearings when they are pressed onto a shaft or into a housing.

An example of which can be seen in the mounting configuration seen in Figure 1-3.

Lock Nut
(denaged)

Figure 1-3. Illustration of the Gap Used to Set System Preload.

This gap is subsequently squeezed shut by the application of a nut on the end of the shaft or

some form of a follower bolted onto the housing. By squeezing the gap shut until the

ground surfaces come into contact, preload is applied to the system. There are many means

of setting preloads. Some of these methods include the use of shims, ground spacers,

springs, and over or under-sized balls or rollers. Figure 1-4 shows the resulting

compression of the bearings due to the approach of a locknut.

Lock Nut
(engaged)

Figure 1-4. illustration of Preloaded System.
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Any load that the system sees during operation is called an applied load and is in addition to

the preload already within the system. It will be shown in Section 2.0 how the contact

angle across the rolling elements in angular contact ball bearings changes in relation to the

axial load. It is therefore important to realize that the preload within the system contributes

to the total load and effects the contact angle determining the axial deflection and axial

stiffness. An illustration of the effect of preload on the load deflection curve of an angular

contact ball bearing can be seen in Figure 1-5.

0A

Fp F F

a) Non-preloaded Bearing Load-Deflection Curve. b) Pieloaded Bearing Load-Deflection Curve.

Figure 1-5. Effects of Preload on Angular Contact Ball Bearing Deflection.

The graph on the left depicts a non-preloaded bearing's. load deflection curve. If the

bearing is set with a preload Fp, the resulting load deflection curve due to any applied load

will appear as the graph on the right. Note that the curve on the right is the same as the

portion of the left curve above Fp. By using preloaded bearings, the relative displacement

is less and the stiffness is higher than for non-preloaded systems. The calculation

procedure will be given in Sections 2 and 3 for the generation of load deflection curves for

both angular contact ball bearings and tapered roller bearings.
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2.0
Angular Contact
Ball Bearing Characteristics.

To aid in the design effort of the tapered roller bearing, the

angular contact ball bearing was evaluated in terms of the

ballscrew application's critical parameters, axial stiffness and

torque. These characteristics are derived and challenged

experimentally in the following section for both the single

and triplex angular contact ball bearings.

13



2.1 Axial Deflection and Stiffness Calculations.

To calculate the axial deflection and axial stiffness values for angular contact ball bearings,

the normal deflections across the balls in the raceways will be solved. In doing so, the

relative approach of remote points in the contacting bodies can be extended to represent the

axial approach of the angular contact ball bearing ringsl. This relative approach is

equivalent to the axial deflection of the bearing. By constructing a curve of axial deflection

versus axial load, the axial stiffness values can be determined by analyzing the slope of the

line tangent to the load deflection curve at the point in question. For the following

calculations, the assumption of rigid rings is used such that telescoping issues do not

complicate the solution.

2.1.1 Single Row Angular Contact Ball Bearing.

The axial deflection calculation method outlined in this section delivers the load-deflection

relationship seen in Figure 2-1. If the axial deflection of a pre-loaded system is desired

under an applied load Fa, the relationship between the deflection 8p, due to the preload Fp,

and the resulting deflection 4,, due to the applied axial load Fa, can be seen in Figure 2-1.

A

6aIa
I I II F

Fp F

Figure 2-1. Axial deflection in a preloaded system.

1 See also: T. A. Harris. Rolling Bearing Analysis. John Wiley & Sons, Inc. New York 1991
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For preloaded systems, the externally applied loads Fa are in addition to any preloads

already existing across the bearings. The following derivation of the axial deflection and

resulting axial stiffness of a single angular contact ball bearing is for centric thrust loading

only where the radial component of the applied load is much less than the thrust

component.

Fa >> Fr FrO0

The above loading condition creates an environment in which the thrust load is shared

equally amongst the balls in the raceway. To calculate the load on any one ball so that an

evaluation of the Hertzian deformation between the ball and the inner and outer raceways

can be performed, simple geometry leads us to the following relation:

Z sin a 2.1

Qn is the normal load on the ball, Fa is the axial load on the bearing, Z represents the

number of balls in the raceway and a is the contact angle. The contact angle is defined as

the line drawn through the points of contact that occur between the ball and the inner and

outer raceways as shown in Figure 2-2.

Pa

Figure 2-2. Illustration of the Contact Angle a.

It is important to note that as the angular contact ball bearing is loaded axially, the contact

angle a, changes due to the deformations that take place between the raceways and the

balls. Before solving for the resulting contact angle a due to an applied load Fa, the initial

15



unloaded contact angle a° must be found. Be wary when using values of contact angles

supplied by the bearing manufacturer. The values typically quoted are for the bearing when

it is in the preloaded condition, or a prior to the influence of external loads. The most

important thing to remember is that the contact angle changes when the load across the

bearing changes. From strictly geometric considerations one can calculate the initial

unloaded contact angle, a°, for the ball bearing.

a=cos (1 2BD) 2.2

In the above equation D is the ball diameter, B is defined as the total curvature of the ball

bearing which is a function of the groove radii and the ball diameter while Pd refers to the

diametral clearance (free radial motion of the bearing in the mounted but unloaded

condition).

B r r + 1
D D 2.3

Pd =do - di - 2D 2.4

In Equations 2.3 and 2.4 the basic dimensions of the ball bearing are introduced: inner

groove radius ri, outer groove radius ro, inner raceway diameter di, and the outer raceway

diameter do. From classical rolling bearing theory it has been shown that the normal

deflection n is related to the normal load across the rolling elements in the following

fashion:

Qn = Kn n1'5 2.5

The exponent of the normal deflection S, is equal to 1.5 as we are assuming point contact

between the ball and raceways. For line contact assumptions this exponent changes to

1.11. When a thrust load is applied to the bearing inducing an axial deflection da, there is a

normal component along the line of contact which can be defined as:

i=BD(--(cos a 2.6

16



Figure 2-3 illustrates the axial deflection and subsequent change in contact angle from a ° to

a. In this illustration the bearing changes from an unloaded to a loaded condition.

Fa

Figure 2-3. Change of Contact Angle under Thrust Load.

The quantity Kn defined in Equation 2.5 represents the load deflection factor and is also

dependent upon the loaded contact angle a for computation. As both the load and deflection

characteristics are dependent upon the contact angle a, an iterative approach must be used.

K =L 

RK K0I + J2.7

where Ki,o = 3.12*107(£pi.y2 6i,o 2.8

for steel ball and raceway contact

To find the summations of the curvatures, pi, for the two conditions, ball/inner race and

ball/outer race consider Figure 2-4:

17

-C



U- V #- 'U----

Figure 2-4. Geometry of Bodies Contacting Along Contact Angle.

To determine the curvature sum for the contacting bodies observe the two orthogonal

planes seen in Figure 2-4. These planes intersect in a line oriented along the contact angle

a passing through the point of contact of the two bodies. In these intersecting planes lie

four radii defining the curvatures: P, P12, P21, and P22. The curvature summation can be

expressed as:

£Pio=P11 + P12+P21 +P22 + 1 ++ 1 
il r12 r21 r22 2.9

Separating the above figure into the two intersecting planes to better illustrate the contacting

geometry between the ball and the inner raceway we obtain the following cross sections

which aid in defining the radii comprising the curvature summations:

18



View of Plane 1 for ball-outer raceway contact.

Figure 2-5. Planar Geometry for Ball-Inner Raceway Contact.

In the above figures the inner raceway is represented as body 1 while the ball is represented

as body 2. Therefore P12 designates the curvature of body 1 in plane 2. The curvatures for

the calculation of the inner curvature summation pi through Equation 2.9 have been given

in Figure 2-5. The quantity dm represents the pitch diameter of the bearing.

d= d2+di) 2.10

Note the negative sign for pll. It is imperative that all convex surfaces are positive while

all concave surfaces are negative.

For the contact of the outer raceway and the ball, the ball was designated as body 1 while

the outer raceway was designated as body 2. The cut planes can be seen below in Figure

2-6.

View of Plane 2 for ball-outer raceway contact.View of Plane 2 for ball-inner raceway contact.

2
12 dm -D

coS a

P ,2
D

P12 ' P2 2 P
D 4D

Figure 2-6. Planar Geometry for Ball-Outer Raceway Contact.
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After determination of the curvatures for the ball-outer raceway contact, the outer curvature

summation, po , can be calculated using Equation 2.9. Once again, check to be sure that

convex surfaces have positive curvatures while concave surfaces have negative curvatures.

Combining Equations 2.8 and 2.9 with the values from Figures 2-5 and 2-6 allows Kn to

be rewritten as:

Kn

Again n = 1.5 for point contact. The final parameter to be quantified is the dimensionless

contact parameter 6*. Once this value is determined, Kn can be solved leading to the

determination of the axial deflection and stiffness.

The value of 8* is the dimensionless parameter dealing with the relative approach of two

curved bodies and is related to the deformation that takes place between them. In the

deformation of the curved surfaces seen in Figure 2-4 two things happen. First remote

points within the two bodies approach each other by the amount 8. Secondly, an elliptical

contact area is formed between the two curved bodies defined by the dimensions of the

semimajor and semiminor axes a and b. Figure 2-7 Illustrates these concepts.

I i

Figure 2-7. Illustration of Contact Parameters 6, a, and b.

20

V
F

I A i -",

-bo~a*



In short, the contact area defined by the ellipse with axes 2a and 2b results from the relative

approach which is governed by the load and geometry of the bodies. These three
quantities 8, a, and b describing the physical characteristics of the contact deformation can
be expressed as:

a = 2k)3 3Q 1-l
X 2Zp El

i 2Ep E EbP~~~c l-hr~9

X9 i2k2 E
.+

2.11
I

3

2.12

2 2.13
2.13

In the above Equations, E1,2 represents the Young's modulus for the materials of bodies 1
and 2 while 41,2 represent the Poisson's ratios. Also, k=a/b and the variables F and E are

the complete elliptic integrals of the first and second kind:

1

F 1- 1 - sin 2 2d,2

2.14

k 2

2.15

Unfortunately, there is no direct integration to solve for the above integrals1. Equations
2.14 and 2.15 evaluate the first quadrant of the elliptical contact area's footprint. These
integrals can be solved through numerical integration using Simpson's Rule to generate the

values of , a, and b in Equations 2.11, 2.12, and 2.13.

1 See also: A. H. Slocum. Precision Machine Design. Prentice Hall, New Jersey. 1992 pg. 228-235
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Conveniently, there is a relationship between a property known as the curvature difference

F(p) and the elliptic integrals of the first and second kind.

F(p)io = [(P I - P12) + (P21 - P22)] i.
cQ4~~~ i.- o 2.16

p =(k2 + )E- 2F
F(P)i o =2

~(k 2 ~~1)E 2.17

The curvature difference in Equation 2.16 can be solved directly from the geometry of the

two contacting bodies as was detailed through Equation 2.9 and the equations in Figures 2-

5 and 2-6. F(p) is a dimensionless value and the dimensionless values of 6, a, and b,

namely d*, a*, and b* can be expressed as functions of F(p). Table 2-1 summarizes the

relationships between the dimensionless parameters F(p), 5*, a*, and b*.

Table 2-1. Relationship of F(p) to the dimensionless contact parameters d*, a*, and b*.

Emiu h* a* h

0 1 1 1
0.1075 0.9974 1.0760 0.9318
0.3204 0.9761 1.2623 0.8114
0.4795 0.9429 1.4556 0.7278

0.5916 0.9077 1.6440 0.6687
0.6716 0.8733 1.8258 0.6245
0.7332 0.8394 2.011 0.5881
0.7948 0.7961 2.265 0.5480

0.83495 0.7602 2.494 0.5186
0.87366 0.7169 2.800 0.4863
0.90999 0.6636 3.233 0.4499
0.93657 0.6112 3.738 0.4166

0.95738 0.5551 4.395 0.3830
0.97290 0.4960 5.267 0.3490
0.983797 0.4352 6.448 0.3150
0.990902 0.3745 8.062 0.2814

0.995112 0.3176 10.222 0.2497
0.997300 0.2705 12.789 0.2232
0.9981847 0.2427 14.839 0.2072
0.9989156 0.2106 17.974 0.18822

0.9994785 0.17167 23.55 0.16442
0.9998527 0.11995 37.38 0.135050
1 0 infinite 0
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Dimensionless values for , a, and b
applications of this calculation method,

computation of K..

have been presented to allow the universal

and quick reference to the value of 5* for the

The relationship between F(p) and d* can be seen graphically in Figure 2-8.

0.90

0.85

0.80

0.75

0.70

8* 0.65

0.60

0.55

0.50

0A5

0.40

0.35

0.30
0.6 0.7 0.8

F(p)

0.40

0.35

0.30

6*
0.25

0.20

0.15

0.9 1.0
0.10

0.990 0.992 0.994 0.996 0.998 1.000
F(p)

Figure 2-8. Relationship Between F(p) and *.

