

Implementation of Axiomatic Design Theory

by

Taejung Kim

Submitted to the Department of Mechanical Engineering
on June, 1995 in partial fulfillment of the

requirements for the Degree of

Master of Science in Mechanical Engineering

ABSTRACT

Axiomatic design theory was advanced as a systematic approach to the design field. It
explains the general features of design activity, extracts common characteristics of good
designs and provides a methodology/procedure consistent to them. The common
characteristics of good designs is called 'axioms' or 'design axioms'.

ADE(Axiomatic Design Environment) may be defined as a computer software which
assists designers in following axiomatic design procedure. ADE satisfies the following
specific goals: ADE provides the editing environment which can clearly show the basic
concepts of axiomatic design theory (which are domains, functional requirement, design
parameter, design matrix, design hierarchy, mapping and decomposition); ADE helps
designers to keep axiomatic design procedure by prohibiting the designers from taking
undesirable design sequence; ADE helps designers' ideation for appropriate design
solutions; ADE has the ability to check whether on not a design is acceptable according
to design axioms; ADE has the ability to record a designer's design and retrive it on
computer.

A framework for software design, based on axiomatic design theory, was suggested and
applied to designing ADE. Software design process is formalized with concepts of
axiomatic design theory.

Further research needs to be focused on the ideation process for design solutions.

Thesis Supervisor: Professor Nam Pyo Suh
Ralph E. and Eloise F. Cross Professor of Manufacuring
Head of the Department

2

Acknowledgements

It is always the most exciting experience to finish one step in life, especially when it can
results in a kind of physical form like this thesis. At this very exciting moment, I would
like to give thanks to those who have contributed much to the completion of my Master's
thesis.

I wish to express my sincere thanks to my advisor, Professor Nam Suh. He lead me to the
right direction during this work. I appreciate his critical advice, encouragement,
understanding and time spent for them.

I gratefully acknowledge the help from Professor Leonard Albano at WPI. From the start
of this research, the discussion with him and his advice was a big help to me.

Thanks to the members of Axiomatic Design Group at MIT for their kindness and
discussion with me.

I would also like to thank my friends, Jun, Sung, JunHee, Siho, Simon, Kang, Yong,
Kevin, Caroline, Bo, Kay and Yu for cheering me up and making morning calls to their
lazy friend. They were with me when I needed them.

Thanks to my sister and my brother Yoon for their love and encouragement.

Special thanks to my Parents. Their son in America, so far from his family, made them
worry about his health and his life. Without their love, he would have lost the faith for his
life.

3

Table of Contents

Abstract

Acknowledgements...

List of Figures..

List of Tables..

1. Introduction..

2. Background ...

2.1. Review of Axiomatic Design Theory

2.1.1. Basic Concepts and Facts of Design Activity..................

2.1.2. Design Axioms..

2.1.3. Methodology/Design Procedure.......................................

2.2. TDM(Thinking Design Machine)................................

3. Axiomatic Design Environment (ADE)......................

4. Axiomatic Design of ADE..

4

2

3

6

7

8

9

9

9

15

15

29

31

33

4.1. Small Example .. 33

4.2. 1st Hierarchy 34

4.3. 2nd Hierarchy.. 44

4.4. 3rd Hierarchy 50

4.5. Conclusion.. 52

Appendix A. Important Program Codes List.................. 53

Appendix Al. Decomposition of
I 1st Hierarchy]-> 2nd Hierarchy 53

Appendix A2. Design Matrix & Design Parameter
[2nd Hierarchy] ... 60

Appendix A3. Decomposition [3rd Hierarchy :
[FR4 1 & [FR5 ... 66

Appendix B. Axioms/Corollaries/Theorems.................... 79

References... 84

5

List of Figures

Figure 2.1. Four Domains of the Design World ... 10

Figure 2.2. Lathe Functional Hierarchy .. 13

Figure 2.3. Lathe System Physical Hierarchy .. 14

Figure 2.4. The Mapping Process ... 16

Figure 2.5. The Decomposition Process after Mapping Process 16

Figure 2.6. Overall Axiomatic Design Process .. 18

Figure 2.7. Detailed Procedures of Axiomatic Design .. 21

Figure 2.8. Block Diagram for TDM .. 29

Figure 3.1. Structure of the ADE ... 31

Figure 4.1. Menu Structure of the ADE .. 38

Figure 4.2. Editing Environment for FR & DP 39

Figure 4.3. Editing Environment for FR & DP at Initial State 40

Figure 4.4. FR Editing Environment .. 41

Figure 4.5. The Screen Display after editing FRs and DPs 42

Figure 4.6. The Editing Environment for Design Matrix ... 43

Figure 4.7. 2nd Level Decomposition .. 45

Figure 4.8. A Function Tree Structure 47

6

List of Tables

TABLE 4.1.

TABLE 4.2.

TABLE 4.3.

TABLE 4.4.

TABLE 4.5.

TABLE 4.6.

TABLE 4.7.

Design Equation of 1st Level..

2nd Level FRs ...

2nd Level DPs.................

Design Matrix for 2nd Hierarchy..

Class Definition & Design Matrix Element.....................................

Design Matrix which Class Definition represents............................

Decomposition of [FR5] ..

7

34

44

46

48

49

50

51

CHAPTER 1. Introduction

Axiomatic design theory is advanced by Suh[1,3,7,9] as a systematic approach to the
design field. It explains the general features of design activity, extracts common
characteristics of good designs and provides a methodology consistent to them.

As the system which designers must deal with becomes large, it is difficult for a
designer to follow the axiomatic design methodology. If the knowledge about axiomatic
design theory is implemented on digital computer, designers can be lead to follow the
methodology and get the information about this theory in an interactive way from
computer.

ADE(Axiomatic Design Environment), a computer software to assist designers in
following the axiomatic design methodology, was developed in this thesis.

In this thesis, the concept of ADE was introduced and how the ADE was designed
with axiomatic design theory was explained. In chapter 2, the background knowledge
which is needed to understand other part of this study was summarized. In chapter 3, the
concept of ADE was suggested. In chapter 4, how the code for ADE was generated was
shown and a framework for software design based on axiomatic design theory was
suggested.

8

CHAPTER 2. Background

Axiomatic design theory is advanced by Suh[1,3,7,9] as a systematic approach to the
design field. It explains the general features of design activity, extracts common
characteristics of good designs and provides a methodology consistent to them. The
common characteristics of good designs are called 'axioms' after which this theory was
named. What distinguishes this theory most from other design theories is the assumption
that the axioms exist and the fact that these axioms are applied in the methodology.

TDM (Thinking Design Machine) concept was created by Suh[1,2]. Its ultimate
goal is to create designs or design concepts that are superior to those currently possible
using software based on the axiomatic design theory. Therefore, TDM should have the
ability to generate designs and to evaluate them using axiomatic design theory. Much
work, related to human creativity and synthesis power, remains to be done to achieve this
goal.

In this chapter, the main concepts of axiomatic design theory and the TDM are
introduced for those who are unfamiliar to them.

2.1. Review of Axiomatic Design Theory

In this section the main concepts of axiomatic design theory are presented for those
who are unfamiliar to this theory. Detailed explanations and examples are given in [1].

2.1.1. Basic Concepts and Facts of Design Activity

In this sub-section, the terminology which is used in axiomatic design theory and the
characteristics of design activity are explained.

According to axiomatic design theory, design process is a mapping process between
domains. At the highest level of the design hierarchy, each domain has its characteristic
vector which can completely characterize the entity of the domain. Using the
characteristic vector, the mapping can be expressed in a mathematical form. The
equation that represents the relationship between the characteristic vectors is called a
design equation. In each domains, the characteristic vector can be decomposed into its
own hierarchy. The hierarchy can not be developed without mapping to other domains.
The independence of FRs of a design is defined in this section and explained in terms of
the design equation. Also, the concept of information content is introduced for a measure
of complexity of a design.

Below are the detailed explanations of these concepts:

FRs (Functional Requirements)

9

FRs are defined as a minimum set of independent requirements that completely
characterize the design objective for a specific need.

DPs (Design Parameters)

DPs are the key variables that characterize the physical entity created by the design
process to fulfill the FRs.

PVs (Process Variables)

PVs are the key variables that characterize the manufacturing process which is
generated to satisfy DPs.

Domains

Customer Functonal Physical Process

Domain Domain Domain Domain

<Figure 2.1> Four Domains of the Design World

Axiomatic design theory describes the design process as the activity of mapping
between domains of the design world. There are four domains: the customer domain,
the functional domain, the physical domain and the process domain.

In the customer domain, customer's needs are described. In the functional domain,
the customer's needs of the customer domain are characterized in terms of FRs. In the
physical domain, a physical solution is generated and the physical solution is
characterized by DPs. Finally, in the process domain, manufacturing process is generated
to satisfy DPs by finding appropriate process variables, PVs. Although the design process

10

involves the process domain in the case of process design, in this thesis, only the
customer domain, the functional domain and the physical domain will be considered.

The suggested domains and mapping between the domains are shown schematically
in <Figure 2. 1>.

Design

Design may be formally defined as the creation of synthesized solutions in the form
of products, processes or systems that satisfy perceived needs through the mapping
between the FRs in the functional domain and DPs of the physical domain, through the
proper selection of DPs that satisfy FRs.

Design Process

The design process begins with the establishment of FRs in the functional domain to
satisfy a given design need. Once the design need is formalized in the form of FRs, ideas
are generated in the physical domain to create a product which satisfies the FRs. This
product is then analyzed and compared with the FRs. When the product does not fully
satisfy the specified FRs, one must generate a new idea or change the FRs to reflect the
original need more accurately. This iteration process continues until the designer
produces an acceptable result.

Therefore, the overall design process can be expressed as:

Step I Definition of FR.
Step 2 Ideation or creation of ideas.
Step 3 Analysis/Test of the proposed ideas.
Step 4 Checking the fidelity of the final solution to the original needs.

Design Equation and Design Matrix

Design is defined as a mapping process between the FRs in the functional domain
and DPs in the physical domain. This relationship can be represented by a design
equation as:

{FRs} = [A] {DPs}

where {FRs} is a vector, the components of which are the functional requirements;
{DPs} is a vector, the components of which are the design parameters; [A] is a design
matrix of the design equation. If the elements of the {FRs} and {DPs} could be
represented in the form of numbers, the elements of the design matrix, Ai, are given by

8 FR.
A..-=

IJ DPj

11

which must be evaluated at the specific design point in the physical domain. In the case
that the variables which can represent the characteristics of the FRs or the DPs are not
defined/developed quantitatively, a usual situation at the higher level of the design
hierarchy, the components of the design matrix, Ai, can be expressed qualitatively as:

A { X (if FRi is affected by DPj)
J . 0 (if not).

Definition of Independence of FRs of a Design

When specific DP of a design can be adjusted to satisfy its corresponding FR
without affecting other functional requirements which are already set by other DPs, it is
said that the design maintains the independence of FRs.

Classification of Designs(or Design Equations)

According to the form of a design equation and the independence of FRs of the
design, designs can be classified as:

Uncoupled Design

When the design matrix of a design is a diagonal matrix, the design is called an
'uncoupled design'. An uncoupled design can maintain the independence of FRs.

Decoupled Design

When the design matrix of a design is a triangular matrix or can be arranged to a
triangular matrix by changing the order of FRs and DPs, the design is called a 'decoupled
design'. A decoupled design can maintain the independence of FRs if the DPs are
adjusted in a particular order. Considering the situation when the number of FRs and DPs
is three and the design matrix is triangular, for an example, the design equation may be
represented as:

ERI XOO DPI

FR2 X XO ODP2i
FR3J X X X DP3J .

If we vary DP1 first, then the value of FRI can be set. Although it also affects FR2 and
FR3, we can then change DP2 to set the value of FR2 without affecting FR1. Finally,
DP3 can be changed to set the value of FR3.

Redundant Design

12

When the number of DPs is greater than the number of FRs in a design equation and
the design can maintain the independence of FRs, the design is called a 'redundant
design'.

Coupled Design

If a design is not uncoupled, decoupled nor redundant, the design is called a
'coupled design'. A coupled design cannot maintain the independence of FRs.

<Figure 2.2> Lathe Functional Hierarchy

Hierarchy of FRs and DPs

FRs and DPs have hierarchies, and they can be decomposed. An example of the
functional hierarchy and the physical hierarchy are shown in the <Figure 2.2> and
<Figure 2.3>.

However, the decomposition in each domain cannot be made independent of the
hierarchies in other domains. That is, FRs at the ith level cannot be decomposed into the
next level of the FR hierarchy without first going over to the physical domain and
developing a solution that satisfies the ith level FRs with all the corresponding DPs.
Therefore, we have to travel back and forth between the functional domain and the
physical domain to develop the FR and DP hierarchies.

13

<Figure 2.3> Lathe System Physical Hierarchy

Information Content

Information content is defined as the measure of knowledge required to satisfy a
given FR set at a given level of the FR hierarchy.

The knowledge required to achieve a task depends on the probability of success. If
the physical entity which is generated to satisfy the given FR set has enough knowledge
to achieve the given task, no more additional knowledge is required to achieve the task
and the probability of success is unity. In some cases, more knowledge is required. That
is, unless enough knowledge for the given task is embodied in the physical entity which
is generated to satisfy the given FR set, some uncertainty will govern the physical entity.
Therefore, the higher the information content is, the more uncertain behavior the physical
entity shows. The one of the word of everyday language, complexity, is used when some
requirements are hard to achieve with a system or a physical entity. Therefore, the
complexity of a system or a physical entity may be, also, understood in terms of the
probability of success for achieving functional requirements. In this sense, in axiomatic
design theory, the information content can be used as the measure of the uncertainty, the
complexity or the required additional knowledge of a system, and the probability of
success to achieve the given functional requirements.

There can be various forms of definition of the information content as long as the
definition illustrates this situation. One definition frequently used is:

I=ln(l/p)

where I is the information content and p is the probability of success to satisfy the given
FR set by the specified DPs.

14

2.1.2. Design Axioms

A basic assumption of the axiomatic design theory is that there exists a fundamental
set of principles that determines good design practice. The set of principles which
determines what is good design is called 'axioms' or 'design axioms' in the axiomatic
design theory. This assumption, the existence of the axioms, makes axiomatic design
theory different from other design theories or design methodologies. The only way to
refute these axioms is to uncover counter examples that prove these axioms to be invalid.
Axioms may be hypothesized from a large number of observations by noting the common
phenomena shared by all cases.

Two design axioms that govern good designs have been developed until now. Axiom
1 deals with the relationship between functional requirements and design parameters, and
Axiom 2 deals with the complexity/uncertainty of designs. Theses axioms can be stated
in a variety of semantically equivalent forms. The declarative form of axioms is:

Axiom 1 The Independence Axiom
Maintain the independence of FRs.

Axiom 2 The Information Axiom
Minimize the information content of the design.

