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Abstract
This paper presents a prototype system to create and verify computer generated
graphical models of a remote physical environment. Virtual reality, specifically en-
hanced telepresence, is used to allow interaction between the user and the remote
environment. A stereo view of the remote environment is produced by two CCD
cameras. The cameras are mounted onto a robot which is slaved to a stereoscopic
viewing device. This gives the user a sense of immersion in the physical environment.
The stereo video is enhanced by overlaying the graphical models onto it. The overlay
capability allows for visual verification of graphical models. Creation of a graphical
model is composed of three steps: identification, marking, and placement of the ob-
ject. The user is responsible for identification and marking of the object. Computer
vision is used for the placement of the object.
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Chapter 1

Introduction

Cleanup of remote hazardous environments presents a challenge to the scientific com-

munity. Sandia National Laboratories (SNL) is attacking this problem with advanced

telerobotic work. Their work is being directly applied to the remote retrieval of haz-

ardous waste from underground storage tanks [6]. The tanks provide an opportunity

to test geometric data collection techniques since partial or no a priori information

is available about the environment inside these tanks. It is known that the tanks

are filled with many obstacles such as cooling pipes, risers, and pumps. Since the

sites are remote and dangerous, supervisory control of the robot is required. For a

robot to navigate around these obstacles via motion planning, a complete geometric

database of the remote site is needed. As a step toward being able to create a geo-

metric database of remote sites, a prototype interactive graphical modelling system

was constructed.

Graphical models present geometric information visually. This is important be-

cause humans can quickly process visual information, where as numbers and equations

take longer to understand. Computer-aided design (CAD) packages transform geo-

metric data to a graphical form. The drawback of CAD packages is that geometric

data is hand entered by the user. Data entry is both time consuming and prone to

error. Another problem is that the CAD model cannot be easily verified against the

site it is modelling. To alleviate these problems this thesis explores the combination

of a CAD package and computer vision system. The computer vision system is unique
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in that a human operator assists in the process of object recognition and scene seg-

mentation. The assistance of a human operator is made possible by the use of virtual

reality equipment.

The thesis is broken down in the following manner. Chapter two describes the

overall system. The chapter includes both the hardware and software used. Chapter

three describes the computer vision system. This includes camera and robot cali-

bration methods, as well as computer vision techniques used to extract geometric

information. Chapter four describes the experiments used to test the system. Chap-

ter five concludes with a description of future work.

The problem that this thesis addresses is the collection and verification of geo-

metric information from a remote site. The goal is to build an interactive graphical

modelling system (IGMS) that is capable of collecting geometric data and allows

visual verification of that data.

Collection of geometric or depth information can be carried out by active or passive

sensors. Active sensors send out packets of energy. A calculation is performed on time

of flight of the energy packet to determine the depth information. The wavelength

of the energy packet determines the accuracy that can be achieved using an active

sensor. Passive sensors absorb energy from the environment.. The correlation of the

energy absorbed from more than one location provides the depth information.

Both active and passive sensors are used in this thesis to extract depth information.

Ultrasound (active sensor) is used as a first pass at the depth of objects. Two CCD

cameras (passive sensors) are used to refine the locations of objects.

The presentation of raw geometric data points makes visual verification difficult.

To improve the verification process the geometric information collected is presented

in the form of objects (e.g. block, cylinder). Objects do not overload CAD packages

as fast as raw depth information would. Objects also allow faster motion planning

for robots.

Object recognition by a computer vision system is an active area of research. To

avoid the difficulties of this problem, a human operator is introduced into the system

to recognize objects of importance. The need for an intuitive interface between the
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computer vision system and the human operator brought about the introduction of

virtual reality (VR) equipment.

VR provides visual information to the user through a stereoscopic viewing de-

vice. The two CCD cameras, located at the remote environment, provide the visual

information displayed in the stereoscopic viewer. By slaving the motion of the cam-

era platform to the motion of the stereoscopic viewer, the user is given a sense of

immersion in the remote environment. The stereo graphics of the remote site are

provided by the CAD package. By registering or matching the graphical cameras

with the stereo camera system the merging of reality with virtual reality is possible.

This technique is referred to as enhanced telepresence. In enhanced telepresence, the

real environment is enhanced by overlaying graphical information onto it.

Virtual tools are devices that exist in the graphical environment. They are used

to assist the operator of the system. A 3D pointer, a virtual tool, is used to allow

the user to interact with modelling system. The 3D pointer marks points of interest

in the remote environment. These points of interest are then used by the modelling

system to create graphical objects.

To summarize, the interactive graphical modelling system (IGMS) uses enhanced

telepresence to allow the operator to interact with the computer vision system. Ob-

jects are identified by the operator; the computer vision system then extracts depth

information about the object and creates a graphical model. The location and di-

mension of the graphical object can then be visually verified by user.

1.1 Previous Work

Work done at the GE Advanced Technology Laboratories shows that a complex geo-

metric database can be verified and maintained by using graphical overlays onto stereo

video [12]. Verification is a visual process carried out by the operator to confirm that

wireframe models are properly positioned with respect to physical objects. Verifica-

tion is required for telerobotic operation in which the geometric database is going to

be used for motion planning. Maintenance allows the graphical objects that are cur-
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rently in the database to be moved by the operator to match their physical position.

Maintenance provides a method for updating inaccurate models so that a telerobotic

operation may be started or completed. For example, if a robot moves an object,

maintenance needs to be performed on the geometric data to keep it up-to-date.

At the University of Toronto, Paul Milgram and David Drascic have merged stereo-

scopic video with stereoscopic computer graphics to produce a Virtual Tape Measure

[11]. The Virtual Tape Measure used a graphical 3D pointer to make measurements

in a physical scene. Both relative distance and absolute distance measurements could

be made with the pointer.

The work done at GE Advanced Technology Laboratories and the University of

Toronto demonstrated several important points.

* Manipulation of graphical objects in a physical environment is useful.

* An operator can make relative position judgments with both real

and virtual objects.

* It is possible to make physical measurements from points created

by a virtual tool.
Bruce Bon and colleagues at Jet Propulsion Laboratory designed and built a

prototype telerobotic system for graphical model building called Operator Coached

Machine Vision (OCMV) [4]. The operator of OCMV indicates edges on a physical

object by controlling a 3D virtual pointer with a joystick. When the operator has

indicated all the edges of the object, machine vision takes over and resolves the

edge more accurately than the operator could indicate. Once the edges are resolved

the computer creates a wireframe model of the object. The machine vision system

took inputs from four camera positions. The user interface was flat screen, making

immersion in the remote environment impossible.

The difference between the research in this thesis and the work mentioned above is

immersion of the operator in the remote environment. Immersion is done by slaving

the motion of the camera platform to the motion of the viewer. Also, interaction

between the IGMS and user is based on a VR paradigm. One example of this is

that voice commands are used as input. Another difference is that texture mapping

11



of graphical objects is utilized to create more realistic looking models. The texture

maps also assist in identification of objects. The computer vision system uses only

two cameras to extract dimensional information from the remote environment and

relies heavily on operator assistance.

12



Chapter 2

System

This chapter describes the interactive graphical modelling system (IGMS) developed

at SNL. The chapter starts with an overview of the system's function. Then a de-

scription of the hardware and software is given. The chapter closes with a high level

description of the custom software used to control the IGMS.

