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1 Introduction

In this paper we attempt to give a historical account of the main ideas

leading to the development of non-linear filtering and stochastic control as

we know it today.

The paper contains six sections. In Section 2 we present a develop-

ment of linear filtering theory, beginning with Wiener-Kolmogoroff filtering

and ending with Kalman filtering. The method of development is the in-

novations method as originally proposed by Bode and Shannon and later

presented in its modern form by Kailath. Section 3 is concerned with the

Linear-Quadratic-Gaussian problem of stochastic control. Here we give a

discussion of the separation theorem which states that for this problem the

optimal stochastic control can be constructed by solving separately a state

estimation problem and a deterministic optimal control problem. Many of
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the ideas presented here generalize to the non-linear situation. Section 4

gives a reasonably detailed discussion of non-linear filtering, again from the

innovations viewpoint. Finally, sections 5 and 6 are concerned with opti-

mal stochastic control. The general method of discussing these problems is

Dynamic Programming.

We have chosen to develop the subject in continuous time. In order to

obtain correct results for nonlinear stochastic problems in continuous time

it is essential that the modern language and theory of stochastic processes

and stochastic differential equations be used. The book of Wong [5] is the

preferred text. Some of this language is summarized in Section 3.

2 Wiener and Kalman Filtering

In order to introduce the main ideas of non-linear filtering we first consider

linear filtering theory. A rather comprehensive survey of linear filtering

theory was undertaken by Kailath in [1] and therefore we shall only expose

those ideas which generalize to the non-linear situation. Suppose we have

a signal process (zt) and an orthogonal increment process (wt), the noise

process and we have the observation equation

Yt = zs ds + t. (1)

Note that if wt is Brownian motion then this represents the observation

t = zt + 77t (2)

where rt is the formal (distributional) derivative of Brownian motion and

hence it is white noise. We make the following assumptions.
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(Al) (wt) has stationary orthogonal increments

(A2) (zt) is a second order q.m. continuous process

(A3) For Vs and t > s

(Wt - ws) I HWfZ

where H,,z is the Hilbert space spanned by (w., zl1I < s).

The last assumption is a causality requirement but includes situations where

the signal z, may be influenced by past observations as would typically arise

in feedback control problems. A slightly stronger assumption is

(A3)' H 1 HZ

which states that the signal and noise are independent, a situation which

often arises in communication problems. The situation which Wiener con-

sidered corresponds to (2) where he assumed that (zt) is a stationary, second

order, q.m. continuous process.

The filtering problem is to obtain the best linear estimate zt of zt based

on the past observations (ysIs < t). There are two other problems of interest,

namely, prediction when we are interested in the best linear estimate iZ,

r > t based on observations (y,ls < t) and smoothing where we require

obtaining the best linear estimate ,, r < t based on observations (yss < t).

Abstractly, the solution to the problem of filtering corresponds to explicitly

computing

it = Pt(zt) (3)

where PY is the projection operator onto the Hilbert space HtY. We proceed

to outline the solution using a method originally proposed by Bode and
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Shannon [2] and later presented in modern form by Kailath [3]. For a text-

book account see Davis [4] and Wong [5], which we largely follow.

Let us operate under the assumption (A3)', although all the results are

true under the weaker assumption (A3). The key to obtaining a solution is

the introduction of the innovations process

/t
Vt = Yt - z ds. (4)

The following facts about the innovations process can be proved

(F1) vt is an orthogonal increment process.

(F2) Vs, Vt > s

vt - s V. H' and

cov(vt) = cov(wt)

(F3) HtY = Ht/.

