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Abstract
This project involved designing, implementing, and testing of a locally adaptive per-
ceptual masking threshold model for image compression. This model computes, based
on the contents of the original images, the maximum amount of noise energy that can
be injected at each transform coefficient that results in perceptually distortion-free
still images or sequences of images.

The adaptive perceptual masking threshold model can be used as a pre-processor
to a JPEG compression standard image coder. DCT coefficients less than their cor-
responding perceptual thresholds can be set to zero before the normal JPEG quanti-
zation and Huffman coding steps. The result is an image-dependent gain in the bit
rate needed for transparent coding. In an informal subjective test involving 318 still
images in the AT&T Bell Laboratory image database, this model provided a gain on
the order of 10 to 30 %.
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Chapter 1

Introduction

Signal compression has long played a pivotal role in the technologies of long-distance

communication, high-quality signal storage and message encryption. In spite of the

recent promise of optical transmission media of relatively unlimited bandwidth, signal

compression still remains a key technology because of our continued and increasing

usage of bandlimited media such as radio, satellite links, and space-limited storage

media such as solid-state memory chips and CD-ROM's. Signal compression has var-

ious applications, ranging from telephone speech, wideband speech, wideband audio,

still images to digital video.

The foundations of signal compression date back to the exceptional work of Shan-

non in the field of information theory [16]. Shannon defined the information content

of a source signal as its entropy, and mathematically showed that the source could

be coded with zero error if the encoder used a transmission rate equal to or greater

than the entropy, and a long enough processing delay. In particular, in the case of

discrete-amplitude sources, the entropy is finite, and therefore the bit rate needed to

achieve zero encoding error is also finite. We can take advantage of the statistical

redundancy in the uncompressed signal to achieve a rate near or equal to the entropy.

However, there are inadequacies in this classical source coding theory. One of the

most important is that the human receiver does not employ a tractable criterion such

as the mean-squared error to judge the difference or similarity between the raw signal

and the encoded signal. Therefore, a much more practical method of signal coding is
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to match the compression algorithm to the human perceptual mechanism; in the case

of image coding, the Human Visual System (HVS). This leads to the development of

the Perceptual Coding field.

In Perceptual Coding, the ultimate criterion of signal quality from signal com-

pression is that perceived by the human receiver. In other words, we can push the

bit rates in the digital representations of the coded signals even lower by design-

ing the compression algorithm to minimize the perceptually meaningful measures of

signal distortion rather than the mathematical criteria used in traditional source cod-

ing. Although the idea of maximizing perceived image quality rather than minimizing

mean-squared error has been known and practiced for a long time, significant progress

in the field of Perceptual Coding can still be made thanks to a more thorough un-

derstanding of the human visual system, as well as more aggressive, more dynamic,

and more sophisticated compression algorithms. Moreover, the capabilities of digital

signal processing chips have increased dramatically recently to the point where the

computational complexity of such algorithms can be supported in practical hardware.

This project involves designing and testing of a new locally adaptive model for

calculating the perceptual masking threshold for the Human Visual System. This

model can be applied to both still images or sequences of images. Also, the model will

be compatible with different coder types, i.e. general enough to be easily incorporated

into any existing DCT-based image coders. A simple linear mapping with the cortex

bands can also make the model compatible with other transform coders.
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Chapter 2

A Review of Important Human

Visual System Properties

A simplified model of the Human Visual System (HVS) is depicted in Figure 2-1 [3].

The lowpass filter in the first box represents the optical properties of the pupil.

The nonlinearity helps the eye to be able to perceive a very large range of intensities.

This nonlinearity is usually modeled as a logarithmic, or other similar, function.

The highpass filter attempts to model the spatial response of the eye due to the

interconnection of the numourous receptor regions of the retina.

The Human Visual System possesses two well-known properties that perceptual

image coders have exploited. They are frequency response and texture masking.

Figure 2-2 on the following page depicts the frequency sensitivity of the Human

Visual System. In general, the HVS acts as a peaky lowpass system. Therefore,

features with high spatial frequency content require higher energy than low spatial

frequency features to be visible. Special care will be given to the lower frequency

region because this is where most of the image information is concentrated. Most of

Output

Figure 2-1: A Simple Model of the Human Visual System (HVS).
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Figure 2-2: Distortion visibility as a function of spatial frequency.

the early work has taken advantage of the HVS's frequency sensitivity as described

by the modulation transfer function (MTF) [2]. This function describes the HVS's

response to sine wave gratings at various frequencies.

However, if the thresholds are obtained only from the base sensitivity of the HVS,

they are certainly very conservative approximations because the fact that human

eyes are far more sensitive to noise in flat fields than in textured regions has not been

taken into account. But first, let's try to answer the simple question: what is tezture?

For the purpose of this project, texture can be defined as any deviation from a flat

field. An image which contains a lot of texture energy is definitely not smooth. In

other words, in an image region with a lot of texture, many pixels have dramatically

different values.

A simple example depicted in Figure 2-3 can help clarify the HVS response to

texture masking. A flat field as Region B is defined to have no texture at all. Region

C has some texture, and Region A has a lot of texture energy. If a fixed amount of

uniform white noise is injected into both images, the noise will be easiest to detect
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Image 2

Figure 2-3: An example of texture and texture masking.

in Region B (no texture), more difficult to detect in Region C (more texture), and

almost impossible to detect in Region A (most texture).

Another question about the HVS that must be answered is: what is masking?

Simply, masking is just the change of visibility or detectability of a signal because of

the presence of another signal in the same spatial frequency locality. As previously

observed from the two images in the texture example (see Figure 2-3), all the white

noise can be partially masked by the somewhat moderate texture in Region C, or

totally masked by the heavy texture in Region A.

Besides the frequency and texture sensitivity, the HVS is also known to be more

sensitive to noise at mid-grey level than at darker or lighter grey levels. Noises at

the two ends of the pixel spectrum are more difficult for the eye to detect [8]. This is

called the HVS contrast sensitivity. A more detailed and complete description of the

Human Visual System's behavior can be found in Cornsweet [4].

11
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Chapter 3

Brief Summary of Previous

Related Work

3.1 Common Methodology

There has been considerable work done in the field of Perceptual Coding by engineers

and researchers in the past [8]. The most common perceptual coding methodology

is decribed in Figure 3-1 [8]. This methodology not only provides the framework

for perceptually lossless coding at the lowest possible bit rate for common coding

algorithms, but can also provide a framework for perceptually optimum performance

given a certain bit rate constraint (in other words, when the available bit rate is lower

than the one needed to provide transparent compression).

In the first stage of this process, a short-term or spatio-temporally local analysis

of the input image is performed. In this stage, important properties of the image,

such as its frequency, intensity, texture and temporal activities, are measured. These

local properties are then used in the second stage of the process where the perceptual

distortion thresholds are estimated. These thresholds can be a function of space or

frequency, depending on the type of the coder. They are called the just-noticable

distortion profile (JND) or the minimally-noticable distortion profile (MND). If the

distortion or noise introduced by the compression algorithm is at or below these

thresholds at all points in the space or frequency domain, the output image is guar-
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temporal activity minimally-noticeable vector quantizer
distortion profile entropy coding

Figure 3-1: A common perceptual coding methodology.

anteed to be perceptually distortion-free. After the JND or MND profile calculation,

the rest of the process is relatively straightforward. The coding algorithm uses the

JND profile to introduce distortion accordingly, and this leads to minimizing the bit

rate for a given image quality level or maximizing the quality level given a certain bit

rate.

3.2 Image-Independent Approach

This is a very common and popular image coding method. In this approach, the JND

or MND profiles are calculated independently of the images. The HVS's sensitivity

to texture is not taken into account. The most popular system using this approach

is the JPEG standard, which features 8x8 block-size DCT coding.

In the JPEG standard, the image is divided into 8x8-pixel blocks. Each block is

then transformed to 64 DCT coefficients Im,n. Each coefficient block is then quan-

tized by dividing it element-wise by a quantization matrix QM with each entry labeled

as Qm,n, and rounding to the nearest integer: Um,n = Round [Im,n/Qm,n]. In DCT

domain, the resulting quantization error is: Em,n = Im,n - Um,n. In this approach,

researchers measure threshold Tm,n, or in other words, the JND profiles psychophysi-

cally. Since the maximum possible quantization error is half of the step-size Qm,n/2,

the image-independent approach can ensures that all the errors are below the thresh-

13
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olds, and hence invisible, by setting: Qm,, = 2 Tm,n. Details of how to design such

a quantization matrix are presented in the next chapter. Finally, all the quantized

coefficients U,,, from all of the blocks are then passed through an entropy coder to

become compressed image data. See Wallace [18] for more details on JPEG.

3.3 Image-Dependent Approach

The image-dependent approach exploits the HVS's contrast and texture sensitivity.

Some models based on this technique have been developed and employed by Watson

[20], Daly [5], and Legge and Foley [9]. In this section, the author chooses to concen-

trate only on the models developed and used at AT&T Bell Laboratory at Murray

Hill, where he practiced his engineering internship.

There are two perceptual masking threshold models already existing at AT&T Bell

Labs. The first one is incorporated in Safranek and Johnston's Perceptually Based

Sub-Band Image Coder [15]. The second one is developed by Mathews. It is called A

Perceptually Masking Threshold Model for Multichannel Image Decompositions [12].

3.3.1 Safranek and Johnston's Model

This perceptual masking threshold model is simple; it only provides an approximate

description of the HVS. However, it appears to work very well in practice. This model

is composed of three separate components, utilizing the aforementioned well-known

properties of the HVS. See [15] for a more complete description of the model.

To obtain the base sensitivity profile, Safranek and Johnston carried out numer-

ous perceptual experiments using three trained subjects. A square of uniformly dis-

tributed random noise of known energy was added to the center of a synthetic image

with mid-grey level (most sensitive to noise). Then, for each sub-band, the noise was

adjusted until the subjects could not reliably determine whether the reconstructed

image contained the noise square or not. Since the experiments were carried out

under the most severe viewing conditions, i.e. using a stimulus that is most sensitive

for the human eyes, this base model provided an overly conservative estimate of the
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perceptual threshold.

The base thresholds were then adjusted based on each input image's local prop-

erties. Since the HVS is more sensitive to noise at mid-grey than at lighter or darker

grey levels, the thresholds were adjusted accordingly with the brightness of each input

image's block. Again, subjective perceptual experiments were carried out to obtain

a brightness correction curve for each sub-band. Since all these curves were similar,

one brightness correction curve was utilized for all sub-bands.

The next components of the model dealt with texture masking adjustments. Tex-

ture energy was estimated by the average value of the AC energy over each analysis

block in each sub-band. Then, depending on the texture energy present, a correction

factor was assigned for the particular analysis block.

Obviously, this model is not locally adaptive enough. It is only adaptive block

by block. In other words, all 64 transform coefficients share one common texture

correction factor. Also, the masking energy measurement is also crude and inaccurate.

3.3.2 Mathews' Perceptual Masking Threshold Model for

Multichannel Image Decompositions

Mathews [12] took a similar approach in designing his perceptual masking threshold

model. This model consists of two components: (1) A base threshold model that does

not take into account the response of the eye to the spatial details of the input image,

but only describes the minimum possible threshold value for each channel, and (2) a

threshold elevation model that describes how these base threshold values get elevated

by the spatial details of the input image.

Mathews' base threshold model was similar to Safranek and Johnston's base sen-

sitivity profile. His major contributions came from the threshold elevation model.

Mathews observed that the threshold of detection at radial frequency f can be raised

by the presence of another signal component at frequency f' depending on the follow-

ing factors:

1. The ratio of the frequencies Lf

15



2. The relative orientation of the two frequencies

3. The contrast (or the intensity) of the masking signal.

Based on these observations, Mathews classified the frequency coefficients into

radial bands. For each radial band, he calculated the threshold elevation factor pro-

portionally to the log of the texture energy in that band:

threshold elevation factor = log2(2 + a masking energy)

where a was a constant that could be tuned to be just right through subjective testing.

The final threshold was then obtained as a product of the base threshold values

calculated from the first component with the threshold elevation factor calculated in

the second component.

This model outperformed Safranek and Johnston's model. It predicted the amount

of undetectable distortion that could be injected into the lower frequency radial band

reasonably well. With perceptually distortion free output images, Mathews' model

provided much larger threshold values. However, it still leaves a lot of room for

improvement. The model does not seem to perform as well at higher frequency bands.

Also, the model is still not locally adaptive enough. All the frequency coefficients in

the same radial frequency band have the same threshold elevation factor.

16



Chapter 4

The Peterson-Ahumada-Watson

Threshold Model

This threshold model accounts for the HVS's frequency and contrast sensitivity, but

not texture sensitivity. It is implemented from the detection model presented in

Peterson, Ahumada, and Watson [13]. This detection model is developed to predict

visibility thresholds for DCT coefficient quantization error, based on the viewing

conditions and the modulation transfer function. This detection model serves as an

excellent base model since it is image-independent, and is designed for various display

conditions, as well as for compression in different color space. The model takes into

account different pixel sizes, different viewing distances, and also different display

luminances.

