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ABSTRACT

System identification is an effective approach for the quantitative study of physiologic sys-
tems. It deals with the problem of building mathematical models based on observed data and
enables a dynamical characterization of the underlying physiologic mechanisms specific to
the individual being studied. In this thesis, we develop and validate a new linear time-
invariant system identification approach which is based on a weighted-principal component
regression (WPCR) method. An important feature of this approach is its asymptotic fre-
quency-selective property in solving time-domain parametric system identification prob-
lems. Owing to this property, data-specific candidate models can be built by considering the
dominant frequency components inherent in the input (and output) signals, which is advan-
tageous when the signals are colored, as are most physiologic signals. The efficacy of this
method in modeling open-loop and closed-loop systems is demonstrated with respect to
simulated and experimental data.

In conjunction with the WPCR-based system identification approach, we propose new
methods to noninvasively quantify cardiac autonomic control. Such quantification is impor-
tant in understanding basic pathophysiological mechanisms or in patient monitoring, treat-
ment design and follow-up. Our methods analyze the coupling between instantaneous lung
volume and heart rate and, subsequently, derive representative indices of parasympathetic
and sympathetic control based on physiological and experimental findings. The validity of
each method is evaluated via experimental data collected following interventions with
known effect on the parasympathetic or sympathetic control.

With the above techniques, this thesis explores an important topic in the field of space
medicine: effects of simulated microgravity on cardiac autonomic control and orthostatic
intolerance (OI). Experimental data from a prolonged bed rest study (simulation of micro-
gravity condition) are analyzed and the conclusions are: 1) prolonged bed rest may impair
autonomic control of heart rate; 2) orthostatic intolerance after bed rest is associated with
impaired sympathetic responsiveness; 3) there may be a pre-bed rest predisposition to the
development of OI after bed rest. These findings may have significance for studying Earth-
bound orthostatic hypotension as well as for designing effective countermeasures to post-
flight OI. In addition, they also indicate the efficacy of our proposed methods for autonomic
function quantification.
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Chapter 1

Introduction

System identification is a process of deducing mathematical models of dynamic systems

from observed data of the system. It is a powerful experimental approach often referred to

as inverse modeling, as opposed to forward modeling which utilizes basic laws from physics

in formulating model equations. In the past few decades, ample applications of system iden-

tification have been established in almost every engineering discipline, ranging from the tra-

ditional field of mechanical engineering to emerging areas such as systems biology. As a

typical attempt in science and engineering, this thesis work aims to explore one tree in the

immense forest of system identification. Briefly, a new cardiovascular system identification

method will be presented followed by its application in the study of cardiac autonomic con-

trol. In this chapter, we first provide a brief overview on several important aspects concern-

ing the practical usage of system identification techniques. It should be noted that we intend

to review some of the most frequently encountered problems, rather than present a complete

coverage of system identification theory.

1.1 System Identification Overview

Normally, three basic steps are involved in the process of system identification: data genera-

tion, model determination and model validation [1, 2]. Among these steps, model determi-

nation is the most important and most difficult one. It involves the determination of model
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structure, evaluation of model quality, and estimation of model parameters. In the remain-

der of this section, we provide an overview of the above aspects of system identification.

1.1.1 Data Generation

For the first step, data associated with the targeted system should be obtained either during

specifically designed identification experiments or from the normal operation of the system.

Such data normally include the input and output signals of the system. However, in some

circumstances, the input data are not available or they are the variables being pursued

through system identification. A special technique called blind system identification has

been developed for such scenarios [3]. In this thesis, we focus on system identification

methods involving both input and output data.

One objective of data generation is that the data should be maximally informative, subject

to constraints that may be at hand [2]. Therefore, white noise is the ideal probe to the sys-

tem being considered and it has been utilized frequently in the design of system identifica-

tion experiments. However, in many circumstances, such as noninvasive monitoring of hu-

man physiological states, the input signal of the system may not be manipulated liberally.

The user should choose appropriate input signals or a more informative signal may need to

be derived based on the measured data to enable an accurate system identification (for an

example, see [4]).

