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Abstract

Wavelet packets are a useful extension of wavelets providing an adaptive time-
scale analysis. In using noisy observations of a signal of interest, the criteria for best
bases representation are random variables. The search may thus be very sensitive
to noise. In this paper, we characterize the asymptotic statistics of the criteria to
gain insight which can in turn, be used to improve on the performance of the anal-
ysis. By way of a well-known information-theoretic principle, namely the Minimum
Description Length, we provide an alternative approach to Minimax methods for
deriving various attributes of nonlinear wavelet packet estimates.

1 Introduction

Research interest in wavelets and their applications have tremendously grown over the
last five years. Only, more recently, however, have their applications been considered in a
stochastic setting [Fll, Wol, BB+ , CH1]. A number of papers which have addressed the
optimal representation of a signal in a wavelet/wavelet packet basis, have for the most
part given a deterministic treatment of the problem.

In [Wol], a Karhunen-Loeve approximation was obtained for fractional Brownian
motion with the assumption that the wavelet coefficients remained uncorrelated. In
[Unl, PC1], optimal wavelet representations were derived for the analysis of stationary
processes. Similar problems can be investigated with a goal of enhancing the estimation
of an underlying signal embedded in noise [DJ1, LP+ , Mol]. More recently, a statistical
approach to a best basis search was undertaken in [KPW, DJ2].

In this paper, we study the statistical properties of various bases search criteria which
have been proposed in the literature. These can then be used to rigorously proceed to a
wavelet packet tree search3 formulated as a hypotheses test.

*The work of the first author was in part supported by grants from ARO (DAAL03-92-G-0115) (Center
for Intelligent Control), AFOSR (F49629-95-0083) and NSF (MIP-9015281).

3A search for an adaptive local cosine basis could just as well be carried out.
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Following a section of preliminaries and definitions of notations, we derive in Section
3 a procedure for an estimation enhancement of a signal embedded in noise, by using
information-theoretic arguments. A Minimum Description Length (MDL) [Rill analysis
which achieves that, results in the shortest coding length for an observed process. An inter-
esting connection between this length and a best basis criterion recently proposed in [DJ2]
is outlined. In Section 4, statistical properties of this criterion and of an entropy-like or
L2 p criterion are derived. These allow one to assess the variability and the potential effect
of noise on these criteria, and afford the possibility of constructing decision algorithms.
Finally, we give some concluding remarks in Section 5.

2 Preliminaries and Formulation

2.1 Wavelet Packet Decomposition

The wavelet packet decomposition [Will is an extension of the wavelet representation, and
allows a "best" adapted analysis of a signal. To define wavelet packets, we first introduce
real functions of L2 (IR), Wm(t), m C IN, such that

J Wo(t)dt=l (1)

and, for all (k, j) E Z2, respectively representing a translation parameter and a resolution
index,

00o

2-½W2m(2 - k) = h1-2k Wm(t - I) and, (2)
I=-oo

2- 2W 2 m+( -- k)= gl 2k Wm(t - 1), (3)
2 I=-oo

where m denotes the frequency bin number and (hk)kE2, (gk)kez are the lowpass and
highpass impulse responses of a paraunitary Quadrature Mirror Filters (QMF) [Dal]. A
convenient choice for gk is

gk = (-1)k h_k (4)

and the QMF property then reduces to

Z hi hl2k = k (5)
I=-oo

where (6k)k7Z is the Konecker sequence. To define compactly supported functions Wm(t),
we can use finite impulse response filters of (necessarily even) length L such that

hk = O, if k <-L/2 or k > L/2. (6)

If we denote by P a partition of IR+ into intervals Ij,m = [2-jm,..., 2-j(m+l)[, j E Z and
m C {O,. . .,2 j

- 1}, then {2-j/2W (2-it - k), k E Z, (j, m)/Ij,m C p} is an orthonormal
basis of L2 (IR). Such a basis is called a wavelet packet [Wil]. The coefficients resulting
from the decomposition of a signal x(t) in this basis are
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Cm(X) J= X(t) 2 J/2 Wm( 2 - k) dt. (7)

For ease of notation, we will omit the variable "(x)" in Cjk,m(), whenever there is no
ambiguity. Note that