The thresholds are first computed in YOZ color space [13]. A simple transforma-

tion can provide the equivalent quantization matrices in other color spaces. In this

project, the YCCb color space is of primary interest because this is the color space

utilized in digital television systems.
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4.1 Quantization Matrix Design in YOZ Color

Space

From various visibility threshold contrast ratio measurements, Peterson et al approx-

imates that the luminance threshold of the m, nth DCT coefficient is given by:

log TL,m,,n = log s + (lg f - , (41)
rL + (1- rL) cos2 ,, + kL(log f m -log fL) 2 (4.1)

with m, n = O,..., N - 1.

The log of the luminance threshold is approximated by a parabola in log spatial

frequency. The spatial frequency, fm,n, associated with the m, nth DCT coefficient,

is given by:

f"n= (m)2( )2 (4.2)

where W, and Wy are the horizontal and vertical size of a pixel in degrees of visual

angle respectively. W, and Wy can be calculated by the following relations:

aH avW=, . and W =v (4.3)number of horizontal pixels number of vertical pixels (43)

where aH, defined as the horizontal visual angle in degrees, and av, the vertical visual

angle, are computed as a function of the viewing distance VD measured as multiple

of image heights (see illustration in Figure 4-1):

as. =. (M imagewidth/imageigh)aH = 2. Radian-to-Degree arctan 2VD ) (4.4)

and

ry = 2. Radian-to-Degree (arctan (45)

The angular parameter, which accounts for the HVS orientational dependency, is

given by:

0.0, m=n=O (4.6)

arcsin 2f0f0 , otherwise.

18



image width

Figure 4-1: Calculation of visual angle a.
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Table 4.1: Parameter Values for Peterson et al's Base Model.

The factor roz + (1 - roz) cos 2 6m,n is to account for the summation-obliqueness

effect of the Fourier components. The magnitude of this effect is controlled by the

parameter rL. Based on the fourth power summation rule for the two Fourier compo-

nents [1], L is set to 0.6. The minimum luminance threshold sbL, occuring at spatial

frequency fL, and the remaining parameter kL determines the steepness of the lumi-

nance parabola. The parameter 0.0 < s < 1.0 accounts for visual system summation

of quantization errors over a spatial neighborhood.

Similar measurements were carried out for the chrominance channels, and the

resulting log chromatic thresholds for the m, nth DCT basis function are given by:

log TO,m,n =

(

log · bolog Z+(1-arb)oO S2 ,, .

log bo"OZ+(l-OZ) COS2 °, + koz(log f,,n - log foz)2 ,

if fm,n < foz

if fm ,n > foz.
(4.7)

and

log Tz,.,n =

All of the

in Table 4.1.

log (2 if fm,n < foz

log sbO+(l-,oz)cos2 + koz(log fm,n - log foz) 2, if f,,n > foz.
(4.8)

parameters used to implement this new base threshold model are listed

Y = 41.19 and Zo = 29.65 are the CIE values of average white (D65).

20

model parameter values
channel s r f k b

Y 1 0.25 0.6 3.1 1.34 0.0219 Y

0 0.25 0.6 1.0 3.0 0.0080 Y

Z 0.25 0.6 1.0 3.0 0.0647 Z o



4.2 Conversion of Quantization Matrix to YCCb

Color Space

As described in the previous section, the thresholds in color space YOZ can be cal-

culated from Equations 4.1, 4.7, and 4.8, the pixel sizes W., Wy, and the parameters

given in Table 4.1. These thresholds can be transformed to the YCCb color space in

the following way.

The transformation can be thought of as limiting the errors in each of the channels

Y, C,, Cb such that the resulting errors in the Y, 0, and Z channels are all below the

previously calculated thresholds. The linear transformation matrix Myc,cYb-Yoz re-

lates the errors in the two color spaces. For example, a unit error in a DCT coefficient

in channel C, induces errors of magnitude M2,1l, IM2,2 1, and IM2,3 1 in the Y, 0, and

Z channels respectively:

M l , 1 Ml1 ,2 M 1,3

MYc,Crb-roz = MY'C,ccb--xz x MxyzIyoz = M2,1 M2,2 M2,3 (4.9)

M3, 1 M3,2 M3 ,3

The transformation matrix from color space Y', C,, Cb, to color space YOZ is

given below. Y' is used to help clear up the notational confusion only.

66.9 -1.1 48.2

MY,c,cb--Yoz = -17.8 17.1 -4.5 . (4.10)

-7.0 0.6 67.9

The YOZ model thresholds are then converted to the Y' threshold. Ty,y,,,, is

the threshold imposed on channel Y' by the threshold of channel Y.

Tyyamnn - Tymn To-~Ylm = Tjmni and Tzy =Tmn (4.11)
T yu~~.M 1,11 T m,n - M, 2In -IMm,n, - IM, 31'I
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Similarly,

TY,m,n T,, TZmn (4.
TC,m,n = To OC,,m,n = IM 2,1 and Tz n IM2, (4.12)

TyCb,m,n = TY ,n ToCb,m,n and TCb,m,, = (4.13)
O mIM3,11 1M3,21 ' IM3,31I

Then the minimum rule is used to decide the final thresholds. The minimum rule

ensures the most conservative approximations of the visible quantization errors.

Ty,m,n = min{Ty-y-,,m,n, To-Y,m,n, TZ.Y,m,n }, (4.14)

To,,,,,n = min {T-c,,m,n, To-,C,,,n, Tzr,,mn }, (4.15)

TCb,m,n = min {TY--Cb,m,n TO--Cb,m,n TZ--Cb,m,n }, (4.16)

The final quantization matrix entries in Y'CCb space are obtained by dividing

the new thresholds by the DCT normalization constants a (given in Equation 5.2):

QY',m,n = 2 T, , QCr,,m,n = 2 T,m, QCb,m,n 2 Tc,, (4.17)am n ama an am an

Actually, in this project, since we are interested in the base threshold value, i.e.

the maximum tolerable quantization error, we only have to compute the quantity

T-m, . The factor 2 in Equation 4.17 refers to the obvious fact that the maximum

possible quantization error is half the quantizer's step size. See [13] for a more detailed

discussion on this base model.

4.3 Implementation of Base Thresholds for CIF

Images

Since the test images or sequences are available in CIF standard, we have to imple-

ment the Peterson-Ahumada-Watson base threshold model accordingly. The imple-

mentation is almost exactly the same as described in the previous two sections of the
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chapter. There are only a few minor changes.

CIF standard images are in Y'C,Cb color space, but the two chrominance channels

are down-sampling by a factor of 2. For display, the chrominance channels are then

up-sampled, (while the luminance channel stays the same), and the whole image is

converted to RGB space. All the CIF standard images have dimension 360x240.

Therefore, the chrominance channels have dimension 180x120.

For the luminance channel we have the full number of pixels in both dimensions.

For a fixed viewing distance, this translates to a value for a as demonstated in Figure

4-1. From this value of a, we can calculate the corresponding W, and Wy for the

luminance channel. However, for chrominance channels, we have the same viewing

conditions, hence the same value of a, but the chrominance channels have been down-

sampled by a factor of 2 in both dimensions. This means we only have half the number

of pixels which results in W, and Wy for the chrominance channel being double the

luminance values. The base weights computed for a viewing distance of 3 image

heights for CIF images in color space Y'C,Cb are given in Table 4.2 in the following

page.

In order to make the base model design more robust, several modifications were

added. The first modification accounts for the dependence of the detection thresh-

olds on viewing distance. The aforementioned design procedure is performed for the

minimum given viewing distance. The viewing distance is then increased, and the

thresholds are recomputed. The output thresholds are now set to the minimum of

the two calculated thresholds, and the procedure is repeated until a certain maximum

viewing distance is reached. The iteration ensures that there is no visible distortion

at any viewing distance greater than the minimum.

'The second modification is to account for the dependence of the detection thresh-

olds on viewing condition. It is implemented in a similar fashion. In this case, for

each iteration, instead of increasing the viewing distance, a new set of white point is

installed (by changing the YO and X0 values in Table 4.1). The final output thresholds

are set to the minimum of all the thresholds computed from all the white points.
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Table 4.2: Base weights for CIF images in Y'CCb color space (for VD=3).

24

2.0 3.5 3.5 3.5 3.5 3.5 4.0 4.0
3.5 3.0 3.5 3.0 2.5 2.5 3.0 3.0

Y' 3.5 2.5 3.0 4.0 3.5 3.5 3.5 3.5
base 3.5 2.5 3.0 3.5 4.0 4.5 4.5 4.5

weights 4.0 2.5 3.0 3.5 4.0 5.0 6.0 5.5
4.5 3.0 3.5 3.5 4.0 5.0 5.5 7.0
5.0 3.5 4.0 4.0 4.5 5.0 6.0 7.0
6.0 4.5 4.5 5.0 5.0 5.5 6.5 7.0
7.0 7.0 7.0 7.5 9.5 13.0 15.0 16.5
7.0 3.5 3.5 4.0 5.5 8.5 11.0 12.0

C,. 7.5 4.5 4.0 5.0 6.5 9.0 13.0 14.0
base 11.0 7.0 7.0 7.5 9.5 12.5 16.5 17.5

weights 15.0 11.0 12.0 13.0 15.0 18.5 22.5 22.0
17.0 12.5 13.0 14.5 16.5 19.0 22.0 26.0
20.0 14.5 15.0 16.5 18.0 20.0 23.0 26.5
24.0 17.0 17.5 18.5 20.0 22.5 25.0 28.0
14.0 14.0 14.0 14.5 18.0 25.5 36.5 42.0
14.0 7.0 7.0 8.0 11.0 16.5 24.5 31.5

Cb 14.5 8.5 8.0 10.0 13.0 17.5 25.5 36.0
base 21.5 14.0 13.5 15.0 18.5 24.5 32.5 44.5

weights 36.5 25.0 24.5 25.5 29.5 36.5 47.0 56.5
44.0 32.0 34.0 37.0 42.0 48.5 56.5 67.0
51.5 37.0 39.0 42.0 46.0 52.0 59.0 68.0
61.0 43.5 45.0 48.0 52.0 57.0 63.5 72.0



Chapter 5

Mapping of DCT coefficients on

the Cortex Filters

In perceptual image coding, the choice of the filterbank which has the HVS's structure

is very important to the performance of the compression system. The DCT (Discrete

Cosine Transform) does not meet this crucial criterion. This leads to difficulty in

creating an effective masking model for DCT-based coder since there is a mismatch

between the underlying structure of the model and the structure of the DCT. The

algorithm presented in this chapter maps the DCT transform coefficients onto the

Cortex transform filters, which mimics the the visual system's structure [19]. The

mapping helps to decide which DCT coefficients contribute how much energy to which

Cortex transform's critical bands. This is a pivotal component of the perceptual

masking threshold model since it provides the model's local adaptability, and it solves

the aforementioned mismatch problem.

5.1 The Discrete Cosine Transform

The DCT has recently become a standard method of image compression. The JPEG,

MPEG, and CCITT H.261 image compression standards all employ the DCT as

a basic mechanism. In the Forward DCT, the image pixels are divided into 8x8

blocks; each block is then transformed into 64 DCT coefficients. The DCT transform
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Figure 5-1: Symmetric Replication of an Image Block.

coefficients Im,n of an N x N block and its image pixels ij,k are related by the following

equations:

N-1 N-1
I,n = E E ij,kCj,mCk,n , with m, n = 0,..., N- 1, (5.1)

j=0 k=O

where

cj = m cos (m 2 [2 + 1 and = f = 0 (5.2)2N' -/ 2/N, m>O

and
N-1 N-1

ij,k = d Ey Im,nCj,mCk,n , with j, k = O,..., N - 1, (5.3)
m=O n=O

The coefficient with zero frequency in both dimensions m,n is called the DC coef-

ficient; the remaining 63 coefficients are called the AC coefficients.

The DCT is closely related to the Discrete Fourier Transform (DFT). If the 8x8-

pixel block is flipped and replicated in such a way that the new 16x16-pixel block

is symmetric as demonstrated in Figure 5-1, the 16x16-point DFT of the new image

block are very closely related to the 8x8-point DCT [10]. The general framework is

26



shown below:

DFTN x N ij,k - 2N x 2N yj,k 2N x 2N Ym,n N x N I,

where the relation between Y,n and Im,n is given by:

Im,n = e- e Ym,,. (5.4)

The above relation ensures the mapping's validity since the cortex transform is

also performed in DFT domain with symmetrically replicated data.

5.2 The Cortex Transform

The Cortex transform was first introduced by Watson as a rapid computation of

simulated neural images [19]. It was later modified and used by Daly in his visible

differences predictor (VDP) [5]. The Cortex transform originates from researches in

neurophysiology [7] [6] and psychophysical studies in masking [2] [17]. These stud-

ies have found a radial frequency selectivity that is essentially symmetric on a log

frequency axis with bandwidths nearly constant at one octave. Furthermore, these

studies also discovered that the HVS's orientation selectivity is symmetric about a

center peak angle with tuning bandwidths varying as a function of radial frequency,

ranging from 30 degrees for high frequencies to 60 degrees for low frequencies [14].

These familiar properties of the HVS were also noted and exploited by Mathews [12]

in his previously mentioned masking model design.