The interactive graphical modelling system (IGMS) is composed of three major

components, a CAD package, a computer vision system, and a VR user interface.

The CAD package is used for both its graphics display and geometric database. The

computer vision system is used to extract geometric data from the remote site. The

VR equipment provides natural control and feedback to the user. The three compo-

nents are connected together with custom software. Figure 2-1 illustrates how the

IGMS is organized.

The IGMS is designed to build and verify simple graphical models of a remote site.

Verification means that graphical models are visually confirmed by the operator to

see that they match with respect to size and location. Two viewing modes, solid and

wireframe, exist. The different modes enhance the ability to verify objects. Models

are constructed in the graphical environment using position and dimensions obtained

from the computer vision system. The IGMS has two basic models, cylinder and

block, which are scaled to match objects in the remote environment. A cylinder

was chosen as a primary model because the underground storage tanks have a large

number of pipes in them. Block was selected as the other primitive so that objects

13
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of interest could be bounded. To make up for the crudity of the block model, the

capability of texture mapping blocks is available. Texture maps are pictures of the

actual object obtained from the digitized image. These pictures are pasted onto the

block model.

The IGMS is based on a VR user interface. The VR user interface provides visual

and auditory feedback. Visual feedback is displayed in the stereoscopic viewer. Visual

information is received from two sources: the cameras located at the remote site and

the graphical cameras created by the CAD package. Special hardware that uses

chroma keying overlays the stereo graphics onto the stereo video. A camera platform

orients the cameras to match the orientation of the stereoscopic viewer.

Auditory feedback is played over speakers. It is used to inform the user about the

current state of the IGMS.

The VR interface receives input from verbal commands and both head and hand

motion of the operator. The stereoscopic viewer tracks the head motion. A joystick

tracks hand motion. A voice recognition system interprets verbal commands.

The computer vision system is based upon the concept of stereo vision. Two

monochrome CCD cameras provide the stereo view. A frame grabber captures images

from both cameras. Edge detection and scene analysis are performed in software.

2.1 System Hardware

The system hardware has a workstation as the central processing unit. Information

is collected from several peripheral devices by serial communication. Other hardware

in the system is accessed over the network. Below is a description of the system

hardware used.

2.1.1 Workstation

A Silicon Graphics CrimsonTM with Reality EngineTM Graphics is used to run to CAD

software. The Reality EngineTM Graphics allow texture mapping to be performed in

hardware. This makes the texture mapping process real time.
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2.1.2 Polled Devices

The stereoscopic viewer, joystick, ultrasound, and voice system are all polled devices.

Polling means that information is requested from these devices by the workstation

from a serial data port. Except for the ultrasound, all the devices are polled before

each update of the computer graphics. The ultrasound is only polled upon an operator

request. To increase the speed of polling these devices a request for data is made one

cycle before it is read. This gives a faster response time for the IGMS, but also

introduces data latency. Since the graphics are being updated at approximately 30

frames a second, data latency does not present a problem. To implement this polling

method, the software provided by the manufacturers of the different devices was

modified before it was incorporated into the control software. Below is a description

of each of the polled devices along with the functions they perform in the system.

2.1.3 Stereoscopic Viewer

The Fakespace BOOM2CTM is a six degree of freedom, stereoscopic display device.

Figure 2-2 shows a picture of the Fakespace BOOM2CTM. It is mechanically tracked,

producing both low latency and high accuracy. It transmits its position and ori-

entation information over a serial line at 9600 baud using a compact protocol. The

maximum polling rate of the Fakespace BOOM2CTM is 70Hz. The mechanical track-

ing is relative to the power up position; this means that the position of the Fakespace

BOOM2CTM at power up is considered the user-defined zero position. The resolu-

tion of the stereoscopic viewer, which is CRT based, is 1280x1024 pixels per channel.

Fakespace Inc. provides a technique which allows the production of a stereo graphics

from one workstation to be displayed in the viewer. This technique was incorporated

into CAD software.

Two buttons are located on the handle of the Fakespace BOOM2CTM. The condi-

tion of these buttons is also transmitted on a data request. These buttons are mapped

to IGMS commands. Table 2.1 shows the different commands the two buttons exe-

cute. In the table, one means that the button is being pressed; zero means that the

16



Figure 2-2: Fakespace BOOM2CTAI
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Table 2.1: Mapping for Fakespace BOOM2CTM Buttons in the IGMS

button is not being pressed.

The Fakespace BOOM2CTM is used by the IGMS to give the user a sense of

immersion in the environment. The fact that the Fakespace BOOM2CTM is capable

of tracking the pose of the viewing location makes immersion possible. Stereoscopic

viewing devices that do not track the viewing position do not allow for immersion

(e.g. flat screen display).

2.1.4 Joystick

The FlyBoxT M , manufactured by BG Systems, is composed of a three degree of free-

dom joystick, two levers, and several switches. It communicates with the workstation

over a serial line at 9600 baud. Its maximum polling rate is 50Hz. The communica-

tion protocol is decoded so that the switches return a value of 1 if on and 0 if off. The

joystick is used to control the graphical pointer. Movement of the joystick returns

a value between 1 and -1 for each axis. Table 2.2 summarizes the functions of the

FlyBoxTM in the IGMS. Currently the levers are not used by the IGMS.

2.1.5 Ultrasound

A Contaq UDM-FLTM Ultrasonic Transducer was used for ultrasonic ranging. The

sensor has a range from two inches to sixty feet with a beam width of twelve degrees.

It communicates with the workstation over a serial line at 9600 baud. The maximum

polling rate of the sensor is 6 hertz. This slow update means that the IGMS graphics

would be slowed down if it were polled every display cycle. Therefore, it is only polled

18

Buttons Value System Control
00 0 None
01 1 Freeze Graphics and camera platform
10 2 Ultra Sound Ranging
11 3 Slave Graphics and camera platform to Viewer



Action Value Mapping
Forward/Backward (1 -1) cm per frame
Left/Right (1 -1) cm per frame
Twist (1 -1) cm per frame
Button 1 [1, 0] removing point

Button 2 [1, 0] Wirefame / Solid
Button 3 [1, 0] removing model
Button 4-8 [1, 0] NA
Trigger [1, 0] Mark point
Slider 0,1 (1 -1) NA

Table 2.2: Mapping for the FlyBoxTM in IGMS

Table 2.3: Ultrasound Ranging

upon a user request.

With the current implementation of the IGMS, it was found that many users have

trouble with depth perception. The problem is caused by monocular depth cues.

With the overlay technique being used graphical objects are still visible when they

are placed behind real objects. This tends to confuse novice users. If a graphical

object is placed far enough behind a real object, the user can no longer converge the

graphics. This prevents the user from placing the pointer far behind an object. To

help users with depth perception, ultrasonic ranging was introduced into the IGMS.

Table 2.3 shows that as object distance increases ultrasonic ranging of the correct

object becomes more difficult due to the beam spread. If an object is surrounded

by other objects, depth adjustment of the graphical pointer will be required by the

operator.

