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Studies at the Hemochromatosis (HFE) Locus:
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by
Junne Kamihara-Ting
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Doctor of Philosophy in Biology

Abstract

Haplotype-based association studies offer an exciting potential methodology for the
identification of genes that contribute to complex traits. There is thus great interest in
understanding the biological forces that shape haplotypes. We have studied a well-
characterized genetic locus surrounding the gene responsible for hereditary
hemochromatosis (HFE) to investigate the impact of meiotic recombination events upon
haplotype structure in this region. First we identified crossover hotspots in order to
define the boundaries of haplotype blocks in this locus. We then found that gene
conversion events play a significant role in shaping haplotype structure within these
haplotype blocks. These gene conversion events were not limited to recombination
hotspots and occurred with a frequency as high as 1 in 10 4 per site per generation. Gene
conversions lead to the creation of new haplotypes and we suggest that they are important
for the spread of disease alleles in a population. In addition, we discuss how these events
can be used as important tools in haplotype-based association studies.

We also present an association study in a large Venezuelan cohort to search for genes that
contribute to residual age of onset in Huntington's disease. We demonstrate significant
association between multiple alleles in a region on chromosome 6p21.3. We identify two
candidate genes in this region, HFE and histone Hlt and demonstrate significant
association of this region with age of onset in a male-specific model.

Thesis supervisor: David E. Housman
Title: Ludwig Professor of Biology
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Introduction
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Complex traits, Association studies, and the International HapMap Project

Complex traits, including diabetes, schizophrenia, and cardiovascular disease, are

traits that do not segregate in a clear Mendelian fashion. There is currently great interest

in finding genes responsible for contributing to complex traits. These traits are

considered complex because more than one gene contributes to overall phenotype, and

there is often interaction between these genes as well as interactions between the genes

and the environment.

One strategy for finding the genes that contribute to complex traits is based on

linkage analyses. This approach has proven to be highly successful for finding genes that

are inherited in a Mendelian fashion in which a single gene contributes to a single

phenotype. For Mendelian traits, this approach carries with it a systematic certainty that

there is a single site within the genome with a variant sequence responsible for the

disorder. As additional family members are added to the study, the candidate interval

within which the variant sequence is known to lie becomes progressively narrowed. The

success of this approach for Mendelian disorders has led to interest in applying this

strategy for complex trait analysis; however, studies based on linkage alone have

significant limitations. While the localization of a relevant gene can be achieved through

linkage analysis, our ability to define a candidate interval is usually restricted to a large

genetic region of 20 cM or more since each gene has only a partial contribution to overall

phenotype. Major increases in study size do not effectively reduce this interval.

Association studies offer a promising alternative or adjunct to linkage for the

discovery of genes that contribute to complex traits. These studies compare populations,

not families, to find alleles that are shared among an affected group and not among an
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unaffected control group. Association studies, in effect utilize the same basic approach

that genetic linkage studies use in families to narrow the candidate interval around an

allele that contributes to the disease phenotype. In Figure 1, we have attempted to

illustrate the commonality between these approaches.

Linkage analyses are performed in families in which a single disease-causing

allele is passed through several generations in the family. This type of analysis relies on

the identification of crossover events which surround the gene containing the disease-

causing mutation and which are occur over two or more generations in the family. In

Figure a we can trace the transmission of a disease gene from a parent who is shown

affected by a clinical phenotype (disease) inherited in an autosomal dominant Mendelian

pattern with full penetrance. One of this parent's chromosomes (red) carries a mutation

(indicated by the star) that causes his disease. During meiosis, this parent's

chromosomes will undergo crossing over such that each of his children will receive some

combination of his red and green chromosomes. The children receiving the red portion

carrying the disease-causing variant will be affected. As more related individuals are

collected, the interval containing the disease-causing allele narrows further and further.

Finally, it may become possible to identify a single candidate region such as a

transcription unit, within the interval.

The power of association studies for locating the gene of importance in causing a

clinical phenotype in a particular chromosomal interval is based on analogous logic.

Figure b illustrates this concept. In the association study, the individuals under study

are treated as though they are members of an extended family based on the concept that a

single ancestral mutation is assumed to be responsible for the disease phenotype in many
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of the affected individuals in the study. Despite the absence of the many individuals who

represent the family members who connect these individuals, the goal is to identify

chromosomal regions which are identical by descent (i.e. derived from a common

ancestor) among a significant number of affected individuals compared to control

populations. Thus, in Figure b, the red chromosome with the disease-causing mutation

is now representative of a common ancestral chromosome. After many generations and

crossover events, descendents of this initial ancestor will carry smaller and smaller shared

(red) chromosomal segments. Individuals who receive the portion of the red

chromosome carrying the disease-causing variant will carry that particular genetic

contribution to phenotype.

Association studies thus take advantage of markers that are inherited together

with, or said to be in linkage disequilibrium (LD) with a disease causing allele. These

markers are inherited together more frequently than expected by chance, thus disobeying

Mendel's law of independent assortment. In Figure lb, these markers would lie on the

red portion of the chromosome that is inherited together with the disease-causing variant.

Meiotic crossover events create the boundaries of these stretches of LD, and an important

foundation to the success of association studies lies in the patterns of crossover

recombinations that occur in the genome. These crossover events are known to occur not

randomly, but limited to punctate regions called recombination hotspots (RHS) (Daly et

al., 2001). The molecular characteristics of specific RHS have been described by sperm

typing analyses using markers flanking the sites of crossing over (Jeffreys et al., 2001;

Jeffreys et al., 2000). RHS flank LD blocks, which themselves, by comparison, are

thought to be relatively cold regions for recombination (Daly et al., 2001) . Each stretch
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of LD can also be described by the specific set of alleles inherited together there, known

as a haplotype block. Human populations share common haplotype blocks, stemming

from shared ancestry, and each block can usually be described by only a few distinct

haplotypes (2-5) in any given population (Patil et al., 2001). Haplotype block lengths are

thought to reflect population history: older African haplotypes which have had more

chances for recombination events tend to be shorter, while younger, European

populations tend to have longer haplotype blocks for example (Reich 2001).

Another critical component of association studies is the availability of appropriate

markers. One of the consequences of the human genome sequencing project was the

immediate identification of over 1.4 million single nucleotide polymorphisms, or SNPs,

which serve as excellent candidate markers for association studies (Sachidanandam et al.,

2001). SNPs are ancient sites of variation that are present on the level of single DNA

bases and make up the majority of variations present between any two individuals

(Shastry, 2002). SNPs have a low mutation rate and are found frequently throughout the

genome (about 1 SNP per kb in both exonic and intronic regions) (Cargill et al., 1999;

Shastry, 2002). The National Center for Biotechnology Information (NCBI) has a public

database called "dbSNP" that contains SNP information that serves as a freely accessible

resource for the scientific community (http://www.ncbi.nlm.nih.gov). By 2003, this

database already contained 5.7 million SNPs with unique positions in the genome

(Consortium, 2003).

One approach to association studies that holds great promise is to look for

haplotypes defined by SNP markers that are enriched in a disease-carrying population

and not in an unaffected group (Cardon and Abecasis, 2003). Comparing blocks of
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haplotype, rather than entire genome-wide sequence, reduces the complexity of

comparing two populations (in this case disease vs. non-disease). The rationale is that

markers on these shared haplotype blocks, if not themselves the causal mutations, will be

in LD with the causal variant. This strategy was used to uncover a "risk haplotype"

enriched in a population with Crohn's disease, one of two common types of inflammatory

bowel diseases (Rioux et al., 2001).

The International HapMap Project, commonly known as the "sequel" to the

Human Genome Project, was designed to provide a resource of information about SNP

genotypes, frequencies, and measurements of LD across the genome (Consortium, 2003).

Phase I of the project released over 1 million SNPs genotyped in 269 individuals with

African, Asian, and European descent (30 trios-2 parents and child from Utah population

in United States, 30 trios from Yoruba people in Ibadan, Nigeria, 45 unrelated individuals

from the Han Chinese in Beijing, China, and 44 unrelated Japanese people from Tokyo,

Japan) (Altshuler et al., 2005). Phase II of the project will include an additional 4.6

million SNPs. "Common" SNPs, with minor allele frequencies of greater than 5% were

specifically selected for this project. An additional 10 regions of the genome each 500 kb

in length were sequenced in 48 individuals to discover both common as well as rare

SNPs. These SNPs were then genotyped in the entire panel of 269 individuals. The

block-like structure of LD across the genome as well as the limited haplotype diversity

inferred from smaller studies was confirmed by analyses of initial HapMap data releases

(Altshuler et al., 2005).
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Recombination events that shape haplotypes: crossovers and gene conversions

The exciting potential of haplotype-based association studies for the discovery of

disease genes contributing to complex traits makes the understanding of biological

mechanisms that shape haplotypes of great interest to the scientific community. There

are still many gaps, however, in our understanding of the nature of these forces and their

impact on haplotype structure. The two major biological mechanisms known to shape

haplotypes are mutation and recombination. Mutations can change a given haplotype

block by altering a single nucleotide or a stretch of sequence. The impact of this

mechanism on haplotype is closely related to the rate at which such an event can occur.

Hotspots for mutation, known as CpG dinucleotides, have extremely high mutation rates.

The CpG single base mutation in the FGFR3 gene, for example, associated with

achrondroplasia (a dominantly-inherited condition with short stature), has one of the

highest recorded mutation rates of about 1 x 10-5 per generation (Crow, 2000). Mutations

at non-CpG sites, however, estimated by comparing pseudogene sequence divergence

between chimpanzees and humans, occurs much less frequently, on the order of 1-2.7 x

1 08 per nucleotide per generation (Nachman and Crowell, 2000).

The second important force governing haplotype structure is meiotic

recombination. Meiotic recombination, the exchange of genetic material between

homologous chromosomes (homologs), ensures the maintenance of diversity from

generation to generation. Although the term "recombination" is commonly used to refer

specifically to crossover events alone, it is more classically defined to encompass both

crossover events as well as gene conversion events. While these two processes can both

arise during a meiotic event, their products are distinctly different. Crossover events
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result in the reciprocal exchange of chromosomal segments between homologs, while

gene conversion events result in the non-reciprocal exchange of genetic material that can

arise after heteroduplex formation and mismatch repair of a single homolog. Much of

our understanding of meiotic recombination events derives from studies in yeast in which

all four products of a single meiotic event can be recovered. Recent advances in SNP

resequencing and sperm typing (Arnheim et al., 2003; Carrington and Cullen, 2004;

Kauppi et al., 2004), have improved our ability to study these events in mammalian

systems.

Meiotic crossover events, as mentioned earlier, take place at RHS and result in the

formation of haplotype block boundaries. Crossovers occur once per chromosome or

once per chromosome arm per generation and are thought to be essential for the

successful completion of meiosis. Studies in yeast indicate that crossovers are initiated

by double strand breaks catalyzed by the enzyme Spo 1 (Lichten and Goldman, 1995).

While definitive shared sequence motifs driving RHS have not been identified, several

observations have been made in yeast regarding RHS location. Correlation has been

seen, for example, with sites of transcription factor binding (referred to as ca-hotspots),

sites of nuclease sensitivity (-hotspots), and GC-rich region (y-hotspots). These are all

thought to be associated with the modification of histones that leads to the availability of

the chromosome to the recombination machinery (Petes, 2001).

In mammals, RHS are determined in several ways. First, they can be inferred by

the local breakdown of LD between markers. This can be performed as haplotype

analysis over a set of markers demonstrating the location of block boundaries and the

"swapping" of chromosomal segments between haplotypes. This methodology is useful
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in showing where historical crossovers have taken place. RHS can also be inferred by

pairwise measurements of LD. The most commonly used description of LD between two

markers is D'. If two loci, A and B have alleles A,a and B,b with frequency (p), then

pAB=pA*pB if complete linkage equilibrium (independent assortment) is observed. Any

deviation from this is measured by a value D, where D=pAB*pab-pAb*paB. This

measurement of LD, however, depends highly on allele frequencies, so the measurement

D' is used more frequently, in which D'=(pAB-pApB)/Dmax, where Dmax equals the

maximum absolute value of the numerator (Strachan and Read, 2004). D' measurements

are limited by the fact that they are limited to pairwise comparisons between markers.

This method also shows evidence for historical sites of crossover recombination between

blocks of conserved LD (Gabriel et al., 2002).

To observe RHS over a single generation, pedigree mapping, in which crossovers

can be identified using parental information, can be used. Only limited information can

be provided by such analyses, however, given the low frequency with which crossovers

occur over each generation. Another more robust method is to directly observe crossover

events in single sperm, called sperm typing. Using allele specific PCR in single sperm,

Jeffreys et. al. characterized several hotspots in the MHC II region of chromosome 6

(Jeffreys et al., 2001; Jeffreys et al., 2000). These studies reported hotspots of 1-2 kb in

width, at sites where RHS were previously identified using pedigree recombination

mapping. In addition, the hotspots identified by sperm typing were also shown to

correlate with the location of hotspots that could be identified using LD breakdown

measured by the D' statistic. Most crossovers were simple, with only a few showing

evidence of accompanying gene conversions. Interestingly, hotspots were also reported
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in clusters of 2-3 sites of elevated recombination that were each separated by 1-7 kb

(Jeffreys et al., 2001).

More recently, coalescent models have also been developed to estimate RHS from

population-wide variation data. Coalescent methods use currently existing polymorphism

information to derive inferences about most recent common ancestry. McVean et. al.

used a coalescent-based method to identify RHS and showed that this method could

predictably localize RHS in regions where hotspots were previously identified by fine-

scale sperm mapping or pedigree mapping (McVean et al., 2004). This group applied

this methodology to predicting RHS and recombination rates across the genome using

HapMap data (Myers et al., 2005). They report over 25000 RHS occurring on average

about once every 50 kb. While they did not find any single sequence motifs common to

all hotspots, several sequences were enriched in hotspots more than others. Among these,

was the short motif (CCTCCT) that was found associated with hotspots when in the

context of two retrovirus-like retrotransposons: THE A and THE 1B (Myers et al., 2005).

Another important product of meiotic recombination is gene conversion events

that results in the unidirectional transfer of genetic information. These recombination

events are becoming recognized as important factors in fine-scale haplotype evolution.

While crossover events produce the boundaries of haplotype blocks, gene conversion

events result in the decay of LD between markers within a block over a short distance.

The importance of this mechanism in fine-scale haplotype mapping has emerged from

studies that model LD decay which demonstrate that crossover events alone are

insufficient to explain the lack of LD that is often observed between markers that are

otherwise expected to be tightly linked. Inclusion of gene conversion into these models
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allows for a better fit with existing LD data suggesting the important role of gene

conversion events in shaping haplotype (Ardlie et al., 2001; Frisse et al., 2001).