The frequency selectivity of the HVS was modeled by Watson, and then modified

by Daly, as a hierarchy of filters called the Cortez filters. The radial selectivity and

orientational selectivity in the Cortex transform are modeled with separate classes

of filters that are cascaded to give the combined radial and orientational selectivity

of the HVS. Note that this is only an attempt to approximate the human visual

system. By splitting the original image spectrum into many spatial images with the

Cortex filters, we can model the space-frequency localization aspects of the HVS.
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The Cortex transform, named after the striate cortex where neurons demonstrating

the radial and orientational effects are found, is picked because it proves to model

the HVS very accurately as demonstrated in Daly's Visible Differences Predictor.

Moreover, the cortex transform is reversible, flexible, and also easy to implement.

Its disadvantages, such as non-orthogonality and computational complexity, do not

concern us since we do not have the perfect-reconstruction constraint, and we only

have to run the mapping algorithm once. Once the mapping has been found out, the

result can be used for all DCT blocks.

The cortex filters are formed as a separable product of the radial frequency and

the orientational frequency filters. In order to ensure the reversibility of the cortex

filters' set, i.e. the sum of the filters is 1, the radial frequency bands are formed as

differences of a series of 2D low-pass mesa filters which have a flat pass-band, a flat

stop-band, and a Hanning-window transition-band. The mesa filter can be completely

characterized by its half-amplitude frequency, p , and its transition width, tw:

1.0 forp < p t2

mesa(p) = 21 + cos for - < < P + (5.5)

0.0 for p > pi + tu

The kth dom (differences of mesas) filter is simply the difference of two mesa filters

evaluated at two different half-amplitude frequencies:

domk(p) = mesa(p)p=2_(k,l) - mesa(p)lp,=2_ (5.6)

The lowest frequency filter, called the base, is designed differently. A truncated

Gaussian function is used instead of the mesas to get rid of the unacceptable ringing

in the base-band:

base(p) 2eI ) forp < 2pi +t (5.7)
0.0 for p >p + t2 2-
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where

a = 1 PI-+ tw p 2-K, (5.8)

with K being the total number of radial filters. The transition width tw of each filter

is defined to be a function of its half-amplitude frequency, as given by

2
tw = pi. (5.9)

This choice of transition width gives the Cortex bands constant behavior on a log

frequency axis with a bandwidth of 1.0 octave and symmetric response.

The HVS's orientational frequency selectivity is modeled by a set of fan filters. A

Hanning window is also used for these filters. The orientation transitions are functions

of' angular degrees in Fourier domain. The th fan filter is given by,

(1+cos - for 0 - 0(1)l < O8t
fanj(9) = (5.10)

0.0 for l - c(l)l > Otw ,

where tw, is the angular transition width, and 9c(1) is the orientation of the center

angular frequency of fan filter , given by,

180°

Oc(l) = (1- 1)tw - 90 ; ,, = 180 (5.11)

with L being the total number of fan filters.

The cortex filters are then formed by a simple polar multiplication of the corre-

sponding dom and fan filter:

corte domk(p).fanz(O) fork = 1,...,K - 1; 1 = 1,...,L (5.12)

ote= base(p) fork = K.

The total number of cortex filters is L(K-1)+1. For the mapping, we use K=6

and L=6, combining for a total of 31 critical cortex bands. Notice that there is

no orientation selectivity in the baseband, and the choice of L yields an orientation
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Figure 5-2: Complete set of cortex filters for K=6 and L=6.

bandwidth of 30 degrees, which is consistent with studies in [14]. Also, the set of

cortex filters is invertible, i.e.

K L

E cortek,l(Pp, ) = 1 for all p, . (5.13)
k=l 1=1

Details of the radial and orientational dissections of the frequency space are shown

in Figure 5-2. See [5] and [19] for more detailed description and implementation of

the cortex filters.
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5.3 The DCT-Cortex Transform Mapping

This DCT-Cortex transform masking serves as the heart of our locally adaptive tex-

ture masking model. As previously mentioned, texture masking, or contrast masking

in some other literatures, refers to the reduction of visibility or detectability of one

image signal by the presence of another. The texture masking characteristic of the

lIVS is known to be dependent on three major factors. The masking is strongest

(and, therefore, the thresholds can be elevated highest) when both signals are of the

same location, orientation, and spatial frequency [12] [20]. The cortex filters divide

up the image spectrum in a similar fashion. They are nothing more than a set of

windows that cover the whole frequency spectrum. Signal components at the same

location, orientation, and spatial frequency are grouped together in the same Cortex

band. Moreover, in this project, we only consider texture masking within a DCT

block. Therefore, a simple mapping of the two can help us decide which DCT coeffi-

cients contribute how much energy to which cortex band, and from that information,

elevate these coefficients' base thresholds accordingly with the intensity of the tex-

ture energy present in that cortex band. Notice that this idea can also be applied

to masking across the DCT blocks. The performance of the model would definitely

be enhanced by such algorithm thanks to an increase in masking accuracy. However,

the computation for such a model would also be more costly because of the increase

in complexity.

'The mapping algorithm's complexity lies heavily on the implementation of the

cortex filters. Once this task is done, the mapping reduces to 64 numerical integrations

of 64 DCT bins over each cortex band.

The algorithm takes in a resolution number, a threshold, K, and L as its inputs,

and produces one 8x8 overlap-area matrix for each cortex band. K, chosen to be

6 in this project, is the number of dom filters; L = 6, is the number of fan filters.

The threshold is used to produce a binary overlap area matrix for convenience. If

an overlap area is greater than the threshold, then it is set to 1. Otherwise, it is

set to 0. These binary matrices are used in the early stages when we were setting
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up the overall framework for the project. In later stages, when the elevation model's

accuracy becomes an important issue, the actual overlap area values are always used.

The resolution resnum provides the finer scale for the numerical integrations. Notice

that more accuracy can be achieved by higher resolution. However, computational

complexity is the trade off. A commonly used value for resnum is 32.

Each DCT bin is further divided into resnum x resnum subbins. The cortex

transform of length 8 x resnum is then performed to give us 31 sets of 31 cortex

filters' cefficients. For the kth, Ith cortex band, the mth, nth entry of the overlap area

matrix, Overlap-areak,l,,nm - the overlap area between the DCT coefficient Im,n and

the aforementioned cortex band is computed by the summation:

kk=(m+1)resnum 11=(n+1)resnum
Overlap-areak,l,m,n = E E cortexk,l(kk, II). (5.14)

kk=m.resnum 11=n.resnum

The final output of the DCT-Cortex mapping algorithm is a set of 31 8x8 matrices.

Each matrix contains 64 overlap-area values of 64 DCT bins and the corresponding

cortex band. Since we are only mapping the primary quadrant of the cortex space

to, the DCT space (with the DC value line up in the middle of the base band), only

21 out of 31 cortex bands participate in the mapping. The remaining 10 bands have

all-zero overlap-area matrices. These overlap-area matrices serve as the basis for the

elevation model described in the next chapter. The matrices computed at a resolution

of 32 are included in Appendix A.
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Chapter 6

The Threshold Elevation Model

This image-dependent threshold elevation model estimates the texture energy, i.e.

the amount of spatial details, in each DCT block, and computes a threshold elevation

factor for each DCT coefficient.

6.1 Basic Strategy

The threshold elevation model uses a mapping of the DCT coefficients on the Cor-

tex filter bands as described in the previous chapter. For each Cortex band , the

model decides which coefficients contribute how much energy to that band, and then

increases the elevation factor of those coefficients linearly with the intensity of the

Cortex band's masking energy. For the shaded Cortex band in Figure 5-3, the DCT

transform coefficients I1,2, II,s, 1,4, and I2,4 contribute most of the texture energy in

the band, whereas coefficient I7,6 (marked X) has zero contribution. Therefore, the

elevation factor of I7,6 should not be dependent on the amount of texture present in

the shaded Cortex band. This idea comes from the HVS's tendency to be strongly

dependent on locality. Notice also that all the coefficients in the same cortex band

share very close spatial frequencies, orientations, and locations. This ensures that

the noise introduced by the threshold elevation will be appropriately masked by the

texture energy of the corresponding cortex band.

If a certain DCT coefficient gets involved in more than one Cortex band, and thus
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correspondingly has more than one elevation factor, we apply the minimum-of rule,

i.e. the smallest value will be used to prevent overly aggressive estimation.

If there is zero or very little texture energy in the analysis block, there should be

no elevation at all, that is, the elevation factor is 1. In this case, the model uses only

the conservative base threshold value. There should also be a maximum cut-off value

for the elevation factors because noise masking can achieve transparency only up to a

certain level. Through observation in the subjective visual tests in this project, if the

noise energy exceeds roughly 25 percent of the masking signal energy, distortion will

be most likely visible in the reconstructed image. For the cortex band which contains

energy between the minimum and the maximum cut-off point, the elevation factors of

the contributing DCT coefficients are increased accordingly with the elevation curve.

The maximum cut-off value parameter, as well as the characteristics of the elevation

curve, can be determined and fine-tuned through subjective testing.

In an image block, the final perceptual masking threshold of any DCT coefficient

is then obtained as the product of its base threshold value and its elevation factor. If

an image-dependent quantization matrix is desired, each entry of the matrix is simply

twice the corresponding final masking threshold.

6.2 Implementation

Each image pixel block of size 8x8 is transformed to its equivalent 64 DCT coeffi-

cients I,,n. For a fixed viewing condition and a fixed viewing distance, an 8x8 base

threshold matrix Tbae,m,,, for each channel is computed according to the method de-

scribed in Chapter 4. These thresholds can be elevated in accordance with the block's

texture energy intensity. A simple threshold elevation model for texture masking in

the luminance channel can be implemented in the following ways. (Note that the

design and implementation of the chrominace channels' elevation model are exactly

the same.)

The algorithm reads in as input the overlap-area matrices generated as described

in Chapter 5. For each cortex band (matrix), a set of elevation factors are calculated,

35



max

o

I

I. n

min

energy-low energy-high
Texture Energy

Figure 6-1: A Simple Threshold Elevation Model.

based on the 3-segment piecewise linear texture elevation model shown in Figure 6-1.

The texture energy of the k, I th cortex band is computed by summing up the

energy of all the 63 AC coefficients that overlap with that cortex filter's passband,

and then taking the square root of the summation:

totalenergyk, = E (Im, .Overlap-area,l,,n / Tbae,smn)2 for m # 0 or n 0.
m=O n=O

(6.1)

The DC value is the average of the pixel values in the block, so it has substan-

tially more energy than the AC coefficients. Especially in the case of uniform light

background, (i.e. no texture energy in the block but the pixel values are high), the

DC coefficient is large while the AC coefficients are all in the vicinity of 0, 1, or

-1. Therefore, the DC term is excluded from the energy calculation. The elevation

model also takes into account the viewing distance and the viewing conditions by

normalizing the total energy of the cortex band by the base thresholds Tbaae,m,.n

If the total energy just computed is less than the low energy threshold, then the el-

evation is set to a minimum. Obviously, the minimum value is picked to be 1, meaning
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that there is no threshold elevation. If the total energy is greater than the high energy

threshold, then the elevation factor is set to a maximum value. If the total energy

is in between the two energy thresholds, then the elevation factor increases linearly

with the energy. In short, for the involved DCT coefficients (overlap-areak,l,m,,n 0),

the elevation factors can be calculated by:

elevation factork,l,,,,n =

min, totalenergyk,1m,nn < energylow

max, totalenergyk,l,,,n > energy-high

else:

min+

mho-min (tot alenergykl - energylow ).Ienergy-high-energy-low ,~
(6.2)

This elevation curve does not have to be linear. In fact, a cubic curve (the dotted line

in Figure 6-1), is probably a more logical choice because a smoothing function makes a

more accurate approximation of the HVS's sensitivity to texture than segmented lines

with discrete decision regions. However, the linear elevation model is the easiest and

most straightforward to implement. It is also the most computationally inexpensive

choice. It serves as a good cornerstone for the elevation model. Moreover, it appears

to work quite well in practice.

As previously mentioned, if a coefficient contributes energy to more than one

cortex band, its final elevation factor is the minimum of all the values calculated. A

variable called etemp keeps the current value computed for the current iteration. It is

then compared with the minimum elevation factor calculated so far from the previous

iterations. If this minimum-so-far value is greater than etemp, then it is updated.

Otherwise, it stays the same. Notice that among 64 DCT coefficients, everyone of

them belongs to at least one cortex band. So, none of them gets left out from the

iterations. Second, for a particular iteration for a particular cortex band, all the

coefficients belonging to that band have the same temporary elevation factor etemp.

The "minimum of" rule can make two coefficients that contribute about the same

amount of energy to the same cortex band have different elevation factors.

There is one exception for this "minimum of" rule. As shown in the overlap-
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area matrices in Appendix A, there are several coefficients that have major energy

contribution in certain cortex band, say more than 80 percent. They are also involved

in some other cortex bands; however, the contribution level is much lower, say 10

percent or less. For a particular coefficient of this type, we would like to use the

elevation factor calculated from the cortex band that it is most influential, not the

aforementioned minimum value. We call this high energy contribution reconsideration.

Another little adjustment for the elevation model is the low frequency post -

processing. Not only is the DC coefficient Io,o sensitive to noise, but it is also known

from the HVS's low-pass nature that the DC's low frequency neighbors I0,1,I0,2,

r1 ,0, I,1, I1,2,I2,0, andI2,1 are very important to be coded right. Therefor, we set

all elevation factors of these low frequency coefficients to min = 1.