Axiom 1 states that one of the common elements of a good design is maintaining the
independence of FRs. Therefore, coupled designs should be avoided. Axiom 2 states that,
among all the designs that satisfy the independence axiom, the one with minimum
information content is the best one. Therefore, designer must concentrate on maintaining
the independence of FRs and minimizing the information content during his mapping
process so that he may have a good design. The independence axiom sets the boundary
where the optimal design exists and the information axiom provides the criterion for
selecting the best design among the suggested designs.

Based on these design axioms, corollaries and theorems can be derived from other
propositions which is proven to be true or accepted as empirical facts.

Some corollaries of the design axioms and theorems which were introduced until
now can be found in Appendix B.

2.1.3. Methodology/Design Procedure

A design methodology/procedure, based on the basic facts and the design axioms
which are explained in the previous sub sections, is introduced in this sub section. This
methodology can be characterized by the use of the design axioms and the zig-zagging,
mapping-decomposition process.

15

Alternative Designs -

P

<Figure 2.4> The Mapping Process

<Figure 2.5> The Decomposition Process after Mapping Process

16

Domain

, >-~ ~~~-·; · ··..

I

i��1%

lk

DP3 i'll

I*��z

-14

w;-�, Z-

.0

main
i

5 i

<Figure 2.4> shows the mapping process graphically. After the FRs are defined,
designers must generate some ideas which can satisfy the FRs and express the ideas in
terms of DPs. During this mapping process the independence axiom should be satisfied.
To check the independence of FRs of the design, the designer needs to develop the design
equation of the design.

In <Figure 2.5>, the decomposition process is shown schematically. After
developing the higher level DPs, the designer is required to decompose some higher level
FRs into the lower level FRs based on the developed DPs and the generated idea. It
should be noticed that developing the lower level FRs without finding the higher level
DPs is prohibited in this procedure.

After the decomposition process, the mapping process occurs in the lower level
hierarchy again.

Consequently, the overall design procedure is a zig-zagging process, jumping from
the functional domain to the physical domain, from the physical domain to the functional
domain and from the functional domain to the physical domain again. The decomposition
process follows the mapping process and the mapping process follows the decomposition
process again. This zig-zagging process continues until the generated DPs in that
hierarchy were already fully developed and the relationship between the FRs and the DPs
can be understood.

Finally, the information axiom is used to select the best design among the designs
which satisfy the independence axiom. To apply the information axiom for the real
situation, how to measure the information content of the design or the probability of
success is important. The researches on this issue can be found in [1,3,5].

As a result, an overall procedure can be suggested as:

(1) Define the objective of the design.
{

(1-1) Describe the design need.
(1-2) Specify the design need in the form of FRs.

}

(2) Create ideas in the given design hierarchy level.
{

(Option a)

(2a-1) Try to conceptualize the idea for satisfying the FRs.
If fail to get new idea, go to the step (2-3).

(2a-2) Characterize the idea in terms of DPs.
}

17

j Stal al eed
~iecognized Design Need

i_
)

. Higher Le

2. create ideas in the given design hierarc

enerated ideas with design mat
qualitatively represented.

13. Analyze the proposed solution with axio

he survived desig
need or FRs.

4

esi(

the

Designs with
developed hier(_ _-

6. Evaluate approximate infc

Survived Desig

| 7. Analyze or test the sur

Detailed designs
Information Cont

.. ,. t·. LnecK Te compleTea solUTior

9. Select the best design with Axiom 2.

Fina gn

Inforion
Process

I rcs I

: Information(t/O)

:Process

: Information Flow

· : Control & Information Flow

<Figure 2.6> Overall Axiomatic Design Procedure

18

4.

-

rrcll·�_�------�----� I~~~~~~~~~~~~~~~~~~~~~

...
. _

----------------- -----

,

_

,

i i
I

i i
i

IA r�i ^1

i i

i

i

i

M7S - iIIt i

ij i

ii

"q-

..

ns I

. _\~~~~~~-

I

V

ig ns::

(Option b)

(2b-1) Try to select the DPs which may satisfy the FRs.
If fail to get new set of DPs, go to the step (2-3).

(2b-2) Try to make the synthesized solution to satisfy FRs with the selected DPs.
If fail, go to the step (2b-1).

}

(2-3) Construct the design matrices of the suggested designs.: The qualitative
representation of the element of the design matrices is enough.

(3) Analyze the proposed solution with axioms.

{

(3-1) Analyze the design matrices constructed in the step (2-3) with axiom 1.: Try to
make the design matrices triangular or diagonal by rearranging the order of
FRs and DPs.

(3-2) Discard coupled designs.
(3-3) Evaluate the approximate information content of the survived designs on

relative basis.: Designer may use the corollaries or other reasoning based on
the axioms.[l,4]

(3-4) Select the designs which have reasonably small information content.
Practically, it is needed to restrict the number of the alternative designs to be
considered at the same time due to the limitation of the memory of human
brain or computers.

(4) Check the fidelity of the survived designs to the original needs or the higher level FRs
and DPs.

{

(4-1) Check whether the physical parts of the survived designs in the given hierarchy
can fit to the higher level designs or the original needs.

(4-2) If fail, discard the designs.

}

(5) Decompose the FRs.
{

(5-1) Find the FRs to be decomposed in the survived designs.
(5-2) Decompose the FRs.
(5-3) If the decomposition occurs, go to the step (2), ideation, and do the same

procedure to generate the next level hierarchy design through the mapping
process.

(5-4) If not, finish the decomposition process.

19

(6) Evaluate the relative information content of the survived designs.

(6-1) Evaluate the relative information content of the survived designs like the step
(3-3).

(6-2) Discard the designs which have the high information content.
}

(7) Analyze or Test the survived designs.

(7-1) Do the research on the design matrix, if the elements of the matrix, which
represent the relationship between FRs and DPs, are not well known.

(7-2) Decide the design region or the operating region of the DPs which ensure the
independence of FRs.

(7-3) Check the 'O' components of the design matrix.

(7-3-1) Check whether the 'O' components of the design matrix is really 'O'.
In this checking process, the tolerance of FRs should be considered.
(Theorem 8)

Practically, only the components which is critical to the
independence of FRs need to be checked.

(7-3-2) If fail,
(Option a) Redesign with the given FRs(Step(2)).
(Option b) Backtrack to the higher level design and decompose

again(Step(5)).
(Option c) Discard the design.

(7-4) Test/Analyze the design to measure the information content of the survived
design.

(8) Check the completed design with the original needs.
: If fail, consider new design or define new set of FRs.

(9) Select the best design which has minimum information content.

In <Figure 2.6>, the schematic diagram which represents this procedure is shown
and the detailed procedures are shown in <Figure 2.7>.

20

Higher

<Figure 2.7-1> Detailed Procedures of Axiomatic Design

21

1.2 Formalize the design need
in the form of FRs

<Figure 2.7-2> Detailed Procedures of Axiomatic Design

22

Generated ideas
with design matrix

qualitatively represented.

Generated ideas
with design matrix

qualitatively represented.

<Figure 2.7-3> Detailed Procedures of Axiomatic Design

23

3. Analyze the proposed solution with axioms.

FROM Design 1 TO Design N

3.1 Analyze the design matrix.

FROM Design 1 TO Design N

3.3 Evaluate expected information content.

3eed

<Figure 2.7-4> Detailed Procedures of Axiomatic Design

24

5. Decompose the FRs.

End of the Step

<Figure 2.7-5> Detailed Procedures of Axiomatic Design

25

/b FRs/DPs
to be decomposed

5.1 Selecst

5.1 Select one of the FR
to be decomposed.

Designs with
fully developed hierarchy

i ii ii iii ii

Survived Designs 3

<Figure 2.7-6> Detailed Procedures of Axiomatic Design

26

FROM Design 1 TO Design N

6.1 Evautate the information content
of the design roughly

by using cororallies or other reasonings.

6. Evaluate approximate information content
Iv,

END of the Loop

v

.

7. Analyze or Test the survived designs.

FOR every suvived designs

IFOR every element of design matrix

END of the Loop

Detailed designs with
Information content

<Figure 2.7-7> Detailed Procedures of Axiomatic Design

27

7.3 Check the 'O' components.
(Especially, the one critical to Axiom 1)

Detailed Designs with
Information Content Recognized

Design Need

<Figure 2.7-8> Detailed Procedures of Axiomatic Design

28

J_ l

2.2. TDM (Thinking Design Machine)

In this section, the basic concept of TDM(Thinking Design Machine) is introduced.

U3

. ,

Arrange physical parts
correspondina to each DP

NextStep

,) The Ideation Software

2) The Analysis Software

() The System Software
i

<Figure 2.8> Block Diagram for TDM

Based on the axiomatic design theory, the concept of TDM was created by Suh[l1,2].
The ultimate goal of design automation is to develop a "thinking design machine" which
can create design or design concepts that are superior to those currently possible without
the aid of such a machine. A thinking design machine may be defined as an intelligent
machine system that can generate creative designs.

This research can be thought as a try for embodying the knowledge of the axiomatic
design theory, especially the knowledge like the procedure which is suggested in the
section 2.1.3, on computer. To embody the knowledge on computer so that the computer

29

INeedsI

Definifion of FR

--
Ill ~~~~~~~~~ IFind a plausible set o DPs

e ec e best
DP for FR.

i

i

i

I

i

t

i

do the design task by itself, the procedure needs to be as detailed as the computer
understand it. At a certain stage of detailing the procedure, the research will transit to the
field of cognitive science or the artificial intelligence, because it should deal with how to
create ideas or synthesized solutions and how to characterize the design with FR/DP
concept. Until now, the very high level algorithms/procedures are suggested. The
simplified block diagram for TDM is shown in <Figure 2.8>.

The TDM software is decomposed into three software modules; the ideation
software, the analysis software and the system software. The block diagram in <Figure
2.8> corresponds to the step 1,2,3,4 and 5 in <Figure 2.7>.

The ideation software selects a set of plausible DPs that correspond to the set of FRs
chosen as a design task. The ideation software may contain a database in the form of
morphological relationships between various FRs and DPs, from which appropriate DPs
to satisfy given FR set can be selected. After the selection of the DPs, the ideation
software constructs the design matrices.

The analysis software has the ability to check the independence of FRs of a given
design, to detect the flaws of the design according to the axiom 1 and to suggest the
improvement of the design. If the given design is coupled, the analysis software suggests
the improvement and discards the design. The results of the analysis software are the
uncoupled or decoupled designs which satisfy the given FR set.

The system software arranges the physical components chosen by the ideation
software and the analysis software for each DP. The physical parts are arranged not
necessarily according to the sequence of the DP control; the arrangement may be based
on the sequence of flow of materials in a system, which may or may not be the same as
the control sequence.

With the development of the computer ability, many computer aided design(CAD)
systems have been developed to date. They usually concentrates on the geometric
modeling and representation. As a result, they are lack of the ability to suggest design
concepts and evaluate them in a systematic manner. Because TDM concept is based on
the axiomatic design theory which provides the criterion for evaluating design concepts,
it can help designers' decision making from the very early stage of the design process.

Even though very high level algorithms for TDM was suggested[1,2], much research
should be done for the automation of the axiomatic design process.

30

CHAPTER 3. Axiomatic Design Environment (ADE)

In this chapter, concept of 'Axiomatic Design Environment' is suggested. The
'Axiomatic Design Environment' may be defined as a computer software which can help
designers who try to follow the axiomatic design procedure which is explained in the
section, 2.1.3. Even though TDM concept is suggested as a ultimate goal of design
automation, the modules in the <Figure 2.8> needs to be detailed further to construct
TDM. Detailing the modules should be preceded by the research into the creativity or the
idea generation, which is not completed yet. In the mean time, computer software can
play a role as an assistance tool which is named here as 'Axiomatic Design Environment
(ADE)'.

Even though the axiomatic design methodology is suggested in the section 2.1.3, the
procedure is not so easy for the novice of the axiomatic design theory to follow. To
follow the axiomatic design procedure, a designer is required to have the concrete
understanding of the axiomatic design theory.

Furthermore, in the case of complicated system design, recording the design
equations and checking the independence of FRs are not simple task.

In this sense, ADE is designed with the following specific goal in mind:
1. guide designers to follow axiomatic design procedure by prohibiting designers

from taking undesirable design sequence,
2. give information about the design stage,
3. provide basic concepts which are axioms, domains, hierarchy, mapping and

decomposition,
4. have the ability to record and retrieve a design equation,
5. have the ability to check the independence of FRs, and
6. help designers to generate design concepts.

<Figure 3.1> shows the schematic diagram which illustrates how ADE works.

Hierarchy Construction Module

User

FR & DP Editing Module

Matrix Editing Module

Matrix Operation Module

Database Module

:ile Operation Module I
..... '-. -I

Help Module

<Figure 3.1> Structure of the ADE

31

Input Manager has the main control of the program. It detects user input and
operates other modules according to the user input. If a user violates the axiomatic design
procedure, input manager gives a warning and prohibits the attempt.

Hierarchy Construction Module has the ability to make FR and DP decomposition.
This module should allow users to add FR and DP in the selected hierarchy, to eliminate
a FR or a DP and to change the content of a FR and a DP. FR decomposition should be
prohibited without constructing the higher level DP hierarchy and making decision on the
higher level design among the alternatives.

FR & DP Editing Module gets the FR and DP from users. When this module is
called, program should provide the information about the content of the higher level FR
and DP so that a user can understand the design stage.

Matrix Editing Module gets the information about the design matrix elements from
users. It is desirable that this module provides information about FR and DP which are
related with the selected matrix element.

Matrix Operation Module has the ability to check the independence of FRs and
rearrange the FRs and DPs.

Database Module operates database environment. It provides the data which can
help designers to select the appropriate DPs.

File Operation Module has the ability to save a design and retrieve a design which is
already stored in the computer disk.

Help Module has two functions. Help function provides the database which has the
program usage and the explanation of the basic terminology. Hint function provides the
information, which is related to the current stage of a designer, automatically.

Basically, ADE forces designer to follow the design sequence like below.
1. FR editing
2. DP editing
3. matrix editing
4. checking independence
5. selecting the best alternatives
6. decomposition

During this basic sequence, 'help module' and 'database module' can be called for
assistance.

ADE, which is suggested in this section, leads designers to follow axiomatic design
procedure, provides the knowledge of the axiomatic design theory and helps designers to
find appropriate DPs.

32

CHAPTER 4. Axiomatic Design of ADE

In this chapter, how ADE code is generated following axiomatic design procedure is
shown. The main purpose of this chapter is to formalize programming process using
concepts of axiomatic design theory. What is FR and DP in computer programming and
how programmer can follow zig-zagging process of axiomatic design methodology is
shown. This approach can help program management by providing additional
information about programmer's intention and revealing program structure more useful
way, not just showing either the function call relationship or the relationship among
objects.

The code was generated using the programming language, C++, one of the object-
oriented programming language. For the readers who understand this specific
programming language, the important code is presented in appendix A and the
explanation is given with the terminology of C++ in this chapter. For the readers who do
not have the knowledge about this programming language, the sentences which require
the understanding of this programming language is written in italic characters. But
readers are required to have, at least, the knowledge about structured programming.
Although readers can understand the content of this chapter without understanding the
sentences which is written in italic characters and the programming code given in
appendix A, author inserted the sentences and the code for the readers who want to see
what is the part of the code which corresponds to each step of axiomatic design
procedure.