A curve fit was applied to Figure 2-8 so that the relationship between F(p) and d* could be

used in a spreadsheet. The following equation details the above graphical relationship:

8 = .13013 + 12.787 ([-(log F(p))]-667) -148.46 ([(log Fp].667) +

956.25 ([-(log F(p))]667} - 2925.8 ([-(log F(p))].667) +

3346.3 ([-(log F(p))].667)
2.18

The dimensionless quantities of Table 2-1 are related to the elliptic integrals of the first and

second kind by the following relations:

a= 2 )3
Xf it 12.19

b* = 3
b*x-ka 2.20
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£= (K X l2k2S r2.21

Refer back to Equations 2.11, 2.12, and 2.13 to see the established relationships come full

circle: F(p) to 8*, a*,b*, to 8, a, b, to E,F and back to F(p). In more detail, F(p) is

defined by the geometry of the bodies in contact. The value of F(p) can be matched to

values of d*, a*, and b* through Table 2-1 summarizing the curvature dependent

deformation parameters. The values of 8*, a*, and b* are next transformed from

dimensionless quantities into , a, and b through the load, geometry, and material

considerations of Equations 2.11, 2.12, 2.13. Substitution of k=alb into equations 2.14

and 2.15 allows the calculation of the elliptic integrals which in turn describe F(p).

Returning to the calculation for the axial deflection and axial stiffness of the angular contact

ball bearing, solving for F(p) and referring to the above table, graph, or approximation for

the corresponding value of ?*, Kn can be calculated based upon the contact angle a.

Combining Equations 2.1, 2.5, and 2.6 creates the equality that must be established

through the iteration of the contact angle a.

F[ =KnBDICos a.o 1 
Z sin a os a )]

Once a value of a has been found which satisfies Equation 2.22, the axial deflection and

axial stiffness of the thrust loaded angular contact ball bearing can be calculated.

B D sin (a -a°)
Cos a 2.23

The axial stiffness is defined as the inverse of the slope of the line tangent to the load-

deflection curve generated using the preceding equations.

Creating a numerical iteration scheme to balance Equation 2.22 using values of the contact

angle, a, one can develop an active axial deflection and axial stiffness calculator for an

angular contact ball bearing. A schematic diagram shows the interrelationships between the

bearing parameters and the eventual computation path used for the calculations. Parameters

that must be entered into the system are found in the rounded cells. The remaining cells

represent calculations.
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Figure 2-9. Angular Contact Ball Bearing Calculation Flowchart.

A sample spreadsheet has been created to perform the deflection and stiffness calculations

for an angular contact ball bearing using Equations 2.1 through 2.23 and the calculation

flow path seen in Figure 2-9.

The following spreadsheet calls for the iteration of the contact angle a to obtain values for

the axial deflection at the desired load. The iteration is complete when the iteration balance

reads zero. Referring to the spreadsheet, with the specified bearing parameters an axial

deflection of 0.000732" can be expected under a thrust load of 2040 lbs. Using the

spreadsheet, a load-deflection curve can be generated from which the slope of the curve at

any point will give the axial stiffness of the bearing under those conditions. For the

conditions in Figure 2-10, the angular contact ball bearing has a theoretical axial stiffness of

4.0x106 lbin under an axial load of 2040 lbs.

25

6,

e,



Angular Contact Ball Bearing Axial Deflection Calculator

Bearing Parameters

z
D
di

ri
ro

dm
Qn

B
Pd
Oo

Ipi

F(p)i
Fp)o

$*i
5*0

Ki
Ko
Kn

(bin,°)

18.
0.343750
1.817159
2.520305
0.178750
0.182188
2.168732

133.249290
0.050000
0.015646
56.986021
0.2587032
0.2244028
0.9318904
0.9013479
0.617678
0.667269

870751.2263
832669.2009
300958.5107

Axial Load
(Ib) (N)
2040.00 9073.92

(N,mm,rad)

8.731250
46.155839
64.015747
4.540250
4.627563
55.085793
592.69284
0.050000
0.397408
0.994594

Contact Angle
O (Ma
58.270028 1.017003

iteration balance
0.000000

Axial Deflection (in) = 0.0007321

inner/outer contact area = 0.0065 in2 I

Figure 2-10. Angular Contact Ball Bearing Spreadsheet.

A good first order approximation of angular contact ball bearing axial deflection has been

presented in Harris' Rolling Bearing Analysisl. This approximation allows quick back-of-

the-envelope estimations of axial deflection which can be used to create a load deflection

curve to determine rough stiffness values.

8a = 1.58 x 10-5 Q.667
D.333 sin a 2.24

In this equation, Q = Fa(Z sina) with the axial load, Fa, in lbs and the ball diameter, D, in

inches.

Analysis of the contact areas that are formed between the balls and the raceways is useful in

assessing bearing heat generation. Working from the geometric relationship of F(p)

established in Equation 2.16, values of a* and b* can be gathered from Table 2-2 and used

1 T. A. Harris. Rolling Bearing Analysis. John Wiley & Sons, Inc. New York 1991 pg. 328.
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with Equations 2.11 and 2.12 to calculate the inner and outer contact areas. This has been

done for the MM35BS72 angular contact ball bearing and can be seen in the following

graphs relating the elliptical contact areas to the axial load and axial deflection.
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0.004

0.003

0.002

0.001

0.000

0.009

0.008

.~ 0.007
- 0.006

i 0.005
0.004

0.003

0.002
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0.000
0 500 1000 1500 2000 2500 3000 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

axial load (lb) axial deflection (in)

Figure 2-11. Elliptical Contact Area as a Function of Load and Deflection.

The calculation procedure for the contact area that forms between the balls and the raceways

is similar in fashion to the calculation of d*. Once F(p) is calculated through the geometric

relationship of Equation 2.16, the values in Table 2-1 are used to determine the

dimensionless contact parameters a* and b*. Knowing these values, they can be

substituted into Equations 2.11 and 2.12 to solve for the semimajor and semiminor axes of

the elliptical contact area. Curve fitting the values of F(p) to the values of a* and b*

delivers the following relationships that can be used in spreadsheets to calculate the values

of a and b for varying load conditions.

1 - .71288 + 14.701 ([-(log F(p))-I667 - 49.315 ([-(log F(p))]667) +
log a

158.98 ([-(log F(p).667)3 - 190.41 ([-(log F(p))].667) +

99.340 ([-(log F(p))]'667) 2.25

1 = 1.0689 + 55.224 ([-(log F(p))].667} - 366.71 ([-(log F(p))].667 +
- log b

2007.3 ([ (log F(P)]667) - 3894.5 ([-(log F(P))]667} +

3192.6 ([-(log F(p))]667) 2.26
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Using the above relationships between F(p) and the dimensionless contact parameters a*

and b* along with Equations 2.11 and 2.12, the elliptical contact area can be found as:

A elliptical contact = X (ab) 2.27

2.1.2 Triplex Angular Contact Ball Bearing.

The results obtained through Section 2.1.1 for the single angular contact ball bearing can be

extended to calculate the axial deflection and axial stiffness of any mounting condition.

Consider the stackup of three angular contact ball bearings in a triplex arrangement as in

Figure 2-12.
Cup Housing - anchored to ground

/

Lock Nut

L

I...

S W

Bearing 1 Bearing 2 Bearing 3

Figure 2-12. Triplex Angular Contact Ball Bearing System.

Multiple rows of bearings are used to increase the load carrying capability and alter shaft

end-conditions in applications. When multiple rows of bearings are used to support a shaft

subjected to tilting moments about the bearings, the shaft-ends can be modelled as if they

are sunk into a wall. This improves the stiffness of the shaft system as the deflection and

rotational characteristics are improved.

By calculating the forces that exist across each of the angular contact ball bearings, stiffness

values can be generated for the individual bearings which can be summed in parallel to

represent a composite bearing package stiffness. A parallel summation of the stiffnesses is

used due to the perfect load sharing assumption that will be detailed later. To calculate the
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loading conditions that exist across a ball bearing stack-up, start with the preload

conditions.

When the bearings are tightened against the shoulder of the ballscrew using the locknut, the

preload force is established within the bearing system. The value of the preload within the

bearing is set by the manufacturer as discussed in the introduction to Section 2.0.

Knowing the amount of the load that is 'within' the bearings when they are tightened down

such that their raceways are in contact with each other is imperative. Without this

information it is very difficult to calculate the resulting effects of externally applied loads to

the bearing system and their effects on the deflections and stiffnesses. A single

MM35BS72 angular contact ballscrew support bearing is manufactured with a preload of

1500 lbs. This can be verified by looking at the single bearing load-deflection curve.

When the curve is obtained experimentally as in Section 2.2, it can be inversed about the

load axis and the point of intersection determines the amount of preload within the elastic

region of deformation of the bearing. Figure 2-13 illustrates the graphical method of

verifying bearing preload.

I.

Fp F

Figure 2-13. Determination of Bearing Preload from the Load-Deflection Curve.

At the intersection of the load deflection curve and its inverse, the resulting axial load is

1500 lbs and the axial deflection is 0.000598". This means that it takes 1500 lbs of axial

load to close the gap that is ground in by the bearing manufacturer. When stacking up three

angular contact ball bearings in triplex fashion as in Figure 2-12, the amount of preload that

will exist in the system is different than the amount of preload that exists across a single

bearing. This is because the preload force stems from the closing of the gaps that are
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ground into the bearings by the manufacturer. The total gap within the triplex system is

twice that for the single bearing. Figure 2-14 illustrates the gap locations in the triplex

system before they are squeezed shut during preloading.

Lock Nut

nd

Iscew

Bearing Bearing 2 Bearing 3

Figure 2-14. Illustration of Gap Locations in Non-Preloaded Triplex Stack-up.

Notice that there is no gap between the two tandem bearings. This is because the inner and

outer raceways are ground to the same width. With the introduction of the balls, the

raceways are 'spread'. Looking at Bearing 1 of Figure 2-14, the inner race extends out to

the left while the outer race extends the same amount to the right. Figure 2-14 also

illustrates how similar bearings oriented in the same direction do not expose a gap as the

amount of 'extension' of the raceways on either side of the ball are equal. However, when

placing bearings in opposing directions such as Bearings 2 and 3 of Figure 2-14, the two

gaps are exposed. Therefore, the total gap to be closed for the triplex arrangement of the

MM35BS72 angular contact ball bearings is twice the single bearing gap and is equal to

0.001196".

Under the perfect load sharing assumption, the two tandem bearings each carry the same

amount of axial load, the sum of which is equal to the load carried by the third bearing,

oriented in the opposing direction. In order to find the amount of load across each of the

bearings in the triplex system when the gaps are closed, or preloaded, we return to the

load-deflection curve for the single bearing. The following conditions must be satisfied:

the load across each of the tandem bearings must be half that across the third opposing
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bearing, and the sum of the axial deflections of the tandem pair and the third opposing

bearing must equal twice the axial deflection of the single bearing under preload.

For the triplex stack-up of MM35BS72 angular contact ball bearings, the load across

Bearings 1 and 2 is 1020 lbs while Bearing 3 opposes them with 2040 lbs. At 1020 lbs,

the axial deflection is 0.000464" and at 2040 lbs the axial deflection is 0.000732"

amounting to a sum of 0.001196", equal to twice the single bearing gap. For the triplex

arrangement, the amount of preload can also be found through the following relationship:

Fp' = 1.36 Fp 2.28

Fp' represents the triplex preload force while Fp represents the preload ground into a single

bearing. To calculate the stiffness of the triplex system in the preloaded condition it is

necessary to compute the individual bearing stiffnesses under their individual loads and

then sum the stiffnesses.

Stiplex under preload = S1020 + S1020 + S2040 2.29

The stiffnesses are summed as if they were springs operating in parallel because of the

perfect load sharing assumption. Figure 2-15 illustrates the perfect load-sharing

assumption for the triplex system.

Fa

Figure 2-15. Parallel Spring Model of Perfect Load Sharing Assumption.

The individual stiffnesses S1o2o (axial stiffness at 1020 lbs) and S20 40 can be found by

looking at the slope of the load-deflection curve for the single bearing.
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Knowing the load across the preloaded bearings is critical in predicting the results of

external forces to the system. One such externally applied load that will be discussed

further in Section 4.1 is the stretch that is applied to a ballscrew shaft to improve various

operating characteristics. If a stretch is induced resulting in an additional 2000 lbs of axial

force that must be carried by the support bearings, each of the triplex ends on the ballscrew

would have to assume 1000 lbs of the stretch load. This load, since it is trying to pull the

bearings towards the center of the ballscrew, would create the following load conditions

within the triplex system: Bearings 1 and 2 would carry 1520 lbs axially while Bearing 3

would be loaded with 1040 pounds. Remember that the 1000 lbs is in addition to the

preload within the bearing system. Referring to Figure 2-15 and assuming that the stretch

load is equal to Fa, it can be seen how the two bearings in tandem will go into a state of

compression (addition of load) while the third bearing will move in a tensile fashion

(subtraction of load). Remember that the perfect load sharing model assumes that the three

inner rings are contacting and that they will all move along the axis together when subjected

to an applied axial load. The resulting stiffness value of the triplex system can be re-

evaluated under the new loading conditions:

Striplex under preload and stretch = S1520 + S1 52 0 + S1 0 4 0 2.30

This procedure holds for any loading condition and any mounting arrangement.