00 00

C+1,2m = 3 hl2k CjI C+1,2 m+l E 91-2k Cm (8)
I=-oo l=-oo

and, for j > 0,

Cjk E Co 0 h2 k (9)
I=-oo

where
0o 00,k k-231 kk-21h/j-+l, 2 m= hE h.l ,v hk m+l = (10)j+1,2m - 31M j+1,2m-g-1 

I=-oo l=-co

and h k
0 = 5k*

By varying the partition P, different choices of wavelet packets are possible. For
instance, a special wavelet packet is the orthonormal wavelet basis defined by the scaling
function q(t) = Wo(t) and the mother wavelet /(t) = W 1 (t). Another particular case
is the equal subband analysis which is defined, at a given resolution level jm E Z, by
P = {Ijm,m,m E N}. The basis selection is made to adapt to the underlying signal
of interest, and various decision criteria have been proposed in the literature and are
discussed in the next section.

2.2 Energy Concentration Measures

An efficient tree search algorithm was first proposed by Coifman and Wickerhauser [CW1]
to determine the partition P which leads to a maximal Energy Concentration Measure
(ECM). For the sake of algorithmic efficiency, this ECM Z(-) is additive, i.e. for every
sequence (ak)l<k<K,

K-1

Z((ak)O<k<K) = E (ak) (II)
k=0

with the notational convention I({ak}) = Z(ak). The ECM of choice should result in
the "best" adapted basis. Among the better known ECMs, is an entropy-like criterion,4

defined by

2(a) = a2 log(a2) (12)

and the L2P criterion, with p c IN \ {0, 1},

Z(a) = a2 . (13)

4 We here consider the unormalized form of entropy, with an opposite sign of the usual convention.
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2.3 Model

Our focus in this paper is on the multiscale analysis of a continuous time process x(t)
observed over a time interval. We assume an additive noise model,

x(t) = s(t) + b(t) (14)

where b(t) is a real zero mean Gaussian white noise with a known power spectral density
(psd) 7

2 . The signal s(t) is assumed unknown. We will assume that this signal is real
and belongs to Span{Wo(t - k), k C Z), so that we have to just consider the projection
of Eq. (14) onto this space to estimate s(t). The latter condition amounts to some weak
regularity condition on s(t). Furthermore, s(t) is assumed to have a compact support, so
that,

3K E IN \ {0}, Cm(s) = 0 if k < O or k > K2 -j , (15)

where K designates the number of wavelet packet coefficients retained at the resolu-
tion level j = 0. This means that s(t) must be estimated from {C,m(x), 0 < k <
K2 - j, (j, m)/Ijm C P}, where P is a partition of [0, 1[ in intervals Ij,m. The wavelet
packet coefficients C ,,(x) are the result of a linear transformation and are therefore also
Gaussian with means C,m(s). Given that this transform is orthogonal, they have a variance
a 2 and are furhtermore independent.

3 Nonlinear Estimation of Noisy Signals

Using information-theoretic arguments in concert with the statistical properties of the
assumed noise, we wish to investigate the potential improvement of a multiscale analysis
in enhancing the estimate of s(t). Intuitively, our approach here is to use to advantage the
spectral and structural differences of the underlying signal s(t) and those of the noise b(t)
across scales, to separate their corresponding components and subsequently eliminate the
noise.

We proceed by relabeling the wavelet packet coefficients of x(t) with a single in-
dexing subscript, and reformulate the problem as one of estimating signal coefficients
{Cn(s)}l<n<K embedded in an additive N(0, a2 ) white noise, from observations
{Cn(x)}1l<n<K Since {Cn(S)}l<n<K represents the coefficients of the signal in an adapted
orthonormal basis, it is reasonable to assume that s(t) is adequately represented by a
small number P < K of orthogonal directions, in contrast to white noise, which neces-
sarily would be present in all the available directions.5 In a sense, the noise components
add no information to understanding the signal. This notion can also be interpreted as
an attempt to code the information in the observed process or evaluate its complexity.
For that, we call upon the MDL principle. The rationale for this criterion is that the best
code {Cn(s)}1<n<K for a data sequence is the one which not only best explains it, but also
is the shortest. Recalling that the coefficients are assumed to be independent, it follows
that the joint probability density function is,

5This is in particular verified under some regularity conditions on s(t), as most of the signal energy is
concentrated in a few dimensions.