4.1. Small Example

In this section, a framework which can formalize software design process based on
the axiomatic design theory is introduced with a simple example.

In the case of software design, FR can be thought of as a function of the structured
programming. As an example, consider a sorting program. The program is required to
read five integer numbers from the disk file, sort the numbers and print out the numbers
in the sorted order. In this case, the program objective is satisfied if the next three tasks
are satisfied.

FR1. read the data
FR2. sort the data
FR3. print the result

And, DPs can be thought of as information which is required to satisfy the given FR
set. There can be two kinds of forms of information. One is the data type required to
achieve a given FR and the other form is algorithm or detailed module/function which is
needed to satisfy a given FR. Taking the above example, DPs can be specified like
below.

DP1. the data in the input file
DP2. numbers in the sorted way
DP3. algorithm for printing function

The element of the design matrix is noted as 'X' when the corresponding FR makes
a reference of the value of the corresponding DP or affects the value of the DP in the
case that the DP has the data type form. In the case that the corresponding DP has the
algorithm form, the 'X' in the design matrix means that the corresponding FR calls/uses
the corresponding DP. In this example, the DP3 has the algorithm form.

The construction of the design matrix and selection of the DPs should be made at the
same time because the same set of DPs can represent a different program structure. In
other words, both the design matrix and the DP set represent a program code. In this
example, author meant by the DPs that FRl(read data) open the file where DPl(input
data) is specified, FR2(sort data) reads the value of the DPi and sorts the data, and
FR3(print the result) prints out the value of the DP2. This situation can be represented
like below design equation.

IFRI X X O DP]
FR2 X XO DP2
FR3J [X X DP3J

The X's in design matrix can be thought as a part of the program which makes a link
between FRs and DPs.

If either 'X' in the design matrix or the DP is too complicated to be coded at one
level, the decomposition of the FR is needed and the mapping process occurs again at the
next level of design hierarchy.

4.2. 1 st Hierarchy

TABLE 4.1 Design Equation of 1st Level

FR 1 : Help Axiomatic Designer.

o Provide Basic Concept.
o Give hint about Axiom, Corollary.
o Give hint about appropriate DP.
o Help designer when using

Theorems.
o Lead designer in axiomatic

manner.
o Provide editing tool.
o Provide ability to save/retrieve

designs.

X

DP i:

Computer Program Package ADE.

34

I
-

In this hierarchy, FR is specified as 'Help Axiomatic Designer'.
This statement of FR is too ambiguous because of ambiguity of the word 'Help'. For

example, a calculator can help a designer when he wants operation of numbers and a
design catalog can help a designer when he tries to find out some mechanism which will
be used in his design. In that sense, the meaning of the FR is explained in more detailed
manner in the above parenthesis. In a sense the content of the parenthesis can be thought
of as tolerances or constraints and in the other sense this can be thought of as just a part
of FR. Frequently the statement of FR set cannot be finished just in one sentence. It
contains many facts and concept and it contains some ambiguity. Therefore, it is
necessary to explain the meaning of the statement. FR should be specified as in detail as
designer/design group can fully understand the FR, especially in group design this fact is
important. Each member of the group who is involved in that hierarchy should
understand the FRs fully.

After this, DP was specified as 'Computer Program
explained below:

Below are the explanation of the DP - Computer Program.
program appearance.

Package ADE', which is

It is the stage to determine

Some decisions about program development

o Machine

o Interface

o Program

o Program

o Program

: DOS machine
: Menu system based on keyboard and mouse input

can save designer's working file which contains his design decision.
can open already existing file.
allows designer to open new file.

Implementation of Basic Concept

o The concept of domain and hierarchy will be implemented by providing editing
environment.

o The program allows selecting each domain - CA, FR, DP and give a designer notice
which domain he is in.

o The program provides editing environment which can deal with hierarchy.
o The program should provide editing environment for CA, FR, DP.
o Customer domain is simplified to editor where designer can describe his design need.

Implementation of Design Axioms, Corollaries and Theorems

In this section, the program features related to axioms and theorems is specified.

35

o Include all axioms, corollaries, and theorems in HELP MENU item.

Axiom 1 : Independence Axiom
Maintain the independence of FRs.

1. Remind user that Independence of FRs is achieved by independent relationship
between FRs.
o Give Hint about this fact if menu item HINT is called when designer is in the

DP domain and Mapping Window.
2. Provide Mapping Window.

o Give CAUTION about design matrix state(coupled or not).
o Matrix operation(or Re-ordering FR & DP).
o Keep main diagonal.

Axiom 2 : Information Axiom
Minimize the information content.

1. Include definition and explanation of information content in the HELP
2. Encourage intuitive reasoning about information content in the given hierarchy.

o After generating design solutions, give CAUTION for using information
content.

3. Provide multiple design generation.
4. Give HINT about corollaries related to reducing information content.

Corollary 1 : Decoupling of Coupled Design
1. Include this corollary in HELP in Corollary section.
2. Give HINT when Coupled Design is generated.

Corollary 2 Minimization of FRs
o Give HINT in FR domain.

Corollary 3 : Integration of Physical Parts
o Give HINT in DP domain.

Corollary 4: Use of Standardization
o Give HINT in DP domain.

Corollary 5: Use of Symmetry
o Give HINT in DP domain.

Corollary 6: Largest Tolerance
o Give HINT in FR domain.

Corollary 7: Uncoupled Design with Less Information Content
o Already achieved in Axiom 2 Part.

Corollary 8: Effective Reangularity of a Scalar
o In high level, reangularity is not applicable.

36

o This program will not provide reangularity calculation.

Theorem 1: Coupling Due to Insufficient Number of DPs
o Achieved by not allowing this situation.
o Considered in Axiom 1 part.

Theorem 2: Decoupling of Coupled Design
o Do not allow less No. of DPs than No. of FRs.
o Give CAUTION about this fact.
o Provide working environment suggesting decoupled design. - This will be

omitted in this first version.

Theorem 3: Redundant Design
o Actually do not allow more No of DPs than No of FRs.
o Give CAUTION in this attempt.

Theorem 4: Ideal Design
o Achieved already in Axiom 1, Theorem 2 and Theorem 3 part.

Theorem 5: Need for New Design
o When designer try to add more FRs in the hierarchy which is already edited and

marked as complete set, force designer to erase DPs related to that FR set.

Theorem 6: Path Independency of Uncoupled Design
Theorem 7: Path dependency of Coupled and Decoupled Design.

o Considered in Axiom 2 section.

Theorem 8: Independence and Tolerance
o Give HINT in Mapping Window recalling that X and O mark should be made

after considering tolerance.

Theorem 9: Design for Manufacturability
o Allow PV domain.
o Show [A][B] matrix and determine manufacturability.
o Will not be achieved in this stage.

Theorem 10: Modularity of Independence Measure
Theorem 11 : Invariance

o Related to reangularity.
o Excluded in this program.

Theorem 12: Sum of Information
Theorem 13: Information Content of Total System

o Give Explanation when 'Intuitive Reasoning HINT' is generated.

Theorem 14: Information Content of Coupled versus Uncoupled Design
o Already considered.
o Just include this fact in HELP MENU

37

Theorem 15: Design-Manufacturing Interface
o HINT in DP domain.

Theorem 16: Equality of Information Content
o Remind designer this fact.
o Give designer HINT not to use weighting function when calculating

Information Content.

Hint about appropriate DP

o Provide a database which links various FRs and design concepts.

Screen Display

Filej Edit- IDomain I Matrix I olve I Hint I Help Options

New
Open
Save
Save as
Quit

I I I

Customer
FR-DP

(DP-PV)

L..I Edit
Add
Delete
Delete all belows

FR-DP Database
(DP-PV) (Other Methods)

<Figure 4.1> Menu Structure of the ADE

After above rough description of the program, the screen display was decided in
each situation.

<Figure 4.1> shows the menu structure of the ADE. Main menu consists of eight
items - (1)File, (2)Edit, (3)Domain, (4)Matrix, (5)Solve, (6)Hint, (7)Help and (8)Options.
Each main menu item has its sub-menus as shown in <Figure 4.1>.

The main menu item, File, has the commands which are related to the disk file
operations. If the New command is selected, ADE arrange the program environment so
that a user may start a new design. The Open command is used when a user wants to
load an already existing file for revision and addition. The Save command can be used
when a user wants to save the currently-loaded design in a disk file. The Save as
command saves the currently-loaded design in a disk file after imposing a new file name.
The Quit command terminates the program and returns the control of the computer to the
operating system.

The main menu item, Edit, is made up of the commands which are needed to
construct the design hierarchy. The Edit command is used for the purpose of revising the

38

_ __

content of either a FR or a DP. If the Add command is selected, the ADE provides the
editing environment for typing a new FR or DP. After a user finishes typing the FRJDP,
the program adds the FR/DP in the lower level of design hierarchy and shows the result.
The Delete command eliminates a FR/DP from the design hierarchy. The Delete all
bellows command differs from the Delete command in that the former eliminates all the
FRs and DPs which are decomposed from a certain FR/DP.

The Domain menu item has the commands which provide the working environment
of each domain.

The Matrix menu item has the commands which call the design matrix editing
environment.

The Solve menu item provides the tools which help designers' idea generation.

<Figure 4.2> Editing Environment for FR & DP

39

1

Although only the database which contains links between various FRs and DPs is
included in this first version of ADE, other methods can be added in this menu item.

When the Hint menu item is called, ADE provides the information which can be used
by the users in the current design situation.

The Help menu item provides the information related to both the program usage and
the axiomatic design theory like a manual book.

The Options menu item can have the commands which can adjust the ADE to a
certain user's preference.

Design process with ADE starts from describing the design objective in the customer
domain. To do that, a user should select the Customer command in the Domain menu. If
the Customer command is selected, ADE provides the editing environment for the
customer domain. ADE prohibits a user from selecting other domains before customer
domain is finished.

After describing the design objective, a user can select the FR-DP command in the
Domain menu. This command provides the environment to make the design hierarchies

File Edit Domains Matrix Solve Hint Help Options

Functional Doamin Physical Domain

Hierarchy Hierarchy I \ '

\ __ Design No.

Down Up I- Up Down

IRootFR l Root DP

Design Selection

Explanation
DONE

FR: Root FR

DP: Root DP

F1 Help F10 Menu

<Figure 4.3> Editing Environment for FR & DP at Initial State

40

File Edit Domains Matrix Solve Hint Help Options

Functional Doamin Physical Domain

Hierarchy Hierarchy

_ __ Design No.

Down FR Down

|I: l Above FR: Root FR

Above DP : Root DP

Name: I l

Explanation:

Done

Design Selection

Explanation
DONE

FR: Root FR

DP: Root DP

Fl Help F10 Menu

<Figure 4.4> FR Editing Environment

in the functional domain and physical domain like <Figure 4.2>.
The hierarchy boxes display the series of numbers which indicates the hierarchical

position of the current FR and DP of the higher level FR/DP box. The explanation box
displays the content of the current FR and DP. The current state bar is used to indicate
the FR or DP which a user concerns. As the current state bar moves by user inputs, the
hierarchy boxes and the explanation box are updated according to the movement. The
FR/DP in the higher level FR/DP box whose decomposition is shown in the lower level
FR/DP box is indicated by a different color. The Up/Down button is used for moving up
and down in the design hierarchy.

If a user uses the New command in the File menu and selects the FR-DP command in
the Domain menu after editing customer domain. The computer screen will be like
<Figure 4.3>. To define FRs, It is required to select the Add command in the Edit menu.
By the Add command, the program provides the editing environment as shown in <Figure
4.4>. A user can define a short name in the name box for the FR and he can also describe
the FR in the explanation box as long as he wants. In the same way, the other FRs and
DPs can be defined. After that, the screen will be like <Figure 4.5>. ADE prohibits users

41

File Edit Domains Matrix Solve Hint Help Options

Functional Doamin Physical Domain

Hierarchy Hierarchy

Design No.

Down Up Up Down

1: Go Root FR Root DP 1: Engine

2: Turn 2: Handle

3: Stop 3: Brake

Design Selection

Explanation
DONE

FR: Root FR

DP: Root DP

F1 Help F10 Menu

<Figure 4.5> The Screen Display after editing FRs and DPs

from defining more DPs than FRs. The arrow boxes in the design number box is used to
change the lower level DP box for editing alternative designs.

After editing FRs and DPs, a user is allowed to define the design matrix. If the FR-DP
command in the Matrix menu is selected, ADE provides the editing environment for the
design matrix as shown in <Figure 4.6>. A user can decide the design matrix moving to
each element of the design matrix. As a user moves in the design matrix editing
environment, ADE highlights the FR and DP which are related to the design matrix
element. If the Triangular button is selected in this situation, ADE rearrange the order of
the FRs and DPs so that the design matrix has the form of triangular matrix.

After editing the design matrix, a user should decide which design he want to
decompose. This is done by selecting the design selection button. If the button is
selected, ADE changes the color of the design number so that it can indicate the selected
design. Selecting a design is prohibited if the design matrix of that design is not decided.

42

File Edit Domains Matrix Solve Hint Help Options

Functional Doamin Physical Domain

Hierarchy Hierarchy 4 \

__ \ Design No.1 N

DP:
ILI

F1 Help F10 Menu

<Figure 4.6> The Editing Environment for Design Matrix

If a user selects the down button after selecting the design, ADE shows next level of
the design hierarchy as shown in <Figure 4.3>. Moving to the next level of design
hierarchy is prohibited if the design which will be decomposed is not selected.

In that way, design hierarchy can be developed to the terminal FRs and DPs.
Although more detailed screen display should be decided in this stage of the design

process, it was not presented in this thesis.
Since the meaning of the DP is clear after deciding screen display, this level of

design can be finished.

43

I

4.3. 2nd Hierarchy

Decomposition

Based on the above hierarchy decision, 1st level FR was decomposed into 2nd level
FRs in TABLE 4.2. Of course, if decomposed FRs are satisfied, original FR should be
satisfied. This means that designer should have the concrete and fixed method to satisfy
original FR by the decomposed FRs. In the case of computer program code design, the
programmer should have the algorithm which can combine decomposed FRs. In <Figure
4.7>, the simplified block diagram for the algorithm which combines the decomposed

44

TABLE 4.2 2nd level FRs

Functional Explanation Explicit Expression in
Requirements C++
FR1I Provide information about o void Help(void)
Provide HELP. axioms, corollaries,

theorems and how to use
programs.

FR2 o This database links o void DataBase(void)
Provide Database. various FRs and DPs.

FR3 o Provide information o void Hint(void)
Provide HINT. according to the position

of designer.
FR4 By providing editing o void CaDomain(int&)
Operate Customer environment.
Domain.
FR5 a By providing editing o void FrDpDomain(void)
Operate FR-DP environment & operation o void Edit(void)
Domain. of hierarchical structure. void Delete(void)

o void DeleteAll(void)
o void Add (void)

FR6 o Provide matrix input o void FrDpMatrix(void)
Operate Design environment.
Matrix.

o Change matrix to
triangular matrix.

