
A VLSI Systolic Array Processor for Complex
Singular Value Decomposition

by

Christopher Charles Niessen

Sublmitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering

and

Master of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHN

May 1994

(E) Christopher Charles Niessen. MCMXCIV. All rig

ENG

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author
.,) Department of Electrical Engineering and Computer Science

F ' iMay 6, 1994

Certified by

Associate Professor
Srinivas Devadas

of Electrical Engineering
Thesis Supervisor

if y.........Steven R. Broadstole
Staff, MIT Lincoln Laboratory

Company Supervisor

(-Ctertified by..
.

n -
H. T. Kung

^ ' Professor, Harvard University

Accepted by... ~I ai n, R I -
Frederic R. Morganthaler

1hairman, DeaI netal Committee on Graduate Students

I - - --- --C,-- - - -- .---

-ng.

A VLSI Systolic Array Processor for Complex Singular

Value Decomposition

by

Christopher Charles Niessen

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 1994, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Engineering

and
Master of Science in Electrical Engineering

Abstract
The singular value decomposition is one example of a variety of more complex routines
that are finding use in modern high performance signal processing systems. In the
interest of achieving the maximum possible performance, a systolic array processor
for computing the singular value decomposition of an arbitrary complex matrix was
designed using a silicon compiler system. This system allows for ease of design by
specification of the processor architecture in a high level language, utilizing parts
from a variety of cell libraries, while still benefiting from the power of custom VLSI.
The level of abstraction provided by this system allowed more complex functional
units to be built up from existing simple library parts. A novel fast interpolation
cell for computation of square roots and inverse square roots was designed, allowing
for a new algebraic approach to the singular value decomposition problem. The
processors connect together in a systolic array to maximize computational efficiency
while minimizing overhead due to high communication requirements.

Thesis Supervisor: Srinivas Devadas
Title: Associate Professor of Electrical Engineering

Company Supervisor: Steven R. Broadstone
Title: Staff, MIT Lincoln Laboratory

Reader: H. T. Kung
Title: Professor, Harvard University

Acknowledgments

I would like to extend my deepest gratitude to Dr. Steven Broadstone for all of

the help he has given me throughout this thesis. His help and guidance have proved

to be absolutely essebtial.

I would also like to thank Professor Srinivas Devadas for supervising this thesis

and for his helpful input, and Professor Kung of Harvard Univeristy for reading and

commenting on my thesis. In addition, I would like to thank the members of MIT

]Lincoln Laboratory Group 44 for the assistance they have provided.

I would like to thank my father for believing in me all of these years, and for

convincing me that I could handle anything the Institute could throw at me. I also

would like to thank Gen for making everything just a little bit better.

Contents

1 Introduction 10

1.1 Parallel Implementations of the SVD 10

1.2 Systolic Processor Array 1...... 11

1.3 Overview of the Thesis 12

2 The Singular Value Decomposition 13

2.1 SVD of a Real, Symmetric Matrix 13

2.2 SVD of an arbitrary real matrix 16

2.3 SVD of an arbitrary complex matrix 17

2.4 SVD of an n x n Matrix 21

2.5 Parallel Computation of the SVD 23

3 Systolic Processor Array 26

3.1 The Systolic Array 26

3.2 The Brent-Luk-Van Loan Systolic Array 28

3.3 Changes to the Brent-Luk-Van Loan Array 32

4 Systolic Processor Elements 37

4.1 Processor Element Design 37

4.2 Functional Unit Design 38

4.3 Processor Element Architecture 40

5 Fast Interpolation Cell 46

5.1 Interpolation . 47

4

5.2 Interpolation Cell

6 LAGER Silicon Assembly System

6.1 The LAGER Tools.

6.2 Design Hierarchy

7 Realization

7.1 Specifications.

7.2 Implementation Difficulties

8 Conclusions

8.1 Future Work .

8.2 Concluding Remarks

A Source Code

A.1 SDL (Code

A.1.1 2tolmux.sdl ...

A.1.2 2tolmuxdpp.sdl

A.1.3 2tolmuxlogic.sdl

A.1.4 3tolmux.sdl . . .

A.1.5 2tolmuxdpp.sdl

A.1.6 3tolmuxlogic.sdl

A.1.7 addsub.sdl

A.1.8 addsubdpp.sdl .

A.1.9 addsublogic.sdl

A.1.10 bus2adder.sdl

A.1.11 bus2bshift.sdl

A.1.12 bus2bshiftdpp.sdl

A.1.13 bus2bshiflogic.sdl

A.1.14 bus2cmult.sdl

A.1.15 bus2interp.sdl

A.1.16 bus2logic.sdl . . .

5

51

55

55

58

67

67

69

73

73

74

76

76

76

77

78

79

80

81

81

83

84

........ 84

87

88

90

91

92

........ 9:3

......................

...........

...........

...........

...........

...........

...........

...........

.

.

.

.

.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

.

.

.

.

.

A.1.17 bus2out.sdl

A.1.18 busserio.sdl

busseriodpp.sdl

busseriologic.sdl

cmult.sdl .

deltarom.sdl .

diag2.sdl.

diag2chip.sdl .

diagctl.sdl.

From.sdl.

Grom.sdl .

inc.sdl.

incdpp.sdl.

interp.sdl

interpcntl.sdl .

multiplier.sdl .

negator.sdl .

normalizer.sdl .

normalizerbuffer. sdl

normalizerdpp.sdl

normalizerlogic.sdl

offdiag2.sdl

offdiag2chip.sdl

offdiagctl.sdl ..
regfile2p.sdl ...
regfile2pdpp.sdl .

regfile2plogic.sdl .

register.sdl .

registerdpp.sdl ..
registerlogic.sdl

A.1.19

A.1.20

A.1.21

A.1.22

A.1.23

A.1.24

A.1.25

A.1.26

A.1.27

A.1.28

A.1.29

A.1.30

A. 1.31

A.1.:32

A.1.:33

A. 1.34

A.1.35

A.1.36

A.1.37

A.1.:38

A.1.39

A.1.40

A.1.41

A.1.42

A.1.43

A.1.44

A.1.45

A.1.46

95

97

99

101

105

11:3

117

122

124

1:33

141

142

14:3

148

149

150

151

152

15:3

15:3

154

157

162

164

166

168

169

170

171

6

94

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

A.2 BDS Files 172

A.2.1 diagctl.bds 172

A.2.2 interpcntl.bds 196

A.2.3 offdiagctl.bds 199

A.2.4 prienc.bds 216

7

List of Figures

3-1 Dataflow Connections for Each Processor Element 29

3-2 Rotation Parameter Flow for Off-Diagonal Processor Elements 29

3-.3 Rotation Parameter Flow for Diagonal Processor Elements 30

3-4 Complete Interconnections for Off-Diagonal Processor Elements . . . 30

3-5 Complete Interconnections for Diagonal Processor Elements 30

3-6 Example Systolic Array 31

4-1 Block Diagram of Off-Diagonal Processor Element 42

4-2 Block Diagram of Diagonal Processor Element 43

5-1 Block Diagram of Fast Interpolation Cell Data Paths 52

6-1 Design Hierarchy for the Top Level of the Diagonal Processor Element 59

6-2 Design Hierarchy for Adder, Multiplier, and Top Level of Interpolator 62

6-3 Design Hierarchy for Processor Controller 63

6-4 Design Hierarchy for Barrel Shifter 63

6-5 Design Hierarchy for Register File 64

6-6 Top Level Design Hierarchy for Fast Interpolation Cell 64

6-7 Design Hierarchy for Fast Interpolation Normalization Subcell 65

6-8 Design Hierarchy for Fast Interpolation Cell Multiplier, Adder, and

Controller 65

6-9 Hierarchy for Fast Interpolation Cell Incrementor and Register 66

7-1 Layout of Diagonal Processor 70

7-2 Layout of Off-Diagonal Processor 71

8

List of Tables

3.1 Processor Cycle Usage 34

4.1 Comparison of Three Different Complex Multipliers 44

5.1 Interpolator Cycle Computations .5................... 53

9

Chapter 1

Introduction

The singular value decomposition (SVD) of an arbitrary complex matrix is a

computationally intensive problem. However, this matrix factorization is useful in a

wide variety of signal processing applications. As signal processing algorithms become

more complex, new and different implementations need to be devised. Most SVD

algorithms make assumptions about the input matrix which limit their flexibility.

This thesis will develop a method for computing the SVD of a complex matrix that

makes no assumptions about the input data. In addition, a VLSI design of this

implementation on a systolic processor array will be presented.

1.1 Parallel Implementations of the SVD

The problem of computing the SVD factorization of a complex matrix requires

a large number of computations. However, it is also an algorithm with a high level

of inherent parallelism. This parallelism, which comes from the independent nature

of the computations, allow it to be realized very efficiently on a massively parallel

computation engine. Algorithms for calculation of the SVD in an orderly fashion have

been around for a long time [6], but only since the advent of high performance, low

cost specialized processor subsystems has the problem been addressed with a parallel

implementation in mind [3]. These new parallel algorithms have given rise to several

proposed designs for systems tailored for SVD computation.

10

Several implementations of parallel architectures for SVD have been suggested

[3, 7, 4]. However, there may be difficulties with existing designs. [3] is intended

for real matrices, and [7] and [4] make use of the CORDIC (COordinate Rotation

Digital Computer) [20] engine, which is inefficient for longer word widths. In this

thesis, the general methods detailed in [3] are expanded to accommodate complex

matrices, and the computations are pipelined to increase efficiency. In addition, the

SVD problem will be solved algebraically, without the need for direct implementation

of trigonometric functions. The CORDIC engine used in [7] will be replaced by a

novel fast interpolation cell that is capable of performing complicated functions in

a time much less dependent on output word width, while maintaining accuracy. In

addition, this design will be implemented entirely in a high level structural description

language used as input to a silicon compiler system. This allowed the entire design

to be parameterized and altered with minimal effort. The processor elements are

designed to utilize the high level of abstraction afforded by the silicon compiler system;

specifically, they may be used as frameworks for application specific digital signal

processors. These nature of these designs allow additional functional units to be

added or removed easily, making for high performance systems while maintaining an

extremely low design time.

1.2 Systolic Processor Array

The nature of the SVD algorithm requires very little data for each calculation, and

it can be implemented without the ability to move data quickly over large distances

across the system. These qualities of the algorithm make it ideal for implementation

in a systolic processor array. A systolic processor array is a mesh connected set of

processors. The only data interconnections are to immediately adjacent nodes. The

array is termed a systolic array because the data "pumps" through the system as if

blood were pumping through a body. The array performance has no dependence on

the overall size, due to the locality of the interconnects. Given multiple processors all

connected to one central resource, as in a shared memory or a data bus, the overall

11

size should be limited, as any increase necessitates an alteration in the design. Using

a systolic array, all processor interconnection is to the nearest neighbor. Isolating

each processor from the rest of the array allows the system to grow nearly without

bound, with little or no change in the overall design.

1.3 Overview of the Thesis

In chapter 2, a two step process for computing the singular value decomposition of

an arbitrary complex matrix is developed, including details on how it will be carried

out in a parallel system. In chapter 3, the design of the systolic processor array is

discussed, detailing the data flow through the array and necessary design issues and

trade-offs. Chapter 4 will discuss the individual processor elements, including their

functional units and architecture. Chapter 5 will examine the design of the fast inter-

polation functional unit and its benefits. Chapter 6 will discuss the LAGER silicon

assembly system used for the realization of the design. The trade-offs of design time

and performance will be considered. Chapter 7 will discuss the specific implemen-

tation of this system, and finally, chapter 8 will discuss possible improvements and

future work.

12

Chapter 2

The Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization technique that

is of use in many areas of signal processing. SVD can be used to help reconstruct the

electrical activity inside the brain using non-invasive electrodes placed on the scalp

[14]. It is also used to decrease the data rate needed to transmit images [18]. For

adaptive array signal processing, SVD can be used to separate the signal subspace

from the noise subspace [15]. All of these applications involve reducing a given data

matrix to one of smaller effective rank. The amount of information that is retained

from the original matrix is determined by a chosen threshold level imposed upon

the singular values of the matrix. Having chosen an acceptable cutoff threshold, the

elements of the matrix that are below the threshold value can be discarded with

little or no information loss. This method is extremely effective for distinguishing the

important information in the matrix.

2.1 SVD of a Real, Symmetric Matrix

To begin, the Singular Value Decomposition of a real, symmetric matrix will be

examined, because it is the simplest case. The singular value decomposition for a

n x n real, symmetric matrix A is

A = UEVT (2.1)

13

'where U and V are n x n orthogonal matrices, and E is a diagonal matrix of the

singular values of A in non-increasing order down the diagonal. In the following, only

2 x 2 matrices will be considered. The cyclic Jacobi method detailed in [6] suggests

a method for calculating the SVD of a n x n matrix by breaking it into a series of

2 x 2 matrices, so the SVD of only 2 x 2 matrices can be discussed without a loss of

generality. GCiven that U and V are orthogonal matrices, (2.1) can be re-written as

UTAV = E.

U and V need to be chosen such that UTAV yields a diagonal matrix E of the singular

values of A. For a real, symmetric matrix, U and V are chosen to be real and equal.

They are rotation matrices of the form

cosO sinO
R(O) =

- sinl 0 cos 0

The problem is to choose a real angle, OSVD, such that

R(OSVD)T AR(OsvD) E (2.2)

[13] gives a method of selecting OSVD given A.

However, what is really of interest is sin OSVD and cos OSVD, not OsvD itself. If the

matrix multiplication of (2.2) is carried out, with

here the result is

where q 0, the result is

cos OSVD sinl OSVD p q os OSVD sin OSVD 1 i 0'

-sin 0SV) cos vD q r -sin OSVD cOS SVD 0 o 2

where o1 and 2 are the singular values of A. Expanding this through multiplication,

14

it is found for the bottom left element and top right element of Z that

q(,:os2 OSVD - Sin OSVD) + (- r)(cos SVD sin OSVD) = 0.

rTo solve for cos OSVD and sin OSVD, the substitution

cos OSVD

sin OSVD

is made, allowing equation (2.3) to b rewritten as

qt2 + (p - r)t - q = 0.

M]Vaking the additional substitution

p -r
2q

allows (2.3) be further simplified,

t2 + 2pt - 1 = 0.

ITsing the quadratic formula and trigonometric identities [3] to solve this eequation

yields

t = -p P+ 1 Cos OSVD 2 ' sin OSVD = t cos OSVD.

The two possible values for t correspond to the two possible rotation angles, one

positive, one negative.

Now, the SVD of A is complete, with

U = V =
cos OSVD

- sin svoD

sin OSVD

cos OSVD I

anld

E = UAVT

15

(2.3)

2.2 SVD of an arbitrary real matrix

In the SVD of an arbitrary real 2x2 matrix, U and V are no longer equal, however,

IJ and V are still orthogonal rotation matrices. This means that two separate angles,

Oleft and O.igh/t, must be chosen to satisfy

(2.4)

1,eft and 0,,ight are chosen directly, or, alternately, a one-sided rotation by a real angle

0 ;yrn is chosen such that

R(Otsym)TA = B, (2.5)

where B is real and symmetric. This allows the SVD algorithm to be performed oil

.5 as in (2.2). Osy.. is chosen such that the angle between the rows and the angle

between the colllmns of A become equal. (2.5) can be rewritten as

R(O, ym)TA

[

cos Y sin YM [W X 1

-sin O9yrn cos tOsyrn l Y z 1 [q r

Solving for q

q = x cos Osym - z siln On = y cos Osym + w sin Osyrm,

and rearranging terms finds that

x cos O9yn - y cos wOsy = w sin 0
sym + z sin Osy,,.

By making the subsitutions

sin 1sy - sin 2 0sym

an d

-+ z
P

16

R(OlBf t)T ARO(iqjlt) E

it becomes simple to find sin Osym, and therefore cos sy7n -

sin Osy 1 cos OY = -

This yields the one sided Givens rotation necessary to make A symmetric. So the

SVD of an arbitrary, real 2 x 2 matrix can be expressed as

R(OSVD)R(Osym)TAR(OSVD) =

This can be rewritten as in (2.4), if Oleft = SVD + Osyn, and right = SVD-

2.3 SVD of an arbitrary complex matrix

An approach similar to that suggested in [7] and [4] for computing the SVD of an

arbitrary complex matrix is often chosen. Initially, a complex matrix

M = AeiA BeiB 1
Cei9 c DeiOD

is first multiplied by a modified complex Givens rotation to zero out the bottom

left element. The method of [7] has been slightly modified such that the top left

element becomes real after the Givens rotation. To accomplish this, the modified

coimplex Givens rotation is separated into a unitary transform, followed by a real

Givens rotation. First, M is pre-multiplied by the unitary transform

L 0 e iO'

where 0 = -A, and 0, = -Oc, yielding

[A Be i(OB-OA)
THM = C Dei(OD- °c)

17

then a real Givens rotation, G(O)

G()T [cos sin],
-sin cos ~

with 4 = tan- (), is performed. Given A and C, cos 4' and sin 4 are easily computed.

They are
C A

cos = A + sin b =

The Givens rotation yields

M' = G() T THM = [A' B']
0 Diei D'

where

A' = A cos 4 + C sin ,

which is real. These two steps can be combined into one left-sided unitary transfor-

mation matrix L(4, Oa, y,)

ei8 cos 4 g'C r sin 1
L(', Oa, O,)T = G(O)TC = ei i

-e2i ° sin 4 eiOt cos J

L(, O,, O,) is considered to be a modified complex Givens rotation [4]. A stan-

dard complex Givens rotation takes this modified complex Givens rotation and pre-

multiplies it by another unitary transform to produce real diagonal elements. For the

purposes of making the matrix M entirely real, this step can be omitted.

Next, the right column of the matrix is rotated to make the top right element,

B'e iOBI, real. The bottom right element remains complex, and only its angle is af-

fected. Post-multiplying by a simple transformation matrix

T= ei Op

18

where 0, = -BI', yields

A/ B t

M" = M'T = D'e'
0 D ¢ i (%D - % ,)

Finally, the bottom row of M" is rotated to make the bottom right element real. The

bottom left element is unaffected, because it already equals 0. This is accomplished

by pre-multiplying M" by

T6H [O etG6]

where 0s = -(OD'- OB'). This gives

Hml A' B'Tff M"= ['0 D
D'

with A', B', and D' all real. Explicitly,

Ts G(b)TT[, AMT = B']
D'

Then the SVD of an arbitrary real matrix proceeds as outlined above. Starting

with

A = R"g(Z) TT MR,

section 2.2 shows how to find two more rotation angles, Oleft and Oright, that will make

A diagonal. All that remains is to arrange the singular values of A in non-increasing

order. The resulting matrix, after R(Oleft) and R(O,ight) have been applied is of the

form

F =o
[0 2 jr

If Orl < 2, then the matrix needs to be rearranged. This can be accomplished by pre-

19

and post-multiplying E by a transformation matrix

N= [°1 1

If' l > r2, then N can be set to the identity matrix.

The complete SVD algorithm can be expressed as

R(lft)H R(0eft,)H MR(O,ight) R(O,ight2) =

where

R(ieftlt) = TG(Ob)T6,

R(left2) = R(OS.,,)R(OsvD)N,

R(Orighti) = Tv,

R(Oright2) = R(OSVD)N.

Using this method, the SVD of the complex matrix can be thought of as a pair of

two-sided transformations. The first transform produces a real matrix, while the

second set makes it diagonal. It should be noted that because all of the individual

transformation matrices are unitary, the two-sided transformation matrices are also

unitary, and therefore their products are unitary transformation matrices. U and V

are therefore

R(Oleftl)R(left2) = U,

and

R(Oright)R(Oright 2) V=

giving the complete SVD as in (2.1).

20

2.4 SVD of an n x n Matrix

The singular value decomposition has been known for over 100 years, but only

recently have efficient, stable algorithms for computation of the SVD of general ma-

trices been introduced. One algorithm that has been examined is the cyclic Jacobi

method [6]. The original algorithm was intended for finding the eigenvalues of sym-

metric real matrices. It was later modified to perform for the SVD of real, square

matrices. Kogbetliantz [11] showed that it was straightforward to extend Jacobi's

method to arbitrary square complex matrices.

The algorithm begins with an n x n matrix A. First, the pair of off-diagonal

elements, aij and aji, that have the largest combined magnitude, with i < j < n, are

chosen. Indices i and j are chosen such that

laijj2 + ajil2 = max{lapql2 + lapql2},

where p and q represent the index into the matrix for all possible combinations of

p and q, with i $ j and p q. This allows us to select largest off-diagonal matrix

elements for elimination. To eliminate these elements, the matrix

aii aji

aij ajj

is considered. The SVD of this 2 x 2 matrix is performed, which creates zeros at aij

and aji. In order to propagate the effects of the SVD of this submatrix, larger n x 1

rotation matrices are constructed from smaller 2 x 2 transformation matrices T, with

Rpq =--

1, if p = q and p, q i,j,

T11, if p= q = i,
T12, if p = i and q = j,

T21, ifp = j and q = i,

T22, if p= q = j,
0. otherwise.

21

�
I

The entire matrix A is then multiplied by the larger transformation matrices R. Then

the next largest pair of off diagonal elements is chosen, and the process is repeated.

The total magnitude of the off diagonal elements, given by

n n

E lapq 12 + laqp 12 (2.6)
p=l q=p+l

is reduced at each step. When this sum has fallen to below some preset threshold,

the matrix is considered to be diagonal and the process stops.

There are a few problems with actually implementing this algorithm. First, it is

necessary to examine n(n - 1)/2 possible pairs of off-diagonal elements to select the

best pair for elimination. In addition, since this algorithm iterates until the sum of

the off-diagonals, as given in (2.6), has fallen below some acceptable threshold, the

off-diagonal matrix elements must each be examined at every iteration to compute

the sum of their magnitudes.

The first concern is dealt with by [3], where efficiency is sacrificed for completeness.

What is suggested is to simply not consider which off-diagonal pair reduces the total

sum the most. Every pair of off diagonals gets eliminated in turn. Because of the fact

that after each pair of off-diagonals is eliminated, the sum of the magnitudes of the

off-diagonal elements as given by (2.6) is either reduced or stays the same, the extra

computations required using approach do not corrupt the matrix, however, more than

the minimum number of computations will be performed. When this is compared to

the extra complexity required to inspect the entire matrix, the suggested modification

becomes an acceptable tradeoff. Each pass through the matrix eliminating every

possible off-diagonal pair is considered to be a complete sweep.

The second concern is dealt with in [7]. While no proof for the exact rate of con-

vergence of the off-diagonals has been offered, extensive simulations of the algorithm

reveals that the required number of sweeps through the matrix is nearly constant for

a large variety of input matrices. For instance, when matrices of sizes ranging from

n = 4 up to n = 100 were simulated, the difference in the average number of sweeps

and the maximum number of sweeps required was less than 1. It was also found that

22

average number of sweeps required for convergence with n = 100 was only six more

than the average number required with n = 4. This data shows that even for varying

values of n, a fixed number of sweeps can be chosen for the array. By examining the

number of sweeps needed for convergence through simulation with an upper bound

for n, a fixed value can be chosen such that the SVD will complete nearly all the time.

Due to the invariance of the number of sweeps required for convergence for different

values of n, n can be allowed to vary, within limits, with convergence nearly guaran-

teed. In addition, if the matrix has not finished converging to the preset threshold

when the fixed number of sweeps is complete, the off-diagonal elements will have

been steadily reduced througout the computations, and the values on the diagonal

elements will be close approximations of their final values. That is, they will not be

completely unrelated interim results. This means that if this approach is employed,

a near constant processing time is achieved in exchange for possibly having a slight

error introduced in certain cases, making it useful in real-time processing applications.

2.5 Parallel Computation of the SVD

An advantage of the cyclic Jacobi method is that with each elimination of an

off-diagonal pair, only the rows and columns that contain the pair are affected. By

exploiting this fact, the modification suggested by [3], where every possible pair is

eliminated, becomes significantly less time consuming to implement than if each elim-

ination is performed sequentially. Because only the two rows and two columns that

contain the pair are affected by each elimination, up to n/2 eliminations can be per-

formed simultaneously. The time for a complete sweep through the matrix is now, at

best, n - 1 time steps, where each elimination requires one time step. This reduces

the time required from O(n2) to O(n).

A parallel ordering scheme is suggested in [2] that can be used to maximally exploit

the parallelism possible through this algorithm, insuring that it only takes n- 1 time

23

steps to complete a sweep. This parallel ordering is illustrated for the n = 8 case:

(1,2) (3,4) (5,6) (7,8)

(1,4) (2,6) (3,8) (5,7)

(1,6) (4,8) (2, 7) (3, 5)

(1,8) (6,7) (4,5) (2,3)

(1,7) (5,8) (3,6) (2,4)

(1,5) (3,7) (2,8) (4,6)

(1,3) (2,5) (4,7) (6,8)

where (i,j) means that an elimination of aij and aji takes place.

This ordering naturally suggests an implementation on a parallel array of n x n

processing elements, however, the amount of communication required to realize this

implementation is enormous. At some point, each processor has to communicate

with every other processor. It is unwieldy to implement an array in which each

processor has a direct communication link to every other processor for any reasonably

sized array. The alternative is fixed communication paths, but this leads to long

communication latencies, requiring excessive times for messages to pass from one side

of the array to the other.

This implementation also requires that every processor element have equal com-

putation ability. However, only a small fraction of the time will any given processor

element have to perform difficult computations, such as those required to generate

the rotation angles. The majority of the time, a processor is applying an angle cal-

culated by some other processor in its row or column. As a consequence, complex

functional units are required for all processors, but are idle most of the time. An

alternative architecture has been suggested that moves the matrix in the array to

simulate the new selection of (i,j) pairs, while allowing the actual processor elements

that calculate the rotation angles to be the same in each time step [3]. Therefore, only

27n processor elements need the complex functional units required for computation of

the rotation parameters, and the remaining elements only need simple multiplication

and addition units to apply the rotation angles. The drawback of this arrangement is

24

that it becomes difficult to arrange the eliminations such that the singular values of

the larger matrix are in non-increasing order down the diagonal when computation

stops because it is difficult to predict where a given data element will be after each

shift of the data. It becomes easier to reorder the matrix after the computation of

t.he singular values has finished.

A possible implementation of this algorithm is described in [3]. A more thorough

implnementatio is described in [7]. An approach similar to that of [7] is taken, with

modifications to increase the efficiency of the algorithm and some changes to increase

the performance of the individual processor elements. Many parallel implementations

of this architecture have been suggested [2, 16, 13], but most attempt to map the algo-

rithm onto existing hardware, similar to the simulations run in [7] on the Connection

IMachine CM-5. To maximize the performance using a real time system, specialized

hardware must be designed, and the algorithm must be modified by shifting the data

to perform the complex angle calculations using a few, fixed processor elements.

25

Chapter 3

Systolic Processor Array

The systolic array represents a unique balance between the possible limitations

of finite processing power and finite communications capability. Too often, a large

problem is tackled by simply throwing more computational units at it, with little heed

to the problem of moving data around. However, at this point in time, processing

power has become inexpensive enough that it is not the limiting factor. No matter

how fast a processing element is, it cannot realize its full potential if it does not have

any data to work on. The systolic array takes both factors into account, and attempts

to achieve an optimal balance, so that the system's resources can be efficiently used.

3.1 The Systolic Array

The notion of the systolic array was first developed at Carnegie-Mellon University

in the late 1970's [12]. The systolic array is a number of relatively simple processing

elements connected together, usually in a linear or mesh-like pattern. Each processing

element communicates only with its nearest neighbor. This arrangement means that

the communications load is distributed throughout the array. As a consequence,

it, also means that only certain types of problems are amenable to implementation

on a systolic array. The problem must be one where a fixed amount of data is

applied against another fixed amount of data repetitively. An example of this type

of problem would be one-dimensional convolution [12]. This problem is well suited

26

-for implementation using a linear array of processors. For this problem, a vector of

data, X is convolved with a vector W of weights, and the result Y is given by

n

Yn = I: mWn-m
m=O

Each element of X is eventually multiplied by every element of W. As a consequence,

a relatively small amount of data goes into the array, and a small amount of data

goes out of the array, but in order to perform the calculations, a large amount of data

must flow throughout the array.

One possible way to implement the convolution is to move the weights and the

data vectors linearly through the array in opposite directions, multiplying them when

they meet, and to have the resulting sums stay in each systolic processor element.

Each weight sees each data point as they pass by each other, and each processor

element accumulates the sum of each datum multiplied by each weight. After the

weights and the data are moved through the array, the convolution vector Y remains

to be shifted out of the processor elements.

It is important to note that only certain problems can be mapped efficiently into

systolic arrays; they are meant to balance communication bandwidth with processing

power. If the problem requires more of one or the other, then a systolic array will be

inefficient. Fortunately, singular value decomposition can be mapped very efficiently

onto a systolic array. To implement the singular value decomposition on a systolic

array, the problem must be broken down into a series of smaller problems. Using

the method for computation of the SVD given in the previous chapter, the problem

can be implemented as a two-step process. First, the rotation angles needed to

perform the SVD must be calculated, and then applied to the rows and columns

of the particular submatrix being diagonalized. To calculate the rotation angles,

the processor only needs access to the four elements of the submatrix being worked

on. After calculating the rotation angles, it can then pass these values on to other

processors that are handling the problem of applying the rotation matrices to the rest

of the rows and columns. Remembering that the problem can be arranged such that

27

only a few processors need to be able to calculate rotation parameters, this would

suggest a possible architecture in which the diagonal processor elements can calculate

the rotation parameters, and the off-diagonal processors apply them.

3.2 The Brent-Luk-Van Loan Systolic Array

A systolic array for computation of real SVD has been suggested in [3]. This

approach starts with an array of processors that is n/2 x n/2 in size. Each processor,

Pij, operates on a small submatrix

[ij ij

Initially, the processor element Pij is loaded with a submatrix of A

a2i-1,2j-1 a2 i- 1,2j 1
a2 i,2j- 1 a2i,2 j

The diagonal processor elements contain the necessary hardware to calculate the

rotation parameters, and the off-diagonal elements only contain enough processing

capability to apply these parameters.

When computation begins, the processors on the diagonals of the array, Pii, 1 <

i < n/2, compute the rotation angles necessary for diagonalization of their data ma-

trix. These rotation matrices affect only the data values in the same row and column

of the array as the submatrix being diagonalized. By utilizing the communication

links suggested in [3], it is possible to move the data through the array to maintain

this special relationship between the data in the diagonal processor elements and

that in the off-diagonal elements, while carrying out the suggested parallel ordering

to maximize computational efficiency. These data flow interconnections can be seen

in figure 3-1. Recalling that parallel ordering coupled with the suggested data flow

paths allowed all angle computations to be carried out in the diagonal processor el-

28

out/l

outy in6

in-y outb

Figure 3-1: Dataflow Connections for Each Processor Element

ements, the processors on the diagonal of the array are more important than those

above and below the diagonal. In fact, the off-diagonal processor elements become

slave processors, applying values generated elsewhere to the data values they con-

tain. The angle parameter connections for the off-diagonal processors are illustrated

in figure 3-2, and the connections for the diagonal processor elements are depicted in

figure 3-3. As shown, the angle connections become very different for the off-diagonal

processor elements and the diagonal processor elements. It should be noted that the

sub-diagonal processor elements, Pij with i > j, have just the mirror image of the

super-diagonal processor element, Pij with i < j, connections. This set of diagonal

Vin Vout

hout

Vout Vin

Sub-Diagonal Super-Diagonal

Figure 3-2: Rotation Parameter Flow for Off-Diagonal Processor Elements

connections represent the complete set of data pathways needed in the array. When

combined, a schematic representation of the data connections for the off-diagonal pro-

29

ina

hi. hi. hout

Vout

Vout

Figure 3-3: Rotation Parameter Flow for Diagonal Processor Elements

cessor elements is produced, as in figure 3-4 and for the diagonal processor elements

in figure 3-5. These connections are assembled into a representation of the complete

Sub-Diagonal Super-Diagonal

Figure 3-4: Complete Interconnections for Off-Diagonal Processor Elements

Figure 3-5: Complete Interconnections for Diagonal Processor Elements

array. The processor interconnections at the edges of the array were handled in a

30

slightly different way to tie up all loose connections. Formally, these interconnections

can be represented by

if y = 1, x = 1;

if y= 1, z > 1;

if y> 1, x = 1;

if y > 1, x > 1.

inylX+1I,
OUtfly" (j in'3Y y-'z.l"~ l

inby-I'X)l

if y = 1, <

if y = 1, =

if y> 1, x <

if y> 1, x =

inay+l,x, if y < n, x = 1; incay+l,z+l, if Y < , X < 2;

in-,y_,~+l, if y < n, > 1; in,/y+l,, if < x = n;
outy = outy 2:

inTy,, if y = 2, X = 1; inyy,,+l, if Y = < ;

in6y ,+l, if y = 2x> l iny, if y z = ,X -
A2oml Yet) 2 '

A complete 4 x 4 array utilizing these interconnections can be seen in figure 3-6. For

Matrix Data Elements

o- Rotation Angles

Figure 3-6: Example Systolic Array

31

in3y,."
OUtaYyIc -(i*

.
2'
n.
2'

n.
2'
n
2-

the array with n = 8, one sweep through the array requires 7 time steps to complete.

In order to move the data to take advantage of the parallel ordering scheme being

used, data must be exported out of the processing nodes according to the interchange

algorithm presented in [3]. At the end of each time step, the data in each processing

element is made available on its outputs for the adjacent processor elements according

to:

if y = 1 and z = 1 then

[

outa

out-

-- a

+- '

out:
outS

4- I

else if y = 1 then

else if x = 1 then

[

[

outa

outy

outa

out7y

- out:
-- 6 out6

+- a
out/

outS

outa - S
else

outy -- i

Then, after the outputs have propagated to adjacent

[

out:
out6

- -- a]
processors,

ca - ina i - in/

y iny 6 inS

This details how data flows in the fully systolic Brent-Luk-Van Loan systolic array.

3.3 Changes to the Brent-Luk-Van Loan Array

The systolic array for real-valued SVD presented in [3] has been used a starting

point and extensive modifications have been applied to it. Such modifications were

necessary because the original design was intended for real-valued matrices. Most

importantly, by expanding this array to handle complex-valued data elements, the

SVD algorithm has changed from a single cycle to a two cycle algorithm. Originally,

32

-- a

(3.1)

4- 6

4-

the complete SVD of the 2 x 2 submatrix contained in each processor was completed

prior to any data interchange. In the array for complex SVD, the angles used to

make the submatrix real can be made available prior to the entire SVD completing.

In addition, the original array was fully systolic; that is, each processor was connected

only to its nearest neighbors. This is not absoultely required, as long as care is taken

when making compromises to not destroy the overall systolic nature of the array.

To improve performance, a compromise was made in that a fully systolic imple-

mentation, in this case, would introduce unnecessary delays. It was decided that

the rotation angles generated by the diagonal processor elements would be broadcast

throughout their rows and columns. In the original array, there was a long delay as-

sociated with propagating rotation parameters to off-diagonal nodes, applying those

rotations in the off-diagonals, and then propagating the resultant data back to the

diagonal element. Only after this could new rotations be started. As a consequence,

each processor element was active for only one in three cycles, with each step in a

sweep of the array being three cycles long. This is a major inefficiency of the Brent-

Luk-Van Loan array.

Complex SVD is a two-stage process which allows some pipelining to take place in

the interest of streamlining computations and increasing efficiency. In [7], the two-step

SVD is arranged so that each processing element is active for two cycles out of four,

with each step of a sweep being comprised of 4 cycles. Even with this advancement,

the efficiency of the array is 50%. It is this efficiency, coupled with external design

considerations, that necessitated the broadcasting of the rotation parameters.

The major disadvantage of a partially systolic architecture to a fully systolic one

is that the partially systolic array has some limitations on the maximum size to which

it can grow. When real-world external design considerations are taken into account,

other, possibly more severe limitations may be placed upon the array size. Without

any external hardware, a fan-out of 10 from the diagonal processors to the off-diagonal

processors is acceptable. Thus, an 11 x 11 array would be possible without the need

for any external logic. This processor array could handle data matrices up to 22 x 22

in size, having 121 processing elements. Assuming that each processing element costs

33

approximately $500 yeilds a total array cost of over $60,000. With the addition of

one additional buffer per diagonal element, effectively quadrupling the limiting size

of the array, the cost for the complete system grows to nearly $250,000. In addition,

as the data arrays become large, the amount of time needed to complete each sweep,

and therefore to diagonalize the entire matrix, grows to be prohibitively long for

use in real-time systems. It is these real-world design limitations, in addition to the

increased performance, that makes the decision to sacrifice the fully systolic nature

of the array suitable.

It should be noted, however, that the individual processor elements have been

designed in such a way that they do contain all of the necessary hardware for a fully

systolic implementation. Only the internal programming of the processors would need

to be, changed, in addition to the timing control and the wiring of the array. The fully

systolic implementation requires a different number of cycles per sweep step, and a

different amount of time per cycle. The details of the data interchange in a two-step,

conmplex-valued, fully systolic array are given in [7].