The name innovations originates in the fact that the optimum filter extracts

the maximal probabilistic information from the observations in the sense

that what remains is essentially equivalent to the noise present in the ob-

servation. Furthermore (F3) states that the innovations process contains

the same information as the observations. This can be proved by showing

that the linear transformation relating the observations and innovations is

causal and causally invertible. As we shall see later, these results are true

in a much more general context. To proceed further, we need a concrete

representation of vectors residing in the Hilbert space HtY. The important

result is that every vector Y E HtY can be represented as

Y = (s)dy. (5)
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where p is a deterministic square integrable function and the above integral

is a stochastic integral. For an account of stochastic integrals see the book

of Wong [loc. cit.]. Now using the Projection Theorem, (5) and (F1)-(F3)

we can obtain a representation theorem for the estimate it as:

t = j E(zt) dvs). (6)

What we have done so far is quite general. As we have mentioned Wiener

assumed that (zs) was a stationary q.m. second order process and he ob-

tained a linear integral representation for the estimate where the kernel of

the integral operator was obtained as a solution to an integral equation, the

Wiener-Hopf equation. As Wiener himself remarked, effective solution to

the Wiener-Hopf equation using the method of spectral factorization (see

for example, Youla [6]) could only be obtained when (z,) had a rational

spectral density. In his fundamental work Kalman ([7], [8], [9]) made this

explicit by introducing a Gauss-Markov diffusion model for the signal

dxt = Fxt dt + G dp8 (7
Zt = HXt

where xt is an n-vector-valued Gaussian random process wt is m-dimensional

Brownian motion and zt is a p-vector-valued Gaussian random variable and

F, G, and H are matrices of appropriate order. We note that (7) is actually

an integral equation

Xt = xo + Fx ds + G d (7G)

where the last integral is a stochastic integral. The Gauss-Markov assump-

tion is no loss of generality since in Wiener's work the best linear estimate
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was sought for signals modelled as second-order random processes. The

filtering problem now is to compute the best estimate (which is provably

linear)

it = Pt(xt). (8)

Moreover in this new set-up no assumption of stationarity is needed. Indeed

the matrices F, G, and H may depend on time. The derivation of the

Kalman filter can now proceed as follows. First note that

xt= / asE (t,') d". (9)

(See equation (6).)

Now we can show that

t -K:o -_ Fa ds ii K (s) dmv (10)

where K(s) is a square integrable matrix-valued function. This is analogous

to the representation theorem given by (5).

Equation (10) can be written in differential form as

dit = Fit dt + K(t) dv, (11)

and let us assume that xo = 0. The structure of equation (11) shows that

the Kalman Filter incorporates a model of the signal and a correction term

which is an optimally weighted error = K(t) (dyt - it dt) (see Figure 1).

It remains to find an explicit expression for K(t). Here we see an in-

terplay between filtering theory and linear systems theory. The solution of

(11) can be written as

t= j o(t,s)K(s)dv, (12)
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where 4(t, s) is the transition matrix corresponding to F. From (9) and (12)

4(t, s)K(s) = E(xtv')

and hence

K(t) = E(xtv')I,=t.

Some further calculations using the fact that xt I. Hs shows that

KI(t) = P(t)H', (13)

where P(t) = E(itx,), it = xt - it. Finally, using the representation of

solutions of the linear stochastic differential equations (7) and using (11) we

can write a linear stochastic differential equation for xt and write down a

representation for P(t) = E ('t~:) as

P(t) = 4'(t, o)P(O)4"'(t, O) + / 4i(t, s)GG''(t, s) ds (13)

+ f O(t, s)P(s)H'HP(s)4'(t, s) ds
0

where 4'(t, s) is the transition matrix corresponding to (F - PH'H). There

is again a role of linear systems theory evident here. Differentiating w.r. to

t, we get a matrix differential equation for P(t), the matrix Ricatti equation

dP = GG'- P(t)H'HP(t) + FP(t) + P(t)F'dt (14)
P(O) = cov(x0) = Po.

Note that K(t) = P(t)H' is deterministic and does not depend on the ob-

servation process yt, and hence can be pre-computed. The approach to the

solution of the Wiener Filtering Problem consists in studying the equilibrium

behavior of P(t) as t -+ or. There is again a beautiful interplay between
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the infinite time behavior of the filter and the structural properties of equa-

tion (7). One can prove that if the pair (F, G) is stabilizable and (H, F) is

detectable then P(t) -+ P as t -+ oo where P is the unique non-negative

solution to the algebraic Ricatti equation corresponding to (14) and that

F - PH'H is a stability matrix. Thus the filter is stable, in the sense that

the error covariance converges to the optimal error covariance for the sta-

tionary problem even if F is not a stability matrix. For the linear systems

concepts introduced here and the proof of the above results the reader may

consult Wonham [10].