FR7 o Arrange Screen to DOS. o void END(void)
o Arrange Memory.

FR8 o Save current design. o void Save(void)
File-related funtions 0 Read existing file. o void Openvoid)

o Create new file. o void New(void)
o Assign New Name. o void Saveas(void)

FR9 Arrange memory for use. o void Initialize(void)
Initialize.

<Figure 4.7> 2nd Level Decomposition

FRs is shown. The block, [Get user input], is assumed to be designed before. Other
blocks need to be developed further.

In addition, the code which represents this algorithm was generated(See Appendix
Al). In that code (Appendix A 1) the functions which need to be decomposedfurther were
indicated by the symbol '/**/'.(See FILE: TDM.CPP in Appendix Al). The other functions
were fully decided/defined. If the undefined functions/blocks are defined, the program
will work and the original need will be satisfied. From the other point of view, we can
say that original need should be represented by the combination of some basic elements.

This decomposition process is not unique, because there can be many algorithms
which can satisfy original need. But as long as the original need satisfied, it is acceptable.

45

TABLE 4.3 2nd level DPs

Design Explanation Explicit Expression for
Parameters Members in C++
DP1 o Have the information about o static char *HeaderFileName;
HELP Data files which have the o int NoOfMenu;
CLASS explanation about axioms, 0 MenuType *M;

o char *FileNamecorollaries, theorems and
how to use programs.

DP2 o Have Data members which o static char *HeaderFileName;
Database File can read database file. o int NoOfMenu;
Written CLASS o MenuType *M;

o char *FileName;
DP3 o Base number of file. o int Base;
Hint CLASS o Number of files in that o int n;

situation.
DP4 o Whether or not CA domain o int AssCa;
CA CLASS edited.

o Pointer of the Text 0 char *Cp;
DP5 o Pointer to Roots o Unit *RootFR,*RootDP;
FrDp CLASS o top left comer o Unit *TopLeftFR ,*TopLeftDP;

o top right corner o Unit *TopRightFR,*TopRightDP;
higher level 0 Unit *AboveFR *AboveDP;o higher level

o Unit *BelowFR ,*BelowDP;
o UnShort CurrentSection;

o Current Position o int Hp[3],ExplSp[3];
o Cursor Position in

Hierarchy Box &
Explanation Box

DP6 o Current Position o Point Mp;
MatrixScreen o Top-left Position o Point TopLeftMp;
CLASS ...

DP7 o Do not require further data. o void END(void);
END Function o Decided not to be

decomposed.
DP8 o Current file name. o char *FileName[N];
File CLASS o File pointer o File *FileP;

o Whether or not file o int AssFile;
assigned.

DP9 o Do not require further data. o void Initialize(void);
Initial zeo Decided not to decompose.
Function

The top-down function tree which is usually used in structured programming is not
equivalent to the functional requirement hierarchical structure. As an example, let's
consider below situation.

Function F1 calls Functions Fl 1,F12,F13].

46

Function F12 calls Functions [F121,F122].

Above expression directly represents a function tree structure like <Figure 4.8>. But,
functional requirement structure can be

F1 can be decomposed into [F11 ,F121 ,F1 22,F1 3].
F1 canbedecomposedinto [F11,F121].

etc.

The FR decomposition is valid as long as
designer can decide/define the other part of
the program.

Selecting DPs

The corresponding DPs are explained in
TARIAT r. Ia

In the case of program design, DPs can

<Figure 4.8> A Function Tree Structure be thought of as information which is needed
to satisfy funtional requirements. For

example, the information about wheather or not the customer domain was edited before
and the information about the position of the cursor of the customer domain editor are
needed to satisfy the FR4(=Operate Customer Domain). In that sense, the information is
assigned as DP4.

In the first column of TABLE 4.3, the terminology 'class' was used to give names to
DPs, but this does not mean that the class which has the name will be generated. That
terminology was used just to make it clear that DP(or information) can be either data or
algorithms. Actual object was generated after making a full design matrix.

The DPs (required information for FRs) can be expressed as either data members or
memberfunctions (which are usually called methods in object-orientedprogramming). In
structured programming, DPs can be either data type/structure or defined function. In the
last column of TABLE 4.3, what the DPs explicitly mean was indicated in C/C++
programming language. In object-oriented programming, message philosophy is
supported, which means that data members can not be changed directly by functions
which are in the outside of that object. As a result, the part of DP which are represented
by data type can be converted to the form of member functions if programmer use that
philosophy thoroughly, because data member will not be known outside the object and
only the functions which is operated by the object will be known to outside. This results
in the fact that all the DPs can be member functions. However, for the purpose of
identifying the relationship between FR and DP, DP was represented in the form of data
type.

47

TABRIF 4

FRI

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

X33
X43

X53

X63

X93

X44
X54

X84
X94

X55
X65

-X75
X85

X95 X99

Design Matrix

The design matrix corresponding to these FRs and DPs was generated in TABLE
4.4.

The X in the design matrix(TABLE 3.4) means that the corresponding FR uses the
corresponding DPs or makes references/changes of the value of the DPs. In object-
oriented programming, the X means that the FR gives message to that DP. If X has the
meaning like above explanation, design matrix represents relationship between functions
and the information which is required to achieve the functions. Here, information has the
form of either data or algorithm.

The process of deciding design parameters and the design matrix should be done at
the same time as explained in the section 4.1. To achieve an acceptable design (diagonal
or triangular matrix), some iterations may be needed. Ideally, designer should try to have
the DP set which can result in an acceptable design for a given FR set. But if it is too
hard to achieve an acceptible design with the given FR set, it can be allowed to
decompose again the higher level FR-DP to get new FR set because decomposition
process is not unique one.

Setting DP Value

In the axiomatic design procedure, there are the step to set DP value to make the
design entity have the acceptible performace which is expressed in the form of FR. The
first axiom means that the design whose FRs can be set in independent way is an
acceptible design.

In the case of software design, this step can be thought as the step to define the
expression of the DP in a specific programming language and clarify the meaning of the
DPs. The meaning of DPs is known by the overall context of the design. In other words,
programmer should decide how each function which is declared as FRs deals with the
DPs.

48

DP2

X11

X22

.

_ X66

:
X77

X88

Mfto' l w. ILA-4rt o%. '2sA Ut-rowr-k
!, a1Y I IIUIllAR IVI &lwUll fIl ~,%%11

DP1 DP3 DP4 DP5 DP6 DP7 DP8 DP9
abb _ _*_W 1e"l

TABLE 4.5 Class Definition & Design Matrix Element

Class Name Matrix Element
HelpClass X11

DataBaseClass X22
HintClass X33
CaClass X33

X43 X44

FrDpClass X33
X43 X44
X53 X54 X55

DoMatrixClass X33
X43 X44
X53 X54 X55
X63 X65 X66

DoFileClass X33
X43 X44
X53 X54 X55
X63 X65 X66

X84 X85 X88

END () in TDMCLASS(Super Class) X75 X77
Initialize() in TDMCLASS(Super Class) X93 X94 X95 X99

If a program is as simple as the example in the section, 4.1, this step looks very
evident. In contrast, as the software requirement is complicating, this step turns out to be
a hard task. Design matrix is useful at this stage of design because design matrix
indicates the sequence of the decision making.

After the decision making, it is desirable to define code to a degree so that the code
can reveal why the X was checked in design matrix, i.e., how the DP set can be
connected to the given FR set. The code which represents this situation was generated in
Appendix A2. File TDM.HPP, which has the class definition of TDMCLASS and was defined
at the decomposition process, was redefined in more detailed manner to represent this
situation.

This representation of the relationship between function and information is different
from language to language. In a sense, programming languages have evolved by
developing the grammar which can express this relationship.

For example, in C++, this relationship can be declared in the class definition. But we
cannot say one design matrix represents only one object structure. The information in the
design matrix can help designer by just preventing undesirable class definition. Of
course, this representation of relationship among objects is not unique one and other
representations are possible. In TABLE 4.5, the relationship between the declared class
and corresponding X's in design matrix is shown. In this case, most of this process was
achieved by using inheritance characteristic of C++ language. Even though the class
definition which can exactly corresponds to the design matrix in TABLE 4.4 is desirable,
the class in the code shown in Appendix A2 does not corresponds to the TABLE 4.4
because of some limitation in the grammar of the language. TABLE 4.6 shows the design
matrix which the actual code represents. The matrix elements in bold characters are the
elements which are not intended by the designer. Designer should be careful of such

49

FRi

FR2

FR3

FR4

FRS

FR6

FR7

FR8

FR9

TABLE 4.6 Desian Matrix wh-ch Cls Defntisn reoresents
DP _P _P .P _P _P D~ P P

xi

X71

X91

X22

X72

X92

X33
X43

X53
X63
X73
X83

X93

X44
X54
X64
X74
X84
X94

X55
X65
X75
X85
X95

X66
X76
X86
X96

X77

X97

X78

X88
X98 X99

Bold Characters The Element which is undesirable/not-intended but compiler cannot
detect and so the designer should be careful of.

elements because the compiler will not give warnings about the mistakes on those
elements. That is, class declamation in Appendix A2 represents the design matrix in
TABLE 4.6 but designer intended the design matrix in TABLE 4.4. Programmer should
be careful not to violate the design matrix in TABLE 4.4 when he makes details of the
functions because the (C+ +) compiler will not give warnings when he violates the design
matrix.

Decomposition to the Next Level

If how the FRs deal with the DPs is decided, the role of the functions declared as
FRs has the concrete meaning which is expressed in terms of data structure and
algorithm. After that, the functions can be coded in a specific programming language. In
this step, the meaning of the X's in the design matrix is clarified in a specific
programming language.

In some cases, it is difficult to express the meaning of the X's at once and the
decomposition of the FR is needed.

Since FR7 and FR9 was decided not to be decompose further, the function END() and
Initialize() are defined fully in this level (See Appedix A2).

4.4. 3rd Hierarchy

In the same way, designer can decompose continuously until he can decide whole
code.

In this section, the decomposition of FR4-[DP3,DP4] and FR5-[DP3,DP4,DP5S was
presented as an example of decomposition. In Appendix A3, the code which represents
this decomposition is shown. When decomposed, FR4 was found not to call any functions
which is unknown(See FILE: TDM.HPP, TDM_CA.CPP, CA.HPP, CA.CPP in Appendix A3).
This means that X43 and X44 can be coded without further decomposition. Hence, only

50

- --------
-- -`��-

DPI DP2 DP3 DP4 DP5 DP6 DP7 DPS I DP9

FR5 was decomposed and is shown in TABLE 4.7. As same as in Appendix A 1, '/**/'
symbol used to indicate that the indicated functions are functional requirements.

TABLE 4.7 Decomposition of [FR51

Functional Explanation Explicit Expression in
Requirement C++
FR5/1 o Draw Boxes. o void
Initialize FR-DP o Set Cursor Bar. InitializeFdWholeScreen
Domain Screen. ..

o Fill Boxes with Information.
FR5/2 o when Left Button clicked. o Bool MouseOneOfUnit(...)
Check whether or not
mouse is one of FRs
or DPs.
FR5/3 o according to mouse position o void DoMouseChange(...)
Change State Values when Left Button clicked.

FR5/4 o when needed. o void InitFdScr(...)
Reprint Structure Box.
FR5/5 o Hierarchy Boxes. o void DoArrowBoxes(...)
Do Actions according o Explanation Boxes.
to mouse position
when one of Arrow
Boxes chosen.
FR5/6 o Arrange Screen. o void DoFdEnd(...)
Do Actions when o Return Control.
Done Box chosen.
FR5/7 o Screen Arrange o void DoDesignSelect(...)
Do Actions when o Set State Values.
Design Select Box
chosen.
FR5/8 o Screen Arrange o void DoFdLeft(...)
Do Actions when Left o Set State Values.
Key chosen.
FR5/9 o Screen Arrange o void DoFdRight(...)
Do Actions when o Set State Values.
Right Key
chosen.
FR5/10 o Screen Arrange o void DoFdUp(...)
Do Actions when Up o Set State Values.
Key chosen
FR5/1 1 o Screen Arrange o void DoFdDown(...)
Do Actions when o Set State Values.
Down Key chosen
FR5/12 o Name Box o ... DoEditFR(...)
Provide FR Editing o Explanation Box
Environment.

o Done Box
o Provide Above FR.
o Provide Above DP.

FR5/13 o Name Box o ...DoEditDP(...)
Provide DP Editing o Explanation Box
Environment.

i.

51

4.5. Conclusion

In this chapter, one framework for designing computer software was developed
taking ADE program package as an example, based on axiomatic design methodology.
Though this framework was explained in C++ language - one of the objected-oriented
programming languages, it can be easily applied to other programing languages.

In this framework, FRs can have the form of functions and DPs can have the form of
either functions or data types.

The X's in design matrix menas that the corresponding FR(function) either calls the
corresponding DPs(if they have the form of functions) or make changes/references of the
value of DPs(if they have the form of data type). Deciding DPs and design matrix should
be done at the same time.

When programmer has the concrete algorithm to achieve higher level FR by
decomposed FRs, the decomposition is valid.

The procedure for software design can be like below.

Step 1. Define FRs: Declanation of functions with the algorithm to achieve
original need or higher level FR.

Step 2. Find appropriate DPs and decide corresponding design matrix.
Step 3. Make codes which represent design equation.
Step 4. Decide how FRs deal with the DPs.
Step 5. Make codes which express the meaning of the step 4.
Step 6. Decompose FRs if neccessary.

52

o Done Box
o Provide FR.
o Provide Above FR.
o Provide Above DP.

FR5/14 o Unit *FindRealAboveDP(...)
Find Real Above DP
FR5/15 o Unit *FindRealAboveFR(...)
Find Real Above FR
FR5/16 o Member Functions of Unit
Provide Ability to deal class
Unit class of FR & DP.