Knowing that the rotation parameters will be broadcast throughout the array,

the processor cycles can be optimized in such a way that the overall efficiency of the

array increases to each processor being active for two cycles out of three, with each

step in a sweep through the matrix being comprised of three cycles. The actions of

each processor during the three cycles are summarized in table 3.1. The off-diagonal

Cycle Diagonal processor Off-Diagonal processor

Calculate angles to make ma- Idle
trix real

Apply angles that made sub-
2 Calculate angles for real SVD matrix in diagonal processor

real
3 Finish applying angles for real Apply angles from diagonal

SVD processor real SVD

Table 3.1: Processor Cycle Usage

processors are only active for 2 out of 3 cycles. Because there are n(n - 2)/4 more

34

off-diagonal than diagonal processors, this limits the efficiency of the array.

The algorithm used in the processor elements is a direct adaptation of the al-

gorithm given in section 2.3. For the first cycle, the diagonal processor elements

calculate the component angles of 0e,ftl and rightl, which are the angles needed to

make the matrix real and upper triangular. Next, these angles are made available to

the off-diagonal processors, which were idle during the first cycle. During the second

cycle, the diagonal processor elements first compute the angles needed to make the

real, upper diagonal matrix symmetric, and then the angle needed to make it diago-

nal. These angles are then broadcast. During this cycle, the off-diagonal processors

apply the rotation angles previously received. For the third cycle, the diagonal proces-

sor elements finish applying the rotation angles needed to make the matrix diagonal.

To make all of the rotation angles available as early as possible, use of the rotation

angles in the diagonal elements is delayed until the third cycle. At this point, the

off-diagonal processors also make use of these angles, applying them to the rest of

the matrix. At the end of the third cycle, the data matrix is interchanged between

processors as given in the interchange algorithm in (3.1).

Following the data interchange, the process repeats for a specified number of

sweeps through the array. At this time the off-diagonals have converged to values

below a certain preset threshold. The data is available to be unloaded from the array.

To rapidly load and unload the array, a second set of interconnections, along the

columns of the array, have been inserted. When the array is to be initially loaded,

the data enters the top of the array and is passed down the array by rows until the

array is full. After the array is loaded, the data connections down the columns are

no longer used, and remain dormant until the processing is complete, at which time

the data is unloaded out the bottom of the array. Separate communications channels

were provided for loading and processing due to the fact that the method by which the

data is inserted into and extracted from the array is implementation dependent, and

the flexibility of the array is compromised by assuming that certain pathways always

exist. Therefore, having extra channels for loading and unloading was considered an

acceptable design tradeoff because this allows the core processor elements to remain

35

unchanged for a variety of implementations.

Although the unitary matricies U and V from (2.1) are being generated, they are

not being saved. Only the final result matrix, E, is retained. It would be simple to

construct additional hardware that attaches to the edges of the array and collects the

rotation matrices being generated by the diagonal processors. These matrices can be

multiplied together to recover U and V.

36

Chapter 4

Systolic Processor Elements

The highest possible computational throughput while maintaining a reasonable

cost are the primary design goals of the processor elements used in the systolic array.

When considering the compute engines used in the array, the assumption made is

that each node has a specified number of communication channels for transmission of

the matrix data rotation angles. The functionality of the processors has been dictated

by the mathematics of the algorithm, however, the implementation details have not

been restricted beyond this criteria.

4.1 Processor Element Design

There are two major design methods that might have been used to implement the

individual processors: they could have been constructed from off-the-shelf parts like

commercial digital signal processors, or they could be designed using custom VLSI

parts. In order to meet the design goals of the system, it was found that implemen-

tation of the individual nodes in commonly available commercial parts would have

been complicated and expensive. The individual nodes would have needed a DSP

in addition to external hardware to handle the I/O requirements and program store.

This would have increased the cost and complexity. In addition, the algorithm calls

for complicated functions, in the form of trigonometric routines or square roots. Ex-

isting DSP's do not implement these algorithms in hardware, so their computation

37

is accomplished using a multi-cycle iterative routine, which adversely affects perfor-

mance. In addition, a DSP includes some features that would go unused in the systolic

architecture.

By implementing the design in custom VLSI, the processor can be made algo-

rithm specific. Functional units can be added or removed depending on whether or

not they are needed. In addition, different functional units that offer varying levels

of performance while maintaining the same functionality can be used, allowing for

performance tradeoffs in the interest of reducing cost. With the common availability

of high-level design tools, and accessibility to fabrication resources, the total cost for

a VLSI implementation is lower than for a DSP-based system.

In addition to the price/performance advantage that VLSI implementations can

offer, there is a great deal of flexibility in the design details of the processor. For

example, the processor can be designed to use an arbitrarily large word size. The

algorithm in question can be simulated to determine the amount of round-off error

introduced through the computations, and the processor word size can be adjusted

accordingly. Commercial DSP's are available in a few word sizes, usually 16 or 24 bit,

and beyond that, they typically use floating point representations. In a design such

as this, to have 24 bits of accuracy in the final result may be require a 26 bit internal

representation. In custom VLSI, this is simple to realize. In a commercial DSP, it is

often necessary to use double length representation, which invariably requires more

computational time to implement. The VLSI implementation allows a previously

unavailable match between the hardware and the algorithm.

4.2 Functional Unit Design

To calculate the singular value decomposition, it is necessary to calculate cer-

tain trigonometric functions. The algorithm presented in section 2.3 presents an

implementation that trades these trigonometric functions for square roots and in-

verse square roots. This tradeoff was made in the interest of simplicity. Making this

change allows the algorithm to deal explicitly with the sine and cosine of the rota-

38

tion angles and not the angles themselves. The angles are not needed, so it would

be inefficient to calculate them. Also, by broadcasting the sine and cosine of the

rotation angles instead of just the angles, the off-diagonal processor elements do not

need complicated functional units. They implement a matrix multiplication, which

only requires multiplication and addition. Simplicity in the off-diagonal processors

has been traded for communication bandwidth, since twice as much data is now being

sent from each diagonal processor.

The decision to calculate the SVD algebraically, as opposed to trigonometrically,

dictated a change in the functional units. There have been many designs presented

for efficient computation of the inverse and the square root [10, 8, 5, 9]. Expanding

on these works, a fast interpolation cell was constructed for computing either the

square root or the inverse square root of a value in 6 clock cycles, which is noticeably

faster than any other multi-cycle method. Extensive research has gone into numer-

ical methods for these computations. Iterative routines require a non-constant time

for completion, making instruction scheduling difficult. Having a constant-time func-

tional unit for these calculations allows the processor central controller to be simpler,

and therefore smaller.

Another advantage to this cell is that most trigonometric functions can be imple-

mented in a reasonable time with the addition of external hardware that would be

present in almost any design, such as a multiplier. The interpolation cell adds to the

flexibility of the design; it could be re-used in another system that had no need for

trigonometric functions, or, by making use of the inverse square root capability and

a multiplier, it could be used as a divider. One of the design goals of this system was

to allow the functional units to be useful in other designs, and the interpolation cell

was found to be the most flexible.

Other implementations of the SVD on systolic processor arrays [7, 4] make use of

CORDIC [20] functional units. The CORDIC algorithm is primarily used for direct

implementation of geometric problems. It can calculate sines, cosines, tangents, arc

sines, arc cosines, arc tangents, products, square roots, and quotients. However, to

implement each fiunction, a particular CORDIC unit must include hardware specific to

39

the computation. To calculate a value, the CORDIC algorithms iteratively converge

to the desired result at a linear rate of one bit of output per time step. This means that

for each angle calculation using 24-bit internal word representations, it takes a full

24 clock cycles to complete. As the word size increases, the amount of time required

for the computations increases linearly. While the CORDIC algorithms represent a

common set of algorithms for direct implementation of a wide variety of functions,

improved performance is achieved by using a smaller number of optimized cells that

implement specific functions.

In comparison, the functions that the CORDIC engines calculate can be simulated

by a few more cells in less time, and the performance benefit of the interpolation cell

grows as the desired word size increases. The amount of time required for computation

of functions in the interpolation cell increases at a rate significantly less than linear

as word size increases. The interpolation cell is discussed in chapter 5. The CORDIC

implementations may be less complicated, using more regular design, but the amount

of area they require is comparable to the area required for the interpolation cell.

While the CORDIC engine can perform direct computation of the square root,

however, it is much slower due to the performance limitations inherent in its design.

The amount of time required to perform the square root of a reasonably large word can

be greater than the time required for a general-purpose DSP which uses an iterative

method. While the CORDIC algorithms present methods for making very powerful

functional units, the flexibility they offer is outweighed by the amount of time they

require for processing.

4.3 Processor Element Architecture

One of the key issues in the design of the processor elements was for the im-

plementation to be useful as a flexible framework for a variety of algorithm specific

processors. They were designed to make no assumptions about the data flow through

the processor that might limit their flexibility. This regular design of the processor

elements also makes the inclusion or exclusion of functional units simple, yielding an

40

open architecture.

The architecture that was used required that all functional units be connected

to at least one of two operand busses, and one result bus. Data storage is handled

through a register file. A functional unit works by reading one or two parameters

off of the operand busses, and presenting its result on the result bus. By enforcing

a standard interface for all functional units, it becomes easy to make changes in the

set of functional units contained in a given processor. Although some efficiency may

-be lost through requiring every result to be written back into the register file, any

performance gain achieved by providing short cut paths between the functional units

would be outweighed by this limitation on the design's flexibility and generality.

The basic blocks used in these processors included complex multipliers, complex

adders, register files, interpolation cells, barrel shifters, and off-chip input/output

blocks. The block-level design for the off-diagonal processor can be seen in figure 4-1

and for the diagonal processor in figure 4-2, where the A and B busses represent

the operand busses and the E bus represents the results bus. The only part of

the processors that depends on which functional units are installed is the central

controller. This unit must be designed with every change to the processor. However,

by using a high-level description of the controller's functionality in a form closely

resembling assembly language, the effort required to implement changes is minimal.

As can be seen in figures 4-1 and 4-2, the functional units of the off-diagonal

processor are a subset of those in the diagonal processor. The difference between the

two processors is in the controller. This similarity can be used in an attempt to keep

prototyping costs down. One chip can be designed that implements the functionality

of both processors. The controller unit could be modified to examine some external

state input to tell the processor whether or not it is on a diagonal of the array. If it is,

it runs the diagonal processor routines, and if it is not, it behaves as an off-diagonal

processor, and does not use its interpolation cell or its barrel shifter. This single part

is useful for small prototyping runs, as only one processor needs to be fabricated.

Having the controller for the processor elements as a separate unit, as opposed

to being distributed throughout the design, allows more freedom in the design of

41

I

.2

I L

A

*

A

B

E

Figure 4-1: Block Diagram of Off-Diagonal Processor Element

the controller. It is currently implemented as a finite state machine, using a PLA

lattice to store the program. However, the program can be implemented in the form

of an internal or external program store that could be dynamically loaded. In this

configuration, which would not require extensive changes, the processor could function

as a small, application-specific digital signal processor. The particular algorithm

could be loaded at run time, and could be changed at any time, even when the

processor is running. Thus, a new class of custom DSP's could be created where the

designer is free to specify the capabilities necessary for a particular application. It

would not be limited to an application-specific integrated circuit, because it would

be programmable.

Additional flexibility is gained by having all of the functional units share inputs

and outputs. This insures that only the necessary control information was required

42

Complex
Adder

_.m

Complex
Multiplier

[,,1,,,,,,,

Input
Controller Register File Output

(6 Channels)

.

--ddlk
- i l I

VP-=01bo.

V

L~~~~~~
L= =

VP-
mmallo.

^ - -

L--....----J .

-- i

-

l

M

A

l _ I _
Ah.- .

Figure 4-2: Block Diagram of Diagonal Processor Element

at the inputs to the cell. For example, if true and complement values of a control

signal were required, only the true signal is propagated; the complementary signal is

generated locally. While this may have made for more complicated functional units,

with each unit typically requiring a small section of random logic used for control

signal generation, it made for a more standard interface. The flexibility afforded

by this is that multiple versions of the same functional unit can be created, with

differing levels of performance and size. For instance, a complex multiplier might

have a start control input, a busy control output, two operand inputs A and B, and

one result output E.

Three different multipliers were created in the course of this design. One design

used the fastest available cells, which used large numbers of parallel carry paths and

43

other speed optimizations. The second model used more space conservative design

techniques, but was essentially the same architecture, with the first two performing

complex multiplication by using four real multipliers and two real adders, allowing for

a complete complex multiplication in a single cycle. The third design, made further

tradeoffs in an attempt to minimize area. It used a single multiplier of the type used

in the second model, and two real adders. It had registers to hold the temporary

values, and it required four clock cycles to complete a computation. It multiplied the

real part of A first by the real part of B and saved it, then by the imaginary part of

B and saved that. Next it repeated these steps with the imaginary part of A. Finally,

it summed the real parts and the imaginary parts.

By requiring a standard interface with start and busy inputs, multi-cycle compu-

tations are provided for. In the first two multipliers, the busy input could just be tied

to the start input. In the third multiplier, the controller that handled the multiplica-

tions would also have to generate the busy signal given the start signal. Requiring

a least common denominator set of interface signals can cause some inefficiencies,

but at the same time, it provides a level of abstraction for the designer that makes

it much simpler to meet design objectives about performance and cost. Since the

three multipliers all shared a common interface, they could be used interchangeably,

depending on the area and time requirements of the system. The first multiplier was

an order of magnitude faster and larger than the third, which shows that there can

be a wide variance in performance and size, with identical functionality. The layout

area, and computation times for these three multipliers can be seen in table 4.1.

Multiplier I Multiply Time (nsec) Area (mm 2)
1 40 124.98
2 80 45.90
3 350 13.67

Table 4.1: Comparison of Three Different Complex Multipliers

Every attempt has been made to provide hierarchical levels of abstraction through-

out the design of the processors. Individual functional units can be hand optimized

44

for the best performance, with no change required in the overall design. As much of

the design as possible has been automated, so that the designer can focus on what

is needed, as opposed to how to get it. However, some of this abstraction can cause

inefficiencies in the system. In the example implementation, discussed in chapter 7,

the provision for multi-cycle addition and multiplication has been removed, because

this feature greatly increases the complexity of the controlling program, as status

lines must be monitored after each instruction to determine when the functional unit

has completed its computation. The size and performance of the single cycle im-

plementations were found to be acceptable, removing the need for the multi-cycle

implementations.

There is a tradeoff of simplicity versus performance. As was the case with the

multi-cycle provision, by limiting some of the functionality of the individual units,

the levels of abstraction start to disappear; the designer is no longer insulated from

implementation specific details. However, with small modifications at the highest

levels of the system, large performance gains can be achieved. As the modifications

affect the inner workings of elements in the design, the performance benefits of op-

timizing the design for a specific algorithm decrease, to the point where the benefits

that the abstraction provide to the ease of design outweigh the potential improve-

ments. Exactly where this threshold lies depends on the performance requirements

of the processor.

45

Chapter 5

Fast Interpolation Cell

There exist a number of classical methods for designing hardware for computa-

tion of only a few mathematical functions. Typically, any digital signal processing

hardware will contain some combination of multipliers and adders. For algorithms

that require more complicated functions, there are few options. For some cases, the

function can be implemented in the form of a look-up table. However, for an input

word size of more than about 16 bits, the memory required becomes prohibitively

large. For some functions, iterative routines, in which an initial guess is successively

refined until it is considered to be a match to the desired value, can be used. In

order to be able to realize a function in an iterative algorithm, there must exist a

way to evaluate the error in the estimate. An example of such a function would be

the square root. While it is not possible to find the square root of a number x using

only multiplications and additions, it is possible to evaluate how close an estimate y

is to /i. This is accomplished by examining the error function, given by e = x - y2.

Based on this error, y is modified to minimize e.

Even though certain functions can be implemented using iterative routines, the

execution time required depends on the goodness of the initial estimate, how quickly

the chosen minimization routine converges, and on the rate of change of the function

itself. To make the abstraction that the functional unit requires a fixed amount of

time to complete, which makes instruction scheduling significantly less difficult, the

amount of time allocated to the algorithm needs to be long enough that it will converge

46

even in the worst case. This leads to inefficient implementations where the processor

sits idle as the routine may complete early. This inefficiency can be reduced by either

allowing for variable processing time, or by making use of an entirely different method

that works in fixed time. The latter approach was chosen because it offers increased

efficiency without additional complexity in the processor controller.

5.1 Interpolation

An alternative to iteration will be considered. For interpolation, the problem is

tlo make an educated guess of the value of the function at any point, given only the

values of the function at selected points. This is accomplished by making assumptions

about the behavior of the function in between the given points. The simplest method

assumes that the function is linear. For a slowly varying function, with the selected

data points fairly closely spaced, this is an acceptable approximation. In this case,

the value of the function f(x) at a given point x is given by

f = x-xif(i) + f (xi+), (5.1)Xi+1 - Xi Xi+l - xi

where xi and xi+l are the points at which the corresponding values of the function f(x)

are given, and f(x) is the interpolated value of f(x). This is a linear interpolation,

where the desired function is modeled as a straight line, and the model is matched to

the actual function at the two points (xi, f(xi)) and (xi+,, f(xi+1)).

The error in the interpolated value can be reduced by choosing a better approxi-

mation to the desired function f(x). It only takes two points to completely determine

a line, so using this as our model for f(x) only allows an exact match of the desired

function at two points. To match more points, a more complicated model must be

choosen. One approach is to expand f(x) into its Taylor series. If x = xi + a then

2

f(xi + a) = f(xi) + af'(xi) + !f"(xi) + , (5.2)

where f(xi), f'(xi), f"(xi), ... are known, allowing an accurate approximation for

47

J(x). It is important that a is small, and 0 < a < 1, so that an + l is less than than a .

Choosing a according to these rules allows the subsequent terms in (5.2) to become

less important. This important result allows an extra degree of freedom in choosing

the desired accuracy for the approximation of f(x). Using the linear model, the only

way to increase accuracy is to choose more closely spaced values for f(xi). A design

parameter h can be selected, with h = xi+ - xi that specifies the spacing in the

lookup table. In addition, the substitution a = hp, with a as in (5.1) can be made. p

now represents the distance between points given in the look-up table and the desired

point in terms of the interpolation point spacing h, and 0 < p < 1. The accuracy can

be improved by having multiple lookup tables supplying values for f(n)(x). Another

design parameter, m, can be chosen to provide lookup tables for f(?L) with 0 < n < m.

For descrete computations, it is more appropriate to store the values in tables of

finite differences. The finite difference of f(x) evaluated at point x is given by

An f() = f(x + m + nh) - f(x + m).

The derivative of f(x) can be approximated by

f(x) = f(x+h)-f(x)
h

Defining

f(x) = f(X + m+ nh) - f(x+m-2nh),

[19] allows (5.2) to be rewritten as

.fi((xi + hp) = {(1 - p)f(xi) + pf(xi + h)}+

{E2S02f(xi) + F262f(x,)}+ (5.3)

{E4 4f(xi) + F464f (xi)} +...

48

where

E2(p) = F2(1-p) = -p(p-l)(p-2)/3!,

E4(p) = F4(1 -p) = -(p + l)p(p- l)(p- 2)(p- 3)/5!,...

If only the first two terms in (5.3) are used, a two point linear interpolation is per-

formed. Use of the first four terms corresponds to four point cubic interpolation, and

so on [19]. For the four and higher point interpolations, the goal is to match the inter-

polation function to the original function and the first and higher derivatives at the

end points to provide a better approximation. This can be verified by differentiating

(5.3) successively with respect to p, while observing

f()(a + ph) = f(n) + pf(n+l) (a)
- f(n) + p[f() (a + h)- f(n) (a)
= (1 - p)f(n)(a) + pf()(a + h).

Considering 0 < p < 1, the ratio

E4 p2 _ 2p -3
E 2 20

does not vary greatly over the domain of p [19]. We can find a mean value for this

ratio, k,
k p2 j 2p - 3 - .18333.

0 20

However, it has been shown that a more effective value is obtained if the mean value

is not weighted equally over the entire range. The accepted value is k = -.18393 [1].

By calculating this value for k,the substitution can be made

6s2f(x) = 62f(x) + k64f(x),

which realizes the benefits of a six point interpolation, at the expense of placing

limitations on the choice of parameters in the look-up tables. For this substitution

to be allowed, the look-up table spacing must be slightly reduced. This substitution

49

is known as Comrie's Throwback. Specifically, these equations allow for the most

accurate interpolation when h is several orders of magnitude smaller than x, and the

differences, 6, are kept reasonably small.

With this modification,a complete six point interpolation can be written as func-

tion as

fi(xi + hp) = {(1 - p)f(xi) + pf(xi + h)} + {E262of(Xi) + F262 f(xi)}, (5.4)

with E2 and F2 as previously defined. It has been shown that limiting the size of the

values in the look-up table constrains the error in (5.4) to be proportional to h6, which

allows for very little memory consumption. Substituting g(xi) = f(xi + h) - f (xi),

allows (5.4) to be rewritten in slightly simpler form,

fi(xi + hp) = {f(xi) - pg(xi)} + {E262f(Xi) + F2 2o0f(xi + h)}, (5.5)

with g = f(xi + h) - f(xi), and E2 and F2 as previously defined. This format suggests

a possible implementation. Given the input, it is easy to calculate p, E2, and F2 . This

implies only f(xi), g(xi), 2, f(xi), and ,,, = 2,f(xi + h) need to be looked up.

62nof(xi) and S62of(Xi + h) are just sequential values in the same look-up table. Thus

only three look-up tables are required: f(xi), g(xi), and Sg2of(xi) .

An important attribute of this implementation is that the only items specific to

any given function are these three lookup tables. The remainder of the algorithm

makes few assumptions on the function to be implemented, other than the fact that

the function and its first few derrivatives must be continuous. While these restric-

tions may limit this algorithm's approach for estimating arbitrary functions, it is an

acceptable trade-off for the speed with which it can calculate these specific values.

The size of the lookup tables varies with the function being implemented, but they

are usually quite small.

To keep the lookup tables as compact as possible, the input to the interpolator

must be normalized. For the square root and inverse square root, the input is normal-

ized to be .25 < x < 1, making the output for the square root function .5 < f(x) < 1,

50

and for the inverse square root 1 < f(x) < 2. One advantage to the square root

and inverse square root functions is that one half the number of shifts applied to the

input value should be applied to the output in the appropriate direction to undo the

effects of the normalization stage. Functions that do not share this property, such

as trigonometric functions where simple binary normalization is not possible, require

larger lookup tables. The normalization, in addition to the lookup tables, must be

modified for each function implemented.

This approach provides a simple, fast way to compute a large class of functions

in fixed time that otherwise require iterative functions or large lookup tables. These

difficult functions are now implemented using only a few table look-ups, multiplica-

tions, and additions. In addition to being able to implement functions that previously

were too difficult to compute in reasonable time and space, the algorithm separates

out the computations that are specific to a given function, that is the structure of

any implementation independent of the required function. To implement multiple

functions, the only additional hardware needed are look-up tables, making this cell

flexible and useful for a wide variety of applications.

5.2 Interpolation Cell

The functional element that performs the interpolation can be implemented in a

variety of ways. If layout area were of no concern, equation (5.5) could be implemented

directly, with 3 real multipliers and three real adders. However, the layout would be

large. Instead, the compromise was made that only one multiplier and one adder were

needed. In addition, there were 3 lookup tables, 3 registers to hold interim results, and

a barrel shifter used to normalize the input. There was a small finite state machine

that controlled the process. The complete computation required six clock cycles to

complete. The activities performed in each cycle can be seen in table 5.1. A block

diagram of the cell data path can be seen in figure 5-1.

To keep all subcells as small as possible, extensive simulation of the algorithm was

performed to determine how many bits were needed for internal representations to

51

Figure 5-1: Block Diagram of Fast Interpolation Cell Data Paths

52

Cycle Calculation

1 Compute p(l - p) and save in PQ register

2 Calculate (2 - p)PQ and save in Temp register.

3 Calculate &f(O)Temp and save in Accum register.

4 Calculate (p + 1)PQ and save in Temp register.

5 Calculate 6,f(1)Temp and add to and save in Accum register.

6 Calculate pg, add to and save final value in Accum register.

Table 5.1: Interpolator Cycle Computations

insure that the output was accurate to within one least significant bit. The calculation

of (5.5) was constrained to allow at most one bit of error in each of the three terms,

so that the output could have at most three bits of error. The input word was chosen

to be 24 bits wide, which, for the square root and inverse square root, necessitated

the f(x), g(x), and 6 ,(x) to be 25 bits, 18 bits, and 18 bits wide respectively. This

allowed an output word width of 27 bits, of which 24 were always valid. After any

necessary truncation, the output would be 24 bits wide, with an average of 1/2 bit of

error. The values in the look-up tables were adjusted in an attempt to minimize this

error.

The input word width was also 24 bits. To reduce the latency required for compu-

tation, the input value was normalized, in a single cycle, to within .25 < x < 1, with

the most significant bit having the value of .5. The input was assumed to be unsigned;

otherwise, the output would be complex. However, the algorithm does not require

this. This normalization is necessary to keep the error to within the desired bounds.

After computations on the output of this cell are complete, the final value is shifted

by the inverse of the amount that the original input required for normalization to

reduce errors because even simple computations between two numbers could always

introduce at least one bit of error. This approach attempted to insure that any error

that was introduced later would be in unused bits. To delay the inverse shift until

later, the cell output was kept in a mantissa-exponent form; the cell output consisted

of the 24 bits of mantissa, and 5 bits of exponent, making the output resemble a

53

block-floating point value rather than a fixed-point value.

To implement two functions using a single interpolation cell, a single bit was

brought into the lookup tables that allowed for the selection of one of two output

values for any input. In addition, this function select line was extended to the nor-

malizer, as this subcell must be altered for each function implemented. Fortunately,

for the square root versus inverse square root, the only change required was to invert

the sign of the exponent when the inverse square root is computed. To calculate the

exponent, the number of shifts applied to the input was divided by 2 using a right

shift by one bit. This operation requires almost no hardware to translate the input

shifts to the output exponent.

It was found that the algorithm itself, making use of the modifications suggested

by Comrie, was capable of providing computations to over 30 bits of accuracy with

less than one bit of error. The only modification that is required is tpo scale up

the subcells to the new word size, until values much larger than 30 bits need to be

computed. In addition, care was taken to design using in a high-level language, so

that the word width was parametric and cell generation was automated. Separate

programs were written to generate the appropriately sized lookup tables given the

word width. This cell is uniquely versatile because additional functions may be added

with little effort, and the accuracy of the design can be quickly and easily altered to

the requirements of the overall processor algorithm.

54

Chapter 6

LAGER Silicon Assembly System

Until recently, digital integrated circuit design has been dominated by few individ-

uals with the necessary training to learn all of the subtle issues involved with VLSI

layouts. Recently, however, this has started to change. One example of a system

that attempts to make VLSI more usable is the LAGER silicon assembly system. It

consists of a suite of tools that allow for the specification of a system design in a

high-level language. It also allows for hierarchical designs that minimize the required

design time, while achieving the best possible performance. In addition, it attempts

to shield the designer from the subtle details of integrated circuit design. While this

ease of use comes at the price of less than optimal layouts, the results are very usable,

and are available in a fraction of the time.

6.1 The LAGER Tools

The LAGER system is a complete set of silicon design tools created by many in-

stitutions [17]. Each tool performs a small part of the overall design process. Because

the system is constructed as a framework of tool sets, new capabilities can easily be

added to the system. For example, design data can be input in the form of a struc-

ture description language (SDL) file or a schematic representation from Viewlogic

System's Viewlogic or LAGER's VEM. All of these supported input formats trans-

late the design information into a standard intermediate format that can be passed

55

as input to the next level of tools.

The blocks that comprise every design come from a variety of libraries. The

libraries are specialized for several different types of designs: one is specialized for

fixed width datapath driven designs, another for designs based on individual logic

elements, and a variety of other design criteria. To use a library in a design, each

library requires a specialized structure processor and layout generator, which are

the tools that create layouts from the desing specification. The structure processor

determines the overall structure of the design, performs any translations between

logical and physical groupings, as in expanding the specification of a mulibit unit into

multiple occurances of a single bit wide cell. The layout generator actually assembles

the layout cells from the library into a complete design that meets preset input and

output specification. This standard interface makes it possible to use a variety of

libraries in a design. However, only one library may be used at any level of the

hierarchy. This is because the inner workings of each library may be different, so the

layout generators and structure processors only need to be capable of manipulating

cells from the associated library.

While this limitation may seem restrictive, the hierarchy is the strength of the

system. Certain libraries may be better for certain functions than others. Having

multiple levels of hierarchy allows one level of a design to be modified, possibly by

making use of different libraries, without affecting the overall desing. This permits

changes at the low levels of the design, such as improved performance or reduced

area, to not require changes throughout the design. Certain libraries may be able to

generate more efficient versions of logically equivalent cells. This gives the designer

added flexibility in creating the design. Certain parts may be constructed in a variety

of ways to determine the best design solution. In the interest of performance, the

system attempts to recreate only the parts of the design that have changed when

compiling from design specification to silicon layout.

Although each library can have its own layout generator and structure processor,

the final output from these routines must be a standard file format, so that a single

layout generator can assemble all of the blocks of the system. This program, Flint,

56

performs all of the routing between the subcells in any design. It attempts to gather

all of the blocks in a design and arrange them so that the routing between them is

feasible, and as efficient as possible. This is an enormous task, which would take

excessive computation time and complexity to automatically compile large designs.

For this reason, the placement and routing operations can be performed interactively.

Often, simply by rearranging the locations of the subcells, the efficiency of the routing

can be significantly improved.

While one of the overall design goals of the LAGER system was to allow for

system specification through behavioral descriptions, this is still not possible. There

are, however, utilities that allow for the creation of complicated finite state machines

and combinatorial logic using a simple behavioral descriptions. The desired logic is

described in the behavioral description system language (BDS), which is processed

by standard logic optimization routines, and can be used to generate a design based

on standard logic cell parts or the AND-OR planes for programmable logic arrays or

finite state machines. This allows for FSM-based controllers to be generated using a

behavioral description language that closely resembles assembly code.

One of the greatest benefits of the system is that, given the input in the form of

a structural description language, there are facilities provided for parameterization

of the design. It is possible to create designs where important parameters, like the

datapath width, are required only at compilation time as the layout generation is

occurring. Because SDL is implemented using LightLisp, most of the standard lisp

operators are available. Using these operators, it is possible to specify, for example,

control line widths in terms of the logarithm of the datapath width. This high-level

processing allows very complicated designs to be constructed, with many different

parameters being internally calculated from a few inputs. The input values can be

passed down through the hierarchy, allowing the same subcell to be used in different

parts of the design using different parameter values in each instance.

The entire system provides an unprecedented level of flexibility in design and

implementation. The layout generators and structure processors are sophisticated

programs, capable of laying out complex, non-uniform cells. For example, the most

57

significant and least significant bits of a subcell often need different connections than

the other bits. These routines can handle this type of variation. This allows for

very complex library cells to be constructed. Multi-bit cells, like adders, registers,

and multipliers, only need to have bit slice representations laid out by hand in the

library. The processors can assemble them, using an instruction file, into a larger,

full-width representation. This arrangement helps to keep the libraries small, while

still maintaining design flexibility.

6.2 Design Hierarchy

The design of the diagonal and off-diagonal processor elements made extensive use

of the hierarchy available through this system. The subcells were designed to be as

general as possible, while requiring only the minimum number of control connections.

The only design parameters required for the overall system were the width of the

internal data bus, and the number of registers in each processor. All other design

parameters were derived from these. Some assumptions were made at certain levels

of the design about the width of certain busses; internal requirements necessitated

that they have minimum width, but these limitations were easily adhered to.

A block-level diagram of the diagonal processor can be seen in figure 4-2 and for

the off-diagonal processor in figure 4-1. These block diagrams show the top-level of the

design. The file dependencies for the top level of this design can be seen in figure 6-1.

Only the file breakdown for the diagonal processor will be shown, because the off-

diagonal processor contains a subset of the function units in the diagonal processor.

The files used for this design are listed in appendix A. Each of the top-level cells

is a functional unit with logic around it to provide the bus input/output functions.

The tristate buffers and control signal generation logic is included at this level. The

names of files taken from the supplied cell libraries are underlined.

The individual functional units, the multiplier, the adder, and the top level of the

interpolator, can be further broken down as shown in figure 6-2. The design structure

of these functional units is predominantly vertical, as seen in this figure. The tree

58

Figure 6-1: Design Hierarchy for the Top Level of the Diagonal Processor Element

does not branch frequently because an extra level of hierarchy is often needed to use

a single part from a cell library. One level is needed to translate the part from the

library, with library specific interfaces, into a part with standard interfaces. This

extra level of hierarchy does not have significant overhead, but its presence is one of

the drawbacks of the system.

The system controller can be seen in figure 6-3. This cell is very simple because

the functionality of the controller is realized using the behavioral description file,

diagctl .bds. For the off-diagonal controller, this file is replaced by offdiagctl .bds.

The hierarchy of for the barrel shifter and the register file are shown in figures

6-4 and 6-5, respectively. One of the basic cells of the register file, scanreg2t, is a

modified version of a library cell. This specialized cell was constructed because the

layout efficiency of the register file functional unit increased by an order of magnitude

when the tristate buffer outputs were incorporated into each of the registers as op-

posed to being added as an additional level of hierarchy. This illustrates the tradeoff

of design time verses layout efficiency. The easiest solution, from a design standpoint,

to just tack the buffers onto the registers in the form of additional parts from the

library. However, by creating hand optimized parts, thereby expanding the library,

dramatic reductions in size are achieved.

59

The most complicated functional unit in the entrie design was the interpolator.

'The hierarchy for this unit is shown in figures 6-6, 6-7, 6-8, and 6-9. The look-up

table ROM's were automatically generated by translateing a file of data values into

a complete SDL file to be used as a PLA lookup table. The numerous subcells in

the top level of the interpolator presented a problem for the placement and routing

routines. The number of wires that needed to be routed for this design surpassed the

limitations of the Flint automatic router. To complete the design, it was necessary

to arrange the subcells by hand to minimize the routing distance.

One of the shortcomings of the LAGER system is the compatibility between the

different tools. Because the system has been constructed using programs from a wide

variety of institutions, subtle incompatibilities are evident. For instance, different li-

bIaries may assign different names to power supply connections, which prevent them

from being connected to cells from other libraries. The different origins of the system

are most evident in the cell libraries. The level of duplication between the libraries,

and the incompatibility between them, can lead to layout inefficiencies, such as the

extra levels of hierarchy that may be required. The restrictions on library compati-

bility often require extra, unwanted levels of hierarchy. It may be preferable to have a

single library, with compatible layout generators and structure processors that allow

parts from different libraries to be combined.

One of the most severe limitations for placement and routing is the fact that

each subcell was represented by the smallest rectangle that encloses the subcell. This

means that a significant area was left unused if the subcell had a non-rectangular

shape. In addition, when the subcells were laid out using Flint, very little care was

taken make the layouts rectangular. To achieve any reasonable level of efficiency in

the layout required that the automation that is available in Flint could not be used.

The majority of the layout had to be done interactively.

Despite these problems, the amount of time required to lay out a design using this

system is significantly less than traditional methods. If this tool set is viewed as a

starting point, then the next generation of tools should produce much more flexible

and efficient designs. The system as a whole is extremely functional; the next step is

60

to optimize it. With the increased processing power of modern workstations,improved

routing methods can be employed for better designs. The time required to lay out a

design by hand will continue to increase as circuits become more complicated. Soon,

the benefits obtained from hand designs will be outweighed by the extra time required

for layout. This system allows for fast prototyping of very complicated parts. When

combined with the increasing availability of fabrication facilities, this will help to

make integrated circuit system prototyping the most cost and time efficient was to

design, prototype, and implement custom hardware.

61

Figure 6-2: Design Hierarchy for Adder, Multiplier, and Top Level of Interpolator

62

Figure 6-3: Design Hierarchy for Processor Controller

Figure 6-4: Design Hierarchy for Barrel Shifter

63

Figure 6-5: Design Hierarchy for Register File

interp

-A--

-4

Figure 6-6: Top Level Design Hierarchy for Fast Interpolation Cell

64

From Grom Deltarom

2tolmux

myclock

3tolmux normalizez

interpcntl

inc

addsub register

-A--
multipliez

r .

!

i
.

.

.

Figure 6-7: Design Hierarchy for Fast Interpolation Normalization Subcell

I

nterpctl. bds

Figure 6-8: Design Hierarchy for Fast Interpolation Cell Multiplier, Adder, and Con-
troller

65

interpctl

fsm bdsvn

I

I

r �
.

Figure 6-9: Hierarchy for Fast Interpolation Cell Incrementor and Register

66

Chapter 7

Realization

The approach presented here has been tailored to allow for flexibility in the specific

realization. However, this design was created with a specific purpose in mind. It was

designed to be used for direction of arrival calculations for an adaptive array system.

Because it is to become part of a larger system, the specifications for input and output

word size are determined by the other components. With this information in mind,

the architecture was tailored to these values when compromises on the generality of

the system had to be made.