3 The Linear Quadratic Gaussian (LQG) Problem
and the Separation Principle

At about the same time that the theory of filtering using linear stochas-

tic differential equations (Gauss-Markov Processes) was being developed an

analogous development for the optimal control of linear dynamical systems

with a quadratic cost function was taking place. This work was inspired by

the development of Dynamic Programming by Bellman [11] and the ideas

of Caratheodory related to Hamilton-Jacobi Theory [12] and was developed

by Merriam [13] and Kalman [14]. For textbook accounts see Brockett [15],

Wonham [10], and Bryson and Ho [16]. An extension of the quadratic cost

optimal control problem for linear dynamical systems in the presence of ad-

ditive white process noise perturbations leads us to consider the quadratic

cost problem for linear stochastic dynamical systems.

The general situation here is that we are given a linear stochastic dy-
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namical system

dxt = Fxt dt + But dt + G dpt (15)

and the observation equation

dyt = Hxt dt + dwt. (16)

Here ( 3t) and (wt) are taken to be independent vector Brownian motions and

ut is a control variable which needs to be chosen based on the information

available to the controller so as to minimize the cost function

J(u) = E (Qt + u'Rut) dt + X'TMxT (17)

where Q > 0 is symmetric and R > 0 is symmetric. In the general partial

observation case the control ut is required to be a function of the past of the

observation, i.e. of (ylo < s < t). Historically, these problems in somewhat

specialized situations were first examined and solved by Florentin [17, 18],

Joseph [19] in discrete-time and by Kushner [20]. The definitive treatment

of this problem is due to Wonham [21]. See also the important paper of

Lindquist [22].

When stochastic disturbances are present, there is a fundamental differ-

ence between open loop control (that is where the control is not a function

of the observations) and feedback control (where control is a function of the

past of the observations). In general, feedback control will lead to a lower

cost than open-loop control. Furthermore, the only general methodology

for handling these problems is dynamic programming. To approach, the

partially observable-stochastic control problem involving linear stochastic

dynamics and a quadratic cost function, we first consider the corresponding
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fully observable stochastic control problem by setting /3t _ 0, Vt E [0, T] and

H - I. In this case, the problem can be solved using Dynamic Programming

and certain ideas of stochastic calculus which we now describe. We set up

the necessary language which will be useful later.

All stochastic processes will be defined on a fixed probability space

(Q, F, P) and a finite time interval [0, T], on which there is defined an in-

creasing family of a-fields {Ft, 0 < t < T). It is assumed that each pro-

cess {xt} is adapted to Ft-i.e. xt is Ft-measurable for all t. The a-field

generated by {x,,0 < s < t} is denoted by xt = a{xs,O < s < t).

(xt,Ft) is a martingale if it is a supermartingale and a sub-martingale.

E[xtlFs] = x, xt is a supermartingale if E[xtiFs] < xs and a submartin-

gale if E[xtlFs] > xs. The process (xt, Ft) is a semimartingale if it has a

decomposition xt = x0o + at + mt, where (mt, Ft) is a martingale and {at}

is a process of bounded variation. Given two square integrable martingales

(mt, Ft) and (nt, Ft), one can define the predictable quadratic covariation

((m, n)t, Ft) to be the unique"predictable process of integrable variation"

such that (mtnt - (m, n)t, FT) is a martingale. For the purposes of this

paper, however, the only necessary facts concerning (m, n) are that (a)

(m, n)t = 0 if mtnt is a martingale; and (b) if / is a standard Brownian

motion process, then

(/3,/3)t = t and (j l d/3s, 77, d/3s) = f 2ds.

Finally, we need to use the Ito differential rule. Suppose that xt is a vector

diffusion process given by

x, =xo + j f(x,) ds + j G(x,) d, (18)
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where xt E R n , St E R m is a vector of independent Brownian motions and

f and g are vector and matrix-valued functions, suitably smooth.