Best Bases Criteria 5

~f(Cl(x),...,cK~:~(x)l~) ~(2 A)K/, e 2-2 ( (C1 (x)-Cl ())2 + -K

C = (nl , .. .,Cnp, C(),.. Cn(s)). (17)

where P is the number of "principal directions" of the sequence {Cn(S))l<n<lK, which is
assumed to satisfy

Cn, (s) - 0 iff < l < P (18)

and C is the parameter vector. The unknown parameters are the P coefficients {Cn, (s ) }l<l<P
and their respective locations {nl}l<l<p for which one could search the maximum of the
likelihood hypersurface. The drawback of this direct approach is that it will always max-
imize the likelihood function by maximizing P. The solution provided by the MDL crite-
rion, attaches a penalty and prevents such a naive optimization. The code length described
by the MDL is given as,

L(C1(x),.. ,CK(X),C, P) = -logf(C(x),. .. , CK(x) C) + -(2P)log K . (19)

Proposition
3.1 The P coefficients Cl(x),..., Cp(x) which, based upon the MDL method, give the

optimal coding length of x(t), are determined by the components which satisfy the following
inequality:

I C (x) > aX (20)

where X = 2 log K. Furthermore, the resulting minimal code length is

.(Cl(X),..., CK(x)) = 2 min( ,2 x) + K log(V2ru) . (21)

Proof. For algebraic convenience, we reorder the variables {Cn(X)}l<n<K in f(. C() such
that

I Cl(x) _> I C(x) > > ICK(x) (22)

Clearly, minimizing L(-) leads to the maximum likelihood estimates of {ni}l<t<p and
{Cnl(S)}l<l<p as i =: I and Cen(s) = Ci(x). Ignoring the terms independent of P, we
obtain,

£' (Cp+1 (x), , CK(x), P) 22 (x) PlogK . (23)
n=P+l

The finite differences of £'(.) w.r.t. P are

£'(Cp+(x),..., CK(X), P) -'(Cp(x), ., CK(X), P- 1) = +2 2C(x) + logK . (24)

This means that, for any P less than (resp. greater than) P, the functional decreases
(resp. increases), where the optimal value P is the largest P such that

I Cp(x) > > x (25)
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This is equivalent to thresholding the coefficients as expressed by (20) and Expression
(21) straightforwardly follows. [

Note that this result coincides with that previously derived by Donoho and Johnstone
[DJI] and achieves a Min-Max error of representation of the process x(t) in a wavelet basis.
MDL-based arguments were also used by Moulin [Mol] in a spectral estimation problem
and more recently by Saito [Sal] to enhance signals in noise of unknown variance.

Interestingly, the minimum coding length in Eq. (21) was recently proposed as part
of a criterion for the search of a best basis of a process [DJ2]. 6 This criterion is additive,
thus algorithmically efficient for a tree search, and results in a representation of minimal
complexity. This tree search criterion will subsequently be referred to as the denoising
criterion,

a2
1(a) = - min(- 2, X2) . (26)

4 Statistical Properties of Criteria

4.1 Properties of ECMs

The best basis representation as first proposed by Wickerhauser [Wil] adopted a de-
terministic approach. In the presence of noise, the cost function, however, is a random
variable, and its deterministic use may result in a highly variable representation. The
following proposition describes the asymptotic behavior of I({C km}O<k<K2-j)

Proposition
4.1 If {Cjm}O0<k<K2-j is an i.i.d. sequence, then7

({C }0<k<K2-j) - K2-J.
I N(0, 1) K2 - j oo (27)

/K-2ij/2c

where
/ - E{Z(Cm )}, e2 -- Var{I(Cm)} (28)

Furthermore, when C>k is N(0, 7
2 ), we have

* for the entropy criterion,8

gl = (2 (2 -log2 - + 2 log), (29)
62 + p2 = 3cr 4 (-40/9 + 7r2 /2 + (8/3 -y + log 2 + 2 log a)2 ) (30)

* for the L2P criterion,

(2p)! 2p (31)(31)
2Pp! '

2 - t2 = (4p)! 54p (32)
22 p(2p)!

6The authors however use a value of X higher than v2log/ to guarantee good estimation
performances.