7.1 Specifications

The data format for used in the realization of this system is in the form of 32-bit

complex numbers, with 16 bits of real data and 16 bits of imaginary. Data words of

this size are adequate to provide an at least 90 dB signal-to-noise ratio for the entire

system. Internally, there were two supported data formats; 32-bit complex and 32-bit

block floating point real. Because large portion of the computations for complex SVD

are performed on real values, it was considered advantageous to support an extended

precision real data type.

The 32-bit real representation was driven by the input and output of the interpo-

lator. The interpolator inputs a 24-bit real number with no exponent, and outputs a

24-bit number, with an 8-bit exponent. Thus, the output of the interpolator cannot

67

be fed directly back into the interpolator, since the exponent would be discarded. This

would be useful for computation of the fourth root of a number, but as that is not

needed for this algorithm, it was considered to be an acceptable tradeoff. The reason

that this data type was supplied was that in the diagonal processor, all the complex

data becomes real early on. In an attempt to limit the error in every computation,

24 bits was allowed upon translation to being fully real. Most of the time, a value

became real through multiplication by its conjugate, as in magnitude calculations.

Because of this, the multiplier was modified to allow a mode where the input was a

complex number and its conjugate, and the output was a 24-bit real value. To deal

with these values, the complex adder had to be modified to allow for a mode that

could add two 24-bit real numbers.

For the most part, the exponent was just carried through the system, without

being affected by many of the functional units. In fact, no provision was made to

handle operations on two 24-bit numbers with different exponents. If the need arose,

the a barrel shifter is available in the system to apply the exponent to the mantissa.

This was used when two real numbers had to be manipulated, and their exponents

were not identical, and for conversion from real data to the 32-bit complex data used

by the rest of the system.

The addition of this data type did not require excessive additional space. Due

to the fact that this data type was not fully supported for all operations, most units

could be modified by adding only a small amount of control logic. Specifically, the

exponent was seldom used given that this would have significantly increased the size

and complexity of the functional units. In order to limit the additional logic required,

the real data type used the same data paths as the complex data type. Instead of

providing connections for 24 bits of real data, 16 bits of complex data, and 8 bits of

exponent, the added 8 bits of real data and 8 bits of exponent were sent along the

data paths normally used for the 16 bit imaginary part of a complex value. Thus,

the destinction between a real and complex number is entirely in software. There is

no physical way tlo tell the difference.

As the additional data type was added to the existing system, care was taken to

68

insure that the functional units would be backward compatible with simpler designs.

The units that were modified to allow the real data computations were altered so that

if this ability is not needed in other designs, the additional control inputs can be a fixed

value, and the parts will behave exactly as they had before the modification. Designs

that will not use these modifications will not require any increase in complexity.

The real data type will certainly help to reduce the error through the system,

thereby justifying the extra design effort required. The cycle time for the completed

parts is expected to be between 5 and 10 MHz, possibly faster. This should allow for

for use in most real-time systems.

7.2 Implementation Difficulties

The largest problem with the complete design was design efficiency. Due to the

operation of Flint, the floorplanner, there was unused space between the cells in the

final layout. Flint requires all subcells to be rectangular, which can lead to inefficien-

cies for irregularly shaped subcells. The impact of this layout problem can be reduced

through careful interactive operation of Flint. By recognizing where the blank spots

are, and re-arranging the cells by hand into the most rectangular a region as possible

can generate the best results. However, even the best interactive layout generated by

Flint is still inefficient. For a 100,000 transistor implementation, supporting 32-bit

data type, the overall area for the diagonal processor was found to be approximately

11mm per side, for a total area of 121mm2, when implemented in a process with

A = 0.6/,m. In the same process, the off-diagonal processor was found to be approx-

imately 9.57nmm on a side, for a total area of 90.25mm2. The actual layouts can be

seen in figure 7-1 for the diagonal processor, and in figure 7-2 for the off-diagonal

processor.

Additional performance can be achieved as fabrication technologies improve. How-

ever, this design can only be implemented in a technology supported by the LAGER

system, and at the current release, the most advanced process supported is = 0.6/tm.

One way to decrease layout area and increase overall performance is by hand

69

Figure 7-1: Layout of Diagonal Processor

70

--.---.. ---m :a ; w w . 0 -"" - ... -- -.. - . . . I . I m · iv v m ~ W.Ii V w : ~ % w W = -----

Figure 7-2: Layout of Off-Diagonal Processor

71

optimization of the library parts. By examining the design and determining what

groupings of parts seem to occur frequently, new library parts that contain the func-

tionality of two or more parts can be constructed. As mentioned in the previous

example, the combination of a register and a tristate buffer allowed for an order of

magnitude decrease in size of the register file. The same customizations could be

performed on a number of other subcells in the interpolator.

To maximize performance, the original design used two separate pairs of operand

busses and two result busses, so that computations could go on in parallel. The

algorithm can be re-ordered in such a way as to exploit this parallelism if it is available.

However, due to the feature size limitations imposed by existing fabrication facilities,

the two operand bus design is all that can be supported using the current technology.

As it stands, the design, offers reasonable performance without requiring addi-

tional parallelism. The effort required to make changes to the overall design now

that the framework exists is minimal. Through hand optimizations, the size, and

therefore cost of fabrication can be decreased, while at the same time increasing the

overall performance. Despite the implementation difficulties presented, the benefits

from having a short design time, high performance VLSI solution available makes this

approach a viable solution to a difficult problem.

72

Chapter 8

Conclusions

8.1 Future Work

To maximize the performance of the LAGER system, the efficiency of the routing

tool needs to be improved. This can be accomplished by either creating a new tool

to replace or augment the performance of Flint, or using a more customized library

allowing for design realization in fewer subcells. By having a more complete set of

cells to work from, the number of cells needed would decrease. This would decrease

the load on Flint, making the overall routing simpler.

Additionally, support for the new sub-micron processes needs to be included.

These smaller, faster processes will allow for more functionality on a chip. By de-

creasing the minimum feature size, for example, a processor could have two multipliers

to increase the performance on algorithms that support parallelism. The power of a

given processor could be increased even further.

As the power of these designs increases, the need for specialization increases even

more. This means that the optimal solution to a problem can no longer be an imple-

mentation in off-the-shelf components. As the power increases, the cost will inevitably

decrease, making this type of solution even more attractive. With the inclusion of

more powerful, specialized units, custom processors become a more attractive solu-

tion.

Specifically, for this processor, the interpolation cell should be optimized, as it

73

takes up approximately one third of the silicon area. If the number of subcells could

be reduced, the overhead associated with subcell interconnections could be reduced.

With 32-bit wide data paths, each extra data connection requires a large amount of

space.

With an optimized interpolation cell, and careful hand placement of the subcells,

this design could become much more compact, allowing for better overall performance.

The design itself should be extensively simulated to determine where the performance

bottlenecks are and to gauge the overall performance. Once the design has been thor-

oughly tested and refined, it will be ready to be fabricated for prototyping purposes.

To keep initial costs down, one chip that allows for the functionality of both processor

types should be designed and fabricated.

Following verification of the prototypes, the design framework can be taken and

used to build custom processors for a variety of uses. A new controller should be

designed that allows for external program storage, or at least some means of down-

loading a set of instructions to be executed. This would allow individual processors

to perform different tasks at different points in the system, while still allowing for

the flexibility of having processors optimized to the particular specifications of that

system.

8.2 Concluding Remarks

In this thesis, a framework for a pair of custom processors designed to implement

the singular value decomposition of a complex matrix was developed. The systolic

array suggested allows for a unique match between the computation and communi-

cation requirements of this algorithm. The algorithm was designed to be executed

in a fixed time, so that the inclusion of this processor array in a real-time system is

feasible.

Additionally, the processors were created using a new silicon compiler system,

allowing for design specification in a high-level language, while maintaining the per-

formance advantage of customized VLSI. The framework can be used as a starting

74

point for a new class of signal processors whose operation can be optimized for a

.given algorithm. The decreased design time and increased performance will improve

as tools become more capable, to the point where custom VLSI is considered to be

the rule, rather than the exception.

75

Appendix A

Source Code

A.1 SDL Code

A.1.1 2tolmux.sdl

This file is a shell to combine 2tolmuxdpp. sdl and 2tolmuxlogic. sdl. It is required

for combining parts from the standard cell library and the datapath library. It is

intended to implement a 2 to 1 multiplexer. If SEL is low, then A is routed to OUT. If

SEL is low, then B is routed to OUT.

2; to 1 mux
; sel = O, out = A
; sel = 1, out = B
; 5 october 1993 ccn
(parent-cell 2tolmux)

(parameters N)

(structure-processor SIVcheck)
(layout-generator Flint b) 10

(subcells (2tolmuxdpp MUX ((N N)))
(2tolmuxlogic LOGIC)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

(instance MUX (
(INO A (width N)) 20

76

(IN1 B (width N))
(SO SEL)
(SO_ SO_)

(OUT OUT (width N))
(Vdd Vdd)
(GND GND)

))

(instance LOGIC (
(SEL SEL) 30

(SO_ SO_)

(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal A (DIRECTION INPUT)) A (width N))
((terminal B (DIRECTION INPUT)) B (width N))
((terminal OUT (DIRECTION OUTPUT)) OUT (width N))
((terminal SEL (DIRECTION INPUT)) SEL) 40

((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM EDGE BOTTOM)) GND)

))

(end-sdl)

A.1.2 2tolmuxdpp.sdl

This file comprises the actual multiplexer used in the file 2tolmux. sdl. However, it

requires both true and complement of the selection lines, so those will be generated

elsewhere. The library cell it uses, mux2tol, comes from the datapath library.

(parent-cell 2tolmuxdpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (mux2tol MUX ((N N))))

(net Vdd (NETTYPE SUPPLY)) 10
(net GND (NETTYPE GROUND))

(instance MUX (
(IN1 INO)
(IN2 INI)
(SELl SO_)
(SEL2 SO)

77

(OUT OUT)
(Vdd Vdd)
(GND GND) 20

))

(instance parent (
((terminal INO (DIRECTION INPUT)) IN0)
((terminal IN1 (DIRECTION INPUT)) IN1)
((terminal OUT (DIRECTION OUTPUT)) OUT)
((terminal SO (DIRECTION INPUT)) SO)
((terminal SO_ (DIRECTION INPUT)) SO-)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND) 30

))

(end-sdl)

A.1.3 2tolmuxlogic.sdl

rThe logic used to generate the complement of the data select line SEL for the 2 to 1

multiplexer is implemented using an inverter from the standard cell library.

(parent-cell 2to 1 muxlogic)

(layout-generator Stdcell)

(subcells (invflO3 INV))

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

(instance INV (10
(Al SEL)
(O SO_)

))

(instance parent (
((terminal SEL (DIRECTION INPUT)) SEL)
((terminal SO (DIRECTION OUTPUT)) SO_)
((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)

20

(end-sdl)

78

A.1.4 3tolmux.sdl

This file is a shell to combine 3tolmuxdpp. sdl and 3tolmuxlogic. sdl. It is required

for combining parts from the standard cell library and the datapath library. It is

intended to implement a 3 to 1 multiplexer. If SEL [1:01]=00, then A is routed to OUT.

If SEL [1 :0]=01, then B is routed to OUT, and if SEL [1: :0]=lX, then C is routed to OUT.

; 3 to 1 mux
; sel = O, out = A

sel = 1, out = B
set = 3, out = C
(sel = 2, out = A)

, 5 october 1993 ccn
(parent-cell 3tolmux)

(parameters N)
10

(structure-processor SIVcheck)
(layout-generator Flint v b)

(subcells (3tolmuxdpp MUX ((N N)))
(3tolmuxlogic LOGIC)

)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

20

(instance MUX (
(INO A (width N))
(IN B (width N))
(IN2 C (width N))
(SO SEL (net-base 0))
(S1 SEL (net-base 1))
(SO_ SO_)

(SL SI)
(OUT OUT (width N))
(Vdd Vdd) 30

(GND GND)
))

(instance LOGIC (
(SEL SEL (width 2))
(SO_ SO_)

(S1 SI_)

(Vdd Vdd)
(GND GND)

40

(instance parent (
((terminal A (DIRECTION INPUT)) A (width N))

79

((terminal B (DIRECTION INPUT)) B (width N))
((terminal C (DIRECTION INPUT)) C (width N))
((terminal OUT (DIRECTION OUTPUT)) OUT (width N))
((terminal SEL (DIRECTION INPUT)) SEL (width 2))
((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)

)) 50

(end-sdl)

A.1.5 2tolmuxdpp.sdl

This file comprises the actual multiplexer used in the file 3tolmux. sdl. However, it

requires both true and complement of the selection lines, so those will be generated

elsewhere. The library cell it uses, mux3tol, comes from the datapath library.

(parent-cell 3tolmuxdpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (mux3tol MUX ((N N))))
;(subcells (mux2iol (MUXA MUXB) ((N N))))

10

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance MUX (
(INO IN0)
(INI INI)
(IN2 IN2)
(SO SO)

(S1 S1) 20

(S S)
(OUT OUT)
(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal INO (DIRECTION INPUT)) IN0)
((terminal IN1 (DIRECTION INPUT)) IN1)
((terminal IN2 (DIRECTION INPUT)) IN2) 30

((terminal OUT (DIRECTION OUTPUT)) OUT)
((terminal SO (DIRECTION INPUT)) SO)
((terminal SO (DIRECTION INPUT)) SO_)

80

((terminal S1 (DIRECTION INPUT)) S1)
((terminal SI (DIRECTION INPUT)) S_)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl) 40

A.1.6 3tolmuxlogic.sdl

The logic used to generate the complement of the data select lines SEL [1 :0] for the

3 to 1 multiplexer is implemented using inverters from the standard cell library.

(parent-cell 3tolmuxlogic)

(layout-generator Stdcell)

(subcells (invflO3 (INVO INV1))

)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

; 10
(instance INVO (

(Al SEL (net-base 0))
(O SO_)

(instance INV1 (
(Al SEL (net-base 1))
(O S1_)

))
~~~~~~~~~~~~~~~~~~~~; ~~~~~~20

(instance parent (
((terminal SEL (DIRECTION INPUT)) SEL (width 2))
((terminal SO_ (DIRECTION OUTPUT)) SO)
((terminal S1 (DIRECTION OUTPUT)) S_)
((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)

))

(end-sdl)

A.1.7 addsub.sdl

This file is a shell to combine 3tolmuxdpp. sdl and 3tolmuxlogic. sdl. It is required

for combining parts from the standard cell library and the datapath library. It is

81



intended to implement an adder/subtracter. If SUB is low, then the unit adds A and

B, and presents the sum on SUM. If SUB is high, then B - A is presented at C. This cell

is used in the fast interpolation cell.

, adder/subtractor
; if sub = O, sum = a + b
;if sum = 1, sum b - a

ccn 5 october 1993
(parent-cell addsub)

(parameters width)

(structure-processor SIVcheck)
(layout-generator Flint v b) 10

(subcells (addsubdpp ADDER ((N width)))
(addsublogic LOGIC)

)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

(instance ADDER (
(A A (width width)) 20

(B B (width width))
(SUB SUB)
(SUBINV SUBINV)
(OUT SUM (width width))
(Vdd Vdd)
(GND GND)

))

(instance LOGIC (
(SUB SUB) 30

(SUBINV SUBINV)
(Vdd Vdd)
(GND GND)

(instance parent (
((terminal A (DIRECTION INPUT)) A (width width))
((terminal B (DIRECTION INPUT)) B (width width))
((terminal SUM (DIRECTION OUTPUT)) SUM (width width))
((terminal SUB (DIRECTION INPUT)) SUB) 40

((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)

(end-sdl)

82



A.1.8 addsubdpp.sdl

This is the actual adder used in the addsub. sdl cell. In addition, each bit of the A

input is XOR'ed with the SUB signal, and the SUB signal is fed into the carry input of

the adder. This takes the 2's complement inverse of A when SUB is high. Each bit of

A is inverted, and 1 is added to this value, making it negative. These subcells come

from the datapath library.

(parent-cell addsubdpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (invpass NEG ((N N)))
(adder ADDER ((N N)))

10

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance ADDER (
(INI INVOUT)
(IN2 B)

(CIN SUB)
(CININV SUBINV) 20

(COUT COUT)
(COUTINV COUTINV)
(OUT OUT)
(Vdd Vdd)
(GND GND)

(instance NEG (
(IN A)
(OUT INVOUT) 30
(CNTL SUB)
(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal A (DIRECTION INPUT)) A)
((terminal B (DIRECTION INPUT)) B)
((terminal OUT (DIRECTION OUTPUT)) OUT)
((terminal SUB (DIRECTION INPUT)) SUB) 40
((terminal SUBINV (DIRECTION INPUT)) SUBINV)

83



((terminal COUT (DIRECTION INPUT)) COUT)
((terminal COUTINV (DIRECTION INPUT)) COUTINV)
((terminal Vdd (TERMTYPE SUPPLY) ) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

A.1.9 addsublogic.sdl

The inverse of the control signal SUB for the addsubdpp. sdl cell is generated using

an inverter from the standard cell library. This cell is combined with addsubdpp. sdl

in the addsub. sdl file.

(parent-cell addsublogic)

(layout-generator Stdcell)

(subcells (invflO03 INV))

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

(instance INV ( 10
(Al SUB)
(O SUBINV)

))

(instance parent (
((terminal SUB (DIRECTION INPUT)) SUB)
((terminal SUBINV (DIRECTION OUTPUT)) SUBINV)
((terminal Vdd (TERMTYPE SUPPLY) (TERM_EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)

)) 20

(end-sdl)

A.1.10 bus2adder.sdl

This is a complex adder/subtracter that has been modified to be able to work on

real block floating point values. The complex data type has an equal number of

real and complex bits. The real data type is fixed to 24 bits in the interest of design

simplicity. The exponents of the addends are not handled when performing real adds.

The exponent of the B input is just carried through to the output. This is acceptable if

84



the addends have the same exponent. If REALADD is high, an addition using operands

of the extended precision real data type is performed. If it is low, the operands are

taken to be complex. If FUNC is low, the operands are added. If it is high, then B is

subtracted from A. This cell is designed to fit into an architecture with two operand

busses and one result bus. This cell is used in the top level hierarchy of both the

diagonal and off-diagonal processor elements.

;sdl file for width bits real, width bits complex adder that sits in a one bus arch.

; if REALADD, then out = IN + IN, where in is assumed to be 24 bits real, 8 bits

exponent. Exponent bits are assumed to be the same, so B's bits are used.
NOTE: DO NOT USE subtract function with REAL INPUTS..
8 april 1994

(parent-cell bus2adder)

(parameters inwidth outwidth (realBits 24) (exponentBits (- (* 2 outwidth) lo
realBits)))

; note: outwidth <= inwidth

(structure-processor SIVcheck)
(layout-generator Flint b)

(subcells
(cs_adder dual REALADDER ((n inwidth) (csindex

(make-carry-select inwidth)) (g (length (make-carry-select inwidth))))) 20

(cs adder dual IMAGADDER ((n inwidth) (csindex
(make-carry-select inwidth)) (g (length (make-carry-select inwidth)))
(FEEDTHRUS 2) (BUFFER 2) (BITHEIGHT 150) (CELLHEIGHT 118)))

(negator (REALINV IMAGINV) ((N inwidth)))
(bus2out BUSOUT ((N (* 2 outwidth))))
(bus2logic LOGIC )
(2tolmux BMUX ((N (+ exponentBits 1))))

)

(net GND (NETTYPE GROUND)) 30

(net Vdd (NETTYPE SUPPLY))

(instance REALINV (
(IN BBUS (width inwidth) (net-base inwidth))
(OUT BBUSP (width inwidth) (net-base inwidth))
(CNTL FUNC)
(Vdd Vdd)
(GND GND)

))
40

(instance IMAGINV (
(IN BBUS (width inwidth) (net-base 0))

85



(OUT BBUSP (width inwidth) (net-base 0))
(CNTL FUNC)
(Vdd Vdd)
(GND GND)

))

(instance REALADDER (
(a ABUS (net-base inwidth) (width inwidth)) 50

(b BBUISP (net-base inwidth) (width inwidth))
(s OUT (term-base (- inwidth outwidth)) (net-base outwidth)

(width outwidth))
(cin REALCIN)
(Vdd Vdd)
(GND GND)

))

(instance BMUX (
(A BBUSP (net-base 0) (width exponentBits)) 60

(B GND (merge 0 (- exponentBits 1)))
(OUT BMUXOUT (width exponentBits))
(A FUNC (term-base exponentBits))
(B IMAGCOUT (term-base exponentBits))
(OUT REALCIN (term-base exponentBits))
(SEL REALADD)
(Vdd Vdd)
(GND GND)

))
(instance IMAGADDER ( 70

(a ABUS (net-base 0) (term-base 0) (width inwidth))
(b BMUXOUT (net-base 0) (term-base 0) (width exponentBits))
(b BBUSP (net-base (- inwidth exponentBits)) (term-base

(- inwidth exponentBits)) (width (- inwidth exponentBits)))
(s OUT (term-base (- inwidth outwidth)) (net-base 0) (width outwidth))
(cin FUNC:)

(cout IMAGCOUT)
(Vdd Vdd)
(GND GND)

)) BUSOUT

(instance BUSOUT (
(OUT OUT (width ( * 2 outwidth)))
(EBUS EBUS (width (* 2 outwidth)))
(OUTEN OUTEN)
(OUTENINV OUTENINV)
(Vdd Vdd)
((GND GND)

))
90

(instance LOGIC (
(OUTEN OUTEN)
(OUTENINV OUTENINV)
(Vdd Vdd)
(GND GND)

86



(instance parent (
((terminal ABUS (DIRECTION INPUT)) ABUS (width (* 2 inwidth)))
((terminal BBUS (DIRECTION INPUT)) BBUS (width (* 2 inwidth)))
((terminal EBUS (DIRECTION OUTPUT)) EBUS (width (* 2 outwidth)))
((terminal OUTEN (DIRECTION INPUT)) OUTEN )
((terminal FUNC (DIRECTION INPUT)) FUNC)
((terminal REALADD (DIRECTION INPUT)) REALADD)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

100

A.1.11 bus2bshift.sdl

This is a barrel shifter that sits in a two operand, one result bus architecture. This

barrel shifter operates on the 24-bit extended precision real data type. It accepts the

data to be shifted in the upper 24 bits of the A input, and the amount to be shifted is

in the lower 8 bits. This cell is used in the top level of the diagonal processor element.

; sdl file for width bit barrel shifter, with exponent bits of exp. data
; 8 april 1994
(parent-cell bus2bshift)

(parameters busWidth (realBits 24) (exponentBits (-
(realExpBits (ceiling (log2 realBits))))

busWidth realBits))

(structure-processor SIVcheck)
(layout-generator Flint b)

10

(subcells
(bus2bshiftdpp BSHIFT ((N realBits)))
(bus2out BUSOUT ((N busWidth)))
(bus2bshiftlogic LOGIC )
(decoder DECODER ((address realExpBits)))

)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

(instance DECODER (
(address ABUS (net-base 0) (term-base 0) (width realExpBits))
(dec out DECOUT (width realBits))
(Vdd Vdd)
(GND GND)

87

20



(instance BSHIFT (
(IN ABUS (net-base exponentBits) (width realBits)) 30

(OUT OUT (net-base exponentBits) (width realBits))
(CONTROL DECOUT (width realBits))
(LEFTRIGHT ABUS (net-base realExpBits))
(INVLEFTRIGHT INVLEFTRIGHT)
(MSB MSB (merge 0 (- realBits 1)))
(Vdd Vdd)
(GND GND)

))

(instance BUSOUT ( 40

(OUT OUT (width realBits) (net-base exponentBits)
(term-base exponentBits))

(OUT GND (merge 0 (- realExpBits 1)))
(OUT ABUS (width (- exponentBits realExpBits)) (net-base realExpBits)

(ternm-base realExp Bits))
(EBUS EBUS (width busWidth))
(OUTEN OUTEN)
(OUTENINV OUTENINV)
(Vdd Vddl)
(GND GND) 50

(instance LOGIC (
(OUTEN OUTEN)
(OUTENINV OUTENINV)
(LEFTRIGHT ABUS (net-base realExpBits))
(INVLEFTRIGHT INVLEFTRIGHT)
(MSBIN ABUS (net-base (- busWidth 1)))
(MSB MSB)
(Vdd Vdd) 60

(GND GND)

))

(instance parent (
((terminal ABUS (DIRECTION INPUT)) ABUS (width busWidth))
((terminal EBUS (DIRECTION OUTPUT)) EBUS (width busWidth))
((terminal OUTEN (DIRECTION INPUT)) OUTEN )
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

)) 70

(end-sdl)

A.1.12 bus2bshiftdpp.sdl

This is the actual barrel shifter from the bus2bshift .sdl cell. It is taken from the

datapath library. The CONTROL input selects how many bits the input should be

88



shifted by, with only one bit of CONTROL high at a time. if LEFTRIGHT is low, the data

is shifted left, and if it is high, the data is shifted right.

(parent-cell bus2bshiftdpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells
(bshift BSHIFT ((N N))) o10
(mux2tol MUX ((N N)))
(isozero ZERO ((N N))) ; A

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance BSHIFT (
(A A)
(B B) 20

(S CONTROL)
(O OUT)

))

(instance ZERO (
(IN IN)
(OUT A)
(ZERO INVLEFTRIGHT)
(Vdd Vdd)
(GND GND) 30

))

(instance MUX (
(IN1 IN)
(IN2 MSB)
(SELl INVLEFTRIGHT)
(SEL2 LEFTRIGHT)
(OUT B)
(Vdd Vdd)
(GND GND) 40

))

(instance parent (
((terminal IN (DIRECTION INPUT)) IN)
((terminal OUT (DIRECTION OUTPUT)) OUT)
((terminal MSB (DIRECTION INPUT)) MSB)
((terminal CONTROL (DIRECTION INPUT)) CONTROL)
((terminal LEFTRIGHT (DIRECTION INPUT)) LEFTRIGHT)
((terminal INVLEFTRIGHT (DIRECTION INPUT)) INVLEFTRIGHT)

89



((terminal Vdd (TERMTYPE SUPPLY)) Vdd) 50

((terminal GND (TERMTYPE GROUND)) GND)
))

(end-sdl)

A.1.13 bus2bshiflogic.sdl

This file implements inverters for the control signals for the bus2bshiftdpp.sdl

subcell. The inverters used are from the standard cell library. The primary difference

between the inverters used is the drive capability. The cells invf lOX are inverters

with high drive capability for higher values of X.

(parent-cell bus2bshiftlogic)

(layout-generator Stdcell)

(subcells
(invflO03 INVEOUTEN)
(invflOl MSBINV)
(invflO4 MSBINVINV)
(invfl03 LEFTRIGHTINV)

10

(instance INVEOUTEN (
(Al OUTEN)
(O OUTENINV)

))

(instance MSBINV (
(Al MSBIN)
(O MSBINV)

~~~~~~~~~)) to~~~~~~~~~~~~20
(instance MSBINVINV (

(Al MSBINV)
(O MSB)

))

(instance LEFTRIGHTINV (
(Al LEFTRIGHT)
(O INVLEFTRIGHT)

))
30

(instance parent (
((terminal OUTEN (DIRECTION INPUT)) OUTEN)
((terminal OUTENINV (DIRECTION OUTPUT)) OUTENINV)
((terminal MSBIN (DIRECTION INPUT)) MSBIN)
((terminal MSB (DIRECTION OUTPUT)) MSB)

90

((terminal LEFTRIGHT (DIRECTION INPUT)) LEFTRIGHT)
((terminal INVLEFTRIGHT (DIRECTION OUTPUT)) INVLEFTRIGHT)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

40

(end-sdl)

A.1.14 bus2cmult.sdl

This is a complex multiplier designed for use in a two operand, one result bus archi-

tecture. This file is just a shell to but the bus interface logic, bus2logic. sdl onto

the complex multiplier cell cmult. sdl. This cell is used in the top level of both the

diagonal and off-diagonal processor elements.

(parent-cell bus2bshiftlogic)

(layout-generator Stdcell)

(subcells
(invflO3 INVEOUTEN)
(invflOl MSBINV)
(invflO4 MSBINVINV)
(invflO3 LEFTRIGHTINV)

) 10

(instance INVEOUTEN (
(Al OUTEN)
(O OUTENINV)

))}

(instance MSBINV (
(Al MSBIN)
(O MSBINV)

)) 20
(instance MSBINVINV (

(Al MSBINV)
(O MSB)

))

(instance LEFTRIGHTINV (
(Al LEFTRIGHT)
(O INVLEFTRIGHT)

))
30

(instance parent (
((terminal OUTEN (DIRECTION INPUT)) OUTEN)

91

((terminal OUTENINV (DIRECTION OUTPUT)) OUTENINV)
((terminal MSBIN (DIRECTION INPUT)) MSBIN)
((terminal MSB (DIRECTION OUTPUT)) MSB)
((terminal LEFTRIGHT (DIRECTION INPUT)) LEFTRIGHT)
((terminal INVLEFTRIGHT (DIRECTION OUTPUT)) INVLEFTRIGHT)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

)) 40

(end-sdl)

A.1.15 bus2interp.sdl

This is a wrapper file used to put bus interface logic, bus2logic. sdl onto the fast

interpolation cell discussed in chapter 5. It is designed for use in a two operand, one

result bus architecture.

; sdl file for width bit fast interpolator that sits in a one bus arch.
; 23 feb 1994
(parent-cell bus2interp)

(parameters (width 24) busWidth)

;(structure-processor SIVcheck)
(layout-generator Flint b)

~~~~~~~~~~~~~~~~~~~~~; ~~~~~~10
(subeells

(interp INTERP ((width width)))
(bus2out BUSOUT ((N busWidth)))
(bus2logic LOGIC)

)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))
(net PHI (NETTYPE CLOCK))

20

(instance INTERP (
(IN ABUS (width width))
(OUT OUT (net-base (- busWidth width)) (width width))
(SHIFTS OUT (net-base 0) (width (+ (ceiling (log2 width)) 1)))
(FUNC FUNC)
(GO GO)
(BUSY BUSY)
(RESET RESET)
(PHI PHI)
(Vdd Vdd) 30

(GND GND)

92



))

(instance BUSOUT (
(OUT OUT (net-base (- busWidth width)) (width width) (term-base

(- busWidth width)))
(OUT OUT (width (+ (ceiling (log2 width)) 1)))
(OUT GND (merge (+ 1 (ceiling (log2 width))) (- (- busWidth width) 1)

(EBUS EBUS (width busWidth))
(OUTEN OUTEN)
(OUTENINV OUTENINV)
(Vdd Vdd)
(GND GND)))

(instance LOGIC (
(OUTEN OUTEN)
(OUTENINV OUTENINV)
(Vdd Vdd)
(GND GND)

(instance parent (
((terminal ABUS (DIRECTION INPUT)) ABUS (width width) (term-base

(- busWidth width)))
((terminal EBUS (DIRECTION OUTPUT)) EBUS (width busWidth))
((terminal GO (DIRECTION INPUT)) GO)
((terminal RESET (DIRECTION OUTPUT)) RESET)
((terminal BUSY (DIRECTION OUTPUT)) BUSY)
((terminal FUNC (DIRECTION INPUT)) FUNC)
((terminal RESET (DIRECTION INPUT)) RESET)
((terminal OUTEN (DIRECTION INPUT)) OUTEN )
((terminal PHI (TERMTYPE CLOKC)) PHI)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

40

50

60

(end-sdl)

A.1.16 bus2logic.sdl

This is just an inverter used for generating the complement of the bus output enable

signal used by the tri-state inverter in the bus2out. sdl file.

(parent-cell bus2logic)

(layout-generator Stdcell)

(subcells
(invflO03 INVEOUTEN)

)

93



(instance INVEOUTEN (
(Al OUTEN) 10o
(O OUTENINV)

))

(instance parent (
((terminal OUTEN (DIRECTION INPUT)) OUTEN)
((terminal OUTENINV (DIRECTION OUTPUT)) OUTENINV)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

20
(end-sdl)

A.1.17 bus2out.sdl

A tristate buffer used to control whether or not a functional unit presents its value on

the result bus at any given time. This cell is a standard tri-state buffer to be attached

to each functional unit to implement the bus interface logic. The cell requires both

true and complement versions of the output enable signal OUTEN. The complement is

generated in the bus2logic. sdl cell.

(parent-cell bus2out)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells
(trist_buffer EBUF ((N N)))

) 10

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance EBUF (
(IN OUT)
(OUT EBUS)
(CNTL OUTEN)
(CNTLINV OUTENINV)
(Vdd Vdd) 20

(GND GND)
))

(instance parent (
((terminal EBUS (DIRECTION OUTPUT)) EBUS)

94



((terminal OUT (DIRECTION INPUT)) OUT)
((terminal OUTEN (DIRECTION INPUT)) OUTEN)
((terminal OUTENINV (DIRECTION INPUT)) OUTENINV)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND) 30

))

(end-sdl)

A.1.18 busserio.sdl

Data communication between the processors is implemented using a reduced width

semi-serial communication path. In this case, 4 bits are allowed per communication

channel. So it takes 8 clock cycles to transmit a 32-bit value. This is done by have 4

scan registers, and the data is shifted in or out of the register. A fifth register that is

used for controlling the shifters is added. The data can come from one of two places;

a second set of data connections in created for the purpose of loading and unloading

the array.

(parent-cell busserio)

(parameters ioLines busWidth (N (floor (/ busWidth ioLines))))

(structure-processor SIVcheck)
(layout-generator Flint b v)

(subcells (busseriologic LOGIC ((ioLines ioLines)))
(busseriodpp TIMER ((N N)))

) 10
(diotimes (i ioLines)

(subcells (busseriodpp REGISTER ((N N)))
))

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
(net PHI1 (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))
(net PHIlINV (NETTYPE CLOCK))
(net PHI2INV (NETTYPE CLOCK)) 20

(instance REGISTER (
(REGIN ABUS (width N) (net-base (* i N)))
(REGOUT EBUS (width N) (net-base (* i N)))
(SCANIN INPUT (net-base i))
(SCANOUT OUTPUT (net-base i))
(LOAD LOAD)

95



(LOADINV LOADINV)
(SCAN SCAN)
(SCANINV SCANINV) 30

(KEEP KEEP)
(KEEPINV KEEPINV)
(BUSOE BUSOE)
(BUSOEINV BUSOEINV)
(PHIl P1I1)
(PHI2 P11I2)
(PHIINV PHIIINV)
(PHI2INV PHI2INV)
(Vdd Vdcl)

(GND (GND) 40

)

(instance TIMER. (
(REGIN RESETINV (merge 0 (- N 1)))
(SCANIN GND)
(SCANOUT TIMEROUT)
(LOAD TLOAD)
(LOADINV TLOADINV)
(SCAN SCAN)
(SCANINV SCANINV) 50

(KEEP TKEEP)
(KEEPINV TKEEPINV)
(BtJSOE IGND)
(BUISOEINV Vdd)
(PHIl PHI1)
(PHI2 PHI12)
(PHIlINV PHIIINV)
(PHI2INV PHI2INV)
(Vdd Vdd')
(GND GND) 60

(instance LOGIC (
('LOAD LOAD)
(LOADINV LOADINV)
(TLOAD TLOAD)
(TLOADINV TLOADINV)
(SCAN SCAN)
(SCANINV SCANINV)
(KEEP KEEP) 70

(KEEPINV KEEPINV)
(TKEEP TKEEP)
(TKEEPINV TKEEPINV)
(RESET RESET)
(RESETINV RESETINV)
(BUSLD BUSLD)
(BUSOE BUSOE)
(BUSOEINV BUSOEINV)
(START START)
(TIMEROUT TIMEROUT) 80

(INPUITA INPUTA (width ioLines))

96



(INPUTB INPUTB (width ioLines))
(INPUT INPUT (width ioLines))
(IOSEL IOSEL)
(Vdd Vdd)
(GND GND)

(instance parent (
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal

))

ABUS (DIRECTION INPUT)) ABUS (width busWidth))
EBUS (DIRECTION OUTPUT)) EBUS (width busWidth))
INPUTA (DIRECTION INPUT)) INPUTA (width ioLines))
OUTPUT (DIRECTION OUTPUT)) OUTPUT (width ioLines))
INPUTB (DIRECTION INPUT)) INPUTB (width ioLines))
IOSEL (DIRECTION INPUT)) IOSEL)
BUSLD (DIRECTION INPUT)) BUSLD)
BUSOE (DIRECTION INPUT)) BUSOE)
START (DIRECTION INPUT)) START)
LOAD (DIRECTION OUTPUT)) LOAD)
LOADINV (DIRECTION OUTPUT)) LOADINV)
SCAN (DIRECTION OUTPUT)) SCAN)
KEEP (DIRECTION OUTPUT)) KEEP)
KEEPINV (DIRECTION OUTPUT)) KEEPINV)
READY (DIRECTION OUTPUT)) SCANINV)
RESET (DIRECTION INPUT)) RESET)
PHI1 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI1)
PH12 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI2)
PHIINV (TERMTYPE CLOCK)(DIRECTION INPUT)) PHIIINV)
PHI2INV (TERMTYPE CLOCK)(DIRECTION INPUT)) PHI2INV)
Vdd (TERMTYPE SUPPLY)) Vdd)
GND (TERMTYPE GROUND)) GND)

(end-sdl)

A.1.19 busseriodpp.sdl

This file creates the scan registers used in the busserio. sdl cell. The number of

available data connections to the other chips in the array control the number of these

subcells that are created. An additional cell is always created for timing purposes.

(parent-cell busseriodpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (scanreglt REGISTER ((N N))))

97

90

100

110



Vdd (NETTYPE SUPPLY))
GND (NETTYPE GCROUND))
PHI1 (NETTYPE CLOCK))
PHI2 (NETTYPE CLOCK))
PHIlINV (NETTYPE CLOCK))
PHI2INV (NETTYPE CLOCK))

(instance REGISTER (
(IN REGIN )
(BUS REGOUT)
(SCANIN SC(ANIN)
(SCANOITT SCANOUT)
(LOAD LOAD)
(LOADINV LOADINV)
(SCAN SC(,AN)
(SCANINV SCANINV)
(KEEP KEEP)
(KEEPINV KEEPINV)
(BUSOE BUSOE)
(BUSOEINV BUSOEINV)
(PHI1 PHI11)

(PHI2 PI12)
(PHIlIN;V PHIlINV)
(PHI2INV PHI2INV)
(Vdd Vdd)
(GND GND)

(:instance parent (
((terminal
((terminal
((terminal
((terminal
((termninal
((terinital
((termninal
((termllinal
((terminal
((terminal
((terminal
((ternlinal
((t ernlinal
((terinina.l
((ternlinal
((terninal
((terniinal
((terminial

REGIN (DIRECTION INPUT)) REGIN )
REGOUT (DIRECTION OUTPUT)) REGOUT)
SCANIN (DIRECTION INPUT)) SCANIN)
SCANOUT (DIRECTION OUTPUT)) SCANOUT)
LOAD (DIRECTION INPUT)) LOAD)
LOADINV (DIRECTION INPUT)) LOADINV)
SCAN (DIRECTION INPUT)) SCAN)
SCANINV (DIRECTION INPUT)) SCANINV)
KEEP (DIRECTION INPUT)) KEEP)
KEEPINV (DIRECTION INPUT)) KEEPINV)
BUSOE (DIRECTION INPUT)) BUSOE)
BUSOEINV (DIRECTION INPUT)) BUSOEINV)
PHI1 (TERMTYPE CLOCK)(DIRECTION INPUT)) PHI1)
PHI2 (TERMTYPE CLOCK)(DIRECTION INPUT)) PHI2)
PHIIINV (TERMTYPE CLOCK)(DIRECTION INPUT)) PHIINV)
PHI2INV (TERMTYPE CLOCK)(DIRECTION INPUT)) PHI2INV)
Vdd (TERMTYPE SUPPLY)) Vdd)
GND (TERMTYPE GROUND)) GND)

(en d-sdl)

98

(net
(net
(net
(net
(net
(net

10

20

30

40

50

60

___



A.1.20 busseriologic.sdl

The logic needed to generate the control signals for the registers busseriodpp. sdl in

the communications cell busserio. sdl are implemented using standard cell library

parts.

(parent-cell busseriologic)

(parameters ioLines)

(layout-generator Stdcell)

(net Vdd (NETTY'PE SUPPLY))
(nret GND (NETTYPE G(ROUND))

10

(subcells (norf211 (LOADGATE TLOADGATE))
(nanf2l I (KEEPGATE TKEEPGATE))
(nanf31 1 SCANGATE)
(invfl03 (RESETINV BUSOEINV IOSELINV))

(dotimes (i ioLines)
(subcells (aof2201 INMUX)

)
)