Triplex system stiffnesses will be detailed for the ballscrew application in Section 4.0

relating to ballscrew stretch conditions, thermal concerns, and externally applied loads.

2.2 Angular Contact Ball Bearing Axial Deflection Experiment.

In an attempt to verify the theory presented in Section 2.1, a series of non-rotating

deflection tests were run with the angular contact ball bearings. Axial deflection

measurements were made on a single angular contact ball bearing and a load-deflection

curve generated similar to that seen in Figure 2-1. From the experimental curve generated

in Figure 2-17, the stiffness values of the single angular contact ball bearing can be taken as

the inverse of the slope at the load in question. Figure 2-16 shows the set-up for the axial

deflection test.
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Figure 2-16. Angular Contact Ball Bearing Axial Deflection Test Set-up.

A Baldwin Universal Tester was used to administer the axial load to the bearing. The load

was distributed by way of a steel sphere set within two piloted mounts. The outside and

inside diameters were constrained such that telescoping effects would not influence the

axial deflection results. Telescoping can be thought of as a radial expansion or contraction

of the bearing raceways under load. The toleranced fits for constraining the inside and

outside diameters of the bearings were taken from the specifications for the required fits of

the ballscrew system.

Shaft and Shoulder Tolerances for MM35BS72 Angular Contact Ball Bearing

shaft diameter 34.995mm - 34.990mm
housing diameter 72.008mm - 72.000mm

shaft shoulder diameter 42.0mm ±0.13mm
housing shoulder diameter 64.0mm i0.13mm

max fillet radii 0.80mm

Measurements of the axial deflection were made using ball tipped contact styluses at three

points spaced 1200 apart. The styluses touched off along the ground bottom face of the

bearing outer raceway as seen in Figure 2-16. The three values were averaged to generate a

more accurate value for the axial deflection. After the deflection test was run, the bearing

was removed and the deflection within the fixturing elements was evaluated. The curve

resulting from the mechanical deflection of the fixture was subtracted from the load-

deflection curve obtained with the bearing. The resulting curve is the true deflection of the

bearing minus any fixturing effects and can be seen in Figure 2-17 along with the

theoretical curve generated in Section 2.1.
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Figure 2-17. Comparison of Experimental and Theoretical Results for

MM35BS72 Angular Contact Ball Bearing Axial Deflection.

From Figure 2-17 the axial stiffnesses at any point along the curves can be found by taking

the inverse slopes at the load in question. Table 2-2 summarizes the experimental and

theoretical static stiffnesses for the MM35BS72 angular contact ball bearing.

Table 2-2. Static Stiffnesses for MM35BS72 Angular Contact Ball Bearing

single bearine stiffness (lbfin)
2.730e+6
2.833e+6
2.944e+6
3.063e+6
3.193e+6
3.335e+6
3.489e+6
3.659e+6
3.846e+6
4.053e+6
4.284e+6
4.542e+6

theoretical stiffness (lb/in)
1.889e+6
2.421e+6
2.781e+6
3.066e+6
3.307e+6
3.524e+6
3.725e+6
3.914e+6
4.087e+6
4.248e+6
4.393e+6
4.519e+6

Notice how the axial stiffness increases with increasing axial load. This is due to the

changing contact angle which allows for better load transfer between the raceways. From
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the above table it is clear that operation under preloaded conditions are definitely desirable

to maintain elevated stiffness values.

The theory appears to be a fair approximation of the experimental system. Careful attention

to the approximation procedure of evaluating the elliptic integrals can close the difference

between the theoretical and experimental values. The theoretical stiffnesses calculated are

within roughly 10% of the experimental values.

2.3 Angular Contact Ball Bearing Torque Calculations.

Bearings in rolling contact are often referred to as anti-friction bearings. Although the

frictional values of these bearings are subsequently smaller than for bearings in sliding

contact, the rolling bearing is not devoid of all friction, hence the term anti-friction is

somewhat of a misnomer. The friction within a bearing can be thought of as a retarding

torque or a resistance to motion. This internal friction generates heat and vibration causing

thermal growth and accelerated bearing wear. It is desirable to keep bearings cool while

running as they are often responsible for system alignment, load carrying capacity, and safe

machine operation. The main sources of bearing friction stem from the following areas:

* material elastic hysteresis while rolling

* microslip of the rolling element along the raceway due to bearing geometry

* microsliding induced by deformation of the contacting bodies

* microslip between the rolling elements and the cage

* viscous drag of the lubricant on the revolving elements

* seal friction

The above areas are all contributors to the total friction present within the rolling bearing.

Of these areas the most significant in reference to the angular contact ball bearing are the

frictional effects due to the running resistance and the friction due to the sliding and

hysteresis effects while rolling.

Palmgren set forth an empirical relation for the calculation of the torque of an angular

contact ball bearing based upon several controlled studies. It was found that the bearing

torque M could be expressed as the summation of the torque components due to the

running resistance Mo and the sliding and hysteresis resistance M1. These components are
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calculated as being independent of dynamic loads. In ballscrew applications, the effects of

dynamic loads are small when compared to the static loads of bearing preload and ballscrew

stretch. To calculate the torque due to the running resistance Palmgrenl developed the

relationship:

Mo= 8.66e-2 f p dm(p )2 2.31

The constant in front of the equation is used to change the units from kg-mm to lb-in. The

other variable in Equation 2.31 represent the following: fo is the bearing design and

lubrication factor, p is the difference between atmospheric pressure and the vaporization

pressure of the oil in kg/mm2 , dm is the pitch diameter in nmm, T1 is the dynamic viscosity of

the lubricant in units of kg-sec/mm2 , and o is the angular velocity of the bearing rings in

relation to each other in rad/s.

Normally p is negligible so p = atmospheric pressure. An important assumption in the

above equation is that the film thickness does not drop below one micron (40 microinches).

Should this happen, due to surface roughnesses on the rolling elements and the raceways,

the hydrodynamic theory no longer applies. To maintain this assumption the following

must be true: qlw/p Ž 2e-6. The bearing design and lubrication factor f is related to the

number of angular contact ball bearings by fo=2b where b is the number of bearings under

consideration. In bearings using grease, 7 and p refer to the base oil used and the above

values forfo only hold for grease lubricated bearings shortly after they have been lubricated

due to thermally induced lubricant viscosity breakdown which is difficult to accurately

quantize.

If vn >2000 Equation 2.31 can be modified into a more useable form

Mo = 8.66e 10° fo d3 (v n) 0.66 7 2.32

where v is the kinematic viscosity in cSt (mm2 /sec) and n is the rotational speed in rpm.

Using Equations 2.10 and 2.32 with values of 27cSt for the kinematic viscosity, v, of the

Kluber Topas Isoflex NB52 grease specified for the ballscrew system, a shaft speed of

1 A. Palmgren. Ball and Roller Bearing Engineering. 3rd ed., Burbank, Philadelphia (1959)
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1450rpm necessary to achieve a rapid traverse speed of 800 ipm with the ballscrew lead,

andfo equal to 2, Mo= 033 in-lb for the MM35BS72 angular contact ball bearing.

To calculate the amount of sliding and hysteresis resistance MI in the bearing, Palmgren

offers the following empirical relation:

M1 = 8.66e'2 fi gldm Po 2.33

Again, the constant 8.66e-2 alters the units of Mi from kg-mm to lb-in. fi is the bearing

design and load factor, gl is a constant based on load orientation, Po is the static equivalent

load in kg factor and dm is the pitch diameter in mm.

Palmgren found that for an angular contact ball bearing having a contact angle, a, of

approximately 600,

f o0.0013O} 2.34

The static equivalent load factor Po can be expressed as

Po = Xo Fr + Yo Fa 2.35

where Xo is equal to 0.5 for the angular contact ball bearing, Fr is the radial component of

the maximum static load in kg, and Fa is the axial component of the maximum static load in

kg. The quantity Y, is dependent upon the depth of the raceway groove and the bearing

diametral clearance. A value of 0.3 for Yo is acceptable as long as the contact load zone

does not override the raceway causing load zone truncation and excessive raceway loading.

This can be determined from geometric considerations based upon the contact angle a and

the elliptic load zone diameters a and b.

The basic static load rating CO is related to the load on the maximum loaded rolling element

such that

Co = Qax i z sin a = ko i z sin a D2 2.36
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with i representing the number of bearing rows, z being equal to the number of rolling

elements in each raceway, and ko for ball bearings being described by the following

function

ko= 2.8
D (PIl + P12)(P21 + P22) 2.37

The last quantity to be defined in Equation 2.33 is gl which can be solved for thrust loaded

bearings as

Fgi=-
Po 2.38

where F is the static thrust load on the bearing in kg.

Using the above equations to calculate a value of M1 for the MM35BS72 triplex angular

contact ball bearing system under an axial load of 1000 pounds (454.5 kg), Ml = 1.75 in-

lb.

The total torque M can be estimated through the summation of Equations 2.32 and 2.33

such that

M = Mo+ M 1 2.39

For the MM35BS72 angular contact ball bearing operating under the aforementioned

ballscrew system conditions, the total torque M was estimated to be 2.08 in-lb.

2.4 Angular Contact Ball Bearing Torque Experiment.

The angular contact ball bearing was tested to measure torques under various load

conditions. The testing apparatus is capable of applying varying or static axial loads as

well as varying or constant rotational speeds. This flexibility enabled the simulation of the

anticipated ballscrew environment. The testing apparatus used to perform the torque tests

can be seen below in Figure 2-18.
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Figure 2-18. Schematic View of the Torque Test Apparatus.

The axial load is supplied by a hydraulic ram which is closed-loop controlled by a multi-

axis load cell. This load cell is also responsible for reading the moment loads due to the

torque of the bearing. The lubrication used was a Kluber product (Topas Isoflex NB 52)

which is currently specified by the machine tool manufacturer for use on the MM35BS72

angular contact ball bearings in the ballscrew support application.

A simple program was written for the tests which coordinated the axial loading of the

bearing with the rotational speed ramp-up of the spindle. The bearing was loaded prior to

rotation as the preload stretch of the ballscrew in application can be thought of as a constant

force on the ballscrew support bearings. In doing this, the torque test simulated a start-up

while under the load of the ballscrew stretch. A worst case scenario was employed in

which the bearing was subjected to the rapid traverse conditions of the machine-tool.

While spinning at the equivalent rotational speed of 800ipm in the machine-tool application

(1450 rpm), the axial load was varied from 500 pounds to 2000 pounds over a series of

tests. The actual duty cycle that was programmed into the testing apparatus included an

acceleration to 1450 rpm within one second, constant speed for four seconds and then

deceleration to a complete stop.

The start-up torque curve representing the worst case torque conditions can be seen below

in Figure 2-19 for varying levels of axial load. Each curve represents the average torque

spike seen during the series of tests that were run on three MM35BS72 angular contact ball
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bearings. The horizontal axis labelled 'Time (seconds)' has been used merely to illustrate

the relative lengths of recorded torque spikes during the duty cycle.
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Figure 2-19. Torque Test Results for the Angular Contact Ball Bearing.

From the torque test results seen in Figure 2-19, it can be seen that the angular contact ball

bearing torque spike at startup is relatively insensitive to changes in axial load. An average

value that can be assigned to the MM35BS72 angular contact ball bearing for comparison

purposes is 2.9 in-lb per row. Therefore, a three-row triplex stackup of this particular

bearing could be estimated to have a maximum torque of 8.7 in-lb.

Referring to the end of Section 2.3, the theoretical maximum torque of the single row

angular contact ball bearing was a fair approximation at 2.08 in-lb.

Although these issues will not be detailed in this study, the effects of grease volume, run-

in, and usage issues all contribute to the torque characteristics of the bearing1 . Subtle

changes in lubricant amount and type as well as running-in bearings can significantly

reduce wear and improve torque characteristics. Supply the bearing manufacturer with

enough information so that a suitable bearing system can be chosen for the application.

1 See also: T.A. Harris. Rolling Bearing Analysis. John Wiley & Sons, Inc. New York 1991.
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3.0
Tapered Roller Bearing
Characteristics.

The following derivation for the axial and radial deflections

of tapered roller bearings can be very useful in bearing

system design where axial or radial movement of the bearing

under load is critical. Ballscrew actuators are such an

application. The equations presented are capable of

discerning deflections due to combined loading conditions in

applications where the load zone encompasses all of the

rollers around the raceway. It must be assumed however,

that the radial and axial components of the applied load are

on axis as the following derivation does not take into account

tilting moments due to off-axis load components.
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3.1 Axial Deflection and Stiffness Calculations.

As in the deflection calculations for angular contact ball bearings the normal deflections of

the rolling elements and the raceways will be evaluated and then applied to the radial and

axial directions1 . Once again the assumption of rigid rings is used which assumes that the

bearing housing and shaft are infinitely stiff so as to prevent telescoping of the inner and

outer raceways. Also any frictional components resulting from interference fits within the

housing or on the shaft are assumed negligible.

3.1.1 Single Row Tapered Roller Bearing.

Again, the angles of contact are critical in determining the normal deflection across the

rollers. Figure 3-1 defines the two angles that will be used to calculate the axial and radial

deflections for a tapered roller bearing.

a
'Y

Figure 3-1. Tapered Roller Bearing Critical Angles.

a represents the 1/2 included cup angle while y represents the 1/2 included roller angle.