After data collection, it may be necessary to preprocess the data before the next identifica-

tion step. This procedure usually involves data digitization, denoising using various filtering

techniques, outlier detection, missing data compensation, or further computation for an in-

put/output series based on measured data (e.g., derivation of heart rate from surface electro-

cardiogram).
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1.1.2 Model Determination

The next important and most difficult step of the system identification process is the de-

termination of the mathematical model. Both parametric and nonparametric methods have

been employed. Examples of nonparametric methods include frequency-response analysis,

correlation analysis, spectral analysis, et al. [2]. We focus on parametric methods in this

section since they are closely relevant to the techniques involved in the other chapters of this

thesis. Three main problems need to be tackled in parametric model determination. One is

model structure determination, the second one is model parameter estimation, and the last

one is model selection.

Model Structure and Parameter Estimation

To determine a candidate model structure, it is necessary to combine a priori knowledge and

engineering principles and insights with formal properties of models [2]. It is very often that

a number of assumptions and approximations need to be formulated based on the fundamen-

tal laws of physics that govern the system. The frequently exploited models in system iden-

tification belong to one or more of the following categories: time domain models, frequency

domain models, linear models, nonlinear models, time-invariant models, time-varying mod-

els, et al. In this section, we focus on time domain models with time-invariant characteris-

tics which are relevant to the intended scope of the thesis.

An essential task in model structure determination is to decide whether a process is linear

or nonlinear based on input-output data. If it is possible to excite the system with specifi-

cally designed input signals (e.g., sinusoids, Gaussian signals), then various methods may be

used to test the linearity of the system, as discussed in [5]. However, as aforementioned, the

signals related to physiologic systems (the main interest of this thesis) are not often control-

lable by the user. In such cases, one frequently used approach is to compare the perform-

ance of both linear and nonlinear models in terms of their ability to account for the variabil-

ity in the output signal (see, e.g. [6-8]). Note that this testing may be part of the model vali-

dation procedure to be discussed below. For time-invariant systems, another often used
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measure of the quality of data and the LTI assumption is the coherence function [9, 10].

Ideally, it should have a value of unity over all frequencies given noiseless data and LTI sys-

tem. Ref. [5] provides a thorough introduction of various methods for linearity testing.

Linear time-invariant (LTI) models are very frequently utilized in system identification

applications due to their simplicity and effectiveness. Such models are justified when the

variations in the signals are small enough so that a linearization is allowed and when the sys-

tem is approximately stationary to be modeled as time-invariant. For example, at stable,

resting conditions, LTI models have proved to be effective in representing the cardiovascu-

lar regulatory system [7, 10]. We next review some of the often-employed LTI model struc-

tures and their associated parameter estimation methods.

The two types of LTI model structures most intensively investigated are state-space mod-

els and transfer function models. A state-space model relates the input, noise and output

signals through a system of difference equations involving an auxiliary state vector. Sub-

space methods are often used to estimate the parameters in a state-space model [2]. In

Chapter 2, we will review this category in more detail in conjunction with the application of

singular value decomposition. The system identification models to be focused on in the rest

of this thesis belong to the family of transfer function models. A generalized model struc-

ture of a single-input single-output (SISO) system in this category is expressed as:

A(q)y(t)= (q) u(t)+ e(t) (1.1)
F(q) D(q)

where q is the shift operator [2]. A, B, C, D, and F represent finite-order polynomials whose

parameters are unknown. y(t) and u(t) are the output and input signals respectively, while

e(t) is white noise typically with zero mean. In open-loop systems, the noise and the input

data are normally assumed to be uncorrelated. In often-utilized model structures, one or

more of the terms A, B, C, D or F are fixed to be one. Examples of such model structures

are listed in Table 1-1. In the abbreviated names, MA refers to moving average model, AR

refers to autoregressive model and X refers to exogenous input [2].
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Table 1-1 Some common LTI model structures and parameter estimation methods

Model Structure Terms Parameter estimation

MA B Linear least squares estimation

ARX A B Linear least squares estimation

ARMAX ABC High-order ARX and model reduction [11], ex-
tended least squares [12]