7The symbol "-" stands here for the convergence in law.
8The Euler's constant is denoted by by y = lim,,, Fk=_ -logn 0.5772.
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a and, for the denoising criterion,

I, = 2(vf(y,) + (X2 - 1)F(X) + 1/2 - X2 ) (33)

e2 + 2 = 2((3 - y 4)F(X)- (X 2 + 3)f(x) + x -3/2) (34)

where
f(y) =e-2/2/V/2-, F(X) J f(O) d= f (35)

Proof. Invoking the central limit theorem allows one to show the asymptotic normality of

I({Ckj}o0<k<K2-Ji) When C>,n is Gaussian, Appendix A provides the expressions of / and
2, for the entropy criterion. Eqs. (31) and (32) are well-known expressions of moments of

Gaussian random variables. Eqs. (33) and (34) may be easily checked by carrying out an
integration by parts of the corresponding mathematical expressions. O

Note that the data length K must be sufficiently large and the resolution of analysis
sufficiently high (j small enough), for the asymptotic behavior of the criteria to hold.

4.2 Properties of Criteria

The usefulness of the ECM in a stochastic framework hinges upon the fact that its sta-
tistical properties at each node (j, m) and its corresponding offsprings are determined.
Specifically, the properties of the following algebraic sum of the ECMs (actual criteria)
is key to a best basis search (i.e comparison of costs of a parent node and offsprings
nodes) [Wil]:

|jm -= I({C)jnl}o<lk<Il2-i) - EIgZ({C(llm}O<k<1(2-j' (36)
,E m ) EPj,,

where Pj,m is a partition of Ij,,r in intervals Ij,,,,. More specifically, we will determine

the asymptotic distribution of AZjP,',m when K2- jil -+ oo, with jm = sup{j' E N, 3m' c
lN/Ij,nt C Pj,m}. We will first consider the problem for two successive resolution levels j
and j + 1.

Proposition
4.2 If Pj,m - (Ij+l,27l, Ij+l,27+l }, the coefficients resulting from, a compactly supported

wavelet packet decomposition of' a white Gaussian noise with zero mean and psd a2 are
such that

/?'" 2 ~-. N(O, 1) I2-J -+ 00 (37)
vK2-i/2 A

L/2

AE2
= 2p(u, 1) - E (p(u, hk) + p(a, 9k)) (38)

k=-L/2+1

where p(u, r) is the covariance of' (X) and Z(Y), when X and Y are jointly zero-mean
Gaussian random variables of ,l.lar.iance . 2 anrd correlation coefficient r = E{XY}/7 2 .
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Proof. First recall that {Cjk},m}O<k<Kf2-j are i.i.d. N(O, ar2) and the coefficients
({C+1,2m}0<k<K2-j-1 and {C>1+,2m+1}<Ok<K2-j-1 are i.i.d. N(0, U2 ) and mutually indepen-
dent. Furthermore, we have

E{Cm C 2m = hk-21 (39)

It can simply be checked that the first order moment of AZIPm vanishes as Z(Ck+l2m)
and Z(Ck+l 2m+) follow the same probability distribution as I(Ck¢,). By using the inde-
pendence of ({C: ±2m}O<~k<K2-j-1 and {C+l,2 n+l}o0<k<K2-j-1, the second order moment of
AZfm reduces to

Var{ZAXPj',m a} = K K2-j- (Var( } - - 1 (ar{(C+ 2 m) + Var{I(C)+l 2 m+)}))

K2-j-1 K2-j-1-1

-2 g E (Cov{I(C> ),I(CP±1 ,2m)} + Cov{z(C,m),z(C}+±1,2m+l) }) (40)
1=0 p=O

As shown by Eq. (39), Ckm and Cj+ 2 are independent, when k < -L/2 + 21 or k >
L/2 + 21 + 1 and, by using Eq. (39),

K2-j--1 K2-j-1-i K2-j-1-1 2p+L/2

S Cov{f (C'm), I(C>j+±1,2m)} Z Z Cov{Z(C. ), (C+ 1 2m)}
1=0 p=O p=O 1=2p-L/2+1

L/2

K2 - j -1 5 p(u, h) . (41)
I=-L/2+1

An identical approach is applied to evaluate the covariance of I({Ckm }o<k<K2-j) and
Z({Cj+1,2m+1}0<ok<K2-j-1). By further noting that

Var{f(C )} = Var{f(Cff+, 2 )} = Var{f(C+,2m+l)} = p(, 1), (42)