~~~~~~~~~~~~~~~~~~~~~; ~~~~~~20
(instance LOADGCATE (

(Al BUSLD)
(B1 RESET)
(01 LOAD)
(02 LOADINV)

))

(instance TLOADGATE (
(Al START)
(B1 RESET) 30

(01 TLOAD)
(02 TLOADINV)

)')

(instance SCANGATE (
(A1 TIMEROUT)
(B1 LOADINV)
(C1 TLOADINV)
(02 SCAN)
(01 SCANINV) 40

))

(instance KEEPGATE (
(Al LOADINV)
(B1 SCANINV)

99

(02 KEEP)
(01 KEEPINV)

))

(instance TKEEPGATE (50

(Al TLOADINV)
(B1 SCANINV)

(02 TKEEP)
(01 TKEEPINV)

))

(instance RESETINV (
(A1 RESET)
(O RESETINV)

)) 60

(instance BUSOEINV (
(Al BUSOE)
(O BUSOEINV)

))

(instance IOSELTINV (
(Al IOSEL)
(O IOSELINV)

70

(instance INMUX (
(Al INPUTA (net-base i))
(B1 IOSELINV)
(C2 INPUTB (net-base i))
(D2 IOSEL)
(O INPUT (net-base i))

))

(instance parent (so
((terminal LOAD (DIRECTION OUTPUT)) LOAD)
((terminal LOADINV (DIRECTION OUTPUT)) LOADINV)
((terminal TLOAD (DIRECTION OUTPUT)) TLOAD)
((terminal TLOADINV (DIRECTION OUTPUT)) TLOADINV)
((terminal SCAN (DIRECTION OUTPUT)) SCAN)
((terminal SCANINV (DIRECTION OUTPUT)) SCANINV)
((terminal KEEP (DIRECTION OUTPUT)) KEEP)
((terminal KEEPINV (DIRECTION OUTPUT)) KEEPINV)
((terminal TKEEP (DIRECTION OUTPUT)) TKEEP)
((terminal TKEEPINV (DIRECTION OUTPUT)) TKEEPINV) 90
((terminal BUSLD (DIRECTION INPUT)) BUSLD)
((terminal START (DIRECTION INPUT)) START)
((terminal TIMEROUT (DIRECTION INPUT)) TIMEROUT)
((terminal RESET (DIRECTION INPUT)) RESET)
((terminal RESETINV (DIRECTION OUTPUT)) RESETINV)
((terminal BUSOE (DIRECTION INPUT)) BUSOE)
((terminal BUSOEINV (DIRECTION OUTPUT)) BUSOEINV)
((terminal INPUTA (DIRECTION INPUT)) INPUTA

(width ioLines))

100

((terminal INPUTB (DIRECTION INPUT)) INPUTB 100
(width ioLines))

((terminal INPUT (DIRECTION OUTPUT)) INPUT
(width ioLines))

((terminal IOSEL (DIRECTION INPUT)) IOSEL)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

A.1.21 cmult.sdl

The complex multiplier used in the top level of the diagonal and off-diagonal processor

elements is capable of multiplying both complex and extended precision data types.

If COMPLEXOUT is high, then a complex multiplication is performed. If COMPB is high,

then the complement of the B input is multiplied by the A. If REALA, then the data

on the A bus is taken to be real, but not extended precision, and the imaginary part

is set to zero.

; sdl file for width z width complex multiplier (a[(- (* 2 width) 1)
:0] = real:imag))

assumes that a,b <= 1.
; ie 010 * 010 = 010

; COMPLEXOUT COMPB OUT

0 0 A * BI (24 bits, exponent = exp(a) + ep(b))
0 1 AI * AI (24 bits, exponent = 0)
; 1 0 A * AI Al - AQ * AQ (16 bits), AQ * BI + AI * BQ (16 bits) 10
1AI *AI + AQ *BQ (16 bits), AQ BI- AI * BQ (16 bits)

; if realA, imag(A)=0
Sunday 8 April 1994

(parent-cell cmult)

(parameters inwidth outwidth (realBits 24) (exponentBits (- (* 2 outwidth)
realBits)))

; note: outwidth <= (- (* 2 inwdith) 1) 20
; note: inwidth => 6

(structure-processor SIVcheck)
(layout-generator Flint b)

(subcells

101

(mult IIMULT ((m inwidth) (n inwidth) (s (length (make-carry-select
(- (* inwidth 2) 3)))) (csindex (make-carry-select (- (* inwidth 2) 3)))))

(mult IQ_MULT ((m inwidth) (n inwidth) (s (length 30

(make-carry-select (- (* inwidth 2) 3)))) (csindex (make-carry-select (-
(* inwidth 2) 3)))))

(mult QI_MULT ((m inwidth) (n inwidth) (s (length
(make-carry-select (- (* inwidth 2) 3)))) (csindex (make-carry-select (-
(* inwidth 2) 3)))))

(mult QQ_MULT ((m inwidth) (n inwidth) (s (length
(make-carry-select (- (* inwidth 2) 3)))) (csindex (make-carry-select (-
(* inwidth 2) 3)))))

(cs adder REALADDER ((N realBits) (NUMGROUPS (length
(make-carry-select realBits))) (GROUPING (make-carry-select realBits)) 40

(CELLHEIGHT 118) (BITHEIGHT 100) (FEEDTHRUS 1) (BUFFER 2)))
(cs adder IMAG_ADDER ((N outwidth) (NUM_GROUPS (length

(make-carry-select outwidth))) (GROUPING (make-carry-select outwidth))
(CELLHEIGHT 118) (BITHEIGHT 100) (FEEDTHRUS 1) (BUFFER 2)))

(negator QQNEG ((N realBits)))
(zeropass AZERO ((N inwidth)))
(3tolmux OUTMUX ((N (* 2 outwidth))))
(cs adder EXPADDER ((N exponentBits) (NUM_GROUPS (length

(make-carry-select exponentBits))) (GROUPING (make-carry-select exponentBits))
(CELLHEIGHT 118) (BITHEIGHT 100) (FEEDTHRUS 1) (BUFFER 2))) 50

(negator COMPNEG ((N inwidth)))
)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

(instance COMPNEG (
(IN BQ (width inwidth)) 60

(OUT COMPBQ (width outwidth))
(CNTL COMPB)
(Vdd Vdd)
(GND GND)

))

(instance II_MULT (
(X AI (width inwidth))
(Y BI (width inwidth))
(P II_PROD (width realBits) (term-base (- (- (* inwidth 2) 2) 70

realBits)))
(Vdd Vdd)
(GND GND)

))

(instance IQ_MULT (
(X Al (width inwidth))
(Y COMPBQ (width inwidth))
(P IQ_PRC)D (width outwidth) (term-base (- (- (* inwidth 2) 2)

outwidth))) so
(Vdd Vdd)

102

(GND GND)

(instance AZERO (
(IN AQ (width inwidth))
(OUT AQP (width inwidth))
((-1NTL REALA)
(Vdd Vdd)
(GND GND) 90

(instance QI MULT (
(X AQP (width inwidth))
(Y BI (width inwidth))
(P QI PROD (width outwidth) (term-base (- (- (* inwidth 2) 2)

outwidth)))
(Vdd Vdd)
(GND GND)

))
100

'instance QQ MULT (
(X AQP (width inwidth))
(Y BQ (width inwidth))
(P QQ_PROD (width realBits) (term-base (- (- (* inwidth 2) 2)

realBits)))
(Vdd Vdd)
(GND GND)

))

(instance QQNE (110
(IN QQ PROD (width realBits))
(OUT NEGQQ PROD (width realBits))
(C1NTL Vdd)
(Vdd Vdd)
(GND GND)

))

(instance REAL_ADDER (
(AIN II PROD (width realBits) (net-base (- realBits 1)) (net-incr

(- 0 1))) 120

(BIN NEGQQ PROD (width realBits) (net-base (- realBits 1))
(net-incr (- 0 1)'))

((-IN Vdd)
(SUM COMPREAL (term-base (- realBits 1)) (term-incr (- 0 1))

(width realBits))
(Vdd Vdd (merge 0 (- realBits 1)))
(GND GND (merge 0 (- realBits 1)))

))

(instance IMAGADDER (130

(AIN IQ_PROD (width outwidth) (term-base (- outwidth 1)) (term-incr
(- 0 1)))

(BIN QI PROD (width outwidth) (term-base (-outwidth 1)) (term-incr
(-- 0 1)))

(('IN (:ND)

103

(SUM COMPIMAG (term-base (- outwidth 1)) (term-incr (- 0 1))
(width outwidth))

(Vdd Vdd (merge 0 (- outwidth 1)))
(GND GND (merge 0 (- outwidth 1)))

140

(instance EXP_ADDER (
(AIN AQ (term-base (- exponentBits 1)) (term-iner

(- 0 1)) (width

(- 0 1)) (width

))

exponent Bits))
(BIN BQ (term-base (- exponentBits 1)) (term-incr

exponentBits))
(CIN GND)
(SUM EXPONENT (width exponentBits))
(Vdd Vdd (merge 0 (- exponentBits 1)))
(GND GND (merge 0 (- exponentBits 1))) 150

(instance OUTMUX (
(C COMPIMAG (term-base 0) (width outwidth))
(C COMPREAL (net-base (- realBits outwidth))

(width outwidth) (term-base outwidth))
(A II PROD (term-base exponentBits) (width realBits))
(A EXPONENT (width exponentBits))
(B COMPREAL (term-base exponentBits) (width realBits))
(B GND (merge 0 (- exponentBits 1)))
(OUT REAL (term-base outwidth) (width outwidth))
(OUT IMAG (term-base 0) (width outwidth))
(SEL COMPB (term-base 0))
(SEL COMPLEXOUT (term-base 1))
(Vdd Vdd)
(GND GND)

(instance parent(
((terminal AI (DIRECTION INPUT)) AI (width inwidth))
((terminal AQ (DIRECTION INPUT)) AQ (width inwidth))
((terminal BI (DIRECTION INPUT)) BI (width inwidth))
((terminal BQ (DIRECTION INPUT)) BQ (width inwidth))
((terminal II PROD (DIRECTION OUTPUT)) II PROD

(width outwidth))
((terminal IQ PROD (DIRECTION OUTPUT)) IQPROD

(width outwidth))
((terminal QI_PROD (DIRECTION OUTPUT)) QI PROD

(width outwidth))
((terminal QQ_PROD (DIRECTION OUTPUT)) QQ_PROD

(width outwidth))
((terminal REAL (DIRECTION OUPUT)) REAL (width outwidth))
((terminal IMAG (DIRECTION OUPUT)) IMAG (width outwidth))
((terminal COMPB (DIRECTION INPUT)) COMPB)
((terminal COMPLEXOUT (DIRECTION INPUT)) COMPLEXOUT)
((terminal REALA (DIRECTION INPUT)) REALA)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

160

170

180

104

190

(end-sdl)

A.1.22 deltarom.sdl

The lookup table used in the interpolation cell is generated from a file of data value.

It has been arranged so that the most significant bit of the input to this lookup table

selects the function being calculated. If it is a zero, then the data for the square root

calculation is provided. If it is a one, then the data for the inverse square root is

provided. This file contains the values for m (xi).

; Automatically Generated PLA cell file to be used as ROM. DO NOT EDIT!
Genereated Monday, 11 April 1994, 06:39:53 AM.

(parent-cell deltarom)

(layout-generator Flint b)

('subcells
(latch LATCH ((width 19)))
(pla ROM (10

(inwidth 9)
(outwidth 19)
(input-plane '(

"010000000"
"101001001"
"000101011Oil"

"001011000"
"001010000"
"001000000"
"101010010" 20

"10011011-"
"00101011-"
"0001-1110"
"001011101"
"1011110l"
"000111100"
"101100011"
"001011100"
"10-100110"
"001000001" 30
"000110100"
"0011111-0"
"000110000"
"-00101010"
"001001-01"
"1001111-0"
"0010-1110"

105

"-00110001"
"0001110-0"
"001011001"

40
"001110111"
"-010-1110"
"000111101"
"10100--11"
"101101011"
"000100101"
"101100101"
"-0-110111"
"00100-010"
"-01-11110"

50
"00-11-010"
"1011111-1"
"-00101000"
"00-1000-0"

"00011-000"
"001100-11"
"000101-10"
"00010000-"
"0010110-0" 60
"001010-00"
"0010-0101"
"001001-00"
"00011101-"
"00010-000"
"100110-01"
"00100-00-"
"000110011"
"000110-0-"
"101110100" 70
"-011-0011"
"001-00000"
"00-100001"
"101101001"
"001000011"
"001010011"
"001110000"
"001011011011"

"001010001"
"001000111" 80
"000100011"
"00110111-"
"00100-101"
"001-011-0"
"001000100"
"000100100"
"0010-0110"
"00110110-"
"001110-10"
"0010101-1"

90
"101011-10"

106

"1011100-1"
"000101-11"
"-00110111"
"00101111-"
"001100-10"
"00110010-"
"-0-11-111"
"001-001--"
"-011-0111" 100
"001101001"
"10111-1-1"
"001110001"
"001111001"
"-011011-1"
"001111000"
"0010011--"
"000101101"
"000111001"
"1011001-0" 110
"101111001"
"001001011"
"001101000"
"000100010"
"0011-0100"
"000100110"
"000110010"
"0011-0101"
"00110-010"
"00111110-" 120
"00110001-"
"0010-0010"
"00-101111"
"0011-001-"
"000101001"
"000101100"
"000110110"
"00111101-"
"00111111-"
"00011111-" 130
"001101011"
"110000000"
"000100111"
"100100-00"
"100100111"
"100110001"
"100100110"
"100100001"
"100100010"
"100101000" 140
"100111101"
"100110010"
"101001011"
"100111011"
"100111010"

107

"100110000"
"100100101"
"100101011"
"100101100"
"100100011" 150
"1010-1010"
"101010011"
"101000111"
"101000100"
"101010100"
"101000101"
"10-111110"
"101001101"
"100101111"
"100111111" 160
"101000000"
"100101101"
"101001100"
"100101010"
"10-100100"
"100101110"
"10100111-"
"100111001"
"100110-11"
"1010000-1" 170
"101011101"
"101011011"
"101010110"
"100111-00"
"101010101"
"101011001"
"10101-111"
" 100101001"
"100110110"
"10-11010-" 1so
"10101111-"
"1010100-0"
"10100001-"
"101101110"
"101011100"
"101010001"
"101101000"
"101011000"
"101100-10"
"101101100" 190
"101111000"
"101110010"
"101101010"
"101110000"
"101000110"
"10100100-"
"101111100"
"101100000"
"10111-110"

108

"1O1 ---- 1" 200
"101111-1-"

))
(output-plane '(

"0000000000010101011"
"0000000000000010010"
"0000000000101000000"
"0000000000000001010"
"00000000000000110000"
"0000000000001100000"
"0000000000000011000" 210
" 0000000000010000000 "
"0000000000000010000"
"0000000000000010000"
"0000000000100010100"
"0000000000000000011"
"0000000001000010100"
"0000000000000000101"
"0000000000100011000"
"0000000000000001000"
"0000000000001011000" 220
"0000000000000010011"
"0000000000000000010"
"0000000000000100101"
"0000000000010000100"
"0000000000000001100 "
"00000000000101000000"
"000000000000000101"
"0000000000001010000"
"0000000000000001100"
"00000000001OOl00ooio 230
"0000000000010011000"
"0000000000000000010"
"0000000001000000111"
"0000000000000010000"
"0000000000000111000"
"0000000010001001010"
"0000000000000011001"
"0000000000000000010"
"0000000000110000100"
"0000000000000001000" 240
"0000000000000000010"
"0000000000000011000"
"0000000001010010000"
"0000000000000000100"
"0000000000000001001"
"0000000001001000010"
"0000000000001001000"
"0000000001100001000"
"0000000010000010100"
"0000000000100100001" 250
"0000000000101000001"
"0000000000000001011"
"0000000000000010101"

109

"0000000001000100001"

"0000000000101000001"
"0000000000000111000"
"0000000000110000000"
"0000000001010100110"

"0000000001010000000"

"0000000010000011100" 260
"0000000000000001000"

"00000000001000000111"

"0000000000100000011 "
"0000000000000101110"

"0000000000111000011"

"0000000000101000111"
"0000000000011010001"

"0000000000100011101"

"0000000000101010011"

"0000000000100011101" 270
"0000000010010101001"
"0000000000010010010"

"0000000000100100110"

"0000000000001000100"
"0000000000100111001"

"0000000010001111000"

"0000000000100100110"
"0000000000010011000"

"0000000000011000001"

"0000000000100110001" 280
"0000000000011000011"

"0000000000001010001"
"0000000001000101100"

"0000000001001011000"

"0000000000100001011"

"0000000000001110000"

"0000000000000110001"
"0000000000000000100"

"0000000000010000000"
"0000000000000100100"

290
"0000000000011100110"
"0000000000001100000"

"0000000000011001110"

"0000000000010111010"

"0000000000001000001"

"0000000000010111100"

"0000000000101100000"
"0000000001100110011"
"0000000001000111110"
"0000000101100010000" 300
"0000000000001101101"

"0000000000101111100"
"0000000000011101001"

"0000000010011011010"
"0000000000011000110"

"0000000010000011111"
"0000000001010111001"

110

"0000000000011000011"

"0000000000011100010"

"0000000000010110001" 310
"0000000000000110011"

"0000000000101001101"

"0000000000011010011"

"0000000000011001000"

"0000000001110101101"
"0000000001101001111"

"0000000001001101111"
"0000000000010110101"
"0000000000010101101"
"0000000000111101010" 320
"0000000000011011111"

"1111111111110000000"
"0000000001111110111"
"1111111000000000100"
"1111111011001000000"
"1111111101000000101"
"1111111010110010000"
"1111111000100110010"
"111111111001001000011"
"1111111010001001001" 330
"11111111110011010000"
"1111111101011000010"
"1111111111000001001"
"1111111110010001001"
"1111111110001100010"
"1111111101000110010"
"i1111111010011100001"
"1111111100001011100"
"1111111100011001001"
"11111110011001100111000" 340
"1111111111000001000"
"1111111111010000110"
"1111111110111000010"
"111111110110010010"
"1111111111010010001"
"1111111110110101000"
"111111111000100000"
"1111111111000111000"
"111111111100111100010"
"1111111110100001011" 350
"11111111110100101100"
"1111111100100101110"
"1111111111000101001"
"1111111011101100010"
"11111101110000010011"
"1111111100110001011"
"1111111111001000100"
"1111111110000111001"
"111111110110000011"
"111111111o010010000" 360
"11111111111011100100,

111

"111111i11011010100"
"1111111111010100110"
"1111111111000001101"
"1111111111010011100"
"1111111111011000011"
"1111111111010110000"
"111111101101100101"
"1111111101100101101"
"1111111111010100000" 370
"11111111111001100010"
"1111111111001100010"
"1111111110101100010"
"111111111111100101000101"

"11111111111011011100"
"1111111111001101110"
"1111111111100101001"
"1111111111010111001"
"1111111111100000110"
"1111111111100111100" 380
"1111111111101101010"
"1111111111101010101"
"1111111111100110011"
"1111111111101001101"
"1111111110110111101"
"1111111110111100101"
"1111111111101110101"
"1111111111011111001"
"1111111111101100011"
"1111111111100000000" 390
"1111111111101110000"

))
(minterm 188)

))

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
(net PHI (NETTYPE CLOCK))
(net PHI1 (NETTYPE CLOCK)) 400
(net PHI2 (NETTYPE CLOCK))

(instance ROM (
(IN ADDRESS (width 9))
(OUT PLAOUT (width 19))
(CLOCK PHI)
(Vdd Vdd)
(GND GND)

))

410(instance LATCH
(IN PLAO1[T (width 19))
(OUT DATA (width 19))
(PHI1 PHI[)
(PHI2 PHI2)

112

(LD Vdd)
(Vdd Vdd)
(GND GND)

))
420

(instance parent (
((terminal ADDRESS (DIRECTION INPUT)) ADDRESS (width 9))
((terminal DATA (DIRECTION OUTPUT)) DATA (width 19))
((terminal PHI (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI)
((terminal PHI1 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHIl)
((terminal PHI2 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI2)
((terminal Vdd (TERMTYPE SUPPLY) (TERM_EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND)(TERM_EDGE BOTTOM)) GND)

))
430

(end-sdl)

A.1.23 diag2.sdl

This file is the core of the diagonal processor elements. It takes as parameters the

number of registers to be tiled into the register file regfile2p. sdl, and the width

to be used for all of the subcells. The data comes in through 4 bit wide serial links.

The core also has connections to determine whether or not the processor is on an

edge of the array. This cell implements a barrel shifter bus2bshift.sdl, a fast

interpolation cell bus2interp. sdl, a complex multiplier bus2cmult. sdl, a complex

adder bus2adder.sdl, a register file regfile2p.sdl, and several semi-serial input

output registers busserio. sdl.

(parent-cell diag2)

(parameters width numOfRegs (ioPerChannel 4) (ioChannels 6) (realBits 24)
(exponentBits (- (* width 2) realBits)))
; Note: Width must be even, and is total number of realimag bits.

(layout-generator Flint b v)

(subcells
;?.~~~~~~~~~~~~~~~~~~~~~~~ ~ ~10

; note: floor is used for in/outwidth to force an error if width was odd.
; if width was odd, floor will round down, so that (* 2 (floor (/ width 2)))
; will be less than width, and errors will result due to unknown terminals.

(bus2adder ADDER ((inwidth (floor (/ width 2))) (outwidth (floor
(/ width 2)))))

(bus2cmult MULT ((inwidth (floor (/ width 2))) (outwidth (floor
(/' width 2)))))

113

(regfile2p REGFILE ((numOfRegs numOfRegs) (width width)))
(bus2interp INTERP ((busWidth width)))
(bus2bshift BSHIFT ((realBits realBits) (busWidth width))) 20

(Inyclock CLKCGEN)
(diagctl FSM)

(dotirnes (i ioChannels)
(subcells
(busserio BUSIO ((ioLines ioPerChannel) (busWidth width)))

30

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE Vdd))
(net PHI (NETTYPE CLOCK))

(instance REGFILE (
(ABUS ABUS (width width))
(BBUS BBUS (width width))
(EBUS EB3US (width width)) 40

(AOUTEN AOUJTEN (width numOfRegs))
(BOUTEN BOUTEN (width numOfRegs))
(LOAD LOAD (width numOfRegs))
(SCAN GND (merge 0 (- numOfRegs 1)))
(PHI PHI)
(Vdd Vdd)
(GND (I\GND)

))

(instance ADDER, (50

(ABUS AIBUS (width width))
(BBUS BBUS (width width))
(EBUS EBUS (width width))
(OUTEN ADDEROUTEN)
(FUNC AIDDERFUNC)
(REALADD ADDERREALADD)
(Vdd Vdd)
((ND GND)