Padhukasahasram, et. al. (2004) modeled fine-scale LD using markers along chromosome

21 and proposed that gene conversion events occur at a ratio of 1.6-9.4 times the

frequency of crossover events (Padhukasahasram et al., 2004).

Our molecular understanding of gene conversions derives largely from studies in

yeast. In yeast, gene conversions can accompany two major products of recombination

called crossover products and noncrossover products. While both of these pathways

follow a double strand break, only the crossover pathway gives rise to chromosomes with

reciprocal exchange. The mechanisms that produce crossover and noncrossover products

were once thought to derive from the relative resolution of a single intermediate

containing two junctions known as Holliday junctions (Szostak et al., 1983). Recently,

however Borner, et. al. (2004) showed evidence supporting an "Early Crossover

Decision" model, in which the decision between these two pathways is made early in

prophase, before the formation of a stable common intermediate can be observed (Bishop

and Zickler, 2004; Borner et al., 2004). By extrapolation, this model gives rise to the

possibility that gene conversion events associated with noncrossover products are not

limited to regions where crossover events take place.

In mammals, many observations of intra-allelic gene conversions have been

reported especially for duplicated regions of the genome. Studies of interallelic meiotic

gene conversions have also recently emerged. Single sperm analysis has been used to

examine these events at sites of crossover hotspots. In the mouse, several groups have

looked at gene conversion events occurring at previously established RHS where
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crossovers were also known to occur (Guillon and de Massy, 2002; Yauk et al., 2003).

Guillon and de Massy (2002) examined a RHS in the Proteosome subunit b type 9

(Psmb9) locus and reported 16 gene conversions in 6000 molecules of sperm DNA, with

conversion tract lengths of less than 540 bp. In humans, Jeffreys and May (2004)

similarly examined three loci with previously defined crossover hotspots. Using single

sperm typing, they found gene conversion events in each of these hotspots with mean

tract lengths ranging from 55-290 bp. They reported gene conversion: crossover

frequency ratios ranging from 4:1 to 15:1. They also demonstrated that within each

hotspot a gradient of recombination activity could be observed, in which the location of

peak crossover activity corresponded with the location of peak gene conversion activity

(Jeffreys and May, 2004). However, they do not address the possibility of conversion

events outside of these defined crossover hotspots.

The HFE region and this present work

In the present work, we address the limitations in our understanding of the impact

of recombination on haplotype structure by investigating the behavior of haplotypes in a

region where disease-causing mutations are already characterized. The objective was to

study haplotypes in a region where mutations were already known to gain insight that

could impact future association studies in the search for genes whose role in disease are

not yet known. The hemochromatosis (HFE) gene, associated with autosomal recessive

hemochromatosis Type 1 in humans, was an ideal candidate region for this study.

Hereditary hemochromatosis is a disease of iron overload common to individuals of

Northern European decent. Phlebotomy can successfully reduce iron overload, but if left
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untreated, clinical sequelae can include serious complications such as liver cirrhosis,

diabetes, and heart failure. The HFE gene, located on chromosome 6p21.3, is an HLA

Class I-like gene, with two major mutations that can lead to hemochromatosis: C282Y (G

to A transition at nucleotide 845), and H63D (C to G transversion at nucleotide 187)

(Feder et al., 996). C282Y is thought to interfere with the ability of HFE to reach the

cell surface where it can regulate the interaction between the transferrin receptor with

transferrin (Feder et al., 1998; Feder et al., 1997). While 80-90% of patients who present

with clinical symptoms of hemochromatosis in Northern Europe are C282Y

homozygotes. the clinical penetrance is not complete (Feder et al., 1996; Waalen et al.,

2002). The significance of the H63D mutation is also complex and is thought to be most

clinically significant when found in a compound heterozygote accompanying a C282Y

mutation. The prevalence of these mutations is very high in individuals with European

ancestry (Merryweather-Clarke et al., 1997). 1 in 8 individuals in Northern Europe carry

the C282Y mutation and 1 in 200 are homozygotes, while 25% of individuals throughout

Europe are thought to carry the H63D allele (Distante et al., 2004). A third mutation,

S65C, is present in 3% of individuals from Northern Europe (Distante et al., 2004). Like

H63D, S65C is thought to become clinically significant when associated with a C282Y

mutation although again with incomplete penetrance. The C282Y mutation lies on an

extended haplotype suggesting a relatively recent origin. The HLA A3/B7 alleles have

long been associated with C282Y, and with the exception of a report from a population in

Sri Lanka (Rochette et al., 1999), this mutation is thought to have only a single origin.

H63D, on the other hand, lies on a haplotype extending only about 700 kb. There have

been several reports placing H63D on unique haplotypes, including an investigation that
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placed it on 3 unique haplotypes defined by three polymorphisms spanning 10.6 kb in the

HFE gene (Rochette et al., 1999).

Although defined by a Mendelian recessive inheritance pattern, the penetrance of

the HFE mutations and the fact that more than one mutation can interact to produce a

phenotype make the HFE locus an ideal candidate for a study to address issues that will

impact future association studies to find genes involved with complex traits.

We demonstrate the location of a local cluster of recombination hotspot activity in

the HFE gene using haplotype analysis in the immediate region surrounding the HFE

mutations. We also report gene conversions in the human locus using C282Y

homozygotes and present the first direct evidence for gene conversions arising from

female meiosis in the mouse. Based on the high frequency with which we observe

conversion events and our analysis of H63D haplotypes, we also suggest that gene

conversion may have been a mechanism which led to the spread of this disease allele. As

an additional study we also present an association analysis to investigate the impact of

alleles in the IIFE locus on age of onset in a large Huntington's disease cohort. We show

that a specific haplotype exists in the population containing alleles that lead to a later age

of onset of the disease.
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Figure 1: Schematic to illustrate the basic concepts underlying linkage and
association studies for the discovery of a disease-causing mutation.
a: Linkage analyses
Linkage analyses are performed in families. A hypothetical parent affected by a disease
passes on a disease-causing allele (star) to each of his children receiving the portion of
his red chromosome containing the mutation. Over generations, each successive
crossover recombination event narrows the interval further.
b: Association studies
Association studies are performed in populations, not families, but use a similar logic.
Here, the red chromosome with the disease-causing mutation represents an ancestral
chromosome. Each descendent who receives the portion of the red chromosome with the
mutation will be affected by the disease. Many generations will result in many crossover
recombination events that lead to smaller and smaller shared segments from the red
chromosome.
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Chapter 2

Haplotype analysis of recombination events in the HFE locus
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ABSTRACT

Haplotype structure in human populations is influenced by three biological

processes: de novo mutation, crossing over, and gene conversion. In order to gain a

better understanding of the relative contributions of these processes to haplotype

evolution at a specific locus in the human genome, we have chosen to analyze the human

hemochromatosis locus (HFE). Using panels of chromosomes from different

populations, we have identified sites of increased crossing over within this region.

One relatively recent mutation in the HFE gene, C282Y, has allowed us to identify

chromosomes with a shared common ancestry. By comparing chromosomes marked by

the C282Y mutation, we identified a site of gene conversion which is not found within a

recombination hotspot. We have also assessed haplotype structure around the more

widespread H63D mutation, which suggests that gene conversion was a likely mechanism

for the movement of the H63D mutation onto different haplotype backgrounds.

The presence of gene conversions in human chromosomes outside of

recombination hotspots led us to systematically search for gene conversion events in real

experimental time. We therefore investigated recombination events taking place in the

area surrounding the HFE locus in two fully informative mouse backcrosses. These

studies allowed us to identify two clearly documented gene conversion events in female

meiosis in a survey of 23,573 potential sites in the mouse. The occurrence of gene

conversion at detectable frequencies in both mice and humans in the context of these

studies suggests that gene conversion is a very significant contributor to haplotype

evolution in mammals and that haplotypes which occur as a consequence of gene
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conversion may have great potential utility in identifying the locations of genetic variants

which contribute to human phenotypes with complex inheritance patterns.
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INTRODUCTION

Haplotype-based association studies offer great potential for the identification of

loci contributing to human complex trait phenotypes. The mechanisms that contribute to

the evolution of new haplotypes in the human genome are thus of interest and importance

in understanding the most effective use of this powerful methodology. Biological

mechanisms that shape haplotypes include mutation and meiotic recombination. The

term recombination encompasses two types of events that both result in the exchange of

chromosomal segments. These include crossover events, in which chromosomal

segments undergo reciprocal exchange, and gene conversion events, involving the

unidirectional transfer of genetic information from a donor chromosome that itself

remains unchanged.

Sites of crossover are referred to as recombination hotspots (RHS). These RHS

are restricted to punctate regions along the genome which form the boundaries of

haplotype blocks. In addition to crossover events, gene conversion events are also known

to occur at these hotspots in mammals as well as in lower eukaryotic organisms.

Our ability to investigate the impact of recombination on haplotype evolution is

often restricted by our inability to observe these events in real time and by the difficulty

in specifically identifying how groups of chromosomes are related through generations of

human history. We have taken two approaches, the first in humans and the second in

mice that have allowed us to compare chromosomal blocks with a defined point of

common ancestry. We used these approaches to study recombination events and show

that both crossover and gene conversion events have significant impact on haplotype

evolution.
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To study these events first in human chromosomes, we collected chromosomes

that are identical by descent because they carry a unique disease-causing mutation and

are thus related to each other over finite historical periods in the regions immediately

surrounding the mutation. We have taken this approach to investigate haplotype

evolution in the region of chromosome 6p21.3 surrounding the HFE gene. HFE contains

a group of disease-causing mutations that include two major mutations, C282Y and

H63D, which are associated with hemochromatosis, a disease of iron-overload. The

C282Y mutation is thought to have a single origin, and thus chromosomes marked by this

mutation share a single common ancestor. Given the relatively young age of the

mutation and its single origin, we have analyzed haplotypes in C282Y-carrying

chromosomes in order to identify gene conversion events. In addition, we analyzed

haplotypes surrounding the older H63D mutation to demonstrate the possibility for the

spread of this disease allele via gene conversion.

Our ability to observe recombination events in humans is limited by our inability

to directly observe these events in real experimental time. To address this issue and to

investigate the possibility of gene conversion events not limited to recombination

hotspots, we looked at the inheritance of haplotype in DNA isolated from backcrossed

progeny resulting from two crosses from genetically divergent strains of mice. Here we

were able to directly track the inheritance of markers over a single generation to monitor

recombination events in the area we examined. In both these systems, we examine the

two types of genetic recombination events and their contribution to haplotype evolution.
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MATERIALS AND METHODS

DNA samples. Human: Diversity panel of 31 ethnically diverse human DNA

samples were obtained from Coriell Cell Repositories (Camden, NJ,

http://locus.umdnj.cdu/ccr/). NA00522: Kikuyu, NA00726: Korean, NA01850: African

American, NA02064: Ghana, NA02347: Swedish, NA02430: Italian, NA02476: Zulu,

NA02743L Greek, NA02783: Iranian, NA03043: !Kung, NA03579: Cuban, NA03580:

Greek, NA03721: African American, NA03780: Spanish, NA04428: Mexican American,

NA05052: African American, NA03735: African American, NA10418: Finnish,

NA10810: Japanese, NA10923: German, NA10965: American Indian, NA 1321:

Chinese, NA] 1322: Chinese, NA1 1323: Chinese, NA1 1324: Chinese, NA1 1373:

Cambodian, NA11589: Japanese, NA12556: French, NA12558: French, NA14611: East

Indian. Pygmy DNA also obtained from Coriell included NA10494, NA10471,

NA10492, NA10496, NNA10469, NA10470. Primate DNA included: NA03448,

NG03612, NG(03657, NG03610: Pan troglodytes, NG05251: Gorilla gorilla, NG05253:

Pan paniscus, NG06209: Pongo pygmaeus.

The following HFE samples were obtained from Coriell Cell Repositories:

NA13591, NA14180, NA14620, NA14621, NA14628, NA1463, NA14640, NA14646,

NA14650, NA14651, NA14652, NA14654, NA14655, NA14656, NA14657, NA14685,

NA14686, NA14688, NA14689, NA14690, NA14691, NA14702, NA14703, NA14712,

NA14715, NA14857, NA16000. All other HFE samples were provided by N. Andrews

(Children's Hospital, Boston), and R. Chung (Massachusetts General Hospital, Boston).

Population panel DNA was provided by: Kosrae: M. Karayiorgou (Rockefeller, New

York), Basque and Spanish: M. Ramos (U. of Basque Country, Spain), Dutch: F. Baas
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(Academic Medical Center, Amsterdam), African American: A. Menon (University of

Cincinnati, Cincinnati), Vietnamese: E. Schurr (McGill University, Montreal).

Venezuela DNA and kindred information (Wexler et al., 2004) was provided by the

Hereditary Disease Foundation (Rockefeller, NY). When applicable, DNA from whole

blood was isolated using a phenol/chloroform extraction protocol. Genome-wide

amplification using GenomiPhiTM was performed to increase DNA yield when necessary.

Mouse: Mouse DNA was provided by: R. Swank (Roswell Park, Buffalo).

Control DNA for mouse was obtained from Jackson Laboratories (Bar Harbor, Maine)

including PWK/PhJ (003715), C57BL/6J (00664), and Spret/EiJ (001146).

SNP Discovery. Human: SNP discovery in the human HFE locus was

performed by sequencing three samples derived from a C282Y homozygote, a C282Y

heterozygote, and a H63D homozygote. Overlapping primers pairs flanking 400-600 bp

regions were designed to cover a total of -50 kb surrounding the HFE gene. Two

regions (of approximately 500 bp each) were eliminated due to the presence of

pseudogene-like sequences that would make unambiguous genotyping difficult. SNPs

significant for either mutation-carrying chromosome were selected for analysis.

Chimpanzee (pan troglodyte) sequencing was also performed or chimp genome sequence

(recently available) was used to designate the "ancestral" reference allele at each SNP.

Mouse: SNP discovery in the mouse HFE locus was made by sequencing -3 kb using

overlapping primer pairs flanking 400-600 bp of non-repeat sequences in regular

intervals across 1 MB surrounding the HFE locus. Sequencing was performed in DNA

from PWK/Ph and Spret/Ei strains. C57BL/6J sequence was also obtained or the

database sequence was referenced.
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Genotyping. Human: PCR amplification of a 500-1000 bp region surrounding

each SNP was performed in 96-well format using a thermocycler with a final reaction

volume of 12-50 kl. PCR products were then denatured and spotted onto Hybond N+

membranes (two identical membranes per PCR plate). Allelic discrimination was

performed by using allele-specific oligo (ASO) hybridizations. ASOs were designed as

17-mers with the allele of interest in the 9th position. Each membrane was then probed

using an ASO labeled with y33P. Membranes were hybridized for 1.5 hr-overnight at 54°

C, washed, and exposed to phosphor screens for subsequent visualization. Images were

acquired using a Storm Phosphoimager ® (GE) after 24 hours of exposure and analyzed

visually or with ImageQuant ® software (GE). Mouse: Mouse genotyping was

performed by KBioscience (Hoddesdon Herts, UK).