In the above the last integral is a stochastic integral which is a gener-

alization of the Wiener integral we have encountered before and is defined

through an appropriate approximation process and a quadratic mean lim-

iting process (see, for example, Wong [5]). This cannot be defined as a

Lebesgue-Stieltjes integral because Brownian motion is not of bounded vari-

ation almost surely. Now, if ' is a twice continuously differentiable function

of x, then

b(xt) = (4xo0) +j - ,(s)dxs 19
I n t 92,0 (1 9)

+ 2 i E dij (X)a'j(x,) ds(
2, 1 Ox () ( )

where A(x) = (aij(x))'j=1 = G(x)G'(x).

Note that in contrast to ordinary calculus we have a second order term in

the formula arising from the variance properties of Brownian motion. This

is the Ito-differential Rule.

Let us now return to the fully observable stochastic control problem.

Associated with the linear stochastic differential equation

dx, = Fx, ds + G do, s E [t,T] (20)

and L is the operator

(Lf) (t, x) = ft + ftFx + -tr(G'fxxG).

Then an application of Ito's differential rule shows that for V smooth

V(t, x) = -Et [ LV(s, x) ds - X MXzT] (21)t~~~~~av~r..) ZI, ir~y~ ql T
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(Dynkin's formula).

This formula is valid in a much more general context. Now returning

to the control problem let us consider admissible controls (feedback) in the

class

u(t, xt) = K(t)xt (22)

where K(t) is a piecewise continuous matrix-valued function. This is quite

a general class of control laws and it can be shown that there is nothing to

be gained by considering more general linear non-anticipative control laws.

Consider an optimal control u ° = Ko(t)xt. Then

V°(t, x) = Etx (xQx + °'Rus) ds + xTMXTI

= Et, T x °'S °(t)x, ds + XTMX.]T

where As is the solution of

{ dx, = (F+BKo(t))x +Gd p,
Xt = X,

sO(t) = SKo(t) = Q + KI•(t)RKo

For a feedback matrix K(t), let

(LKf) (t, x) = ft + f'(F + BK(t))x + ltr(G'f,,G)

and let SK(t) = Q + K(t)RK(t).

Then applying Bellman's Principle of Optimality we obtain

0 = LKoV°(t, x) + x'SKoX < LKV°(t, x) + X'SKX, (23)
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where Ko is the optimal feedback gain and K is any admissible feedback

gain. The above equation can be explicitly written as

mn (Vt + -tr(G'V,.G) + v(F -BK(t))x

(24)
±X'(Q+ K'(t)RK(t))) = 0.

Note that in contrast to the deterministic situation (w - 0), there is a

second-order operator in the above equation. This equation can be solved

for Ko, V° using essentially the same method as in the deterministic case.

The result is that the optimal control u0(t) is given by

u°(t) = -R - 1 B'P(t)xt

where P(t) is a symmetric non-negative solution of the matrix Riccati equa-

tion
dS
dt + S(t)F + F'S(t) + Q - S(t)BR-B'S(t) = (25)

S(T)= M
and the optimal cost function is

T
J(uo) = tr(G'P(s)G) ds + mP(O)mo + tr (EoP(O)) (26)

where E(xo) = mo and cov(xo) = Eo.

It is interesting to note that the optimal control is the same as in the

deterministic case, but not the expression for the optimal cost function.

Indeed the deterministic situation can be recovered by setting C = 0 and

PEo = 0. This result however crucially depends on the quadratic nature of

the cost functions and the linearity of the dynamics.

In proving optimality we have restricted ourselves to control laws which

are linear. One can prove the same results by considering non-linear control

laws which are Lipschitz function of x (see Wonham, Loc. at).
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Let us now return to the partially observable problem. The key idea here

is to introduce the idea of an information state (cf. Davis and Varaiya [23])

and reduce the partially observable problem to the fully observable problem.