19

Ranging Distance Beam Width
0.5 m 0.104 m
1.0 m 0.208 m
2.0 m 0.416 m
5.0 m 1.040 m



Command Value Function
Freeze 1 Freezes graphics and video movements
Range 2 Uses ultra sound to range the depth of object
Unfreeze 3 Slaves the graphics and the video to the viewer
Box 10 Informs the system to model the object as a box
Cylinder 11 Informs the system to model the object as a cylinder

Table 2.4: Verbal Commands

2.1.6 Voice Recognition System

Dragon WriterT M , a product by Dragon Systems Inc., was used for speech recogni-

tion. The voice recognition hardware was installed in an IBM compatible personal

computer. It allows users to design a vocabulary to be recognized. The vocabulary

is created from a user defined language. A language may be a list of words or a com-

plete set of sentence structures. With software written at SNL, the speech recognition

system on the PC communicates with the workstation over a serial line at 9600 baud.

This software sends over two ascii digits whenever a verbal command is recognized.

The vocabulary for the system was composed of the following words: freeze, un-

freeze, range, cylinder, and box. Dragon Systems uses a finite state machine to

represent the language. Each state shows the valid words at that point. Figure 2-3

show the finite state machine for the language used. Table 2.4 states the function of

each verbal command.

Since no command has a unique origin, the state of the voice system can fall

behind the state of the IGMS. In other words, if the IGMS receives a command from

the Fakespace BOOM2CTM buttons the state of the voice system may be incorrect.

Currently, the workstation is unable to update the state of the voice recognition

system, so if an operator freezes the graphics using the buttons, the verbal command

unfreeze would not be valid. This forces the operator to unfreeze the graphics with

the buttons or to manually update the voice recognition by saying freeze.

The voice recognition system may be set up so that all words are valid to overcome

the above problem, but this decreases the recognition rate. Also, the more words

20



Figure 2-3: Voice Recognition Finite State Machine
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available the more likely random speech will be interpreted as a vocal command.

The vocabulary was taught to the voice recognition system. It was trained with

five male voices and five female voices in an attempt to create a speaker independent

system.

2.1.7 Camera Platform

The Fakespace MOLLYTM is a three degree of freedom robot with an adjustable cam-

era platform. Figure 2-4 shows a picture of the Fakespace MOLLYTM . MOLLYTM

communicates with the workstation over a serial link at 9600 baud. A personal com-

puter is normally used to slave MOLLYTM to the stereoscopic viewer. Since the

IGMS needs to control the camera platform independent of the stereoscopic viewer,

MOLLYTM was directly interfaced to the workstation. MOLLYTM is different from

the other polled devices because its position may be both set and requested from the

workstation. The need to request the position of MOLLYTM is necessary because it

may not be able to move to the position set by the workstation.

The interface provides direct control over the robot's specified orientation. Control

of the speed of the robot is accomplished by setting the number of steps per move.

Also, MOLLYTM may be queried as to its current orientation. The power up position

is the zero or home position of the robot. The current orientation can be reset to

zero.

2.2 Server/Client

A server/client setup is usually used for high speed communication between worksta-

tions. To accomplish this the server and client communicate with each other over a

network. The server/client setup is used to offload computing cycles or to obtain ac-

cess to equipment on other workstations in the IGMS. Software was written to set up

both server and client workstations on the network. The sound server and the video

server are both utilized to gain access to specialized equipment. An object server is

used to separate the system control software from the computer vision software. This

22
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Table 2.5: Sound Feedback for IGMS

allowed the two pieces of software to be tested independently.

2.2.1 Sound Feedback Server

A sound server written at SNL uses the sound board of an SGI IndigoTM to play back

prerecorded messages and sounds. Sounds are digitally recorded and stored in files.

Access and playback of the sound files is made possible by the sound server. Each file

has a number id. When the sound server receives an identification number it plays

the corresponding sound over the speakers.

Tables 2.5 and 2.6 show both sound and verbal messages used by the IGMS. Most

of the sounds and messages are used as feedback to the user, but one of the messages

is used to query the user for input.

2.2.2 Video Server

A video server was written to control the overlaying of the graphics onto the video.

The server uses a RGB/VIEW TM model 1050 to control the overlay process. The

RGB/VIEWTAM allows for low resolution video to be overlaid onto high resolution

video. It is also used to acquire low resolution video frames. It takes approximately

three seconds to store a frame of video. Once a video frame is stored, the video server

performs edge detection on the video frame. It takes approximately fourteen seconds

to perform the edge detection algorithm on one video image. The edge detection

algorithm used was developed by John Canny and is explained in chapter 3. The

24

Sound Feedback
Camera Click Informs the user that the graphics is freezing.
Ricochet Informs the user that ranging is taking place.
Woodblock Hit Informs the user that a mark has been placed.
Belltree Informs the user that a new graphical object

has been added.
Introduction music Used to grab the user attention.



Table 2.6: Verbal Feedback for IGMS

reason that edge detection is performed by the video server is that while the operator

is marking an object the edge detection can be taking place on another machine.

The RGB/VIEWTM video interface is used to overlay the stereo graphics onto the

stereo video. Low resolution (512x480), live stereo video is produced by two

monochrome CCD cameras. The workstation produces a high resolution (1280x 1024)

RGB video signal. Thus, the RGB/VIEWTM must enlarge the low resolution video

to match the high resolution produced by the workstation.

The video interface allows the user to select a color level for each channel (Red,

Green, and Blue) in which the the graphics will be overlayed onto the graphics. The

video interface breaks each channel into 256 different level or shades. The current

setup allows all shades above sixty to be overlayed onto the stereo video. In other

words, wherever the graphics are black the camera signal will be seen. This means

that a wireframe model for floors and walls must be used, or else the stereo video

would not be visible. In other words, solid models block the stereo video in those

25

Verbal Message Meaning
Modeling as (box, cylinder). Informs the user of the type of

model being created.
Freezing viewing position. Informs the user that graphics are

not slave to the viewer
Unfreezing viewing position. Informs the user that graphics are

slaved to the viewer.
Removing (points, model). Informs the user that a virtual object

is being removed.
Please wait. Lets the user know that the computer

is doing calculations.
Locating object. Informs the user of the type of calculation

taking place.
Welcome to the virtual reality lab. Introduction Message
This a an interactive Introduction Message
computer vision demonstration.
Is object a box or a cylinder? Asks the user for identification

of the physical object*



image points.

The video interface allows the user to move the stereo video around in the stereo

graphics by specifying the pixel offset in u and v direction. This ability makes it

easier to set up the registration of the graphics with the video.

2.2.3 Object Server

An object server was created to locate objects in the video. The server takes the type

of object and the pixel information from the system control software. It combines

this information with the images from the video server and returns the pose and

dimension of the object. More detail about the object server is provided in chapter

3.

2.3 CAD Software

The CAD package used is SILMA's CimStationTM. CimStationT is a robotics

simulation software package which can be customized to allow added functionality.

Customization software was written in SIL. SIL is an object-oriented language that

CimStationTM provides for programming. Also, C and Fortran code can be linked

into CimStationTM. Using SIL, graphical objects (eg. block, cylinder, sphere) can be

created and positioned within a workcell during execution. SIL code provides direct

control over the position and properties of the graphical cameras.