Eqs. (40) and (41) lead to

L/2

lim Var{AIZjm }: lim K2- j (2p(c, 1) - (p(r, hk) + p(c, g9k)) (43)
K2J--+oo K2-J-oo

k=-L/2+l

It remains to establish that AI7,m is asymptotically normal, when appropriately normal-

ized. This result relies on the fact that Az7 jm may be rewritten as

IK2-j-11l

zjm = 5E k (44)
k=O

= (Cj,) + i(C¢;,' ) - (C2 - + 2 m+1) - (45)

The random variables &k are identically distributed and Ek is only a function of CkL/2 +1

. ,Cj2k'M+L. This implies that (k and (l are independent for I k-I > (L- 1)/2. This
property together with central limit theorems in [Ibl] finish the proof. O



Best Bases Criteria 9

Expression (38) for the variance can be further simplified, subject to some conditions,
as shown below:

Corollary
4.3 If Z(a) is an even function of a and 2P(c 0O) exists, we can write under the

assumptions of Proposition 4.2,

L/2

Ac2
= 2(,p(o, 1)- - p(g, hk)) (46)

k=-L/2+1

where p(o, r) = p(o, r) - p(u, 0) - 1 2P (7, O)r2 is an even function of r. Furthermore, we
have,

* for the entropy criterion,

p(, r) o- 4((1 - r2 )5 / 2 T2 (2k + )2 (2)! 2 4 (1 3 r 2

k~O 22'kk2 Sk +4(1+ 3r 2) log(1 - r2)

-(1 + 2r 2)(log(1 - r2)) 2 - 4 - 18r 2) (47)
k 1

Sk 1± I + 1/2 (48)

* for the L2P criterion,

P 1
p(,Jr) -=: u4p(2p!)2 ~ 22(p-k)(2k)!(p_ -k)! 2

* and, for the denoising criterion,

1 X X X ))2 (X)2 k
(, r) = 22k-3k! ( (Q2k-2( ) + Q2k-3( )) () (50)

k=2223k 2 fx2 5

where Qk(') is the Hermite polynomial of degree A.9

Proof. It is straightforward to check that p(a, r) and thus p(cr, r) are even functions of r
as f(.) is also an even function. Formula (46) is derived from Eq. (38) by using Relations
(4) and (5). The expressions of p(o, r) for the considered ECMs are finally established in
Appendices A and B. []

For the entropy criterion, we find that AE is a linear function of Cr2, unlike e which
was proved to be also dependent upon log or. The corresponding expression of p(c, r) is
rather intricate w.r.t. r. It may however be approximated (for r C [-1, 1]) by a Taylor
expansion whose convergence is relatively fast:

9 Recall that Hermite polynomials can be computed recursively through the relation Qk+l(a) =
2aQk(a) - 2kQk_l(a), with Qo(a) = 1 and QI(a) = 2a.
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424 4 6 8 16 10 256 12

p(a,r) -= o4( (r 4 - +8 6-3 r+ r 12 + (51)I'c,)3 45 315 1575 51975
512 14 + 512 16 1024 20))

r 14r + ~~r'8 + O(° (52)189189 315315 9 84 5 5 5

It is also worth noting that the result obtained for the L2P criterion takes a very simple
form when p = 2 as it reduces to p/5(, r) = 24u 8r4 .

Proposition 4.2 may be extended to an arbitrary choice of the partition 'Pj,m.

Proposition
4.4 The coefficients resulting from a compactly supported wavelet packet decomposition

of a white Gaussian noise with zero mean and psd U2 are such that

ZIZ~'~ N(0, 1) K2- j m o0 (53)
xK/2-j/2 AE
Ac 2 = 2p(, 1) - Z2 -j'++ Z p(, h,_ (54)

(j',-')/Ihj,,m EPj,m k

This result may be proved by proceeding in a way similar to the proof of Proposition
4.2.

The above propositions are useful in characterizing the sequences of coefficients
{C¢;,m}0<k<K2-j resulting from noise. They allow to build statistical tests to determine
whether the values of AfZ,7~T are statistically significant in relation to the variations
caused by noise.

5 Conclusion

We have outlined some of the connections between information theoretic concepts and
statistics. As demonstrated, the Minimum Description Length approach provides an al-
ternative and comprehensive view of the nonlinear wavelet/wavelet packet estimation
methods introduced by Donoho and Johnstone. We have also established some asymp-
totic results on the probability distribution of the additive criteria which are used to adapt
wavelet packet representations. As noted, these results allow one to build statistical tests
for improving the robustness of the search for the best basis to noise. We are currently
numerically evaluating the efficacy of these tests, in various signal/noise scenarios.