Now the information state is the conditional distribution PU(xtlys, 0_ s < t)

where the superscript is denotes the dependence on the control u. In our

case this conditional distribution is conditionally Gaussian and given by the

Kalman filter

dt, = Fit dt + K(t) dvt + B(t)ut (27)

where K(t) is given by (13). Furthermore the innovations process vt as

given by (4) satisfies (F1), (F2) and (F3) even in this case. In fact vt is a

Brownian motion adapted to Fty, the a-field generated by (y,10 < s < t).

This is true for control laws which are Lipschitz functions of the past of y. If

we restrict ourselves to this class, then Wonham showed that the admissible

control laws are ut = O(it) where 'p is Lipschitz. The issue of the choice

of admissible control laws is a subtle one because of questions of existence

and uniqueness of non-linear stochastic differential equations. For a detailed

discussion cf. Lindquist [loc. cit.]. Now by writing xt = it + it, where it is

the error process and using the fact that it I Ht"u , the cost function given

by (17) can be rewritten as:

J(n) = E [ ('Qt + u'Rut) dt + iTMit

+ Tr[P(t)Q] dt + Tr(P(T)M). (28)

Now it can be shown using the arguments of the fully observable case
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that the optimal control is given by

uO(t) = -R - B'A(t)it (29)

where A(t) is a symmetric non-negative solution of equation (25) and it is

given by (27). Now A(t) is the same as in the deterministic optimal control

problem and we have the separation theorem which states that the partially

observable stochastic control separates into the solution of a deterministic

optimal control problem and a Kalman filtering problem.

We do not go into a detailed discussion of the relationship between the

separation principle and the certainty equivalence principle here (cf. Wit-

senhausen, [24]). It should be mentioned that the certainty equivalence

principle was discussed in the economics literature in the late '50s (cf. Holt

et al [25]). For an illuminating discussion on the distinctions between, open-

loop stochastic control, feedback control and open-loop feedback control see

Dreyfus [26].

4 Nonlinear Filtering

To develop the theory of non-linear filtering we follow the scheme of de-

velopment of linear filtering theory. It is interesting that using the the-

ory of martingales the generalization to the non-linear filtering case is very

natural. The ideas that we use were first introduced and developed by

Frost-Kailath [27] and in somewhat definitive form by Fujisaki-Kallianpur-

Kunita [28]. The historical development proceeded in a somewhat different

manner and we shall discuss this in a later part of this section.
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Our basic model is the observation equation

Yt = z ds + wt (30)

with the assumptions

(H1) Yt is real-valued process

(H2) wt is standard Brownian motion

(H3) Ef Zd < oo

(H4) (zt) is independent of wt.

These assumptions are similar to (Al), (A2), (A3)' in the linear situation.

Consider the innovations process

Vt = t - d (31)
where s = E(zslF')

It can now be shown that:

The process (vt, Ft) is standard Brownian motion and FY and o(vU -

vtjO < s < t < u < T) are independent. This result is proved by showing

that vt is a square integrable martingale with continuous sample paths with

quadratic variation t and the result follows from the Levy characterization

of Brownian motion.

Now analogous to (F3) in the linear case one can prove that

-fy = ytr (32)

that is, the innovations contains the same information as the observation.

This rather delicate result was proved by Allinger-Mitter [29].
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Now combining this with the representation of square integrable mar-

tingales as stochastic integrals due to Kunita and Watanabe, we obtain the

following:

Every square-integrable martingale (mt, FY) can be represented as

mt = E(mo) + ri ds (33)

T E(rs2) ds < oo and rt is adapted to t'.

It should be remarked that Fujisaki-Kallianpur-Kunita in their impor-

tant paper proved the same result without (32) holding but with 7t adapted

to .Ft.

To proceed further let us assume that

zt = h(xt) (34)

and xt satisfies a stochastic differential equation

rt
xt = xo + J f (xs) ds + J G(xs) dPs

which is the same as equation (18).

Suppose we want to obtain the estimate

rt (p) _ E (·(xt) Ity) . (35)

We want to obtain a recursive equation for lrt (). We need some prelimi-

naries.