To set up the graphical cameras CimStationTM needs five parameters: field of

view, aspect ratio, front clipping plane, back clipping plane,'and pose. Since these

parameters are all setable in software, it is possible to match the virtual cameras with

the real cameras. CimStationTM was selected as the CAD package to use because of

its flexibility. This flexibility made system integration possible.

To customize CimStationTM for the IGMS several extensions were added. The

interfaces to all the hardware devices were written in C and linked into CimStationTM.

The IGMS control software was written in SIL. This software controls the graphical

environment within CimStationTM, as well as the IGMS hardware. Code was written
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in C to access the network so that CimStationTM could access the sound, video, and

object servers.

2.4 Control

The control software for the IGMS is executed from inside the CAD package. There

are two modes of operation, verification and model building. Below is a description

of the two modes of operation and the initialization process. Figure 2-5 shows the

key features for the two modes of operation.

On power up, the control software goes through an initialization process. First,

it sends requests to attach to the sound, video, and object servers, then it loads

calibration data for the cameras and the camera platform. It clears the serial lines

and requests data from each device. If any of the steps are not completed successfully

the control software will exit. Otherwise, verification mode is entered.

In verification mode, the camera system is slaved to the stereoscopic viewer. The

pose of the viewer is requested. From this information, the orientation of the camera

platform is updated to match the orientation of the viewer. Also, the pose of the

graphical cameras is updated. The pose of the graphical cameras is computed by

using the calibration data for the camera platform. The voice recognition system

and joystick are polled. If the freeze command is issued by the user through a voice

command or button press the IGMS will enter model building mode. Otherwise

the verification process will be repeated, starting with polling the position of the

stereoscopic viewer.

By slaving both the graphical and the real cameras to the stereoscopic viewer, ver-

ification can be visually accomplished by examining the remote environment. Having

both solid and wireframe models available allows the user to check how well the

graphical models match with the remote environment. The voice command "wire-

frame" displays the wireframe or outline model of the graphical objects. This feature

is necessary since graphical overlay with solid models can hide model mismatch. This

happens when the graphical model is larger than the object it is modelling.
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When any command is detected, sound feedback is provided to the user by the

sound server.

In model building mode, the camera position is fixed. Fixing the camera position

allows the image to be stored in memory before the object to be modelled is completely

identified. Upon entering model building mode a request is sent to the video server to

grab an image from the two CCD cameras. These images will be used by the object

server to return the dimensions of the object being graphically modelled. A graphical

3D pointer is placed into the scene. Knowing the orientation of the camera platform

allows for the placement of the pointer. On every update cycle the voice system,

stereoscopic viewer, and joystick are polled to look for commands being issued. The

pointer is controlled by the joystick or the ultrasound system. To get a rough estimate

of the depth of the objects the "range" command is issued. This command moves

the graphical pointer to the depth returned by the ultrasound system. Since the

ultrasound sensor is mounted between the cameras, the depth information should

correspond to the object of interest. By moving the pointer with the joystick, four

points can be placed that bound the object. The location of these points will be sent

to object server. A point is made by issuing the "mark" command. Points may also

be removed by issuing the "unmark" command. Sound and visual feedback inform

the user when a point is marked or unmarked.

Once the four marks have been placed the system prompts the user to identify

the type of object that is to be modelled. This information is sent off to the object

server and the system waits for geometric data about the object to be returned. If

the object server cannot locate the object it returns a negative value, otherwise it

returns the dimensions and location of the object. The control system then enters

the geometric data into the CAD package and a graphical object is created.

To enter the verification mode from modelling mode the "unfreeze" command is

issued. Otherwise, the computer awaits a new set of bounding points.
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Model Building

Figure 2-5: Two Modes of IGMS Control Software
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Chapter 3

Computer Vision System

In this chapter, a description of the computer vision system is presented. The chapter

begins with the camera model used and a method for calculating it is given. The image

processing software is outlined. Lastly, the steps involved in moving from images to

objects is shown.

The computer vision system is composed of several components: two monochrome

CCD cameras, a camera platform, a framegrabber, and image processing software.

Models for both the cameras and the camera platform are created so that they may be

accurately represented in the IGMS software. The camera model is based on a point

projection model. The camera platform model uses the Denavit-Hartenberg notation

to calculate a transformation matrix that relates the position of the cameras to the

base position of the camera platform.

The models provide a method to relate the graphical environment to the real

environment. The camera model supplies the camera parameters needed to match

the graphical cameras to the real cameras. To obtain the parameter values the camera

model is decomposed into its component parts. The camera platform model furnishes

the pose of the cameras when the platform is moving. If the cameras are fixed in

position then the camera model alone provides the pose.

A stereo camera system is used to produce a 3D image. A line projecting from

each camera is used to triangulate the position of points in world space. This line is

calculated using inverse perspective. The 3D points are combined to create graphical
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objects that are correctly positioned and have the proper dimensions in the graphical

environment with respect to the remote environment. In this chapter, the above

models and concepts will be developed.

3.1 Camera Model

A camera model transforms three dimensional world points to two dimensional image

points. Point projection is used to model the camera. In the point projection model,

an image is obtained by projecting the scene through a single point (point of focus)

onto an image plane. The distance between the point of focus and image plane is

referred to as the focal length. Using geometry, it can be shown that the focal length

is one of the scaling factors between the actual size of an object and the size of the

object in the image plane. The camera calibration matrix explained below is used to

encapsulate the point projection camera model. The point projection model makes

no attempt to adjust for lens distortion.

One of the tools used in computer vision and computer graphics is homogeneous

coordinates. Homogeneous coordinates are used to create linear transformation ma-

trices. To convert a physical point (x,y,z) to a homogeneous coordinate, the point

is scaled by an arbitrary nonzero scale factor k. The new coordinate is (kx, ky, kz,

k). This transforms a 3D point to a line. Hence, a single point has an infinite set of

values in homogeneous coordinates. This representation of points will be used in the

derivation of the camera calibration matrix.

3.2 Camera Calibration

The camera calibration used is outlined in Ballard and Brown[2]. Calculation of the

camera calibration matrix is based on the least squares solution for an overdetermined

system of linear equations. The camera calibration matrix is a 3 x 4 matrix. The ma-

trix transforms homogeneous world coordinates into homogeneous image coordinates.

This is shown by equation 3.1.
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Y

x[C] " (3.1)

To transform the image point to a homogeneous coordinate system ((U, V) =>

(u, v, t)) equation 3.2 and 3.3 are applied. By selecting a scale factor of one for the

world points the transformation is simplified (X = x, Y = y, and Z = z).

uU = - (3.2)
t

V = (3.3)t

The matrix C has 12 elements. Since a homogeneous coordinate system is being

used, the scaling element C34 is arbitrarily set equal to one. Now, 11 unknowns exist.

To form an overdetermined system at least 12 equations are needed. It will be shown

below that each data point (a world point and corresponding image point) provides

two equations, therefore six data points or more are needed to calculate the camera

calibration matrix.

The matrix setup used to find the least squares solution is given in equation

3.4. The matrix A contains only constants. The vector x contains all the unknown

variables and the vector b is another set of constants. The error is E = Ax - bl.

It can be shown that the square error is minimized when ATAx = ATb [14]. Hence,

x = (ATA)-lATb is the solution to the problem.