))
~~~~~~~~~~~~~~~~~~~~~; ~~~~~~60

(instance MIJLT (
(ABUS ABUS (width width))
(BBUS BE US (width width))
(EBUS EBUS (width width))
(COMPB MULTCOMPB)
(COMPLEXOUT MULTCOMPLEXOUT)
(REALA MIULTREALA)
(OUTEN MULTOUTEN)
(Vcld Vdd)

(GN) GN]D) 70

114



(instance BUSIO (
(EBUS EBUS (width width))
(ABUS ABUS (width width))
(INPUTA INPUTA (net-base (* i ioPerChannel))

(width ioPerChannel))
(OUTPUTA OUTPUTA (net-base (* i ioPerChannel))

(width ioPerChannel))
(INPUTB INPUTB (net-base (* i ioPerChannel))

(width ioPerChannel))
(OUTPUTB OUTPUTB (net-base (* i ioPerChannel))

(width ioPerChannel))
(OUTPUT OUTPUT (net-base (*

(width ioPerChannel))
(READY IOREADY (net-base i))
(BUSOE IOBUSOE (net-base i))
(BUSLD IOBUSLD (net-base i))
(START IOSTART (net-base i))
(IOSEL IOSEL)
(RESET RESET)
(PHI1 PHI1)
(PHI2 PHI2)
(PHIlINV PHIlINV)
(PHI2INV PH12INV)
(Vdd Vdd)
(GND GND)

80

i ioPerChannel))

90

(instance CLKGEN (
(CLK PHI)
(PHI1 PHI1)
(PHI2 PHI2)
(PHIIINV PHIIINV)
(PHI2INV PHI2INV)
(Vdd Vdd)
(GND GND)

(instance INTERP (
(ABUS ABUS (width realBits)

100

110

(term-base (- width realBits)

(EBUS EBUS (width width))
(GO INTERPGO)
(RESET RESET)
(FUNC INTERPFUNC)
(BUSY INTERPBUSY)
(OUTEN INTERPOUTEN)
(PHI PHI)
(Vdd Vdd)
(GND GND)

(instance BSHIFT (
(ABUS ABUS (width width))

115

120



(EBUS EBUS (width width))
(OUTEN BSHIFTOUTEN)
(Vdd Vdd)
(GND GND)

130

(instance FSM (
(RESET RESET)
(IO:READY IOREADY (width ioChannels))
(IN(CCYCLE INCCYCLE)
(FINALCYCLE FINALCYCLE)
(NEXTDATA NEXTDATA)
(LEFTEDGE LEFTEDGE)
(TOPEDGE TOPEDGE)
(INTERPBUSY INTERPBUSY)
(IOBUSOE IOBUSOE (width ioChannels))
(IOBUSLD IOBUSLD (width ioChannels))
(IOSTART IOSTART (width ioChannels))
(IOSEL IOSEL)
(ADDERFUNC ADDERFUNC)
(ADDEROUTEN ADDEROUTEN)
(ADDERREALADD ADDERREALADD)
(MULTOUTEN MULTOUTEN)
(MULTCOMPB MULTCOMPB)
(MULTCOMPLEXOUT MULTCOMPLEXOUT)
(MULTREALA MULTREALA)
(INTERPGO INTERPGO)
(INTERPFUNC INTERPFUNC)
(INTERPOUTEN INTERPOUTEN)
(BSHIFTOUTEN BSHIFTOUTEN)
(AOUTEN AOUTEN (width numOfRegs))
(BOUTEN BOUTEN (width numOfRegs))
(REGLOAD LOAD (width numOfRegs))
(PHIl PHI1)
(PHI2 PHI2)
(Vdd Vdd)
(GND GND)

(instance parent (
((terminal ABUS (DIRECTION OUTPUT))
((terminal BBUS (DIRECTION OUTPUT))
((terminal EBUS (DIRECTION OUTPUT))
((terminal INPUTA (DIRECTION INPUT))

(* ioPerChannel ioChannels)))
((terminal INPUTB (DIRECTION INPUT))

(* ioPerChannel io(:Channels)))

ABUS (width width))
BBUS (width width))
EBUS (width width))
INPUTA (width

170

INPUTB (width

((terminal OUTPUT (DIRECTION OUTPUT)) OUTPUT (width
(* ioPerChannel ioChannels)))

((terminal IOBUSOE (DIRECTION OUTPUT)) IOBUSOE
(width ioChannels))

((terminal IOBUSLD (DIRECTION OUTPUT)) IOBUSLD
(width ioChannels))

((terminal IOREADY (DIRECTION OUTPUT)) IOREADY

116

140

150

160



(width ioChannels)) 180

((terminal IOSTART (DIRECTION OUTPUT)) IOSTART
(width ioChannels))

((terminal AOUTEN (DIRECTION OUTPUT)) AOUTEN
(width nurnOfRegs))

((terminal BOUTEN (DIRECTION OUTPUT)) BOUTEN
(width numOfRegs))

((terminal LOAD (DIRECTION OUTPUT)) LOAD
(width numOfRegs))

((terminal ADDEROUTEN (DIRECTION OUTPUT)) ADDEROUTEN)9o
((terminal MULTOUTEN (DIRECTION OUTPUT)) MULTOUTEN)
((terminal RESET (DIRECTION INPUT)) RESET)
((terminal INCCYCLE (DIRECTION INPUT)) INCCYCLE)
((terminal FINALCYCLE (DIRECTION INPUT)) FINALCYCLE)
((terminal NEXTDATA (DIRECTION INPUT)) NEXTDATA)
((terminal LEFTEDGE (DIRECTION INPUT)) LEFTEDGE)
((terminal TOPEDGE (DIRECTION INPUT)) TOPEDGE)
((terminal PHI (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND) 200

))

(end-sdl)

A.1.24 diag2chip.sdl

This file puts the pad frame around the diag2. sdl core of the diagonal processor.

The chip inputs are put on the left side, the outputs are along the right, and the

control connections come in on the top of the chip.

(parent-cell diag2chip)

(structure-processor Padgroup)
(layout-generator Padroute lpadsl_2)

(parameters width numOfRegs (ioPerChannel 4) (diagChannels 4) (hvChannels 2)
(ioChannels (+ hvChannels diagChannels)) (ioLines (* ioPerChannel ioChannels))

(maxpads_per_side 30)
(pads (list

(list "top" max-padsperside) 10
(list "left" (+ maxpadsperside 1)

(* maxpads_perside 2))
(list "bottom" (+ (* maxpads_per_side 2) 1)

(* maxpadsper_side 3))
(list "right" (+ (* maxpads_perside 3) 1)

(k maxpads_per side 4))

)
)

117



(subcells
(diag2 CORE ((width width) (numOfRegs numOfRegs)))
(vddl_2 (VDDTOP 1 VDDTOP_2 VDD RIGHT 1

VDD RIGHT_2 VDD LEFT_1 VDD LEFT_2 )

(gndl_2
(GND TOP 1 GND TOP 2 GND TOP 3 GND TOP 4 GND LEFT 1 GND LEFT_2

GND LEFT_3 GND LEFT 4 GND RIGHT l GND_RIGHT_2))

(inl_2
(RESET_PAD INCCYCLEPAD FINALCYCLEPAD NEXTDATAPAD

LEFTEDGE PAD TOPEDGE_PAD PHI_PAD))

(dotimes (i (* ioPerChannel ioChannels))
(subcells
(inl_2 (INPUTA PAD INPUTB PAD))
(outl_2 OUTPUT PAD)

)

(dotimes (dummytop_left (- (round (/ maxpadsperside 2)) (+ 7 3)))
(subcells
(spacel 2 DUMMY-PADS_TOPLEFT)
))

(dotimes (dummytop_right (- max_padsper_side (+ (round
(/ maxpads per_side 2)) 3)))

(subcells
(spacel_2 DUMMYPADS TOP_RIGHT)
))

(dotimes (dummybottom (- (- (* maxpadsper_side 4) (+ (* 2
(* ioPerChannel ioChannels)) 6)) (+ maxpads_per side (+
(* ioPerChannel ioChannels)) 4)))

(subcells
(spacel_2 DUMMYPADS_BOTTOM)

))

(net VDD (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
(net PHI (NETTYPE CLOCK))

(instance CORE
(INPUTA INPUTA (width ioPerChannel ioChannels)))
(INPUTB INPUTB (width (* ioPerChannel ioChannels)))
(OUTPUT OUTPUT (width ioLines))
(RESET RESET)
(INCCYCLE INCCYCLE)
(FINALCYCLE FINALCYCLE)
(NEXTDATA NEXTDATA)
(LEFTEDGE LEFTEDGE)
(TOPEDGE TOPEDGE)
(Vdd Vdd)

118

20

30

40

50

60

70



(GND GND)
(PHI PHI)

)istae INPI)TAPAD (PAD (- (- () max 4) 2) i)) (

(instance INPUTAPAD (PAD (- (- (* max pads per side 4) 2) i)) (

(padin INPUTA_p (net-base i))
80

(in INPUTA (net--base i))
)

'instance INPUTB_PAD (PAD (- (- (* maxpads per side 4) (+ ioLines 4)) i)) (

(padin INPUTB_p (net-base i))

(in [NPUTB (net--base i))

)

(instance OUTPUT_PAD (PAD (+ (+ maxpads perside 3) i)) (

(pado OUTPUT p (net-base i))

(out OUTPUT (net-base i))

(instance RESET PAD (PAD '3) (
(padin RESET_p)
(in RESET)

))

(instance INCCY(CLE_PAD (PAD '4) (
(padin INCCYCLE_p)
(in INCCYCLE)

))

(instance FINALCYCLE PAD (PAD '5) (
(padin FINALCYCLE_p)
(in FINALCYCLE)

(instance NEXTDATA_PAD(PAD '6) (
(padin NEXTDATA p)
(in NEXTDATA)

(instance LEFTEDGE_PAD (PAD '7) (
(padin LEFTEDGEp)
(in LEFTEDGE)
))

(instance TOPEDGE_PAD (PAD '8) (
(padin TOPEDGE_p)

119

90

100

110

120

b



TOPEDGE)

(instance PHI PAD (PAD '9) (
(padin PHI_p)
(in PHI)

(instance VDDTOP_1 (PAD (+ (round (/ max-pads-per side 2)) 0)) (

(padvdd Vddp)

(Vdd Vdd)

(instance VDDTOP_2 (PAD (+ (round (/ max pads per side 2)) 1)) (

(padvdd Vdd_p)

(Vdd Vdd)

(instance VDD LEFT_1 (PAD (- (* max pads perside 4) (+ ioLines 2))) (
(padvdd Vdd_p)

(Vdd Vdd)

130

140

150

(instance VDD LEFT2 (PAD (- (* max_pads per side 4) (+ ioines 3))) (
(padvdd Vddp)

(Vddl Vdd)

160

(iinstance VDD_RIGHT_1 (PAD (+ max pads per side (+ ioLines 3))) (
(padvdd Vdd_p)

(Vdd Vdd)

(instance VDD_RIGHT_2 (PAD (+ max pads per side (+ ioLines 4))) (
(padvdd Vdd_p)

170

(Vdd Vdd)

(i:Lstance GNDTOP_1 (PAD '1) (
(padgnd GND_p)
(GND GND)

))
(ilstance GND_TOP_2 (PAD '2) (

120

(in
))

180



(padgnd GND_p)
(GND GND)
))

(instance GND 1OP_3 (PAD (- max pads per side 1)) (
(padgnd GNDp)
(GND GND)
))

(instance GNDJ1OP 4 (PAD maxpadsperside) (
(padgnd GND p)
(GND GND)

(instance GND_LEFT_1 (PAD (- (*

(instance GNDLEFT2 (PAD (* ma

(instance GND_LEFT_3 (PAD (- (*
(* ioPerChannel ioChannels)) 4))) (

(instance GND LEFT_4 (PAD (-(*
(* ioPerChannel ioChannels)) 5))) (

(instance GND_RIGHT 1

max_pads per side 4) 1)) (
(padgnd GND-p)
(GND GND)
))

x_padsper side 4)) (
(padgnd GNDp)
(GND GND)
))

max pads per_side 4) (+ (* 2

(padgnd GNDp)
(GND CGND)

))
max pads perside 4) (+ (* 2

(padgnd GNDp)
(GND GND)
))

(PAD (+ max pads per side 1)) (
(padgnd GND_p)
(GND GND)

(instance G(NDRIGHT 2 (PAD (+ max pads perside 2)) (
(padgnd GNDp)
(GND GND)

(instance DUMMY'_PADS_TOP_LEFT (PAD (+ (+ 7 3) dummy top_left)))
(instance DUMM Y_PADS_TOP_RIGHT (PAD (+ (+ (round (/ max pads per side 2)) 2)
dlumrrny_top right))')

(instance DUMMY PADS BOTTOM (PAD (+ (+ max padsper side (+
(* ioPerC(hannel io(Channels) 5)) dunrmybottorn)))

220

(instance parent (
((terminal INPUTAp (DIRECTION INPUT)) INPUTA p (width

(* ioPerChannel ioChannels)))
('(terminal INPUTB p (DIRECTION INPUT)) INPUTB p (width

(* joPlerChannel ioChannels)))
((terminal OUTPUT_p (DIRECTION OUTPUT)) OUTPUT p (width 230

(* iol'erC(hannel ioChannels)))
((terminal RESET p (DIRECTION INPUT)) RESET_p)
((terminal INCCYCLEp (DIRECTION INPUT)) INCCYCLEp)
((terminal FINALCYCLEE_p (DIRECTION INPUT)) FINALCYCLE_p)

121

200

210

190



((terminal NEXTDATA_p (DIRECTION INPUT)) NEXTDATAp)
((terminal LEFTEDGE_p (DIRECTION INPUT)) LEFTEDGE_p)
((terminal TOPEDGEp (DIRECTION INPUT)) TOPEDGE_p)
((terminal PHI_p (TERMTYPE CLOCK) (DIRECTION INPUT))

PHI_p)
((terminal Vddp (TERMTYPE SUPPLY) (DIRECTION INPUT)) 240

Vdd_p)
((terminal GNDp (TERMTYPE GROUND) (DIRECTION INPUT))

(ND_p)

))

(end-sdl)

A.1.25 diagctl.sdl

This is the controller for the diagonal processor element. It takes as input a global syn-

chronization signal INCCYCLE, a reset signal RESET, a completion signal, FINALCYCLE,

and all of the status lines from the functional units. The operation is controlled by

the behavioral description file diagctl.bds.

(parent-cell diagctl)

(parameters (ioChannels 6) (stateBits 6) (cycleBits 3) (subStateBits 2)
(numOfRegs 16))
(layout-generator Flint b v)

(subcells
(fsm bdsyn FSM ((inwidth 24) (outwidth 89)

(bdsyn "' /sdl/diagctl/diagctl. bds")))
) 10

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
(net PHI1 (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))

(instance FSM (
(IN reset (term-base 0))
(IN ioReady (term-base 1) (width ioChannels))
(IN incCycle (term-base (+ ioChannels 1))) 20

(IN finalCycle (term-base (+ ioChannels 2)))
(IN nextData (term-base (+ ioChannels 3)))
(IN leftEdge (term-base (+ ioChannels 4)))
(IN topEdge (term-base (+ ioChannels 5)))
(IN interpBusy (term-base (+ ioChannels 6)))
(IN cycle (term-base (+ ioChannels 7)) (width cycleBits))
(IN state (term-base (+ (+ ioChannels 7) cycleBits))

(width stateBits))

122



(IN subState (term-base (+ (+ (+ ioChannels 7) cycleBits)
stateBits)) (width subStateBits)) 30

(OUT iobusoe (term-base 0) (width ioChannels))
(OUT iobusld (term-base ioChannels) (width ioChannels))
(OUT iostart (term-base (* 2 ioChannels)) (width ioChannels))
(OUT ioSel (term-base (* 3 ioChannels)))
(OUT adderFunc (term-base (+ (* 3 ioChannels) 1)))
(OUT adderOutEn (term-base (+ (* 3 ioChannels) 2)))
(OUT adderRealAdd (term-base (+ (* 3 ioChannels) 3)))
(OUT multOutEn (term-base (+ (* 3 ioChannels) 4)))
(OUT multCompB (term-base (+ (* 3 ioChannels) 5)))
(OUT multComplexOut (term-base (+ (* 3 ioChannels) 6))) 40

(OUT multRealA (term-base (+ (* 3 ioChannels) 7)))
(OUT interpGo (term-base (+ (* 3 ioChannels) 8)))
(OUT interpFunc (term-base (+ (* 3 ioChannels) 9)))
(OUT interpOutEn (term-base (+ (* 3 ioChannels) 10)))
(OUT bshiftOutEn (term-base (+ (* 3 ioChannels) 11)))
(OUT aOutEn (term-base (+ (* 3 ioChannels) 12))

(width numOfRegs))
(OUT bOutEn (term-base (+ (+ (* 3 ioChannels) 12) numOfRegs))

(width nurnOfRegs))
(OUT regLoad (term-base (+ (+ (* 3 ioChannels) 12) 50

(* 2 numOfRegs))) (width numOfRegs))
(OUT cycle (term-base (+ (+ (* 3 ioChannels) 12)

(* 3 numOfRegs))) (width cycleBits))
(OUT state (term-base (+ (+ (+ (* 3 ioChannels) 12)

(* 3 numOfRegs)) cycleBits)) (width stateBits))
(OUT subState (term-base (+ (+ (+ (+ (* 3 ioChannels) 12)

(* 3 numOfRegs)) cycleBits) stateBits)) (width subStateBits))
(PHIl PHI1)
(PHI2 PHI2)
(Vdd Vdd) 60

(GND GND)

))

(instance parent (
((terminal RESET (DIRECTION INPUT)) reset)
((terminal IOREADY (DIRECTION INPUT)) ioReady

(width ioChannels))
((terminal INCCYCLE (DIRECTION INPUT)) incCycle)
((terminal FINALCYCLE (DIRECTION INPUT)) finalCycle)
((terminal NEXTDATA (DIRECTION INPUT)) nextData) 70

((terminal LEFTEDGE (DIRECTION INPUT)) leftEdge)
((terminal TOPEDGE (DIRECTION INPUT)) topEdge)
((terminal INTERPBUSY (DIRECTION INPUT)) interpBusy)
((terminal IOBUSOE (DIRECTION OUTPUT)) iobusoe

(width ioChannels))
((terminal IOBUSLD (DIRECTION OUTPUT)) iobusld

(width ioChannels))
((terminal lOSTART (DIRECTION OUTPUT)) iostart

(width ioChannels))
((terminal IOSEL (DIRECTION OUTPUT)) ioSel) so
((terminal ADDERFUNC (DIRECTION OUTPUT)) adderFunc )
((terminal ADDEROUTEN (DIRECTION OUTPUT)) adderOutEn)

123



multComplexOut)

((terminal
((terminal
((terminal
((terminal

((terminal
((terminal
((terminal
((terminal
((terminal
((terminal

(width numOfRegs))
((terminal

(width numOfRegs))

ADDERREALADD (DIRECTION OUTPUT)) adderRealAdd)
MULTOUTEN (DIRECTION OUTPUT)) multOutEn)
MULTCOMPB (DIRECTION OUTPUT)) multCompB)
MULTCOMPLEXOUT (DIRECTION OUTPUT))

MULTREALA (DIRECTION OUTPUT)) multRealA)
INTERPGO (DIRECTION OUTPUT)) interpGo)
INTERPFUNC (DIRECTION OUTPUT)) interpFunc) 90
INTERPOUTEN (DIRECTION OUTPUT)) interpOutEn)
BSHIFTOUTEN (DIRECTION OUTPUT)) bshiftOutEn)
AOUTEN (DIRECTION OUTPUT)) aOutEn

BOUTEN (DIRECTION OUTPUT)) bOutEn

((terminal REGLOAD (DIRECTION OUTPUT)) regLoad
(width numOfRegs

(width cycleBits))

(width stateBits))

())
((terminal CYCLE (DIRECTION OUTPUT)) cycle

((terminal STATE (DIRECTION OUTPUT)) state

((terminal PHI1 (DIRECTION INPUT)
(TERMTYPE CLOCK)) PHI1)

((terminal PHI2 (DIRECTION INPUT)
(TERMTYPE CLOCK)) PHI2)

((terminal Vdd (DIRECTION INPUT)
(TERMTYPE SUPPLY)) Vdd)

((terminal GND (DIRECTION INPUT)
(TERMTYPE GROUND)) GND)

(end-sdl)

A.1.26 From.sdl

The lookup table used in the interpolation cell is generated from a file of data value.

It has been arranged so that the most significant bit of the input to this lookup table

selects the function being calculated. If it is a zero, then the data for the square root

calculation is provided. If it is a one, then the data for the inverse square root is

provided. This file contains the values for f(xi).

; Automatically Generated PLA cell file to be used as ROM. DO NOT EDIT!
; Genereated Monday, 11 April 1994, 06:35:32 AM.

(parent-cell From)

(layout-generator Flint b)

(subcells

124

100

110



(latch LATCH ((width 27)))
(pla ROM ( 

10
(inwidth 9)
(outwidth 27)
(input-plane '(

"010000000"
"110000000"
"-00100000"
"001111111"
"00-11--1-"
"000111110"
"101111110" 

20
"-01111111"
"0011---1-"
"001-01001"
"001--1---
"000100101"
"001001101"
"101111100"
"001101001"
"101011001"
"001001100" 30
"001100110"
"001100011"
"001011100"
"001011000"
"000111010"
"001110001"
"101100101"
"101001101"
"001100100"
"101110111" 40
"001101011"
"000101111"
"101111010"
"101111000"
"001010000"
"101001010"
"001100111"
"100110110"
"101101000"
"101100100" 

50
"100111000"
"101100010"
"000110011"
"001110101"
"101111001"
"001011110"
"101010110"
"101111011"
"000111001"
"000110110" 

60
"101111101"
"101000010"

125



110011010001,
111010101111"
110001010111"
110001100001,
110001010101"
110010011111"
110010100111"
11100110000117
1110010110011

111011011011"
1110111011011

110010001101,
111011001111"
1110110110011

110010000111"
110010011101,
110001101001,
111010101011"8

111001101111"
111010111011"
1110101010011

111011100111"
110011011001,
110011100101,
110010000001,
110001000111"
110001011011"
110011010101,9

11001111-111,
1110010001011

1100111-1111"
111011100011"
110010001001,
110001100011"
110001111011"
1110111010011

110011-11111"
111001011101110

111001100011"
1110011010011

1110101101011

1110110011011

1110100000011

1110100011011

1110111001011

1110101000011
111001110011"11

111011000111"
110010010111"
1110101001011

1110101111011

1110100111011

110010101011"

126



"000100110"
"100100001"
"000100111"
"000100001" 120
"000101100"
"000101001"
"001110011"
"001010110"
"001111010"
"100101111"
"000111111"
"10101110"
"100101001"
"000100010" 130
"001011010"
"101101111"
"101101010"
"101000101"
"001010010"
"100110010"
"000110101"
"100100011"
"101001111"
"001100110011" 140
"101001001"
"001010001"
"001000001"
"101000011"
"100111111"
"101010011"
"100111011"
"101100001"
"000110111"
"001001010" 150
"001101101"
"001100101"
"101110101"
"101001000"
"101011011"
"101011100"
"100101010"
"100100101"
"001011011"
"001110110" 160
"100101000"
"000100100"
"001010100"
"101000001"
"101110000"
"001011101"
"101001011"
"101100000"
"001000111"
"100110101" 170

127



"001011001"
"101010001"
"101101001"
"001110100"
"101001100"
"001111001"
"101011000"
"001-11111"
"000101000"
"000111100" 1SO

"100111101"
"000111011"
"101000111"
"001101110"
"100111100"
"001010111"
"000111000"
"101000100"
"100111010"
"100101101" 190

"001000101"
"001000010"
"100111110"
"000101110"
"100101011"
"001110000"
"100100110"
"100100100"
"001100001"
"100100111" 200

"0011111-1"
"001111110"
"101101011"
"001111000"
"001100000"
"001111100"

(output-plane '(
"010000000000000000000000000"
"000100000000000000000000000" 210

"001000000000000000000000000"
"000000000000000000000010010"
"001010000000000000000000000"
"000001001000101011001000000"
"0001000000100000011000010"10
"000100000001000000011000001"
"00111000000000000000000000000"
"000000000101010100001010000"
"001100000000000000000000000"
"001000100110100011001000000" 220

"000000011010001110000001100"
"000100000100000110001010010"
"000010011010001000100001100"
"000100110011000000100001100"

128



"00000001010000010111000010"
"000000010010000110100101010"
"000000000100100011110101000"
"000001100100001000110110010"
"000001010001000011100101001"
"000000110001010011010001010" 230

"001111000010001000011000100"
"000100100000001100011000110"
"0001010010100001000001010101"
"001110001001000110001100000"
"000100001001100000010001011"
"000000101000001111010100001"
"001001101100100000001100011"
"000100000110001110000011010"
"000100001000011001010100101"
"001100101001100010110000100" 240

"000101010000101100000110101"
"000000010110100100101010010"
"000110001010001000000110100011"
"000100011100000000011010101"
"000100100001101000011000011"
"000110000011000010010001111"
"000100100100100100100100101"
"000000000110010111100100101"
"001111010011000000110000001"
"000100000111010011010000010" 250

"000001101101100001100001100"
"000100111000010100010010110"
"000100000101001001101100010"
"001010101011010101010100000"
"000000011001000110111000011"
"000100000011000011011100010"
"000101100100100000101101010"
"000010011011000001010110100"
"000100110110100001000101100"
"001001010001100000101111100" 260

"001001110011000100011100001"
"001001001010100100011101100"
"000000100100011101111011000"
"001100111000100101010001001"
"0001101000100000010111101100"
"000110110100101000101001010"
"000100010101011010101000100"
"000100001010101000000111110"
"001011110101010000100001101"
"000100011101011000011100000" 270

"000100010110101100101001000"
"001011100100110110101000010"
"000000011111010111000001100"
"001010001100101011001010110"
"000100111010001001100001110"
"000110000110100010011100110"
"000100101100010101010101001"
"000100111100000000110110011"

129



"000100001110000101010000111"
"00001010100100110101010010" 280

"000001000110011000001111101"
"00101101010000010011110110"
"001000010111011101100110000"
"001001011111001010000100011"
"000000100011110110101010010"
"00000111011110011010000000"
"00011i111000010110110100001"
"000001011011010110000000101"
"000100010000011101100011110"
"001011101010010111001010001" 290

"001001111001100100010101010"
"001011000010111001110011001"
"000100001100111010100110010"
"000000111001100101000001101 "
"000110101011000010011001101"
"000110011101110000100010110"
"000110010001101001010101011"
"00010011000101011000011111"
"000100011110110001110000001"
"000101101010000010011110011" 300

"000101011010001011001101100"
"000100101001001001111011001"
"00010000111101000111010010"
"000101000011110100010011011"
"000101111111101000000010010"
"00010010001100101110000111
"000000001111110101100011010"
"000100111111110110000000100"
"000100101010101110110100010
"0001010011111110010100010" 310

"001101000010011101010011101"
"001000101101111100000110011"
"000111111000001011101100100"
"001000110101001110111001001"
"001000000111111100000011111"
"001001011000010111111000110"
"00100100001110001010110111"
"00000100101010011011i010101"
"00110100011010110100010011"
"000001100111101101100100001" 320

"000110100110011110000101110"
"000001001110011001011111001"
"000100010100001001101111101"
"000111000100010100111101101"
"001000001111110000011110110"
"000001011010101001100110111"
"000100010010111001111101000"
"000100011001010100000111111"
"000101011100101011001011100"
"001100110011100110011001010" 330

"000110011001100110011001101"
"001010010010111010111001101"

130



"000111101001100100001100111"
"0001010000101110111000011101"

"000110010101100100000111111"
"000101010010111111001100010"
"001100101110100101100100011"
"001011011001101101100101100"
"000101100001110101110010110"
"0001011011001101001010 10" 340
"000100111101111010010100100"
"000101111001000100010011111"
"0001001001100000100110101111"
"000000011111001111001101100"
"000000001010100101111111011"
"000010110000111100101101110"
"001110001101100111000110010"
"000100001011110000111000111"
"00010101010101010101010101011"
"000100101111100111011010000" 350
"0001001001101111101100000110"
"000110111110111010010000011"
"000111011100001001100111110"
"000001011111011010000011111"
"000001010111001011111100100"
"000111001001111100100101110"
"0010000111110000011101101101"
"001100111101100010001110101"
"000101100111001111100011001"
"0001000100011010110011011 1" 360
"000001101000110101111111100"
"000101001110011011111110000"
"000100100111100110100111010"
"001011111010101001011110010"
"000110001101110101101011010"
"000001010101110111011101001"
"000101000001110011111110101"
"000100011010101001101001111"
"001111001110110100011010100"
"0001010011000001110101011111" 370

"000011100011100110110011101"
"000100110100101111110110010"
"000001110010001011011101101"
"001000111100011011101111010"
"00101011101011110100010101101101"
"000101110010110101011001110"
"000000110111001101111100110"
"000101010111101110101000110"
"000000110101010001011111111"
"000101110101111010010111010" 380
"001101001100001101111100111"
"001010100101010011111111011"
"000101011111001110101010011"
"000101111100010011011101011"
"000110101111110000011001111"
"001011101111110101000110110"

131



"001011011111010011011101010"
"000101101111110101001110100"
"001001100101110111011100111"
"000110111001101011101101110" 390
"001110111101110111010100001"
"00011101010101110101111110101"
"000111100010101101111101111"
"001101111011011010101011011"
"000111001111110001111101101"
"000011110011111011011100101"
"00000111011111101111111000"
"000000010111111111110010111"
"000011011111011110111101011"
"001101110110110011110101111" 400
"000011101111110111110111111"

))
(minterm 193)

))

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
(net PHI (NETTYPE CLOCK ))
(net PHIl (NETTYPE CLOCK )) 410

(net PHI2 (NETTYPE CLOCK ))

(instance ROM (
(IN ADDRESS (width 9))
(OUT PLAOUT (width 27))
(CLOCK PHI)
(Vdd Vdd)
(GND GND)

))
420

(instance LATCH (
(IN PLAOUT (width 27))
(OUT DATA (width 27))
(PHI1 PH1)
(PHIi2 PHI2)
(LD Vdd)
(Vdd Vdd)
(GND GND)

))
430

(instance parent (
((terminal ADDRESS (DIRECTION INPUT)) ADDRESS (width 9))
((terminal DATA (DIRECTION OUTPUT)) DATA (width 27))
((terminal PHI (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI )
((terminal PHI1 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI1 )
((terminal PHI2 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI2 )
((terminal Vdd (TERMTYPE SUPPLY) (TERM_EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND)(TERM_EDGE BOTTOM)) GND)

))
, 440

132



(end-sdl)

A.1.27 Grom.sdl

The lookup table used in the interpolation cell is generated from a file of data value.

It has been arranged so that the most significant bit of the input to this lookup table

selects the function being calculated. If it is a zero, then the data for the square root

calculation is provided. If it is a one, then the data for the inverse square root is

provided. This file contains the values for g(xi) = f(xi+) - f(xi).

; Automatically Generated PLA cell file to be used as ROM. DO NOT EDIT!
Genereated Monday, 11 April 1994, 06:37:36 AM.

(parent-cell Groin)

(layout-generator Flint b)

(subcells
(latch LATCH ((width 19)))
(pla ROM ( 10

(inwidth 9)
(outwidth 19)
(input-plane '(

"-01000100"
"10-100001"
"001111101"
"001001100"
"-01001010"
"-01010-11"
"101001111" 20

"001010101"
"001111001"
"10111111-"
"001000001"
"101110100"
"101110010"
"101100111"
"10111100-"
"101000101"
"001001000" 30
"001110110"
"001111--1"
"001010000"
"00100-10-"
"001110000"
"001011111"
"100100111"
"100100011"

133



"010000000"
"001111110" 

40
" 101000001"
"001110011"
"001101111"
"0010101-1"
"000110110"
"000111000"
"00111-011"
"001000101"
"100100001"
"100100000" 

50
"101-10010"
"001000011"
"1011-0100"
"101000100"
"001000000"
"001101100"
"001111100"
"001100100"
"001001010"
"001101101" 

60
"001001111"
"101010111"
"101010101"
"001100110"
"100110101"
"001011001"
"001011100"
"0010-0001"
"001100011"
"110000000" 

70
"001011000"
"100110011"
"000101010"
"001011010"
"001010100"
"100101001"
"100100010"
"001001110"
"001000111"
"101100010" 

80
"001110101"
"001110010"
"100111110"
"001101110"
"100111111"
"000101001"
"101011000"
"001110111"
"1010100-1"
"101000000" 

90
"100101100"
"001001011"

134



"101000010"
" 100101110"
"000110111"
"001110100"
"100110110"
"001100010"
"001100001"
"100111000" 100
"001010010"
"000110011"
"101011010"
"100111100"
"001011110"
"100111010"
"100101000"
"001101010"
"001000010"
"001111010" 110
"000100110"
"001100111"
"101001011"
"000100011"
"000101011"
"101010100"
"1010111111"
"000100111"
"001001001"
"000101100" 120
"000111101"
"000101101"
"001011101"
"001111000"
"000111110"
"001101011"
"100111011"
"101011011"
"100110000"
"101010110" 130
"000101111"
"101011110"
"000111100"
"001011011"
"000110010"
"000101110"
"001010110"
"001010011"
"100110100"
"100100101" 140
"101-11001"
"100101010"
"101110110"
"101111000"
"101101110"
"101000111"

135



1110110011-1
111010011-11"
1110100011011
111011010011"15

110001110101,
111011000111"
1110111110011

110001010001,
110001000101,
110001001011"
1110010010011

110011000001,
110001100011"
110011010001,16

110001100001,
110010001-01,
111001110011"
111001011111"
111001010111"
1110111101011

1110110101011

111011011111"
111010010011"
110001000011"17

1110111-1111"
1110110100011

111011111-11"
110001000001,
"i11ii000001
111011110111"
11000111111i"
111011010111"
111011001011"
111011100011"18

110011001011"
1100111000011

111010111001
111010000111"
110011010011,
111010111011"
110001101011"
111010010-011
111001101111"
111001001101119

110001001001,
111011011011"
111i011"11

110001110011"
1110100110011

1110011001011

111001011011"
110001101001,
111001100011"20

136



"100111101"
"101010000"
"101001110"
"10110000-"
"000111011"
"101110101"
"101101100"

))
(output-plane '(

"0000000100000000000" 210
"0000000001100000000"
"0000000010000010010"
"0000000010001001010"
"0000000110000000010"
"10000000100100000000
"0000000101000110000"
"0000001000000110100"
"0000000110010000100"
"0000000000100000101"
"0000100101000011000" 220
"0000010010010010010"
"0000110000000010101"
"000000000101001010101"
"0000101000010000100"
"1101100000000010001"
"0101010100001010000"
"0100001010000100001"
"0100000000100000001"
"0101000010110100000"
"010100100100000000000" 230
"0100010001000100010"
"0100101000011000001"
"1010001010101000001"
"1001001001110001000"
"0011111111100000001"
"0100000001100000111"
"1101010001001010000"
"0100001001011000001"
"0100010010010010100"
"0100110001001000010"1 240
"0110001000010101001"
"0110000001010100101"
"0000000100000111110"
"0000010010011010111"
"1000100000011011110"
"1000001011101100100"
"1110000100010100000"
"0101100000100001111"
"1110100100000000000100"
"1101011000100001001" 250
"01101000101000101000"101

"0100010110000011100"
"0100000011100100110"
"0100100000111010010"

137



"0101001001100011100"
"0100010100110010010001"
"0101000100110101100"
"1110001010010000110"
"1110001010110001000"
"0100011110000101000" 260
"1100010011001001001001"
"0100110010001001101"
"0100101101001001010"
"01010000000110100110"
"0100100010010111000"
"1111000000010111111"
"0100110011111000000"
"1100000101001101100"
"0110111100010010000"
"01001100000110001" 270
"0100111011000101000"
"1010100101010010110"
"1000110110100100101"
"0101000110111001100"
"0101001010 0001110"
"1110100001001100010"
"0100001011001100011"
"010000111001011000"
"1101000100011010110"
"0100010011100001110" 280
"11010010001101010"0
"0111000001100110101"
"1110010000101011010"
"0100001000111100110"
"111000001000000001111"
"1101001101000100110"
"1011000111110000101"
"010100110101010001 "
"1101010101000101100"
"1011011011101100000" 290
"0110000100110001111"
"0100001100010101101"
"1100011001101000011"
"0100100011110101000"
"01001001010101001001"
"1100100101110000011"
"0100111110111000000"
"0110010011100110001"
"111001010001011000 01"
"110011101100000010100" 

300
"0100101001111100010"
"1100110000110110100"
"10100110010111110"
"0100011000101001111"
"010110001100101010111"
"0100000101101011110"
"0111010010110010110"
"0100011100101100011 

138



"110111O 0101110000"

"0111100110000111100" 310
"0110110111001001010"
"1110001000101011011"
"1110011100101100001"
"0111001100110110001 "
"0101010001110101011 "
"0110110010001011101"
"0101110001010100111"
"0110011010 11000101"
"0100101011100001111"
"0100000111110110010" 320
"0101101110010111000"
"0100010111010110001"
"1100110110000011011"
"1110010110000110110"
"1011101101100101010"
"1110001100110010110"
"0110100100001111110"
"1110011011000111000"
"0101110100010111100"
"0100100101110110010011" 330
"0110010111100100101"
"0110101000101111100"
"0100110111011010100"
"01001110000011101011"
"110000110001010111"
"100110110000110111"
"1110010010100010011"
"1010110001011101011"
"1110111000001001101"
"11100100010101011001" 340
"1110110000001101011"
"1101100110101100101"
"1110100110101100000"
"1101111000001001110"
"1101100011011011001"
"1110101010011110000"
"010111010101011100"
"1110100010100111100"
"1110111101010010000"
"0111000111000111101" 350
"0111101111010001101000111010"

"0111011000111110100"
"1001011011101001111"
"0100100110110101101"
"0110011011101010110"
"01000101010100111"
"01100111111111001000"
"0101011000111100101"
"1100101011011011001"
"1011100100110111110" 360
"1010111100111011100"
"1110111011101001000"

139



"1110101011101011000"
"1110110001010001111"
"1101101100111010011"
"0111110100011010111"
"1110111001000011010"
"1110101001001111010"
"1110111110000101000"
"0111111100000011111- 370
"1110110010010100111"
"1110111100011110000"
"01011010011011101110"
"1110101100110110001"
"111010010010111010"
"1110110011010110100"
"010001111011111000"
"0100001111110110011001"
"1110010111110100011"
"1101011000110111101" 380
"0100011001111110110"
"1110011001011111001"
"0110001011111110110"
"1101101001110111000"
"1100011111110101001"
"1001111011111111000"
"0111011111011010011"
"1110101111000111010"
"11101010101010101011"
"1110111110010110010" 390
"0101111101111101010"
"1101101001011110101"
"1011111101101110011"
"1011010001111111111"
"0110001111101110111"
"1011110101110110111"
"1100111111110100110"
"1101111111101011010"
"11011110100101111011"
"1110011110001110101" 400
"0101110111011110111"
"1110110111001110111"
"1110101101111111100"

))
(minterm 194)

))

(net Vdd (NETTYIPE SPPLY))
(net GND (NETTYPE GROUND)) 

410
(nlet PHI (NETTYPE CLOCK ))
(net PHIl (NETTYPE CLOCK ))
(net PHI2 (NETTYPE CLOCK ))

(instance ROM (
(IN ADDRESS (width 9))

140



(OUT PLAOUT (width 19))
(CLOCK PHI)
(Vdd Vdd)
(GND GND) 420

))

(instance LATCH (
(IN PLAOUT (width 19))
(OUT DATA (width 19))
(PHIl PHI1)
(PHI2 PHI2)
(LD Vdd)
(Vdd Vdd)
(GND GND) 430

)

(instance parent (
((terminal ADDRESS (DIRECTION INPUT)) ADDRESS (width 9))
((terminal DATA (DIRECTION OUTPUT)) DATA (width 19))
((terminal PHI (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI )
((terminal PHI1 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI1 )
((terminal PHI2 (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI2 )
((terminal Vdd (TERMTYPE SUPPLY) (TERM_EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND)(TERM_EDGE BOTTOM)) GND) 440

))

(end-sdl)

A.1.28 inc.sdl

In the interpolation cell, to access the next point in the lookup tables, the address to

index the tables in incremented by one. This is used to have access to both &mo and

n,,,. It is essential an adder that just adds the INC signal to the address presented to

the lookup tables in deltarom. sdl, From. sdl, and Grom. sdl.

(parent-cell inc)

(parameters width)

(layout-generator Flint b)

(subcells (inclogic LOGIC ((N width))))

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND)) 10

(instance LOGIC (
(IN IN (width width))

141



(OUT OUT (width width))
(CARRYIN CARRYOUT (width (- width 1)) (term-base 1))
(CARRYIN INC (term-base 0))
(CARRYOUT CARRYOUT (width (- width 1)) (term-base 0))
(CARRYOUT CARRY (term-base (- width 1)))
(Vdd Vdd)
((-ND GND) 20

))

(instance parent (
((terminal IN (DIRECTION INPUT)) IN (width width))
((terminal OUT (DIRECTION OUTPUT)) OUT (width width))
((terminal INC (DIRECTION INPUT)) INC)
((terminal CARRY (DIRECTION OUTPUT)) CARRY)
((terminal CARRYOUT (DIRECTION OUTPUT))

CARRYOUT (width (- width 1)))
((terminal Vdd (TERMTYPE SUPPLY) 30

(TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND)

(TERMEDGE BOTTOM)) GND)

))

(end-sdl)

A.1.29 incdpp.sdl

This file contains the actual logic used to implement the simple adder needed for the

inc. sdl cell. The add is performed by way of an XOR and an ADD cell. This is

possible because the input to any bit of the adder is only the address value being

incremented and a carry in signal, because the cell only performs addition by one.

; incremnetor - increments input by one when inc=l
ccn 4 october 1993

(parent-cell inclogic)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (xor2 XOR ((N N))) o0
(and2 AND ((N N)))

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance XOR (

142



(A IN)

(B CARRYIN)
(XOR OUT) 20

(Vdd Vdd)
(GND GND)))

(instance AND (
(A IN)
(B CARRYIN)
(AND2 CARRYOUT)
(Vdd! Vdd)
(GND! GND)

,>) 30

(instance parent (
((terminal IN (DIRECTION INPUT)) IN)
((terminal OUT (DIRECTION OUTPUT)) OUT)
((terminal CARRYIN (DIRECTION INPUT)) CARRYIN)
((terminal CARRYOUT (DIRECTION OUTPUT)) CARRYOUT)
((terminal Vdd (TERMTYPE SUPPLY) ) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))
40

(end-sdl)

A.1.30 interp.sdl

This is the top level of the interpolation cell discussed in chapter 5. The data is