Defining the load zone parameter, e, representing the combined loading condition of the

1 See also: W. K. Dominik. "Bearing Fundamentals" copyright 1973 by The Timken Company.
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bearing in application, the normal approach of the rollers and the raceways can be

calculated. This can be resolved to deliver the axial and radial deflection components.

The load zone parameter can be thought of as a measure of the load zone within the

bearing. When a bearing is subjected to loads that are not purely axial or radial, a

combined loading reaction results. Figure 3-2 shows the differences between pure axial,

pure radial, and combined loading reactions on a tapered roller bearing.

a) pure axial load b) pure radial load c) combined radial and axial load

Figure 3-2. Tapered Roller Bearing Loading Reaction Forces.

The load zone parameter, e, is defined at the maximum loaded roller as the ratio of thrust to

radial load and is related to the total radial and axial deflection components 8 and .a and the

1/2 included cup angle a in the following manner

£ =1|1 + 6 tan a
2 i( /t 3.1

For the tapered roller bearing deflection calculations, line contact is assumed to exist

between the rollers and the inner and outer raceways. The rollers are also assumed to be

seated squarely on the cone rib, causing the line of roller-raceway contact to fall in the same

plane as the bearing's axis of rotation. When the rollers are seated squarely on the cone

rib, true rolling motion will result minus any microslip conditions. If the rollers are not

seated, the line of contact can no longer be guaranteed to fall along the bearing's axis of

rotation and "roller skewing" can result. This causes the bearing to depart from true rolling

motion into sliding friction.
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A slightly different approach will be taken for the axial deflection and axial stiffness

calculations for the tapered roller bearing. The method employed for the angular contact
ball bearing using the curvatures breaks down for the tapered roller bearing's line contact.

Instead, the tapered roller bearing's calculations will be made through the definition of the
radial and axial components of the applied load. These components influence the load zone

as seen in Figure 3-2. The rollers located at varying angles if around the bearing carry the
applied load. Therefore, the sum total of the axial and radial components on each of the

rollers equals the total axial and radial components of the applied load. The Hertzian

relationship between the normal roller load and the resulting deformation for line contact

has an exponent of 1.1 and can be seen in Equation 3.2.

3.2

QV is the normal load across the roller located around the raceway at angular location W, KV,
is the bearing's load-deflection quantity expressed in units of lb/(inll), and 36, is the

normal deflection across the roller at location y. The subscript W refers to the angular

location of the individual rollers in the bearing raceway. Figure 3-3 illustrates the use of

the roller location .

Figure 3-3. Illustration of Roller Location Angle v.

From purely geometrical considerations the normal deflection across any roller 3,, can be

solved for in relation to the maximum normal deflection 8 occuring at the maximum loaded

roller. The following equation details the relationship between the normal deflection across
any roller k to the maximum normal deflection i.

.:[ 2re 3.3
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Determination of A, stems from the Hertzian relationship and is similar to Equation 3.2 for

the case where l = 0.

Ql= K,.s 3.4

Solving Equation 3.4 for 8n and substituting into Equations 3.3 and 3.2 yields a
relationship between the load across any roller at location to the load across the maximum

loaded roller:

I =[ 2 -(l-os)] Q 3.5

The sum of all Qy around the raceway equals the applied load experienced by the bearing.
As the normal load QVis a vector in space, it can be broken down into the axial and radial

components seen in Figure 3-4.

Figure 3-4. Radial and Axial Components of a Combined Loading Condition.

Vectors in space such as Qr require 3 orthogonal components to be completely defined.
However, in our application the net force of Qg in the rotational direction is zero due to the

symmetry of the load distribution. The axial and radial components a, and rw of QV, can be

expressed as

a = Qw sin a 3.6
rv = Q, cos a cos ¥ 3.7
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Substituting Q., from Equation 3.5 into Equations 3.6 and 3.7, the total axial and radial

force components of the applied load can be expressed as a summation of Equations 3.6

and 3.7 for all the existing roller angle locations .

.- = Q. sin a [ - - co ] 
2e 3.8

Fr= Q cos a [1 -1 (1 - os C)]cos 
'I) 3.9

Equations 3.8 and 3.9 can be changed from summations into integrals where N is the

number of rollers in the raceway. The following equations require a full complement of

rollers to be accurate as the integral is evaluted using the roller locations defined by the

angular location i.

F. Qn sina N ( 1 [1 (1 cos]d 3.10

F, = Q cos a N [1- 1( -(1Cos c os )] v d
F,59 I 2e Ntr~ 13.11

The quantities within the large brackets are elliptic integrals and do not posess a direct

solution through integration. Since these components describe the elliptical nature of the

load components seen in Figure 3-2 c), they are termed the axial and radial integrals, Ja and

Jr respectively. Equations 3.10 and 3.11 can be rewritten as

F, = Q. sin a N Ja 3.12

F, = Qn cos a N Jr 3.13

Solving both equations for Q, delivers the following relationship.

Jr= Fr tan a =Z
Ja Fa 3.14

From the above relationship we see that if the loading characteristics and geometry of the

tapered roller bearing are known, an intermediate quantity Z representing the ratio of the

radial and axial integrals is known. Remembering that
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J. = [I - (1 - cos v)] d3.15
-· 2e 3.15

Jr 1 ) [I - (1 - cos cos dv 3.16
f0'o 2E 3.16

are both functions of the load zone parameter e, values of E can be iterated into Equations

3.15 and 3.16 to compute a value of Z equal to that as defined by the loading conditions in

Equation 3.14. In this iteration, the load zone parameter e describes the elliptic loading

condition, much in the same way the value k represented the elliptic contact areas for the

angular contact ball bearing in Section 2.1.1.

Direct integration is not available for the computation of Ja and Jr, so a simple program can

be written in basic or any other computer language to evaluate the elliptic integrals using

approximation techniques such as Simpson's Rule. Once values of Ja and Jr have been

obtained which correspond to the load condition of the tapered roller bearing application,

the normal load at the maximum loaded roller can be solved.

Fa
N sin a Ja 3.17

Qn represents the point normal load on the roller at the mean roller diameter. As this load is

spread along the effective contact length L of the roller, Qn' can be solved for as the load

across the line of contact between the roller and the raceway.

L 3.18

From this the normal deflection i can be calculated.

n = 8.89e8 s [8.45 + log sin )
+l D sin a 3.19

where D is the mean roller diameter. Once the normal deflection has been solved for, the

axial and radial deflection components can be resolved through the use of the load zone

parameter a
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3.20

(1 in a 3.21

Using the above equations to calculate the axial deflection of the tapered roller bearing

under different axial load conditions, the axial stiffness can be found by analyzing the

resulting load-deflection curve.

The following schematic details the calculation procedure for the axial and radial deflections

of a tapered roller bearing. The system characteristics are listed in the circles while the

calculated values are located in the squares.

3-5. Schematic of Tapered Roller Bearing Calculations.

Using the above flowchart, a spreadsheet can be constructed to perform the calculations for

the tapered roller bearing in thrust loaded applications as was done for the angular contact

ball bearing.
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Figure 3-6. Tapered Roller Bearing Deflection Calculation Spreadsheet.

Using the above calculation procedures and the spreadsheet seen in Figure 3-6, a load-

deflection curve can be generated from which the axial stiffness of the bearing can be taken.

The load-deflection curve will result in a straight line. This stems from the contact area

formed between the rollers and the raceways. The contact area for the tapered roller

bearing is elliptical in nature, but the rate of elliptical deviation with increasing load is very

small as a result of the line contact across the raceway prior to deformation. This is in

contrast to the point contact of the angular contact ball bearing. The taper's ellipse is very
long, while the balls' is much more circular in nature. Hence, the change in elliptical

contact area for a tapered roller bearing lies mostly along one axis as opposed to two for the
angular contact ball bearing. This delivers an approximately linear stiffness relationship for

the tapered roller bearing instead of a much more complex relationship as seen for the

angular contact ball bearing.
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Tapered RollerBearing Deflecion Calculato
Tapered Roller Bearing Deflection Calculator
units: in, lbf, and degrees

Load Conditions: Tapered Roller Bearing Parameters:

radial load (Ib) = 1.0 1/2 incl. cup angle () = 30.8
axial load (lb) = 2040.0 number of rollers = 16.

eff. roller length (in) = 0.49
1/2 incl. roller angle (o) = 4.00

mean roller diameter (in) = 0.33

Intermediate Calculations:

Z = 0.000292216 loading condition
Ja = 0.998677060 Sjovalrs Axial Thrust Integral
Jr = 0.000296737 Sjovall's Radial Thrust Integral
E = 845.091052717 Epsilon (load zone factor)

Axial Deflection: 0.000466 0 inches
Radial Deflection: 0.000000 2 inches



A good first order approximation of roller bearing axial deflection has been presented in

Harris' Rolling Bearing Analysis1 . This approximation allows quick back-of-the-envelope

estimations of axial deflection which can be used to create a load deflection curve to

determine rough stiffness values.

8a 8.71 10- 7 Q0 9
L0 '8sin a 3.22

In this equation, Q = F.a(N sina) with the axial load, Fa, in lbs and the effective length, L,

in inches.

Approximations for the contact areas that are formed at the roller-raceway and rib-roller

interfaces can be used for heat generation approximations. The resulting contact areas of

the tapered roller bearing will be compared with those formed by the angular contact ball

bearing. It will be assumed that neither the rollers or the raceways are crowned and that

line contact exists. This creates the situation in Hertzian deformation analysis concerning

curved surfaces where the radii corresponding to the line contact of the roller and raceway

are infinite. To begin, the normal load at the inner raceway must be known and can be

found through the following equation:

FQi- FZ sin (a - 2) 3.23

Here F is equal to the applied axial load on the bearing in pounds, Z represents the number

of rollers and the quantity (a-2X) solves for the 1/2 included cone angle.

Working with the assumption of no crown on the roller or raceway, the relationship

established for the summation of the curvatures becomes:

D(1 . D cos(a - 3.2))
T. A. Harris. oin B Ansis. Jhn Wiley Sons, Inc. New Y 1991. . 3.2 4

1 T. A. Harris. Rolling Bearing Analysis. John Wiley & Sons, Inc. New York 1991. pg. 329
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where D represents the mean roller diameter in inches, and dm is the pitch diameter of the

bearing inches. As line contact exists across the raceway, the semimajor axis, a, of the

contact ellipse is equal to 1/2 of the effective contact length, L.

a = 0.5 L 3.25

The semiminor axis, b, can be solved through the following relation:

b = 0.000278 l 3
\L Zpi] 3.26

The elliptical contact area is then solved for the roller-raceway contact area as:

A = nab 3.27

The maximum stress along the inner raceway can also be solved for:

a L b 3.28

Using the above equations and applying them to the tapered roller bearing defined in Figure

3-6:
a = 0.245 in
b = 0.003827 in
A = 0.000938 in2

Omax = 112,000 psi

To solve for the contact area at the rib-roller interface for the case where the rollers have

spherical ends and angled rib geometries, the actual contact can be modelled as that of a

sphere and a cylinder. Let the sphere radius equal the roller spherical end radius and the

cylinder radius equal the radius of curvature of the conical flange at the statistical mean

point of contact. With the knowledge of the elastic contact load, material properties, and

geometries, the resulting deflections and stresses can be calculated. For the rib-roller end,

the following have been calculated in reference to the bearing in Figure 3-6:

a = 0.075 in
b = 0.017 in
A = 0.001275 in2

amax = 60,000 psi
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Comparing the results of the contact areas with those from the angular contact ball bearing

in Section 2.1:

taered roller bearing anular contact ball bearina

Elliptical area in rolling contact 0.030 in2 0.234 in 2

Elliptical area in sliding contact 0.020 in2

The above values were solved for by taking the calculated elliptical contact areas and

multiplying them by the number of rolling elements. Both inner and outer raceway contact

areas were used in the above tabulation. Although the tapered roller bearing appears to

have substantially less area in contact, the sliding friction component that exists at the rib-

roller interface is extremely significant torque and heat generation as will be examined later.

3.1.2 Two-Row Tapered Roller Bearings.

When designing tapered roller bearings into an assembly certain issues must be addressed.

Included are issues of lubrication, required finishes, axial and radial runout, fits or

clearances, preloads and endplay, mounting schemes, and operating conditions. The

bearing manufacturer is the best source of guidance on these issues and can often

recommend several viable alternatives.

In designing a tapered roller bearing to perform with similar characteristics as an angular

contact ball bearing in ballscrew support applications, all of the above issues had to be

approached. One important design constraint used in the design was the desire for the

tapered roller bearing support package to function within the angular contact ball bearing

housing. This allows the evaluation of the experimental tapered roller bearings in

applications already using angular contact ball bearings. Referring back to Figure 2-12, the

bearing housing can be seen. As there is only one shoulder on which to seat the outer

raceway or cup of the tapered roller bearing, a direct mount was employed. Figure 3-7

shows two single rows of tapered roller bearings mounted in 'direct' fashion.
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(anchored to ground)

Baliscrew

Figure 3-7. Tapered Roller Bearing Direct Mounting Scheme.