A x = b (3.4)

Transforming equation 3.1 into the least square format is, explained below. The

vector x is equal to the unknown elements of the matrix C. The constants are provided

by the data points collected. Rewriting the matrix equation 3.1 into a set of linear

equations gives equations for u, v, and t (3.5 - 3.7).
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U = xC11 + yC12 + ZC13 + C14

V = xC21 + yC22 + ZC23 + C24

t = xC31 + yC32 + ZC33 + 1

(3.6)

(3.7)

Rewriting equations 3.2 and 3.3 gives the relationship shown in equations 3.8 and

3.9.

u- Ut = O

v - Vt = O

(3.8)

(3.9)

Substituting for u, v, and t the following relationships are established.

[xC11 + yC 12 + 13 + C14] - U[x3 1 + YC32 + ZC33 + 1] = 0

[xC21 + yC2 2 + zC 23 + C24] - V[x31 + yC32 + ZC33 + 1] = 0

(3.10)

(3.11)

The linear equations 3.10 and 3.11 are transformed to the least squares format.

This is shown by the matrix equation 3.9 where xi is the x location for the i data

point collected, yi is the y location for the i data pointed collected, and so on.
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(3.12)

are collected, matrix equation 3.12 is used to calcu-

ix.

3.2.1 Collection of Data Points

Data points for the camera calibration are collected by grabbing images of a ruler

placed on the optical table. Software was written to allow points in an image to be

selected using a mouse. The u,v values are manually collected using this software.

The x,y,z position is measured using the ruler and the optical table. These data

points are then entered into the camera calibration software written by Larry Ray, a

member of the technical staff at SNL. The software performs the calculation outlined

above.

3.3 Decomposition

Once a camera has been calibrated using the above method, the camera calibration

matrix is decomposed. The method for decomposition of a camera calibration matrix

is taken from Ganapathy [7]. The decomposition provides the image center (u0 , v0),

scale factors (ku, k) from image units (pixels) to world units (inches), and the pose

of the camera center in terms of the world coordinate system. From this, field of view

and the aspect ratio can be derived.
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The first step is to identify the matrices that make up the calibration matrix C

Below is a step by step construction of camera calibration matrix.

First the origin must be moved to the position of the camera center (Xc, )', Zc).

A translation matrix is used to do this and is given by equation 3.13.

1 0 0 -Xc

T=0 (3.13)
o o 1 -Zc

00010 0 0 1

Next the X-Y plane is rotated about the Z axis until the Y axis is parallel to the

ray pointing from the camera center to the center of the image plane. Matrix R is

used for rotation about the Z axis.

cos 0 sin 0 0 O

-sin cos 0 0
Ro = (3.14)

0 0 1 0

0 0 0 1

The Y axis is aligned with the ray pointing from the camera center to the origin

of the image plane by rotation about the X axis. Matrix Rx is used for rotation about

the X axis.
1 0 0 0

0 cos sin 0O

0 -sin cos 0O

0 0 0 1

(3.15)

To align the X axis with the u axis of the image plane, the X-Z plane is rotated

about the Y axis. Matrix RV, is used for rotation about the Y axis.
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cos )

0

sin b

0

0

1

0

0

- sin V)

0

cos f

0

0

0

0

1

(3.16)

Combining these four matrices gives a new coordinate system that is with respect

to the camera center and image plane. Ganapathy calls the resultant coordinate

system given by equation 3.17 the image centered coordinate system.

W = RpRORoT (3.17)

New 3D coordinate values are computed with respect to matrix W. This is shown

by equation 3.18.

[W]

To adjust for the properties of the

perspective matrix is applied to scale

x x'

Y yl
(3.18)

z z'

1 1

camera another matrix needs to be applied. A

3D coordinates onto the image plane.

,, _ x'f
yI

ZI f l zf
yI

(3.19)

(3.20)

The coordinates on the image plane must be scaled to the size of the pixels. k,

and k are the scale factors in the u and v direction respectively. Finally, the origin

of the image plane is translated so that the center of the image plane lies on the y

axis.

kux'f
y

(3.21)
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= vo + zf (3.22)
yI

Placing the above equations in matrix form gives equation 3.23.

kf uo O O

I= 0 vo f (3.23)

0 1 0 0

Combining I and W gives the camera calibration matrix C.

C = IW (3.24)

There are 11 equations given by the calibration matrix C with 16 unknowns. Note

that nine of the unknowns can be specified in terms of the three unknowns 0, 0, '.

This gives only 10 unknowns, but also a set of nonlinear equations.

Ganapathy leaves the equation in a linear form and applies the constraint that

R is a proper orthonormal matrix. R is the 3x3 rotation matrix in W. Since R is

a proper orthonormal matrix, R-l = RT. This constraint provides the five needed

equations to solve a linear set of equations.

Using Ganapathy's technique, the camera calibration matrix is decomposed. The

information provided by the decomposition is used to position the graphical cameras

to match the real cameras.

3.4 Camera Platform Calibration

When the cameras are placed onto the camera platform their position in space is no

longer fixed. As the camera platform moves the image centered coordinate system,

represented by matrix W, is changing. Hence, a new matrix W' that changes with

the motion of the camera platform is required to register the stereo graphics with the

stereo cameras.

To calculate the matrix W4'', the camera platform was treated as a two degree of

freedom robot. Once the cameras are calibrated, the matrix I is used to calculate the
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matrix W"'. This is done by placing the cameras on the camera platform. Now, each

image and world point pairs provides an equation the constraints the location of the

end effector of the robot.

The robot calibration provides several values, the base position of the robot, the

initial orientation of the robot, and the orientation and lengths of the robot's links.

The rules for establishing how adjacent links of a robot are related is based on

the Denavit-Hartenberg notation [1]. The Denavit-Hartenberg notation uses a 4x4

matrix representation to relate adjacent links in an open kinematic chain. Each joint

of the links is represented by a coordinate frame. The ith coordinate frame is the

jointi+l between ith and i + 1 links. The three rules for establishing the axes for each

coordinate frame are as follows:

1. The zi-1 axis is along the axis of motion of the ith joint.

2. The xi axis is normal to the zi_- axis, and pointing away from it.

3. The yi axis completes the right-handed coordinate system.

The relative position and orientation of the coordinate frames for the two links

describes the relationship between the links. Four parameters are needed to establish

the relative location of the two coordinate frames are as follows:

ai is the shortest length from zi-1 to coordinate framei.

di is the distance between the coordinate framei_1 and the point on the zi-1 that is

closest to the framei.

cki is the offset angle about the xi axis needed to align the zi-1 axis with the zi axis

(using the right-hand rule).

Oi is the angle about zi-1 axis needed to align xi-1 and xi (using the right-hand

rule).

Using matrices for translation and rotation (3.13-3.17), a set of nonlinear equations

based one the above parameters is created. These equations allow the matrix '' to
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be calculated for different orientations of the camera platform. The equations are

solved using an iterative numerical method starting with estimated values for the

different parameters.

The code for calibration of the camera platform was written by Collin Selleck,

a member of the technical staff at SNL. Data points were collected using the same

method as the camera calibration matrix, but the orientation of camera platform is

varied during data collection.