accepted at the IN input, where it is normalized. Depending on the value of the FUNC

signal, either the square root or the inverse square root will be performed when the

GO signal is taken high. When the cell is calculating, the BUSY signal is held high.

Upon completion, the mantissa of the output is available at OUT, and the exponent is

available at SHIFTS.

; top level for cubic interpolation cell using Comrie's throwback

; ccn 4 october 1993
; new version using muxadder mux/addsub combination to reduce routing load
; Flint couldn't handle the routing

ccn 8 oct 1993
; Added it back in. Probelms are deeper in Flint, but unrelated to size.
;ccn 2 November 1993
; added support for 2 functions: (func=O, sqrt) ( func=l, inverse) 10

;ccn 9 April 1994

(parent-cell interp)

143



(parameters (width 24)
(M 7)

)

(structure-processor SIVcheck)
(layout-generator Flint v w b) 20

( sub cells
(3tolmux MULTAMUX ((N (+ (- width M) 2))))
(3tolmux MULTBMUX ((N (+ (- width M) 2))))
(3tolmux ADDERBM1JX ((N (+ width 3 ))))
(2tolmux ADDERAMUX ((N (+ width 3 ))))
(normalizer NORMALIZER ((width width)))
(inc INC ((width M)))
(From FROM)
(deltaromrn DELTAROM) 30

(Grom GROM)
(register TEMP ((width (- (+ (- width M) 2) 3))) )
(register Q ((width (- (+ (- width M) 2) 2))) )
(register ACCUM ((width (+ width 3))))
(addsub ADDER ((width (+ width 3))))
(multiplier MULT ((width (+ (- width M) 2))))
(miyclock C'LK(-EN)
(interpcntl FSM)

40

(net GND (NETTYPE GROUND))
(:net Vdd (NETTYPE SUPPLY))
(net PHI1 (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))
(net NOTPHI1 (NETTYPE CLOCK))
(net NOTPHI2 (NIETTYPE CLOCK))
(net PHI (NETTYPE C:LOCK))

(instance NORMALIZER (
(IN IN (width width)) 50

(OUT NORMOUT (width width))
(SHIFTS SHIFTS (width (+ (ceiling (log2 width)) 1)))
(FUNC FNC)
(Vdd Vdd)
(GND GND)

))

(instance INC (
(IN NORMOUT (width M) (net-base (- (- width M) 0)))
(OUT ROMADD (width M)) o60
(CARRY R,OMADD (net-base M))
(INC INC)
(Vdd Vdd)
(GND GNI))

))

(instance FROM (

144



(ADDRESS ROMADD (width (+ M 1)))
(ADDRESS FUNC (term-base (+ M 1)))
(DATA FROMOUT (width (+ width 3)))
(PHI PHI)
(PHI1 PHI1)
(PHI2 PHI2)
(Vdd Vdd)
(GND GND)

))

(instance DELTAROM (
(ADDRESS ROMADD (width (+ M 1)))
(ADDRESS FUNC (term-base (+ M 1)))
(DATA DELTAROMOUT (width (+ (- width M) 2)))
(PHI PHI)
(PHI1 PHI1)
(PHI2 PHI2)
(Vdd Vdd)
(GND GND)

))

(instance GROM (
(ADDRESS ROMADD (width (+ M 1)))
(ADDRESS FUNC (term-base (+ M 1)))
(DATA GROMOUT (width (+ (- width M) 2)))
(PHI PHI)
(PHI1 PHI1)
(PHI2 PHI2)
(Vdd Vdd)
(GND GND)

(instance MITLTAMUX (
;- 2 <= A < 2, so top 2 bits > 1, rest < 1
(A SUM (width (+ (- width M) 2)) (net-base (- (+ width 3) (+ (+

(- width M) 2) 1)) ) )
(B TEMPOUT (width (- (+ (- width M) 2) 3) ) )
(B GND (merge (- (+ (- width M) 2) 3) (- (+ (- width M) 2) 1)))

; add leading zeros since temp < .5, and sign extend.
(C GROMOUT (width (+ (- width M) 2)))
(SEL MULTASEL (width 2))
(OUT MULTAIN (width (+ (- width M) 2)))
(Vdd Vdd)
(GND GND)

(instance MULTBMUX (
;-I <= B < 1, so only MSB > 1
(A NORMOUT (width (- width M)) (net-base 0) (term-base 1))
(A GND (term-base 0)) ; pad Isb with zero
(A GND (term-base (- (+ (- width M) 2) 1))); sign extension, just MSB
(B DELTAROMOUT (width (+ (- width M) 2)))
(C PQOUT (width (- (+ (- width M) 2) 2)))
(C GND (merge (- (+ (- width M) 2) 2) (- (+ (- width M) 2) 1) ) )

145

70

80

90

100

110

120



, add leading zeros since pq <= .25, and sign extend
(SEL MULTBSEL (width 2))
(OUT MULTBIN (width (+ (- width M) 2)))
(Vdd Vdd)
(GND GND)

(instance MULT (
(A MULTAIN (width (+ (- width M) 2 )))
(B MULTBIN (width (+ (- width M) 2 )))
(PROD PROD (width (- (+ ( - width M) 2) 1)) (term-base (- (- (* 2

(+ (- width M) 2)) 1) (+ (- width M) 2)) ) )
(PROD PROD_MSB (term-base (- (- ( * 2 (+ (- width M) 2)) 1) 1) ) )
(Vdd Vdd)
(GND GND)

(instance TEMP (
(D PROD (width (- (+ (- width M) 2) 3)) )

; don't need to sign extend, becuase temp is always positive
(Q TEMPOUT (width (- (+ (- width M) 2) 3) ) )
(LOAD LOADTEMP)
(PHI1 PHI1)
(PHIlINV PHI1INV)
(PHI12 PHI2)
(PH12INV PHI2INV)
(Vdd Vdd)
(GND GND)

(instance PQ (
(D PROD (width (- (+ (- width M) 2) 3) ) (term-base 1))
(D GND (term-base 0))

, needed because LSB of PQ = 2'-18, ok because delta < 2 ^(-(M+))
,so we'll drop this bit anyway.

(Q PQOUT (width (- (+ (- width M) 2) 2) ) )
(LOAD LOADPQ)
(PHIl PH1l)
(PHI1INV PHI1INV)
(PHI2 PHI12)
(PHI2INV PHI2INV)
(Vdd Vdd)
(GND GND)

(instance ADDERAMUX (
(A NORMOUT (width (- width M)) (net-base 0) (term-base M ))
(A GND (merge width (+ width 2))); sign extension
(A GND (merge 0 (- M 1))) ; pad end with 0
(B PROD (width (- (+ (- width M) 2) 1)) (term-base 0) (net-base 0))
(B PROD MSB (merge (- (+ (- width M) 2) 1) (+ width 2)))
(OUT ADDERAIN (width (+ width 3) ))
(SEL ADDERASEL)
(Vdd Vdd)

146

130

140

150

160

170



(GND GND)

(instance ADDERBMUX (
(A ACCUMOUT (width (+ width 3))) 180

(B FROMOUT (width (+ width 3)) (term-base 0))
(C( CONSTSEL (width 2) (term-base width))
((: GND (merge 0 (- width 1)))
(C GND (term-base (+ width 2))); sign eension
(OUT AD)DERBIN (width (+ width 3)))
(SEL ADDERBSEL (width 2))
(Vdd Vdcl)
(GND GND)

'I)
190

(instance ADDER (
(A ADDERAIN (width (+ width 3 )))
(B ADDERBIN (width (+ width 3 )))
(SUB ADDERSUB)
(SUM SUM (width (+ width 3)))
(Vdd Vdcl)
(GCND (IGND)

))

(instance ACCUM ( 200

(D SUM (width (+ width 3)))
(Q ACCUMOUT (width (+ width 3)))
(LOAD LOADACCUM)
(PHI1 PHI1)
(PHIiINV PHIlINV)
(PHI2 PHI2)
(PHI2INV PHI2INV)
(Vdd Vdd)
(G(ND GCND)

)I) 210

(instance CLKGE:N (
(CLK PHI)
(PHIl PHIl)
(PHI2 PH12)
(PHIIINV PHIIINV)
(PHI2INV PHI2INV)
(Vdd Vdd)
((IND (GND) ~~~~~~~~~~~~~~~)) ~~~~~~~~~~220

(instance FSM (
(GO GO)
(BUSY BUSY)
(INC INC)
(RESET RESET)
(MULTASEL MULTASEL (width 2))
(MULTBSEL MULTBSEL (width 2))
(ADDERASEL ADDERASEL)

147



(ADDERBSEL ADDERBSEL (width 2))
(ADDERSUB ADDERSUB)
(LOADACCUM LOADACCUM)
(LOADPQ LOADPQ)
(LOADTEMP LOADTEMP)
(CONSTSEL CONSTSEL (width 2))
(PHI1 PHI1)
(PHI2 PHI2)
(Vdd Vdd)
(GND GND)

(instance parent (
((terminal
((terminal
((terminal
((terminal
((terminal
((terminal

(log2 width)) 1)))
((terminal
((terminal
((terminal
((terminal

(end-sdl)

IN (DIRECTION INPUT)) IN (width width))
GO (DIRECTION INPUT)) GO)
RESET (DIRECTION INPUT)) RESET)
BUSY (DIRECTION OUTPUT)) BUSY)
OUT (DIRECTION OUTPUT)) ACCUMOUT (width (+ width 2)))
SHIFTS (DIRECTION OUTPUT)) SHIFTS (width (+ (ceiling

FUNC (DIRECTION INPUT)) FUNC)
Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
GND (TERMTYPE GROUND) (TERM-EDGE BOTTOM)) GND)
PHI (TERMTYPE CLOCK)) PHI)

A.1.31 interpcntl.sdl

This is a simple finite state machine that creates a PLA grid of instructions based

on the contents of the interpcntl.bds behavioral description language file. It is

designed to control the operation of the fast interpolation cell.

(parent-cell interpcntl)

(layout-generator Flint b)

(subcells
(fsm bdsyn FSM ((inwidth 5) (outwidth 18)

(bdsyn "'/sdl/interp/interpcntl/interpcntl.bds")))

)

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
(net PHI1 (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))

(instance FSM (

148

10

230

240

250



(IN STATE (term-base 0) (width 3))
(IN GO (term-base 3))
(IN RESET (term-base 4))
(OUT STATE (term-base 0) (width 3))
(OUT BUSY (term-base 3)) 20

(OUT INC (term-base 4))
(OUT MULTASEL (term-base 5) (width 2))
(OUTT MIJLTBSEL (term-base 7) (width 2))
(OUT ADDERASEL (term-base 9))
(OUT ADDERBSEL (term-base 10) (width 2))
(OUT ADDERSUB (term-base 12))
(OUT LOADACCUM (term-base 13))
(OUIT LOADPQ (term-base 14))
(OUT LOADTEMP (term-base 15))
(OUT (C)NSTSEL (term-base 16) (width 2)) 30

(PHIl PEII1)
(PHI2 P[HI2)
(Vdd Vdd)
(CGND (IND)

(instance parent (
((terminal GO (DIRECTION INPUT)) GO)
((terminal RESET (DIRECTION INPUT)) RESET)
((terminal STATE (DIRECTION OUTPUT)) STATE (width 3)) 40

((terminal BUSY (DIRECTION OUTPUT)) BUSY)
((terminal INC (DIRECTION OUTPUT)) INC)
((terminal MULTASEL (DIRECTION OUTPUT)) MULTASEL (width 2))
((terilinal MULTBSEL (DIRECTION OUTPUT)) MULTBSEL (width 2))
((termlinal ADDERASEL (DIRECTION OUTPUT)) ADDERASEL)
((terminal ADDERBSEL (DIRECTION OUTPUT)) ADDERBSEL (width 2))
((terminal ADDERSUB (DIRECTION OUTPUT)) ADDERSUB)
((terminal LOADACCUM (DIRECTION OUTPUT)) LOADACCUM)
((terminal LOADPQ (DIRECTION OUTPUT)) LOADPQ)
((terminal LOADTEMP (DIRECTION OUTPUT)) LOADTEMP) 50

((terminal CONSTSEL (DIRECTION OUTPUT)) CONSTSEL (width 2))
((terminal PHI1 (TERMTYPE CLOCK)) PHI1)
((terminal PHI2 (TERMTYPE CLOCK)) PHI2)
((terminal Vdd (TERMTYPE SUPPLY) (TERM_EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM EDGE BOTTOM)) GND)

))

(enLd-sdl)

A.1.32 multiplier.sdl

This cell is a real multiplier for use in the fast interpolation cell. It performs a single

cycle multiply of A and B.

(parent-cell multiplier)

149



(parameters width)

(layout-generator Flint b)

(subcells
(mult MULT ((m width) (n width) (s (list-length (make-carry-select

(- (* 2 width) 3)))) (csindex (make-carry-select (- (* 2 width) 3)))))
) 10

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance MULT(
(X A (width width))
(Y B (width width))
(P PROD (width (- (* 2 width) 1)))
(Vdd Vdd)
(GND GND) 20

))

(instance parent (
((terminal A (DIRECTION INPUT)) A (width width))
((terminal B (DIRECTION INPUT)) B (width width))
((terminal PROD (DIRECTION OUTPUT)) PROD (width (- (* 2 width) 1)))
((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM EDGE BOTTOM)) GND)

))
30

(end-sdl)

A.1.33 negator.sdl

This cell performs an XOR of each bit of the input IN with the value of CNTL. This is

used for taking the complement of the B input to the cmult. sdl complex multiplier

cell.

(parent-cell negator)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (invpass INVPASS ((N N))))

(instance INVPASS ( 10
(IN IN)
(OUT OUT)

150



(CNTL CNTL)
(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal IN (DIRECTION INPUT)) IN)
((terminal OUT (DIRECTION OUTPUT)) OUT) 20

((terminal CNTL (DIRECTION INPUT)) CNTL)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

( end-sdl)

A.1.34 normalizer.sdl

The input to the fast interpolation cell is normalized at the input. The cell brings

together the priority encode used to determine the number of shifts required and the

barrel shifter to actually implement them.

(parent-cell normalizer)

(parameters width)

(structure-processor SIVcheck)
(layout-generator Flint b)

(subcells (normalizerlogic LOGIC ((width width)))
(normalizerdpp BSHIFT ((N width)))
(normalizerbuffer BUFFER ((width width))) 10

)

(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(instance LOGIC (
(bits IN (width (- width 0)))
(shifts SHIFTS (width (ceiling (log2 width))))
(shiftcntl shiftcntl (width width))
(Vdd Vdd) 20

(GND GND)
))

(instance BSHIFT (
(DATAIN IN (width width))
(SHIFTCNTL shiftcntl (width width))
(DATAOUT OUT(width width))
(ZERO GND (merge 0 (- width 1)))

151



30

(instance BUFFER (
(IN FUNC)
(OUT SHIFTS (net-base (ceiling (log2 width))))
(Vdd Vdd)
(GND GND)

(instance parent (
((terminal IN (DIRECTION INPUT)) IN (width (- width 0)))
((terminal SHIFTS (DIRECTION OUTPUT)) SHIFTS (width (+ (ceiling

(log2 width)) 1)))
((terminal FUNC (DIRECTION INPUT)) FUNC)
((terminal OUT (DIRECTION OUTPUT)) OUT (width (- width 0)))
((terminal Vdd (TERMTYPE SUPPLY) (TERMEDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM EDGE BOTTOM)) GND)

))
(end-sdl)

40

A.1.35 normalizerbuffer.sdl

Thlis is just a buffer from the standard cell library. It is used to assign a different

name to the FUNC input for use in the output. LAGER does not permit having two

nanm es for the same net, so this cell works around this limitation.

(parent-cell normnalizerbuffer)

(]layout-generator Stdcell)

(subcells (bufflOl BUFFER))

(instance BUFFER (
(Al IN)
(O OUT)

)) 10

(instance parent
((terminal IN (DIRECTION INPUT)) IN)
((terminal OUT (DIRECTION OUTPUT)) OUT)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

152



A.1.36 normalizerdpp.sdl

This is the actual barrel shifter used to perform the shift up required for normalization

at the input to the interpolation cell. The ZERO input is tied to GND one level up in

the hierarchy because the datapath library does not permit connections between the

data inputs and the power supply rails. S the shift control signal generated by the

priority encoder, normalizerlogic. sdl.

(parent-cell normalizerdpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint b)

(subcells (bshift BSHIFT ((N N) )))
10

(instance BSHIFT (
(A DATAIN )
(B ZERO )
(S SHIFTCNTL)

(O DATAOUT)
))

(instance parent (
((terminal DATAIN (DIRECTION INPUT)) DATAIN )
((terminal DATAOUT (DIRECTION OUTPUT)) DATAOUT) 20
((terminal SHIFTCNTL (DIRECTION INPUT)) SHIFTCNTL)
((terminal ZERO (DIRECTION INPUT)) ZERO )

))

(end-sdl)

A.1.37 normalizerlogic.sdl

The priority encoder used to normalize the input to the interpolation cell is imple-

mented using a behavioral description file prienc. bds that is translated into standard

logic cells. This cell generates the exponent for the interpolator output and the control

signals for the normalizerdpp.sdl cell.

(parent-cell norrnalizerdpp)

(parameters N)

153



(structure-processor dpp)
(layout-generator Flint b)

(subcells (bshift BSHIFT ((N N) )))
10

(instance BSHIFT(
(A DATAIN )
(B ZERO )
(S SHIFTCNTL)

(O DATAOUT )
))

(instance parent (
((terminal DATAIN (DIRECTION INPUT)) DATAIN)
((terminal DATAOUT (DIRECTION OUTPUT)) DATAOUT) 20

((terminal SHIFTCNTL (DIRECTION INPUT)) SHIFTCNTL)
((terminal ZERO (DIRECTION INPUT)) ZERO)

))

(end-sdl)

A.1.38 offdiag2.sdl

This file is the core of the off-diagonal processor elements. It takes as parameters the

number of registers to be tiled into the register file regfile2p. sdl, and the width to

be used for all of the subcells. The data comes in through 4 bit wide serial links. The

core also has connections to determine whether or not the processor is on an edge

of the array. This cell implements a complex multiplier bus2cmult. sdl, a complex

adder bus2adder, a register file regfile2p. sdl, and several semi-serial input output

registers busserio. sdl.

(parent-cell offdiag2)

(parameters width numOfRegs (ioPerChannel 4) (ioChannels 6))
; Note: Width must be even, and is total number of real+imag bits.

(layout-generator Flint b v)

(subcells

; note: floor is used for in/outwidth to force an error if width was odd. to
; if width was odd, floor will round down, so that (* 2 (floor (/ width 2)))
; will be less than width, and errors will result due to unknown terminals.

(bus2adder ADDER ((inwidth (floor (/ width 2))) (outwidth (floor

154



(/ width 2)))))
(bus2cmult MULT ((inwidth (floor (/ width 2))) (outwidth (floor

(/ width 2)))))
(regfile2p REGFILE ((numOfRegs numOfRegs) (width width)))
(myclock CLKGEN)
(offdiagctl FSM)

20

(dotimes (i ioChannels)
(subcells
(busserio BUSIO ((ioLines ioPerChannel) (busWidth width)))

(net GND (NETTYPE GROUND)) 30

(net Vdd (NETTYPE Vdd))
(net PHI (NETTYPE CLOCK))

(instance REGFILE (
(ABUS ABUS (width width))
(BBUS BBUS (width width))
(EBUS EBUS (width width))
(AOUTEN AOUTEN (width numOfRegs))
(BOUTEN BOUTEN (width numOfRegs))
(LOAD LOAD (width numOfRegs)) 40

(SCAN GND (merge 0 (- numOfRegs 1)))
(PHI PHI)
(Vdd Vdld)

(GND GND)
))

(instance ADDER (
(ABUS ABUS (width width))
(BBUS BBUS (width width))
(EBUS EBUS (width width)) 50

(OUTEN ADDEROUTEN)
(FUNC ADDERFUNC)
(REALADD GND)
(Vdd Vdd)
(GND GND)

))

(instance MULT (
(ABUS ABUS (width width))
(BBUS BBUS (width width)) 60

(EBUS EBUS (width width))
(COMPB GND)
(COMPLEXOUT Vdd)
(OUTEN MULTOUTEN)
(REALA GND)
(Vdd Vdd)
(GND GND)

155



))

(instance BUSIO ( 70

(EBUS EBUS (width width))
(ABUS ABUS (width width))
(INPUTA INPUTA (net-base (* i oPerChannel))

(width ioPerChannel))
(INPUTB INPUTB (net-base (* i oPerChannel))

(width ioPerChannel))
(OUTPUT OUTPUT (net-base (* i ioPerChannel))

(width ioPerChannel))
(READY IOREADY (net-base i))
(BUSOE IOBUSOE (net-base i)) 80

(BUSLD IOBUSLD (net-base i))
(START IOSTART (net-base i))
(IOSEL IOSEL)
(RESET RESET)
(PHIl PHI1)
(PHI2 PHI2)
(PHI1INV PHIIINV)
(PHI2INV PHI2INV)
(Vdd Vdd)
(GND GND) 90

))

(instance CLKGEN (
(CLK PHI)
(PHI1 PHI1)
(PHI2 PHI2)
(PHI1INV PHIiINV)
(PHI2INV PHI2INV)
(Vdd Vdd)
(GND GND) 100

))

(instance FSM (
(RESET RESET)
(IOREADY IOREADY (width ioChannels))
(INCCYCLE INCCYCLE)
(FINALCYCLE FINALCYCLE)
(NEXTDATA NEXTDATA)
(LEFTEDGE LEFTEDGE)
(TOPEDGE TOPEDGE) 110
(IOBUSOE IOBUSOE (width ioChannels))
(IOBUSLD IOBUSLD (width ioChannels))
(IOSTART IOSTART (width ioChannels))
(IOSEL IOSEL)
(ADDERFUNC ADDERFUNC)
(ADDEROUTEN ADDEROUTEN)
(MULTOUTEN MULTOUTEN)
(AOUTEN AOUTEN (width numOfRegs))
(BOUTEN BOUTEN (width numOfRegs))
(REG(LOAD LOAD (width numOfRegs)) 120

(PHI1l PHI1)

156



(PHI2 PHI2)
(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal ABUS (DIRECTION OUTPUT)) ABUS (width width))
((terminal BBUS (DIRECTION OUTPUT)) BBUS (width width))
((terminal EBUS (DIRECTION OUTPUT)) EBUS (width width)) 130

((terminal INPUTA (DIRECTION INPUT)) INPUTA (width
(* ioPerChannel ioChannels)))

((terminal INPUTB (DIRECTION INPUT)) INPUTB (width
(* ioPerChannel ioChannels)))

((terminal OUTPUT (DIRECTION OUTPUT)) OUTPUT (width
(* ioPerChannel ioChannels)))

((terminal IOBUSOE (DIRECTION OUTPUT)) IOBUSOE
(width ioChannels))

((terminal IOBUSLD (DIRECTION OUTPUT)) IOBUSLD
(width ioChannels)) 140

((terminal IOREADY (DIRECTION OUTPUT)) IOREADY
(width ioChannels))

((terminal IOSTART (DIRECTION OUTPUT)) IOSTART
(width ioChannels))

((terminal AOUTEN (DIRECTION OUTPUT)) AOUTEN
(width numOfRegs))

((terminal BOUTEN (DIRECTION OUTPUT)) BOUTEN
(width numOfRegs))

((terminal LOAD (DIRECTION OUTPUT)) LOAD 150

(width numOfRegs))
((terminal ADDEROUTEN (DIRECTION OUTPUT)) ADDEROUTEN)
((terminal MULTOUTEN (DIRECTION OUTPUT)) MULTOUTEN)
((terminal RESET (DIRECTION INPUT)) RESET)
((terminal INCCYCLE (DIRECTION INPUT)) INCCYCLE)
((terminal FINALCYCLE (DIRECTION INPUT)) FINALCYCLE)
((terminal NEXTDATA (DIRECTION INPUT)) NEXTDATA)
((terminal LEFTEDGE (DIRECTION INPUT)) LEFTEDGE)
((terminal TOPEDGE (DIRECTION INPUT)) TOPEDGE)
((terminal PHI (TERMTYPE CLOCK) (DIRECTION INPUT)) PHI) 160

((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

A.1.39 offdiag2chip.sdl

This file puts the pad frame around the offdiag2. sdl core of the off-diagonal pro-

cessor. The chip inputs are put on the left side, the outputs are along the right, and

the control connections come in on the top of the chip.

157



(parent-cell offdiag2chip)

(structure-processor Padgroup)
(layout-generator Padroute lpadsl_2)

(parameters width numOfRegs (ioPerChannel 4) (diagChannels 4) (hvChannels 2)
(ioChannels (+ hvChannels diagChannels)) (ioLines (* ioPerChannel ioChannels))

(max_pads_per_side 30)
(pads (list

(list "top" 1 maxpads_perside) 10
(list "left" (+ maxpads_per_side 1)

(* max_pads_perside 2))
(list "bottom" (+ (* maxpads_per_side 2) 1)

(* maxpads_per_side 3))
(list "right" (+ (* maxpads_per_side 3) 1)

(* maxpads_per side 4))

)
)

20
(subcells
(offdiag2 CORE ((width width) (numOfRegs numOfRegs)))
(vddl_2 (VDD_TOP_1 VDD_TOP_2 VDD RIGHT 1

VDD RIGHT 2 VDD LEFT 1 VDD LEFT_2 )

(gndl_2
(GND TOP_1 GND_TOP_2 GND_TOP_3 GND TOP_4 GND_LEFT 1 GNDLEFT_2

GND LEFT 3 GND LEFT 4 GND_RIGHT 1 GND_RIGHT 2))

(in1_2 30

(RESET PAD INCCYCLE_PAD FINALCYCLE_PAD NEXTDATA_PAD
LEFTEDGE_PAD TOPEDGE_PAD PHI_PAD))

(dotimes (i (* ioPerChannel ioChannels))
(subcells
(inl_2 (INPUTA PAD INPUTB_PAD))
(outl_2 OUTPUT PAD)

)
) 40
(dotimes (dummy top_left (- (round (/ maxpads_per_side 2)) (+ 7 3)))

(subcells
(spacel_2 DUMMY_PADS_TOP_LEFT)

))
(dotimes (dummy_top_right (- maxpads_per side (+ (round
(/ max_pads_per side 2)) 3)))

(subcells
(spacel_2 DUMMY_PADS_TOP_RIGHT)

))
(dotimes (dummyJ)ottom (- (- (* maxpads_per_side 4) (+ (* 2 50
(* ioPerChannel ioChannels)) 6)) (+ max-pads_per_side (+
(* ioPerChannel ioChannels)) 4)))

158



(subcells
(spacel_2 DUMMYPADSBOTTOM)
))

(net VDD (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))
('net PHI (NETTYPE CLOCK)) 60

(instance CORE (INPTA INPTA (width (* oPerChannel ioChannels)))
(INPUTA INPUTA (width (* ioPerChannel ioChannels)))
(INPUTB INPUTB (width (* ioPerChannel ioChannels)))
(OUTPUT OUTPUT (width ioLines))
(RESET RESET)
,(INCCYCLE INCCYCLE)
(FINALCYCLE FINALCYCLE)
i(NEXTDATA NEXTDATA)
(LEFTEDGE LEFTEDGE)
(ITOPEDGE TOPEDGE)
l(Vdd Vdd)
(GND GND)
IPHI PHI)

70

80

(instance INPUTA_PAD (PAD (- (- (* max_padsper_side 4) 2) i)) (

(padin INPUTA_p (net-base i))

(in INPUTA (net--base i))

)
)

(instance INPUT_3 PAD (PAD (- (- (* maxpads_per_side 4) (+ ioLines 4)) i)) (

(padin INPUTB_p (net-base i))

(in INPUTB (net--base i))

90

(instance OUTPUT_PAD (PAD (+ (+ max_pads_per_side 3) i)) (

(pado OUTPUT_p (net-base i))

(out OUTPUT (net-base i))
))

(instance RESET PAD (PAD '3) (
(padin RESET_p)
(in RESET)
))

(instance INCCY(-CLE_PAD (PAD '4)(
(padin INCCYCLE_p)

159

100

)



(in INCCYCLE)

))

(instance FINALCYCLEYPAD (PAD '5) (
(padin FINALCYCLE p)
(in FINALCYCLE)

(instance NEXTI)ATAPAD (PAD '6)(
(padin NEXTDATA-p)
(in NEXTDATA)

))

120(instance LEFTEDGE_PAD (PAD '7) (
(padin LEFTEDGE_p)
(in LEFTEDGE)

))

(instance TOPEDGE_PAD (PAD '8) (
(padin TOPEDGE_p)
(in TOPEDGE)

))

(instance PHI PAD (PAD '9)
(padin PHIlp)
(in PHI)

(instance VDDTOP 1 (PAD (+ (round (/ max padsper_side 2)) 0)) (

(padvdd Vdd_p)

(Vdd Vdd)
))

(instance VDDTOP 2 (PAD (+ (round (/ max-padsper-side 2)) 1)) (

(padvdd Vdd_p)

(Vdd Vdd)
))

(instance VDDLEFT_I (PAD (- (* max padsperside 4) (+ ioLines 2)))
(padvdd Vdd_p)

(Vdd Vdd) 150

(instance VDD LEFT 2 (PAD (- (* max pads per-side 4) (+ ioLines 3))) (
(padvdd Vdd_p)

(Vdd Vdd)

160

160

110

130

140



(instance VDD_RIGHT_1 (PAD (+ maxpads_per_side (+ ioLines 3))) (
(padvdd Vdd_p)

(Vdd Vdd)

))

(instance VDD_RIGHT_2 (PAD (+ maxpadsperside (+ ioLines 4))) (
(padvdd Vdd_p)

170

(Vdd Vdd)

(instance GND TOP_1 (PAD

(instance GND TOP_2 (PAD

(instance GND_TOP_3 (PAD

,1) (
(padgnd GNDp)
(GND GND)

))
'2) (
(padgnd GND_p)
(GND GND)

))
(- max-pads_per_side 1)) (

(padgnd GNDp)
(GND GND)

(instance GNDTOP_4 (PAD maxpads_per_side) (
(padgnd GND_p)
(GND GND)

(instance GNDLEFT 1 (PAD (- (* maxpads_per_side 4) 1)) (
(padgnd GND_p)
(GND GND)

))
(instance GND_LEFT2 (PAD (* maxpads_perside 4)) (

(padgnd GNDp)
(GND GND)

))
(instance GND_LEFT 3 (PAD (- (*
(* ioPerChannel ioChannels)) 4))) (

maxpads_per_side 4) (+ (* 2

(padgnd GND_p)
(GND GND)
))

(instance GND_LEFT4 (PAD (- (* maxpads_per_side 4) (+ (* 2
(* ioPerChannel ioChannels)) 5))) (

(padgnd GNDp)
(GND GND)

(instance GND_RIGHT_1 (PAD (+ max_pads_perside 1)) (
(padgnd GND_p)
(GND GND)

))
(instance GND_RIGHT_2 (PAD (+ max_pads_per_side 2)) (

161

180

190

200

210



(padgnd GND_p)
(GND GND)
))

,(instance DUMMY_PADS_TOP_LEFT (PAD (+ (+ 7 3) dummytop_left)))
(instance DUMMY_PADS_TOP_RIGHT (PAD (+ (+ (round (/ max_padsperside 2)) 2)
clummytop right)))

(instance DUMMY_PADS_BOTTOM (PAD (+ (+ max_padsperside (+
(* ioPerChannel ioChannels) 5)) dummybottom)))

220

(instance parent (

(* ioPerC(hannel ioC

* ioPer(hannel ioC

(' ioPerC'hannel ioC

PHI_p)

Vddp)

GN D_p)

((terminal
hannels)))
((terminal
hannels)))
((terminlal
hannels)))
((terminal
(terminal
((terminal
((terminal
((terminal
((terminal
((terminal

INPUTA_p (DIRECTION INPUTT)) INPUTA_p (width

INPUTB_p (DIRECTION INPUT)) INPUTB_p (width

OUTPUT_p (DIRECTION OUTPUT)) OUTPUT_p (width 230

RESET_p (DIRECTION INPUT)) RESET_p)
INCCYCLE_p (DIRECTION INPUT)) INCCYCLE_p)
FINALCYCLE_p (DIRECTION INPUT)) FINALCYCLE_p)
NEXTDATA_p (DIRECTION INPUT)) NEXTDATA_p)
LEFTEDGE_p (DIRECTION INPUT)) LEFTEDGE_p)
TOPEDGE_p (DIRECTION INPUT)) TOPEDGE_p)
PHIp (TERMTYPE CLOCK) (DIRECTION INPUT))

((terminal Vdd_p (TERMTYPE SUPPLY) (DIRECTION INPUT)) 240

'(terminal GND_p (TERMTYPE GROUND) (DIRECTION INPUT))

(end-sdl)

A.1.40 offdiagctl.sdl

This is the controller for the off-diagonal processor element. It takes as input a

global synchronization signal INCCYCLE, a reset signal RESET, a completion signal,

FINALCYCLE, and all of the status lines from the functional units. The operation is

controlled by the behavioral description file offdiagctl.bds.

(parent-cell offdiagctl)

(parameters (ioC'hannels 6) (stateBits 6) (cycleBits 3) (numOfRegs 16))
(layout-generato)r Flint b v)

(subcells
(fsm_bdsyn FSM ((inwidth 21) (outwidth 79)

(b)dsyn "/sdl/offdiagctl/offdiagctl. bds")))

162



Vdd (NETTYPE SUPPLY))
GND (NETTYPE GROUND))
PHI1 (NETTYPE CLOCK))
PHI2 (NETTYPE CLOCK))

(instance FSM (
(IN reset (term-base 0))
(IN ioReady (term-base 1) (width ioChannels))
(IN incCycle (term-base (+ ioChannels 1)))
(IN finalCycle (term-base (+ ioChannels 2)))
(IN nextData (term-base (+ ioChannels 3)))
(IN leftEdge (term-base (+ ioChannels 4)))
(IN topEdge (term-base (+ ioChannels 5)))
(IN cycle (term-base (+ ioChannels 6)) (width cycleBits))
(IN state (term-base (+ (+ ioChannels 6) cycleBits))

(width stateBits))
(OUT iobusoe (term-base 0) (width ioChannels))
(OUT iobusld (term-base ioChannels) (width ioChannels))
(OUT iostart (term-base (* 2 ioChannels)) (width ioChannels))
(OUT ioSel (term-base (* 3 ioChannels)))
(OUT adclerFunc (terin-base (+ (* 3 ioChannels) 1)))
(OUT adderOutEn (term-base (+ (* 3 ioChannels) 2)))
(OUT multOutEn (term-base (+ (* 3 ioChannels) 3)))
(OUT aOutEn (term-base (+ (* 3 ioChannels) 4))

(width numOfRegs))
(OUT bOutEn (term-base (+ (+ (* 3 ioChannels) 4) numOfRegs))

(width numOfRegs))
(OUT regLoad (term-base (+ (+ (* 3 ioChannels) 4)

(* 2 numOfRegs))) (width numOfRegs))
(OUT cycle (term-base (+ (+ (* 3 ioChannels) 4)

(* 3 numOfRegs))) (width cycleBits))
(OUT state (term-base (+ (+ (+ (* 3 ioChannels) 4)

(* 3 nurnOfRegs)) cycleBits)) (width stateBits))
(PHIl PHI1)
(PHI2 PHI2)
(Vd(d Vdd)
(GND G(ND)

(instance parent (
((terminal RESET (DIRECTION INPUT)) reset)
((terminal IOREADY (DIRECTION INPUT)) ioReady

(width ioChannels))
((terlllinal
((terminal
((terminal
((terniinal
((terminal
((terniinal

(width ioChannels))
((terminal

(width ioChannels))

INCCYCLE (DIRECTION INPUT)) incCycle)
FINALCYCLE (DIRECTION INPUT)) finalCycle)
NEXTDATA (DIRECTION INPUT)) nextData)
LEFTEDGE (DIRECTION INPUT)) leftEdge)
TOPEDGE (DIRECTION INPUT)) topEdge)
IOBUSOE (DIRECTION OUTPUT)) iobusoe

IOBUSLD (DIRECTION OUTPUT)) iobusld

163

(net
(net
(net
'nlet

10

20

30

40

50

60



((terminal IOSTART (DIRECTION OUTPUT)) iostart
(width ioChannels))

((terminal IOSEL (DIRECTION OUTPUT)) ioSel)
((terminal ADDERFUNC (DIRECTION OUTPUT)) adderFunc )
((terminal ADDEROUTEN (DIRECTION OUTPUT)) adderOutEn)
((terminal MULTOUTEN (DIRECTION OUTPUT)) multOutEn)
((terminal AOUTEN (DIRECTION OUTPUT)) aOutEn

(width numOfRegs)) 70

((terminal BOUTEN (DIRECTION OUTPUT)) bOutEn
(width numOfRegs))

((terminal REGLOAD (DIRECTION OUTPUT)) regLoad
(width numOfRegs))

((terminal CYCLE (DIRECTION OUTPUT)) cycle
(width cycleBits))

((terminal STATE (DIRECTION OUTPUT)) state
(width stateBits))

((terminal PHI1 (DIRECTION INPUT)
(TERMTYPE CLOCK)) PHI1) 80

((terminal PHI2 (DIRECTION INPUT)
(TERMTYPE CLOCK)) PHI2)

((terminal Vdd (DIRECTION INPUT)
(TERMTYPE SUPPLY)) Vdd)

((terminal GND (DIRECTION INPUT)
(TERMTYPE GROUND)) GND)

))

(end-sdl)

A.1.41 regfile2p.sdl

This file generates an array of instances of the datapath library cell scanreg2t, which

is a scan register with two tristate buffers on its output. It is designed to sit in a

two-operand, one result bus architecture.

(parent-cell regfile2p)

(parameters width numOfRegs )

(structure-processor SIVcheck)
(layout-generator Flint b v)

(subcells
(regfile2pdpp REGFILE ((N width) (numOfRegs numOfRegs)))
(regfile2plogic LOGIC ((N numOfRegs))) 10
(myclock CLKGEN)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE Vdd))

164



(net
(net
(net
(net
(net

PHI (NETTYPE CLOCK))
PHI1 (NETTYPE CLOCK))
PHI2 (NETTYPE CLOCK))
PHIlINV (NETTYPE CLOCK))
PHI2INV (NETTYPE CLOCK)) 20

(instance REGFILE (
(ABUS ABUS (width width))
(BBUS BBUS (width width))
(EBUS EBUS (width width))
(AOUTEN AOUTEN (width numOfRegs))
(AOUTENINV AOUTENINV (width numOfRegs))
(BOUTEN BOUTEN (width numOfRegs))
(BOUTENINV BOUTENINV (width numOfRegs))
(LOAD GLOAD (width numOfRegs))
(LOADINV GLOADINV (width numOfRegs))
(SCAN SCAN (width numOfRegs))
(SCANINV SCANINV (width numOfRegs))
(SCANIN GND (merge 0 ( - numOfRegs 1)))
(PHIl PHI1)
(PHI1INV PHI1INV)
(PHI2 PHI2)
(PHI2INV PHI2INV)
(Vdd Vdd)
(GND GND)

))

(instance LOGIC (
(AOUTEN AOUTEN (width numOfRegs))
(AOUTENINV AOUTENINV (width numOfRegs))
(BOUTEN BOUTEN (width numOfRegs))
(BOUTENINV BOUTENINV (width numOfRegs))
(LOAD LOAD (width numOfRegs))
(GLOAD GLOAD (width numOfRegs))
(GLOADINV GLOADINV (width numOfRegs))
(SCAN SCAN (width numOfRegs))
(SCANINV SCANINV (width numOfRegs))
(Vdd Vdd)
(GND GND)

(instance CLKGEN (
(CLK PHI)
(PHI1 PHIl)
(PHI2 PHI2)
(PHIlINV PHIlINV)
(PHI2INV PHI2INV)
(Vdd Vdd)
(G(ND GND)

(instance parent (
((terminal ABUS (DIRECTION OUTPUT)) ABUS (width width))
((terminal BBUS (DIRECTION OUTPUT)) BBUS (width width))

165

30

40

50

60



((terminal EBUS (DIRECTION INPUT)) EBUS (width width)) 70

((terminal AOUTEN (DIRECTION INPUT)) AOUTEN
(width numOfRegs))

((terminal BOUTEN (DIRECTION INPUT)) BOUTEN
(width numOfRegs))

((terminal LOAD (DIRECTION INPUT)) LOAD (width numOfRegs))
((terminal SCAN (DIRECTION INPUT)) SCAN (width numOfRegs))
((terminal PHI (TERMTYPE CLOCK)) PHI)
((terminal PHI1 (TERMTYPE CLOCK)) PHI1)
((terminal PHI1INV (TERMTYPE CLOCK)) PHIlINV)
((terminal PHI2 (TERMTYPE CLOCK)) PHI2) 80

((terminal PHI2INV (TERMTYPE CLOCK)) PHI2INV)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

A.1.42 regfile2pdpp.sdl

This file contains the actual instances of the registers for the regfile2p.sdl cell.

The registers come from the datapath library.

(parent-cell regfile2pdpp)

(parameters N numOfRegs)

(structure-processor dpp)

(layout-generator Flint a)

(dotimes (i numOfRegs)
(subcells (scanreg2t REGISTER ((N N))) l0

)

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE Vdd))
(net PHIl (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))
(net PHIIINV (NETTYPE CLOCK))
(net PHI2INV (NETTYPE CLOCK))

20
(instance REGISTER (

(IN EBUS)
(ABUS ABUS)
(BBUS BBUS)
(SCANIN SCANIN (net-base i))
(SCANOUT SCANOUT (net-base i))
(LOAD LOAD (net-base i))

166



(LOADINV LOADINV (net-base i))
(SCAN SCAN (net-base i))
(SCANINV SCANINV (net-base i)) 30

(KEEP LOADINV (net-base i))
(KEEPINV LOAD (net-base i))
(AOUT AOUTEN (net-base i))
(AOUTINV AOUTENINV (net-base i))
(BOUT BOUTEN (net-base i))
(BOUTINV BOUTENINV (net-base i))
(PHI2 PHI2)
(PHI2INV PHI2INV)
(PHIl PHI1)
(PHI1INV PHI1INV) 40

(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal ABUS (DIRECTION OUTPUT)) ABUS)
((terminal BBUS (DIRECTION OUTPUT)) BBUS)
((terminal EBUS (DIRECTION INPUT)) EBUS)
((terminal AOUTEN (DIRECTION INPUT)) AOUTEN

(width numOfRegs)) 50

((terminal AOUTENINV (DIRECTION INPUT)) AOUTENINV
(width numOfRegs))

((terminal BOUTEN (DIRECTION INPUT)) BOUTEN
(width numOfRegs))

((terminal BOUTENINV (DIRECTION INPUT)) BOUTENINV
(width numOfRegs))

((terminal LOAD (DIRECTION INPUT)) LOAD (width numOfRegs))
((terminal LOADINV (DIRECTION INPUT)) LOADINV

(width numOfRegs))
((terminal SCAN (DIRECTION INPUT)) SCAN (width numOfRegs)) 60

((terminal SCANINV (DIRECTION INPUT)) SCANINV
(width numOfRegs))

((terminal SCANIN (DIRECTION INPUT)) SCANIN
(width numOfRegs))

((terminal SCANOUT (DIRECTION INPUT)) SCANOUT
(width numOfRegs))

((terminal PHI1 (TERMTYPE CLOCK)) PHIl)
((terminal PHI1INV (TERMTYPE CLOCK)) PHIlINV)
((terminal PHI12 (TERMTYPE CLOCK)) PHI2)
((terminal PHI2INV (TERMTYPE CLOCK)) PHI2INV) 70

((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND)

))

(end-sdl)

167



A.1.43 regfile2plogic.sdl

This file implements the random logic needed for generation of complements of control

signals for regfile2pdpp.sdl in regfile2p.sdl.

(parent-cell regfile2plogic)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells
(inverter ACNTLINV ((N N)))
(inverter BCNTLINV ((N N))) 10
(inverter LDCNTLINV ((N N)))
(inverter SCANCNTLINV ((N N)))
(and2 LOADGATE ((N N)))

)

(niet (-ND (NETTYPE GROUND))
(net Vdd (NETTY'PE SUPPLY))

(instance ACNTLINV (
(IN AOUTEN) 20

(OUTINV AOUTENINV)
(Vdd Vdd)
(GND GND)

))
(instance BC(-NTLINV (

(IN BOUTEN)
(OUTINV BOUTENINV)
(Vdd Vdd)
((-ND GND)

30
(instance LDCNTLINV (

(IN GLOAD)
(OUTINV GLOADINV)
(Vdcl Vdd)
(GND GND)

))
(instance SCANCNTLINV (

(IN SCAN')
(OUTINV SCANINV)
(Vdd Vdd') 40

((;ND) G ND)
))
(instance LOADGATE (

(A LOAD)
(B SCANINV)
(AND2 GLOAD)

168



))

(instance parent (
((terminal AOUTEN (DIRECTION INPUT)) AOUTEN) 50
((terminal AOUTENINV (DIRECTION OUTPUT)) AOUTENINV)
((terminal BOUTEN (DIRECTION INPUT)) BOUTEN)
((terminal BOUTENINV (DIRECTION OUTPUT)) BOUTENINV)
((terminal LOAD (DIRECTION INPUT)) LOAD)
((terminal GLOAD (DIRECTION OUTPUT)) GLOAD)
((terminal GLOADINV (DIRECTION OUTPUT)) GLOADINV)
((terminal SCAN (DIRECTION INPUT)) SCAN)
((terminal SCANINV (DIRECTION OUTPUT)) SCANINV)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND) 60

))

(end-sdl)

A.1.44 register.sdl

This is a simple loadable register used to store temporary values during computation

in the fast interpolation cell.

(parent-cell register)

(parameters width)

(structure-processor SIVcheck)
(layout-generator Flint v b)

(subcells (registerdpp REGISTER ((N width)))
(registerlogic LOGIC)

) 10

(net GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))
(net PHI1 (NETTYPE CLOCK))
(net PHIIINV (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))
(net PHI2INV (NETTYPE CLOCK))

(instance REGISTER ( 20
(D D (width width))
(Q Q (width width))
(SCANIN GND)
(LOAD LOAD)
(LOADINV LOADINV)
(SCAN GND)
(SCANINV Vdd)

169



(PHI2 PHI2)
(PHI2INV PHI2INV)
(PHI1 PHI1) 30

(PHIlINV PHI1INV)
(Vdd Vdd)
(GND GND)

))
(instance LOGIC (

(LOAD LOAD)
(LOADINV LOADINV)
(Vdd Vdd)
(GND GND)

)) 40

(instance parent (
((terminal D (DIRECTION INPUT)) D (width width))
((terminal Q (DIRECTION OUTPUT)) Q (width width))
((terminal LOAD (DIRECTION INPUT)) LOAD )
((terminal PHIl (TERMTYPE CLOCK)) PHI1)
((terminal PHI1INV (TERMTYPE CLOCK)) PHI1INV)
((terminal PHI2 (TERMTYPE CLOCK)) PHI2)
((terminal PHI2INV (TERMTYPE CLOCK)) PHI2INV)
((terminal Vdd (TERMTYPE SUPPLY) (TERM EDGE TOP)) Vdd) 50

((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)
))

(end-sdl)

A.1.45 registerdpp.sdl

This is the actual scan register used by the register. sdl cell. It is implemented as

a scan register from the datapath library.

(parent -cell registerdpp)

(parameters N)

(structure-processor dpp)
(layout-generator Flint a)

(subcells (scanreg REGISTER ((N N)))
)