The dark component between the cups of the bearings is a spacer. This spacer is used to

set the amount of preload or endplay that the bearing assembly experiences when mounted

in the application. Pre-load was discussed earlier in Section 1.2.3. Endplay is a bearing

setting in which the rollers and raceways are not in contact with one another when the

bearing is mounted. A spacer used in a preloaded, direct mounting application is

undersized; causing elastic deformation of the rollers and raceways to take place until the

bearing cups are seated against the spacer and the stationary shoulder of the application.

An endplay application would use an oversized spacer such that thermal growth during

operation will bring the bearing into a preloaded condition.

In Figure 3-7 the tapered roller bearings are mounted in direct fashion. In this mounting

scheme the lines of contact converge upon one another when drawn towards the axis of

rotation. Figure 3-8 shows both an indirect mount and a direct mount with the contact lines

extended down crossing the axis of rotation.

/ \ \ /
- -'-- - - - - - CL

/ \ \

a) Indirect Mount b) Direct Mount

Figure 3-8. Indirect and Direct Mounts.
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An advantage of the indirect mount can be seen in Figure 3-8. Contrary to directly

mounted bearings, increases in temperature across indirectly mounted bearings allow the
expansion of the components such that the rollers do not get 'pinched'. However, in

ballscrew applications, the duty cycle of the bearings is moderate at best and hardly poses a

threat to the thermal stability of the bearings. As a precautionary measure, the spacer that

sets the preload within the directly mounted tapered roller bearings can be undersized to
allow for a certain amount of thermal expansion to take place within the bearing.

In light of the above information concerning some of the differences between the direct and

indirect mounting styles of tapered roller bearings, the direct mounting decision was

pursued based upon additional information. Constrained by the angular contact ball

bearing envelope, the axial stiffness of the tapered roller bearing was maximized by taking

a roller and sweeping it on apex to allow for a higher contact angle and better axial load

carrying capability. In doing so, the indirect mounting configuration required a cone spacer
within the bearing as well as cup spacers outside the bearing to clear the cage and seat
within the ball bearing housing. Since the rollers were swept up to such a steep angle, the

thin section of the cup necessitated a spacer that was too thin to accommodate the axial
loads without the risk of buckling. Therefore, the direct mount was used allowing the

bearings to seat in the ball bearing housing using the wide section side of the cup.

The axial stiffness calculation procedure for the back-to-back, or direct, mounting of the

tapered roller bearing is very similar to that for the triplex angular contact ball bearings.
For the two-row tapered roller bearing, the total stiffness is the sum of the stiffnesses of the
individual rows within the bearing. The bearing stiffnesses are summed in parallel as the
perfect load sharing assumption is made. This is a fair assumption as the inner raceways of
the two rows of tapered roller bearings are constrained to move as a single unit by the
locknut operating against the outside most bearing (Refer to Figure 3-7). This can be

illustrated by modelling the two rows of tapered roller bearings as springs.
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Figure 3-9. Two-Row Tapered Roller Bearing Spring Model.

When solving for the two-row stiffness values, the preload within the system must be

taken into account. Any load in addition to the preload will effect the loads that are carried

by the two bearings. Because the tapered roller bearings are in line contact, their axial

stiffness values do not change appreciably with changes in load. The insensitivity of the

tapered roller bearing to changes in load can be seen as one traverses the load deflection

curves. The tapered roller bearing curve is linear in nature while the curve for the angular

contact ball bearing is not. This makes stiffness predictions difficult for the angular contact

ball bearing, especially in dynamic systems where operating conditions and temperatures

are varying.

3.2 Tapered Roller Bearing Axial Deflection Experiment.

The axial deflection measurements for the tapered roller bearing were performed in the

same manner as for the angular contact ball bearing. Three ball-tipped styluses were used

to measure the axial deflection of the bearing under an increasing axial load. The setup

used for the tests can be seen in Figure 3-10.
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Figure 3-10. Tapered Roller Bearing Axial Deflection Setup.

The test method was identical to that used for the angular contact ball bearing and can be

found in Section 2.2. Figure 3-11 shows a resulting axial deflection curve for the tapered

roller bearing.
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Figure 3-11. Comparison of Theoretical and Experimental Axial Deflection Data.

The slope of the experimental curve is essentially linear as the theory outlined in Section

2.1 predicts. The resulting inverse of the slope of the load-deflection curve delivers a value

of 3.60x106 in/lb.

The nonlinearity that appears at the lower end of the load-deflection curve can be attributed

to the innaccuracy stackup of the test procedure. As with the angular contact ball bearing,
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the test bearing was placed within the fixture seen in Figure 3-10 and the resulting

deflections recorded. After this, the bearing was removed and the fixture deflection was

recorded over the same loading range. The fixture curve was subtracted from the test curve

delivering the true bearing deflection curve seen in Figure 3-11. The three point averaging

system employed for the axial deflection measurements has a built in gauging variation that

is increasingly sensitive with decreasing load. This inherent innaccuracy is compounded

by the fact that the two curves, each with their own tolerances are subtracted from one

another to deliver the true tapered roller bearing deflection.

3.3 Tapered Roller Bearing Torque Calculations.

As with the angular contact ball bearing, the torque characteristics of the prototype tapered

roller bearing have been predicted theoretically1.

There are two components of frictional torque within a bearing that we must concern

ourselves with for the ballscrew application. These are the frictional resistances that occur

at the rib-roller interface and at the roller-raceway interface. It will be assumed that due to

the low operating speed of the ballscrew application that the effects of viscous drag on the

rollers due to lubricant churning effects can be ignored and that the roller-raceway frictional

effects are much larger than the roller-rib frictional effects.

The running torque within a tapered roller bearing is defined as the rotational resistance of

the bearing under operating conditions. As with the angular contact ball bearing, this

depends on many factors: geometry, loading, the number of rollers, rotational speed, and

lubricant viscosity. The running torque equations that will be presented are for bearings

whose torque values have stabilized after a period of operation known as a 'run-in' time.

The presented equations are primarily geared towards oil recirculated systems, however

these equations also serve as a conservative estimate of operating torque for bearings using

grease or oil mist systems as their means of lubrication. In grease packed systems, such as

the ballscrew application, the running torque will tend to be slightly lower than that for oil

fed systems, however, the operating temperature may be slightly higher due to the slower

rate of heat dissipation.

1 "Bearing Torque, Heat Generation, and Operating Temperature". copyright 1984 by The Timken Company
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For pure thrust load situations, an estimate of the bearing running torque can be calculated

from the following equation:

M = 3.54x10-5 G1 (n L)0.62 FaO.30 3.29

M is the operating torque of the tapered roller bearing in units of in-lb, Gl is a bearing

geometry factor supplied by the manufacturer, n is the rotational speed in rpm, is the

lubricant viscosity in centipoise, and Fa is the applied thrust load in pounds. Equation 3.29

will underestimate the running torque if the operating speed, n, is less than n,,,n which can

be calculated from

1700 F ' 67

nmin = G2 3.30
Gz Ct 3.30

G2 is a bearing geometry factor supplied by the manufacturer.

Equations 3.29 and 3.30 conservatively estimate the running torque for a single row

tapered roller bearing as 10.67 in-lb under ballscrew application conditions of 1450 rpm,

Fa= 1500 lb, and using a centipoise equivalent for the 27 Cst value of the grease lubricant at

a theoretical operating temperature of around 1300F.

3.4 Tapered Roller Bearing Torque Experiment.

The tapered roller bearing was tested to measure torques under various load conditions.

The same testing apparatus was used as in Section 2.4 for the angular contact ball bearing

and can be seen in Figure 3-12.
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Figure 3-12. Torque Test Setup for Tapered Roller Bearing.

The bearings were lubricated with the same Kluber product as was specified for the angular

contact ball bearings for use in the ballscrew support application.

The same duty cycle was run on the tapered roller bearings and the resulting torque spikes

taken from the test results can be seen in Figure 3-13.
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F.98

0 10 20 30 40 50
Time (seconds)

60 70 80 90 100

Figure 3-13. Torque Test Results for the Tapered Roller Bearing.
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As in Section 2.4, each curve represents the average torque spike seen during the series of

tests that were run on three tapered roller bearings. The horizontal axis labelled Time

(seconds)' has been used merely to illustrate the relative lengths of recorded torque spikes

during the duty cycle.

From the torque test results seen in Figure 3-13, it can be seen that the tapered roller

bearing torque spike at startup is sensitive to changes in axial load. This is anticipated as

the increasing axial load creates a force at the rib-roller interface along the cone due to the

geometry of the bearing. This rib load increases the heat generation of the bearing as the

rib-roller interface is in sliding contact as opposed to the roller-raceway interface where

rolling motion is prevalent.

An average value that can be assigned to this tapered roller bearing for comparison

purposes is 14.0 in-lb per row. This value was taken from the 1500 pound axial load

worst case torque spike seen above in Figure 3-13 as the application is using a 1500 pound

preload across the bearings. Therefore, a two-row stackup of this particular bearing could

be estimated to have a maximum torque of 28.0 in-lb.

Referring to the end of Section 3.3, the theoretical maximum torque of the single row

tapered roller bearing 10.67 in-lb was a fair approximation of the application conditions of

14.0 in-lb.

Again, the issues of bearing run-in, special lubrications, and usage issues all tie into the

global torque-minimization effort which are best addressed by the bearing manufacturer.

A single row comparison of the angular contact ball bearing torques and the tapered roller

bearing torques can be seen in the following table and will be detailed further in Section

4.3.

angular contact ball bearing tapered roller bearing

theoretical torque 2.08 in-lb 10.67 in-lb

experimental torque 2.9 in-lb 14.0 in-lb
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4.0
Ballscrew System Characteristics.

This section deals with the stiffness and torque
characteristics associated with ballscrew systems. Position

intensive operations demand stiff, low torque actuators. The

stiffer the axis, the more conducive the axis is to precise

positioning via upper-level control schemes. Incorporating a

stiffer axis onto a machine-tool bed for actuation of a turret

head or table, more accurate part trajectories will be realized

along with closer tolerancing of final dimensions due to the

lack of 'give' in the system. Low torque applications are

also favored as they reduce the amount of energy used,

minimizing temperature induced precision loss.
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4.1 Ballscrew Stretch Theory.

Pre-tensioning a ballscrew enables the ballscrew system to improve its axial stiffness and to

better deal with the thermal growth that arises during extended, aggressive operation.

Ballscrew actuators are subject to thermal gains during operation due to the frictional-torque

of the preloaded balls within the ballnut and the preloaded support bearings. The transfer

of heat to the ballscrew causes the ballscrew to expand in all unconstrained directions.

Knowing the thermal coefficient of expansion for steel (a = 6xlO-6 PF) and the relationship

between temperature change and induced thermal strain, et,

Et = a (T - To) 4.1

a percentage change in the dimensions of the ballscrew can be estimated. Restricting

ourselves to the strain that occurs along the rotating axis of the ballscrew, it is apparent that

temperature changes directly effect the mechanical positioning accuracy of a ballscrew

system. The thermal growth alters the length between adjacent threads along the ballscrew,

causing an error in the translation of rotational position into linear position. Therefore, the

position of the carriage will not be able to be determined accurately from the rotary encoder

unless the carriage position is monitored by an alternate form of position feedback. As

linear scales and laser interferometer systems are not cheap or conducive to aggressive

manufacturing environs, pre-tensioning of the ballscrew has become an inexpensive

alternative to increase positioning capability.

Ballscrew pre-tensioning, or stretching, induces an elastic strain within the ballscrew that

opposes the thermal strain that develops during operation. Consider the basic elastic strain

along the axis of the ballscrew ee:

AIL
L 4.2

Equation 4.2 is the relationship of the increase in axial length of the ballscrew AL , to the

initial length of the ballscrew L. The total system strain in the axial direction can be

expressed as a combination of the elastic and thermal strain components.
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Etota = Ce + Et

When the elastic strain is applied by stretching the ballscrew, a fixed-fixed condition is

created as both ends of the ballscrew are supporting the load due to the stretch. This load

Fsra/jn can be solved for:

Fstrak = eow E A 4.4

The cross-sectional area of the ballscrew at the thread groove base diameter should be used

to calculate A, and the Young's Modulus, E, for steel is 30x106 psi. As the ballscrew

warms up, the thermal component of Equation 4.3 increases, changing the load Fstn that

exists at the support bearings. Remember that the load Ft,in is in addition to the preload

Fp that is ground into the bearings by the manufacturer. The total load that exists across the

support bearings is critical in the case of the angular contact ball bearing as it directly

influences the axial stiffness as was seen in Section 2. In comparison, the tapered roller

bearing axial stiffness is linear due to the line contact that exists between the roller and the

raceways and is relatively insensitive to changes in axial load. To calculate the load that

exists across the support bearings, refer to Section 2.1.2 (pg. 28) where the forces due to

the stretch and the thermal growth can be modelled as externally applied loads.

Consider the triplex and tapered roller bearing mounting conditions in Figures 2-12 and 3-

7. When the total system strain (Equation 4.3) equals zero, the thermal and elastic strains

will be equal. This implies that the ballscrew has expanded to the point where it is

overcoming the force of the stretch that was applied to the ballscrew. Depending upon the

mounting scheme employed on the ends of the ballscrew, this will do one of two things.