3.5 Inverse Perspective

To calculate the line in world space that corresponds to a point in image space, the

relationship between focal length and depth is used. This relationship is contained

in the camera calibration matrix. Starting with basic geometry the steps involved to

extract a line equation from the camera calibration matrix are outlined below.

The general equation for a plane in 3-space is given by equation 3.25.

ax + by + cz + d = 0 (3.25)

The intersection of the two planes form a line. The direction of the line is calcu-

lated by taking the cross product of the normal vectors.

(A, v), = (al, bi, cl) x (a2, b2, c2) (3.26)

Given that a line must pass through a specific point and combining with the

direction of a line, the general line equation can be derived.

x - y - y - _
(3.27)

A M

The two linear equations (3.10 and 3.11) used to create the least squares solution

form two planes in world space. Once the element values of the matrix C have been

calculated, they can be used to find x, y, and z values given an image point (U,V).

From these two equations the value of normal vectors would be as follows:
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al = C - C31U bl = C12 - C3 2U

cl= C13 - C33U dl = C14 - U

a2 = C21 - C31V b2 = C22 - C32V

C2= C23 - C3 3V d2 = C24 - V

Using the line equation, the normal vectors from the two planes, and a specific z

location (z0 ), the corresponding x and y location can be calculated. The corresponding

x0 , y0o values are computed with equations 3.28 and 3.29.

b1(c2zo + d2) - b2(C1zo + dl) (328)
alb2 - bla2

a2(clzo + d) - al(c2zo + d2) (3.29)
alb2 - bla2

3.6 Algorithm

The algorithm implemented for the computer vision system to obtain dimensional

information uses a feature extraction algorithm and an area based matcher.

Area based matching algorithms assume that each pixel or point in the left image

has a corresponding pixel in the right image. To find the corresponding pixel in the

right image a correlation process is carried out. First a window is drawn about the

pixel in the left image. This window is then correlated with all possible matching

windows in the right image. The window that has the highest correlation value

provides the matching pixel. The correlation process used is based only on pixel

intensities.

Occlusion presents the biggest problem to the area matching scheme. Occlusions

occur when a portion of one image does not appear in the other. Therefore, a pixel

in the left image would not have a matching pixel is the right image. This problem

will lead to false matches with an area based matching scheme.

For the prototype computer vision system it is going to be assumed that occlusions

do not exist. In other words, the objects of interest will be in full view by both
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cameras. This assumption is valid in several cases because the position of the camera

platform is controlled by the operator of the IGMS.

Equation 3.30 is used to find the matching pixel. When the squared error is

minimized a match is found. This algorithm was selected over the standard correlation

because the match or correlation is taking place at an edge boundary. A typical edge

boundary will have both very high and very low pixel intensities. Therefore, if a

correlation were carried out normalization would be required.

Expanding equation 3.30 gives equation 3.31. By examination, it is seen that

equation 3.31 is related to the correlation process. The term E E fg is the standard

correlation between f and g. Taking the derivative of 3.30 with respect to g, it can

be shown that the error term is minimized when f = g. This corresponds to the

normalized correlation of f and g, as shown in equation 3.32, being maximized (equal

to 1).

E = E g(f - 9)2 (3.30)

E = f2 - 2 fg + 2 (3.31)

Cnorm= E E f 2 (3.32)

Matching algorithms are usually restricted to matching image points that lie on

a epipolar line in the other image plane. An epipolar line is the intersection of the

plane formed by an object or image point and the points of focus of the two cameras

with the two image planes. Since a rough estimate of the object depth is known,

the search can be further restricted by taking a line segment that corresponds to the

image point to be matched and the depth information provided by the operator. The

depth information provided by the operator is assumed to have a ± three inch error.

This error range is larger than that shown by testing with the aid of the ultrasound.

Feature extraction algorithms provide symbolic descriptors of an image. The

feature that is needed for the IGMS is the boundary between different objects. The
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IGMS approximates this by locating edges. An edge is the boundary between two

regions with different gray-levels. Edge detection locates these discontinuities in an

image. An edge detection algorithm developed by John Canny [5] is used to extract

this feature form the image.

To extract edge elements (edgels) the image is convolved with the first directional

derivative of a Gaussian smoothed in both the u (horizontal) and the v (vertical)

direction. The technique which Canny refers to as non-maximum suppression is used

to locate peaks in the gradient image. The resolution of the edges is controlled by

varying the standard deviation of the Gaussian filter. Equations 3.33 and 3.34 show

the relationship of the Gaussian filter with respect to the the filter width w.

(- -) 2 (3.33)

a = 2/2w (3.34)

Since the edgels are used to define the boundary of the object to be modelled,

a small width is desired. Therefore, w is set equal to 3. The assumption is made

that the gross feature extraction has been carried out by the human operator. As the

width of the gaussian filter is narrowed more detail, but also more noise will enter

into the edge extraction process.

To control the noise problem several steps were taken. First, the objects to be

modelled were white against a black background. Second, the lighting of the test

environment is controlled. Third, the threshold for edge acceptance is set higher than

would otherwise be required.

The edgels in the left image is not matched against edges in the right image, but

are only used to identify object boundaries. In other words, the matching process

explained relies on segmentation provided by the user not the edgels extracted from

the images.
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3.7 Triangulation

Having one camera allows 3D points to be mapped to a 2D points, but the mapping

process is not reversible. In other words, spatial information is lost in the mapping

process. One method to recover the lost spatial information is triangulation. By

introducing a second camera, the mapping from two 2D image points to a 3D world

point allows spatial information to be recovered.

After two image points are matched, the location of the object point is calcu-

lated using triangulation. Each image point provides a ray into world space which

is calculated using equation 3.27. The rays intersect at the location of the object

point. To understand the accuracy of the IGMS, the factors that affect triangulation

are outlined below. The ray projected from the camera center has some associated

angular error. This error is the sum of several errors: calibration error, marking and

matching error, and error due to pixel resolution. Pixel resolution is increased by

decreasing the camera's field of view. Marking error is based on the edge location

algorithm used. Matching error is determined by the area based matching algorithm

implemented. Error introduced by the camera system during calibration can be im-

proved by collecting more data points or using a more complex model for both the

cameras and camera platform. It should be noted the triangulation error scales with

the distance of the object from the cameras.

3.8 Images to Objects

The basic concept in moving from images to objects with the IGMS is to have the

operator do the high level image processing and allow the computer vision system to

do the low level image processing. The operator segments the scene using the graph-

ical pointer and identifies the model to be created. The graphical pointer provides

3D points which can be converted into two image points (left and right) using the

camera calibration matrices. These points are used as a first cut at segmenting the

scene. They are also used to restrict the size of the 3D model being created. The
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IGMS has two models, cylinder and box, that the operator can select from for the

purpose of identification.

The computer vision system does two forms of low level processing on the image.

One is locating edges which are used to identify the boundary of the object to be

modelled. The other is finding corresponding pixels in the left and right image.

Once this is completed, key features on the object's boundary are used to calculate

position and dimensions. This information is processed by the CAD package to create

a graphical object.

Below is a description of how the edgels are processed to create the graphical

objects.