~~~~~~~~~~~~~~~~~~~~~~; ~~~~~~10
(net G(ND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))
(net PHIl (NETTYPE CLOCK))
(net PHIlINV (NETTYPE CLOCK))
(net PHI2 (NETTYPE CLOCK))
(net PHI2INV (NETTYPE CLOCK))

170

(instance REGISTER (
(IN D) 20

(OUT Q)
(SCANIN SCANIN)
(LOAD LOAD)
(LOADINV LOADINV)
(SCAN SCAN)
(SCANINV SCANINV)
(KEEP LOADINV)
(KEEPINV LOAD)
(PHI2 PHI2)
(PHI2INV PHI2INV) 30

(PHI1 PHI1)
(PHIlINV PHIlINV)
(Vdd Vdd)
(GND GND)

))

(instance parent (
((terminal D (DIRECTION INPUT)) D)
((terminal Q (DIRECTION OUTPUT)) Q)
((terminal LOAD (DIRECTION INPUT)) LOAD) 40

((terminal LOADINV (DIRECTION INPUT)) LOADINV)
((terminal SCAN (DIRECTION INPUT)) SCAN)
((terminal SCANINV (DIRECTION INPUT))SCANINV)
((terminal SCANIN (DIRECTION INPUT)) SCANIN)
((terminal PHIl (TERMTYPE CLOCK)) PHI1)
((terminal PHI1INV (TERMTYPE CLOCK)) PHIiINV)
((terminal PHI2 (TERMTYPE CLOCK)) PHI2)
((terminal PHI2INV (TERMTYPE CLOCK)) PHI2INV)
((terminal Vdd (TERMTYPE SUPPLY)) Vdd)
((terminal GND (TERMTYPE GROUND)) GND) 50

))

(end-sdl)

A.1.46 registerlogic.sdl

This file contains the logic needed for control signal generation in the register. sdl

cell. The logic is implemented from the standard cell library.

(parent-cell registerlogic)

(layout-generator Stdcell)

(subcells (invflO03 INV))

(Inet GND (NETTYPE GROUND))
(net Vdd (NETTYPE SUPPLY))

171

(instance INV (l0
(Al LOAD)
(O LOADINV)

(instance parent (
((terminal LOAD (DIRECTION INPUT)) LOAD)
((terminal LOADINV (DIRECTION OUTPUT)) LOADINV)
((terminal Vdd (TERMTYPE SUPPLY) (TERM_EDGE TOP)) Vdd)
((terminal GND (TERMTYPE GROUND) (TERM_EDGE BOTTOM)) GND)

20

(end-sdl)

A.2 BDS Files

A.2.1 diagctl.bds

This file contains the behavioral description for performing the calculations of the

diagonal processor as presented in chapter 2 for computation of the SVD on a systolic

processor array as a three cycle computation. This file is used to generate the PLA

grid for a finite state machine.

! io2reg(serio, r, state, nextstate) : take io from serial i/o serio and loads into reg r

! reg2io(r, serio, state, nextstale): take io from serial i/o serio and loads into reg r

! mul(rl, r2, r3, state, nextstate): rl * r2 -> r3; all complex

! mag(rl, r2, state, nextslate): rl * comp(rl) -> r2; rl complex, r2 real

! cmul(rl, r2, r3, state, nextstate): rl * comp(r2) -> r3; rl, r2, r3 complex
10

i rmul (rl, r2, r3, state, nextstate): rl * r2 -> r3; all real

i crmul(rl, r2, r3, state, nextstate): rl * r2 -> r3; rl real, r2, r3 complex

! ccrmul(rl, r2, r3, state, nexistate): rl * conj(r2) -> r3; rl real, r2, r3 complex

! add(rl, r2, rS, state, nextstate): rl + r2-> r3, all complex

! sub(rl, r2, r3, state, nextstate): rl - r2-> r3, all complex
20

! radd(rl, r2, r3, state, nextstate): rl + r2-> r3, all real

! sqrt(rl, r2, state, nextstate): sqaure_root(rl) -> r2; rl, r2 real: NOTE: take 3 steps

172

! invsqrt(rl, r2, state, nextstate): /square_root(rl)-> r2; rl, r2 real: NOTE: take 3 steps

model offdiagctl
OUT<88:0> = IN<23:0>; 30

synonym iobusoe<5:0> = out<5:0>,
iobusld<5:0> = out<11:6>,
iostart<5:0> = out<17:12>,
ioSel = out<18>,
adderFunc = out<19>,
adderOutEn = out<20>,
adderRealAdd = out<21>,
multOutEn = out<22>,
multCompB = out<23>,
multComplexOut = out<24>, 40
multRealA = out<25>,
interpGo = out<26>,
interpFunc = out<27>,
interpOutEn = out<28>,
bshuftOutEn = out<29>,
aOutEn<15:0> = out<45:30>,
bOutEn<15:0> = out<61:46>,
regLoad<15:0> = out<77:62>,
nextCycle<2:0> = out<80:78>,
nextState<5:0> = out<86:81>, 50
nextSubState< 1:0> = out<88:87>,
reset = in<O>,
alphaReady = in<l>,
betaReady = in<2>,
gammaReady = in<3>,
deltaReady = in<4>,
hReady = in<5>,
vReady = in<6>,
incCycle = in<7>,
finalCycle = in<8>, 60
nextData = in<9>,
leftEdge = in<10>,
topEdge = in<11>,
interpBusy = in<12>,
presentCycle<2:0>= in<15:13>,
presentState<5:0> = in<21:16>,
presentSubState< 1:0> = in<23:22>;

constant alpha = 1,
beta = 2,
gamma = 4, 70
delta = 8,
abgd = 15,
horiz = 16,
vert = 32,
handv = 48,
rO = 1,

rl = 2,

173

r2 = 4,
r3 = 8,
r4 = 16,
r5 = 32,
r6 = 64,
r7 = 128,
r8 = 256,
r9 = 512,
rIO = 1024,
rl = 2048,
r12 = 4096,
r13 = 8192,
r14 = 16384,
r15 = 32768,
none = 0,
ADD = 1,
SUB = 0,
MULT = 1,
PassInputs = 0,
LoadInput = 1,
idle = 0,
load = 1,
cycl = 2,
cyc2 = 3,
cyc3 = 4,
pass = 5,
unload = 6,
true = 1,
false = 0,
squarert = 0,
invsquarert = 1;

routine main;
! defaults
nextState = 0;
nextSubState = 0;
iobusoe = none;
iobusld = none;
iostart = none;
ioSel = PassInputs;
adderOutEn = none;
adderFunc = ADD;
multOutEn = none;
multC'omlexOut = true;
multC'ompB = false;
adderRealAdd =false;
interpGo :- false;
interpOutEn = false;
interpFunc = squarert;
aOutEn =: none;
bOutEn =: none;
regLoad =: none;
nextCycle = presentCycle;

! reset by default
no substate

! nobody on the bus
! nobody loading off bus
! nobody starting io

use internal connections
! adder not on bus
! adder adds

m! ult not on bus either
! complex multiply by default
! do not complement b in multiplies
/ complex adds
! no znterp
! no interp on bus
! square root by default
! no regs on abus
/ no regs on bbus
/ no regs loading
! waiting to go

174

80

90

100

110

120

130

! now lets do something...
select presentCycle from

[idle]: if incCycle then
begin

nextState = 0;
nextCycle = load;

end;
[load]: begin

ioSel = LoadInput;
if incCycle then

begin
nextState 0;
nextCycle = cycl;

end
else begin

select presentState from
[0]: begin

if nextData then begin
iostart = abgd;
nextState = 1;
end

else begin
nextState = 0;
end;

end;
[1]: begin

if alphaReady then begin
nextState = 0;

end else begin
nextState = 1;
end;

end;
endselectselect; ! presentState

end; !else
end; !cycle

[cycl]: begin
if incCycle then

begin
nextState = 0;
nextCycle = cyc2;

end
else begin
select presentState from

[0]: begin
iobusoe = alpha;
regload = rO;
nextState = 1;

! reset state
! first load

140

! reset state
! done loading

150

! start r/w in col
! proceed

! still waitint

! done w/this one 160

! not done

170

! reset state
! next cycle

i alpha on bus
! rO <- alpha

end;
[1]: begin

iobusoe =
regload =
nextState

end;

beta;
rl;
:2;

! beta on bus
! rl <- beta

175

180

[2]: begin
iobusoe = gamma;
regload = r2;
nextState = 3;

end;
[3]: begin

iobusoe = delta;
regload = r3;
nextState = 4;

end;
[4]: begin

! gamma on bus
! r2 <- gamma

190

! delta on bus
! rS <- delta

DutEn = rO;
OutEn = rO;
nultOutEn = MULT;
tultComplexOut = false;
nultCompB = true;
egLoad = r4;
extState = 6;

! alpha *c(alpha)->iagSqAlpha

DutEn = r2;
OutEn = r2;
tultOutEn = MULT;
nultComplexOut = false;
tultC'ompB = true;
egLoad = r5;
extState = 7;

! gamma *c(gammna)-> magSqGamma a

210

220

OutEn = r4;
OutEn = r5;
dderOutEn =ADD;
egLoad = r15;
extState = 8;

! m agSqAlpha+magSqGamma->AddT
230

select presentSubState from
[0]: begin

aOutEn = r4;
interpGo = true;
interpFunc = invsquarert;
nextState = 8;
nextSubState = 1;

end;

176

end;
' regzster map for this cycle:

nextState = 4; ! wait here

rO = alpha rl = beta r2 = gamma
r3 = delta r4 = magSqAlpha r5 = magSqGamma 200

r6 = betaP r7 = cTg r8 = sTg
r9 = Ta rlO = Tb rll = Tg
r12 = Td r 3 = Temnpl r14 = Temp2
r15 = =AddTemp

[5]: begin
al

b

re

end;
[6]: begin

al

b,

rE

III

end;
[7]: begin

a,
b,

a(
rE

end;

[8]: begin

I

[1]: begin 240
aOutEn = r4;
interpFunc = invsquarert;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 8;

end;
[2]: begin 250

interpFunc = invsquarert;
interpOutEn = true;
regLoad = r9;
nextSubState = 0;
nextState = 11;

end;
endselectselect;

end; ! Ta = I/magSqAlpha
[11]: begin

aOutEn = r9; 260

bOutEn = rO;
multOutEn =MULT;
multRealA = true;
multCompB = false;
regLoad = r9;
nextState = 12;

end; / Ta = Ta * c(beta)
[12]: begin

select presentSubState from
[0]: begin 270

aOutEn = r5;
interpGo = true;
interpFunc = invsquarert;
nextState = 12;
nextSubState = 1;

end;
[1]: begin

aOutEn = r5;
interpFunc = invsquarert;
if interpBusy then begin 280

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 12;

end;
[2]: begin

interpFunc = invsquarert;
interpOutEn = true;
regLoad = rl 1; 290

nextSubState = 0;
nextState = 15;

end;

177

endselectselect;
end; ! Tg = I/magSqGamma
[15]: begin

aOutEn rll;
bOutEn = r2;
multOutEn =MULT;
multRealA = true;
multCompB = false;
regLoad = rl;
nextState = 16;

end; ! Tg = Tg * c(gammma)

[16]: begin
select presentSubState from
[0]: begin

aOutEn = r4;
interpGo = true;
nextState = 16;
nextSubState = 1;

end;
[1]: begin

aOutEn = r4;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 16;

end;
[2]: begin

interpOutEn = true;
regLoad = r4;
nextSubState = 0;
nextState = 19;

end;
endselectselect;

end; ! magAlpha = agSqAlpha
[19]: begin

select presentSubState from
[0]: begin

aOutEn = r5;
interpGo = true;
nextState = 19;
nextSubState = 1;

end;
[1]: begin

aOutEn = r5;
if interpBusy then begin

nextSubState = 1;
end else begill

nextSubState = 2;
end;
nextState = 19;

end;

178

300

310

320

330

340

[2]: begin
interpOutEn = true;
regLoad = r5;
nextSubState = 0;
nextState = 22;

end;
endselectselect;

end; m! agGamma = magSqGamrma

[22]: begin
select presentSubState from
[0]: begin

aOutEn = r15;
interpGo = true;
interpFunc = invsquarert;
nextState = 22;
nextSubState = 1;

end;
[1]: begin

aOutEn = r15;
interpFunc = invsquarert;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 22;

end;
[2]: begin

interpFunc = invsquarert;
interpOutEn = true;
regLoad = r13;
nextSubState = 0;
nextState = 25;

end;
endselectselect;

end; ! Templ 1/,SQRT(addTemp)
[25]: begin

aOutEn = r13;
bOutEn = r4;
multOutEn =MULT;
multComplexOut = false;
regLoad = r7;
nextState = 26;

end; ! cTg magAlpha * Tempi
[26]: begin

aOutEn = r13;
bOutEn = r5;
multOutEn =MULT;
multComplexOut = false;
regLoad = r8;
nextState = 27;

end; ! sTg = magGamma * Templ

179

350

360

370

380

390

400

I

[27]: begin
aOutEn = r7;
bOutEn = r9;
multOutEn =MULT;
multRealA = true;
regLoad = r13;
nextState = 28;

end; ! cTg * Ta -
[28]:

end;
[29]:

end;
[30]:

end;
[31]:

end;

-> Templ
begin

aOutEn = r13;
bOutEn = rl;
multOutEn =MULT;! multiply
regLoad = r13;
nextState = 29;

/ Templ * beta -> Templ
begin

aOutEn = r8;
bOutEn = rll;
multOutEn =MULT;
multRealA = true;
regLoad = r4;
nextState = 30;

! sTg * Tg -> Temp2
begin

aOutEn = r14;
bOutEn = r3;
multOutEn =MULT;! multiply
regLoad = r14;
nextState = 31;

! Temp2 * delta-> Temp2
begin

aOutEn = r13;
bOutEn = r14;
adderOutEn =ADD;
regLoad = r6;
nextState = 32;

! Templ + Temp2 -> betaP
[32]: begin

aOutEn = r6;
bOutEn = r6;
multOutEn = MULT;
multComplexOut = false;
multCompB = true;
regLoad = r3;
nextState = 33;

end; ! Tempi = magsq(betaP)
[33]: begin

select presentSubState from
[0]: begin

aOutEn = r13;
interpGo = true;
interpFunc = invsquarert;
nextState = 33;
nextSubState = 1;

180

410

420

430

440

450

end;
[1]: begin

aOutEn = r13;
interpFunc = invsquarert;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 33;

end;
[2]: begin

interpFunc = invsquarert;
interpOutEn = true;
regLoad = r14;
nextSubState = 0;
nextState = 36;

end;
endselectselect;

end; ! Temp2 = 1/,5
[36]: begin

aOutEn = r14;
bOutEn = r6;
multOutEn =MULT;
multRealA = true;
multCompB = false;
regLoad = r0;
nextState = 37;

end; ! Temp2 * C(betaP) ->

[37]: begin
aOutEn = r8;
bOutEn = r9;
multOutEn =MULT;
multRealA = true;
regLoad = r13;
nextState = 38;

SQRT(Templ)

480

Tb

490

end; ! sTg * Ta -> Templ
[38]: begin

aOutEn = r13;
bOutEn = r3;
multOutEn =MULT;! multiply
regLoad = r13;
nextState = 39;

end; ! Templ * delta -> Templ
[39]: begin

aOutEn = r7;
bOutEn = rll;
multOutEn =MULT;
multRealA = true;
regLoad = r14;
nextState = 40;

end; ! cTg * Tg -> Temp2
[40]: begin

181

460

470

500

!

aOutEn r14;
bOutEn = rl;
multOutEn =MULT;! multiply
regLoad = r14;
nextState = 41;

! Temp2 * beta -> Temp2
begin

aOutEn = r13;
bOutEn = r14;
adderOutEn =ADD;
adderFunc = SUB;
regLoad = r15;
nextState = 42;

! Templ - Temp2 -> addTemlp
[42]: begin

aOutEn = r15;
bOutEn = r15;
multOutEn = MULT;
multComplexOut = false;
multCompB = true;
regLoad = r13;
nextState = 43;

end; ! addTemp 2 = Templ
[43]: begin

select presentSubState from
[0]: begin

aOutEn = r13;
interpGo = true;
interpFunc = invsquarert;
nextState = 43;
nextSubState = 1;

end;
[1]: begin

aOutEn = r13;
interpFunc = invsquarert;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 43;

end;
[2]: begin

interpFunc = invsquarert;
interpOutEn = true;
regLoad = r14;
nextSubState = 0;
nextState = 46;

end;
endselectselect;

end; ! 1/,SQRT(Templ) -> Temp-2
[46]: begin

aOutEn = r14;
bOutEn = r15;

182

end;
[41]:

end;

510

520

530

540

550

560

multOutEn =MULT;
multRealA = true;
multCompB = false;
regLoad = r12;
nextState = 47;

end; ! Temp2 * C(AddTemp)->Td
[47]: begin

aOutEn = rIO;
bOutEn = r12;
multOutEn =MULT;! multiply
regLoad = r12;
nextState = 48;

end; ! Tb * Td-> Td

[48]: begin
iobusld = vert;
aOutEn = rll;
nextState = 49;

end; ! Tg -> vert
[49]: begin

iobusld = horiz;
aOutEn = r8;
nextState = 50;

end; ! sTg -> horiz

! rll on bus
! vert <- rll 580

! r8 on bus
! horiz <- r8

[50]: begin
nextState = 50; ! wail here

end; 590

endselectselect; ! presentState
end; ! else

end; ! cycl
[cyc2]: begin

if incCycle then
begin

nextState = 0;
nextCycle = cyc3;

end
else begin
select presentState from

[0]: begin
iostart = handv;

nextState = 1;
end;
[1]: if hReady then begin

aOutEn = r7;
iobusld = horiz;
nextState = 3;

end else begin
nextState = 1;

end;
[3]: begin

iostart = horiz;
nextState = 4;

! reset state
! next cycle

600

! send Tg on vert,
! sTg on horiz

610

! waiting for io

! send cTg

183

570

end;
[4]: if hReady then begin

aOutEn = r9;
regLoad = horiz;
nextState = 5;

end else begin
nextState = 4;

end;
[5]: begin

iostart = horiz;
nextState = 6;

end;
[6]: if hReady then begin

aOutEn = rlO;
regLoad = horiz;
nextState = 7;

end else begin
nextState = 6;

end;
[7]: begin

iostart = horiz;
nextState = 8;

end;
[8]: if hReady then begin

aOutEn = r12;
regLoad = horiz;
nextState = 9;

end else begin
nextState = 8;

end;
[9]: begin

iostart = horiz;
nextState = 10;

end;
[10]: if hReady then begin

nextState = 11;
end else begin

nextState = 10;
end;

Jfinish up applying values from cycl
[11]: begin

aOutEn = r7;
bOutEn = r4;
multOutEn =MULT;! multiply
regLoad = rO;
nextState = 12;

end; ! cTg * mnagAlpha -> alpha
[12]: begin

aOutEn = r8;
bOutEn = r5;
multOutEn =MULT;! multiply
regLoad = r2;
nextState = 13;

end; ! sTg * magGamma -> gamma

620

! waiting for io

! send Ta

630

! waiting for io

! send Tb

640

! waiting for io

! send Td
650

! waiting for io

660

670

184

[13]: begin
aOutEn = rO;
bOutEn = r2;
adderOutEn =ADD;
regLoad = rO;
nextState = 14;

end; ! alpha + gamma -> alpha
[14]: begin

aOutEn = r2; 680

bOutEn = r2;
adderOutEn =ADD;
adderFunc = SUB;
regLoad = r2;
nextState = 15;

end; ! gamma - gamma -> gamma = 0
[15]: begin

aOutEn = r6;
bOutEn = r10;
multOutEn =MULT;! multiply 690

regLoad = rl;
nextState = 16;

end; ! betaP * Tb -> beta
[16]: begin

aOutEn = r15;
bOutEn = r12;
multOutEn =MULT;
multCompB = false;
regLoad = r3;
nextState = 17; 700

end; ! deltaP * conj(Td)-> delta

i register map for this cycle: rO = alpha,p rl = beta, q r2 = gamma
r3 = delta,r r4 = sTv r5 = cTv
r6 = dl r7 = d2 r8 = sTs
r9 = cTs rlO = rho rll = t
rl2 = r13 = Templ r14 = Temp2
r15 = Temp3

710

[17]: begin
aOutEn = rO;
bOutEn = r3;
adderOutEn =ADD;
regLoad = r13;
nextState = 18;

end; ! alpha + delta -> Templ
[18]: begin

aOutEn = r13;
bOutEn = r13; 720

multOutEn = MULT;
multComplexOut = false;
multCompB = true;
regLoad = r15;
nextState = 19;

185

end; ! Templ*Templ-> Temp3
[19]: begin

aOutEn = rl;
bOutEn = rl;
multOutEn = MULT; 730
multComplexOut = false;
multCompB = true;
regLoad = r14;
nextState = 20;

end; ! beta * beta -> Temp2
[20]: begin

aOutEn = r15;
bOutEn = r14;
adderOutEn =ADD;
adderRealAdd = true; 740
regLoad = r14;
nextState = 21;

end; ! Temp3 + Temnp2 -> Temnp2
[21]: begin

select presentSubState from
[0]: begin

aOutEn = r14;
interpGo = true;
interpFunc = invsquarert;
nextState = 21; 750

nextSubState = 1;
end;
[1]: begin

aOutEn = r14;
interpFunc = invsquarert;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end; 760
nextState = 21;

end;
[2]: begin

interpFunc = invsquarert;
interpOutEn = true;
regLoad = r14;
nextSubState = 0;
nextState = 24;

end;
endselectselect; 770

end; ! 1/SQRT(Tep2) -> Temnp2
[24]: begin

aOutEn = r14;
bOutEn = rl;
multOutEn =MULT;
multRealA = true;
regLoad = r8;
nextState = 25;

end; ! Te7nmp2 * beta -> sTs

186

[25]: begin 780

aOutEn = r14;
bOutEn = r13;
multOutEn =MULT;
multRealA = true;
regLoad = r9;
nextState = 26;

end; ! Temp2 * Templ -> cTs

[26]: begin
aOutEn = rl; 790
bOutEn = r8;
multOutEn =MULT;! multiply
regLoad = r13;
nextState = 27;

end; ! beta * sTs -> Templ
[27]: begin

aOutEn = r3;
bOutEn = r9;
multOutEn =MULT;! multiply
regLoad = r14; 800

nextState = 28;
end; ! delta * cTs -> Temp2
[28]: begin

aOutEn r13;
bOutEn = r14;
adderOutEn =ADD;
regLoad = r3;
nextState = 29;

end; ! Templ + Temp2 -> r
[29]: begin 810

aOutEn = r8;
bOutEn = rO;
multOutEn =MUtLT;! multiply
regLoad = rl;
nextState = 30;

end; ! sTs * alpha -> q
[30]: begin

aOutEn = r9;
bOutEn = rO;
multOutEn =MULT;! multiply 820

regLoad = rO;
nextState = 31;

end; ! cTs * alpha -> p

[31]: begin
aOutEn = r3;
bOutEn = rO;
adderOutEn =ADD;
adderFunc = SUB;
regLoad = r10; 830

nextState = 32;
end; r- p -> rho
[32]: begin

187

aOutEn = rl;
bOutEn = rl;
adderOutEn =ADD;
regLoad = r13;
nextState = 33;

end; ! q + q -> Templ
[33]: begin 840

aOutEn = riO;
bOutEn = r10;
multOutEn = MULT;
multComplexOut = false;
multCompB = true;
regLoad = r14;
nextState = 34;

end; ! p * p -> Temp2
[34]: begin

aOutEn = r13; 850

bOutEn = r13;
multOutEn =MULT;! multiply
regLoad = r15;
nextState = 35;

end; ! Templ * Temp2 -> Temp3
[35]: begin

aOutEn = r13;
bOutEn = r15;
adderOutEn =ADD;
regLoad = r14; 860

nextState = 36;
end; ! Templ + Temp3 -> Temp2
[36]: begin

select presentSubState from
[0]: begin

aOutEn = r14;
interpGo = true;
nextState = 36;
nextSubState = 1;

end; 870

[1]: begin
aOutEn = r14;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 36;

end;
[2]: begin 880

interpOutEn = true;
regLoad = r14;
nextSubState = 0;
nextState = 37;

end;
endselectselect;

end; ! SQRT(Temp2) -> Temp2

188

[39]: begin
aOutEn = r1O;
bOutEn = r13; 890

adderOutEn =ADD;
adderFunc = SUB;
regLoad = rll;
nextState = 40;

end; ! rho - Templ -> t
[40]: begin

aOutEn = r14;
bOutEn = r15;
adderOutEn =ADD;
regLoad = r4; 900
nextState = 41;

end; ! emp2 + Tenmp3 -> Temp2
[41]: begin

select presentSubState from
[0]: begin

aOutEn rl4;
interpGo = true;
interpFunc = invsquarert;
nextState = 41;
nextSubState = 1; 910

end;
[1]: begin

aOutEn = r14;
interpFunc = invsquarert;
if interpBusy then begin

nextSubState = 1;
end else begin

nextSubState = 2;
end;
nextState = 41; 920

end;
[2]: begin

interpFunc = invsquarert;
interpOutEn = true;
regLoad = r14;
nextSubState = 0;
nextState = 44;

end;
endselectselect;

end; ! 1/SQRT(Temp2) -> Temp2 930
[44]: begin

aOutEn = r14;
bOutEn = r13;
multOutEn =MULT;
multRealA = true;
regLoad = r4;
nextState = 45;

end; ! Temp2 * Temnpl -> cTv
[45]: begin

aOutEn rl4; 940

bOutEn = rll;

189

multOutEn =MULT;
multRealA = true;
regLoad = r5;
nextState = 46;

end; ! Temp2 * I -> sTv

[46]: begin
iobusld = horiz;
aOutEn = r5;
nextState = 47;

end; ! sTv -> horiz
[47]: begin

iobusld = vert;
aOutEn = r5;
nextState = 48;

end; ! sTv -> vert
[48]: begin

nextState = 48; !
end;

endselectselect; ! presetnState
end; ! else

end; ! cyc2
! We are now done with cycle 2.
! on to cycle 3, then haha! the world

[cyc3]: begin
if incCycle then

begin
if finalCycle then begin

nextState = 0;
nextCycle = unload;

end else begin
nextState = 0;
nextCycle = pass;

end;
end else begin
select presentState from

[0]: begin
iostart = handv;

! r5 on bus
! vert <- r5

vait here
960

970

! reset state
! we're done

! reset state
! ezch data and restart

nextState = 1;
end;
[1]: if hReady then begin

aOutEn = r5;
regLoad = horiz;
nextState = 2;

end else begin
nextState = 1;

end;
[2]: begin

aOutEn = r5;
regLoad = vert;
nextState = 3;

end;

190

! r5 on bus
! horiz <- r5 950

! send sTvr on vert
! sTvl on horiz

980

990

[3]: begin
iostart = handv; i send cTvr on vert

! cTvl on horiz
nextState = 4;

end; 1000
[4]: if hReady then begin

aOutEn = r8;
regLoad = horiz;
nextState = 6;

end else begin
nextState = 4;

end;
[6]: begin

iostart = horiz; i send sTs from horiz
nextState = 7; 1010

end;
[7]: if hReady then begin

aOutEn = r9;
regLoad = horiz;
nextState = 8;

end else begin
nextState = 7;

end;
[8]: begin

iostart = horiz; ! send cTs from horiz 1020

nextState = 9;
end;
[9]: if hReady then begin

nextState = 10;
end else begin

nextState = 9;
end;

[10]: begin 1030

aOutEn = r5;
bOutEn = r5;
multOutEn =MULT;! multiply
regLoad = r13;
nextState = 11;

end; ! cTv * cTv -> Templ
[11]: begin

aOutEn = r13;
bOutEn = rO;
multOutEn =MULT;! multiply 1040

regLoad = r6;
nextState = 12;

end; ! Templ * p-> dl
[12]: begin

aOutEn = r5;
bOutEn = r5;
multOutEn =MULT;! multiply
regLoad = r14;
nextState = 13;

191

end; ! cTv * cTv -> Temp2 1050
[13]: begin

aOutEn = r14;
bOutEn = rO;
multOutEn =MULT;! multiply
regLoad = r7;
nextState = 14;

end; ! Temp2 * P -> d2
[14]: begin

aOutEn = r4;
bOutEn = r5; 1060
multOutEn =MULT;! multiply
regLoad = r5;
nextState = 15;

end; / sTv * cTv -> Temp3
[15]: begin

aOutEn = r15;
bOutEn = r15;
adderOutEn =ADD;
regLoad = r15;
nextState = 16; 1070

end; ! Temp +- Temp3 -> Temp3
[16]: begin

aOutEn = rl;
bOutEn = r15;
multOutEn =MULT;! multiply
regLoad = r13;
nextState = 17;

end; ! q * Temp3 -> Templ
[17]: begin

aOutEn = r6; 1080
bOutEn = r13;
adderOutEn =ADD;
adderFunc = SUB;
regLoad = r6;
nextState = 18;

end; ! dl - Templ -> dl
[18]: begin

aOutEn = r7;
bOutEn = r14;
adderOutEn =ADD; 1090
regLoad = r7;
nextState = 19;

end; ! d2 - Temp2 -> d2
[19]: begin

aOutEn = r3;
bOutEn = r13;
multOutEn =MULT;! multiply
regLoad = r15;
nextState = 20;

end; ! r * TempI -> Temp3 1100
[20]: begin

aOutEn = r3;
bOutEn = r13;

192

multOutEn =MULT;! multiply
regLoad = r14;
nextState = 21;

end; ! r * Temp2 -> Temp2
[21]: begin

aOutEn = r6;
bOutEn = r15; 1110
adderOutEn =ADD;
regLoad = rO;
nextState = 22;

end; ! dl + Temp3 -> dl
[22]: begin

aOutEn = r7;
bOutEn = r14;
adderOutEn =ADD;
regLoad = r3;
nextState = 23; 1120

end; ! d2 + Temp2 -> d2
[23]: begin

aOutEn = rl;
bOutEn = rl;
adderOutEn =ADD;
adderFunc = SUB;
regLoad = rl;
nextState = 24;

end; ! O-> rl
[24]: begin 1130

aOutEn = r2;
bOutEn = r2;
adderOutEn =ADD;
adderFunc = SUB;
regLoad = r2;
nextState = 25;

end; ! -> r2

1140

! now, get ready for data exchange, as per BLVL- algorithm interchange
I

[25]: begin
if topEdge then begin
if leftEdge then begin

aOutEn = rO; ! alpha 1150

end else begin
aOutEn = rl; ! beta

end;
end else begin
if leftEdge then begin

aOutEn = r2; ! gammaP
end else begin

193

aOutEn = r3; ! deltaP
end;

end; 1160
iobusld = alpha;! alphaOut to io
nextState = 26;

end;
[26]: begin

if topEdge then begin
if leftEdge then begin

aOutEn = rl; ! betaP
end else begin

aOutEn = rO; ! alphaP
end; 1170

end else begin
if leftEdge then begin

aOutEn = r3; ! deltaP
end else begin

aOutEn = r2; ! ganmmaP
end;

end;
iobusld = beta;! betaOut to io
nextState = 27;

end; 1180

[27]: begin
if topEdge then begin
if leftEdge then begin

aOutEn = r2; ! gainmaP
end else begin

aOutEn = r3; i deltaP
end;

end else begin
if leftEdge then begin

aOutEn = rO; ! alphaP 1190
end else begin

aOutEn = rl; ! betaP
end;

end;
iobusld = gamma;! gammaOut to io
nextState = 28;

end;
[28]: begin

if topEdge then begin
if leftEdge then begin 1200

aOutEn = r3; ! deltaP
end else begin

aOutEn = r2; ! ganmaP
end;

end else begin
if leftEdge then begin

aOutEn = rl; ! betaP
end else begin

aOutEn = rO; ! alphaP
end; 1210

end;