The increasing thermal strain will either unseat the support bearings from the shoulders

within the housings, or in the case where the outer raceways of the bearings are retained in

the housings, the ballscrew will undergo compressive loading which will affect the

rotational accuracy of the ballscrew as it begins to buckle.

In the case where the preloaded support bearings are held against the shoulder of the

housing by the stretch load applied to the ballscrew, should the thermal strain be such that

the bearings unseat themselves from the housing, they will retain their preload. The

bearing packages retain their preload as they are tightened along the shaft to the shoulder of
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the ballscrew in a configuration that does not allow them to move axially, relative to one

another.

Should the thermal strain equal the induced elastic strain in the case where the support

bearings are rigidly constrained, the ballscrew changes from a fixed-fixed mounting to a

fixed-supported mounting. The significance of which is very important when calculating

the ballscrew axial stiffness as will be seen in Section 4.2.

The ballscrew being used in the application evaluation of the two support bearing packages

has the following basic characteristics:

supported length 52"
thread groove base diameter 1.378"

mounting condition fixed-fixed
pre-tensioning stretch 0.0015"

From this information the elastic strain Ee can be calculated as 2.88x10-5 . Remembering

that F=eEA, the system force resulting from the stretch is solved to be 1290 lbs.

Therefore, each of the two support bearing packages must absorb 645 lbs axially. To

cause the support bearings to disengage with the housing shoulders, a change in

temperature aT must occur that translates into an e, having an equivalent force greater than

1290 lbs. Using Equations 4.1 and 4.4, AT is found to equal 4.8°F.

Le 2.88x10-5
AT to overcome ee 4.8°F

Remember that the change in temperature of 4.80 F is assessed as a uniform temperature

throughout the ballscrew. There are four points of heat generation, the ballnut, the motor,

and the two support bearing packages. The heat accumulation within the ballscrew that

leads to thermal growth is governed by a number of factors including: ballnut and support

bearing lubrication, duty cycle, traversing speeds, conduction through the bearing

housings, motor mounting, and environmental conditions.

4.2 Ballscrew System Axial Stiffness.

Before a ballscrew is designed into an application for use as a linear positioning element, it

is necessary to make an initial approximation of the actuator's stiffness. An actuator that
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does not possess enough stiffness will be susceptible to lost precision and productivity.

By evaluating the individual elements of the ballscrew actuator one piece at a time, a system

stiffness can be calculated. Take the following actuator composed of ballscrew, ballnut,

support bearings, and bearing housings.

\o .Fa

ring Housing Ballnut Bearings

Figure 4-1. Ballscrew System.

Each of these components has an inherent stiffness which can be lumped together with the

other elements to solve for the system stiffness. Consider the force-flow for the fixed-

fixed ballscrew system. When an external force Fa, is applied to the carriage which is

kinematically linked to the ballnut, only the axial component of that force is transferred

through the ballscrew system. The reaction of the axis to the applied axial load is

dependent upon the inherent stiffnesses of the axis components, the ballnut position, and

the system temperature. Modelling the axis components as a series of springs, Figure 4-2

evolves.
Bearing Housing

/

Ballnut Bearing Housing

Badlscrew

Figure 4-2. Ballscrew System Spring Model.

The system stiffness can be calculated by summing the individual stiffness values in series.

1 = 1 I 1 + 1 + 1 + 1

Ssystan Shouing Sbsarings Sbellnut Sbsllcr. Sbsrin Shoring 4.6

65

U" -11-.1 _" _' -, 7 =117

Beg



Knowing the stiffness of the actuator, axial deflections can be calculated for given loading

conditions. To illustrate the loading conditions that exist in the stretched ballscrew system,

consider Figure 4-3.

_E ,

1/2 Fppied Fb Fb 1/2 Fplied

Figure 4-3. Stretched Ballscrew System Free Body Diagram

In the above figure, the applied load Fapplied is seen acting at a point along the length of the

ballscrew defined by the ballnut position. The resulting loading conditions at the support

bearing locations are also shown. The force Fb is representative of the load that exists

across the bearings due to the preload, ballscrew stretch, and any thermally induced strains.

Knowing the applied force Fapplied and the system forces on the support bearings, Fb,

these can be combined to solve for the actual bearing load conditions that exist.

Subsequently, the stiffnesses for the individual rows of the support bearing can be

computed and then combined in parallel under the perfect load sharing assumption to

represent the support bearing stiffness. Consider the following example:

Using the angular contact ball bearings in triplex fashion and the tapered roller bearings in a

two-row direct mount, the loads across each of the bearings on both ends of the ballscrew

will be tracked as the bearing are preloaded, stretched with 1290 lbs of axial load (645 lbs

per end), and subject to an applied axial load of 1000 lbs. The applied axial load is oriented

such that it acts towards the left set of support bearings as in Figure 4-3. The numbers

entered for each end of the ballscrew correspond to the load across the different rows of

bearings at each end. Hence the triplex set of angular contact ball bearings has three entries

while the two-row tapered roller bearing has two.

angular contact all bearis tared roller bearings

ballscrew left end ballscrew right end ballsrew left end ballscrew right end
preload condition 1020,1020,2040 2040,1020,1020 1500,1500 1500,1500
after balscrew stretch 1343,1343,1395 1395,1343,1343 855,2145 2145,855
under the applied load 1093,1093,1895 895,1593,1593 1355,1645 2645,355
stiffness per row x106 3.15,3.15,3.79 3.05,3.54,3.54 3.60,3.60 3.60,3.60
support bearing stiffness 10.09x106 10.13x106 7.2x106 7.2x106
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The example does not incorporate any thermal effects. If any were present, an additional

line would be entered in the above example between the ballscrew stretch and the applied

load. The stiffness values listed at the end of the example are the final stiffness values of

the support bearing packages under the perfect load sharing assumption. The preload

conditions for the angular contact ball bearings were determined by observing the load-

deflection curves that were generated experimentally in Sections 2.2. The tapered roller

bearing preload was created to match the single angular contact ball bearing preload of 1500

lb. The stretch load was calculated in Section 4.1 and the applied load was detailed in

Section 4.2.

The theoretical stiffnesses for the components of the ballscrew system to be used in the

experimental machine-tool axis are listed below:

aneular contact ball bearin taered roller bearings

lef t support be aring package stiffness 10.03x 106 lb/in 7.20x106 lb/in
right support bearing stiffness 10.03x106 b/in 7.20x106 b/in
minimum ballscrew stiffness 3.44x106 lb/in 3.44x106 lb/in

minimum ballnut stiffness 5.50X 106 lb/in 5.50x10 6 Ibrin

The support bearing values listed above reflect the package bearing stiffness on each end of

the ballscrew due to the preload and stretch. The stiffness calculations for the ballscrew

and ballnut can be found in Sections 4.2.1 and 4.2.2 respectively. Returning to Equation

4.6, the total axis stiffness can be solved.

1 = 2 + 1 + 1
S total Sbearings Sballscrew Sballnut

Without any deviation in temperature from the time the ballscrew stretch was applied and

ignoring any externally applied loads:

Stotal with 6 rows of angular contact ball bearings = 1.48x106 lb/in

Stoag with 4 rows of tapered roller bearings = 1.33x106 lb/in

The above system stiffness calculation reveals that the tapered roller bearing can provide

similar system stiffness with fewer rows. This translates into a cost savings when using

the tapered roller bearings instead of the triplex angular contact ball bearings. For a two
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axis machine where 12 angular contact ball bearings would be used, only 8 tapered roller

bearings would be necessary.

Another advantage of the tapered roller bearings is the linear load-deflection curve. With

tapered roller bearings used as the ballscrew support bearings in a machine-tool axis, their

will be less change in system stiffness under dynamic operating conditions. A perfect

application for tapered roller bearings would be in a crossed axis application where axis-

reversal loads can significantly effect the final part geometry. By using tapered roller

bearings in such an application, the system stiffness will not change during axis-reversal

enabling more accurate trajectories and better finishes.

4.2.1 Ballscrew Axial Stiffness.

Ballscrew axial stiffness is dependent upon the end-fixity conditions. There are two

standard types of mounts: fixed-fixed and fixed-supported. In fixed-fixed mounts both

support bearing packages are constrained from moving axially. These types of mounts are

used in machine tools on axes that are subject to varying forces and require accurate

positioning without the use of carriage position feedback. By fixing both ends of the

ballscrew using an applied stretch, the rotational frequency is improved due to the fixity

conditions. This allows faster actuation with less rotational error. Fixed-supported mounts

are traditionally employed on ultra-precision measuring machines where carriage forces are

minimal and carriage position feedback is employed. In these types of applications, the tail

end of the ballscrew free to move axially, hence expansion does not affect the positioning

or rotational accuracy.

Fixed-Fixed Axial Stiffness.

The axial stiffness of the fixed-fixed condition can be solved using the following

relationship.

Sa fixed-riea (L -EL
x (L x) 4.7

A represents the cross-sectional area of the ballscrew at the bottom of the thread, E is the

Young's Modulus, L is the length of the ballscrew, and x is the position of the ballnut
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along the ballscrew. The maximum axial deflection occurs when the ballnut is at the middle

of the ballscrew in a fixed-fixed condition. Therefore the minimum stiffness through

Equation 4.7 is found when x=L12.

The minimum stiffness of the ballscrew used in the ballscrew test rig was solved using

Equation 4.7 and found to equal 3.44x106 Iblin.

Fixed-Supported Axial Stiffness.

The axial stiffness in the fixed-supported state is much less than that in the fixed-fixed

condition.

Sa fixed-supported =A 4.8x 4.8

As the ballscrew is rigidly supported on only one side, the distance x from that side

determines the axial stiffness of the fixed-supported ballscrew.

Figure 4-4 demonstrates the axial stiffness of a 52" long ballscrew when employed in both

the fixed-fixed and fixed-supported mounting conditions as a function of ballnut position.

250e+7

2.25e+7

_ 2.00e+7

i 1.75e+7
1350e+7

1.25e+7

1.00e+7

750e+6

5.00e+6

250e+6

O.OOe+O

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Ballnut Position from Motor (in)

Figure 4-4. Ballscrew Stiffness as a Function of End-Fixity and Ballnut Position.
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In estimating the worst case stiffness for the fixed-fixed ballscrew application, the

minimum stiffness can be found at the middle of the ballscrew and is equal to 3.44x106

blin in the experimental system.

4.2.2 Ballnut Axial Stiffness.

There are two basic classifications of ballnuts, pre-loaded and non pre-loaded. The pre-

loaded ballnut consists of tracks of recirculating balls that run along the thread groove of

the ballscrew. Pre-load is established by having the tracks of balls pushed against

opposing sides of the ballscrew thread as seen in Figure 4-5.

a) Tensile Pre-loading b) Compressive Pre-loading

Figure 4-5. Anti-Backlash Ballnut Preloads.

These ballnut pre-loading configurations are termed 'anti-backlash' as they maintain a load

on both sides of the ballscrew threads. This minimizes the loss of linear positioning

accuracy when the motor changes directions. The pre-load can be created in either the

tensile or compressive fashion as seen in Figure 4-5 through the use of spacers, spring

washers, or oversized balls. Each process has its advantages and disadvantages and these

should be discussed with the ballnut manufacturer when designing an actuator. The tensile

pre-loading scheme used in our experimental machine-tool axis allows excellent handling of

moment loads about the ballnut due to the effective bearing spread.

The stiffness of the ballnut is derived in much the same way as for the axial stiffness of the

angular contact ball bearing. Through geometric considerations one can calculate the pre-

load within the system to determine the existing contact angles through the recirculating
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balls in the tracks. This leads into the amount of elastic deflection between the thread

groove on the ballscrew and the steel balls while loaded axially.

Most catalogs will quote an axial stiffness value that would occur under an axial load that is

30% of the basic dynamic rated load for the ballnut. When the axial load Fa is different

than 30% of the basic dynamic load rating for the ballnut, the axial stiffness will change as

the contact angle changes across the recirculating balls. To solve for axial stiffnesses

resulting from loads that are not equivalent to 30% of the basic dynamic rated load the

following equation can be used:

Sballnut = 4 57 x S 4 1139

Where S is specified by the manufacturer and is related to the elastic displacement between

the screw groove and the steel balls under an axial load of 30% of the basic dynamic load

rating for the ballnut. Fa is the axial load, and C is the basic dynamic rated load. Sunut is

delivered in units of lb/in.

The ballnut being used in our application has been manufactured with a minimum stiffness

of 5.5xl06 Iblin when the ballscrew is stretched by 0.0015".

4.3 Ballscrew System Torque.

Torque was introduced in Section 2.3 as a means of evaluating the frictional resistance to

rotational motion. The amount of torque necessary to actuate a ballscrew driven carriage

can be attained by summing the individual torques of the system components. These are

the torques associated with the support bearing, ballnut and ball bushing rolling

resistances, as well as the carriage and ballscrew rotational inertias.