Appendices

A Statistical Properties of Entropy

We will need the following result:
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Lemma
A.1 If Z is a ?y(a, b) random variable, a > O, b > O, we have

E{log Z} = f(a) - log b (55)

Var{log Z} = t'(a) (56)

where !f(.) denotes the logarithmic derivative of the Euler's r function.

The proof follows from straightforward calculations.

We will then calculate the first and second order moments of X21og(X2 ), when X is
N(0, u2 ). We find after a change of variables that

E{X 2 log(X 2)} = a2 E{log U } (57)

E{X4 (log(X2 ))2 } = 3U4E{(log(U 2)) 2 } (58)

where U1 and U2 are respectively -y(3 / 2 , (2c2)- 1) and 0y(5/2, (2a2)-1). Lemma A then
yields

E{X2 log(X2 )} = cr2 ((3) +log2 + 2loga) (59)

5 5
E{X4 (log(X 2 )) 2 } = 32 4(!2f'( ) + (f( ) + log 2 +- 2 log U)2 ) . (60)

2 2

Using the properties of the F function results in Eqs. (29) and (30).

We now proceed to calculate the crosscorrelation E{f(X)I(Y)} when 1(X) = X2 log(X 2 )
and X and Y are jointly Gaussian, zero-mean random variables with variances ax and 4y
and correlation coefficient r. The crosscorrelation is then defined as

E{I(X)z(Y)} = E{I(X) E{Z(Y) I X}} . (61)

The expression E{f(Y) IX} can be obtained using the conditional distribution pyIx(Y),
which for a N(0, ax) X will have the following mean and variance,

lTYIx = rY X (62)
-ax

yux = V1 - 2 y (63)

where r = E{XY) is the correlation coefficient. We can now evaluate E{I(Y) I X}, given

that Y is now N(Iylx, vIx). For a given X, if we let Z = y 2 , it is simple to conclude that
Z/U2j x is X2 (1, 2a) (i.e. noncentral x2) with

r = 2 r2X2
2 . = = (64)

By using the expression of the noncentral x2 density, the density of Z may be written
as



12 H. Krim and J.-C. Pesquet

1 e :oe-~Z/2YI k-1/2-CL - > 0. (65)pz(Z) =2 x k r(k + /2) 2
oYIXk0 k! P(k±+1/2) 2u2 ,I z> (5

We now want to evaluate E{Z log Z},

e o0 - e z/2aix I \k+1/2C a Q e -~YIX z
E{ZlogZ} E k! ±(k + 1/2) =27x) log z dz (66)

k=0 yix

or, after some calculations,

,72 IX C* e-'a k (k + 1/2)E~logZk}
E{Z log Z} 22 ex (k + 1 (67)

k=0 k!

where Zk -y(k + 3/2, (2r2Yx)- 1). In other words, according to (55), we can write down,

E{Zlog Z} = 2i ·YX e- ak(k + 1/2) ((k + 3/2) + log(2U2)) . (68)
k=O

In the above equation, one can recognize the first order moment of a Poisson distribution
and we thus have

E{Z log Z} = 22 YIx( (k ') (k + 3/2) + (c + 1/2) log(2olX)) . (69)
k=0

Replacing ao by its expression in (64) leads to

00 + 1/2) 2X
2

E{I(X)I(Y)} - 25CT2x(r(k + 1/2)TI'(k + 3/2)E{X 2 k+2 log(X2)e 2-xI}

1 r2
+2 (1 - r2)c 2 E{X 4 log(X 2)} + E{X 2 log(X 2)}) l°g(2ylX)) (70)

with uxlY = 1- r 2x. Furthermore, it can be readily shown that

12X2 -
2

E{X2 k+21g(X 2 )e } = 1--_2k+2(k + 3/2)E{logU} (71)
7I2

where U 'y(k + 3/2, (2yXIY)-1 ). Invoking Lemma A yields

E{I(X)I(Y)} =

72 o (1 _ r2)5/2 f r 2k(2k + 1) 2 (2k)!y(k + 3/2)(Tf(k + 3/2) + log(22y)) +
k 22kk!2 xly))+ik=O

(3r2 (@(5/2) + log(22 )) + (1 - r2)(Qf(3/2) + log(22))) log(2 2 1x)) (72)