The final perceptual masking threshold of a coefficient is obtained as a product of

its base threshold and its elevation factor. This final threshold is most likely different

for the 64 coefficients in the same block. Also, the threshold for coefficient Im,n at

frequency bin m, n in the i th block is most likely different from the threshold of the

coefficient at the same spatial frequency in block j. For the JPEG standard, these two

thresholds are exactly the same. These two facts show the locally adaptive nature of

the new perceptual masking threshold model.

It should be noted that such a model designed in this fashion does not guaran-

tee a performance at perceptually distortion-free level. However, through subjective

testing, we can fine-tune the parameters enough to achieve this goal. The parameters

do not have to be the same for all of the cortex bands. In fact, they should be dif-

ferent. For example, for the cortex bands that cover the lower frequency spectrum,

the elevation model has to be more conservative. The model can be more aggressive

with the cortex bands in the high frequency regions.
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Chapter 7

Block Classification

The need for block type classification arose when we conducted early subjective tests

of the threshold elevation model. Noises resulting from high elevation factors of

coefficients in high textured region within an image block spead out to the remaining

uniform background region of the block. This noise spreading is similar to the familiar

pre-echoing problem in perceptual audio coding.

7.1 Problem Description and Early Results

Let us take a close look at what we label an edge-block in Figure 7-1, and the threshold

elevation model's performance on the corresponding image data.

The definition of an edge in this case is not the same as the one used in numerous

edge-detection techniques. An edge-block in our definition is an image block that

contains two obvious regions: one contains very high texture energy (the left shaded

region in Figure 7-1), and the other is a "clean" uniform background, i.e. has almost

zero texture energy (the region on the right). Such an image block has pixel values

given in Table 7.1; its equivalent 64 DCT coefficients are shown in Table 7.2, with the

DC coefficient Io,o = 937 at the upper left corner and the highest frequency coefficient

I7,7 = -87 at the lower right corner. Since the textured region of the block has quickly

varrying pixel values, the DCT coefficients are quite large, even at high frequencies.

The coefficients in Table 7.2 are then coded using the perceptual masking threshold
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Figure 7-1: Example of an edge-block.

12 89
189 33

200 230
42 220
99 127
77 24

166 183

209 82

23 231 202 7 130 130

76 91 240 130 130 130
55 23 19 130 130 130

35 67 130 130 130 130

3 244 130 130 130 130

11 130 130 130 130 130

27 130 130 130 130 130

130 130 130 130 130 130

Table 7.1: Edge-block pixel values

937 -73 31 98 111 -24

-32 -20 -28 -29 17 -42
28 17 -45 -16 88 53

-52 -109 -157 -49 118 46
6 -18 -95 -89 19 3

-34 18 41 -47 -79 -84
-59 -2 42 -39 -34 33

34 71 50 -18 -1 29

-131 -67
-57 42
31 98

-77 -30

-68 -32
-94 -50
16 -18

-42 -87

Table 7.2: Edge-block's DCT coefficients
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234 -18 8 25 28 -6 -33 -17

-8 -5 -7 -7 4 -11 -14 11
7 4 -11 -3 16 8 4 8

-13 -27 -34 -10 19 6 -8 0

2 -5 -18 -15 3 0 -6 0

-9 5 6 -6 -9 -8 -7 -3

15 0 5 -4 -3 0 0 0

9 18 4 0 0 0 0 -3

Table 7.3: Coded Coefficients with Maximum Threshold Elevation = 5

elevation model. Specifically, the base thresholds obtained in Chapter 4 are elevated

by the texture elevation model described in Chapter 6. The locally adaptive quanti-

zation matrix Qm,, is obtained as twice the product of the two. The coded coefficients

ir_.codedm,,, shown in Table 7.3 are simply: I_codedm,, = round (Im,n/Qm,n). In this

example, the elevation model used is extremely aggressive with a maximum elevation

factor of 5. In this example, where even the original coefficients are high, we still

manage to zero-out 11 coefficients. A quick comparison between the DCT coefficients

in Table 7.2 and the luminance base weights in Table 4.2 shows that, if we use the

base thresholds and no elevation, we can zero-out only 3 coefficients.

From the coded coefficients in Table 7.3, the reconstructed image block can be

obtained through normalization and the inverse DCT transform (Equation 5.3). The

recontructed pixels are shown in Table 7.4, and the absolute values of the pixels'

differences are in Table 7.5. The elevation model demonstrates well its accuracy and

local adaptibility. The left section of the block is overcoded since that is where all

of the texture energy located in space domain. In the right, there are not much

13 86 33 212 219 0 131 130

191 30 68 113 217 135 138 128

198 241 46 14 25 146 108 134

39 220 30 82 122 115 145 126
106 114 19 226 145 135 123 133

72 37 5 129 135 108 142 127

173 175 26 136 116 148 121 129

206 85 125 132 132 128 131 131

Table 7.4: Equivalent Reconstructed Image Block Pixels for Max Elevation = 5
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1 3 10 19 17 7 1 0

2 3 8 22 23 5 8 2

2 11 9 9 6 16 22 4
3 0 5 15 8 15 15 4

7 13 16 18 15 5 7 3

5 13 6 1 5 22 12 3

7 8 1 6 14 18 9 1

3 3 5 2 2 2 1 1

Table 7.5: Magnitude of Error in Space Domain

234 -10 4 14 16 -3 -16 -8
-5 -3 -4 -5 3 -8 -10 7

4 3 -8 -2 13 8 4 14
-7 -22 -26 -7 15 5 -9 -3

1 -4 -16 -13 2 0 -6 -3

-4 3 6 -7 -10 -8 -9 -4

-6 0 5 -5 -4 3 1 -1
3 8 6 -2 0 3 -3 -6

Table 7.6: Coded DCT coefficients with No Threshold Elevation

noise introduced to the pixels far away from the edge. However, near the edge, we

can notice that there is serious error spreading from the left heavily textured region.

Differences of 22, 18, or 15 of pixel values in the sensitive mid-grey level of the HVS

can cause serious degradation in the reconstructed image quality.

A question arises for the curious: what would have happened if there was no

threshold elevation? With the quantization matrix entries set to be twice the base

weights, the resulting coded DCT coefficients are shown in Table 7.6.

The reconstructed pixels, with no threshold elevation, are shown in Table 7.7, and

the absolute value of the pixels' differences in the space domain are shown in Table

7.8.

Since the base thresholds are obtained image-independently, the base threshold

model does not take advantage of the heavy texture in the left region of the edge-

block. In this case the model codes both regions the same way which results in the

same amount of error in both (see Table 7.8). With threshold elevation, much more

error is injected into the textured region as expected.
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10 90 22 235 203 2 134 128
191 27 78 90 242 131 128 128

202 228 58 23 14 129 128 126

38 222 35 67 128 130 129 127
102 127 7 242 130 132 129 133

78 23 13 127 136 127 129 128

170 179 26 135 125 131 130 132

207 80 132 130 134 131 129 129

Table 7.7: Reconstructed Pixels with No Threshold Elevation

2 230 1 4 1 5 4 2

2 6 2 1 2 1 2 2

2 2 3 0 5 1 2 4
4 2 0 0 2 0 1 3

3 0 4 2 0 2 1 3

1 1 2 3 6 3 1 2

4 4 1 5 5 1 0 2

2 2 2 0 4 1 1

Table 7.8: Error in Space Domain with No Threshold Elevation

7.2 Classification Methods

The methods presented next are for detecting edge-blocks. They are designed to

discriminate textured blocks based on whether the texture is either structured (edge-

blocks), or unstructured. The problem is more complicated then the one-dimentional

switching from short block to long block to prevent pre-echoing in perceptual audio

coding. The difficulty comes from a very basic question: what exactly is texture?

(see Chapter 2). However, we can follow a similar approach - breaking the analysis

block into sub-blocks.

7.2.1 Over-Under Method

The 8x8 pixel block is broken up into 16 2x2 sub-blocks. In each sub-block, the

variance of the pixels is calculated:

1 1

variance = (ij,k - average)2 (7.1)
j=O k=O
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where
1 1 1

average = i j i,k. (7.2)
j=O k=O

If a sub-block's variance is over some high texture energy threshold, that sub-block

is labeled as an over. Similarly, if its variance is lower than the no texture energy

threshold, it is labeled an under. Otherwise, the sub-block is labeled a between. A

block is labeled edgy when the number of over sub-blocks and the number of under

sub-blocks are close, and there are not many betweens. The two energy thresholds, as

well as the other parameters of the decision rules, are set through numerous experi-

ments. A simple test of the detection model's effectiveness is to zero-out the pixels of

the suspected edgy blocks. On display, all of these blocks will be black. We can then

subjectively estimate the detection rate, as well as the false alarm rate of the model.

Various parameter values can then be tested to increase the model's effectiveness.

The over-under approach does not seem to perform well. If the detection rate is

high, then the false alarm rate is also high. If the parameters are reset such that

the false alarm rate is low, the detection rate is also low. There are just too many

parameters, and it is almost impossible to find a good combination to keep the false

alarm rate low and the detection rate high.

7.2.2 Variance Ratio Method

In this approach, the pixel block is also divided into 2x2 sub-blocks. The variance of

each sub-block is calculated using Equations 7.1 and 7.2.

Among the computed variances, the ratio of the maximum value and the minimum

non-zero one, max. variance is used to decide whether or not the block is edgy. If the

ratio is large, it means that certain parts of the image block have significantly more

texture energy than others. Also, since we are only worrying about noise spreading

in the very "clean" region of a pixel block, the minimum variance has to be under a

certain low energy threshold for the block to be labeled an edge-block. An empirical

value for the ratio threshold is 25. A typical value used for the low variance threshold

is 15. The model seems to perform well with these parameter choices.
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This method for edge-block detection still has flaws. One of the most obvious

is its sensitivity in extreme cases. In the case of an image block with 15 textured

sub-blocks and 1 clean sub-block, or 1 textured and 15 clean sub-blocks, the model

will label the block edgy. We can prevent this false alarm by assigning two more

parameters: over and under, as in the over-under method. However, we choose not

to further increase the complexity of the model since this situation rarely occurs in

practice.

7.3 Coding of Edge-blocks

The coding of edge-blocks is still a puzzling question. In the time (or space) domain, it

is obvious that which parts of an image are smooth, and which are textured. However,

when the pixels are transformed to its frequency domain, the summations of the pixel

values projected onto the cosine basis totally destroy the pixels' correlation. As

observed from the example in Section 7.1, while it is clear in the space domain that

the left part of the block contains very high texture energy, it is unclear in the DCT

domain which coefficients contribute to that texture. The threshold elevation model

does a good job of injecting most of the noise into the textured region. For this high

threshold elevation case, the problem of noise spreading into the uniform region is

unavoidable. For now, the only solution is to detect the edge-blocks, and use lower

elevation factors on them. One can even be more conservative by just using the base

thresholds for these edge-blocks.

Another solution to the noise spreading problem is to process the image with a

finer space resolution. The frequency resolution, however, will suffer. Furthermore,

we would like to preserve the standard 8x8 DCT decomposition. In this case, a finer

resolution, meaning using a smaller size for analysis blocks, can still be achieved by us-

ing a DCT with overlapped analysis blocks - the Extended Lapped Transform (ELT)

[11]. The elevation factor of a particular coefficient is the minimum of the factors com-

puted from the analysis blocks to which the coefficient belongs. This will significantly

improve the accuracy of the elevation model. However, the computational complexity
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of the coding process also increases accordingly. With an overlapping factor of 2, the

cost of coding an image increases approximately four times. This idea needs a more

in-depth investigation.
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Chapter 8

Subjective Tests and Results

Subjective tests are an essential part of the project. Still images and sequences of

different, but known, levels of coding difficulty were tested using the new model, as

well as the old ones for performance comparison purposes. Another important contri-

bution of subjective testing experiments was to fine-tune the new masking threshold

model's parameters as previously mentioned.

8.1 Set-up

The experiments were carried out on an 8x8 DCT decomposition of images. The test

images at AT&T Bell Laboratory are digital images in CIF format with size 360x240

for the luminance channel, and 180x120 for the chrominance channels. All of the

pixels have an 8 bit resolution (pixel values ranging from 0 to 255). When displayed,

the images are interpolated to be twice the storage dimensions.

Each test image channel was divided into 8x8-pixel blocks. Each pixel block was

then transformed to its equivalent DCT. The pre-computed base threshold values

were multiplied by the elevation factors computed from the locally adaptive texture

elevation model to obtain the final threshold values. Next, each input image was

corrupted with the maximum amount of noise allowed by the model, i.e. specifically,

each DCT coefficient in each analysis block was randomly either subtracted or added
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by its computed threshold value:

I_codedk,l,,n = Ik,l,mn i thresholdk,lm,,,, (8.1)

where

thresholdk,l,,n = basethresholdk,,,,. elevationf actork,l,,n (8.2)

For the above formulae and also for rest of the chapter, k refers to the channel index,

I refers the block index, and m and n are the indices of the spatial DCT frequencies.