Appendix A: Important Program Codes List

APPENDIX Al :

Decomposition of [1 St Hierarchy] - [2nd Hierarchy]

FILE: MENUNO.H

// Typical Number of Menu-

#define MENU ESCAPE -1
#define MENU NEW 0
#define MENU OPEN 1
#define MENU SAVE 2
#define MENU SAVEAS 3
#define MENU END 4
#define MENU EDIT 5
#define MENU ADD 6
#define MENU DELETE 7
#define MENU DELETEALL 8
#define MENU CA DOMAIN 9
#define MENU FR DP DOMAIN 10
#define MENU MATRIX 11
#define MENU DATABASE 12
#define MENU HINT 13
#define MENU HELP 14
#define MENU OPTION1 15
#define MENU OPTION2 16

// End Of FILE : MENUNO.H--------

FILE: NOMENU.H

// NO OF MENUS-
#define NO OF MAIN 8 // No Of Main Menu
#define NO OF SUB 17 // No Of Sub Menu
#define NO OFBOTTOM 5 // No Of Bottom Line Hint

// End Of FILE : NOMENU.H-

FILE: TOP.CPP

#ifndef TDM HPP
#define TDMHPP
#include "TDM.HPP"

#endif

void main()

TDMCLASS TDM;
TDM.GenerateShell();

}

// End of FILE : TOP.CPP-

FILE: TDM.HPP

#ifndef CAUTION HPP
#define CAUTION HPP
#include "CAUTION.HPP"

#endif
// GENERAL SCREEN,MENU,EDITOR + CAUTION

#ifndef DO VAL H

53

#define DO VAL H
#include "DoVal.h"
#endif

// FILE WHICH HAS DOMAIN VALUE DEFINITION

#ifndef MENUNO H
#define MENUNO_H
#include "MenuNo.h"
#endif

// FILE WHICH HAS MENU NUMBER DEFINITION

#ifndef NOMENU H
#define NOMENU H
#include "NoMenu.h"

#endif
// FILE WHICH HAS NO OF MENU DEFINITION

class TDMCLASS : virtual private CautionClass

private : // Static Data Const
static MenuType Main[NO OF MAIN];
static MenuType Sub[NO_OFSUB];
static UnShort Key[NO OF SUB+1 1;
static BarType Bottom[NO OF BOTTOM];
static int Count [NO OF MAIN+1];
static Point MPoint[NO OF MAIN];

// Static Data Variable
static int InitMenu;
static Bool YesInvoke;
static Bool YesCheck;
static int choice;

private : // RELATED TO DATA STRUCURE

static UnShort Domain;

private :
void SetScreen (void); // TDM SCR .CPP

Bool Logo (void); // TDMLOGO.CPP
Bool GoStop

(Point,int /* color*/,int /* rev */);

void EndEarly (void); // TDM ENE.CPP
void MemoryError (void); // TDM MEE.CPP

void DealEditMenu(void); // TDM DE E.CPP
public

void GenerateShell(void);
1;

// End Of FILE : TDM.HPP---------------------------------

FILE: CAUTION.HPP

#ifndef EDIT HPP
#define EDIT HPP
#include "edit.hpp"
#endif

// GENERAL LIBRARY CLASS FOR EDIT, MENU, SCREEN CONTROL.
// OF COURSE, THIS CLASS CAN BE ONE OF DPs, IN 2ND HIERARCHY.
// BUT, I ASSUMED, THIS CLASS ALEADY DEVELOPED.

class CautionClass : virtual private Edit

public:

void Message(char *);
void Message(int,char *);
/ End Of FILE ;

// End Of FILE : CAUTION.HPP ---------------

54

FILE: CAUTION.CPP

#ifndef CAUTION HPP
#define CAUTION HPP
#include "CAUTION.HPP"

#endif

void CautionClass::Message(char *p)

OK(ColorTable[9],ColorTable[19],p);
}

void CautionClass::Message(int yo,char *p)

OK(yo,ColorTable[6],ColorTable[7],p);

// End Of FILE : CAUTION.CPP-

FILE: DOVAL.H

// Definition Of Domain Value -----

#define NO DOMAIN 0
#define CA DOMAIN 1
#define _FD DOMAIN 2

// End Of FILE : DOVAL.H-

FILE: TDMEXT.CPP

#ifndef TDM HPP
#define TDM HPP
#include "tdm.hpp"

#endif

MenuType TDMCLASS::Main[NOOFMAIN]

{"File ", "F"},
{"Edit ", "E" },
("Domain ","D"},
{"Matrix ", "M"},
{"Solve ","S"},
{"Tips ","T"},
{"Help ","H" },
{"Options", "O" }

MenuType TDMCLASS::Sub[NOOFSUB]

{
{"New "N" },
{"Open F3", "0"},
{"Save F2","S"},
{"Save as... ","a"},
{"Quit Alt-X", "Q",

("Edit F4", "E"},
("Add F7", "A"},
{"Delete DEL", "D",
{"Delete All Belows","B"},

{"Customer Ctrl-C", "C" },
{"FR-DP Ctrl-D", "D"},

("FR-DP Ctrl-M","F"},

{"Data Base","D"},

, },
I s *s r * }

55

{"Skill ","S"},
{"Domain", "D"}

};

UnShort TDMCLASS::Key[NOOF_SUB+1]
= {

NulKey, F3, F2, NulKey, AltX,
F4, F7, Del, NulKey,
CtrlC,CtrlD,
CtrlM,
NulKey,
F9,
Fl,
NulKey,NulKey,
NoKey

1;
BarType TDMCLASS::Bottom[NO_OF_BOTTOM]

= {
{ "F1 Help ", " F 1 " },
{"F2 Save ","F2"},
("F3 Open ","F3 " },
{"F9 Tips ","F9"},
("F10 Menu ","F10"}

int TDMCLASS::Count [NO OF MAIN+1] = { NO OF MAIN,5,4,2,1,1,1,1,2 ;
Point TDMCLASS::MPoint[NO_OF_MAIN]

{ 4,2 }, {13,2}, {22,21, {31,21, {40,2},{48,2}, (57,2, {67,2
1;

int TDMCLASS::InitMenu = 0;
Bool TDMCLASS: :YesInvoke=FALSE;
Bool TDMCLASS::YesCheck =TRUE ;
int TDMCLASS:: choice = -1;

// End Of FILE : TDMEXT.CPP-

FILE: TDM.CPP

// THE FUNTION WHICH IS ONE OF FRS
// ARE INDICATED BY SYMBOL - /**/

#ifndef TDM HPP
#define _TDMHPP
#include "tdm.hpp"

#endif

void TDMCLASS::GenerateShell(void)

SetScreen();
if (!Logo()) { EndEarly();return; }

if (!Initialize()/**/) { MemoryError();EndEarly();return;

EventType e;
for(;;)
{
event.GetEvent(e);
if (YesCheck)

YesInvoke = YesInvokeFullDown
(e,Main,MPoint[O],Count[0],Key,F10,InitMenu);

else YesCheck = TRUE;

if(YesInvoke)

choice = FullDown(Main,Sub,Key,MPoint,InitMenu,Count,
ColorTable[19],ColorTable[9]);

switch(__choice)

case MENU ESCAPE DealEditMenu();break;

56

case MENU NEW
case MENU OPEN
case MENU SAVE
case _MENU SAVEAS
case MENUEND

case _MENU EDIT
case MENU ADD
case _MENU_DELETE
case MENU DELETEALL

New()/**/;DealEditMenu();break;
Open()/**/;DealEditMenu();break;
Save()/**/;DealEditMenu();break;

Saveas()/**/;DealEditMenu();break;
END()/**/;return;

Edit()/**/;DealEditMenu();break;
: Add()/**/;DealEditMenu();break;
: Delete()/**/;DealEditMenu();break;
: DeleteAll()/**/;DealEditMenu();break;

case MENU CA DOMAIN : CaDomain()/**/;break;
case MENU FR DP DOMAIN:FrDpDomain()/**/;break;

case MENU MATRIX

case _MENUDATABASE

case MENU HINT

case MENU HELP

: FrDpMatrix()/**/;DealEditMenu();break;

: DataBase()/**/;DealEditMenu();break;

: Hint()/**/;DealEditMenu();break;

: Help()/**/;DealEditMenu();break;

1/* ./_________
case MENU_OPTIONI Optionl()/**/;DealEditMenu();break;
case MENUOPTION2 : Option2()/**/;DealEditMenu();break;
*/ // IN THIS VERSION OPTION FUNCTION WAS OMITTED.

default: break;
} // End of switch()

} // End of for(;;)

} // End of FUNCTION GenerateShell()
// End of Main FILE : TDM.CPP-

FILE: TDM_LOGO.CPP

#ifndef TDM HPP
#define _TDMHPP
#include "TDM.HPP"
#endif

Bool TDMCLASS::Logo(void)

BoxType BOX = { 17,5,54,16 };
Point P = 2, 20 };

event.mouse.Hide();

char *s;

s=(char far *)malloc((BOX.x2-BOX.xl+2)*(BOX.y2-BOX.yl+2)*2);
gettext(BOX.xl+l,BOX.yl+l,BOX.x2+2,BOX.y2+2,s);
DrawBox(KSC DOUBLE,SHADOW,BOX,ColorTable[3]);
PutStrInBox(" TDM ", BOX,0,ColorTable[2]);
PutStrInBox ("THINKING DESIGN MACHINE",BOX, 2,ColorTable[1]);
PutStrInBox("Version 1.0", BOX,3,ColorTable[4]);
PutStrInBox("Application of", BOX,5,ColorTable [1]);
PutStrInBox("AXIOMATIC DESIGN THEORY",BOX,6, ColorTable[4]);
PutStrInBox("MAR 10/1995" ,BOX,8,ColorTable[2]);
PutStrInBox("Dept. of Mechanical Engineering, MIT",

BOX,10,ColorTable[4]);

event.mouse.Show();
Bool B = GoStop(P,ColorTable[6],ColorTable[7]);
event.mouse.Hide();

puttext(BOX.xl+l,BOX.yl+l,BOX.x2+2,BOX.y2+2,s);
free(s);

event.mouse.Show();
return B;
I

Bool TDMCLASS::GoStop(Point P,int color,int rev

57

MenuType GOSTOP[2] =

"PROCEED ------------------------------------
rfpv,

},
{
"RETURN TO DOS(Esc)--",
"D"

};

UnShort Key[2] = { AltP, AltD };

Bool B;

int choice PopUp(GOSTOP,Key,P,2,color,rev);
switch (choice)

{
case -1 : B=FALSE;break;
case 0 : B=TRUE ;break;
case 1 : B=FALSE;break;

return B;

// End Of FILE : TDMLOGO.CPP-

FILE: TDMSCR.CPP

#define TDM HPP
#define TDM HPP
#include "TDM.HPP"

#endif

void TDMCLASS::SetScreen(void)
{
Point P0400 { 4, 0 } ;
Point P0224 = 2, 24 ;
BoxType UpLine = { 0, 0,79, 0 ;
BoxType DnLine = { 0,24,79,24 } ;
BoxType MiddleFullBox = { 0, 1,79,23 ;

SizeCursor(9,0);
event.mouse.Hide();
ClrScreen(ColorTable[5]);
FillBox (0xb2 ,MiddleFullBox);
ClrScreen(UpLine,ColorTable[19]);
ClrScreen(DnLine,ColorTable 19]);
BarString((BarType *)Main,P0400,

Count[0],ColorTable[19],ColorTable[9]);
BarString(Bottom,P0224,

NOOF BOTTOM,ColorTable[19], ColorTable[9]);
event.mouse.Show();
}

// End Of FILE : TDMSCR.CPP-

FILE: TDMEN_E.CPP

#ifndef TDM HPP
#include "TDM.HPP"
#define _TDMHPP
#endif

void TDMCLASS: :EndEarly(void)

event.mouse.Hide);
ClrScreen();
SizeCursor(8,9);
}

58

// End Of FILE : TDM EN E.CPP -----------

FILE: TDMMEE.CPP

#ifndef TDM HPP
#define TDM HPP
#include "TDM.HPP"
#endif

void TDMCLASS::MemoryError()
{
Message("MEMORY ERROR : NOT SUFFICIENT MEMORY.");

// End Of FILE : TDM ME E.CPP-------------------------

FILE: TDM_DEE.CPP

#ifndef TDM HPP
#define TDMHPP
#include "TDM.HPP"
#endif

void TDMCLASS::DealEditMenu(void)
{
if (Domain== CA DOMAIN) CaDomain()/**/;
else if (Domain== FDDOMAIN) FrDpDomain()/**/;

// End Of FILE : TDM DE E.CPP-

59

APPENDIX A2:

Design Matrix & Design Parameter [2nd Hierarchy]

FILE: TDM.HPP

// WHAT IS CANGED WILL BE ZNDICATED BY ITALIC & BOLD CHARACTER.

// #ifndef CAUTION HPP
// #define _CAUTION_HPP
// #include "CAUTION.HPP"
// #endif

// GENERAL SCREEN,MENU,EDITOR + CAUTION :
// OMITTED ERE BECAUSE TRANSEERED TO LOWER CLASS.

#ifndef __ELP _BPP
#define HELP HPP
#include "BELP. HPP

#endif

#ifndef DATABASE HPP
#define DTABASE PP
#include "DATABASE. HPP"

#endif

#ifndef DOFILE BPP
#define _DOFILE PP
#include "DOFILE. PP"

#endif

#ifndef DO VAL H
#define DO VAL H
#include "DoVal.h"

#endif
// FILE WHICH HAS DOMAIN VALUE DEFINITION

#ifndef MENUNO H
#define MENUNO H
#include "MenuNo.h"

#endif
// FILE WHICH HAS MENU NUMBER DEFINITION

#ifndef NOMENU H
#define NOMENU H
#include "NoMenu.h"

#endif
// FILE WHICH HAS NO OF MENU DEFINITION

class TDMCLASS ://virtual private CautionClass,// DECIDED AT DECOMPOSITION PROCESS
// TRANSFERED TO LOWER LEVEL OBJECT

private HelpClass,
private DataBaseClass,
public DoFileClass

I-
I1
I-
I
I,
I/
//

HAVE DEFINITION
FOR A FUNCTION IN A FILE.