Resolution of haplotypes. Haplotypes were resolved when pedigree information

was available to allow the unambiguous assignment of genotypes to each of the two

chromosomes. This was possible in the samples from the large Venezuelan cohort using

pedigree information for extended kindreds. Haplotypes were determined manually by

assigning each allele to one of two parental chromosomes using genotype information for

each parent, child, or extended family member. Each parent's contribution to the child's

haplotypes was determined. Whenever possible, this was done by identifying

homozygous sites in an individual. For example, in the simplest scenario, a parent may

have two identical haplotypes, homozygous at every site examined. In such a case, this

parent must have contributed one of these two homozygous haplotypes to the offspring.

By subtracting this haplotypes from the summed haplotypes (represented by genotype

information for each SNP marker) of the offspring, the remaining haplotype would be
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that haplotype contributed by the other parent. This parent's second haplotype would

then be determined by subtracting the haplotype donated to the child from the parent's

summed haplotypes.

HapMap data deriving from the CEPH (Centre d'etude du polymorphisme

humain) population collected for human genetic mapping studies of Utah residents with

northern and western European ancestry (Altshuler et al., 2005) was also performed.

Each haplotype was manually subtracted by comparison of triads (mother, father, child).

Phased haplotypes were determined using genotype data, and no call was made whenever

resolution could not be unambiguously made.

RESULTS

Identification of a local recombination hotspot in the human HFE locus

In an effort to develop a high-resolution picture of haplotypes found in the region

surrounding the HFE locus, 41 SNP markers were genotyped in this region. These SNPs

span a genomic region of 45.8 kb on 6p21.3 that includes two histone genes, histone

1 H4c and histone Hlt, which are downstream of HFE. The arrangement of these SNP

markers in relation to the genomic locus is shown schematically in Figure 1. These SNP

markers were selected from an original group of 44 SNP markers that were found by

sequencing three individuals, a homozygote and a heterozygote for the C282Y mutation,

and one homozygote for the H63D mutation. Information about each marker is shown in

Table 1. The name of each SNP used in this study along with corresponding reference

SNP ID numbers (rs#) assigned by NCBI (National Center for Biotechnology
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Information) in the SNP public database (dbSNP) is shown. The SNPs used in the

analysis of each population in this study is also indicated in Table 1.

We genotyped the 41 SNPs indicated in a collection of 32 individuals from

diverse ethnic and racial backgrounds (this collection of samples will henceforth be

referred to as the diversity panel). The genotype patterns for these individuals are shown

in Figure 2. Each column represents one individual, whose two chromosomes are shown

together in a single column. The genotype at each diallelic SNP marker is represented by

a colored box. Green was used to represent homozygosity for the reference allele at a

SNP, while red was used to represent homozygosity for the alternative allele at a SNP. A

blank box indicates that no genotype was available for that site. The "ancestral" allele of

each SNP, as determined by chimpanzee (pan troglodyte) sequence, was designated the

reference allele whenever this information was available. (In the rare case in which this

information was not available, the reference allele is arbitrarily assigned to correspond to

the Genbank sequence). Blue was used to represent heterozygosity for both alleles at that

particular marker.

Two major haplotypes (designated A and B in Figure 2) in the region from SNP

487 to SNP 525 (shown between brackets) became evident by grouping individuals with

similar genotype patterns together. These chromosomes were arranged according to their

genotypes within this block, to illustrate the presence of two major homozygote groups

above SNP 525. These groups carry two chromosomes with the same haplotypes

(marked as A/A and B/B in Figure 2). A third group of chromosomes with many

heterozygote genotypes presumably results from individuals with an A haplotype on one

of their chromosomes and a B haplotype on their other chromosome (designated A/B in
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Figure 2). The two homozygote groups above SNP 525 are associated with more than

one haplotype below. In addition, several individuals with the heterozygote block above

SNP 525 have a homozygote block below this SNP. This suggests the presence of a local

site of crossing over, or a recombination hotspot (RHS), somewhere below SNP 525.

Historical crossovers at this hotspot would explain the apparent swapping of modular

chromosomal blocks that would lead to these results.

In an effort to further locate sites of crossing over positioned within the region

surrounding the HFE locus, we looked for chromosomes with clear evidence for

historical recombination within a cohort of kindreds from Venezuela. 30 SNPs, shown

schematically in Figure 3, were genotyped and used in this analysis. Recombinant

chromosomes were defined specifically as those in which a single homozygous block is

preceded or followed by a single heterozygote block in the region we genotyped. Our

rationale was that this type of pattern would most likely arise from historical crossover

events that occurred at the boundary between these two blocks. Information from

recombinant chromosomes was isolated and each recombinant was classified according

to the position of the apparent site of crossover. We totaled the number of unique

recombinant types for crossovers occurring at each site observed. This is shown

graphically in Figure 3, in which the height of each peak indicates the number of

recombinant types of chromosome at each site. We reasoned that totaling each type of

recombinant would offer insight into the number of historical crossover events that

occurred. As shown in Figure 3, the largest number of recombinant patterns (9 types)

was found between SNP 525 and SNP 532-(H63D). The second largest number (6 types)

was found close to this site between SNPs 532b-3 and 532-2 (see Figure 3). The third
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largest number (3 types) was observed between SNP 536 and SNP 538. These findings

support the localization of a local site for crossing over below SNP 525.

To corroborate our findings with data derived from other populations and to

confirm that our analysis is valid over an extended chromosomal region, we analyzed

blocks of genotyping data recently made available from the HapMap project (public

release #19, 10/24/05, http://hapmap.org) (Altshuler et al., 2005) from the same region of

chromosome 6. Figure 4 shows a selection of genotype data from Japanese chromosomes

arranged with SNPs running 5' to 3'. Using this data we illustrate the presence of four

recombinant chromosomes (each indicated by a * in Figure 4) defined by the presence of

a single heterozygote block and a single homozygote block. These recombinant

chromosomes are shown alongside non-recombinant chromosomes to demonstrate that

the boundaries of apparent crossover for two of these chromosomes are in the same

location as we observed in our data (see large arrow in Figure 4). Two additional

recombinant chromosomes with sites for crossing over outside of the region we examined

are also shown for comparison. On Figure 4, the region corresponding to the location of

our own analysis is shown by a bracket. We also include SNP markers extending out a

total of 140 kb (distance from topmost SNP to bottommost SNP).

HapMap reports of local recombination rates modeled using genotype data

(Myers et al., 2005) also confirms our findings of an elevated region of recombination in

the region we examined. Table 2 lists the recombination rates (from hapmap.org)

reported between markers as shown (SNPs that are common to both our analysis and the

HapMap analysis are designated with both SNP names). Recombination rates are

summarized in the last two columns and given as a rate (cM/MB) and genetic distance
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(cM). These values are given between the "starting" SNP (shown in the left group of

columns) and the "ending" SNP (shown in the middle group of columns). Elevated

recombination rates (highlighted yellow in Table 2) above SNP 532-1(H63D) confirms

our finding. Interestingly, HapMap also reports a second elevated region of

recombination between SNPs 532-2 and SNP 542. This region encompasses an area

where we also note a historical recombination activity, as shown by the third highest peak

in Figure 3 between SNPs 536 and SNP 538. These data together suggest a cluster of

local recombination activity in this region.

To place these locally elevated recombination rates in context of genome-wide

recombination activity, we also searched HapMap estimates of genome-wide

recombination hotspot reports (Myers et al., 2005). These data do not report a

recombination hotspot in this area. The nearest reported hotspots, in fact, lie over 400 kb

upstream and over 40 kb downstream from the HFE gene. This indicates that either

recombination was not detectable using their methodology and/or that the local regions of

elevated recombination (henceforth referred to as local RHS) are relatively cold areas for

crossing over in relation to a genome-wide measurement of recombination.

Gene conversion events lead to the creation of new haplotypes

The next step in this project was to investigate the occurrence of gene conversion

events in the HIFE locus by comparing chromosomes that are identical by descent because

they carry a shared disease-causing mutation. Previous work in our group has shown that

this strategy is an especially effective way of demonstrating recombination events in

human chromosomes. This work examined a region of chromosomes 7q31 surrounding
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the AF508 mutation of the CFTR locus responsible for cystic fibrosis and found evidence

for gene conversion events not limited to local sites of crossovers (Keen Kim, 2002). In

order to apply this methodology to the HFE locus, we analyzed haplotypes on

chromosomes marked by the C282Y mutation in the HFE gene. We genotyped 42 SNP

markers (shown in Table 1) spanning the same 45.8 kb region in DNA from 39 patients

homozygous for the C282Y mutation to identify shared haplotypes in this region. These

genotypes are presented in Figure 5a. The SNPs used in this analysis are shown

schematically in Figure Sb.

C282Y is thought to have a single occurrence in history (Feder et al., 1996) and

thus each C282Y-carrying chromosome is expected to be identical by descent on the

haplotype that immediately flanks this mutation. While this was the case for the majority

of chromosomes we genotyped, we also found a new haplotype created by nucleotide

sequence changes (arrows labeled GC, Figure a and c). These sequence changes were

noted at SNP 563 and SNP 565-2. The region between these SNPs spans approximately

1.5 kb and is located between HistlH4c (about 1.7 kb upstream) and HistlHlt (about 1.3

kb downstream). The concordant change of two SNPs in a region of less than 2 kb is

consistent with the properties of a gene conversion event. Notably, these events were not

found at the local RHS for crossing over described above.

We considered alternative explanations to the gene conversion scenario observed

at this site. L)e novo mutation appears to be an unlikely explanation for these results.

The sequence changes seen in our C282Y haplotypes are not found at CpG hotspots for

mutation. The genome-wide mutation rate for non-CpG sites in the human genome has

been estimated to be approximately 1-2.7 x 10-8 per nucleotide per generation (Nachman
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and Crowell, 2000). The history of the C282Y mutation (previous studies have estimated

that the C282Y mutation arose between 62 and 250 generations ago based on extended

haplotype analysis (Distante et al., 2004)) suggests that chromosomes which carried the

C282Y mutation would not have been transmitted through enough generations to be

likely to have accumulated one, let alone two de novo mutations.

A single crossover at the local RHS described above found beneath C282Y

(between SNP 536(C282Y) and SNP 538) could be used to explain our finding if we

could identify a haplotype identical to the C282Y haplotype at all sites except for the

mutation and the stretch of observed sequence change. The closest such haplotype is

shown in Figure 6 on the chromosome labeled 3721 Afric Amer. One finding argues

strongly against a crossover at this site. A single SNP, SNP 547, found through

sequencing of a C282Y homozygote, was seen only in C282Y chromosomes. The allele

frequency of this SNP in the diversity panel in chromosomes not carrying C282Y was 0

(see Figure 6). This SNP is therefore likely to be a mutation that occurred close in time

to the C282Y mutation on an ancestral chromosome carrying C282Y. The absence of

this SNP in the candidate African American chromosome makes it unlikely that a

crossover occurred below at the hotspot between SNP 536(C282Y) and SNP 538

producing the observed result. A crossover occurring below this site is even less likely

given the recombination data presented above.

The remaining mechanism consistent with the novel haplotype, gene conversion,

involves the unidirectional transfer of genetic information from one haplotype to another.

In order for the novel haplotype to have arisen via gene conversion-, the appropriate

donor sequences must be present on a non-C282Y haplotype Figure 6 shows the
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genotypes from a subset of individuals from the diversity panel, with SNP markers

common to those genotyped in the C282Y homozygotes shown. 30 chromosomes are

shown that carry the appropriate SNP alleles between SNP 563 and SNP 565-2 that could

serve as donor alleles for the event noted at these SNPs (arrow, right panel). This

indicates that chromosomes that carry the appropriate reservoir sequence which can be

transferred onto the C282Y haplotype through gene conversion are present in these

populations.

Although we had observed only a single gene conversion event in the C282Y

chromosomes we had studied, we wished to make a quantitative estimate of the sample

size surveyed to identify this event, which in turn would suggest an estimate of the

frequency with which a gene conversion event outside a recombination hotspot might

occur. The selection of chromosomes specifically marked by the C282Y mutation

suggests that the stretch of haplotype immediately surrounding the mutation derives from

a single common ancestor. The data in Figure 6 support that assumption. To estimate the

number of generations we have surveyed, we make the assumption that the chromosomes

we have surveyed are related to each other by a star shaped genealogy in which each

chromosome is related to the ancestral chromosome by an independent path. This

assumption clearly contributes to an overestimate of the number of generations surveyed,

since the chromosomes we are sampling may well have more recent common ancestors.

The estimated age of the C282Y mutation, ranging from 62 to 250 generations (Distante

et al., 2004), gives a common denominator with which we can make an estimate

regarding the frequency of gene conversion events given the number of generations

which have passed since the C282Y mutation occurred. The size of the sample in which
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we observed the gene conversion event was a survey of 42 SNP sites in 39 homozygotes

for the C282Y mutation. We thus estimate that we surveyed a total of 3276 sites total

(given 2 chromosomes per individual). Our observation of gene conversion would thus

be consistent with a frequency of gene conversion at non recombinant hotspots of 1.2-4.9

x 10-6 per site per generation or higher (given the limitations of the assumption of a star

shaped genealogy). This result suggested that gene conversions not limited to

recombination hotspots could occur with a high enough frequency to lead to the creation

of new haplotypes within haplotype blocks.

To test this theory we used genotype data from the HapMap project and manually

resolved haplotypes from 30 trios (father, mother, child). Thus far we have inferred

haplotype structure from genotype information derived from the two chromosomes of

each individual. Parental genotypes allow us to determine the phased haplotypes on each

of these two chromosomes at most sites. We used data from 180 SNP markers spanning

141.2 kb in a population residing in Utah with northern and western European ancestry

originally collected by the Centre d'etude du polymorphisme humain (CEPH) for human

genetic mapping studies. 40 of these haplotypes are shown in Figure 7. Putative

historical gene conversion events are shown (solid arrows) that change a haplotype block

at the site indicated. Interestingly, two of the sites shown involve coordinate changes of

less than 1 kb (834 bp and 291 bp), highly suggestive of a conversion tract. These

findings are not likely to be due to genotyping error since these data were generated by

comparing genotypes of three individuals in a parent offspring trio. When any

disagreement of genotypes caused by possible genotyping error was found, the trio with

these disagreements was eliminated in the analysis for that marker.
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Gene conversion events directly observed over a single generation in progeny of two

large mouse backcrosses

The significance of gene conversions in shaping haplotypes over time depends on the

frequency with which these events occur over a single generation. When observing

human chromosomes for recombination events, we are limited by the fact that we are

observing a snapshot of chromosomes that have evolved over generations of time. Our

crude estimation of gene conversion frequency for example, was dependent upon age

estimates of the C282Y mutation and assumptions regarding the genealogical

relationships among the chromosomes surveyed. For chromosomes with even less well

defined relationships, assessing the dynamics of gene conversion are even more

challenging.