Notice that the base thresholds are not block-dependent; they do not have index I. To

obtain the recontructed image pixels, an inverse DCT (Equation 5.3) was performed

on the "coded" coefficients I_codedm,n.

This noise-adding scheme was used in the early stages of the project. It resulted

in huge levels of noise injected to the high frequency DCT coefficients, and it was

certainly an overly conservative approximation of the masking threshold model's per-

formance. A more realistic approximation was the zero-out coefficients scheme, in

which all coefficients below their corresponding thresholds were set to zero. For co-

efficients that were larger than the thresholds, the noise-adding scheme was applied.

Specifically, the "coded" coefficient was obtained as follows:

0, for Ik,l,m,n < threshold,l,m,n
I COdedk,l,m, =

Ik,l,,ln thresholdk,l,m,n, otherwise
(8.3)

with the thresholds calculated from Equation 8.2

8.2 Subjective Evaluation Tests

Test subjects were invited to subjectively determine if any distortion was perceivable

in the resulting reconstructed images. For a standard subjective test, the original

image or sequence was always shown first. The original and the coded image or

sequence were then loaded onto two high-resolution TV monitors side by side. The

subjects were asked to point out which one was the original and which was the coded.
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Subjects invited to the numerous subjective tests were mostly members of the Image

Group who were experienced and well-trained. They are more sensitive to noise than

normal people. The model was fine-tuned until all the subjects could not reliably

detect any visual difference between the coded and the original image or sequence.

8.3 Objective Statistics

In perceptual coding, we have two measures of evaluating the performance of our

model: one is the subjective measure presented in the previous section, and the other

is the objective statistics. The goal is to keep the subjective performance at the

perceptually lossless level and then use the objective measures to evalute alternative

models.

For each channel of the input image, an 8x8 matrix of average mean-square error

for each DCT frequency bin was obtained. For each analysis block, using the zero-out

scheme, the block's mean-square error matrix was computed in DCT domain as the

square of the difference between the original coefficient and the coded one:

,msekl, n =| mn Xf Il,m,n, for IIk,l,m,n < thresholdk,m,n (8.4)

thresholdI,m,n otherwise.

The average mean-square error matrix for channel k is the summation of all the

blocks' mean-square error in that channel normalized by the total number of blocks

num block:

=numblock
averagemsek,m,n = numblock msek,l,m,n (8.5)

The average mean-square error matrix provides the traditional objective evaluation

measure of source coding - the Signal-to-Noise Ratio (SNR). Not only does the

SNR show how effective the masking model is, but it also can be used for various

demonstration purposes. One popular demonstration had three images displayed

side-by-side: the original sequence, the perceptually distortion-free coded sequence,
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and the original sequence corrupted by uniformly distributed white noise with the

same SNR as the perceptually coded sequence.

Besides the mean-square error, the drop percentage is another useful objective

statistic. The drop percentage gives an approximation of the compression ratio needed

to achieve coding at the perceptually lossless level. For each channel of the coded im-

age or sequence, an 8x8 matrix of dropped coefficients percentage droppercentagem,n

was kept. Each element of the matrix shows the percentage of how many DCT co-

efficients in that frequency bin are smaller than the threshold computed at the same

frequency (and hence, the coefficient is set to zero):

1 I=numblock

drop_percentagek,m,n = 100o . num block . drOPk,l,m,n (8.6)

where

1dPkln , for Ik,l,m,nl < thresholdk,l,m,n

0, otherwise ,

with k is the channel index, and I is the block index.

I[n a similar fashion, an 8x8 average threshold matrix was also obtained:

1 I=num_block

average_thresholdk,m,n = block thresholdk,l,m,n (8.8)
/=1

The average threshold values provide a good measure of how the threshold elevation

model works in a particular image or sequence. They are also excellent tools for

debugging the model's source code.

8.4 Results

The new adaptive perceptual threshold model (APxJPEG) was tested with two other

popular image compression models already in use: the JPEG compression standard

and the perceptual Johnston-Safranek model (PxJPEG), both described in Chapter 3.

318 still images in the AT&T image database were used to compile this performance

comparison statistics. As expected, the adaptive perceptual masking model outper-
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formed JPEG by a large margin. The gain in the bit rate needed for transparent

coding was on the order of 10 to 30 %. The race was closer for the two picture-

dependent models. In general, the new model had the same or better performance

than the Johnston-Safranek model. For images with a lot of directed texture, we got

much better performance from the new model thanks to its locally adaptibility. The

bit rate savings comparison between APxJPEG and JPEG is depicted in Figure 8-1

The same comparison between APxJPEG's and PxJPEG's performance is shown in

Figure 8-2. The complete bit rate saving percentage for each particular image can

be found in Appendices B and C. Also included are three lenna images: the original

image (Figure 8-3), the reconstructed image using JPEG (Figure 8-4), and the recon-

structed image using the new adaptive perceptual threshold model as a pre-processor

for JPEG (Figure 8-5). The original 512x512 gray-scale image has a bit rate of 8 bits

per pixel. The resulting bit rate for the reconstructed JPEG image is 1.026 bits per

pixel. The resulting bit rate for the reconstructed APxJPEG image is 0.813 bits per

pixel (a 15 % bit rate saving). One can easily verify that both of the reconstructed

images were coded at perceptually lossless level.
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Figure 8-1: Performance Comparison between APxJPEG and JPEG

52

10.00

a,

;0-D
(4M

0'U. rq. I(D'UT

0

4)a,
C

u
U.L.a,

(L

8.750

7.500

6.250

5.000

3.750

2.500

1.250

0.000
0.



12.00

10.50

9.000

7.500

6.000

4.500

3.000

1.500

0.000
-io.00 -6.250 -2.500 i.250 5.000 8.750 12.50 16.25 20.00

Bitrate Savings APxJPEG vs PxJPEG (in percent)

Figure 8-2: Performance Comparison between APxJPEG and PxJPEG
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Figure 8-3: Original Image for Reference
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JPEG Lenna Image
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Figure 8-4: Reconstructed JPEG Image coded at 1.026 bits/pixel
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APxJPEG Lenna Image
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Figure 8-5: Reconstructed APxJPEG Image coded at 0.813 bits/pixel
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Chapter 9

Conclusion

In this project, a new locally adaptive perceptual masking threshold model for the

human visual system was designed and implemented. The model's development was

based on many evident characteristics of the HVS available from numerous psy-

chophysical experiments. The model not only performs much better than the JPEG's

standard image-independent perceptually lossless model, but it also out-performs, as

expected because of its local adaptibility, AT&T's currently used threshold elevation

model developed by Johnston and Safranek [15]. The mapping of the cortex trans-

form's critical bands onto the DCT bins proves to approximate accurately the locality

as well as the intensity of the mask. The DCT-cortex mapping is the pivotal basis of

the image-dependent texture elevation model.

Despite the success of the project, much more work remains to be done in this

area. As we can see from Chapter 7, aggressive elevation in the DCT domain due to

the presence of a heavy texture region in an analysis block can cause serious noise

spreading to the flat-field region of the same block in space domain. In this case, the

noise spread is most vulnerable to detectability. A more robust threshold elevation

model that can effectively deal with these edge-blocks needs to be developed. One

of the solutions to this problem is to increase the accuracy of our threshold elevation

model by extending the masking ideas across DCT blocks. However, this masking-

across-DCT-block extension, as discussed in Chapter 7, can be very computationally

expensive.
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Another important piece totally missing from this perceptual masking threshold

model is temporal masking. Although the model was tested with image sequences, this

study did not consider temporal masking effects at all. However, we recognize that the

human visual system's perception of dynamic noise in image sequences is, in general,

very different from its perception of static noise in still images. A full masking model

which includes temporal noise masking needs to be studied and applied to coding of

image sequences.

Besides the problem of noise spreading and the lack of temporal masking, the

threshold elevation model developed in this project is also not robust enough. It

was primarily designed and geared to be compatible with DCT-based coders. Its

effectiveness when used with other different coder types is doubtful and has not yet

been tested.

In short, this project raises more new questions than it resolves. Many aspects of

the project need more in-depth investigation. However, it serves as a good building

block for the understanding, as well as the advancing of the perceptual image coding

field.
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Appendix A

DCT-Cortex Overlap Area

Matrices

binary matrix for cortex band k=O 1=0

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.003981 0.001201 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.201650 0.063120 0.000358 0.000000 0.000000 0.000000 0.000000 0.000000

0.671549 0.292789 0.021787 0.000000 0.000000 0.000000 0.000000 0.000000

0.899004 0.483785 0.096608 0.000954 0.000000 0.000000 0.000000 0.000000

0.822057 0.514997 0.170313 0.013865 0.000000 0.000000 0.000000 0.000000

0.609768 0.416196 0.176334 0.032873 0.000536 0.000000 0.000000 0.000000 10

binary matrix for cortex band k=O 1=1

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 20

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=0 1=2

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 30

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=O 1=3

0.000000 0.000000 0.003981 0.201650 0.671548 0.899004 0.822057 0.609768

0.000000 0.000000 0.001201 0.063119 0.292788 0.483784 0.514997 0.416195

0.000000 0.000000 0.000000 0.000358 0.021787 0.096607 0.170313 0.176334

0.000000 0.000000 0.000000 0.000000 0.000000 0.000954 0.013865 0.032873

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000536 40

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=O 1=4

0.000000 0.000000 0.002262 0.050175 0.099558 0.088237 0.057264 0.031737

0.000000 0.000011 0.041774 0.325886 0.565647 0.497872 0.335178 0.188772

0.000000 0.001581 0.124940 0.582960 0.931876 0.855549 0.615426 0.355219

0.000000 0.000098 0.074429 0.460742 0.809628 0.851079 0.664670 0.391722 50

0.000000 0.000000 0.007853 0.171878 0.453653 0.581714 0.495368 0.291054

0.000000 0.000000 0.000003 0.028170 0.169916 0.284505 0.262792 0.144223

0.000000 0.000000 0.000000 0.001010 0.036752 0.094813 0.092761 0.039278

0.000000 0.000000 0.000000 0.000000 0.003020 0.017738 0.016436 0.002742

binary matrix for cortex band k=O 1=5

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000011 0.001581 0.000098 0.000000 0.000000 0.000000 0.000000

0.002262 0.041774 0.124941 0.074429 0.007853 0.000003 0.000000 0.000000 60

0.050175 0.325886 0.582961 0.460743 0.171879 0.028170 0.001010 0.000000

0.099558 0.565646 0.931875 0.809629 0.453654 0.169917 0.036752 0.003020

0.088236 0.497871 0.855550 0.851079 0.581715 0.284506 0.094813 0.017738

0.057263 0.335177 0.615425 0.664670 0.495369 0.262793 0.092761 0.016436

0.031737 0.188772 0.355219 0.391722 0.291054 0.144223 0.039278 0.002742

binary matrix for cortex band k=l 1=0

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.066070 0.000095 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 70

0.589011 0.030599 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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0.596712 0.100551 0.000143 0.000000 0.000000 0.000000 0.000000 0.000000

0.198945 0.048523 0.000695 0.000000 0.000000 0.000000 0.000000 0.000000

0.003461 0.000305 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

C.(000000 0.000000 0.00000Q 0.000000 0.000000 0.000000 0.000000 0.000000

C.0(00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=l 1=1

C.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 80

Cl.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0C.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

C0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Cl.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

C1.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0C.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=l 1=2

90

0.0(00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0C.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

(.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.0(000) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=l 1=3 100

0.000000 0.066070 0.589011 0.596711 0.198945 0.003461 0.000000 0.000000

0.000000 0.000095 0.030599 0.100551 0.048522 0.000305 0.000000 0.000000

0.000000 0.000000 0.000000 0.000143 0.000695 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.(00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

110

b inary matrix for cortex band k=l 1=4

0.000001 0.100496 0.307127 0.151464 0.029949 0.000303 0.000000 0.000000

0.000364 0.305899 0.862663 0.510104 0.093043 0.000213 0.000000 0.000000

0.000000 0.051635 0.375059 0.303556 0.036653 0.000000 0.000000 0.000000

0.000000 0.000242 0.038554 0.039198 0.000803 0.000000 0.000000 0.000000
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0.000000 0.000000 0.000261 0.000131 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 120

binary matrix for cortex band k=l 1=5

0.000001 0.000364 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.100496 0.305899 0.051635 0.000242 0.000000 0.000000 0.000000 0.000000

0.307127 0.862663 0.375060 0.038554 0.000261 0.000000 0.000000 0.000000

0.151463 0.510103 0.303556 0.039198 0.000131 0.000000 0.000000 0.000000

0.029949 0.093043 0.036653 0.000803 0.000000 0.000000 0.000000 0.000000

0.000303 0.000213 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 130

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=2 1=0

0.015816 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.334752 0.000040 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.065784 0.000199 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 140

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=2 1=1

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 150

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=2 1=2

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 160

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

C.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=2 1=3

0C.015816 0.334752 0.065784 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000040 0.000199 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 170

0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

C0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=2 1=4

0.097028 0.455986 0.031835 0.000000 0.000000 0.000000 0.000000 0.000000

0.012776 0.193956 0.0'10236 0.000000 0.000000 0.000000 0.000000 0.000000 180

0.000000 0.000112 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0l.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=2 1=5