We therefore find that

E{I(X)I(Y)} = 2C 2 (a, (r) log(2 ) log(22r ) + a2(r) (log(22) +log (2U )2) + a3 (r)) (73)
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where

a,(r) = 1+ 2r2, (74)
a2 (r) = T(3/2) + (3qi(5/2) - T(3/2))r 2

= 2- /- 2 log(2) + (6 - 2- - 4 log(2))r2 (75)

a3 (r) = (1 - 72 )5 /2 C r2 (2k!(k + 3/2)) 2

k=0

+2a2 (r) log(1 - r2 ) - a1(r)(log(1 - r2))2 . (76)

To derive the above expressions, we have used the fact that ax and ay play symmetric
roles, which results in the following relation:

(1 - r 2)5/2 r 2k(2k + 1)2(2k)! f(k + 3/2) + a,(r) log(1 - r2 ) a(r) . (77)
kEO 22kk!2
k=0

The expression of a3 (r) can be further simplified by noting that

k 1

TiV(k + 3/2) - TVi(1/2)= Sk = S + 1/2 (78)
1=0 I+1/2

which combined with (77), leads to

33( )0 (1 -2)5/2(? r2 k(2k + 1) 2 (2k)! 2 1/ r2k(2k + 1)2 (2k)!
a3(r) = (1 - 22rkk2 k T1)

k=O 2 kO k= 22 k

+4(1 + 3r 2) log(1 - r2 ) - al(r)(log(1 - r 2 )) 2 + 2T(1/2)a2 (r) . (79)

By checking that
r2 k(2k k+ 1)2 (2k)! 2)

E 22kk!2 (1- a2)-5/2 (T) (80)
k=0

we find that

a3(r) = (1 -r 2) 5/ 2 r r 2k(2k + 1)2 (2k)! + 4(1 + 3r2) log( -r )
Sk -- ) 4(- T2) ± )o r2 )

22kk!2
k=0

-al(r)(log(l - r2)) 2 + TV(1/2)(Q1(1/2) + 4 + 2(¢T(1/2) + 6)r 2) . (81)

By setting ax = ry and substracting the first two terms of the Taylor expansion of a3(r),
we obtain Eq. (47).

B Nonlinear Functionals by Price's Theorem

Price's theorem [Prl] can be convenient for evaluating the nonlinear function p(cr, r).
According to this theorem, we have, subject to the existence of the involved expressions,

r) = E{() (X)I() (Y)} (82)
drk
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where X and Y are jointly Gaussian zero-mean normalized random variables with corre-
lation coefficient r and Z(k)(.) denotes the kth order derivative of I(.). When this theorem
is applicable1 0 and an infinite Taylor expansion of p(l, r) exists at r = 0, we can write

p(l1,r) = E { (X)k } rk (83)
k=1

Let us first consider the case of the L2 p criterion. We readily have

P(u, r) = J4 Pp(l, r) (84)

and
E1_T2 -(X) (2p)! _{X2p_2_ - (2p)!

(2p - 2 k)! 2P-k(p - k)! (85)

which leads to Eq. (49).

We will now investigate the denoising criterion. The derivative Z(k)(.) is, for k > 3, the
distribution

i ( )(X) + 2X(68~72) + 6 (k-2) (86)

where 6(k) is the kth order derivative of the Dirac distribution localized at X. This in turn(X)
leads to

E{I(k)(X)} = 2 (_l)k-3(f(k-3)(X) _ f(k-3)(-X)) + 2x(_l)k- 2 (f(k- 2 )(X) + f(-2)(_X))

(87)
Since f(.) is an even function, we find that

E{j(2k)(X)} - 4(Xf( 2 k-2 )(X) _ f(2k-3)(X)) k > 2. (88)

Since the Hermite polynomial Qk(X) of degree k satisfies

Qk(X) = (_l)keX2 d (-X(89)

Eq. (88) may be rewritten as

( 4 X X X
EZ(2()} 2 (2k-3)/2 ( Q2k-2( ) + Q2k-3( )) f(X), k > 2 . (90)

Eq. (50) results from the above expression.

Acknowledgements. The authors would like to thank Dr. I. Schick from MIT, and Prof.
B. Picinbono and Dr. P. Bondon from LSS for stimulating and helpful discussions.

0°Note that this theorem cannot be used for the entropy criterion since E{I(k)(X)} does not exist, as
soon as k > 3.
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