3.8.1 Cylinder

The first object recognized by the IGMS was a cylinder. The side view of a cylinder

provides all the information necessary to construct a graphical three dimensional

cylinder. The image points provided by the graphical pointer bound the object.

These points are stored in array0 . The first step is to find the boundary or edge of

the cylinder in the left image. The search for the edge of the cylinder boundary starts

by the selecting two pixels in array 0 with the lowest u value. The estimated edge

position is the average of the u and v values of these two pixels. From this image

point the search is expanded in all directions until an edge is located. If the expansion

is more that 15 pixels in any direction the search will stop and no cylinder will be

located.

Once a valid edgel (eo) is located it is stored in array1 . The edge is followed by

performing a search on all adjacent pixels. To accomplish this all edgels that neighbor

e0 are placed onto stacko. The top pixel on stack0 is popped from the stack and placed

into arrayl. It's neighboring pixels which are edges and are not in arrayl are pushed

onto stacko. This process continues until stacko is empty. Arrayo now holds all the

connected bounding pixels. The number of pixels in the array is compared with the

estimated number pixels of that should bound the cylinder. The estimate is calculated

from the initial bounding pixel values. If these values do not agree, the search begins
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for a new set of bounding edgels. Figure 3-1 shows an example of the bounding pixels

that are located.

The key feature for the cylinder is the corners. The corners are located by examin-

ing the phase change from the neighboring pixels. If the phase change is greater than

25 degrees a possible pixel corner has been located. Each possible corner is placed into

array 2 The four corner pixels for the cylinder are selected from the possible corners

by comparing their distance to the bounding points. The closest pixel in array 2 to

each bounding pixel is selected as the corner pixel. The corresponding corner pixels

in the right image are located using the area based matcher. From these corner pixels

in the left and right image 3D world points can be calculated. Given the assumption

that the height is larger than the radius, these points are used to calculate height,

radius, and position of the cylinder.

One drawback to this method is that a top view of the cylinder will not return

the proper dimension or position. Since the operator controls the camera position

this drawback was ignored.

This method for extracting geometric information about a cylinder is extremely

prone to error if false edges exist or if edges of objects in the background are followed.

Since the matching algorithm limits the depth of the search,.background edges will

be rejected by system when the constraint is added that each edgel must have a

corresponding image point. In other words, when the matching error exceeds a fixed

threshold the matching point is thrown out.

3.8.2 Block

To increase the flexibility of the IGMS, bounding boxes were added. The box is

created by extracting the maximum and minimum value for each axis. Each edgel in

the area marked by the graphical pointer in the left image is matched to the right

image. The match, as before, is only accepted if it is below a specified threshold.

The 3D points are triangulated from corresponding image points. The 3D points are

sorted for maximum and minimum values on each axis. This provides dimension and

position for the block.
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Figure 3-1: Bounding Pixels of a Cylinder
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Due to the crudity of this method, texture mapping is applied so that the real

object may be viewed in the graphical workcell. The coordinates for the texture map

are provided by the maximum and minimum u,v values. The information provided

by the texture map improves object identification.
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Chapter 4

Testing of IGMS

The IGMS was constructed in stages so that a step by step debugging and testing

would be possible. First, the cameras were tested for matching and correspondence.

Next, the user's ability to position the graphical pointer was tested. The camera

platform was tested for angular accuracy. Finally, the process of converting image to

objects was tested. A description of the different tests is given below.

4.1 Testbed

The testbed for the IGMS was constructed in the VR Laboratory at SNL. The floor

of the testbed is a six feet by four feet optical table. The table made measurement

of an object's position simple and accurate. Cylinders used for testing varied in both

height and radius. The heights range from 3 inches to 12 inches. The radius is either

0.5 or 0.25 inches. The dimensions of bounded objects varied in a similar fashion.

The cameras are positioned approximately 24 inches from the end and 6 inches above

the optical table.

4.2 Camera Matching

One of the keys to setting up the IGMS is to match the left camera to the right

camera. Matching the cameras allows the operator to fuse the two 2D images into
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one 3D image. To match the cameras for fusability the orientation of the cameras

must be aligned and the field of view and aspect ratio must be matched as closely as

possible.

The optical axes of the two cameras are aligned by adjusting the angles (pan and

tilt) of the cameras. The pan angle is adjusted until corresponding vertical lines in

the two images are parallel. The vertical lines are provided by the optical table. The

alignment process is manually done using a monitor. Both images are displayed on

the monitor one in blue the other in red, this makes it easy to tell when the vertical

lines are parallel.

The tilt of the cameras is aligned by placing both cameras on a flat platform. This

alignment method does not allow for exact horizontal alignment, but is close enough

for the operator to fuse the two image.

Field of view is adjusted in both camera until an object placed an equal distance

from both camera fills the same number of pixels horizontally and vertically in the

two images.

The accuracy of these adjustments can be measured once the cameras are cali-

brated. Shown below are the camera calibration matrices for the left and right camera

after the above adjustments have been carried out. These matrices are decomposed

to examine the difference in the two cameras after alignment.

-232.71 -64.35 4.45 5031.32

Cleft = -5.22 -63.50 -285.65 1379.56 (4.1)

-0.01 -0.24 0.01 1.00

k = -944.89 kv = 1191.53

uo = 323.6 vo = 213.0

x = 20.85, y = 3.06, z = 3.77

0 = 1.51, 0 = 0.043, ', = 0.00
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-214.44 -60.906 4.84 3844.42

Cright= -4.93 -58.97 -261.44 1294.73 (4.2)

-0.01 -0.22 0.01 1.00

k = -945.29 kv = 1175.58

uo = 309.1 vo = 217.7

x = 16.89, y = 3.96, z = 3.74

0 = 1.53, X = 0.039, X = 0.01

The least squared error values for ku and kv show the accuracy achieved by the

alignment process for pixel size. The ku had a 0.1 percent error and kv had a 1.3

percent error.

The angular alignment error can be calculated for the orientation angles 0,, ,.

0, A, X had errors of 1.2, 0.19, 0.29 degrees respectively. The angular error in 0 is

offset by the mismatch of the image centers. Otherwise, the angular error in 0 would

not be a close match between the two cameras.

After matching the real cameras, the graphical cameras are created in Cim-

StationT"'. The real cameras are fixed in position to isolate the camera model from

the camera platform model. To test the accuracy of the graphical overlay, graphi-

cal models of the real cylinders are manually entered into CimStationTM . The real

cylinders are measured and placed onto the optical table. This provides the pose and

dimension entered into CimStationT. Using a fiat screen monitor, the accuracy of

the graphical overlay is examined. It was shown that the graphical overlay has an

error of less that five pixels in both the u and v direction for a cylinder with a height

of 3 inches and a radius of 0.5 inches. This measurement was made by shifting the

images with respect to the wireframe overlay. Pixel error appeared to scale with size

of objects.

The more important test was the appearance of the overlay in the stereoscopic

viewer. The graphical cylinders that were manually entered visually corresponded in
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the real cylinders. To further test the accuracy, the positions of the cylinders were

incorrectly entered into CimStationTAl. In the stereoscopic viewer horizontal offset

was detected when the object was moved 0.25 inches or more. When the depth of the

cylinder was changed detection was poorer. The cylinder could be moved up to two

inches before it was detected. However, on the fiat screen monitor these offsets could

be detected sooner.