We therefore sought to develop a system in which we could directly observe the

occurrence and transmission of gene conversion events in a mammalian model system in

real experimental time. To accomplish this goal we have followed the inheritance of a

series of SNP markers tightly linked to the mouse HFE locus over a single generation

using progeny from two large interspecific mouse backcrosses. 658 N2 samples from

((PWK x C57BL/6J-gm/gm) x C57BL/6J-gm/gm) backcrosses and 570 N2 samples from

((M spretus x C57BL/6J-gm/gm) x C57BL/6J-gm/gm) backcrosses were collected. The

breeding scheme and summary of samples used is shown in Figure 8a and b. These

samples were genotyped for 20 SNPs spanning 1 MB of chromosome 13 containing the

mouse HFE locus. These SNPs are shown schematically in Figure 9a and listed in Table

3. SNPs were identified by sequencing a PWK, M Spretus, and C57BL/6J homozygote,

respectively. All 20 SNPs had one allele in the C57 strain and an alternate allele that was
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shared by both the M Spretus and PWK strains. 12827 successful genotypes were

obtained from progeny samples deriving from the (PWK x C57BL/6J-gm/gm) x

C57BL/6J-gm/'gm backcross, while 10926 successful genotypes were obtained from

progeny samples deriving from the (M spretus x C57BL/6J-gm/gm gm) x C57BL/6J-

gm/gm backcross.

Gene conversion candidates were readily detected using our strategy (see Figure

8a, II). In order to examine whether these events were limited to recombination hotspots,

crossover events were also noted by the continuous change of marker alleles (see Figure

8a, III). These crossovers are shown in Figure 9a and were detected between SNPs

JK_29 and JK32 (8 such events occurring at this site were detected in progeny from the

PWK x C57BL]/6J backcross), and one event was detected between JK_06 and JK_08 (in

M Spretus x C57BL/6J backcross). Other events were apparent between JK_32 and

JK_36 (4 events in M Spretus x C57BL/6J backcross), but these seen in the terminal

SNP genotyped, so further downstream genotyping needs to be performed to rule out

possible gene conversion.

Of the 23753 total genotypes obtained, two gene conversion candidates were

observed and genotyping error was ruled out by direct sequencing. Both conversion

events did not occur at the sites of crossover detected in other samples (above). These

conversion events are shown schematically in Figure 9b. The first conversion event was

observed at SNP JK_08, and seen in one progeny of the ((PWK x C57BL/6J-gm/gm) x

C57BL/6J-gm/gm) backcross. JK_08 is located between two genes (Abtl and Btnlal) on

chromosome 13. Further sequencing of the region located immediately adjacent to this

conversion event showed at least one other SNP marker located 21 bp upstream from
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marker JK_08 that was also included in the gene conversion tract. The second

conversion event was observed at SNP JK_19 in one progeny of the ((M spretus x

C57BL/6J-gm,/gm) x C57BL/6J-gm/gm) backcross. JK_19 is located between two exons

in the mouse -HFE gene. Further sequencing around this SNP change was accompanied

by at least 10 coordinate changes observed in SNPs spanning a tract of 604 bp. These

data are consistent with gene conversion tract lengths of less than 1-2 kb reported in other

gene conversion studies (Guillon and de Massy, 2002; Jeffreys and May, 2004). Further

sequencing will allow us to determine the outer boundaries of each conversion tract.

H63D is found on multiple haplotype backgrounds, suggesting transfer via a gene

conversion-like mechanism

The high frequency with which gene conversion events were observed lead us to

support the hypothesis that these events could serve as a viable mechanism for the spread

of disease alleles in a population. Currently, when a disease-causing mutation is found

on more than one haplotype background, a common explanation offered is that these

mutations occurred independently at the same site. Given the low frequency of mutations

at non-CpG nucleotides, however, this model becomes less likely as more haplotypes

carrying the mutation are found. Another mutation in the HFE locus, H63D, is one such

mutation that is found with high frequency throughout the world (Distante et al., 2004)

and reports have placed it on different haplotype backgrounds (Rochette et al., 1999). In

the present study we examined several different populations using a high-resolution scale

to determine whether we can detect H63D on different haplotypes immediately

surrounding the mutation.
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We genotyped 464 individuals (928 chromosomes) from different populations as

summarized in Table 4. We found 7 H63D homozygotes and 58 H63D heterozygotes

among these samples. Using these samples, we defined each major haplotype by the

coordinate change of 2 or more SNPs in a block above or below the H63D mutation.

Since these chromosomes were derived from unrelated individuals, we could only resolve

haplotypes from genotype data unambiguously in H63D homozygotes or in those

chromosomes carrying homozygote blocks. Nevertheless, as shown in Figure 10, these

chromosomes were sufficient to confirm that H63D can be found on multiple haplotypes

within a short-range distance from the mutation. Figure 10 shows just three samples

which together illustrate H63D on multiple haplotypes. The majority of H63D

chromosomes we examined were associated with one of the two major haplotypes shown

in this figure (leftmost and rightmost, top). An additional major haplotype below the

mutation can be deduced from the H63D homozygote sample (Sp1 815) shown with

heterozygous sites below the mutation. In total, we observed at least two major

haplotypes within 10 kb above the mutation, and two major haplotypes within 17 kb

below the mutation.

We then turned to chromosomes derived from related individuals in order to

unambiguously assign haplotypes surrounding the H63D mutation. In a large

Venezuelan pedigree, we analyzed 89 individuals (out of a total of 755 examined)

including 15 homozygotes and 74 heterozygotes for the H63D mutation. Using extended

family information, we resolved haplotypes in these chromosomes and isolated those

carrying the 1-163D mutation. Among these, we found one major haplotype block below

the H63D mutation and two major haplotypes, labeled A and B in Figure 11 above the
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H63D. A third haplotype block B', (far right in Figure 11) likely results from a gene

conversion at SNP 500-2 on haplotype B. Of the 104 haplotypes carrying H63D that we

examined, we observed 20 A haplotypes, 81 B haplotypes, and 3 B' haplotypes.

We also selected H63D-carrying chromosomes from the HapMap data set

(Altshuler et al., 2005) and performed a similar analysis using data from trios of the

CEPH population of Utah. These resulting haplotypes are shown in Figure 12. Using

genotype information from 101 SNP markers covering a region of 141.2 kb, we found

two major haplotype blocks (labeled A and B in Figure 12) above H63D that correspond

to the two haplotypes seen in Venezuela. In the CEPH population we also observed a

third major variation of haplotype A (far left column). We also found at least three major

haplotypes below H63D and a fourth minor haplotype shown to the far right on Figure

12. Each major haplotype above H63D (A and B) was associated with more than one

major haplotype below H63D. If we include other minor haplotypes (likely produced by

gene conversion events) with variations at one or more nucleotide changes, there are as

many as 5 haplotypes above H63D within 5 kb (with 7 within 20 kb) and as many as 5

haplotypes below H63D within 11 kb of the mutation.

Given the large number of haplotypes on which we found H63D, it is unlikely

that this finding is due to recurrent mutation. A second possibility is that crossovers

carried H63D from one framework haplotype to another. H63D is found right at the

boundary of two regions with elevated recombination fractions, see above and Figure 12.

As shown schematically in Figure 13, a single occurrence of the H63D mutation in

history followed by crossovers above and below H63D could account for the four

haplotypes seen in the CEU chromosomes (haplotypes: Ax, Bx, Ay, By). For H63D to
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move from haplotype A-x to B-y by crossover alone, a minimum of two sequential

crossovers would be necessary to give these results (from A-x to B-x, then from B-x to

B-y). The probability that such a double crossover would occur can be represented by the

product of the recombination frequencies above H63D and below H63D. To compute

these frequencies, we summed the genetic distance in cM from the first informative

marker (distinguishing haplotype A from B) above H63D (at marker rs 2794719, 2289 bp

above the mutation) to H63D, and the first informative marker below H63D (rs 6918586,

6205 bp below the mutation) to H63D. Recombination rates from HapMap, as shown in

Table 2 were used for these computations. A rate for marker rs 6918586 was not

available, so the closest available marker, rs 1150660, located 10.2 kb from H63D was

used. The recombination distances, given as the sum of distances of intervening markers,

was 0.004 cM above H63D and 0.008 cM below H63D. Therefore, the crossover

frequencies at these sites are given by 4 x 10-5 crossovers per generation above H63D and

8 x 10-5 crossovers per generation below H63D. To produce three of the four haplotypes

shown by crossover events alone, two sequential crossovers (once above H63D followed

by once below H63D) would happen at a frequency of approximately 3.2 x 10-9 per

generation.

Instead, given the high frequency with which we observed gene conversion events

in our mouse experiment, this mechanism, either alone or accompanying a single

crossover event, becomes a much more attractive explanation for the spread of the H63D

mutation onto different haplotype backgrounds.
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DISCUSSION

Gene conversions have been well studied in yeast and lower eukaryotes in which

all four products of a single meiotic event can be directly recovered. Studies of meiotic

gene conversions in mammals, on the other hand, is exceptionally challenging precisely

because of our inability to isolate the products of a single meiosis. We have taken two

approaches that have allowed us to better observe these events in mammalian systems.

First, we chose to examine chromosomes marked by a disease-causing allele, C282Y of

the HFE locus. This mutation has been reported to lie on an extended haplotype

framework and most studies estimate that the mutation arose between 62-77 generations

ago (the full range of age estimates of C282Y extend from 62-250 generations) (Distante

et al., 2004). We have examined markers within 25 kb upstream and downstream of the

C282Y mutation, where infrequent events such as mutations, have not had significant

time to adequately erode LD between surrounding markers. We find, instead, evidence

of gene conversion events, shown by the coordinate change of a short stretch of sequence

approximately 1.5 kb in length. We found 1 event in two chromosomes in 42 SNPs

sampled across 78 chromosomes, leading us to estimate these events on the order of 1.2-

4.9 x 10-6 per site per generation. A previous study in our group in the CFTR locus using

chromosomes homozygote for the AF508 mutation, estimated gene conversion events

occurring within the bounds of two hotspots at a rate of 8.3 x 10-7 events per site per

generation (Keen Kim, 2002). This estimate, subject to the same caveats regarding

genealogical history and age of the AF508 mutation, nevertheless is of the same order of

magnitude as our estimate for the HFE locus of 1 gene conversion event in 106 per site

per generation.
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To illustrate that these events shape haplotypes within a haplotype block, we

resolved haplotypes in trios from the CEPH population of Utah. Using a selection of

samples with similar haplotypes, we illustrate that two haplotypes can differ by short, (<1

kb) tracts of allelic change, highly suggestive of gene conversion events (Figure 7).

These haplotype differences can lead to the eventual creation of new haplotypes by these

mechanisms as the LD between markers decays over time and these new haplotypes are

propagated in the population.

To directly measure gene conversion events over a single generation, we tracked

the inheritance of markers in progeny from two large mouse backcrosses using markers

spanning MB of the region surrounding the mouse HFE locus. Using this system, we

were able to differentiate gene conversions from double crossovers. Crossovers are

thought to occur only once per chromosome or once per chromosome arm and to exhibit

the phenomenon of interference, in which a single crossover event will deter a second

event from happening nearby. Since we were observing these events occurring over a

single generation, we could rule out double crossovers and clearly identify gene

conversion events.

We observed 2 gene conversion events in 23,753 genotypes surveyed from this

mouse study. From this we make the first estimate of gene conversion occurring in a

single generation in female meioses to be as high as 1 in 104, which is as much as four

orders of magnitude higher than mutation rates for non-CpG sites. The estimation of

female meiotic gene conversion events we made in this region is lower than those

reported for events detected in other regions by sperm typing analysis of male meioses in

mouse and humans. Sex differences may account for the different frequencies we
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observed. In addition to sex differences, however, another major difference between our

study and others reporting gene conversion frequencies is that we report gene conversion

events that are not located at apparent hotspots for crossing over. This finding correlates

with both our human data as well as with recent yeast data supporting the notion that

gene conversions are not limited to crossover hotspots. Thus far in mammalian systems,

however, gene conversions have only been reported at crossover hotspots and the

estimations of frequency of conversion events have also been limited to sites that are also

crossover hotspots. This raises the possibility that gene conversion events occur more

frequently at recombination hotspots, although as we demonstrate, they are not limited to

these sites.

Given the high frequency with which gene conversions may occur at

recombination hotspots, we propose that gene conversion events that happen at the local

hotspot we identified may have lead to the propagation of the H63D mutation onto many

different haplotypes. The high frequency with which we observe gene conversion events

when compared to the low genome-wide mutation rate at non-CpG nucleotides supports

the proposal that gene conversion is a likely mechanism for this observation. It is also

likely that selective pressures may have acted to amplify this effect, such that conversion-

containing chromosomes would persist more than expected in populations. Various

proposals have been made regarding candidate selective forces. One suggestion has been

that the transition from a hunter-gatherer to a farming society made mutations that could

pretect from iron-deficiency anemia beneficial in light of an iron-poor diet (Distante et

al., 2004). Another more intriguing suggestion has been that the HFE protein, expressed

at cell surfaces, may serve as a receptor for an infectious agent (Rochette et al., 1999).
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The H63D mutation might disrupt this interaction, and lead to a selective advantage.

Such possibilities make it plausible that the H63D-containing chromosome was

propagated by both gene conversion and selective pressures.

This study demonstrates the presence of gene conversion events in the HFE locus

that are not limited to sites with elevated crossover activity. Using estimates from human

chromosomes marked by a disease-causing mutations and a direct measurement of these

events in mouse backcross progeny, we demonstrate that gene conversions at these sites

can occur at least as frequently as 1.2-4.9 x 10-6 per site per generation. Given this high

frequency, we propose that gene conversion events, perhaps in the context of selective

pressures, can lead to the propagation of disease alleles, exemplified by H63D, in

populations.
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Table 1: Summary of SNP markers used in each analysis.
The SNP markers used in each analysis is shown. The name of each SNP used in our
study is shown alongside the reference SNP ID (rs#) assigned by the NCBI database.
Columns 3-5 indicate the SNPs used in the analyses of DNA from different populations
as shown.