194

iobusld = delta;!
nextState = 29;

end;
[29]: begin

nextState = 29;
end;

endselectselect; ! presentState
end; ! else

end; ! cyc3

deltaOut to io

! wait here until cycle inc

1220

! end of computation cycles; alpha-delta now updated.
! now they must be exchanged with adjacent nodes

[pass]: begin
ioSel = PassInputs;
if incCycle then

begin
nextState = 0;
nextCycle = cycl;

end
else begin
select presentState from

[0]: begin
iostart = abgd;
nextState = 1;

end;
[1]: if alphaReady then begin

nextState = 2;
end else begin

nextState = 1;
end;
[2]: begin

nextState = 1;
end;

endselectselect; ! presentState
end; ! else

end; ! pass

data intercahnge

[unload]: begin
if incCycle then

begin
nextState = 0;
nextCycle = idle;

end
else begin

select presentState from
[0]: begin

if nextData then begin
iostart = abgd;
nextState = 1;
end

else begin

! reset state
i go back and compute 1230

! start sending all

1240

! wait for next cycle

1250

! reset state
! done unloading

1260

! start r/w in col
! proceed

195

i end of
I

nextState = 0;
end;

end;
[1]: begin

if alphaReady then begin
nextState = 0;

end else begin
nextState = 1;
end;

end;
endselectselect; presentState

end; !else
end; unload

endselectselect; ! presentCycle
if reset then begin

nextState = 0;
nextSubState = 0;
nextCycle = idle;
iobusoe = none;
iobusld = none;
iostart = none;
adderOutEn = none;
adderFunc = ADD;
multOutEn = none;
mu]tComplexOut = true;
multCompB = false;
adderRealAdd =false;
interpGo = false;
interpOutEn = false;
interpFunc = squarert;
aOutEn = none;
bOutEn = none;
regLoad = none;

end;
endroutineroutine;
endmodelmodel;

i still waitint

1270

i done w/this one

! not done

1280

i reset state
no substate

! idle cycle
! nobody on the bus
! nobody loading off bus
i nobody starting io
! adder not on bus
! adder adds
! mutt not on bus either
! complex multiply by default
! do not complement b in multiplies
! complex adds
i no interp
i no interp on bus
i square root by default

no regs on abus
no regs on bbus

i no regs loading

A.2.2 interpcntl.bds

This file contains the behavioral description for control of the fast interpolation cell

presented in chapter 5. It requires six clock cycles to complete. This file is used to

generate the PLA grid for a finite state machine.

model interpcntl
OUT<17:0> = in<4:0>;

synonym presentState<2:0> = in <2:0>,
go = in<3>,
reset = in<4>,
nextState<2:0> = out<2:0>,

196

1290

1300

busy = out<3>,
inc = out<4>,
multASel<1:0> = out<6:5>,
multBSel<1:0> = out<8:7>, 10
adderASel = out<9>,
adderBSel<1:0> = out<11:10>,
adderSub = out<12>,
loadAccum = out<13>,
loadPQ = out<14>,
loadTemp = out<15>,
constSel<1:0> = out<17:16>;

constant A=0,
B= 1, 20

C=3,
ISBUSY = 1,
NOTBUSY = 0,
INCREMENT = 1,
DONTINCREMENT = 0,
ADD = 0,
SUB = 1,
LOAD = 1,
KEEP = 0,
ZERO = 0, 30

ONE= 1,
TWO = 2,
THREE = 3;

i ADDER A MUX:
A = P (lower width-M bits of input)

.* B = output of multiplier

! ADDER B MUX:
.t A = Accumulation register 40

t B = F rom look up table
C = Constant (selectable 0,1,2,3)

! MULTIPLIER A MUX:
!l A = output of adder

B = Temporary register
i C = G rom look up table
! MULTIPLIER B MUX:

A=P
! B = delta rom look up table
! C = PQ register 50

routine main;
! defaults...
nextState = 0; ! reset by default
busy = NOTBUSY; ! not doing anything
inc = DONTINCREMENT; ! dont inc rom address
multASel = A; ! just so its something
multBSel = A; ! again
adderASel = A; ! again 60

197

adderBSel = A;
adderSub = ADD;
loadAccum = KEEP;
loadPQ = KEEP;
loadTemp = KEEP;
constSel = ZERO;

! again
! add by default
! dont load
! ditto
! ditto
! just so its something

! now the real work...
select presentState from

[0]: if go then
begin

end;
[1]: begin

end;
[2]: begin

nextState = 1;
busy = ISBUSY;
constSel = ONE;
adderBSel = C;
adderSub = SUB;
adderASel=A;
multASel = A;
multBsel = A;
loadPQ = LOAD;

nextState = 2;
busy = ISBUSY;
constSel = TWO;
adderBSel = C;
adderSub = SUB;
adderASel = A;
multASel = A;
multBSel = C;
loadTemp = LOAD;

nextState = 3;
busy = ISBUSY;
multASel = B;
multBSel = B;
adderASel = B;
adderBSel = B;
loadAccum = LOAD;

end;
[3]: begin

! start
! go!
! (1
! choose it
! minus

P)
! times

P
I and save

! keep going
I running

/ (2
! choose it
! minus
I P)
! timnes

PQ
! and save

! keep going
! running
! pq(2-p)
! times delta
/ plus

fi
i and save

end;
[4]: begin

nextState = 4;
busy = ISBUSY;
constSel = ONE;
adderBSel = C;
adderASel = A;
multASel = A;
multBSel = C;
loadTemp = LOAD;
inc = INCREMENT;

nextState = 5;

! keep going
! running
! (1
! choose it
! plus P)
I times

PQ
! and save
! increment rom

! keep going

198

70

80

90

100

110

busy = ISBUSY;
multASel = B;
multBSel = B;
adderASel = B;
adderBSel = A;
loadAccum = LOAD;

end;
[5]: begin

nextState = 6;
busy = ISBUSY;
multASel = C;
multBSel = A;
adderASel = B;
adderBSel = A;
loadAccum = LOAD;

end;
[6]: nextState = 0;
[7]: nextState = 0;

endselectselect;
if reset then

begin
nextState = 0;
busy = NOTBUSY; !
inc = DONTINCREMENT;
multASel = A;
multBSel = A;
adderASel = A;
adderBSel = A;
adderSub = ADD;
loadAccum = KEEP; i
loadPQ = KEEP; i
loadTemp = KEEP; i
constSel = ZERO;

! running
i pq(l+p)
i * nextdelta
i plus
! accum
! and save

! keep going
! running
! g

! times p
! plus
! accum
! and save

130

! unused
! unused

reset by default
not doing anything
! dont inc rom address
just so its something
again
again
again
add by default
dont load
ditto
ditto
just so its something

end;
endroutineroutine;

endmodelmodel;

A.2.3 offdiagctl.bds

This file contains the behavioral description for performing the calculations of the

off-diagonal processor as presented in chapter 2 for computation of the SVD on a

systolic processor array as a three cycle computation. This file is used to generate

199

120

140

150

the PLA grid for a finite state machine.

model offdiagctl
OUT<78:0> = IN<20:0>;

synonym iobusoe<5:0> = out<5:0>,
iobusld<5:0> = out<11:6>,
iostart<5:0> = out<17:12>,
ioSel = out<18>,
adderFunc = out< 19>,
adderOutEn = out<20>,
multOutEn = out<21>,
aOutEn<15:0> = out<37:22>, 10
bOutEn<15:0> = out<53:38>,
regLoad<15:0> = out<69:54>,
nextCycle<2:0> = out<72:70>,
nextState<5:0> = out<78:73>,
reset = in<O>,
alphaReady = in<1>,
betaReady = in<2>,
gammaReady = in<3>,
deltaReady = in<4>,
hReady = in<5>, 20
vReady = in<6>,
incCycle = in<7>,
finalCycle = in<8>,
nextData = in<9>,
leftEdge = in<lO0>,
topEdge = in<ll>,
presentCycle<2:0>= in<14:12>,
presentState<5:0> = in<20:15>;

constant alpha = 1, 30
beta = 2,
gamma = 4,
delta = 8,
abgd = 15,
horiz = 16,
vert = 32,
handy = 48,
rO = 1,

rl = 2,
r2 = 4, 40

r3 = 8,
r4 = 16,
r5 = 32,
r6 = 64,
r7 = 128,
r8 = 256,
r9 = 512,
rlO = 1024,
rll = 2048,
r12 = 4096, 50

r13 = 8192,

200

r14 = 16384,
r15 = 32768,
none = 0,
add = 1,
sub = 0,
mult = 1,
PassInputs = 0,
LoadInput = 1,
idle = 0,
load = 1,
cycl = 2,
cyc2 = 3,
cyc3 = 4,
pass = 5,
unload = 6;

routine main;
! defaults
nextState = 0;
iobusoe = none;
iobusld = none;
iostart = none;
ioSel = PassInputs;
adderOutEn = none;
adderFunc = add;
multOutEn = none;
aOutEn = none;
bOutEn = none;
regLoad = none;
nextCycle = presentCycle;

! reset by default
! nobody on the bus
! nobody loading off bus
! nobody starting io
i use internal connections
i adder not on bus
i adder adds
i mult not on bus either
! no regs on abus
! no regs on bbus
! no regs loading
i waiting to go

i now lets do something...
select presentCycle from

[idle]: if incCycle then
begin

nextState = 0;
nextCycle = load;

end;
[load]: begin

ioSel = LoadInput;
if incCycle then

begin
nextState = 0;
nextCycle = cycl;

end
else begin

select presentState from
[0]: begin

if nextData then begin
iostart = abgd;
nextState = 1;
end

else begin

! reset state
! first load

90

! reset state
i done loading

100

i start r/w in col
i proceed

201

60

70

80

nextState = 0;
end;

end;
[1]: begin

if alphaReady then begin
nextState = 0;

end else begin
nextState = 1;
end;

end;
endselectselect; ! presentState

end; !else
end; !cycle

[cycl]: begin
if incCycle then

begin
nextState = 0;
nextCycle = cyc2;

end
else begin
select presentState from

[0]: begin
iobusoe = alpha;
regLoad = rO;
nextState = 1;

end;
[1]: begin

iobusoe = beta;
regLoad = rl;
nextState = 2;

end;
[2]: begin

iobusoe = gamma;
regLoad = r2;
nextState = 3;

end;
[3]: begin

iobusoe = delta;
regLoad = r3;
nextState = 4;

end;
[4]: begin

nextState = 4;
end;

endselectselect; ! presentState
end; ! else

end; ! cycl
[cyc2]: begin

if incCycle then
begin

end
else begin

nextState = 0;
nextCycle = cyc3;

! still waitint

110

! done w/this one

! not done

120

! reset state
! next cycle

! alpha on bus
! rO <- alpha

130

! beta on bus
! rl <- beta

! gamma on bus
! r2 <- gamma

140

! delta on bus
! r3 <- delta

! stay here until
! next cycle

150

! reset state
! next cycle

202

select presentState from
[0]: begin

iostart = handy;

nextState = 1;
end;
[1]: if hReady then begin

iobusoe = horiz;
regLoad = r4;
nextState = 2;

end else begin
nextState = 1;

end;
[2]: begin

iobusoe = vert;
regLoad = r8;
nextState = 3;

end;
[3]: begin

iostart = horiz;
nextState = 4;

end;
[4]: if hReady then begin

iobusoe = horiz;
regLoad = r5;
nextState = 5;

end else begin
nextState = 4;

end;
[5]: begin

iostart = horiz;
nextState = 6;

end;
[6]: if hReady then begin

iobusoe = horiz;
regLoad = r6;
nextState = 7;

end else begin
nextState = 6;

end;
[7]: begin

iostart = horiz;
nextState = 8;

end;
[8]: if hReady then begin

iobusoe = horiz;
regLoad = r7;
nextState = 9;

end else begin
nextState = 8;

end;
[9]: begin

iostart = horiz;
nextState = 10;

160

! get Tg from vert,
! sTg from horiz

! sTg on bus
! r4 <- sTg

170
! waiting for io

! Tg on bus
! r8 <- Tg

! get cTg
180

! cTg on bus
! r5 <- cTg

! waiting for io

! get Ta

i Ta on bus
! r6 <- Ta

! waiting for io

190

200
! get Tb

! Tb on bus
! r7<- Tb

! waiting for io
210

I get Td

203

end;
[10]: if hReady then begin

iobusoe = horiz;
regLoad = r9;
nextState = 11;

end else begin
nextState = 10;

end;

i Td on bus
! r9 <- Td

! waiting for io

! register map for this cycle: rO = alpha rl = beta r2
r3 = delta r4 = sTg r5
r6 = Ta r7= Tb r8
r9 = Td riO = Templ rl.
r12 = Temp3 r13 = alphaP rL
r15 = unused

Temp[123], alphaP, betaP are undefined at this point.
i so now we have allfour data values (alpha-delta), and all the rot. angles
i we can start applying them.

! first the right sided rotation
[11]: begin

aOutEn = rl; ! beta
bOutEn = r8; ! Tg
multOutEn =mult;! multiply
regLoad = rl; ! beta = beta * Tg
nextState = 12;

end;
[12]: begin

aOutEn = r3; i delta
bOutEn = r8; ! Tg
multOutEn =mult;! multiply
regLoad = r3; i delta = delta * Tg
nextState = 13;

end;
[13]: begin

aOutEn = r6; ! Ta
bOutEn = r5; ! cTg
multOutEn =mult;! multiply
regLoad = r10; i Templ = Ta * cTg
nextState = 14;

end;
[14]: begin

aOutEn = r7; ! Tb
bOutEn = r4; ! sTg
multOutEn =mult;! multiply
regLoad = rll; ! Temp2 = Tb * sTg
nextState = 15;

end;
[15]: begin

aOutEn = rO; ! alpha
bOutEn = r10; ! Templ
multOutEn =mult;! multiply
regLoad = r13; ! alphaP = alpha * Templ
nextState = 15;

end;

204

220

= gamma
= cTg
= Tg
I = Temp2
4 = betaP

230

240

250

260

[15]: begin
aOutEn = rl; ! beta
bOutEn = rll; ! Temp2 270
multOutEn =mult;! multiply
regLoad = r4; ! betaP = beta * Temp2
nextState = 16;

end;
[16]: begin

aOutEn = r2; ! gamma
bOutEn = rll; ! Temp2
multOutEn =mult;! multiply
regLoad = r10; ! Templ = Temp2*gamma
nextState = 17; 280

end;
[17]: begin

aOutEn = r3; ! delta
bOutEn = rll; ! Temp2
multOutEn =mult;! multiply
regLoad = r12; ! Temp3 = delta * Temp2
nextState = 18;

end;
[18]: begin

aOutEn = r13; i alphaP 290

bOutEn = rIO; i templ
adderOutEn =add;! plus
regLoad = r3; ! alphaP = alphaP templ
nextState = 19;

end;
[19]: begin

aOutEn = r14; ! betaP
bOutEn = r2; ! Temp3
adderOutEn =add;! plus
regLoad = r14; ! betaP = betaP temp3 300

nextState = 20;
end;
[20]: begin

aOutEn = r9; ! Td
bOutEn = r7; ! Tb
multOutEn =mult;! multiply
regLoad = rO; ! Templ Td * Tb
nextState = 21;

end;
[21]: begin 310

aOutEn = rlO; ! Templ
bOutEn = r5; ! cTg
multOutEn =mult;! multiply
regLoad = rO; ! Templ = Templ * cTg
nextState = 22;

end;
[22]: begin

aOutEn = r9; ! Td
bOutEn = r6; ! Ta
multOutEn =mult;! multiply 320
regLoad = rll; I Temp 2 = Td * Ta

205

nextState = 23;
end;
[23]: begin

aOutEn = rll; ! Temp2
bOutEn = r4; ! sTg
multOutEn =mult;! multiply
regLoad = rll; i Temp2 =
nextState = 24;

end;
[25]: begin

aOutEn = r2; ! gamma
bOutEn = rO; ! Templ
multOutEn =mult;! multiply
regLoad = r2; ! gamma =
nextState = 26;

Temp2 * sTg

330

gamma * Templ

end;
[26]:

end;

begin
aOutEn = r3; i delta
bOutEn = rO; ! Templ
multOutEn =mult;! multiply
regLoad = r3; ! delta = delta * Temp
nextState = 27;

[27]: begin
aOutEn = rO; i alpha
bOutEn = rll; ! Temp2
multOutEn =mult;! multiply
regLoad = rO; ! Templ
nextState = 28;

end;
[28]: begin

aOutEn = r2; ! gamma
bOutEn = rlO; ! Templ
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = r2; ! gamma =
nextState = 29;

end;
[29]: begin

aOutEn = rl; ! beta
bOutEn = rll; ! Temp2
multOutEn =mult;! multiply
regLoad = r12; / Temp3
nextState = 30;

end;
[30]: begin

aOutEn r3; ! delta
bOutEn = r12; ! Temp3
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = r3; ! delta = delta - Temp3
nextState = 31;

end;
[31]: begin

206

340

alpha * Temp2'
350

gamma - Templ

360

370

aOutEn = r13;
iobusld = alpha;!
nextState = 32;

end;
[32]: begin

iobusoe = alpha;!
regLoad = rO;
nextState = 33;

end;
[33]: begin

aOutEn = r14;
iobusld = beta;
nextState = 34;

end;
[34]: begin

iobusoe = beta;
regLoad = rl;
nextState = 35;

end;
[35]: begin

nextState = 35;
end;

endselectselect; ! presetnState
end; ! else

end; cyc2
/ We are now done with cycle 2.
/' on to cycle 3, then haha! the world

! alphaP
temp holding place

380

alphaP
! alpha = alphaP

! betaP
! temp holding place

390

! betaP
! beta = betaP

! hold

400

[cyc3]: begin
if incCycle then

begin
if finalCycle then begin

nextState = 0;
nextCycle = unload;

end else begin
nextState = 0;
nextCycle = pass;

end;
end else begin
select presentState from

[0]: begin
iostart = handv;

nextState = 1;
end;
[1]: if hReady then begin

iobusoe = horiz;
regLoad = r4;
nextState = 2;

end else begin
nextState = 1;

end;
[2]: begin

iobusoe = vert;

! reset state
i we're done

410

! reset state
! exch data and restart

! get sTvr front vert
! sTvl from horiz

420

! sTvl on bus
! r4 <- sTvl

! sTvr on bus

207

regLoad = r6;
nextState = 3;

end;
[3]: begin

iostart = handv;

nextState = 4;
end;
[4]: if hReady then begin

iobusoe = horiz;
regLoad = r5;
nextState = 5;

end else begin
nextState = 4;

end;
[5]: begin

iobusoe = vert;
regLoad = r7;
nextState = 6;

end;
[6]: begin

iostart = horiz;
nextState = 7;

end;
[7]: if hReady then begin

iobusoe = horiz;
regLoad = r8;
nextState = 8;

end else begin
nextState = 7;

end;
[8]: begin

iostart = horiz;
nextState = 9;

end;
[9]: if hReady then begin

iobusoe = horiz;
regLoad = r9;
nextState = 10;

end else begin
nextState = 9;

end;

! r6 <- sTvr

! get cTvr from vert
! cTvl from horiz

! cTvl on bus
i r5 <- cTvl

! cTvr on bus
! r7 <- cTvr

430

440

450

i get sTs from horiz

! sTs on bus
i r8 <- sTs

460

i get sTs from horiz

i cTs on bus
i r9 <- cTs

470

! register map for this cycle: rO = alpha rl = beta r2 =
r3 = delta r4 = sTvl r5 = c
r6 = sTvr r7 = cTvr r8 = s
r9 = cTs riO = Templ rll =
r12 = alphaP r13 = betaP r14 =
r15 = deltaP

Temp[12], alphaP, betaP, deltaP, gammaP are undefined at this point.
! Now we have all the rotation angles and alpha-delta. Lets begin.

[10]: begin
aOutEn = rO; ! alpha
bOutEn = r7; ! cTvr

ramnma

Tvl
sTs

Temp2
gammaP

480

208

multOutEn =mult;! multiply
regLoad = r12; i alphaP = alpha * cTvr
nextState = 11;

end;
[11]: begin

aOutEn = rl; ! beta
bOutEn = r6; ! sTvr 490

multOutEn =mult;! multiply
regLoad = r10O; ! Templ = beta * sTvr
nextState = 12;

end;
[12]: begin

aOutEn r12; ! alphaP
bOutEn = r10; ! Templ
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = r12; ! alphaP = alphaP - Templ 500

nextState = 13;
end;
[13]: begin

aOutEn = rl; ! beta
bOutEn = r7; ! cTvr
multOutEn =mult;! multiply
regLoad = r13; ! betaP = beta * cTvr
nextState =14;

end;
[14]: begin 510

aOutEn = rO; ! alpha
bOutEn = r6; ! sTvr
multOutEn =mult;! multiply
regLoad = rll; ! Temp2 = alpha * sTvr
nextState = 15;

end;
[15]: begin

aOutEn = r13; ! betaP
bOutEn = rll; i Temp2
adderOutEn =add;! 520

regLoad = r13; ! betaP = betaP +- Temp2
nextState = 16;

end;
[16]: begin

aOutEn = r2; ! gamma
bOutEn = r7; ! cTvr
multOutEn =mult;! multiply
regLoad = r14; ! ga7nmaP = gamma * cTvr
nextState = 17;

end; 530

[17]: begin
aOutEn = r3; ! delta
bOutEn = r6; ! sTvr
multOutEn =mult;! multiply
regLoad = r10; ! Templ = delta * sTvr
nextState = 18;

end;

209

[18]: begin
aOutEn = r14; i gammaP
bOutEn = rO; ! Templ
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = r14; ! gammaP = gammaP - Templ
nextState = 19;

end;
[19]: begin

aOutEn = r3; ! delta
bOutEn = r7; ! cTvr
multOutEn =mult;! multiply
regLoad = r15; i deltaP = delta * cTvr
nextState =20;

end;
[20]: begin

aOutEn = r2; / gamma
bOutEn = r6; ! sTvr
multOutEn =mult;! multiply
regLoad = rll; ! Temp2 = gamma * sTvr
nextState = 21;

end;
[21]: begin

aOutEn = r15; i deltaP
bOutEn = r11; ! Temp2
adderOutEn =add;!
regLoad = r15; ! deltaP = deltaP + Temp2
nextState = 22;

end;

! right sided rotation by ThetaSVDright complete.

[22]: begin
aOutEn = r12; ! alphaP
bOutEn = r9; ! cTs
multOutEn =mult;! multiply
regLoad = rO; ! alpha = alphaP * cTs
nextState = 23;

end;
[23]: begin

aOutEn = r14; ! gammaP
bOutEn = r8; ! sTs
multOutEn =mult;! multiply
regLoad = r10; ! Templ =
nextState = 24;

570

580

gammaP * sTs

end;
[24]: begin

aOutEn = rO; ! alpha
bOutEn = r10; ! Templ
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = rO; ! alpha = alpha - TempI
nextState = 25;

end;
590

210

540

550

560

[25]: begin
aOutEn = r13; ! betaP
bOutEn = r9; ! cTs
multOutEn =mult;! multiply
regLoad = r13; ! betaP = betaP * cTs
nextState =26;

end;
[26]: begin

aOutEn = r15; ! deltaP
bOutEn = r8; ! sTs
multOutEn =mult;! multiply
regLoad = rll; ! Temp2 = deltaP * s
nextState = 27;

end;
[27]: begin

aOutEn = rl; ! beta
bOutEn = rll; ! Temp2
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = rl; ! beta = beta Temp
nextState = 28;

end;
[28]: begin

aOutEn = r14; ! gammaP
bOutEn = r9; ! cTs
multOutEn =mult;! multiply
regLoad = r2; ! gamma = gammaP *
nextState = 29;

end;
[29]: begin

aOutEn = r12; ! alphaP
bOutEn = r8; ! sTs
multOutEn =mult;! multiply
regLoad = r10; ! Templ = alphaP * s
nextState = 30;

end;
[30]: begin

aOutEn = r2; ! gammna
bOutEn = rlO; ! Templ
adderOutEn =add;!
regLoad = r2; ! gamma = gamma +
nextState = 31;

end;
[31]: begin

aOutEn = r15; ! deltaP
bOutEn = r9; ! cTs
multOutEn =mult;! multiply
regLoad = r3; ! delta = deltaP * cTs
nextState =32;

end;
[32]: begin

aOutEn = r13; ! betaP
bOutEn = r8; ! sTs
multOutEn =mult;! multiply

600

610

cTs

620

Ts

630

Temp l

640

211

Ts

regLoad = rll; ! Temp2
nextState = 33;

end;
[33]: begin

aOutEn = r3; ! delta
bOutEn = rll; ! Temp2
adderOutEn =add;!
regLoad = r3; ! delta
nextState = 34;

end;

! left sided rotation by thetaSym complete.

[34]: begin
aOutEn = rO; ! alpha
bOutEn = r5; ! cTvl
multOutEn =mult;! multiply
regLoad = rl12; ! alphaP
nextState = 35;

end;
[35]: begin

aOutEn = r2; ! gamma
bOutEn = r4; ! sTvl
multOutEn =mult;! multiply
regLoad = rO; ! Templ
nextState = 36;

end;
[36]: begin

aOutEn = r12; ! alphaP
bOutEn = rO; ! TempI
adderOutEn =add;!
adderFunc = sub;! minus
regLoad = r12; ! alphaP =
nextState = 37;

- betaP * sTs

650

delta + Temp2

660

alpha * cTvl

gamma * sTvl 670

alphaP - Templ

680

690

212

end;
[37]: begin

aOutEn = rl; ! beta
bOutEn = r9; ! cTvl
multOutEn =mult;! multiply
regLoad = rl; ! beta = beta * cTvl
nextState =38;

end;
[38]: begin

aOutEn = r3; ! delta
bOutEn = r8; ! sTvl
multOutEn =mult;! multiply
regLoad = rll; ! Temp2 = delta * sTvl
nextState = 39;

end;
[39]: begin

aOutEn = r13; ! betaP
bOutEn = rll; ! Temp2
adderOutEn =add;!
adderFunc = sub;! minus

regLoad = r13; ! betaP = betaP - Temp2
nextState = 40;

end;
[40]: begin

aOutEn = r2; ! gamma
bOutEn = r5; ! cTvl
multOutEn =mult;! multiply
regLoad = r14; ! gammaP
nextState = 41;

= gamma * cTvl

end;
[41]: begin

aOutEn = rO; ! alpha
bOutEn = r4; ! sTvl
multOutEn =mult;! multiply
regLoad = rO; ! Templ = alpha * sTs
nextState = 42;

end;
[42]: begin

aOutEn = r14; ! gammaP
bOutEn = r10; ! Templ
adderOutEn =add;!
regLoad = r14; ! gammaP = gammaP + Templ
nextState = 43;

end;
[43]: begin

aOutEn = r3; ! delta
bOutEn = r5; ! cTvl
multOutEn =mult;! multiply
regLoad = r15; I deltaP = delta * cTvl
nextState =44;

end;
[44]: begin

aOutEn = rl; ! beta
bOutEn = r4; ! sTvl
multOutEn =mult;! multiply
regLoad = rll; ! Temp2 = beta * sTvl
nextState = 45;

end;
[45]: begin

aOutEn = r15; ! deltaP
bOutEn = rll; ! Temp2
adderOutEn =add;!
regLoad = r15; ! deltaP = deltaP + Temp2
nextState = 46;

end;

! new values for alpha, beta, gamma, delta in r12-r15.
I

! now, get ready for data exchange, as per BLVL- algorithm interchange

[46]: begin
if topEdge then begin
if leftEdge then begin

aOutEn = r12; ! alphaP

213

700

710

720

730

740

750

end else begin
aOutEn = r13; ! betaP

end;
end else begin
if leftEdge then begin

aOutEn = r14; ! gainmaP
end else begin 760

aOutEn = r15; ! deltaP
end;

end;
iobusld = alpha;! alphaOut to io
nextState = 47;

end;
[47]: begin

if topEdge then begin
if leftEdge then begin

aOutEn = r13; ! betaP 770

end else begin
aOutEn = r12; ! alphaP

end;
end else begin
if leftEdge then begin

aOutEn = r15; ! deltaP
end else begin

aOutEn = r14; ! gammaP
end;

end; 780

iobusld = beta;! betaOut to io
nextState = 48;

end;
[48]: begin

if topEdge then begin
if leftEdge then begin

aOutEn = r14; ! gaminaP
end else begin

aOutEn = r15; ! deltaP
end; 790

end else begin
if leftEdge then begin

aOutEn = r12; ! alphaP
end else begin

aOutEn = r13; ! betaP
end;

end;
iobusld = gamma;! gammaOut to io
nextState = 49;

end; 800

[49]: begin
if topEdge then begin
if leftEdge then begin

aOutEn = r15; ! deltaP
end else begin

aOutEn = r14; ! gaminaP
end;

214

end else begin
if leftEdge then begin

aOutEn = r13;
end else begin

aOutEn = r12;
end;

end;
iobusld = delta;! deltaOl
nextState = 50;

end;
[50]: begin

nextState = 50;
end;

endselectselect; ! presentState
end; ! else

end; ! cyc3

! wait

! betaP

! alphaP

ut to io

here until cycle inc

! end of computation cycles; alpha-delta now updated.
! now they must be exchanged with adjacent nodes

[pass]: begin
ioSel = PassInputs;
if incCycle then

begin
nextState = 0;
nextCycle = cycl;

end
else begin
select presentState from

[0]: begin
iostart = abgd;
nextState = 1;

end;
[1]: if alphaReady then begin

nextState = 2;
end else begin

nextState = 1;
end;
[2]: begin

nextState = 1;
end;

endselectselect; ! presentState
end; ! else

end; ! pass

! end of data intercahnge

830

! reset state
! go back and compute

! start sending all

840

! wait for next cycle

850

[unload]: begin
if incCycle then

begin

end
else begin

nextState = 0;
nextCycle = idle;

! reset state
! done unloading

215

810

820

860

select presentState from
[0]: begin

if nextData then begin
iostart = abgd;
nextState = 1;
end

else begin
nextState = 0;
end;

end;
[1]: begin

if alphaReady then begin
nextState = 0;

end else begin
nextState = 1;
end;

end;
endselectselect; presentState

end; !else
end; unload

endselectselect; ! presentCycle
if reset then begin

nextState = 0;
nextCycle = idle;
iobusoe = none;
iol)usld = none;
iostart = none;
adderOutEn = none;
adderFunc = add;
multOutEn = none;
aOutEn = none;
bOutEn = none;
regLoad = none;

end;
endroutineroutine;
endmodelmodel;

! start r/w in col
! proceed

i still waitint
870

! done w/this one

i not done

880

A.2.4 prienc.bds

This file is translated into standard cell logic to determine the amount that the input

to the interpolated needs to be shifted in order to normalize it. It also produces the

value to be used as the exponent of the cell output.

MODEL prienc shifts<5:0>,shiftcntl<23:0> = bits<23:0>;

ROUTINE main;
shifts = 0;
shiftcntl = 1;

216

i reset state
! idle cycle
i nobody on the bus
i nobody loading off bus
! nobody starting io
I adder not on bus
i adder adds
! mult not on bus either
i no regs on abus
i no regs on bbus
! no regs loading

890

if bits<23> then begin
shifts = 0;
shiftcntl=1;

end 1i

else if bits<22> then begin
shifts = 0;
shiftcntl= 1;

end
else if bits<21> then begin

shifts = 1;
shiftcntl=4;

end
else if bits<20> then begin

shifts = 1; 20

shiftcntl=4;
end
else if bits<19> then begin

shifts = 2;
shiftcntl= 16;

end
else if bits<18> then begin

shifts = 2;
shiftcntl= 16;

end 30

else if bits<17> then begin
shifts = 3;
shiftcntl=64;

end
else if bits<16> then begin

shifts = 3;
shiftcntl=64;

enld
else if bits<15> then begin

shifts = 4; 40

shiftcntl=256;
end
else if bits<14> then begin

shifts = 4;
shiftcntl=256;

end
else if bits<13> then begin

shifts = 5;
shiftcntl=1024;

end 50

else if bits<12> then begin
shifts = 5;
shiftcntl= 1024;

end
else if bits< 11> then begin

shifts = 6;
shiftcntl=4096;

end
else if bits< 10> then begin

shifts = 6; 60

217

shiftcntl=4096;
end
else if bits<9> then begin

shifts = 7;
shiftcntl=16384;

end
else if bits<8> then begin

shifts = 7;
shiftcntl=16384;

end 70

else if bits<7> then begin
shifts = 8;
shiftcntl=65536;

end
else if bits<6> then begin

shifts = 8;
shiftcntl=65536;

end
else if bits<5> then begin

shifts = 9; so

shiftcntl=262144;
end
else if bits<4> then begin

shifts = 9;
shiftcntl=262144;

end
else if bits<3> then begin

shifts = 10;
shiftcntl= 1048576;

end 90

else if bits<2> then begin
shifts = 10;
shiftcntl= 1048576;

end
else if bits<1> then begin

shifts = 11;
shiftcntl=4194304;

end
else if bits<0> then begin

shifts = 11; 100
shiftcntl=4194304;

end;
ENDROUTINE;
ENDMODEL;

218

___�_

Bibliography

[1] M. Abramowitz. Tables of Bessel Functions of Fractional Order, volume 10 of

Columbia University Press Series, chapter Note on Modified Second Differences

for Use with Everett's Interpolation Formula, pages xxxiii-xxxvi. Nation Bureau

of Standards, 1948.

[2] R. P. Brent and F. T. Luk. The solution of singular value and symmetric eigen-

value problems on multiprocessor arrays. SIAM Journal on Scientific and Sta-

tistical Computing, 6:69-84, 1985.

[3] Richard P. Brent, Franklin T. Luk, and Charles Van Loan. Computation of the

singular value decomposition using mesh-conn ected processors. Journal of VLSI

and Computer Systems, 1(3):242-290, 1985.

[4] Joseph R. Cavallaro and Anne C. Elster. A CORDIC processor array of the SVD

of a complex matrix. In Richard J. Vaccaro, editor, SVD and Signal Processing,

II, pages 227-239. Elsevier Science Publishers, 1991.

[5] M. D. Ercegovac, J. G. Nash, and L. P. Chow. An area-time efficient binary

divider. In International Conference on Computer Design, pages 645-648. IEEE,

Oct 1987.

[6] G. E. Forsythe and P. Henrici. The cyclic Jacobi method for computing the

principal values o f a complex matrix. Transactions of the Americal Mathematical

Society, 94(1):1-23, January 1960.

219

[7] Nariankadu D. Hemkumar. A systolic VLSI architecture for complex SVD. Mas-

ter's thesis, Rice University, 1991.

[8] V. K. Jain. Statistical error analysis of VLSI architectures: Methodology and a

case study. In International Conference on Acoustics, Speech, and Signal Pro-

cessing, pages 1089-1092. IEEE, 1989.

[9] V. K. Jain, D. L. Landis, and G. E. Alvarez. Systolic L-U decomposition array

with a new reciprocal cell. In International Conference on Computer Design,

pages 645-648. IEEE, 1989.

[10] V. K. Jain, G. E. Perez, and J. M. Wills. Novel reciprocal and square-root

VLSI cell: Architecture and application to signal processing. In International

Conference on Acoustics, Speech, and Signal Processing, pages 1201-1204. IEEE,

1993.

[11] E. G. Kogbetliantz. Solution of linear equation by diagonalization of coefficients

matrix. Quarterly of Applied Mathematics, 13:123-132, 1955.

[12] H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37-46, Jan

1982.

[13] F. T. Luk. Computing the singular-value decomposition on the ILIIAC IV. ACM

Transactions on Mathematical Software, 6:524-539, 1980.

[14] Diana J. Major and Robert Sidman. A new use of the singular value decomposi-

tion in bioelectric imaging of the brain. In Richard J. Vaccaro, editor, SVD and

Signal Processing, II, pages 497-512. Elsevier Science Publishers, 1991.

[15] Manuel D. Ortigueira and Miguel-Angel Lagunas. Eigendecomposition versus

singular value decomposition in adaptive array signal processing. Signal Pro-

cessing, 25(1):35-49, 1991.

[16] A. H. Sameh. On Jacobi and Jacobi-like algorithms for a parallel computer.

Mathematical Computing, 25:579-590, 1971.

220

[17] C. Bernard Shung, Rajeev Jain, Ken Rimey, Edward Wang, Mani B. Srivastava,

Brian C. Richrads, Erik Lettang, S. Khalid Azim, Lars Thon, Paul N. Hilfin-

ger, Jan M. Rabaey, and Robert W. Bordsen. An integrated CAD system for

algorithm-specific IC design. IEEE Transactions on Computer Aided Design,

10(4):447-463, April 1991.

[18] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich,

Inc., third edition, 1988.

[19] John Todd, editor. Survey of Numerical Analysis. McGraw Hill Book Co., Inc.,

1962.

[20] J. Volder. The CORDIC trigonometric computing technique. IRE Transactions

on Electronic Computers, EC-8(3):330-334, September 1959.

221