Let L be the second order elliptic operator defined by

LO = fi(z) + a (Oxx i( (36)
i--1 ij---1

and A(x) = (aij i(x)) = G'(x).
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Then we can write Ito's differential rule (19) as:

'(Xt) - (xo) - J L,(xs) ds = J (V(xs))'G(x) do (37)

where V is the gradient operator, and the last term Mt -

ot(VOb(x,))G(x.) d/3s is a F-Ftmartingale (being a stochastic integral).

To obtain the recursive equation for rt (cp), one shows that MA = 7rt( ) -

lro(O) - ft irs(LWo) ds is a square integrable Fty hence t'V martingale. There-

fore from the representation theorem Mt' = foti7s dvs where r/8 is square

integrable and adapted to tFV. Therefore

ft
(rt() = o(O) + I r8(Ls) ds + ]ni, dv. (38)

It remains to identify q7. This can be obtained as follows:

By the Ito differential rule (37)

t
W(xt) = W(xo) + Jo L(x,) ds + Mt.

Also

Yt = Yo + h(x,)ds + wt.

Now, using the Ito-differential rule for semi-martingales,

w(xt)Yt = O(xo)Yo + j y, do(x) + j o(x,) dy + (MY, w)t
t f

= sO(xo)Yo + J Ys (Lo(x,,) ds + dMf) (39)

+ j Wo(x,)(h(x,) ds + dw,)

(since (M Y , w)t = 0 from the independence of (xt) and (wt).

From the innovations representation

Yt = Yo + ri(h) ds + vt. (40)
f
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Therefore

7rt(')Yt = ro()yo + j (r()( r ((h) ds + dv,)

+ J y, (r (Lo) ds + r, dvs) + (N, v)t

where Nt = j r dv, (41)

= ro(~)Yo + rs(cp)(7s(h) ds + dv,)

+ Jy (r(Lp) ds + ri dv) + ds.

Now noting that

E (W (xt)yt - rt t())ytlIFY) = 0,

from (40) and (41) we get

ilt = rt(hp) - rt(p)irt(h)

and hence we get from (38):

rt() = ro(p) + ji r 8(L~) ds + j (ir(hp) - r(h)ir(W)) dv,. (42)

This is one of the fundamental equations of non-linear filtering. If the con-

ditional distribution lrt has a density given by p(t, x), then p satisfies the

stochastic partial differential equation

dp(t, x) = L*p(t, x) dt + p(t, x)[h(x) - rt(h)] dvt (43)

where irt(h) = f h(x)p(t, x) dx. The question of existence of a conditional

density can be discussed using the Malliavin calculus [46]. Equation (43) in

this form, where the Ito calculus is involved was first derived by Kushner [30].
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The difficulty in deriving a solution for a conditional statistic it __ rt(x) =

f xp(t, x) dx is the so-called closure problem. The equation is

dit = irt(f) dt + (rt (hx) - t (h)i) dvt. (44)

Note that computation of it requires computing

7rt(f) = J f(x)P(t, x) dx, rt(hx) = J h(x)xP(t, x) dx

and irt(h) _ f h(x)p(t,x) and this requires solving stochastic differential

equations or each of these above quantities which in their turn involve higher

moments. Hence non-linear filters are almost always infinite-dimensional.

There are only a few known examples where the filter is known to be finite-

dimensional. The first is the linear-gaussian situation leading to the Kalman

filter which we have treated in an earlier section. The second is the finite-

state case, first considered in an important paper by Wonham [31]. Let

xt be a finite-state Markov process taking values S = (sl,...,sN). Let

Pt = ,.. ., pN) be the probability vector where pI = Prob(xt = si). Then

the evolution of Pt is given by the forward Kolmogoroff equation

dpt - Apt.
dt

If we denote by Pt = Prob (xt = si FtY )

B = diag(h(sl),...,h(sN)) and b' = (h(sl),...,h(sN)),

then Pt satisfies

dit = Apt dt + [B - (b'pt)I] Pt (dyt - (b'Pt) dt) . (45)
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We shall discuss a further example leading to a finite-dimensional filter a

little later. One of the difficulties with equation (43) is that it is a non-linear

stochastic partial differential equation. An important idea due to Zakai [32],

Duncan [33] and Mortensen [34] is to write 7rt(V) as

rt(P) = Pt(') (46)
pt(l)

where Pt(T) satisfies

Pt() = Po() + j p,(Lp) ds +j Ps(hp) dy (47)