Table I

NCBI name: Genotyped in Genotyped in Genotyped in Reference Dist from prey
.1K SNP name rs # Diversity panel Venezuela C282Y -/- (chimp) allele Alternate allele Chr 6 position SNP (bp)

485 rs1935235 * * G C 26175760 -

487 rs9358904 * * * G A 26176544 784
489-1 rs9295683 * * * T C 26177473 929
489-2 rs9295684 * * * C T 26177647 174
493 rs9295685 * * * G C 26179703 2056
494 rs9968910 * * A C 26180073 370
495 rs9366634 * * G C 26180374 301

495-2 rs6942196 * * * A G 26180782 408
500 rs807205 * * * G C 26183013 2231

500-2 rs1539183 * * * G C 26183029 16

501' rs9393684 * * * C G 26183509 480
505 rs9358905 * * * A T 26185817 2308

505-2 rs10946805 * * C T 26185869 52
515 rs9295687 * * * C T 26190688 4819

516' rs4529296 * * * G C 26191113 425
517 rs9379825 * * * C A 26191849 736

521-2 rs1971508 * * * C A 26193785 1936
522 rs2006736 * * * T C 26193995 210
524 rs2794720 * * * G C 26195180 1185
525 rs285899.3 * T A 26195834 654

532-l(H63D) rs1799945 * * * C G 26199157 3323
532b-3(S65C) rs180073() * A T 26199163 6

5:32-2 rs2071303 * * * T C 26199314 151
534 rs807208 * N/A:C T 26200125 811

536(C282Y) rs 1800562 * * * G A 26201119 994
536-2 rs1800758 * * G A 26201214 95
538 rs2858996 * * * G T 26202004 790

538-2 rs2071302 * * T C 26202108 104
542 rs707889 * * * G A 26203909 1801
550 rs1150659 * * * G A 26208001 4092
553 rs1 150660 * C A/- 26209418 1417
555 rs198857 * * C G 26210395 977
556 rs1543680 * * * G A 26211155 760
557 rs198855 * * * T A 26211376 221
558 rs198854 * * * T C 26212035 659
563 rs198848 * * C T 26214303 2268
565 rs198846 * * * G A 26215441 1138

565-2 rs198845 * * * G T 26215768 327
566 rs198844 * * G C 26216260 492

571-2 rs707894 * * A C 26218577 2317
575 rs198840 * * * T G 26220142 1565

575-2 rs198839 * * G T 26220598 456
577 rs198838 * * T C 26221318 720

577-2 rs198837 * * T A 26221376 58
577-3 rs198836 * * A T 26221594 218

#:in these SNPs, the non-chimp allele is designated as reference for the Venezuela panel only



Figure 1: Schematic representation of SNPs in the HFE locus genotyped in human
chromosomes.
41 SNP markers identified through sequencing were used in this analysis. These SNPs
span a 45.8 kb region of a locus on 6p21.3 as shown. Each SNP marker is represented by
an open circle and shown from left to right. In addition to the HFE gene, this region also
includes two histone genes: 1H4C and Hlt, respectively, downstream from HFE as
shown. (See also Table 1).
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Figure 2: Genotypes of individuals in diversity panel to demonstrate location of local
recombination hotspot.
The genotypes of the 32 individuals from the diversity panel are shown. Each column
represents the two chromosomes of the individual whose ethnic identity is shown above.
SNPs run from top to bottom (see Figure 1 and Table 1 for a summary of these SNP
markers). The genotype at each SNP is represented by a color. Homozygosity for the
reference allele (1/1) at each SNP is illustrated with a green box. Homozygosity for the
alternate allele (2/2) is shown with a red box. A blank box indicates that no genotype is
available for that site. Heterozygosity at a SNP (1/2) is represented by a blue box.
Individuals with similar patterns are arranged together revealing two groups with largely
homozygous blocks of SNPs in the area indicated by a bracket (between SNP 487 and
SNP 525). These two groups are shown as A/A and B/B above. A third group, with
many heterozygous sites, most likely consists of individuals carrying one A haplotype
and one B haplotype (shown as A/B) above. Each block above SNP 525 is associated
with more than one block below (shaded region), suggesting the presence of a local site
where historical crossover events have occurred, shown by the arrow as a recombination
hotspot (RHS).
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Figure 3: Location of apparent sites of crossing over determined by the number of
recombinant chromosomal types observed in Venezuelan chromosomes
SNPs used in this analysis are shown schematically above in relation to the HFE locus
and as tick marks below the graph. The graph indicates the location of apparent sites of
crossing over determined by recombinant chromosomes in a large Venezuelan pedigree.
Peaks were placed midway between the two SNPs between which recombination was
observed. The height of each peak correlates to the number of recombinant chromosomal
types observed at each location. The largest peak was observed between SNP 525 and
SNP 532-1(H63D) with 9 recombinant types, and the second tallest peak was observed
between SNP 532-1(H63D) and SNP 532b-3(S65C) with 6 recombinant types. [Note
that there is a minor peak adjacent to the second tallest peak that falls between SNP 532-
1(H63D) and SNP 532b-3(S65C)]. The third tallest peak was observed between SNP 536
and SNP 538 with 3 recombinant types.
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Figure 4: Genotypes from HapMap Japanese panel to demonstrate location of local
recombination hotspot.
Genotypes from HapMap are shown in a selection of chromosomes from the Japanese
panel with SNPs running from top to bottom and each individual's two chromosomes
summed by a single column. Non-recombinant homozygous chromosomes are shown
alongside four recombinant chromosomes (each indicated by a *), two of which
demonstrate an apparent site of crossing over in the region we identified (shown as RHS,
large arrow). The other two sites of crossing over are indicated by the open arrows.
Brackets indicate the region studied in our analysis with corresponding SNP names
shown to the right.
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Table 2: Recombination rates in the region we examined from HapMap dataset.
Where available, the SNP names used in our analysis are shown next to the
corresponding NCBI SNP designation (rs#). The recombination rate, given in cM/MB
between the starting SNP and ending SNP is shown in column 7. The corresponding
genetic distances, given in cM, is shown in column 8. Regions with elevated
recombination are highlighted in yellow. These regions correspond to the local sites RHS
we identified. The rates shown on this chart are available from http://hapmap.org.
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Figure 5a: Genotypes of C282Y homozygote individuals showing nucleotide
sequence changes suggestive of gene conversion.
45 SNP markers spanning a 45.8 kb region are arranged from top to bottom; the
schematic of SNPs from Figure 5b is shown vertically to illustrate the position of each
SNP relative to each other. The position of SNP 536(C282Y) is shown with an open
arrow. Note that all haplotypes in the region are identical except for the short stretch of
change resulting in heterozygosity at SNP 563 and SNP 565-2, indicated by the arrow.



>-
('.l u00
('.l

1u

W
889tlVN

~89t1VN

83~IIIOi'l

~ll

ClLtlVN

LS9tlVN

08ltlVN

63.:IHHOi'l

i3.:IHHOi'l

93.:IHHOi'l

,3:11-1HOi'l

t3.:IHHOi'l

13:111HDi'l

~,Ol

8tOi

rfJ II,
il.)

E liE
0
rfJ
0 E6l:

E
0 6fl:
l-..c
U 9fl:

,fl:

L91

9L

8t

tt

i,8t1VN

,litlVN

9ll:!

1>9tlVN

8l:6

9t9tIVN

Ot9tIVN

If9tlVN

1l:9t1VN

Ol:9tIVN

~ __ 3d_H_~~~



Figure 5b and 5c: Schematic representation of SNPs genotyped in C282Y
homozygote individuals showing location of SNPs affected by putative gene
conversion event.
Each SNP marker is represented by an open circle and shown from left to right in relation
to the genes in this locus. The stretch of SNPs affected by the gene conversion event is
represented by filled circles in 5c.
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Figure 6: Candidate donor chromosomes form the diversity panel that carry the
appropriate haplotype from SNP 563 to SNP 565-2 that could produce the resultant
gene conversion event observed in C282Y homozygotes.
A C282Y homozygote is shown at the far left, and the C282Y homozygote with the gene
conversion event is shown to its right. The gene conversion event spanning SNPs 563-
565-2 would require a pattern of three green homozygote SNPs in the donor
chromosome. Such candidate donor chromosomes are shown to the right with the
appropriate SNPs circled (arrow).
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Figure 7: Haplotypes resolved from HapMap genotype information of CEPH UTAH
panel of trios to illustrate putative gene conversion events that can lead to haplotype
evolution.
Genotype data from HapMap was used to manually resolve haplotypes for 180 SNP
makers spanning 141.2 kb centered on the HFE locus. Chromosomes were derived from
the CEPH population in Utah (northern and western European ancestry). Arrows show
putative gene conversion events indicated by punctate sequence changes. Two of these
events involve the coordinate changes of several markers within a 1 kb interval highly
suggestive of gene conversion as shown. Arrows in parentheses indicate possible sites of
gene conversion events that may alternatively or additionally result from crossover
events, suggested by the coordinate change of several markers in the same haplotype.
One CpG site at a candidate SNP is indicated.
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Figure 8: Strategy for identifying recombination events in two large backcrosses.
a: Schematic to illustrate strategy.
Samples were collected from a ((PWK x C57BL/6J-gm/gm) x C57BL/6J-gm/gm)
backcross and from a ((M spretus x C57BL/6J-gm/gm) x C57BL/6J-gm/gm) backcross,
shown schematically. Recombination events were directly observed by genotyping 20
SNP markers covering 1 MB of chromosome 13q. This region is illustrated as stretches
of red or green. The results expected from this strategy are shown below. I. No
recombination events in the region; II. Gene conversion events in which only a short
stretch of markers change from expected; III. Crossover events in which a contiguous
portion of the region examined changes from expected.
b: Summary of genotyping analysis for each backcross.
20 markers were genotyped for each sample. The number of successful genotypes
indicated represents those in which an unambiguous genotype could be attributed to the
given SNP marker.
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Figure 9: Schematic representation of SNPs genotyped in mouse chromosomes
showing location of RHS and gene conversions identified.
a: SNPs genotyped in mouse chromosomes.
Each SNP marker is represented by an open circle and shown from left to right. 20 SNPs
span a region of 1 MB on chromosome 13 (see also Table 3). The location of two sites of
crossover with the
number of events observed at each site are shown (RHS).
b: Gene conversions identified.
The same SNP markers are indicated as above. Each filled circle represents a SNP
marker where a gene conversion was observed. JK_ 9 is found in a region with a higher
density of markers that cover the mouse HFE locus, these markers, along with the
corresponding mouse HFE gene, are shown in the inset.
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Table 3: Summary of SNP markers used in analysis on mouse chromosome 13.
20 SNP markers identified through sequencing were used in this analysis. These SNPs 1
MB region of a locus on the syntenic region of mouse chromosome 13 containing the
HFE gene.
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Table 4: Summary of population samples genotyped to demonstrate that H63D can
be found on multiple haplotype backgrounds over a short distance.
The number of individual samples for each population is shown. 7 H63D homozygotes
and 58 H63D heterozygotes were identified.
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Figure 10: H63D-carrying chromosomes illustrate that the mutation can be found
on multiple haplotypes.
Two major haplotypes above H63D were seen in the populations we sampled and shown
here. The haplotype block below H63D as illustrated in the homozygous blocks in the
samples to the far left and far right represents the one most frequently seen in the
populations we sampled. A third haplotype can be inferred from the middle samples, an
H63D homozygote.
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Figure 11: Haplotypes carrying H63D derived from Venezuelan panel.
These three haplotypes represent the three haplotypes carrying H63D in the Venezuela
population. They share a common haplotype block below H63D. Two major haplotype
blocks above H63D are also shown (A and B). A third minor haplotype, B' (far right),
most likely results from a historical gene conversion event at SNP 500-2 that occurred on
haplotype B. Of the 104 haplotypes carrying H63D that we studied, 20 A haplotypes, 81
B haplotypes, and 3 B' haplotypes were observed. Each haplotype was subtracted
manually from chromosomes using genotype and pedigree information.



----- sd~S _



Figure 12: Haplotypes carrying H63D derived from CEPH triads HapMap data.
Genotype data was obtained form hapmap.org, and each haplotype was derived manually
using information from each triad. 19 haplotypes are shown, with 101 SNP markers
running from top to bottom covering 141 kb of chromosome 6p21 surrounding the HFE
gene. All haplotypes carry the H63D mutation, as labeled. Above the H63D mutation,
two major haplotypes A and B are present. Below the haplotype, two major haplotypes
are shown as X (with two variations) and Y. Minor variations within each major
haplotype group would also allow us to name further haplotypes on which H63D is found
in this population. The area within the bracket corresponds to the region we studied in
our populations, with corresponding SNP names shown to the right.
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Figure 13: Schematic to illustrate how two sequential crossovers are required if
crossover events alone are used to explain the four major haplotypes observed in
CEPH data given a single occurrence of H63D.
In order to explain the four major haplotypes (AX, AY, BX, BY) seen in CEPH data (see
Figure 12) using crossover events alone, three crossover events are required as shown to
move the H63D mutation from any one haplotype to the other three haplotypes. Two
examples (beginning with AX) are shown. The H63D mutation is represented by a * and
each site of crossover necessary to produce the haplotype combination to the right is
represented by a dotted line.
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Chapter 3

Association analysis of the HFE locus
with residual age of onset in Huntington's disease
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ABSTRACT

Huntington's disease is an adult-onset neurodegenerative disease caused by an

unstable, expanded CAG repeat in exon 1 of the huntingtin protein. While age of onset is

directly correlated with the length of the CAG expansion, there is significant variation

between individuals with a given CAG repeat which has been shown to be highly

heritable (Djousse et al., 2003; Wexler et al., 2004). There is thus great interest in

identifying genetic factors that are associated with this residual age of onset. We

investigate several genes with proteins that have known involvement with iron

homeostasis to test the hypothesis that iron regulation may influence age of onset of HD

in a large cohort of kindred in Venezuela. We enriched our assay specifically to study

the HFE gene on chromosome 6p21.3, where we found evidence for association with this

region in a male-specific model. We identified two major candidate genes for association

in this region and show that a single haplotype captures alleles that lead to later age of

onset of the disease.
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INTRODUCTION

Huntington's disease (HD) is a devastating adult-onset neurodegenerative

disorder characterized by choreiform movements, emotional disturbances, and cognitive

decline. Symptoms typically appear in mid-adulthood, with neurodegeneration that is

progressive and most pronounced in the striatum and cortex. An autosomal dominant

disease, HD is caused by the expansion of an unstable polyglutamine repeat in exon 1 of

the huntingtin gene on chromosome 4pl 6.3 (HDCRG, 1993). While unaffected

individuals have less than 26 repeats, incomplete penetrance results from 36-39 repeats,

and penetrance of the disease results from greater than 40 repeats (Myers, 2004). HD

also exhibits the phenomenon of genetic anticipation, in which a greater number of

repeats results in a more severe phenotype and earlier age of onset (Bates et al., 2002).