One important factor when setting up the cameras is camera separation. As

the separation of the cameras increases fewer people are capable of fusing the two

2D images in the stereoscopic viewer. It was determined that a camera separation

of greater than 4 inches presented a problem for most users with the camera field of

view approximately 25 degrees and an object distance of 3 to 7 feet from the cameras.

4.3 Graphical Pointer

The next step tested motion control of the graphical pointer. The first attempt used

a magnetic tracker to position the pointer based on the location of the operator's

wrist. This attempt failed due to noise in the tracking system and the difficulty in

placement of the tracked device. The tracking system was replaced with a joystick.

The joystick is less intuitive than the tracking system for motion control. Using the

tracking system to move the pointer upward the user raised his hand, to move the

pointer upward with the joystick it is twisted counter clockwise. The joystick while

confusing for some users did perform adequately.

The placement of the graphical pointer was tested by having the operator position

the pointer over real objects in the scene. Placement over virtual objects was not

tested or compared. The testing suggested that there are two classes of users. One

class could position the pointer within 2 inches of the objects depth. The other

class could not position the depth of pointer with any accuracy. Both classes could

position the pointer to 0.1 inch horizontally and vertically once the pointer was set

at the correct depth.

These test results were the reason that the ultrasonic ranging was added to the
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system. With the depth ranging capability, any user could correctly position the

graphical pointer to segment the scene for the computer vision system.

4.4 Camera Platform

The camera platform calibration was tested. During the calibration process inaccu-

racies in the camera platform were detected. When the camera platform was tilted

from 0 degrees to 20 degrees and back the camera platform would not return to the

starting position. This was detected by placing a ruler so that it filled the entire ver-

tical field of view and examining the value that the camera platform returned to. The

value varied by an inch at a distance of 3 ft.. This corresponds to an angular error of

1.59 degrees. With this type of error registration between the graphical environment

and real environment is difficult.

The following is a calculation showing the expected error in the camera platform.

The theoretical accuracy of the camera platform is based upon the type of encoders

used and the gear ratio between the encoders and the camera platform. Below is a

calculation for the expected angular error for a tick of the encoder. A tick being the

smallest controllable unit for the camera platform. Two different encoders were used

to control camera platform. The yaw encoder has 1800ticks The gear ratio for thequadrant' 

rotation about the z axis is 13.57. The pitch and roll encoders'haveooticks The gearquadrant'

ratio for rotation about the x and y axes is 5.14.

Yaw:

1 3.684 x 10-3 degrees
4x36800 13.57 tick

Pitch or Roll:

1 1.750 x 10-2degrees
4x3600 X 5.14 tick

To evaluate the above values they are compared with approximate pixel resolution.
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Pixel resolution:
23degrees 4.792 x 10-2degrees
480pixels pixel

Using these numbers, the camera platform should produce better than pixel level

accuracy in all three degrees of freedom. But due to play in the gears, the camera

platform was only able to produce pixel level accuracies for rotation about the z axis.

Initially, the camera platform was going to track the viewer in all three degrees

of rotation, but due to inaccuracies in roll and tilt motion it was only tracked about

the z axis. In other words, the operator could only pan the camera platform. With

this restriction the camera calibration was carried out. Using the stereoscopic viewer,

registration of the graphical cameras with the camera platform was tested. The

fiatscreen display was used to search for the error. The error associated with the

camera platform model was visually undetectable.

4.5 Computer Vision

To determine the window size for the matching algorithm, the computer vision soft-

ware was tested. The tested window sizes for the area based matcher were localized.

They varied in size from a 3x3 to a 13x13 window. Pixels in the left image that lay on

an edge that was vertical to the epipolar lines were easily matched with all window

sizes. The problem for the matching algorithm was caused by pixels that laid on

edges that were approximately parallel to the epipolar lines.

Due to the fact that the camera model provides an estimate of the epipolar lines,

the highly localized 3x3 matching window performed poorly. It has a pixel offset

of three or more when locating the corresponding pixel in the right image. This

performance could have been improved by requiring connectivity of 3D points. To

accomplish this all bounding pixels would have had to been matched, instead of the

four key corner pixels of the cylinder.

The 10x1O window performed best with a maximum of one pixel offset from the

corresponding pixel. The 10x1O would not perform well if the background varied

greatly, but for the test setup the background was relatively uniform.
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4.6 IGMS

The IGMS was tested by several inexperienced operators during different stages of

development. Most of them were able to build graphical models using the system

after a short explanation about the system.

From experimental results, the graphical cylinders created by the IGMS system

were within 0.1 inches of actual dimension. The position or depth accuracy was with

1.5 inches of measured distance. This is due to the fact that the camera separation

is small (4 inches). These results show that this type of system would be adequate

for positioning robot manipulators and tools.
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Chapter 5

Conclusions

The IGMS demonstrated a method for gathering geometric data from a remote site.

The geometric data collected is displayed in a graphical environment which is over-

layed onto video of the remote site. This allows visual verification of graphical models.

The key feature that makes visual verification and data collection possible was the

use of virtual reality. The virtual or graphical environment was used for the verifica-

tion process and also assisted in the model building process through the use of a 3D

graphical pointer.

A step by step method for registering the graphical environment was outlined.

This method allows the user to fuse both the real and graphical 2D images into one

3D image. The calculations required to register the graphical environment, also allows

the computer vision system to make accurate measurements in the real environment.

The graphical pointer proved useful for rough segmentation of the scene. It could

also be used to locate key features. The graphical pointer, unlike a sensor array, could

be moved about the remote environment without fear of destroying equipment.

The sound feedback and voice recognition system added an intuitive interface to

the system. Voice commands meant that the user no longer needed to memorize which

buttons mapped to a specific function. The sound feedback kept the user informed

on the state of the system.

Finally, the geometric data collected was transformed from raw data into objects

by having the operator do the high level recognition of the objects. This concept
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proved useful because specific code could be written to create different types of ob-

jects.

The IGMS provides another block in the chain for research on geometric data

collection from a remote site.

5.1 Future Work

The IGMS demonstrated several important points, but several limitations of the

system are obvious. Below is a description of possible improvements.

A camera platform with a higher level of accuracy in three degrees of freedom (pan,

tilt, and roll) is needed. This would give the operator a greater feel of immersion since

more of the head motion could be tracked. More of the remote environment can be

examined with increase freedom of motion.

The accuracy of the models created needs to be improved. This includes both

a better method for collection of raw geometric data and method for finding the

key features associated with each object. One method for improving data collection

would be to use multiple cameras for better triangulation. Another method would

be a sensor fusion approach using a laser range finder in conjunction with the stereo

video.

A more robust approach to object recognition should be incorporated into the

system. This approach should allow several different views to be combined to created

a single object. In other words, the system should be able to store partial information

for later use in model building.

The number of objects or primitives that the operator can specify should be

increased. This would require finding key features of each new primitive.

The IGMS user interface still has room for improvement. More complete instruc-

tions should be included with the sound feedback. The instructions should be setup

so that no training is necessary to use the system.

In conclusion, the IGMS has demonstrated some of the benefits of combining a

graphical environment with a real environment, but more work is still required before
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the benefits can be fully obtained.
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