AR modeling and instrumental variable methodARMA AC
[13]

ARARX (GLS) AB D Repeated least squares [14], bilinear estimation
ARARX (GLS) A B O[15],

ARARMAX A B CD Numerical search [2], ASYM [ 1 ]

Numerical search [2], ASYM [11], state-space
method [16], recursive least squares [11]

BJ (Box-Jenkins) B F CD Numerical search [2], ASYM [11], recursive least
squares [2]

Orthonormal basis expan- Laguerre expansion [17], Kauz expansion [18],
sion generalized basis functions [19]

State-space models Subspace method [2, 20]

The MA and ARX models have been effectively applied in physiological system identifi-

cation (see, e.g. [21-23]). Parameter estimation of these models can be generalized as a lin-

ear regression problem and thus can be solved analytically via linear least squares estimation

[2]. The ARX structure allows a noise model in the form of 1/A(q) which, together with

B(q), also constitutes the system impulse response model. Although its noise model and im-

pulse response model are not independent, the ARX structure is very effective in linear sys-

tem modeling because it can be shown that a high-order ARX model is capable of approxi-

mating any linear system relatively well [16]. The output error structure has a fixed noise

model and it is a natural choice if only the identification of system dynamics is desired. In

contrast, the ARMAX, GLS (generalized least squares), ARMA, ARARMAX and BJ struc-

tures allow more comprehensive noise models. However, for these fairly complicated struc-

tures, linear regression generalization does not apply directly. The most basic approach for

their respective parameter estimation is therefore based on iterative numerical search

schemes [2]. Nevertheless, extensive research efforts have been devoted to develop alter-
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ative techniques to rephrase the parameter estimation as a linear regression problem or a se-

ries of such problems. Table 1-1 lists some of the special techniques corresponding to spe-

cific model structures, a detailed discussion of which can be found in the relevant literature.

Other popular parameter estimation methods not listed include the instrumental variable (IV)

method and the maximum likelihood method [1, 2].

In Table 1-1, there is another important type of LTI modeling method, the orthonormal

basis expansion method. This approach fits into the general moving average framework.

However, the transfer function (B(.) in Equation (1.1)) is represented by a linear orthonor-

mal basis expansion, instead of the shift operator. Employment of appropriate orthonormal

bases can enable a compact or parsimonious representation of the system (with reduced

model order). However, a priori knowledge about the system poles needs to be incorpo-

rated into the construction of basis functions. Refs. [17-19, 24] provide detailed presenta-

tions on the orthonormal basis expansion methods and their applications in automatic con-

trol.

In the category of nonlinear model structures, Hammerstein model and Wiener model are

two often encountered types representing systems whose nonlinearity is static which only

presents at the input and/or output (e.g., due to saturation). Nonlinear black-box models,

another often-used model structure, may be thought of as a linear combination of some basis

functions, e.g., the Volterra series, wavelets, Fourier series, etc, many of which can be

graphically delineated by networks (including neural networks). Finally, fuzzy models,

which are based on verbal and imprecise descriptions on the relationships between the

measured signals in a system, are often employed when it is difficult to set up precise

mathematical models. Refs. [2, 5] provide extensive coverage on nonlinear model structures

and parameter estimation.

Model Selection

Once the model set is selected, the "best" model in the set should be determined guided by

the data. The assessment of model quality is typically based on how the models perform
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when they are used to reproduce a fresh set of measured data [2], i.e., to minimize the pre-

diction error. This approach, which is commonly referred to as cross validation, is an effec-

tive option for model order selection. However, the trade-off is that a fresh data set has to

be saved for this purpose and that not all of the measured data can be utilized for training the

model. Thus, due to asymptotic arguments, the quality of the models to be selected from

will not be as high as possible. One way to perform linear cross-validation while utilizing

all the data to build the model is the leave-one-out cross-validation (LOOCV) approach [25].