HD has been well characterized in a large Venezuelan cohort comprised of

individuals affected by HD and their unaffected family members. This well-studied

cohort spans 10 generations and includes 83 kindreds, most of whom are from the Lake

Maracaibo region of Zulia state (Wexler et al., 2004). These kindreds were instrumental

in the isolation of the HD gene and the characterization of the causative mutation

(HDCRG, 1993). Samples and extensive pedigree information have been collected

alongside data from neurological, neuropsychological, and cognitive examinations

performed almost yearly. Age of onset of HD is determined by motor assessment, either

prospectively by examination or retrospectively by oral history or by assessment of

current motor function severity.

Age of onset in HD is variable, and CAG repeat length accounts for

approximately 70% of this variation (Li et al., 2003). At any given repeat length,
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however, there is a considerable range of age of onset. This variability has been shown to

be strongly heritable both in a large North American cohort as well as in the Venezuela

cohort (Djousse et al., 2003; Wexler et al., 2004). Other genetic modifiers are thus

thought to affect age of onset of this disease.

It is thus of great interest to find genetic candidates that modify age of onset.

Two complementary genetic approaches are underway to address this issue. First,

genome-wide linkage scans use markers across the genome to narrow down candidate

regions of chromosomes without a priori hypotheses regarding gene product

functionality. In a large North American cohort, evidence for with residual age of onset

was reported to map to three regions of the genome: 4pl6, 6p21-23, and 6q24-26 (Li et

al., 2003). The second genetic approach is to test for association in candidate genes with

potential biological relevance to age of onset. One such category of candidates

associated with neurodegenerative diseases, especially those involving extrapyramidal

symptoms is genes involved with iron homeostasis (Moos and Morgan, 2004; Thompson

et al., 2001).

Higher concentrations of iron in the brain are associated with regions involved

with motor function, and iron in these regions increases with advancing age (Zecca et al.,

2004). Neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's

disease (AD) have been associated with iron misregulation and toxicity. The association

of these diseases with HFE has thus been an area of increasing investigation (Dekker et

al., 2003; Zecca et al., 2004). In AD, for example, some studies report increased

oxidative stress and an earlier age of onset associated with HFE mutations although this
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association is still being investigated (Berlin et al., 2004; Candore et al., 2003; Pulliam et

al., 2003).

Additionally, disruptions in genes important for iron metabolism have been

associated with motor symptoms and neuronal phenotypes. For example, a mutation in

the ferritin light chain gene, which codes for a polypeptide subunit of the iron storage

protein ferritin, has recently been characterized and associated with a dominant, adult-

onset movement disorder known as neuroferritinopathy that affects the basal ganglia

(Curtis et al., 2001). Other evidence that suggests a possible connection between iron

metabolism and motor phenotypes is a knockout mouse model of the IRP-2 gene, whose

protein product regulates the expression of iron homeostasis genes. In one model, the

IRP-2 knockout mouse has a neurodegenerative movement disorder characterized by

bradykinesia, ataxia, and tremors (LaVaute et al., 2001). This movement disorder,

however, was not seen in a different IRP-2 knockout model, and therefore needs further

investigation (Galy et al., 2005).

Iron homeostasis has also been linked to HD pathogenesis. In vivo MRI analysis

of HD patients confirms postmortem studies showing increased iron deposition in HD

brains. In these studies, increased ferritin iron has been shown in the basal ganglia of

patients with HD and detected as early as 9 months from symptom onset (Bartzokis et al.,

1999). Recently, the iron and copper chelator clioquinol, has also been shown to be

effective in an in vitro assay as well as in a mouse model of HD (Nguyen et al., 2005). A

previous study in ES cells also suggested that iron depletion can lead to huntingtin

upregulation (Hilditch-Maguire et al., 2000).
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In order to investigate the potential effects of iron homeostasis on age of onset in

HD, we tested key variants in five genes involved in this process: transferrin, IRP-2,

ferritin light polypeptide, ferritin heavy polypeptide, and HFE. We focused specifically

on the HFE gene locus on chromosome 6p21.3, where a robust peak was reported in the

North American genome-wide linkage scan for HD residual age of onset.

MATERIALS AND METHODS

DNA Samples. Samples were obtained from 755 individuals from Venezuela who are

part of a large cohort of HD kindreds from the Lake Maracaibo area in Zulia State

(Wexler et al., 2004). DNA was previously isolated by phenol chloroform extraction or

with an anion exchange column (Qiagen), from lymphoblast cell lines that were

originally prepared from whole blood.

Genotyping. PCR amplification of a 500-1000 bp region surrounding each

polymorphism was performed in 96-well format using a thermocycler with a final

reaction volume of 12-50 A. PCR reactions were then denatured and spotted onto

Hybond N+ membranes (two identical membranes per PCR plate). Allelic discrimination

was performed by using allele-specific oligo (ASO) hybridizations. Each membrane was

then probed uising an allele-specific oligo labeled with y33P. Membranes were hybridized

for 1.5 hr-overnight, washed, and exposed to phosphor screens for subsequent

visualization. Images were acquired using a Storm Phosphoimager ® (GE) after 24 hours

of exposure and analyzed visually or with ImageQuant ® software (GE).
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Determination of residual age of onset. Age of onset for each sample was determined

previously (Wexler, 2004) by prospective and retrospective examination. Age of onset

(referring specifically to the onset of motor symptoms), was determined using a

combination of neurological tests either directly by examination or inferred from

symptom severity or from patient history. Residual age of onset was also calculated

previously (Wexler, 2004). Briefly, age of onset was modeled against the individual's

longer repeat number using linear regression. The curvilinear relationship was fitted

using the log transform age of onset. The predicted log transform age of onset was

subtracted from the log transform of the observed age of onset to determine residual age

of onset.

Statistical tests. Initial statistical analyses on all genotype data were performed by J.

Gayan (Wellcome Trust Centre for Human Genetics, Oxford, UK) using 1290

informative subjects from the larger pedigree arranged into 45 family groups. 17 families

had only a single member, while the remaining 28 had between 4-892 individuals.

Association for total age of onset and residual age of onset were examined using a Total

Association test, and an Orthogonal test as described in Abecassis et. al (2000a and b).

Parent of origin tests were also performed. Significant results were given by a p<0.05,

and trends were reported for p<0.1. Results from the tests above formed the basis of the

analysis presented in this work. Highly concordant results were obtained using both

analyses.
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The statistical analyses presented in this work were performed as follows:

Deviations from expected Hardy-Weinberg frequencies were calculated using the Chi-

square test and a Yate's correction with one degree of freedom. In order to compare each

pair of residual means, the equality of each pair of variances was assumed and the two-

sample t test for independent samples with equal variances was used to compute p values

(two-tailed test). Degrees of freedom for each pair of residual means was estimated by:

(s,2/n1+s2
2 /n 2 )/((s 2/nl) 2/(nl - 1)+(s22 /n 2)2 /(n2- 1)), where s represents the sample variances

and n represents the number of individuals in each group.

RESULTS

Genotyping of major polymorphisms in transferrin and IRP2 genes

We genotyped 6 polymorphisms in the transferrin gene and 2 polymorphisms in

the IRP-2 gene, all of which are known to lead to nonsynonymous amino acid changes in

the resulting proteins. These polymorphisms and their chromosomal locations are

presented in Table la. Four of these SNPs, (G142S, W37C, and T645P in transferrin;

and F272L in IRP2), were not polymorphic within our population. The other four SNPs

(G277S, 448V, and P589S in transferrin; and A852A in IRP2) were analyzed further for

association. Allele frequencies in our population are shown in Table lb. Only Tf4

(I448V) deviated significantly from Hardy-Weinberg equilibrium. Genotyping was

performed in 755 individuals, including those with expanded CAG repeats and familial

controls. Association analyses for age of onset was performed on 425 individuals from

the CAG expanded group (Orthogonal and X test: Wellcome Trust, Oxford), whose
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disease had become clinically significant (i.e. they had a documented age at onset). Tf5

showed a trend toward association with p=0.05, however, this fell above our cut-off of

p<0.0 5 .

Sequencing of ferritin gene loci

In order to search for candidate polymorphisms specifically relevant to our

population, we sequenced regions of the ferritin light polypeptide (FTL) and ferritin

heavy polypeptide 1 (FTH1) genes. We sequenced 2.2 kb of the FTL gene on

chromosome 9q13 (chrl9: 54160006-54161850, including exons 1, 2, 3 and partial exon

4 sequence) and 1.2 kb of the FTH1 gene on chromosome 1 lq12 (chrl 1: 61488603-

61489721, including part of exon 1 and all of exons 2 and 3). For this analysis, we

sequenced samples from 16 individuals, whose residual ages of onset ranged from 17.11

years earlier to 22.86 years later than expected based on CAG repeat length. These

individuals are listed in Table 2. Samples were selected from different familial branches

of the larger pedigree as shown. We found only a single polymorphism among these

samples (rs 8108882) that does not result in an amino acid change (L55L). There was

some suggestion of association in the cohort sequenced; however, further analysis in a

larger cohort is needed to confirm these results.

High density SNP analysis of HFE gene and surrounding 43.6 kb

We then focused on a high density SNP analysis of the HFE locus, using 29

markers spanning 43.6 kb centered on the HFE gene. These SNPs are presented in Table

3 and shown schematically in Figure 1. Included among these SNPs are four
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polymorphisms that result in nonsynonymous changes in the resulting amino acid. These

SNPs are listed with the amino acid changes shown next to the SNP name. Three of

these SNPs are found in HFE: 532-1(H63D), 532b-3(S65C), and 536(C282Y), while one

of these SNPs is found in histone 1Hlt: 565-2(Q178K). Initial statistical tests (performed

by J. Gayan, Wellcome Trust, Oxford) showed evidence for association among a

selection of these SNPs that was most robust in a male-specific model (Abecasis et al.,

2000a; Abecasis et al., 2000b). In order to examine this more closely, the mean residual

ages of onset in males was calculated for each genotype class for all 29 SNPs. Each

combination of two SNP alleles gave a total of three genotype classes: one homozygote

class for each SNP and a third heterozygote class. The means from these three classes

were compared in pairs. Thus, for a hypothetical diallelic SNP in which alleles A= 1 and

G=2, for example, mean residual age of onset for the three genotype classes of 11, 22,

and 12 (AA, GG, and AG respectively) were compared in the groupings: 11 vs. 22, 11 vs.

12, and 22 vs. 12. In all cases except where indicated, the SNP allele corresponding to

the ancestral allele as inferred from pan troglodyte (chimp) sequence was designated the

reference allele, 1. The remaining alternate allele was designated 2. The mean residual

ages of onset as well as these comparisons are shown in Table 4. The statistical

significance of the difference between each mean was determined by calculating a p

value using a two-sample t test (two-tailed). A p value of < 0.05 was considered

significant (highlighted in yellow in Table 4), while a p value of <0.1 was considered

suggestive of association (highlighted in orange in Table 4). A total of seven SNPs

showed significant (p<0.05) differences in mean age of onset between genotype classes.
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The location of these SNPs in relation to the HFE locus are shown schematically in

Figure 1.

Six SNP markers showing the strongest association (largest differences between

residual means among genotype classes with smallest p values) are shown in Table 5.

Also noted in this Table are any deviations from Hardy-Weinberg equilibrium among

these SNPs in the population. To demonstrate that the association present between age of

onset and these SNP markers is most robust in a male-specific manner, Table 5 also

presents the differences in mean residual ages of onset by genotype class for the same

SNPs in both sexes combined (males + females, top panel), as well as for females only

(bottom panel) for comparison. As shown, some statistical significance was noted when

males and females were combined. However, no significant differences in mean age of

onset was noted for any genotype class combinations in the female group. Therefore, the

associations seen in both males and females combined, therefore, appear to derive from

the male-only associations, where the most robust effect is seen.

To demonstrate graphically the effect that different SNP allele combinations can

have on age of onset, the mean residual ages of onset by genotype class are shown for

SNPs 558, 565, and 575 in Figures 2 a,b, and c, respectively. Error bars represent

standard deviations. SNP 565 demonstrated the largest difference in age of onset, with

homozygotes of one allele (GG) developing onset of the disease 7.97 years later

(p=O.009) when compared with homozygotes of the other allele (AA).

We reasoned that the SNPs showing significant association with age of onset in

HD most likely had alleles that could be found in linkage disequilibrium with each other.

Therefore, we wanted to determine if a "protective" haplotype could be found within the
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population. We resolved haplotypes using pedigree information from 102 chromosomes

within the cohort. A summary showing a representative illustration of each haplotype

found in the population is shown in Figure 3. Using the seven SNPs that showed the

highest association with age of onset (indicated by arrows in Figure 3), we found a single

haplotype carrying "favorable" alleles at each of these SNPs (the presence of each

favorable allele resulted in a later age of onset when the SNP was tested individually for

association). This haplotype was found in 10 of the 204 haplotypes we examined and is

shown in Figure 3. Conversely, a haplotype with "unfavorable" alleles at all seven most

associated SNPs was also found in 41 of the 204 haplotypes we examined.

One of the SNPs that demonstrated significant association with age of onset with

HD is SNP565-2(Q178K). The effect of this SNP on age of onset is shown graphically in

Figure 4. The reference SNP allele corresponds to the first position of a glutamine

codon. The alternate allele changes this glutamine (uncharged) to a lysine (basic) in the

resulting histone Hilt protein (Figure 5a). The reference allele sequence is conserved in

chimp, mouse, rat, dog, chicken, and zebrafish, as shown in Figure 5b. In addition,

chimp, mouse, and rat sequences all have a corresponding glutamine at that position.

DISCUSSION

We present here evidence for association between a 43.6 kb region on 6p21.3 and

residual age of onset in Huntington's disease in a male-specific manner. The statistical

analyses presented in this report have been corroborated by further rigorous testing.

First, regression analysis was used to replace the comparison of each allele class (as
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shown in this report), in order to reduce the effects of multiple testing. Second, to

account for the fact that many affected individuals in our cohort are related by birth, a

modified TDT test (Abecasis et al., 2000b) was performed to control for possible

stratification bias. These tests (performed by J. Gayan, Wellcome Trust, Oxford) placed

more stringent requirements for association but nevertheless gave highly concordant

results with those shown in this report, thus validating our findings of a male-specific

association with HD age on onset in this region.