Pt is an un-normalized version of lrt. Note that this is a linear stochastic

partial differential equation. This is intimately related to the Feynman-Kac

formula for integrating linear parabolic equations with a potential term. For

a discussion between the analogies between non-linear filtering and quan-

tum mechanics see Mitter [35]. Recall that the original probability space is

(Q, F, P) on which there is an increasing family of a-fields (Ft)t>o and the

process (xt) is adapted to it. Define a new probability measure Po on (Q, F)

in terms of the Radon-Nikodym derivative

d - exp (- T h(x,) dy - f ot h2()ds) (48)
dP At ep (48)

Under Po, (yt) is standard Brownian motion, (xt) and (yt) are independent

and (xt) has the same distribution under Po and P. Now,

7rt(p) = E ((xt)tY) = E ((t)AtltY)Eo (At ,I.t)

_ Pt (T) (49)

Furthermore, we can prove that

At A Eo (Atnt) = exp (h) dy(h) dy - (h) 2 dy/o' 2)f
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From (49) Pt(TP) = irt()A-t. Then using the Ito differential rule we get

eqn. (47). This derivation is due to Davis and Marcus [36] where the full

details can be found. The measure transformation idea in stochastic differ-

ential equation is due to Girsanov (cf. Liptser and Shiryayev [37] and the

references cited there).

Equation (47) is an Ito stochastic partial differential equation. There is

a calculus, the so-called Stratanovich calculus, which in many ways is like

ordinary calculus. The conditional density equation for non-linear filtering

was derived using this calculus by Stratanovich [38]. For the relation between

the two calculi see Wong [5]. This is an important modelling question. The

Stratanovich form of equation (47) is

t 1 o
pt('P) = Po(P)C + ] ps(LW - Ih 2 ) ds +10p, (hp) o dy. (50)

where the last integral is a (symmetric) Stratanovich integral. It should be

noted that geometry is preserved when we work with the Stratanovich form

of the equation. The relation between (47) and (50) involves the Wong-Zakai

correction (note that the generator L in equation (50) has been replaced by

L - 1h2). If Pt has a density q(t, x) then q(t, x) satisfies a linear stochastic

partial differential equation

dq(t, x) = (L* - h2)q(t, x) + h(x)q(t, x) o dyt. (51)

It turns out that the Lie algebra generated by the operators L* - h2 and h

plays a role in the existence of a finite-dimensional filter. For a discussion of

this see Brockett [39] and Mitter [40]. An example where a finite dimensional
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filter exists is the following

{ dxt = f(xt)dt+dp3t, xt E R
dyt = xt dt + dwt

and f satisfies the Riccati equation

_+ f2 = 2

dx

This example, first considered by Benes [41] is intimately related to the

Kalman filter using a Gauge transformation q(t, x) '-+ 4(x)q(t, x) where 0b

is invertible (cf. Mitter, loc. cit.). On the other hand it can be shown that

for the filtering problem

Xt = Ot
dyt = xt3 dt + d wt

no finite-dimensional filter exists [42].

There are a number of other issues in non-linear filtering which we do

not consider in this paper. For discussions of pathwise non-linear filtering

where the filter depends continuously on y see Clark [43] and Davis [44].

For the important problem of obtaining lower bounds on the mean-squared

error see Bobrovsky-Zakai [45]. Results can be obtained when the signal (zt)

and the noise are correlated (cf. the review paper by Pardoux [46]).

5 Optimal Stochastic Control
(Fully Observable Case)

The theory of optimal stochastic control in the fully observable case is quite

similar to the theory we have sketched in Section 3 in connection with the

linear quadratic stochastic control problem. The conceptual ideas here orig-

inated in the Dynamic Programming methodology developed by Bellman.
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An early work here is that of Howard [47], though not in the continuous-

state continuous-time formulation. Important early papers related to this

section are those of Florentin [17] and Fleming [48]. Many other people,

notably Kushner, have contributed to this subject. For a textbook presen-

tation where other references can be found see Fleming-Rishel [49].