0.097029 0.012776 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 190

0.455986 0.193956 0.000112 0.000000 0.000000 0.000000 0.000000 0.000000

0.C(31835 0.010236 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=3 1=0

200

0.089995 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.018060 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000
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0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=3 1=1 210

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

220

binary matrix for cortex band k=3 1=2

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 230

binary matrix for cortex band k=3 1=3

0.089995 0.018060 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 240

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=3 1=4

0.188985 0.011462 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000036 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 250

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=3 1=5

0.188985 0.000036 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.011462 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 260

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=4 1=0

0.039365 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 270

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=4 1=1

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 280

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=4 1=2

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 290

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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binary matrix for cortex band k=4 1=3

0.039365 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 300

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=4 1=4

310

0.065205 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

binary matrix for cortex band k=4 1=5 320

0.065205 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

330

binary matrix for cortex base band

0.007209 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 340
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Appendix B

Comparison Between Adaptive

Perceptual Threshold Model and

JPEG
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JPEG image APxJPEG image savings in percent

aelephant.jpg aelephant.apjpg 25.937414

aelephant2.jpg aelephant2.apjpg 23.376098

alco.jpg alco.apjpg 21.948893

anemonel.jpg anemonel.apjpg 17.613679

anemone2.jpg anemone2.apjpg 20.139611

anemone3.jpg anemone3.apjpg 16.897058

angelika.jpg angelika.apjpg 11.983423

aplcrl.jpg aplcrl.apjpg 22.374266

appletree.jpg appletree.apjpg 20.850413

aravind.jpg aravind.apjpg 18.216714



APxJPEG image

arizdiv.jpg

atnight.jpg

autumn.jpg

balloon.jpg

bangalore.jpg

barge.jpg

barge2.jpg

bbearl.jpg

bbear2.jpg

beachl.jpg

beach2.jpg

beauty.jpg

bennevis.jpg

benz.jpg

bface.jpg

bface2.jpg

bflyfish.jpg

bird.jpg

birds.jpg

blueeyes.jpg

bluerocks.jpg

bmfall.jpg

bmfall2.jpg

bncoal.jpg

boatl.jpg

arizdiv.apjpg

atnight.apjpg

autumn.apjpg

balloon.apjpg

bangalore.apjpg

barge.apjpg

barge2.apjpg

bbearl.apjpg

bbear2.apjpg

beachl.apjpg

beach2.apjpg

beauty.apjpg

bennevis.apjpg

benz.apjpg

bface.apjpg

bface2.apjpg

bflyfish.apjpg

bird.apjpg

birds.apjpg

blueeyes.apjpg

bluerocks.apjpg

bmfall.apjpg

bmfall2.apjpg

bncoal.apjpg

boatl.apjpg

68

17.778553

14.758003

28.633985

18.575273

17.327793

18.089397

17.052118

22.625338

24.987839

13.361764

15.950017

12.501068

14.014600

22.482893

16.823244

16.751373

15.950166

17.217214

16.928120

10.635309

17.282335

25.059515

23.275459

24.811222

13.455929

-

-

,PEG image savings in percent

=2



APzJPEG image

boat3.jpg

boat4.jpg

boats.jpg

boattrees.jpg

bosteam.jpg

bowlkid.jpg

bpelican.jpg

braids.jpg

brbears3.jpg

bridge.jpg

brownthrasher.jpg

brunt l.jpg

burchellzebra.jpg

bwwarbler.jpg

cablecar.jpg

cacol.jpg

cacol2.jpg

cactii.jpg

caform.jpg

camelride.jpg

cannon.jpg

canoe.jpg

carbide.jpg

carcol.jpg

carent.jpg

boat3.apjpg

boat4.apjpg

boats.apjpg

boattrees.apjpg

bosteam.apjpg

bowlkid.apjpg

bpelican.apjpg

braids.apjpg

brbears3.apjpg

bridge.apjpg

brownthrasher.apjpg

bruntl.apjpg

burchellzebra.apjpg

bwwarbler.apjpg

cablecar.apjpg

cacol.apjpg

cacol2.apjpg

cactii.apjpg

caform.apjpg

camelride.apjpg

cannon.apjpg

canoe.apjpg

carbide.apjpg

carcol.apjpg

carent.apjpg

69

13.389240

15.183790

15.286319

18.392541

13.036086

18.922356

22.777657

16.661049

19.636121

7.727867

14.252335

18.830988

23.257346

12.154493

5.715944

18.328592

18.340735

19.451304

22.243409

18.686926

16.258337

21.782540

10.911158

23.911826

18.713969

JpEG mage savings in percent



APxJPEG image

cgirl.jpg

chamois.jpg

cheetah.jpg

chef.jpg

cheryl.jpg

chincall.jpg

chincal2.jpg

chincal3.jpg

clifh2.jpg

clifhb.jpg

clifhb2.jpg

cloud.jpg

cloudleopard.jpg

clownfish.jpg

clownfish2.jpg

clownfish2a.jpg

colsky.jpg

connel.jpg

coral.jpg

coraldetail.jpg

coralfish.jpg

cougar.jpg

cowfish.jpg

cowfish2.jpg

cranes.jpg

cgirl.apjpg

chamois.apjpg

cheetah.apjpg

chef.apjpg

cheryl.apjpg

chincall.apjpg

chincal2.apjpg

chincal3.apjpg

clifh2.apjpg

clifhb.apjpg

clifhb2.apjpg

cloud.apjpg

cloudleopard.apjpg

clownfish.apjpg

clownfish2.apjpg

clownfish2a.apjpg

colsky.apjpg

connel.apjpg

coral.apjpg

coraldetail.apjpg

coralfish.apjpg

cougar.apjpg

cowfish.apjpg

cowfish2.apjpg

cranes.apjpg

70

18.771826

18.854229

16.392891

13.648424

16.670172

17.650047

21.592560

15.988183

25.479957

18.082497

18.045901

7.636854

15.159595

17.245089

22.598387

12.244348

13.513723

13.170382

18.133658

16.970363

19.171521

20.672680

21.760601

18.196800

15.376557

JPEG iaage scavings i percent



APxJPEG image

crinan.jpg

cube.jpg

cyberbath.jpg

cyberbridge.jpg

cybern.jpg

cybwall.jpg

dancers.jpg

dancers2.jpg

delwgl.jpg

denvhouse.jpg

denvrange.jpg

downywood.jpg

dragon.jpg

clunrobin.jpg

durango.jpg

edcasl.jpg

edcas2.jpg

edinwide.jpg

edinwide2.jpg

elk.jpg

erieviaduct.jpg

fl6.jpg

firegoby.jpg

firehole.jpg

fireholel.jpg

crinan.apjpg

cube.apjpg

cyberbath.apjpg

cyberbridge.apjpg

cybern.apjpg

cybwall.apjpg

dancers.apjpg

dancers2.apjpg

delwgl.apjpg

denvhouse.apjpg

denvrange.apjpg

downywood.apjpg

dragon.apjpg

dunrobin.apjpg

durango.apjpg

edcasl.apjpg

edcas2.apjpg

edinwide.apjpg

edinwide2.apjpg

elk.apjpg

erieviaduct.apjpg

fl6.apjpg

firegoby.apjpg

firehole.apjpg

fireholel.apjpg
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20.527469

12.404174

25.576851

21.685977

21.755576

21.996224

17.576163

19.673307

17.327963

12.068061

15.397868

14.718023

20.090811

21.503113

25.258896

15.942279

17.779754

18.438019

17.750534

22.029632

25.114304

13.904496

13.039327

19.925678

18.971330

JTPEG image

.

savings in percent

.



APxJPEG image

firekids.jpg

fishgrotto.jpg

flow.jpg

flowerbird.jpg

foggy.jpg

fognelms.jpg

forthbr.jpg

galco.jpg

gandhi.jpg

generalst.jpg

gheron.jpg

giraffes.jpg

girl3.jpg

giverny.jpg

giverny3.jpg

gizaa.jpg

glassfish.jpg

glenfinnan.jpg

glorch.jpg

goby.jpg

guanacos.jpg

guncan.jpg

hadwall.jpg

hamilnight.jpg

Zhandbag.jpg

firekids.apjpg

fishgrotto.apjpg

flow.apjpg

flowerbird.apjpg

foggy.apjpg

fognelms.apjpg

forthbr.apjpg

galco.apjpg

gandhi.apjpg

generalst.apjpg

gheron.apjpg

giraffes.apjpg

girl3.apjpg

giverny.apjpg

giverny3.apjpg

gizaa.apjpg

glassfish.apjpg

glenfinnan.apjpg

glorch.apjpg

goby.apjpg

guanacos.apjpg

guncan.apjpg

hadwall.apjpg

hamilnight.apjpg

handbag.apjpg

72

17.318559

4.728929

23.664081

14.496720

1.184592

18.668213

22.265974

21.944191

19.363968

23.335133

15.372410

15.642646

15.878692

26.676106

25.340948

10.615692

23.409003

22.054587

9.755775

17.647859

19.055930

23.423721

18.454799

15.880024

20.215203

- .

JPEG image

.

savings in percent



APxJPEG image

hawkfish.jpg

hbarrack.jpg

hoatzins.jpg

housefinch.jpg

househorse.jpg

housesparrow.jpg

housewren.jpg

housteads.jpg

humbird.jpg

hume.jpg

islay.jpg

jaguar.jpg

jedcreek.jpg

jedwater.jpg

jj.jpg

jlf.jpg

jlfl.jpg

jroutine.jpg

jumping.jpg

junl.jpg

keiorose.jpg

kewl.jpg

kew2.jpg

kew3.jpg

kew3a.jpg

hawkfish.apjpg

hbarrack.apjpg

hoatzins.apjpg

housefinch.apjpg

househorse.apjpg

housesparrow.apjpg

housewren.apjpg

housteads.apjpg

humbird.apjpg

hume.apjpg

islay.apjpg

jaguar.apjpg

jedcreek.apjpg

jedwater.apjpg

jj.apjpg

jlf.apjpg

jlfl.apjpg

jroutine.apjpg

jumping.apjpg

junl.apjpg

keiorose.apjpg

kewl.apjpg

kew2.apjpg

kew3.apjpg

kew3a.apjpg

73

21.549733

21.794914

20.084043

13.453940

23.243073

13.733645

15.222873

13.394086

12.547450

15.048593

22.151507

15.777045

20.873342

6.676757

13.715144

22.886576

22.777170

19.052489

16.309626

24.278401

20.708261

18.556991

23.909198

22.914034

21.759062

J.PEG image savings in percent



APxJPEG image

kingfisher.jpg

kitty.jpg

landsat.jpg

lechladeboy.jpg

leighonsea.jpg

lemurs.jpg

lena.jpg

lily.jpg

lincas.jpg

lincathl.jpg

lincath2.jpg

linespr.jpg

lingat.jpg

lioncub.jpg

llf.jpg

lochtay.jpg

lollypop.jpg

londonflwr.jpg

lonetree.jpg

lupus.jpg

lynx.jpg

ml09.jpg

macaw.jpg

mainel.jpg

mainela.jpg

kingfisher.apjpg

kitty.apjpg

landsat.apjpg

lechladeboy.apjpg

leighonsea.apjpg

lemurs.apjpg

lena.apjpg

lily.apjpg

lincas.apjpg

lincathl.apjpg

lincath2.apjpg

linespr.apjpg

lingat.apjpg

lioncub.apjpg

llf.apjpg

lochtay.apjpg

lollypop.apjpg

londonflwr.apjpg

lonetree.apjpg

lupus.apjpg

lynx.apjpg

mlO9.apjpg

macaw.apjpg

mainel.apjpg

mainela.apjpg

74

13.985911

18.511569

24.702556

22.061150

22.434561

17.337529

15.003331

15.364109

23.200561

22.843993

7.507972

9.277210

22.868666

21.330689

17.219388

24.517485

18.899246

20.273855

22.056785

14.469941

21.182202

21.862151

16.867934

13.642234

10.637335

.