A previous study using a genome-wide linkage scan in a large North American

HD cohort (Myers) reported a peak on 6p21-23 suggesting linkage to residual age of

onset this region. We found multiple markers within 43.6 kb that showed significant

association (p<0.05) with residual age of onset. Seven markers with the most significant

association had alleles that could be grouped together as "favorable" or "unfavorable"

depending on whether age of onset occurred later or earlier than expected, respectively,

according to AG repeat length. All seven "favorable" alleles could be found together

on a single haplotype in the population, as could all seven unfavorable alleles.

Here we present two candidate genes for association in this region. The first

candidate gene is the HFE gene. Six of the seven most associated SNPs flank this gene,

while a seventh SNP, SNP 532-2, falls within the gene between exons 2 and 3. HFE is a

biological candidate for modification of HD age of onset due to its involvement with iron

homeostasis. Iron increases in the brain with advancing age in humans, and it has been

suggested that this may be correlated with the adult-onset nature of HD. Additionally,

increased iron deposition is seen in regions of the brain in HD patients that are most
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affected by the disease (Bartzokis et al., 1999). We detect an association which is most

robust in males.

The most obvious candidate variants in the HFE gene are previously identified

mutations known to disrupt normal function of the HFE protein in iron homeostasis. We

tested three of these mutations for association: C282Y(SNP 536), H63D(SNP 532-1), and

S65C(SNP 532b-3). Interestingly, the haplotype containing the "favorable" alleles of the

seven associated markers in this region and thus conferring a "protective" haplotype, also

contains the alternate allele for SNP 532-1, which corresponds to the H63D mutation.

H63D was also tested for association directly, but only five homozygotes for the mutation

were found in our cohort. This small number likely led to a lack of power to achieve

statistical significance. H63D thus remains a viable candidate since the other

significantly favorable alleles are in linkage disequilibrium with this marker. A case-

control study specifically focused on selecting HD patients with and without this

mutation will directly address this issue. The male-specific nature of our association is

interesting in light of reports that males with HFE mutations present with more severe

iron overload phenotypes when compared with premenopausal women (Deugnier et al.,

2002). It would be of interest to investigate how systemic iron overload and brain iron

overload are correlated, or possibly inversely correlated.

The second candidate gene we identified is histone Hlt, found downstream from

HFE in the locus we examined. Our data reveals that SNP 565-2(Q178K), has alleles

which show significant association with age of onset. Specifically, we found that a single

T allele, which changes the resulting amino acid from a glutamine to a lysine, results in a

2.37 year earlier age of onset (p=0.004) in heterozygotes with the genotype GT.
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Interestingly, this nucleotide sequence is conserved in other organisms (chimp, mouse,

rat, dog, chicken, and zebrafish), and the glutamine at that position also appears in the

chimp, mouse, and rat proteins. Homozygotes of the T allele also develop an earlier age

of onset, although this did not reach statistical significance in our cohort likely due to the

fact that the small number (n=10) of homozygotes in our population. The alternate allele

(T) at this SNP, changes an uncharged amino acid (Q) to an acidic residue (K). The

significantly earlier age of onset observed in heterozygotes when compared to

homozygotes of the G allele, suggests a dominant-negative mechanism resulting from

this amino acid change.

We have demonstrated a male-specific association with residual age of onset in

HD within a 43.6 kb region of 6p21.3 using a large cohort of HD kindreds from

Venezuela. We present two candidate genes, HFE and Hit in this region, that singly or

together may explain this association. Multiple markers in the region on defined

haplotypes demonstrating significant association argue against a statistical artifact and

instead suggest a real association that should be confirmed in other studies. Additional

testing of these candidates in other populations as well as further genetic and biological

tests should help to explain the physiological impact of these candidate genes on age of

onset in HD.
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Table 1: Summary of SNPs in transferrin and IRP2 genes tested for association with
residual age of onset.
a: SNPs selected for analysis.
SNPs producing an amino acid change in the resulting protein were chosen for analysis.
Only four of these SNPs were polymorphic in the population we examined. The name of
each SNP used in our study is shown alongside the reference SNP ID (rs#) assigned by
the NCBI database.
b: Genotypes of polymorphic SNPs selected for analysis.
The number of genotypes for each allele class (11, 12, or 22) in polymorphic SNPs
selected for association analysis in the transferrin and IRP2 genes are shown. Results
from a Chi square test for deviations from Hardy-Weinberg equilibrium (with and
without the Yates correction) is shown to the right. None of these SNPs showed
significant association with age of onset in the population (not shown).
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Table 2: Summary of samples chosen for sequencing in ferritin genes.
Individuals were chosen for sequencing sequencing 2.2 kb on the ferritin light
polypeptide (FTL) and ferritin heavy polypeptide 1 (FTH1) gene. These individuals were
chosen from the larger cohort for their residual ages of onset ranging from 17.11 years
earlier to 22.86 years later than expected based on CAG repeat length. Each individual is
represented by a code with characteristics as shown.
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Table 3: Summary of SNP markers on 6p21.3 used in analysis.
The SNP markers used in this analysis is shown. The name of each SNP used in our
study is shown alongside the reference SNP ID (rs#) assigned by the NCBI database. The
allele corresponding to the ancestral or chimp sequence, was designated as the reference
allele (1) in all cases except where indicated (SNP 501 and SNP 512). The alleles shown
correspond to the (+) strand on chromosome 6p21.3.
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Figure 1: Schematic representation of SNPs in a locus on 6p21.3 used in analysis
and significantly associated.
29 SNP markers (see also Table 3) spanning a 43.6 kb region on 6p21.3 as shown were
used in this analysis. Each SNP marker is represented by an open circle and shown from
left to right. The distribution of these SNPs in relation to the genes present in this locus
are shown. In addition to the HFE gene, this region also includes two histone genes:
1H4C and 1H I t, respectively, downstream from HFE as shown. SNPs showing
significant association with residual age of onset in HD are labeled with a filled arrow.
The SNPs used in this analysis that lead to non-synonymous amino acid changes in the
corresponding protein are shown above each relevant SNP (*).



Table 4: Differences between mean residual age of onset in males by genotype class
for 29 SNP markers analyzed.
For each SNP, the number (n) of individuals in each genotype class (11, 12, or 22) is
shown (left panel). The corresponding mean residual age of onset and standard deviation
is shown beneath each genotype class. The differences between these residual means
(22-11, 11-12, 22-12), is shown in the right panel with a p value computed using a t-
sample t test (two-tailed). p values significant for association (p<O.05) are highlighted in
yellow. p values suggestive of association (p<O. 1) are highlighted in orange.
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Mean 0.22 0.08 0.90
SID 4.83 6.29 5.18

505 n 21 97 89 207 -1.49 0.2369 0.99 0.5060 .{I.5O 0.5547
Mean 1.48 0.49 .{I.OJ
SID 5.32 6.28 5.02

515 n 20 84 82 186 -1.50 0.2527 1.01 0.4879 .{I.49 0.5674
Mean 1.49 0.48 .{I.OI
SID 5.46 5.88 5.09

516 n 86 98 21 205 1.61 0.2034 .{I.57 0.4996 1.04 0.4830
Mean .{).14 0.44 1.48
SID 5.04 6.25 5.32

5J7 n 85 95 22 202 159 0.1865 .{I.70 0.4079 0.89 0.5445
Mean .{).18 0.52 1.40
SID 4.84 6.31 5.20

522 n 18 78 77 173 -1.52 0.2559 1.11 0.4924 .{I.41 0.6599
M.an 1.57 0.45 0.05

ISID 4.86 6.39 5.04
524 n 89 97 20 206 1.34 0.2989 .{I.34 0.6764 0.99 0.S073

Mean 0.01 0.36 1.35
SID 5.02 6.12 5.43

525 n 81 86 25 192 0.24 0.8406 .{I.26 0.7732 .{I.02 0.9890
Mean 0.28 0.54 0.52
SID 4.87 6.43 5.77

532-1(H63D) n 140 62 5 207 3.91 0.1711 -1.05 0.2240 2.86 0.4034
Mean .{I.05 1.00 3.86
SID 5.11 6.60 6.44

5321>-3(865<:1) n 197 3 200 .{I.33 NlA -1.61 0.6693 -1.94 N/A
Mean 0.33 1.94
SID 5.60 2.17

532-2 n 77 88 34 199 2.49 0.02S1 -2.21 0.009\ 0.28 0.8138
Mean .{I.98 1.23 1.51
SID 4.90 5.73 6.01

534 n 191 9 200 .{I.18 NlA -1.45 0.4563 -1.63 N1A
Mean 0.18 1.63
STD 5.51 4.48

536(C282Y) n 179 4 I 184 10.79 NlA -1.79 0.5703 9.00 N/A
Moan 0.23 2.01 11.01
SID 5.60 2.56 N/A

538 n ISO 42 192 .{I31 NlA 0.53 0.5860 0.22 N/A
Mean 0.31 .{I.22
SID 5.68 4.99

542 n 152 45 197 .{).44 NlA 0.73 0.4375 0.29 N/A
Me"" 0.44 .{).29
SID 5.74 4.83

5SO n 155 47 202 .{I.48 NlA 0.41 0.6602 .{I06 N/A
Mean 0.48 0.06
SID 5.76 5.06

556 n 177 30 207 .{).4O NlA 0.24 0.82SO .{I.16 N/A
Mean 0.40 0.16
SID 5.71 5.42

557 n 60 118 22 200 3.36 0.0147 .{I.10 0.9078 326 0.025Ci
M.an .{).04 0.06 3.33
SID 4.72 5.85 6.35

558 n 71 119 17 207 -3.31 0.0415 2.87 0.0007 .{I.44 0.7529
Mean 2.28 .{).59 -\.03
SID 5.87 5.33 5.06

S65 n 134 67 6 207 7.97 0.0\'" .{I.39 0.6256 7.58 0.0335
Mean 0.Q7 0.46 8.04
SID 5.10 5.84 9.00

565-2 n 104 90 10 204 -2.10 0.2578 2.37 0.0037 0.27 0.8877
Mean 1.58 .{).79 '{).52
SID 5.48 5.73 3.66

575 n 71 120 17 208 -3.31 0.04\' 285 0.0001 .{I46 0.7404
Mean 228 .{).56 -1.03
SID 5.87 5.34 5.06



Table 5: Differences between mean residual age of onset by genotype class shown
for six most significantly associated SNPs for each gender.
The six SNP markers showing the largest differences in age of onset with the smallest p
values form Table 4 are shown here. The same analysis was performed in males and
females combined (ALL, top panel), Males only (middle panel), and Females only
(bottom panel). p values significant for association (p<0.05) are highlighted in yellow. p
values suggestive of association (p<O. 1) are highlighted in orange. No association was
found among these SNPs in females only, suggesting the association seen in males and
females combined derived from robust male-specific associations.



1.66 0.0079 0.06 0.9509

1.43 0.1477 0.07 0.9158 1.50 0.1109

4.16 0.0172 .Q.37 0.5428 3.78 0.0303

-0.95 0.4068 1.35 0.0263 0.40 0.7188

-1.61 0.1202 1.64 0.0085 0.04 0.9676

ALL (MALES + FEMALES)

SNP name Genotypes Total n
11 ]2 22 Chi sq Yates

532-2 n 150 200 77 427 0524 0.421
Mean .Q.18 0.96 1.45
SID 5.88 6.21 6.13

557. n 146 226 54 426 5.434 5.080 •
Mean 0.54 0.47 1.97
sm 6.15 6.14 6.21

558 n 163 223 53 439 3.098 2.830
Mean 1.64 -0.01 0.03
sm 6.49 5.66 6.47

565 n 279 144 16 439 0.239 0.133
Mean 0.29 0.67 4.45
sm 6.01 5.92 7.37

565-2 n 211 191 36 438 0.626 0.493
Mean 1.27 .Q.08 0.32
sm 6.16 5.91 6.87

575. n 163 228 53 444 9.729 9.411 •
Mean 1.64 .Q.03 0.03
SID 6.49 5.76 6.47

Table 5

.deviates from HWE

22-11 p 11-12 p 22-12 p
2.49 0.0257 -2.21 0.0091 0.28 0.8138

3.36 0.0147 -0.10 0.9078 3.26 0.0250

-3.31 0.0415 2.87 0.0007 -0.44 0.7529

7.97 0.OlS4 -0.39 0.6256 758 0.0335

-2.10 0.2578 2.37 0.0037 0.27 0.8877

-3.31 0.0415 2.85 .0.0008 -0.46 0.7404

Genotypes Total n Difference: betWeen residual means by genotype
11 12 22

MALES ONLY
SNPname

532-2 n 77 88 34 199
Mean -0.98 1.23 1.51
sm 4.90 5.73 6.01

557 n 60 118 22 200
Mean -0.04 0.06 3.33
sm 4.72 5.85 6.35

558 n 71 119 17 207
Mean 2.28 -059 -1.03
SID 5.87 5.33 5.06

565 n 134 67 6 207
Mean 0.07 0.46 8.04
SID 5.10 5.84 9.00

565-2 n 104 90 10 204
Mean 158 -0.79 -0.52
SID 5.48 5.73 3.66

575 n 71 120 17 208
Mean 2.28 -0.56 -1.03
SID 5.87 5.34 5.06

22-11 P 11-12 P 22-12 p
0.77 0.5417 -0.1] 0.9149 0.66 0.5737

0.10 0.9417 0.03 0.9761 0.13 0.9185

-0.61 0.6565 0.49 0.5899 -0.12 0.9237

1.80 0.4274 -0.35 0.6990 1.45 0.4861

-0.32 0.8333 0.42 0.6380 0.10 0.9461

-0.61 0.6565 057 0.5355 -0.04 0.9762

Genotypes Total n Difference betWeen residual means by genotype
II 12 22

FEMALES ONLY
SNPname

532-2 n 74 112 43 229
Mean 0.64 0.75 1.41
SID 6.64 6.58 6.29

557 n 86 108 32 226
Mean 0.93 0.91 1.04
SID 6.98 6.45 6.03

558 n 92 105 36 233
Mean 1.14 0.64 0.53
SID 6.92 5.95 7.05

565 n 146 77 10 233
Mean 0.49 0.84 2.29
SID 6.73 6.02 5.65

565-2 n 107 101 26 234
Mean 0.97 0.55 0.65
SID 6.77 6.04 7.80

575 n 92 108 36 236
Mean 1.14 0.56 0.53
SID 6.92 6.16 7.05



Figure 2(a-c): Graphical representation of mean residual ages of onset in males
sorted by genotype class for SNP 558 (a), SNP 565 (b), and SNP 575 (c).
The mean residual age of onset for each genotype class (11, 12, or 22) is shown by a
colored circle. Error bars represent standard deviations. The number (n) of individuals in
each class is shown to the right. The number of years between each mean is shown
below (brackets) with p values derived from a two-sample t test (see also Table 5).
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Figure 3: Representative haplotypes from the population showing haplotypes
containing SNP alleles associated with a later or earlier age of onset.
204 haplotypes were resolved from a selection of 102 chromosomes in the population. A
representation of each type of haplotype is shown. SNPs showing significant association
with male-specific age of onset are highlighted (arrows). The "favorable" alleles for each
of these SNPs producing a later age of onset in males can be found together on a single
haplotype as shown found in 10 of the 204 haplotypes studied. The "unfavorable" alleles
leading to an earlier age of onset in males is also found together on a single haplotype as
shown and was observed in 41 of the 204 haplotypes examined.
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Figure 4: Graphical representation of mean residual ages of onset for SNP 565-
2(Q178K).
The mean residual age of onset for each genotype class (11, 12, or 22) is shown by a
colored circle. Error bars represent standard deviations. The number (n) of individuals in
each class is shown to the right. The number of years between each mean is shown
below (brackets) with p values derived from a two-sample t test (see also Table 5).
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Figure 5: A single nucleotide change at SNP 565-2 affects an amino acid which is
conserved in other species.
a: The SNP alleles at SNP 565-2 result in a non-synonymous amino acid change.
A single nucleotide change at SNP 565-2 to the alternate allele (A) changes a glutamine
to a lysine in the resulting Hlt protein. Codon 179 is shown in green, with the position of
SNP 565-2 highlighted in red. Note that the nucleotides shown correspond to the (-)
strand of chromosome 6p21.3
b: The reference allele of SNP 565-2 is conserved in other organisms.
The reference allele of SNP 565-2 (C) is shown conserved in chimp, mouse, rat, dog,
chicken, and zebrafish sequence. Note that the sequence in chimp, mouse, and rat all
result in a conserved glutamine codon at that site.
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Chapter 4