Consider the problem of minimizing

J(t, x, u) = Etx l(x(s), u(s)) ds + +(x$(T))] (52)

where xs E R ' evolves according to the stochastic differential equation

{ dxs = f(x, u) ds + G(x, us) d (53)
Xt = X.

We define the value function V(t, x) as:

V(t, x) = Inf J(t, x, u) (54)
uEU

By Bellman's Principle of Optimality,

V(t,x) = inf Et (x u) ds + V(t +h, xt+h)] (55)
uEU

t < t + h < T1

Now, if we take constant controls v on the interval [t, t + h], we clearly have

V(t, x) < Ett ft (xs, v) ds + EtV (t + h, xt+h). (56)

Now by Dynkin's formula (Ito Differential Rule)

t+h
Etr[V(t + h, Xt+h)- V(t, x)] = Et. it (V(s, xs) + LVV(s, xs) ds).
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Dividing both sides by h and taking the limit as h -+ 0, we obtain, Vv

Vt(t, x) + LvV(t, x) + e(x, v) > 0. (57)

Now, if the class of admissible controls are taken to be Markov in the sense

= g(s, xs) (58)

with g Lipschitz say, and

u = g*(s, ,x)

is an optimal Markov control we get

Vt(t, x) + LV V(t, x) + t(x, g*(t, x)) = 0. (59)

Therefore from (57) and (58) we get the fundamental Dynamic Programming

equation

min[Vt(t, x) + LvV(t, x) + e(x, v)] = 0, V(T, x) = +(x). (60)

An optimal Markov control policy g* is obtained by carrying out the mini-

mization above pointwise. A solution W(t, x) (classical) of the above equa-

tion allows one to verify that W is a value function.

Other than the linear quadratic problem discussed in Section 3, few ex-

plicit solutions of this equation are known. For controlled Markov processes

with a finite state space equations (59) reduces to a non-linear system of

ordinary differential equations.
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6 Optimal Stochastic Control
(Partially Observable Case)

We consider the following partially observable stochastic control problem

dxt = f(xt, ut) dt + G(xt) dt (61)
dyt = h(xt) dt + dwt

and we are required to minimize

J(t, x) = Et [j L(xs, us) ds + (xT)] . (62)

The controls u are required to be suitable functions of the past of y.

The conceptual idea to discuss this problem is similar to that used for

the LQG. But there are severe technical difficulties which we ignore in this

presentation. First we introduce the information state for this problem. For

this purpose define the operator (see equation (36))

Luy= fi'(X, U)-I + E aiZ (x) (63)
'9xi 0OzioxJ

i=1 ij

Then the information state is given by (see equation (51))

dqu(t, x) = (LU)* q (t, x) dt + h(x)qu(t, x) dye. (64)

Note that qu(t, x) is the unnormalized conditional density corresponding

to the non-linear filtering problem for (60).

The idea now is to rewrite the cost function given by (61) in terms of

the information state qu(t, x). Formally this can be done and the resulting

expression is

J(t, x) = Et[j L(x, u)qu(t, x) dx J (x)qu(t, x) d (65)
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(64) and (65) constitutes the equivalent fully observable stochastic control

problem. Note that the problem is essentially infinite-dimensional since

the information state is infinite-dimensional. In principle we could write

Dynamic Programming conditions for this problem, but other than the linear

quadratic gaussian situation and the case of risk-sensitive control where the

cost function is an exponential of a quadratic function (cf. Whittle [50],

Bensoussan-Van Schuppen [51]) no explicit solution for these problems are

known.

The partially observable stochastic control problem was probably first

treated by Florentin [18]. There is important work here by Davis and

Varaiya [52] and Fleming and Pardoux [53]. For detailed discussions see

the research monograph by Borkar [54] and the references cited there.

7 Applications

The linear quadratic gaussian methodology has found wide applications in

aerospace systems. It is also used as a design tool for the design of multi-

variable control systems. The principal application of optimal non-linear

stochastic control seems to be in the domain of finance. For these applica-

tions see the important book of Merton [55].
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