JPEG image savings in percent



APxJPEG image

:manatee.jpg

:mandrill.jpg

mars.jpg

marsh.jpg

marsh2.jpg

marysnow.jpg

mbg.jpg

melrose.jpg

mniamiflwr.jpg

midv2.jpg

midv3.jpg

midv4.jpg

midv5.jpg

monetcld.jpg

nmonetcld2.jpg

moonsky.jpg

moose.jpg

mnushcoral.jpg

mushcoral2.jpg

muskox.jpg

nagardome.jpg

nflicker.jpg

njtransit.jpg

nmcloud.jpg

nmocking.jpg

manatee.apjpg

mandrill.apjpg

mars.apjpg

marsh.apjpg

marsh2.apjpg

marysnow.apjpg

mbg.apjpg

melrose.apjpg

miamiflwr.apjpg

midv2.apjpg

midv3.apjpg

midv4.apjpg

midv5.apjpg

monetcld.apjpg

monetcld2.apjpg

moonsky.apjpg

moose.apjpg

mushcoral.apjpg

mushcoral2.apjpg

muskox.apjpg

nagardome.apjpg

nflicker.apjpg

njtransit.apjpg

nmcloud.apjpg

nmocking.apjpg

75

19.251585

23.514128

4.152466

26.093465

27.755669

18.710905

7.711092

20.590121

19.505048

19.003758

20.683426

16.479692

16.884366

23.541521

23.639797

19.151831

26.335323

15.455647

15.091491

20.365386

19.881637

19.742289

11.288815

7.754137

10.962585

JPEG image savings in percent



APxJPEG image

nmrock.jpg

nmrock2.jpg

ocrispum.jpg

opipe.jpg

orangutan.jpg

orchid.jpg

overland.jpg

palms.jpg

panda.jpg

pandal.jpg

peacock.jpg

pengnovb.jpg

penguin.jpg

peppers.jpg

pheasant.jpg

pinesiskin.jpg

pipefish2.jpg

pipefish3.jpg

pitts.jpg

plane.jpg

polarbear.jpg

pycarp.jpg

radcotbridge.jpg

railcover.jpg

rainbow.jpg

nmrock.apjpg

nmrock2.apjpg

ocrispum.apjpg

opipe.apjpg

orangutan.apjpg

orchid.apjpg

overland.apjpg

palms.apjpg

panda.apjpg

pandal.apjpg

peacock.apjpg

pengnovb.apjpg

penguin.apjpg

peppers.apjpg

pheasant.apjpg

pinesiskin.apjpg

pipefish2.apjpg

pipefish3.apjpg

pitts.apjpg

plane.apjpg

polarbear.apjpg

pycarp.apjpg

radcotbridge.apjpg

railcover.apjpg

rainbow.apjpg

76

21.954203

19.481964

19.708318

25.096792

25.461131

12.661055

9.460071

16.155073

20.895739

21.104003

25.187230

18.504986

19.234081

15.052010

13.380100

12.258162

18.988012

11.003699

15.291357

16.013969

14.419402

25.059959

18.685973

17.177887

13.651502

JPEG image savings in percent



APxJPEG image

rand.jpg

redbud.jpg

redsea.jpg

redsweater.jpg

rocks.jpg

rooftop.jpg

ruthven.jpg

sailboats.jpg

sailor.jpg

scopekids.jpg

scotlet.jpg

sculpture.jpg

sealions.jpg

seaturtle.jpg

seaturtle2.jpg

sfhouse.jpg

shanibaby.jpg

shark.jpg

shberry.jpg

ship.jpg

sixmts.jpg

skull.jpg

skye.jpg

skyel.jpg

snowtree.jpg

rand.apjpg

redbud.apjpg

redsea.apjpg

redsweater.apjpg

rocks.apjpg

rooftop.apjpg

ruthven.apjpg

sailboats.apjpg

sailor.apjpg

scopekids.apjpg

scotlet.apjpg

sculpture.apjpg

sealions.apjpg

seaturtle.apjpg

seaturtle2.apjpg

sfhouse.apjpg

shanibaby.apjpg

shark.apjpg

shberry.apjpg

ship.apjpg

sixmts.apjpg

skull.apjpg

skye.apjpg

skyel.apjpg

snowtree.apjpg

77

8.515232

30.222443

16.977921

13.222945

19.308048

18.862166

19.899327

16.983849

13.123335

15.813336

20.589972

11.179207

22.711761

21.614687

21.253024

15.788086

10.979312

21.493906

21.453398

7.986404

14.968219

7.341080

12.309977

4.450082

26.198873

JPEG image savings in percent



APxJPEG image

snowtree2.jpg

softcoral.jpg

soowinter.jpg

sphere.jpg

splash.jpg

stowe.jpg

suilven.jpg

sunset2.jpg

suntree.jpg

surrey.jpg

swanmaster.jpg

swingset.jpg

syonheron.jpg

taiwansisters.jpg

taiwantower.jpg

tajmahal.jpg

tarababy.jpg

telescope.jpg

tfrog.jpg

thamesbarrier.jpg

thamescover.jpg

thamescoverl.jpg

thamescover2.jpg

thamescover3.jpg

thebruce.jpg

snowtree2.apjpg

softcoral.apjpg

soowinter.apjpg

sphere.apjpg

splash.apjpg

stowe.apjpg

suilven.apjpg

sunset2.apjpg

suntree.apjpg

surrey.apjpg

swanmaster.apjpg

swingset.apjpg

syonheron.apjpg

taiwansisters.apjpg

taiwantower.apjpg

tajmahal.apjpg

tarababy.apjpg

telescope.apjpg

tfrog.apjpg

thamesbarrier.apjpg

thamescover.apjpg

thamescoverl.apjpg

thamescover2.apjpg

thamescover3.apjpg

thebruce.apjpg

78

27.500391

22.220488

18.914500

4.024441

10.263445

8.319279

17.785493

12.612943

26.595378

18.431579

14.537410

14.234373

24.900644

16.041993

16.322283

16.945276

12.370033

14.170460

16.023481

12.231513

19.769330

19.717251

16.268292

18.147293

13.477451

J.PEG image savings in percent



APxJPEG image

tilll.jpg

tm.jpg

t obermory.jpg

tourist.jpg

toys.jpg

tree.jpg

treecoral.jpg

trossachs.jpg

tshell.jpg

tudor.jpg

turkscap.jpg

twees.jpg

twokids.jpg

twokids2.jpg

vballl.jpg

vball2.jpg

vball3.jpg

wcloud.jpg

wcpas2.jpg

wcpass.jpg

wdw.jpg

webleaves.jpg

weed.jpg

weed2.jpg

wineshotel.jpg

tilll.apjpg

tm.apjpg

tobermory.apjpg

tourist.apjpg

toys.apjpg

tree.apjpg

treecoral.apjpg

trossachs.apjpg

tshell.apjpg

tudor.apjpg

turkscap.apjpg

twees.apjpg

twokids.apjpg

twokids2.apjpg

vballl.apjpg

vball2.apjpg

vball3.apjpg

wcloud.apjpg

wcpas2.apjpg

wcpass.apjpg

wdw.apjpg

webleaves.apjpg

weed.apjpg

weed2.apjpg

wineshotel.apjpg

79

15.463503

21.949700

24.143109

20.144869

15.519200

18.086605

24.044189

20.531181

24.963292

21.931340

21.404880

16.032349

17.249995

15.110038

14.922209

15.703239

16.847371

11.379444

28.339627

24.908943

9.319569

19.742838

21.112850

20.669769

18.434316

-
.

-JPEG image savings in percent



80

JPEG image APzJPEG image savings in percent

winter87.jpg winter87.apjpg 25.487933

wintergrip.jpg wintergrip.apjpg 16.912638

woodthrush.jpg woodthrush.apjpg 14.192450

world.jpg world.apjpg 8.496612

yard.jpg yard.apjpg 24.228248

zebras.jpg zebras.apjpg 22.100729

zoosheep.jpg zoosheep.apjpg 20.799392



Appendix C

Comparison Between Adaptive

Perceptual Threshold Model and

Johnston- Safranek Model

81

PxJPEG APxJPEG image savings in percent

aelephant.pjpg aelephant.apjpg 3.547625

aelephant2.pjpg aelephant2.apjpg 11.947121

alco.pjpg alco.apjpg 8.322526

anemonel.pjpg anemonel.apjpg 5.693921

anemone2.pjpg anemone2.apjpg 5.496196

anemone3.pjpg anemone3.apjpg 5.104827

angelika.pjpg angelika.apjpg 0.359097

aplcrl.pjpg aplcrl.apjpg 5.214909

appletree.pjpg appletree.apjpg 5.941345

aravind.pjpg aravind.apjpg 5.990814



APxJPEG image

arizdiv.pjpg

atnight.pjpg

autumn.pjpg

balloon.pjpg

bangalore.pjpg

barge.pjpg

barge2.pjpg

bbearl.pjpg

bbear2.pjpg

beachl.pjpg

beach2.pjpg

beauty.pjpg

bennevis.pjpg

benz.pjpg

bface.pjpg

bface2.pjpg

bflyfish.pjpg

bird.pjpg

birds.pjpg

blueeyes.pjpg

bluerocks.pjpg

bmfall.pjpg

bmfall2.pjpg

bncoal.pjpg

arizdiv.apjpg

atnight.apjpg

autumn.apjpg

balloon.apjpg

bangalore.apjpg

barge.apjpg

barge2.apjpg

bbearl.apjpg

bbear2.apjpg

beachl.apjpg

beach2.apjpg

beauty.apjpg

bennevis.apjpg

benz.apjpg

bface.apjpg

bface2.apjpg

bflyfish.apjpg

bird.apjpg

birds.apjpg

blueeyes.apjpg

bluerocks.apjpg

bmfall.apjpg

bmfall2.apjpg

bncoal.apjpg

82

4.237956

5.854530

20.976329

13.220882

8.460686

6.835809

6.865525

4.489245

2.094186

3.052658

5.049860

5.485900

1.666373

10.901569

4.833712

5.128972

2.193114

6.937651

4.665832

-1.349763

5.525364

11.311873

10.572251

12.113525

=

PJPEG savings in percent



APxJPEG image

boatl.pjpg

boat3.pjpg

boat4.pjpg

boats.pjpg

boattrees.pjpg

bosteam.pjpg

bowlkid.pjpg

bpelican.pjpg

braids.pjpg

brbears3.pjpg

bridge.pjpg

brownthrasher.pjpg

bruntl.pjpg

burchellzebra.pjpg

bwwarbler.pjpg

cablecar.pjpg

cacol.pjpg

cacol2.pjpg

cactii.pjpg

caform.pjpg

camelride.pjpg

cannon.pjpg

canoe.pjpg

carbide.pjpg

carcol.pjpg

carent.pjpg

boatl.apjpg

boat3.apjpg

boat4.apjpg

boats.apjpg

boattrees.apjpg

bosteam.apjpg

bowlkid.apjpg

bpelican.apjpg

braids.apjpg

brbears3.apjpg

bridge.apjpg

brownthrasher.apjpg

bruntl.apjpg

burchellzebra.apjpg

bwwarbler.apjpg

cablecar.apjpg

cacol.apjpg

cacol2.apjpg

cactii.apjpg

caform.apjpg

camelride.apjpg

cannon.apjpg

canoe.apjpg

carbide.apjpg

carcol.apjpg

carent.apjpg

83

5.394323

5.308356

8.043388

4.532311

5.356961

0.946098

6.993730

7.895821

7.347237

6.475461

1.746951

2.628070

5.127528

11.628424

-0.646456

-2.188825

7.668620

5.242532

8.482199

6.439390

7.908502

3.260491

8.695138

1.182259

8.434260

5.426691

PxJPEG savingg i percent

.



APxJPEG image

cgirl.pjpg

chamois.pjpg

cheetah.pjpg

chef.pjpg

cheryl.pjpg

chincall.pjpg

chincal2.pjpg

chincal3.pjpg

clifh2.pjpg

clifhb.pjpg

clifhb2.pjpg

cloud.pjpg

cloudleopard.pjpg

clownfish.pjpg

clownfish2.pjpg

clownfish2a.pjpg

colsky.pjpg

connel.pjpg

coral.pjpg

coraldetail.pjpg

coralfish.pjpg

cougar.pjpg

cowfish.pjpg

cowfish2.pjpg

c ranes.pjpg

cgirl.apjpg

chamois.apjpg

cheetah.apjpg

chef.apjpg

cheryl.apjpg

chincall.apjpg

chincal2.apjpg

chincal3.apjpg

clifh2.apjpg

clifhb.apjpg

clifhb2.apjpg

cloud.apjpg

cloudleopard.apjpg

clownfish.apjpg

clownfish2.apjpg

clownfish2a.apjpg

colsky.apjpg

connel.apjpg

coral.apjpg

coraldetail.apjpg

coralfish.apjpg

cougar.apjpg

cowfish.apjpg

cowfish2.apjpg

cranes.apjpg

84

7.602362

7.490654

0.017384

1.809555

6.490043

-5.640289

2.917057

-1.753248

7.616217

1.066844

-4.720654

-6.543314

2.142002

6.861512

9.997267

2.218370

8.355048

4.057555

7.971923

5.335881

2.879716

7.173478

11.751834

10.614055

6.769609

PxJPEG savings in percent

.