For precision applications where torque values are critical, motor and rotary encoder

internal torques must be taken into account. However, in our simulation of a
manufacturing ballscrew application, the motor and rotary encoder torques are negligible

when compared to the torque required to actuate the ballscrew, preloaded support bearings,

carriage mass, and ball bushings. The drive torque, or the torque necessary to actuate the
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ballscrew axis, will be calculated for constant speed and maximum acceleration conditions.

This will be challenged experimentally in Section 5.2.1.

The constant speed drive torque determines not only the constant load on the motor, but can

also be used to anticipate the amount of heat energy put into the system. In Section 4.1,

temperature effects were shown to be critical in maintaining ballscrew system axial

stiffness. The other torque quantity, the drive torque at acceleration, represents the

maximum torque required of the motor.

The system torque, Tystem, for the two motion conditions will be solved by separating the

ballscrew system into the influencing components and calculating their individual torque

contributions. For motion at constant speed, the start-up inertias of the carriage and

ballscrew are neglected. The system torque is a summation of the torques related to: the

efficiency of the ballscrew, the ballscrew preload effects on the ballnut torque, and the

torques associated with the support bearings.

Tsystem Tballscrew + Tballnut + Tsupport bearings 4.10

Equation 4.10 is in units of in-lb. In addition to the system torque associated with constant

speed operation, there are torque components related to the acceleration of the carriage and

ballscrew masses. In order for the system to start moving, the rotational inertias of the

ballscrew and the reflected carriage load must be overcome. The reflected carriage load is

used to represent the equivalent rotational inertia of the carriage system as its movement is

linear.

The maximum torque required to accelerate the axis is as follows:

Tmaximum = Tsystem + (Jmotor + Jballscrew + Jcarriage) 3 8 6 t 4.1
386 ta 4.11

Tsysten is obtained through Equation 4.10. Jt,or is available from the motor manufacturer

and the rotational inertias for the ballscrew and the reflected carriage load can be found in

Sections 4.3.4 and 4.3.5. The acceleration time ta is the desired time for the axis to

accelerate from a standstill to the desired velocity. Located in the denominator on the right-

hand side of Equation 4.11 is the acceleration due to gravity (386 in/sec2) and the angular

velocity, a, of the axis is in units of rad/sec and can be solved through Equation 4.12.
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P 4.12

V is the desired linear velocity in units of in/sec andp represents the lead of the ballscrew in

inches.

Using Sections 4.3.1-4.3.5 to compute the various component torques, the following table

of values arises from Equations 4.10 and 4.11 summarizing the theoretical start-up and

constant speed torque values.

ballscrew axis with ACBBs ballscrew axis with TRBs

left end support bearings 3(2.08) = 6.24 in-lb 2(10.67) = 21.34 in-lb
right end support bearings 6.24 in-lb 21.34 in-lb

ballnut torque 18.0 in-lb 18.0 in-lb
torque due to guideways and carriage 12.0 in-lb 12.0 in-lb

constant speed torque 42.48 in-lb 72.68 in-lb

torque due to acceleration 9.17 in-lb 9.17 in-lb
maximum torque 51.65 in-lb 81.85 in-lb

4.3.1 Ballscrew Torque at Constant Speed.

Ballscrews converting rotary motion into linear motion at constant speed demonstrate

torque values related to the load on the system F, the lead of the ballscrew p, and the

normal ballscrew efficiency e.

Fp
Tballscrew = p + Tc2ir e 4.13

F = utW/16 with p=0.004 for ball bushing linear guideway systems where W represents the

weight of the carriage in lbs while p is representative of the distance between two adjacent

threads measured along the axis of the ballscrew. The normal efficiency e can be obtained

from the ballscrew manufacturer and is a function of surface finish, thread angle, and

operating conditions (typically 0.90-0.95). T is a constant representative of the torque

due to the frictional motion of all moving elements in the application. The ballscrew torque

should be expressed in units of in-lb to be used in conjunction with Equations 4.10 and

4.11.
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4.3.2 Ballnut Torque.

The frictional torque associated with a preloaded ballnut is a function of several factors.

The geometry of the ballnut and the recirculating balls as well as the lubrication scheme and

ballscrew stretch all contribute to the torque contribution of the ballnut assembly. The

ballnut manufacturer can quote an accurate value based upon system characteristics for use

in Equations 4.10 and 4.11. For the machine-tool application under consideration in

Section 5, the maximum ballnut torque is rated at 18.0 in-lb.

4.3.3 Support Bearing Torque.

The torque associated with the ballscrew support bearings can be found in Sections 2.2 and

3.2 depending upon which type of bearing is being used. Remember that the torque values

of each of the bearings must be calculated separately as some of the bearings are operating

under different loads. The support bearing torque is the sum of the torques associated with

all of the bearing rows employed on the axis.

4.3.4 Ballscrew Rotational Inertia.

The rotational inertia of the ballscrew is found by approximating the ballscrew as a

cylindrical mass. When applied to the ballscrew the following equation results:

Jballscrew = 32 4.14
32 4.14

p is the material density in lb/in3 , D is the diameter of the base of the thread groove on the

ballscrew in inches, and Z is the total length of the ballscrew in inches.

4.3.5 Effective Carriage Rotational Inertia.

The rotational inertia imposed on the ballscrew system by the carriage can be found through

the following relationship:
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e t= ( p 4.15

W represents the weight of the carriage in lbs, e is the ballscrew efficiency, and p is the

lead of the ballscrew in inches.

4.3.6 Ballscrew System Life

Many calculation procedures exist for computing the lives of machine-tool components.

However, due to the variability of life calculations between manufacturers as a result of

their unique design criteria and manufacturing processes, this section will not detail the

actual life calculations of bearings or ballscrews. Instead, a relative life approach will be

used referencing as an example the experimental machine-tool axis, discussed in greater

detail in Section 5.

The operating life of a system is described by the component with the shortest life span.

Life values of the bearings and the ballscrew used in the experimental machine-tool axis

have been computed using the manufacturer's catalogs. The operating life of the bearings

was then transformed into inches of travel as this is the most commonly used rating for

ballscrews. This requires knowing the lead of the ballscrew and the life rating in hours

(L1o) of the bearings.

Life (inches of travel}

angular contact ball bearing 108
tapered roller bearing 108

ballscrew 106

The bearing life calculations were based upon average operating conditions for the

ballscrew application. From the above estimated life values, it is apparent that the

ballscrew represents the 'shortest-life' component and will need replacing before the

bearings. When the ballscrew begins to show signs of wear that are detrimental to

performance, it is wise to replace both ballscrew and support bearings. Brinneling of the

bearings has been known to occur during lackluster assembly and disassembly procedures

and may not be obvious until the machine is running out of precision or fails prematurely.

Machine down-time is expensive as are labor hours invested in repetitive rebuild

operations.
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5.0
Ballscrew System Evaluation.

With the interest of comparing the operation of the tapered

roller bearing to the angular contact ball bearing, a machine-

tool axis was constructed. In Sections 2 and 3 the different

bearings were evaluated outside of the ballscrew application

while this section serves to document the performance of the

angular contact ball bearings and tapered roller bearings in

the machine-tool application. Included is the design of the

test rig, the testing procedures and the findings of the

bearing comparisons.
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5.1 Experimental Machine-Tool Axis.

The test rig constructed to evaluate the ballscrew support bearing performance can be seen

schematically in Figures 5-1 and 5-2.

Laser
I

Rotary Enco

ACBrushlessM / % . %.. 3

Flexible Coupling S
Bearing Housing Ballscrew Ballnutgs

Figure 5-1. Experimental Machine-Tool Axis Setup.
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Figure 5-2. End-view of the Experimental Machine-Tool Axis.

This test setup was designed to study the effects the different support bearing packages

would have on the system. In any precision ballscrew driven axis, the issues of stiffness

and torque are critical. Too little stiffness creates a compliant system unable to deliver

accuracy, repeatability, or controllability. Too much torque requires larger, more costly

drive systems, extra lubrication subsystems, and exposes the axis to temperature induced

thermal strains.
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By creating an accepted standard of current machine-tool capabilities, the tests were aimed

at demonstrating the effectiveness of the tapered roller bearing as a ballscrew support

bearing.

A precision ballscrew was purchased that would accurately represent the state of the art in

ballscrew capabilities. The ballscrew had an operating stroke of over 30" and a supported

length of approximately 52". Designed to accommodate a rapid traverse rate of 800ipm,

the maximum diameter of the screw was 45mm while the diameter of the bottom of the

thread groove was 35mm. The lead on the ballscrew was listed as 14mm but was ground

slightly short of this mark to accommodate the stretch that would be placed on the

ballscrew. The stretch corresponded to 0.0015" over the supported length for a thermal

compensation of just under 5°F (Refer to Section 4.1).

The shoulder on the ballscrew has been ground to fixture 35mm bore support bearings.
Commonly used on this particular ballscrew are the MM35BS72 triplex angular contact ball

bearings manufactured by the Fafnir-Torrington Company. These bearings have a width of

15mm and an outside diameter of 72mm The triplex angular contact ball bearing envelope

was used as a constraint in the design of the prototype tapered roller bearing to be

manufactured by The Timken Company.

Driving the ballscrew system is a Siemens AC Brushless Servomotor rated for 2000 rpm

and 159 in-lb of continuous torque. Operating via current command from the motor

manufacturer's drive amplifier, an external PC based single-axis controller from Aerotech

was responsible for the actuation commands. Wanting to construct the experimental axis to

mimic manufacturing applications as much as possible, a Heidenhain rotary encoder was

mounted to an extension shaft off the back of the motor and used to provide the position

and velocity feedback information to the controller. The encoder supplied 10,000 counts
per revolution which was increased to 40,000 with a 4x interpolation. Coupled with the

lead of the ballscrew, this allowed a theoretical controllable resolution of 14in per count.

An open style ball bushing system from Thomson was used to support the carriage. The

ball bushings offer constraint in 5 directions with the unconstrained direction falling in the
direction of the ballscrew. As the ballscrew is only supposed to experience thrust loads as

a result of the motor attempting to advance the threads through the non-rotating ballnut, the

ball bushings are responsible for absorbing all non-axis components of the loads. The ball
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bushings have several tracks of recirculating balls that are preloaded against the cylindrical

ways, causing them to roll over the way surface with minimal slip.

5.2 Testing.

This section deals with the tests used to evaluate the performance of the experimental

machine-tool axis using the different ballscrew support bearings. The angular contact ball

bearings and the tapered roller bearings were mounted in triplex and two-row-direct fashion

respectively. The information gathered from the following tests will determine the

feasibility of the two-row tapered roller bearing as a cost effective alternative to the triplex

angular contact ball bearing. Four system evaluations were performed:

* Startup and Constant Velocity Torque Measurement
* Vibration Analysis

* Accuracy and Repeatability Study

* Operating Temperature

The test procedures and resulting data for the above evaluations can be found in Sections

5.2.1-5.2.4. When appropriate, the values resulting from the theoretical approximations

presented in this paper will be evaluated along-side the experimental values.

5.2.1 Torque Tests.

Using a torque wrench, the start-up and constant velocity torque of the experimental

machine-tool axis was verified. The following table summarizes the theoretical predictions

and the experimental values for both the angular contact ball bearing and tapered roller

bearing systems:

theoretical redictions experimental values

start-up torque constant speed torque start-up torque constant speed torque

ACBB system 51.65 in-lb 42.48 in-lb 51 in-lb 47 in-lb

TRB system 81.85 in-lb 72.68 in-lb 80 in-lb 75 in-lb

The theoretical values correlate well with the experimental values taken from the test rig.
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The theoretical predictions do not take into account the torque components that result from

slight misalignments between the ballscrew and the ball bushing linear ways. The set-up

procedure for the ballscrew axis calls for a maximum allowable misalignment of ±0.002"

over the length of the ballscrew travel. This misalignment is measured relative to the fixed

ball bushing guideway. When assembling the ballscrew axis it is suggested that the

ballscrew be hand driven using a torque wrench over the length of ballscrew travel. During

this process, incremental positioning and tightening of the support housings is required to

improve the ballscrew alignment and attain a minimum torque reading. If the ballscrew is

misaligned, premature wear patterns will develop resulting in reduced accuracy and

shortened life.

In Section 5.2.4 the effects of the differing bearing package torques will be seen in their

effects on the operating temperature. With the 159 in-lb motor, the relative torque capacity

used with the angular contact ball bearing arrangement was 32% compared to 50% for the

tapered roller bearing solution.

5.2.2 Vibration Analysis.

In Sections 2.1 and 3.1 methods were presented for calculating the axial stiffnesses of the

support bearings in a ballscrew axis. This information was incorporated into the stiffness

calculations for the ballscrew system presented in Section 4.2. It is the purpose of the

vibration analysis to challenge the theoretical system stiffness calculations experimentally.

To discern the ballscrew system stiffness, a simple impact test was arranged to monitor the

amount of signal transmission through the system. By observing the response of the static

system to a known input, a fair approximation could be made of the system stiffness.