Conclusions and Prospects for future work
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Haplotype analysis and recombination events in the HFE locus

Local sites of crossover recombination in HFE

We provide evidence for a local recombination hotspot in the HFE gene,

occurring in a cluster with the most frequent crossover activity evident between exons 1

and 2 in the FIFE gene. While not an active site for crossing over relative to a genome-

wide comparison of hotspots, we demonstrate that historical crossovers at these sites can

explain the blocks of haplotype observed in this region. As expected, this site for

crossing over forms the boundaries of haplotype blocks.

It is interesting to note that two of the mutations that can lead to

hemochromatosis, H63D and S65C (represented by SNP 532-1(H63D) and SNP 532b-

3(S65C) in our study), are located in the immediate vicinity of the hotspot we identified.

Another non-CpG mutation, Q 27H that has been reported in South African patients with

iron overload (de Villiers et al., 1999), is also located within 1 kb of this region. At least

one report has suggested increased nucleotide diversity at RHS (Jeffreys et al., 2000).

Double strand breaks initiate recombination at a hotspot, so it is interesting to consider

the possibility that these breaks and subsequent repair can promote a greater number of

mutations in that region.

Gene conversion events in the HFE locus

We provide evidence for gene conversion events that are not limited to

recombination hotspots using haplotype analysis in the human HFE locus. To understand

the significance of this mechanism in influencing haplotype structure, we measured the
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frequency with which these events occurred in a single generation using progeny of

mouse backcrosses derived from genetically divergent strains. Our results provide a

direct demonstration of gene conversion events resulting from mammalian female

meioses. We detected two confirmed conversion events in 23,753 genotypes which gives

a frequency even higher than our estimated gene conversion frequency of approximately

1 in 106 per site per generation derived from human haplotype analysis. These events

were not limited to a hotspot for crossing over.

Our observation that gene conversion events are not limited to recombination

hotspots has important consequences for our general understanding of the mechanism of

gene conversion. Crossovers and gene conversions have long been thought to result from

the alternate resolution of a single late intermediate (Szostak et al., 1983). Such a model

predicts that these events occur at shared hotspots. In yeast, however, gene conversions

can arise with crossover events, or can arise independent of crossovers (at sites of

"noncrossovers"). A recent model proposes that these two pathways diverge shortly after

a common initiating double strand break (Borner et al., 2004). By extrapolation, this

supports the possibility that gene conversion events are not limited to locations where

crossovers take place, i.e. RHS. If this model is applicable to mammalian meiotic events,

then we could imagine punctate areas of the genome vulnerable to double strand breaks,

some of which could resolve either with gene conversion or crossover, while others

would consistently resolve with gene conversions only. This not only supports our

findings of gene conversions not limited to hotspots but is also consistent with studies

measuring the relative frequencies with which gene conversions occur in relation to

crossovers. One could imagine a more transient strand invasion that might be required
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for a gene conversion (modeled by several models in yeast including synthesis dependent

strand annealing) (Bishop and Zickler, 2004) rather than a more committed mechanism

required for crossover. This model would make gene conversion events more frequent

than crossover events. This is consistent with evidence that gene conversion: crossover

frequencies measured in mouse and human sperm at RHS are reported at rations of 4:1-

15:1 (Jeffreys and May, 2004). Our data also supports a high frequency of gene

conversion events.

In addition to contributing to our overall understanding of gene conversion events

in mammals, our data also carries important implications for the haplotype-based

approach to finding genes responsible for contributing to complex traits. Using

haplotype data in human chromosomes, we show that gene conversion events cause

short-range sequence changes that can occur within a haplotype block (i.e. not limited to

recombination hotspots at the borders of these haplotype blocks). These conversion

events cause punctate changes that will lead to the eventual establishment of new

haplotypes as these chromosomal segments are propagated in a population.

The frequency with which gene conversion events occur leads us to suggest that

gene conversion events can be an extremely useful tool as markers of specific groups of

chromosomes in the course of disease association studies. A popular approach suggested

by the HapMap project is to define a set of "tag SNPs" that when used in association

studies will capture most of the power of a complete set of common SNPs to identify the

sites of DNA sequence variation for genes contributing to human complex traits. "Tag

SNPs" are a selection of SNPs on each block that captures the information about common

SNPs that identify an entire block. The idea is to reduce the complexity of haplotype
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blocks and decrease the genotyping of redundant SNPs in the same block. These tag

SNPs are useful for identifying a haplotype block on which a particular mutation may lie.

However, this approach is effective only when the variant site leading to phenotypic

effect is similar in frequency to the haplotype tagging SNPs. If, on the other hand, as

some have speculated, the causal allele is less common than these tag SNPs (the causal

allele may have arisen in a more recent event, for example), then they could be missed by

such an approach. We propose that haplotypes created by gene conversion events will

occur with a frequency and distribution ideally suited for tracking sites of DNA variation

responsible for phenotypic effects in complex trait association studies in cases when these

alleles are less common in the population.

The occurrence of gene conversion events would lead to the subdivision of

haplotype blocks which we suggest can be used to subdivide haplotype classes allowing

significantly greater power to reveal association with a disease-causing allele than can be

obtained with a single set of haplotype-tagging SNPs.

Figure 1 illustrates this strategy schematically. A single haplotype block (shown

in red) is present on an ancestral chromosome (topmost). Descendants of this ancestral

chromosome will all carry the same haplotype block (red). On one of these, a mutation

(indicated by a star) will occur that contributes to a complex trait (disease). Descendants

receiving this disease-causing mutation will also receive the corresponding red haplotype

on which the mutation arose. A gene conversion (represented by a *) is also shown that

happens close in time to the disease-causing mutation that will be inherited by red

haplotypes also carrying the mutation. Tag SNPs would be represented by any marker on

the haplotype identifying it as "red". While the disease-causing allele is found only on
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red chromosomes, not all red chromosomes carry the disease allele. By only using tag

SNPs that are common to the red or "framework" haplotype, therefore, we are diluting

our sample and reducing our power to detect the disease-causing mutation. However,

sampling these tag SNPs along with the gene conversion directly, would allow us to

select only the subset of the red chromosomes that carry the disease-causing mutation as

well.

How could one most efficiently identify such haplotypes created by gene

conversion? In the context of a genome wide association study, the most likely way to

identify such haplotypes would be to include multiple sites within a haplotype block, with

varying allele frequencies, rather than relying upon a small but redundant set of

haplotype-tagging SNPs. In addition, candidate regions can be identified by functional

considerations or by initial genome-wide linkage or association studies. Haplotypes that

arise as a consequence of gene conversions that are associated with a disease-causing

variant sequence can emerge from the sequencing of these candidate regions in affected

individuals with disease phenotypes. As technology moves towards the relatively lower

cost sequencing of whole genomes, the potential for directly identifying high power

haplotypes created by gene conversion for association studies should be considered an

integral part of the analytical approach to the identification of disease causing genetic

variants.
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Association study: HD residual age of onset and the HFE region

We demonstrated evidence for association with residual age of onset in HD with a

43.6 kb region of 6p21.3 and have identified two major candidate genes in this region.

Seven SNPs that we tested show significant association that is most robust in a male-

specific context. Biological experiments will best address the physiological relevance of

the two genes in relation to HD pathogenesis.

The first candidate gene we identified is the HFE gene, whose protein product is

involved with iron homeostasis. A series of seven most significantly associated SNPs

found in the locus we tested flanked the HFE gene. In addition, the "favorable" alleles of

these seven SNPs could be found on a single haplotype in the population we examined.

This haplotype with alleles associated with a later age of onset of HD also contained the

H63D mutation of HFE. While the H63D mutation itself (tested as SNP 532-1) did not

show statistical significance with age of onset, only five homozygotes with this mutation

in the population decreased our power to detect an association considerably. The high

prevalence of H63D throughout the world has led to much speculation regarding a

potential protective role of this mutation. It is intriguing to consider that this mutation

may affect iron handling in the aging brain.

To begin to address the physiological issue of iron homeostasis and HD

pathogenesis, we are conducting a series of experiments using the R6/2 mouse model of

HD. We have nearly completed an investigation into the clinical usefulness of an

iron/copper chelator, clioquinol, a lipophilic molecule able to cross the blood brain

barrier and investigated for its clinical usefulness in other neurodegenerative diseases
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including Alzheimer's disease (in which a Phase II human clinical trial is currently in

progress) (Cherny et al., 2001; Finefrock et al., 2003) and Parkinson's disease (in which

clioquinol has been shown to mitigate the motor defects in an MPTP-induced Parkinson's

mouse model) (Kaur et al., 2003). Thus far, we have not seen significant effects on age

of onset in these animals (assessed by motor phenotypes), although a current report does

suggest that this drug may ameliorate R6/2 motor phenotypes (Nguyen et al., 2005).

Measurements of CAG repeat length in our animals should help to address the disparity

of these results. We are also approaching this question by investigating the effects of

crossing the R6/2 model to transgenic animals with alterations in genes involved with

iron homeostasis to assess whether these disruptions can affect age of onset of the HD

phenotype.

The second candidate gene we identified is the histone Hlt gene, a testis-specific

gene reported to be expressed during spermatogenesis (Drabent et al., 1991). A single

variant in this gene, Q 178K, corresponding to SNP 565-2, leads to an earlier age of onset

in individuals carrying this mutation. Based on the fact that the largest effect is seen in

heterozygotes carrying this mutation (rather than a gradient in which heterozygotes show

an intermediate phenotype), we suggest that the Q1 78K mutation leads to a dominant

negative effect on phenotype. To address how this mutation could lead to earlier age of

onset we considered several possibilities. The first possibility is that the Q 78K mutation

directly effects expansion of the CAG repeat in spermatocytes. This would corroborate

our findings of a male-specific association as well as reports of increased CAG expansion

occurring through paternal transmission seen both in human patients (Bates et al., 2002),

and in HD mouse models (Mangiarini et al., 1997). Our tests for association, however,
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looked specifically at male patients rather than their progeny. If this were the reason for

the association we detected, then it might be due to the fact that children of male parents

carrying the mutation might also be expected to inherit the mutation. A more direct test

to see if this mutation leads to greater CAG expansion in the next generation would be to

compare the progeny of males with the Q 178K mutation with the progeny of males

without the mutation. We would expect, in this case, to see a greater mean CAG repeat

length in children of males carrying the mutation. We performed this statistical test on

our cohort, and did not observe a significant difference in mean CAG length of children

of males carrying the Qi178K mutation. Our sample size was considerably reduced,

however, and likely too small to detect an effect with adequate statistical significance.

Other reports, however, such as studies in one HD mouse model suggest that sex-

dependent factors in the embryo itself may also result in more CAG expansion in male

mice vs. female mice (Kovtun et al., 2000). This would be consistent with our male-

specific association, although challenging to explain if the mutation is only expressed in

the testis during spermatogenesis. In addition, general transcriptional misregulation has

often been associated with HD pathogenesis and for this reason histone deacetylase

(HDAC) inhibitors have been the focus of several preclinical investigations in HD

(Hockly et al., 2003). Again, for a mutation in histone Hlt to lead to general

transcriptional misregulation, it will be necessary to assess whether its expression is in

fact limited to the testis or not. To address this issue, we are examining expression of

H 1 t specifically focusing on the brain by Northern analysis. While previous reports

suggest expression largely restricted to the testis, microarray analyses suggest the

potential for expression in other tissues (http://symatlas.gnflorg/SynAtlas/, Probe set id:
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207982_at). Brain expression would offer the possibility that the histone gene in some

way influences CAG expansion in males in the somatic cells which are most affected by

HD (albeit by a mechanism still poorly understood), leading to earlier age of onset as

seen with the histone Hit variant Q178K. HD pathogenesis is still an area under intense

investigation. Understanding the nature of the impact of HFE and/or histone Hlt on age

of onset will shed light on disease progression and provide new options for therapeutic

interventions to delay age of onset of this devastating disease.
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Figure 1: Schematic to illustrate a strategy for subdividing haplotypes using gene
conversion events.
A haplotype block (shown in red) that lies on an ancestral chromosome is illustrated. If a
mutation (star) occurs on a descendent of this chromosome on the red haplotype, all
chromosomes with the disease allele will also have a portion of the red haplotype.
Sampling a population with tag SNPs alone will identify all "red" haplotypes, only some
of which contain the disease-causing allele. Gene conversion events that happen close in
time to the mutation (*) could be useful tools for the subdivision of haplotypes.
Sampling for the red haplotype and the gene conversion will enrich a sample for
mutation-containing haplotypes.
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