APxJPEG image

crinan.pjpg

cube.pjpg

cyberbath.pjpg

cyberbridge.pjpg

cybern.pjpg

cybwall.pjpg

dancers.pjpg

dancers2.pjpg

delwgl.pjpg

denvhouse.pjpg

denvrange.pjpg

downywood.pjpg

dragon.pjpg

dunrobin.pjpg

durango.pjpg

edcasl.pjpg

edcas2.pjpg

edinwide.pjpg

edinwide2.pjpg

elk.pjpg

erieviaduct.pjpg

fl6.pjpg

firegoby.pjpg

firehole.pjpg

fireholel.pjpg

crinan.apjpg

cube.apjpg

cyberbath.apjpg

cyberbridge.apjpg

cybern.apjpg

cybwall.apjpg

dancers.apjpg

dancers2.apjpg

delwgl.apjpg

denvhouse.apjpg

denvrange.apjpg

downywood.apjpg

dragon.apjpg

dunrobin.apjpg

durango.apjpg

edcasl.apjpg

edcas2.apjpg

edinwide.apjpg

edinwide2.apjpg

elk.apjpg

erieviaduct.apjpg

fl6.apjpg

firegoby.apjpg

firehole.apjpg

fireholel.apjpg

85

7.400517

1.941900

10.526216

7.248385

7.544098

7.681992

6.644735

6.776748

5.353195

-2.233517

3.507172

2.712845

12.156541

6.695841

10.336789

1.270683

7.753431

-0.523285

1.209435

8.221635

13.268022

0.086194

0.366042

5.206308

4.877393

PJPEG savings in percent



APxJPEG image

firekids.pjpg

fishgrotto.pjpg

flow.pjpg

flowerbird.pjpg

foggy.pjpg

fognelms.pjpg

forthbr.pjpg

galco.pjpg

gandhi.pjpg

generalst .pjpg

gheron.pjpg

giraffes.pjpg

girl3.pjpg

giverny.pjpg

giverny3.pjpg

gizaa.pjpg

glassfish.pjpg

glenfinnan.pjpg

glorch.pjpg

goby.pjpg

guanacos.pjpg

guncan.pjpg

hadwall.pjpg

hamilnight.pjpg

handbag.pjpg

firekids.apjpg

fishgrotto.apjpg

flow.apjpg

flowerbird.apjpg

foggy.apjpg

fognelms.apjpg

forthbr.apjpg

galco.apjpg

gandhi.apjpg

generalst.apjpg

gheron.apjpg

giraffes.apjpg

girl3.apjpg

giverny.apjpg

giverny3.apjpg

gizaa.apjpg

glassfish.apjpg

glenfinnan.apjpg

glorch.apjpg

goby.apjpg

guanacos.apjpg

guncan.apjpg

hadwall.apjpg

hamilnight.apjpg

handbag.apjpg

86

5.853862

-3.683858

10.857197

6.642047

-2.154243

8.090796

11.164734

8.185555

8.034684

7.371742

-0.501486

11.362391

-8.766752

14.525311

12.903839

0.029225

12.518786

6.215992

-4.091101

4.141559

4.266794

12.472750

4.892719

7.661226

7.044347

PxJPEG savings in percent



APxJPEG image

hawkfish.pjpg

hbarrack.pjpg

hoatzins.pjpg

housefinch.pjpg

househorse.pjpg

housesparrow.pjpg

housewren.pjpg

housteads.pjpg

humbird.pjpg

hume.pjpg

islay.pjpg

jaguar.pjpg

jedcreek.pjpg

jedwater.pjpg

jjii jpg

jlf.pjpg

jlfl.pjpg

jroutine.pjpg

jumping.pjpg

junl.pjpg

keiorose.pjpg

kewl.pjpg

kew2.pjpg

kew3.pjpg

kew3a.pjpg

hawkfish.apjpg

hbarrack.apjpg

hoatzins.apjpg

housefinch.apjpg

househorse.apjpg

housesparrow.apjpg

housewren.apjpg

housteads.apjpg

humbird.apjpg

hume.apjpg

islay.apjpg

jaguar.apjpg

jedcreek.apjpg

jedwater.apjpg

jj.apjpg

jlf.apjpg

jlfl.apjpg

jroutine.apjpg

jumping.apjpg

junl.apjpg

keiorose.apjpg

kewl.apjpg

kew2.apjpg

kew3.apjpg

kew3a.apjpg

87

9.202068

9.263757

4.493224

6.021540

9.879551

3.572157

3.530333

-0.437789

3.702172

5.533030

3.372354

3.354774

10.845764

-8.957979

0.731998

18.527757

18.444191

6.257094

1.321941

10.148423

11.454082

5.452851

11.319397

10.965552

9.511228

PxJPEG savings in percent

-



APxJPEG image

kingfisher.pjpg

kitty.pjpg

landsat.pjpg

lechladeboy.pjpg

leighonsea.pjpg

lemurs.pjpg

lena.pjpg

lily.pjpg

lincas.pjpg

lincathl.pjpg

lincath2.pjpg

linespr.pjpg

lingat.pjpg

]ioncub.pjpg

llf.pjpg

lochtay.pjpg

lollypop.pjpg

londonflwr.pjpg

lonetree.pjpg

lupus.pjpg

lynx.pjpg

ml09.pjpg

macaw.pjpg

mainel.pjpg

mainela.pjpg

kingfisher.apjpg

kitty.apjpg

landsat.apjpg

lechladeboy.apjpg

leighonsea.apjpg

lemurs.apjpg

lena.apjpg

lily.apjpg

lincas.apjpg

lincathl.apjpg

lincath2.apjpg

linespr.apjpg

lingat.apjpg

lioncub.apjpg

llf.apjpg

lochtay.apjpg

lollypop.apjpg

londonflwr.apjpg

lonetree.apjpg

lupus.apjpg

lynx.apjpg

mlO9.apjpg

macaw.apjpg

mainel.apjpg

mainela.apjpg

88

2.276683

10.364585

9.628523

10.745773

2.790901

1.586227

5.273799

3.963932

7.558814

15.314251

-2.919644

1.693655

12.331775

6.030887

2.801282

10.256743

7.773256

10.491385

8.544677

0.492702

5.950436

8.583278

4.892259

-0.023037

0.406018

PJPEG savings in percent



APzJPEG image

manatee.pjpg

rnandrill.pjpg

mars.pjpg

marsh.pjpg

marsh2.pjpg

m.arysnow.pjpg

mbg.pjpg

melrose.pjpg

miamiflwr.pjpg

midv2.pjpg

midv3.pjpg

midv4.pjpg

midv5.pjpg

monetcld.pjpg

monetcld2.pjpg

moonsky.pjpg

moose.pjpg

mushcoral.pjpg

mushcoral2.pjpg

muskox.pjpg

nagardome.pjpg

nflicker.pjpg

njtransit .pjpg

nmcloud.pjpg

nmocking.pjpg

manatee.apjpg

mandrill.apjpg

mars.apjpg

marsh.apjpg

marsh2.apjpg

marysnow.apjpg

mbg.apjpg

melrose.apjpg

miamiflwr.apjpg

midv2.apjpg

midv3.apjpg

midv4.apjpg

midvS.apjpg

monetcld.apjpg

monetcld2.apjpg

moonsky.apjpg

moose.apjpg

mushcoral.apjpg

mushcoral2.apjpg

muskox.apjpg

nagardome.apjpg

nflicker.apjpg

njtransit.apjpg

nmcloud.apjpg

nmocking.apjpg

89

5.754405

10.701499

-1.003822

12.702289

16.152553

5.568978

0.016582

9.844620

9.681772

6.100100

8.319828

3.526044

6.917512

9.153924

8.278782

15.705514

12.721872

2.429592

3.395472

5.401741

8.436143

6.659106

2.475900

-3.019582

0.435060

PJPEG savings in percent



APzJPEG image

nmrock.pjpg

nmrock2.pjpg

ocrispum.pjpg

opipe.pjpg

orangutan.pjpg

orchid.pjpg

overland.pjpg

palms.pjpg

panda.pjpg

pandal.pjpg

peacock.pjpg

pengnovb.pjpg

penguin.pjpg

peppers.pjpg

pheasant.pjpg

pinesiskin.pjpg

pipefish2.pjpg

pipefish3.pjpg

pitts.pjpg

plane.pjpg

polarbear.pjpg

pycarp.pjpg

radcotbridge.pjpg

railcover.pjpg

rainbow.pjpg

nmrock.apjpg

nmrock2.apjpg

ocrispum.apjpg

opipe.apjpg

orangutan.apjpg

orchid.apjpg

overland.apjpg

palms.apjpg

panda.apjpg

pandal.apjpg

peacock.apjpg

pengnovb.apjpg

penguin.apjpg

peppers.apjpg

pheasant.apjpg

pinesiskin.apjpg

pipefish2.apjpg

pipefish3.apjpg

pitts.apjpg

plane.apjpg

polarbear.apjpg

pycarp.apjpg

radcotbridge.apjpg

railcover.apjpg

rainbow.apjpg

90

8.164593

0.949114

3.571392

11.265521

12.467088

1.845768

0.642698

7.671583

1.317081

5.994539

16.405053

7.849453

6.404345

4.277316

-2.570283

2.794100

5.137531

-0.716316

8.065835

7.969593

7.614578

13.313195

5.581491

5.144797

4.736172

PxJPEG savitngs n percent

:



APxJPEG image

rand.pjpg

redbud.pjpg

redsea.pjpg

redsweater.pjpg

rocks.pjpg

rooftop.pjpg

ruthven.pjpg

sailboats.pjpg

sailor.pjpg

scopekids.pjpg

scotlet.pjpg

sculpture.pjpg

sealions.pjpg

seaturtle.pjpg

seaturtle2.pjpg

sfhouse.pjpg

shanibaby.pjpg

shark.pjpg

shberry.pjpg

ship.pjpg

sixmts.pjpg

skull.pjpg

skye.pjpg

skyel.pjpg

snowtree.pjpg

rand.apjpg

redbud.apjpg

redsea.apjpg

redsweater.apjpg

rocks.apjpg

rooftop.apjpg

ruthven.apjpg

sailboats.apjpg

sailor.apjpg

scopekids.apjpg

scotlet.apjpg

sculpture.apjpg

sealions.apjpg

seaturtle.apjpg

seaturtle2.apjpg

sfhouse.apjpg

shanibaby.apjpg

shark.apjpg

shberry.apjpg

ship.apjpg

sixmts.apjpg

skull.apjpg

skye.apjpg

skyel.apjpg

snowtree.apjpg
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-0.256386

20.393611

4.564212

4.164408

6.454761

7.028011

1.756343

4.562212

1.345817

4.335482

3.531321

3.490639

8.461008

12.260906

11.847343

4.088487

0.455603

12.781818

11.294882

-0.145469

0.362833

0.283147

0.101840

-5.944778

12.094573

PJPEG savings in percent

.

.



APxJPEG image

snowtree2.pjpg

soft coral.pjpg

soowinter.pjpg

sphere.pjpg

splash.pjpg

stowe.pjpg

suilven.pjpg

sunset2 .pjpg

suntree.pjpg

surrey.pjpg

swa:nmaster.pjpg

swingset.pjpg

syonheron.pjpg

taiwansisters.pjpg

taiwantower.pjpg

tajmahal.pjpg

tarababy.pjpg

telescope.pjpg

tfrog.pjpg

tham esbarrier.pjpg

thamescover.pjpg

thamescoverl.pjpg

thamescover2.pjpg

thamnescover3.pjpg

thebruce.pjpg

snowtree2.apjpg

softcoral.apjpg

soowinter.apjpg

sphere.apjpg

splash.apjpg

stowe.apjpg

suilven.apjpg

sunset2.apjpg

suntree.apjpg

surrey.apjpg

swanmaster.apjpg

swingset .apjpg

syonheron.apjpg

taiwansisters.apjpg

taiwantower.apjpg

tajmahal.apjpg

tarababy.apjpg

telescope.apjpg

tfrog.apjpg

thamesbarrier.apjpg

thamescover.apjpg

thamescoverl.apjpg

thamescover2.apjpg

thamescover3.apjpg

thebruce.apjpg
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13.363265

10.409519

5.261819

-0.807882

4.002154

-2.670261

3.558746

3.699787

12.923232

6.310225

3.199945

3.704749

12.878478

2.136664

1.927902

3.328111

-0.451326

5.427575

4.298211

4.228386

7.376517

6.794550

3.577009

6.636730

-1.234906

PJPEG savings in percent

. .
.



APxJPEG image

tilll.pjpg

tm.pjpg

tobermory.pjpg

tourist.pjpg

toys.pjpg

tree.pjpg

treecoral.pjpg

trossachs.pjpg

tshell.pjpg

tudor.pjpg

turkscap.pjpg

twees.pjpg

twokids.pjpg

twokids2.pjpg

vballl.pjpg

vball2.pjpg

vball3.pjpg

wcloud.pjpg

wcpas2.pjpg

wcpass.pjpg

wdw.pjpg

webleaves.pjpg

weed.pjpg

weed2.pjpg

wineshotel.pjpg

tilll.apjpg

tm.apjpg

tobermory.apjpg

tourist .apjpg

toys.apjpg

tree.apjpg

treecoral.apjpg

trossachs.apjpg

tshell.apjpg

tudor.apjpg

turkscap.apjpg

twees.apjpg

twokids.apjpg

twokids2.apjpg

vballl.apjpg

vball2.apjpg

vball3.apjpg

wcloud.apjpg

wcpas2.apjpg

wcpass.apjpg

wdw.apjpg

webleaves.apjpg

weed.apjpg

weed2.apjpg

wineshotel.apjpg
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5.931842

8.010993

10.655487

9.439468

4.176418

7.734048

13.377060

5.974920

10.011389

5.434752

9.843206

6.136369

6.627915

1.509682

5.798769

6.327441

4.537604

3.276157

14.548503

11.032840

1.861947

8.016907

11.622188

13.502304

6.824115

PJPEG savings in percent

.



94

PxJPEG APxJPEG image savings in percent

winter87.pjpg winter87.apjpg 13.642010

wintergrip.pjpg wintergrip.apjpg -0.199143

woodthrush.pjpg woodthrush.apjpg 2.802191

world.pjpg world.apjpg 1.022813

yard.pjpg yard.apjpg 7.616696

zebras.pjpg zebras.apjpg 11.535427

zoosheep.pjpg zoosheep.apjpg 6.891399
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