The tests incorporated an accelerometer, impact hammer, and a two channel digital signal

analyzer. The servomotor was removed and the carriage was placed at the center of the

ballscrew to simulate the most compliant arrangement for the fixed-fixed ballscrew. An

accelerometer was epoxied to the motor end of the ballscrew and the impact hammer was

used to distribute a blow to the tail end of the ballscrew. The digital signal analyzer

recorded the signals from the impact hammer (mV/lbf) and accelerometer (mV/g),

performed a double integration on the accelerometer signal, to produce a transfer function

relating the system compliance in units of in/lb. The inverse of the largest peak represents
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the lowest stiffness value and is used to determine system stiffness. Figures 5-3 and 5-4

show two sample outputs from the impact tests.
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Figure 5-3. Impact Vibration Data - Ballscrew Axis - Angular Contact Ball Bearings.
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Figure 5-4. Impact Vibration Data - Ballscrew Axis - Tapered Roller Bearings.

The theoretical stiffness values can be seen below compared against the experimental values

from Figures 5-3 and 5-4:

Angular Contact Ball Bearings

Tapered Roller Bearings

Theoretical Ballscrew
System Stiffness

1.48x 106 lb/in

1.33x106 lb/in

Experimental Ballscrew
System Stiffness

1.439x106 lb/in

1.355x106 lb/in
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The theory presented through Sections 2.1, 3.1, and 4.2 have come within ±2.5% of the

experimentally defined system stiffness values. There is only a 6% difference in system

stiffness when using either support bearing package. This demonstrates the cost

effectiveness of the tapered roller bearing in providing axial stiffness for ballscrew driven

systems.

5.2.3 Accuracy and Repeatability Analysis.

Following the ASME.B5 standard1 for the performance evaluation of numerically

controlled machining centers, the linear positioning accuracy and repeatability of the

experimental machine-tool axis was verified. Both the triplex angular contact ball bearings

and the tapered roller bearings were evaluated in their role as the support bearings in the

ballscrew axis. To develop a fair comparison between the different bearings, the motion

control-loop settings, ballscrew stretch, and operating conditions were held constant. This

eliminated any control-loop tuning bias such that a head-to-head comparison could be

made. A laser was used to measure the accuracy and repeatability of the axial location of

the ballnut during the tests.

Linear Displacement Accuracy for an Axis

The following procedure follows from section 5.5.2.6 of the ASME.B5.54 standards.

The 30" travel length of the ballscrew was divided into ten intervals defining eleven points.

The motion controller was programmed to start at zero and advance along the axis at a rapid

traverse speed of 800 ipm, stopping and dwelling for a few seconds at each point while the

laser acquired position data. The corrected laser reading (thermally compensated laser

readout) was subtracted from the corrected machine reading (where we want the ballnut

according to the motion program) at the stopping points along the axis. The axis was

cycled back and forth in this move-stop-dwell-datalog fashion while the data was averaged

1 B5.54 Methods for Performance Evaluation of Computer Numerically Controlled Machining Centers.
Copyright ASME (1993)
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for each point in each direction. The results can be seen graphically in the following plots

showing the positioning error along the axis in each direction.
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Three sets of bi-directional moves were averaged to create the two lines seen in each of the

above plots. The linear displacement accuracy of the axis is defined as the total range of the

two sets of average deviations in the figures. An additional performance error can also be
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obtained from the above plots. The maximum reversal error is the largest range of the

averaged forward and reverse readings at any point along the axis.

The positive direction in Figures 5-5 and 5-6 is defined as the direction moving away from

the motor. The ballscrew system when using the angular contact ball bearings shows a

linear displacement accuracy of ±0.000688" with a maximum reversal error of ±0.00054".

When the tapered roller bearings were used, the linear displacement accuracy was similar at

±0.000751 while the maximum reversal error was ±0.00078" A large amount of the error

seen in the linear displacement accuracy of the machine-tool axis can be minimized through

tighter tuning of the positioning control loop which involves adjustments of the various

gains within the feedback loop. In doing so, the positioning capability of the machine-tool

will be optimized, however, it is not the purpose of this paper to define control loop

standards.

An 'average-performance' control loop was established and the conditions maintained for

both bearing tests such that a head-to-head comparison could be made between the use of

the different bearing packages. The overall goal was to demonstrate that the tapered roller

bearings could deliver similar performance under the same operating conditions as the

angular contact ball bearings.

By using the same control scheme for both bearing units as well as identical dwell times

before capturing displacement information, the true positioning potential of the axis was not

realized. This was avoided in light of the desire for a comparative analysis as opposed to

an optimization. It should be noted that when given ample time to dwell during the motion

program, the displacement accuracies for both bearing sets were improved by roughly an

order of magnitude.

Bi-Directional Repeatability for an Axis

The following procedure was taken from section 5.5.2.8 of the ASME.B5.54 standards.

The bi-directional repeatability is evaluated as the ability of the machine to return to

nominally the same point. The following procedure is carried out at both 1/4 and 3/4 of the

machine-tool axis' travel length. The traverse rate is set at approximately 6ipm and a

motion program is used that moves the ballnut 6mm in the positive direction, then returns
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to the original position and the laser value is recorded. It is next moved 6mm in the

negative direction and returned to its original position, where again the laser is read. This

is repeated for a total of ten trials and the data is gathered and analyzed to determine the

amount of bi-directional repeatability present within the system. The working tolerance for

bi-directional repeatability is the maximum range of the data gathered at either position

along the ballscrew.

The angular contact ball bearings showed a bi-directional repeatability of ±0.0019" while

the tapered roller bearings registered ±0.0011".

Again, the control loop schemes and dwell times before sampling were held constant for

both series of bearings for the comparative reasons detailed in the previous section on linear

displacement accuracy.

5.2.4 Operating Temperature.

A duty cycle was created for the machine-tool axis to monitor the change in temperature of

the ballscrew support bearing packages and the ballnut. The carriage was cycled back and

forth along the full length of travel (30") operating at 1/4 of the rapid traverse speed

(=200ipm) with a dwell of 5 seconds on either end of the stroke. One-fourth of the rapid

traverse speed was chosen as it is more likely that a machine of this nature will spend the

majority of its time performing feed cuts at a fraction of the rapid traverse speed.

Thermocouples were placed on the ballnut and the motor side bearing housing. The test

was initially run with the angular contact ball bearings as the support bearings and then re-

run using the tapered roller bearings. Figure 5-9 displays the results of the 3-hour long

tests charting the ballnut and motor-side support bearing temperatures. The ballnut
temperature curve was similar for both tests hence only one curve is present in Figure 5-9.

The expected relationship for the heat generation and resulting temperatures of the three

components (ballnut, angular contact ball bearings, and tapered roller bearings) stem from

rotational resistance. The frictional resistance created can be quantified through the

component torque which is directly related to heat generation. Looking at the theoretical

torques of the components in the machine-tool axis and comparing these values to the

temperature increases of the components during the three hour duty cycle:
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triplex angular contact ball bearing
ballnut

two-row tapered rolle bearing

ue (in-lb)

8.7
18.0
28.0

A!F

6.7
13.0
19.6

The temperature increases during the tests were seen to be related to the ratios of the

component torques. These ratios are not exact due to a number of factors. Heat generation

by the ballnut is spread out over a much larger dissipative surface (30" of ballscrew travel

length) while the bearings are heating a much more localized envelope. Also, the rib-roller

contact areas for the tapered roller bearings are aligned such that they are next to each other

(refer to direct mounting figures in Section 3) creating two adjacent heat sources, slowing

dissipation.
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Figure 5-9. Comparison of Ballnut and Support Bearing Temperatures.

The tapered roller bearings performed as expected. With a larger torque, the bearings will

run hotter. This characteristic can be critical in precision applications but can be assuaged

through modified rib-roller designs, surface finishes, and lubrication schemes.
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5.3 Discussion of Results.

The results detailed in Sections 5.2.1-5.2.4 offer a comparative analysis between the two

types of bearings and their respective mounting configurations. The machine-tool

ballscrew application is concerned with maintaining axial stiffness while minimizing heat

generation such that positioning accuracy can be maintained. It was shown that working

within the same volume, four tapered roller bearings (two per ballscrew end) could provide

axial stiffness values similar to those observed when using six angular contact ball bearings

(3 per ballscrew end). The stiffness difference when incorporated into the machine-tool

axis was very small and attributable in part to gauging limitations.

The row for row torque disparity of nearly four times between the tapered roller bearing

and angular contact ball bearing under application conditions is of serious concern for most

machine-tool applications. However, the tapered roller bearings use only 2/3 as many

rows in their support package design bringing the relative torque disparity down to 2.67

times that of the angular contact ball bearing package. As Section 5.2.4 verified, the

temperature rise of the tapered roller bearing package was on the order of the torque

disparity, roughly three times that of the angular contact ball bearing package.

The results as seen in the previous sections offer great insight into the potential of the

tapered roller bearing in ballscrew support applications. It would appear that the tapered

roller bearing is tailor made for applications that can be described by the following

characteristics:

* Low speed (< 250 sfpm at the rib)

* Intermittent use or appreciable dwell periods

* High load carrying capability

* High stiffness requirements

* Stiffness stability throughout loading range

* Small motion applications

* Suspended or cantilevered loads

* Minimum number of rows

Until improvements are made in the rib-roller interface of the tapered roller bearing, the

high volume, precision machine-tool market may remain out of reach. The deciding factors

for these particular applications will stem from the machine-tool manufacturer's ability to

account for the thermal effects on the machine and the trade-offs therein.
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A design alternative does exist using the same tapered roller bearing that would cut the

torque considerably. Returning to Section 3.1 and the linear load deflection curve of the

tapered roller bearing, it would be feasible to lessen the amount of preload on the bearing.

In doing so the amount of torque require to operate the bearing would be reduced which

would lower the amount of heat generation and improve the operating temperature.

Refering to Figure 3-13 where torque is compared against axial load, it can be seen that if

the preload is lowered to 750 lbs axially across each of the bearings in the two-row stack-

up, the torque per bearing row is significantly less. Charting the loads across each of the

four support bearings for the 1500 lb preloaded system and for a 750 lb preloaded system:

TRB with 750 lb reload TRB with 1500 lb preload

balscrew left enndballsrew rihtend ballscrew left end ballscrew right end
preload condition 750,750 750,750 1500,1500 1500,1500
after ballscrew stretch 105,1395 1395,105 855,2145 2145,855
torqueperrow 1.5,13.5 13.5,1.5 13.5,14.5 22.0,6.0
total torque 15.0 15.0 28.0 28.0

The dramatic decrease in torque will improve the operating temperature of the bearing

package. If the proportionality seen in Section 5.2.4 holds between the package bearing

torque and the operating temperature, the 750 lb preloaded system would see a temperature

rise on the order of 11°F as opposed to nearly 200F for the 1500 lb preloaded system.

Of course there is a load carrying tradeoff that occurs. Looking at the 750 lb preloaded

arrangement above, after the 1290 lb stretch is applied to the ballscrew, the outermost

bearings are seated with only 105 lbs of axial load. Therefore, if perfect load sharing

holds, any external load in excess of 210 lbs will unseat one of these bearings depending

upon the loading direction.

This example emphasizes the flexibility of system design and the tradeoffs therein. By

improving the torque characteristics of the system, the load carrying capacity of the system

was put at risk. There are certain application dependent operating conditions that can make

or break a machine design, physically and economically. The ability to recognize and take

advantage of the inherent strengths and weaknesses of components separates the good

designs from the great designs.

88



6.0
Conclusion.

The tapered roller bearings delivered a cost-competitive

solution hindered only by the innate tapered roller bearing

characteristic of higher torque and subsequent heat
generation. Even so, the tapered roller bearing appears a

viable contender for cost effective, high stiffness, slow

speed ballscrew applications. This section offers
possibilities for future design efforts which could present the

tapered roller bearing with volumes of new market potential.
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6.1 Recommendations.

For the tapered roller bearing to gain ground in the ballscrew support market, the running

torque induced by the sliding friction at the rib-roller end needs to be addressed. Several

design options exist for further exploration with steep angle tapered roller bearings

including:

* Crowned rib surfaces to control deformation

* Roller large-end optimization

* Improvement of rib-roller contact location

* Roller, raceway, and rib finishes

* Rib lubrication techniques

These areas should be looked into to determine the practical and cost-effective limitations

for ballscrew support applications In doing so, potential designs could be accurately

evaluated before committing large quantities of time and resources to prototyping and

testing. The design limitations study for the ballscrew market should also encompass the

possibility of using full compliments of rollers or polymer cages. This would maximize the

axial stiffness and load carrying capacity of the bearing and be used in applications such as

creep-feed grinders and infeed tables where speed is minimal.

The roller screw market is another area in which the tapered roller bearing would likely

flourish. Roller screws are similar to ballscrews in that they transmit rotational motion into

linear motion. However, several constrained threads are used in contact along the axis of

the screw to operate as the ballnut in the ballscrew application. The large contact area that

is formed by the multitude of threads in contact makes this component appreciably stiffer

than ballscrews of identical size. These applications are limited in speed as noise and

vibratory concerns come into play. They are commonly used in low-speed,intermittent

use, high stiffness applications which could benefit from the use of tapered roller bearings

as the support bearings on the main screw shaft.

Probably the biggest obstacle in the way of the tapered roller bearings acceptance into the

ballscrew support arena lies in the past. Improvements in design and manufacturing over

the last few decades warrant a fresh look at the possibilities.
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