HELP.HPP : Help()
DATABASE.HPP : DataBase()
DOFILE.HPP :

Saveo),Open(),New(),Saveas()
FrDpMatrix(),FRDpDomain(),CaDomain()

private : // Static Data Const
static MenuType Main[NO OF MAIN];
static MenuType Sub[NO OFSUB];
static UnShort Key[NO OF SUB+1 1;
static BarType Bottom[NO OF BOTTOM];
static int Count [NO OF MAIN+1];
static Point MPoint[NO OF MAIN];

60

// Static Data Variable
static int InitMenu;
static Bool YesInvoke;
static Bool YesCheck;
static int choice;

private : // RELATED TO DATA STRUCURE

static UnShort Domain;

private :
void SetScreen (void); // TDM SCR .CPP

Bool Logo (void); // TDMLOGO.CPP
Bool GoStop

(Point,int /* color*/,int /* rev */);

void EndEarly (void); // TDM EN E.CPP
void MemoryError (void); // TDM MEE.CPP

void DealEditMenu(void); // TDM_ DEE.CPP

private : // FUNCTIONAL FEQUIREMENT

int Initialize(void); // TDM INIT.CPP
void END(void); // TDM_END.CPP

public

void GenerateShell(void);

// End Of FILE : TDM.HPP---------------------------------

FILE: TDMINIT.CPP

#ifndef TDM HPP
#include "TDM.HPP"
#define _TDM_HPP

#endif

#include <ALLOC.H>

int TDMCLASS::Initialize()

char * RootFR=(char *)malloc(8);
if(! _RootFR) return 0;
strcpy(RootFR,"ROOT FR");

char * RootDP=(char *)malloc(8);
if(! _RootDP) return 0;
strcpy(RootDP,"ROOT DP");

char * _RootExplFR=(char *)malloc(8);
if(! _RootExplFR) return 0;
strcpy(RootExplFR,"ROOT FR");

char * RootExplDP=(char *)malloc(8);
if(! RootExplDP) return 0;
strcpy(_RootExplDP,"ROOT DP");

Unit *D1 = new Unit; if(!D1) return 0;
Unit *D2 = new Unit; if(!D2) return 0;

Dl->AllAssZero();
D2->AllAssZero();

Dl->AssignName(RootFR);
D2->AssignName(_RootDP);

D1->AssignExpl(_RootExplFR);
D2->AssignExpl(RootExplDP);

61

AssignRootFR(D1);
AssignRootDP(D2);

AssignAboveFR(GetRootFR());
AssignAboveDP(GetRootDP());

AssignBelowFR
((GetAboveFR())->GetFirstBelow((GetAboveFR())->GetCurrentDesignNo()));

AssignBelowDP
((GetAboveDP())->GetFirstBelow((GetAboveDP())->GetCurrentDesignNo()));

AssignTopLeftFR(GetRootFR());
AssignTopLeftDP(GetRootDP());

AssignTopRightFR(GetBelowFR());
AssignTopRightDP(GetBelowDP());

AssignAssFile(O);
// AssignOption (0x00);

AssignAssCa(0);

Domain= NO DOMAIN;
AssignCurrentSection(0x00);

for (int i=0;i< NO OF DOMAIN;i++)
{
AssignHp(i,0);
AssignSp(i, 0);

SetHint(_ NODOMAIN_BASE, _NODOMAIN_NO);

return 1;
}

// End Of FILE : TDMINIT.CPP-

FILE: TDM_END.CPP

#ifndef TDM HPP
#include "TDM.HPP"
#define _TDMHPP

#endif

#include <ALLOC.H>

void TDMCLASS::END(void)

// Free Dynamically Allocated Memory

if (GetAssCa()) free(GetCp());

(GetRootFR())->DeleteSelf();
(GetRootDP())->DeleteSelf();

// Return Mouse and Cursor to Dos Enviroment

event.mouse.Hide();
ClrScreen();
SizeCursor(8,9);

// End Of FILE : TDM END.CPP ---------------

FILE: HELP.HPP

#ifndef CAUTION HPP
#define CAUTION HPP
#include "CAUTION.HPP"

#endif

class HelpClass : virtual CautionClass

62

private :
static char *HeaderFileName;
int NoOfMenu;
MenuType *M;
char *FileName;

protected : // WILL BE INSERTED AFTER DECOMPOSITION.

public :
void Help(void);

};

// End Of FILE : HELP.HPP-

FILE: DATABASE.HPP

#ifndef CAUTION HPP
#define CAUTION HPP
#include "CAUTION.HPP"

#endif

class DataBaseClass : virtual public CautionClass

private :
static char *HeaderFileName;
int NoOfMenu;
MenuType *M;
char *FileName;

private
protected : // WILL BE INSERTED AFTER DECOMPOSITION.

public :
void DataBase(void);

1;

// End Of FILE : DATABASE.HPP-

FILE: DOFILE.HPP

#ifndef DOMAT HPP
#define DOMAT HPP
#include "DOMAT.HPP"

#endif

#define LEN FILENAME 13

class DoFileClass : public DoMatrixClass

private :
char *FileName[LEN_FILENAME];
File *FileP;
int AssFile;

public :
void Save(void);
void Open(void);
void New(void);
void Saveas(void);

// End Of FILE : DOFILE.HPP-

FILE: DOMAT.HPP

#ifndef FRDP HPP
#define FRDP HPP
#include "FRDP.HPP"

#endif

class DoMatrixClass : public FrDpClass
{

63

private :
Point Mp;
Point TopLeftMp;

public :
void FrDpMatrix(void);

};

// End Of FILE : DOMAT.HPP-

FILE: FRDP.HPP

#ifndef CA HPP
#define CA HPP
#include "CA.HPP"

#endif

#ifndef UNIT HPP
#define UNIT HPP
#include "UNIT.HPP"

#endif

#define _NO OF DOMAIN 3

class FrDpClass : public CaClass

private :
Unit *RootFR, *RootDP;
Unit *TopLeftFR, *TopLeftDP;
Unit *TopRightFR, *TopRightDP;
Unit *AboveFR, *AboveDP;
Unit *BelowFR, *BelowDP;
UnShort CurrentSection;
int Hp[NO OF DOMAIN];
int Sp[NO OFDOMAIN];

protected :
void
void
void
void
void
void
void
void
void
void
void
void
void

AssignRootFR(Unit*);
AssignRootDP(Unit*);
AssignTopLeftFR(Unit*);
AssignTopLeftDP(Unit*);
AssignTopRightFR(Unit*);
AssignTopRightDP(Unit*);
AssignAboveFR(Unit*);
AssignAboveDP(Unit*);
AssignBelowFR(Unit*);
AssignBelowDP(Unit*);
AssignCurrentSection(UnShort);
AssignHp(int/*Domain NO */,int/*Value*/);
AssignSp(int/*Domain NO */,int/*Value*/);

Unit *GetRootFR();
Unit *GetRootDP();
Unit *GetTopLeftFR();
Unit *GetTopLeftDP();
Unit *GetTopRightFR();
Unit *GetTopRightDP();
Unit *GetAboveFR();
Unit *GetAboveDP();
Unit *GetBelowFR();
Unit *GetBelowDP();
UnShort GetCurrentSection();
int GetHp(int/*Domain NO */);
int GetSp(int/*Domain NO */);

public :
// Functions called by :
// FrDpDomain(),Edit(),Delete(),DeleteAll(),Add();

// End Of FILE : FRDP.HPP

64

FILE: CA.HPP

#ifndef HINT HPP
#define HINT HPP
#include "HINT.HPP"
#endif

class CaClass : public HintClass

private :
int AssCa;
char *Cp;

protected :
void AssignAssCa(int);
void AssignCp(char *);
int GetAssCa();
char *GetCp();

public :
// Functions called by CaDomain()

};

// End Of FILE : CA.HPP -------------------

FILE: HINT.HPP

#ifndef CAUTION HPP
#define CAUTION HPP
#include "CAUTION.HPP"
#endif

#define NODOMAIN BASE 0
#define _NODOMAIN NO 0

class HintClass : public CautionClass

private :
static BoxType HintBox;
static UnShort HintKey;

int Base;
int n;

public :
SetHint(int /*Base*/,int /*No of Hint*/);
Hint();

} ;

65

APPENDIX A3:

Decomposition [3 rd Hierarchy]: [FR4] & [FR51

FILE: TDM.HPP

// WHAT IS CHANGED WILL BE INDICATED BY BOLD CHARACTER.

// #ifndef CAUTION HPP
// #define CAUTION HPP
// #include "CAUTION.HPP"
// #endif

// GENERAL SCREEN,MENU,EDITOR + CAUTION :
// OMITTED HERE BECAUSE TRANSFERED TO LOWER CLASS.

#ifndef HELP HPP
#define HELP _HPP
#include "HELP.HPP"

#endif

#ifndef DATABASE HPP
#define DTABASE HPP
#include "DATABASE.HPP"
#endif

#ifndef DOFILE HPP
#define DOFILE HPP
#include "DOFILE.HPP"
#endif

#ifndef DO VAL H
#define= DO VALH
#include "DoVal.h"
#endif

// FILE WHICH HAS DOMAIN VALUE DEFINITION

#ifndef MENUNO H
#define MENUNO H
#include "MenuNo.h"
#endif

// FILE WHICH HAS MENU NUMBER DEFINITION

#ifndef NOMENU H
#define NOMENU H
#include "NoMenu.h"
#endif

// FILE WHICH HAS NO OF MENU DEFINITION

class TDMCLASS ://virtual private CautionClass,// DECIDED AT DECOMPOSITION PROCESS
// TRANSFERED TO LOWER LEVEL OBJECT

private
private
public

HelpClass,
DataBaseClass
DoFileClass

// HAVE DEFINITION
// FOR A FUNCTION IN A FILE.
// HELP.HPP : Help()
// DATABASE.HPP : DataBase()
// DOFILE.HPP :
// Save(),Open(),New(),Saveas()
// FrDpMatrix(),FRDpDomain(),CaDomain()

private : // Static Data Const
static MenuType Main[NO OF MAIN];
static MenuType Sub[NOOFSUB];
static UnShort Key[NOOFSUB+1 3;
static BarType Bottom[NO OF BOTTOM];
static int Count [NO OF MAIN+1];
static Point MPoint[NO OF MAIN];

// Static Data Variable
static int InitMenu;

66

static Bool
static Bool
static int

YesInvoke;
YesCheck;

choice;

private : // RELATED TO DATA STRUCURE

static UnShort Domain;

private :
void SetScreen (void); // TDM_SCR .CPP

Bool Logo (void); // TDM_LOGO.CPP
Bool GoStop

(Point,int /* color*/,int /* rev */);

void EndEarly (void); // TDM_EN E.CPP
void MemoryError (void); // TDM ME_E.CPP

void DealEditMenu(void); // TDMDE E.CPP

private : // FUNCTIONAL FEQUIREMENT

int Initialize(void);
void END(void);
void CaDomain (void);
void FrDpDomain(void);
void Edit (void);
void Delete(void);
void DeleteAll(void);
void Add(void);

// TDM INIT.CPP
// TDMEND.CPP
// TDM_CA.CPP
// TDMFRDP.CPP

void GenerateShell(void);
I;

// End Of FILE : TDM.HPP---------------------------------

FILE: TDMCA.CPP

#ifndef TDM HPP
#define TDM HPP
#include "TDM.HPP"

#endif

void TDMCLASS::CaDomain(void)
{

int CaseNumber = EditCaDomain
(Domain,Main,MPoint[0],Count[0],Key,F1 0,InitMenu);

if(CaseNumber==-2)
{
YesCheck=FALSE;
YesInvoke=TRUE;

else YesCheck=TRUE;

// End of FILE : TDM CA.CPP

FILE: CAHPP

#ifndef _ HINT HPP
#define HINTHPP
#include "HINT.HPP"

#endif

#ifndef _DOVAL H
#define DOVAL H
#include "DOVAL .H"

#endif

67

public

#define
#define
#define
#define
#define
#define
#define

CA BOX
CA EDIT BOX
CA BELOW BOX
CA HEAD BOX
CA DONE BOX
CA CANCEL BOX
MID FULL BOX

{ 1, 5,78,19
{ 3, 6,55,17
{ 1,20,78,22
{ 1, 2,78, 4
{57, 6,76, 8
(57,11,76,13
{ 0, 1,79,23

#define CAEDITPAGE 5

class CaClass : public HintClass

private :
int AssCa;
char *Cp;

protected :
void
void
int
char

AssignAssCa(int);
AssignCp(char *);
GetAssCa();

*GetCp();

int EditCaDomain(
int&,
MenuType*,
Point,
int,
UnShort*,
UnShort,
int&

); // CA.CPP

/*Domain*/
/*M*/
/*P*/
/*NoMain*/
/*Hotxeys*/
/*MenuInvokeKey*/
/*MenuInit*/

// End Of FILE : CA.HPP-

FILE: CA.CPP

#ifndef CA HPP
#define CA HPP
#include "CA.HPP"

#endif

// =
// FUNCTION NAME : EDIT CA DOMAIN (METHOD OF CLASS CaClass)
//--------------------------------------
int CaClass::EditCaDomain
//--------------------------------------
// INPUT :
//--------------------------------------

(
int

MenuType
Point
int
UnShort *
UnShort MenuIn
int &M

&Domain, // DOMAIN
// MENU SYSTEM INFORMATION :

*M, // SERIES OF MAIN MENU
P, // MENU POSITION

NoMain, // NO. OF MAIN MENU
'HotKeys, // HOT KEY SERIES
nvokeKey, // MENU INVOKE KEY
EenuInit // MENU INITIAL CODE

// HAS MEANING WHEN RETURN VALUE IS ASSIGNED

// OUTPUT :
//…
// RETURN VALUE : -2 : MENU WAS INVOKED
// -1 : ESC WAS SELECTED
// >=0 : DEFINED MENU BOX SELECTED
// -3 : MEMORY ERROR OCCURRED
// MENUINIT : HAS MEANING WHEN R.T.V.= -2
// MENU SYSTEM INITIAL CODE

// EXPLANATION : DEAL CUSTOMER DOMAIN EDITING ENVIROMENT.
/ /I_ _ _ _ __…_ _

68

public

// CA.CPP
// CA.CPP
// CA.CPP
// CA.CPP

I
I
I
I
I
I
I

// DATE :
//--------------------------------------
// RELATED PROJECT : TDM / AXIOMATIC DESIGN GROUP / DEPT. MECH / MIT

BoxType CaBox = CA BOX;
BoxType CaEditBox = CA EDITBOX;
BoxType CaHeadBox = CA HEAD BOX;
BoxType CaBelowBox= CA BELOW BOX;
BoxType MidFullBox= MID_ FULL BOX;
BoxType CaDoneBox = CA DONE _BOX;
BoxType CaCancelBox= CA CANCEL_BOX;
BoxType MenuBox[2] = { CA DONE_BOX, CACANCEL_BOX};

event.mouse.Hide();
if (Domain) CLEAR_MID_BOX(MidFullBox);
Domain= CADOMAIN;

DrawBox(KSC_DOUBLE,!SHADOW,CaHeadBox,ColorTable[7]);
DrawBox(KSC_DOUBLE,!SHADOW,CaBox,ColorTable[6]);
DrawBox(KSC_DOUBLE,!SHADOW,CaBelowBox,ColorTable[7]);
DrawBox(KSC_SINGLE,!SHADOW,CaEditBox,ColorTable[2]);
DrawBox(KSC_SINGLE,SHADOW,CaDoneBox,ColorTable[2]);
DrawBox(KSC_SINGLE,SHADOW,CaCancelBox,ColorTable[2]);

PutStrInBox("CUSTOMER DOMAIN",CaHeadBox, 1, ColorTable[8]);
PutStrInBox("Describe Design Need. ",CaBelowBox, l,ColorTable [5]);
PutStrInBox("CANCEL",CaCancelBox,l,ColorTable[3]);
PutStrInBox("DONE",CaDoneBox,l,ColorTable[3]);

event.mouse.Show();

char *p;
int MenuReturn;
if(GetAssCa()) // IF IT HAS FREE ASSIGNED TEXT

SizeCursor(8,9);
long ep = Editer(

CaEditBox,&p,
ColorTable[2],ColorTable[3], _CAEDITPAGE,
GetCp(),l,
MenuBox,2,MenuReturn,
M,P,NoMain,HotKeys,MenuInvokeKey,MenuInit

if (ep<0) {
Message("Out of Memory");
return -3;

SizeCursor(9,0);

if(MenuReturn==0 II MenuReturn==-2) // IF "DONE" SELECTED
I
free(GetCp());
if(ep)

AssignCp(p);
AsssignAssCa(l);

else {
free(p);
AssignAssCa(0);

if(MenuReturn==0) // IF "DONE" BOX SELECTED

Domain= NO DOMAIN;
event.mouse.Hide();
CLEAR MID BOX(MidFullBox);
event.mouse.Show();

else if(MenuReturn==l II MenuReturn==-l) // IF "CANCEL" SELECTED

free(p);
Domain= NO DOMAIN;
event.mouse.Hide();
CLEAR MID BOX(MidFullBox);
event.mouse.Show();

69

else // IF IT DOESN'T HAVE PRE-ASSIGNED TEXT

SizeCursor(8,9);
char *p;
long ep = Editer(

CaEditBox, &p,
ColorTable[2],ColorTable[3], _CAEDIT_PAGE,
MenuBox, 2, MenuReturn,
M,P,NoMain,HotKeys,MenuInvokeKey,MenuInit
);

AssignCp(p);
if (ep<O) {

Message("Out of Memory");
return -3;

SizeCursor(9,0);
if (MenuReturn==0 II MenuReturn==-2) // IF "DONE" SELECTED

if (ep) AssignAssCa(l);
else free(GetCp());
if (MenuReturn==O) // IF DONE BOX SELECTED

{
Domain= NO DOMAIN;
event.mouse.Hide();
CLEARMIDBOX(MidFullBox);
event.mouse.Show();

else if (MenuReturn==l II MenuReturn==-l) // IF "CANCEL" SELECTED

free(GetCp());
Domain= NO DOMAIN;
event.mouse.Hide();
CLEAR MID BOX(MidFullBox);
event.mouse.Show();

}

return MenuReturn;

void CaClass::AssignCp(char *p)
void CaClass::AssignAssCa(int yesno)
char *CaClass::GetCp()
int CaClass::GetAssCa()

{ Cp=p;
{ AssCa=yesno;
{ return Cp;
{ return AssCa;

// End Of FILE : CA.CPP-

FILE: TDMFRDP.CPP

#ifndef _TDM HPP
#define TDM HPP
#include "TDM.HPP"
#endif

void TDMCLASS::FrDpDomain(void)
{

if (GetAssCa())
{
Message("YOU SHOULD FINISH CUSTOMER
YesCheck=FALSE;
YesInvoke=TRUE;
InitMenu = -1 - MENU CA DOMAIN;
return;

I

DOMAIN BEFORE FR-DP DOMAIN.");

int CaseNumber = EditFrDpDomain
(Domain,Main,MPoint[0],Count[0],Key, F 10,InitMenu);

if(CaseNumber==-1)
{

70

}

;I

YesCheck=FALSE;
YesInvoke=TRUE;

else if(CaseNumber==l)
{
YesCheck=FALSE;
YesInvoke=TRUE;
InitMenu = -1 - MENU ADD;

}
else YesCheck=TRUE;

void TDMCLASS::Edit(void)

if (Domain!= FD DOMAIN)
{
Message("YOU SHOULD SELECT FR-DP DOMAIN TO USE EDIT MENU.");
return;

DoEdit();
}

void TDMCLASS::Add(void)
{
if (Domain!= FD DOMAIN)

{
Message("YOU SHOULD SELECT FR-DP DOMAIN FIRST TO ADD ITEM.");
return;

DoAdd();
}

void TDMCLASS::Delete(void)

if (Domain!= FD DOMAIN)
{
Message("YOU SHOULD SELECT FR-DP DOMAIN FIRST TO DELETE ITEM.");
return;

}

DoDelete();
}

void TDMCLASS::DeleteAll(void)

if (Domain!= FDDOMAIN)

Message("YOU SHOULD SELECT FR-DP DOMAIN FIRST TO DELETE BELOW ITEMS.");
return;

DoDeleteAll();

// End Of FILE : TDM FRDP.CPP

FILE: FRDP.HPP

#ifndef CA HPP
#define CA HPP
#include "CA.HPP"

#endif

#ifndef UNIT HPP
#define UNIT HPP
#include "UNIT.HPP"

#endif

#define _NOOFDOMAIN 3

#define ARROW 1 BOX { 2,4, 2,41
#define ARROW 2 BOX {38,4,38,4)
#define ARROW 3 BOX {53,4,53,4)

71

#define ARROW 4 BOX {77,4,77,4)
#define ARROW 5 BOX { 5,21, 5,21}
#define ARROW 6 BOX {71,21,71,21}
#define ARROW 7 BOX { 5,22, 5,221
#define ARROW 8 BOX {71,22,71,221
#define ARROW 9 BOX {74, 3,74, 3}
#define ARROW 10 BOX {77, 3,77, 31
#define SELECT DESIGN BOX { 60,19, 77,191
#define -FDDONEBOX { 73,20,78,22

#define MOUSE DELAY 1000

#define FD TITLE 1
#define FD TITLE-2
#define FD TITLE 3
#define FD TITLE 4

{ 21,
{ 2,
{ 41,
{ 60,

6,38,
6,19,
6,58,
6,77,

6
6
6
6

class FrDpCalss : public CaClass
{
private :

Unit *RootFR, *RootDP;
Unit *TopLeftFR, *TopLeftDP;
Unit *TopRightFR, *TopRightDP;
Unit *AboveFR, *AboveDP;
Unit *BelowFR, *BelowDP;
UnShort CurrentSection;
int Hp[NOOF DOMAIN];
int Sp[NO OF DOMAIN];

protected :
void
void
void
void
void
void
void
void
void
void
void
void
void

AssignRootFR(Unit* U) { RootFR = U;
AssignRootDP(Unit* U) { RootDP = U; }
AssignTopLeftFR(Unit* U) { TopLeftFR = U; }
AssignTopLeftDP(Unit* U); { TopLeftDP = U;
AssignTopRightFR(Unit* U); { TopRightFR = U; }
AssignTopRightDP(Unit* U); { TopRightDP = U; }
AssignAboveFR(Unit*U); { AboveFR = U; }
AssignAboveDP(Unit*U); { AboveDP = U;
AssignBelowFR(Unit*U); { BelowFR = U; }
AssignBelowDP(Unit*U); { BelowDP = U; }
AssignCurrentSection(UnShort u);{ CurrentSection = u;
AssignHp(int domain ,int value);{ Hp[domain] = value; }
AssignSp(int domain ,int value);{ Sp[domain] = value; }

*GetRootFR();
*GetRootDP();
*GetTopLeftFR();
*GetTopLeftDP();
*GetTopRightFR();
*GetTopRightDP();
*GetAboveFR();
*GetAboveDP();
*GetBelowFR();
*GetBelowDP();
GetCurrentSection();
GetHp(int domain);
GetSp(int domain);

{ return
I return
{ return
{ return
{ return
{ return
{ return
{ return
{ return
{ return
{ return
{ return
{ return

RootFR; }
RootDP; }
TopLeftFR; }
TopLeftDP; I
TopRightFR; }
TopRightDP; }
AboveFR; }
AboveDP; }
BelowFR; }
BelowDP; }
CurrentSection; }
Hp[domain]; }
Sp[domain]; I

int EditFrDpDomain(

int&,
MenuType*,
Point,
int,
UnShort*,
UnShort,
int&

1;
DoEdit (void);
DoDelete (void);
DoDeleteAll (void);
DoAdd(void);

/*Domain*/
/*M*/
/*P*/
/*NoMain*/
/*HotKeys*/
/*MenuInvokeKey*/
/*MenuInit*/

72

Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
UnShort
int
int

public

void
void
void
void

;
// End Of FILE : FRDP.HPP-

FILE: FRDP.CPP

#ifndef FRDP HPP
#define FRDP HPP
#include "FRDP.HPP"
#endif

int FrDpClass::EditFrDpDomain

int &Domain,

MenuType *M,
Point P,
int NoMain,
UnShort *HotKeys,
UnShort MenuInvokeKey,
int &MenuInit

BoxType SelectDesignBox= SELECTDESIGN_BOX;
BoxType DoneBox= FD DONE BOX;
BoxType ArrowBoxes[10]={

ARROW 1 BOX, _ARROW 2 BOX,
ARROW 3 BOX, _ARROW 4 BOX,
ARROW 5 BOX,__ARROW 6 BOX,
ARROW 7 BOX, _ARROW 8 BOX,
ARROW 9 BOX, ARROW 10 BOX

};
BoxType TitleBoxes[4]=(

FD TITLE 1, FD TITLE_2,
FD TITLE 3, FD TITLE 4

1;

event.mouse.Hide();
if (Domain!= FD DOMAIN) InitialrizeFDwholeScreen()/**/;
event.mouse.Show();

EventType e;
for(int Pause=0;;Pause++,Pause%= MOUSE_DELAY)

event.GetEvent(e);

if(YesInvokeFullDown(e,M,P,NoMain,HotKeys,MenuInvokeKey,MenuInit))
return -1;

if(e.what==MouseDown&&e.mouse.buttons==LeftButton) // ONE THOUCH MOUSE

if(e.mouse.DoubleClick) // IF DOUBLE CLICKED
{
UnShort UnitNo,TitleNo;
if(MouseOneOfUnit(e.mouse.where,TitleNo,UnitNo)/**/)

DoMouseChange(TitleNo,UnitNo)/**/;
event.mouse.Hide();InitFdScr()/**/;event.mouse.Show);
DoEdit();
event.mouse.Hide();InitFdScr()/**/;event.mouse.Show();

} // END OF MOUSE DOUBLE CLICK
else // IF SIMPLELY CLICKED

{
// IF ONE OF UNIT
UnShort UnitNo,TitleNo;
if(MouseOneOfUnit(e.mouse.where,TitleNo,UnitNo))

DoMouseChange(TitleNo,UnitNo)/**/;
event.mouse.Hide();InitFdScr()/**/;event.mouse.Show();

73

// IF ARROW SELECTED
int BoxSelected=MatchBoxNo(ArrowBoxes,e.mouse.where,9);
if(BoxSelected!=-l)

{
DoArrowBoxes(MatchBoxNo(ArrowBoxes,e.mouse.where,9))/**/;
MouseDelay();

// IF DONE BOX SELECTED
if(MouseInBox(e.mouse.where,DoneBox))

{ DoFdEnd()/**/; return 0;
// DESIGN SELECT BOX
if(MouseInBox(e.mouse.where,SelectDesignBox))

DoDesignSelect()/**/;

// TITLE BOXES
int TitleBoxNo=MouseOneOfBoxes(e.mouse.where,4,TitleBoxes);
switch(TitleBoxNo)

case 0 : break;
case 1 : DoTitleUpFR()/**/;break;
case 2 : DoTitleDownFR()/**/;break;
case 3 : DoTitleUpDP()/**/;break;
case 4 : DoTitleDownDP()/**/;break;
default: break;

} // END OF SIMPLE CLICK
} // END OF MOUSE ONE THOUCH LEFT

else if(e.what==MouseDown&&e.mouse.buttons==RightButton) // ONE TOUCH RIGHT
{
if(e.mouse.DoubleClick); // IF DOUBLE CLICKED
else // ONE TOUCH

{
UnShort UnitNo,TitleNo;
if(MouseOneOfUnit(e.mouse.where,TitleNo,UnitNo)/**/)

{
DoMouseChange(TitleNo,UnitNo)/**/;
event.mouse.Hide();InitFdScr()/**/;event.mouse.Show);
return 1;

else if(e.what==EvKeyDown) // ONE THOUCH KEY ACTION
{
if (e.key.keyCode==Esc) { DoFdEnd()/**/; return 0; }
else if(e.key.keyCode==Left) { DoFdLeft()/**/;)
else if(e.key.keyCode==Right){ DoFdRight()/**/;}
else if(e.key.keyCode==Up) { DoFdUp()/**/;}
else if(e.key.keyCode==Down) { DoFdDown()/**/;}
else if(e.key.charScan.charCode=='\r')

{
DoEdit();
event.mouse.Hide();InitFdScr()/**/;event.mouse.Show();

if(e.mouse.buttons==LeftButton && !Pause)
// CONTINUOUS MOUSE PUSH

{
DoArrowBoxes(MatchBoxNo(ArrowBoxes,e.mouse.where,9))/**/;

} // END OF FOR

} // END OF FUNCTION : EDIT FR DP DOMAIN()

void FrDpClass::DoAdd(void)
{

74

Unit *New;
int error;
UnShort T,d; // T:TITLE NO // d:SECTION BUFFER
T=CurrentSection>>3;
if(T==ll IT==3)
{
Message("YOU CAN'T ADD UNIT IN THE DOWN BOX.");
return;

}

if(T==O) // FR DOMAIN
{
int *Series =AboveFR->FindSeries();
Unit *REAL ABOVEDP=RootDP->FindPointer(Series);
free(Series);
if (REAL_ABOVE_DP->GetSelectedDesignNo()!=-1)

Message("YOU'VE ALEADY DECIDE THIS LEVEL DESIGN. ");
Message("TO ADD MORE FRS, DELETE RELATED DPS.");
Message("DIFFERENT SET OF FR IS SATISFIED BY DIFFERENT SET OF DP");
return;

}

New=AboveFR->MakeNext(0,error);
switch(error)

{
case 1 : Message("Decide Above FR at first.");return;
case 3 : Message("Out of Memory.");return;

}
New->MakeDesignSelected();

int ESpush=Sp[O];
int HSpush=Hp[O];
Unit *Bpush=BelowFR;
UnShort Cpush=CurrentSection;
Unit *Tpush=TopRightFR;

Sp[O]=O;
Hp[0]=0;
BelowFR = New;
CurrentSection=(1<<3) 1(1<<2)l(CurrentSection&0x03);
if(!(New->GetPrev())) TopRightFR=New;

for(
;BelowFR->FindGap()-TopRightFR->FindGap()>11
;TopRightFR=TopRightFR->GetNext()

);

event.mouse.Hide();
InitFdScr()/**/;
event.mouse.Show();
if ((DoEditFr(BelowFR,RootDP)/**/)==2) // IF CANCEL SELECTED

New->DeleteUnit();

Sp [0] =ESpush;
Hp[0]=HSpush;
BelowFR=Bpush;
CurrentSection=Cpush;
TopRightFR=Tpush;

event.mouse.Hide();
InitFdScr()/**/;
event.mouse.Show();

else { event.mouse.Hide();InitFdScr()/**/;event.mouse.Show; }

if(T==2) // DP DOMAIN

// CHECKING WHETHER OR NOT FR IS ASSIGNED.

{ // THIS BRACKET WAS SELECTED TO CONSTRAINT RANGE OF INT VAR NO OF FR

75

int *FR SERIES=AboveDP->FindSeries();
Unit *ABOVE FR =S->RootFR(FR_SERIES);
free(FR_SERIES);

int NoOfFR=ABOVE_FR->GetFirstBelow(ABOVE_FR->GetCurrentDesignNo())->FindNoOfUnit();
if (!NoOfFR)

Message("BEFORE EDITING DP, FR SHOULD BE EDITED.");
return;

if (
NoOfFR // NO OF FR
<= // LESS OR EQUAL
TopRightDP->FindNoOfUnit() // NO OF DP

Message("YOU ARE NOT ALLOWED TO MAKE REDUNDANT DESIGN.");
return;

} // RANGE OF INT VAR NO OF FR

New=AboveDP->MakeNext(AboveDP->GetCurrentDesignNo(),error);
switch (error)

{
case 1 : Message("Decide Above FR at first.");return;
case 3 : Message("Out of Memory.");return;

}

int ESpush=Sp[1];
int HSpush=Hp[1];
Unit *Bpush=BelowDP;
UnShort Cpush=CurrentSection;
Unit *Tpush=TopRightDP;

Hp[l]=O;
BelowDP = New;
CurrentSection=(3<<3) (1<<1)l (S->CurrentSection&x05);

if(!(New->GetPrev())) TopRightDP=New;

for(
;BelowDP->FindGap()-TopRightDP->FindGap()>11
;TopRightDP=TopRightDP->GetNext()

event.mouse.Hide();
InitFdScr()/**/;
event.mouse.Show();
if ((DoEditDp(BelowDP,RootFR)/**/)==2) // IF CANCEL SELECTED

New->DeleteUnit();

Sp[1]=ESpush;
Hp[1]=HSpush;
BelowDP=Bpush;
CurrentSection=Cpush
TopRightDP=Tpush;
event.mouse.Hide();
InitFdScr()/**/;
event.mouse.Show();

else { event.mouse.Hide();InitFdScr()/**/;event.mouse.Show(; }

void FrDpClass::DoEdit(void)
{

switch((int)(CurrentSection>>3))

case 0 DoEditFr(AboveFRRootDP/* ACTUALLY THIS IS DP SO LATER DECIDED */)/**/;break;
case 1 : DoEditFr(BelowFR,RootDP/* ACTUALLY THIS IS DP SO LATER DECIDED */)/**/;break;

76

case 2 : DoEditDp(AboveDP,RootFR/* ACTUALLY THIS IS DP SO LATER DECIDED */)/**/;break;
case 3 : DoEditDp(BelowDP,RootFR/* ACTUALLY THIS IS DP SO LATER DECIDED */)/**/;break;

#define _DELETEUNITSCREENCHANGE(B,T,I,J,K,L)\

Unit *B NEXT=B->GetNext();\
Unit *B PREV=B->GetPrev();\
switch(B->DeleteUnit()) /* SWITCH TO DELETE RESULT */\

{\
case 0 : /* CHILDREN EXIST */\

Message("YOU CANNOT DELETE THIS UNIT. IT HAS CHILDREN.");\
return;\

case 1 : /* FIRST UNIT */\
B=B NEXT;\
T=B;\
break;\

case 2 : /* ONLY UNIT */\
B=NULL;\
T=NULL;\
CurrentSection=(I<<3)1(J<<L)I(S->CurrentSection & K);\
break;\

case 3 : /* MIDDLE UNIT */\
B=B NEXT;\
T=B->GetTop();\
break;\

case 4 : /* LAST UNIT */\
B=B PREV;\
T=B->GetTop();\
break;\

} /* END OF SWITCH(DELETE RESULT) */\
} /* END OF __DELETE UNITSCREENCHANGE(B,T,I,J,K,L) DEFINITION */\

void FrDpClass::DoDelete (void)

switch(CurrentSection>>3) // SWITCH ACCORDING TO [CURRENT TITLE BAR]

case 0 :
case 2 : // IF IN THE UP BOX // SWITCH TITLE BAR
Message("YOU CAN'T DELETE UNIT IN THE UP BOX.");
return;

case 1 : // IF IN THE FR DOMAIN DOWN BOX // SWITCH TITLE BAR
int *Series=AboveFR->FindSeries();
Unit *REAL ABOVEDP=RootDP->FindPointer(Series);
free(Series);
for(int ii=0;ii<MAX_DESIGN_CHOICE;ii++)

int NoOfDP

(REAL ABOVEDP->GetFirstBelow(ii))->FindNoOfUnit();

if(BelowFR->FindNoOfUnit() <= NoOfDP)

Message("YOU CANNOT REMOVE THIS FR. FIRST DELETE RELATED DP.");
return;

}DELETEUNITSCREEN CHANGE(BelowFR,TopRig
break; / BREAK OF IF TITLE BAR IN FR DOWN BOX]
case 3 : // IF IN THE DP DOWN BOX // SWITCH TITLE BAR

if(AboveDP->GetSelectedDesignNo ()==AboveDP->GetCurrentDesignNo())

int *Series=AboveDP->FindSeries();
Unit *REAL ABOVE FR=RootFR->FindPointer(Series);
int NoOfFR=(REAL_ABOVE_FR->GetFirstBelow(0))->FindNoOfUnit();
free(Series);
Bool HasChild=FALSE;
Unit *Dummy=REAL_ABOVE FR->GetFirstBelow(0);
for (int i=0;i<NoOfFR && Dummy;i++,Dummy=Dummy->Next)

if ((HasChild=Dummy->YesHasChildren())==TRUE) break;

77

if(HasChild)

Message("THE GROUP OF RELATED FRS HAS CHILDREN. REMOVE THE FR FIRST.");
return;
}

HasChild=FALSE;
Dummy=AboveDP->GetFirstBelow(AboveDP->GetCurrentDesignNo());
for (i=0;i<BelowDP->FindNoOfUnit() && Dummy;i++,Dummy=Dummy->Next)

if ((HasChild=Dummy->YesHasChildren())==TRUE) break;

if(HasChild)

Message("THIS GROUP OF DPS HAS CHILDREN. REMOVE THEM FIRST.");
return;

}
else

AboveDP->AssignSelectedDesignNo(-1);

DELETE UNIT SCREEN CHANGE(BelowDP,TopRightDP,0x02,0x00,0x05,1);
break; 7/ BREAK OF [IF TITLE BAR IN DP DOWN BOX]

} // END OF SWITCH [TITLE BAR]
event.mouse.Hide();
InitFdScr()/**/;
event.mouse.Show();
} // END OF FUNCTION DELETEFD()

void FrDpClass::DoDeletell (void)
{
switch(CurrentSection>>3) // SWITCH ACCORDING TO [CURRENT TITLE BAR]

case 1 :
case 3 : // IF IN THE DOWN BOX
Message("YOU CANNOT DELETE IN THE DOWN BOX. SELECT UP BOX");
return; // END OF CASE(1 AND 3)

case 0 : // IF IN THE UP FR BOX
Unit *REAL DP=FindRealAboveDP()/**/;
AboveFR->DeleteBelows();
REAL DP->DeleteBelows();
if((Unit huge*)(AboveDP)==(Unit huge*)(REAL_DP))
{
BelowDP=NULL;
TopRightDP=NULL;

}

BelowFR=NULL;
TopRightFR=NULL;

break; // END OF CASE(0)
case 2 : // IF IN THE UP DP BOX
Unit *REAL FR=FindRealAboveFR()/**/;
REAL FR->DeleteBelows();
AboveDP->DeleteBelows();
if((Unit huge*)(AboveFR)==(Unit huge*)(REAL_FR))
{
BelowFR=NULL;
TopRightFR=NULL;

}

BelowDP=NULL;
TopRightFR=NULL;

break; // END OF CASE(2)

} // END OF SWITCH [CURRENT TITLE BAR]

event.mouse.Hide();
InitFdScr()/**/;
event.mouse.Show();
} // END OF FUNCTION DELETE_ALLFD()

// End of FILE : FRDP.CPP-

78

Appendix B: Axioms/Corollaries/Theorems

Axioms

Axiom 1 : The Independence Axiom

Maintain the independence of FRs.

Axiom 2: The Information Axiom

Minimize the information content.

Corollaries

Corollary 1: Decoupling of Coupled Designs

Decouple or separate parts or aspects of a solution if FRs are coupled or
become interdependent in the design proposed.

Corollary 2: Minimization of FRs

Minimize the number of FRs and constraints.

Corollary 3: Integration of Physical Parts

Integrate design features in a single physical
independently satisfied in the proposed solution.

part if FRs can be

Corollary 4: Use of Standardization

Use standardized or interchangeable parts if the use of this parts is
consistent with FRs and constraints.

Corollary 5: Use of Symmetry

Use symmetrical shapes and/or components if they are consistent with the
FRs and constraints.

79

Corollary 6: Largest Tolerance

Specify the largest allowable tolerance in stating FRs.

Corollary 7: Uncoupled Design with Less Information Content

Seek an uncoupled design that requires less information than coupled
designs in satisfying a set of FRs.

Corollary 8: Effective Reangularity of a Scalar

The effective reangularity R for a scalar coupling "matrix" or element is
unity.

Theorems

Theorem 1: Coupling Due to Insufficient Number of DPs

When the number of DPs is less than the number of FRs, either a coupled
design results, or the FRs cannot be satisfied.

Theorem 2: Decoupling of Coupled Design

When a design is coupled due to the greater number of FRs than DPs (i.e.,
m > n), it may be decoupled by the addition of new DPs so as to make the
number of FRs and DPs equal to each other, if a subset of the design
matrix containing n x n elements constitutes a triangular matrix.

Theorem 3: Redundant Design

When there are more DPs than FRs, the design is either a redundant
design or a coupled design.

Theorem 4: Ideal Design

In an ideal design, the number of DPs is equal to the number of FRs.

80

Theorem 5: Need for New Design

When a given set of FRs is changed by the addition of a new FR, or
substitution of one of the FRs with a new one, or by selection of a
completely different set of FRs, the solution given by the original DPs
cannot satisfy the new set of FRs. Consequently, a new design solution
must be sought.

Theorem 6: Path Independency of Uncoupled Design

The information content of an uncoupled design is independent of the
sequence by which the DPs are changed and on the specific paths of
change of these DPs.

Theorem 7: Path dependency of Coupled and Decoupled Design

The information contents of coupled and decoupled designs depend on the
sequence by which the DPs are changed and on the specific paths of
change of these DPs.

Theorem 8: Independence and Tolerance

A design is an uncoupled design when the designer-specified tolerance is
greater than

D 'ADP '

in which case the non diagonal elements of the design matrix can be
neglected from design consideration.

Theorem 9: Design for Manufacturability

For a product to be manufacturable, the design matrix for the product, [A]
(which relates the FR vector for the product to the DP vector of the
product) times the design matrix [B] (which relates the DP vector to the
PV vector of the manufacturing process) must yield either a diagonal or
triangular matrix. Consequently, when any one of these design matrices;
that is, either [A] or [B], represents a coupled design, the product cannot
be manufactured.

81

Theorem 10: Modularity of Independence Measure

Suppose that a design matrix [DM] cannot be partitioned into square
submatrices that are nonzero only along the main diagonal. Then the
reangularity and semangularity for [DM] are equal to the products of
their corresponding measures for each of the nonzero submatrices.

Theorem 11 : Invariance

Reangularity and semangularity for a design matrix [DM] are invariant
under alternative orderings of the FR and DP variables, as long as
orderings preserve the association of each FR with its corresponding DP.

Theorem 12: Sum of Information

The Sum of information for a set of events is also information, provided
that proper conditional probabilities are used when the events are not
statistically independent.

Theorem 13: Information Content of Total System

If each DP is probablistically independent of other DPs, the information
content of the total system is the sum of information of all individual
events associated with the set of FRs that must be satisfied.

Theorem 14: Information Content of Coupled versus Uncoupled Design

When the state of FRs is changed from one state to another in the
functional domain, the information required for the change is greater for
a coupled process than for an uncoupled process.

Theorem 15: Design-Manufacturing Interface

When the manufacturing system compromises the independence of the
FRs of the product, either the design of the product must be modified, or
a new manufacturing process must be designed and/or used to maintain
the independence of the FRs of the products.

Theorem 16: Equality of Information Content

82

All information contents that are relevant to the design task are equally
important regardless of their physical origin, and no weighting factor
should be applied to them.

83

References

[1] Suh, Nam P., 1990, The Principles of Design, Oxford University Press.

[2] Suh, Nam P. and Sekimoto, Shinya, 1990, "Design of Thinking Design Machine",
Annals of the CIRP, v.39/1/1990, pp. 145-148.

[3] Albano, Leonard D. and Suh, Nam P., 1992, "Axiomatic Approach to Structual
Design", Research in Engineering Design, 4:171-183, 1992.

[4] Kim, Sun-Jae, Suh, Nam P., and Kim, Sang-Gook, 1991, "Design of Software System
based on Axiomatic Design", International Journal of Robotics and Computer Integrated
Manufacturing, Vol. 8, No. 4, pp.243-255, 1991.

[5] Wallace, David R. and Suh, Nam P., 1993, "Information-Based Design for
Environmental Problem Solving", Annals of the CIRP, Vol. 42/1/1993, pp. 175-180.

[6] Gebla, David A. and Suh, Nam P., 1992, "An Application of Axiomatic Design",
Research in Engineering Design, 3:149-146, 1992.

[7] Suh, Nam P., 1984, "Development of the Science Base for the Manufacturing Field
Through the Axiomatic Approach", Robotics and Computer Integrated Manufacturing,
vol. 1, no. 3/4, 1984, pp. 399-415.

[8] Suh, N.P., Kim, S.H., Bell, A.C., Wilson, D.R., Cook, N.H., and Lapidot, N., 1978,
"Optimizatiotion of Manufacturing Systems Through Axiomatics", Annals of CIRP, vol.
27, 1978b.

[9] Suh, N.P., Bell, A.C., and Gossard, D., 1978, " On an Axiomatic Approach to
Manufacturing Systems", Journal of Engineering and Industry, Transactions of the
A.S.M.E., vol. 100, 1978a, pp. 127-130.

[10] Hill, Percy H., 1970, The Science of Engineering Design, Holt, Rinehart and
Winston, Inc..

[11] Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., and Gero, J.S.,
1990, Knowledge-based design systems, Addison-Wesley Publishing Company, Inc..

[12] Kolski, C., Strugeon, Le E., and Tendjaoui, M., 1993, "Implementation of AI
Techniques for Intelligent Interface Development", Engng Applic. Artif. Intell., Vol 6,
No. 4, pp 295-305, 1993.

[13] Cross, Niegel, 1993,"Science and Design Methodology: A Review", Research in
Engineering Design, 5:63-69, 1993.

84

[14] Mengguang, Wang, Zhining, Liu, and Zihou, Yang, 1993, "Knowlwdge
Representation for Problem Processing in a Decision Support System", Engng Applic.
Artif Intell., Vol. 6, No. 4, pp 381-386, 1993.

[15] Henderson, Mark R. and LeRoy, E. Tayor, 1993, "A Meta-Model for Mechanical
Products Based Upon the Mechanical Design Process", Research in Engineering Design,
5:140-160, 1993.

[16] Bieniawski, Z. T., 1993, "Principles and Methodology of Design for Excavations in
Geologic Media", Research in Engineering Design, 5:49-58, 1993.

[17] Ladd, Scott R., 1990, C+ + Techniques and Application, Prentice Hall Inc., UK.

[18] Scildt, Herbert, 1992, Turbo C/C+ +: The Complete Reference, Second Edition,
McGraw-Hill.

85