This method is asymptotically equivalent to FPE and AIC (see below) and it is not consis-

tent [25] in the following sense: the probability of selecting the true model which is included

in the candidate model set does not converge to one asymptotically. In addition, the compu-

tational cost of LOOCV may be prohibitively large for practical applications when the data

length is long.

To achieve a similar goal of linear model evaluation based on the cross-validation con-

cept, model order selection criteria have been developed to estimate the prediction error by

employing only training data. Such criteria are often categorized as cross-validation criteria

in the literature [26]. They are usually utilized in model selection among a set of nesting

structures where a model with a higher order is formed by adding extra terms to a lower or-

der candidate model. Typical criteria in this vein include Akaike's Final Prediction Error

(FPE) [27], Mallows' Cp criterion [28], the Generalized Cross-Validation (GCV) [29], Shi-

bata's Model Selector (SMS) [30], and the VC theory-based Vapnik's Measure (VM) [31].

Note that prediction estimates provided by FPE, GCV and SMS are asymptotically equiva-

lent. The recently developed Signal Prediction Error (SPE) [32] also belongs to the cross-

validation category. It employed a similar rational in the derivation as that of Cp but without

the assumption of a known noise variance. In addition, Chapelle et al. [33] proposed two

criteria, the Direct Eigenvalue Estimator (DEE) and the Smallest Eigenvalue Bound (SEB)

methods, appropriate for small sample regression based on an estimator of the ratio of the

expected training error and the expected generalization error.

Another category of linear model order selection criteria is named information-based cri-

teria by Gustafsson et al. [26]. This category includes Akaike's original AIC criterion [34].
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It is based on the concept of the Kullback-Leibler distance between two probability density

functions. The idea is to minimize the distance between the distribution of the estimated

output and the true data distribution. AIC is asymptotically equivalent to FPE, GCV and

SMS, all of which tend to overestimate the model order [2]. This disadvantage motivated

the development of Akaike's B-Information Criterion (BIC) [35], Schwartz's criterion (SC)

[36] and the criterion [37], which are strongly consistent. In addition, several criteria have

been proposed to improve the performance of AIC, such as the AICc (for small data length)

[38] and AICu [39] criteria, both aiming to correct the bias in the estimate for the expected

Kullback-Leibler information. Another well-known criterion in this category is Rissanen's

Minimum Description Length (MDL), which coincides with BIC and SC [40]. MDL aims

to minimize the description length in a coding theoretic framework, to give the cheapest

possible description of data (usually corrupted with noise) [26]. Beheshti and Dahleh [41]

proposed a new MDL criterion, the objective of which is to obtain a minimum description

length for the noise-free data (the true signal).

Most suggested model order selection criteria can be generalized as minimizing the prod-

uct of the residual error (the output estimation error resulted from the model parameteriza-

tion being considered) and some penalty factor related to model complexity or the logarithm

of the product. This is a reflection of the parsimony principle which says that there should

be a trade-off between model fit and model complexity [2]. Table 1-2 lists the formula of

the above mentioned criteria for convenience (the formula of the new MDL, DEE and SEB

necessitate detailed interpretation, therefore they are not included in this Table). It should

be noted that there exists a vast variety of model selection criteria in the literature and those

listed here only constitute a subset that is often employed in practice. Moreover, assump-

tions were usually made in the derivation of these criteria. Hence, a correct application of

them may entail a thorough consultation of the original publications.

Pertinent to the nonlinear system identification problems, cross-validation approaches are

still desirable especially when a fresh data set is affordable to be saved for validation pur-

pose. On the other hand, the selection criteria presented above for linear system identifica-

tion may be exploited or modified to solve nonlinear model selection problems when
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reparameterization of the model involves linear components (see, e.g. [6, 42-44]). Lastly,

estimation error metrics, such as residual variance, sum of squared errors (SSE), are also

utilized to measure the goodness-of-fit in nonlinear modeling (e.g., for neural network mod-

els, see [42]).

Table 1-2 Examples of model order selection criteria

Cross-Validation Criteria

FPE

Cp

GCV

SMS

d dVN(1 + ) /(1 - )N N

N +2d-N
NA

VN

(1-dlN)2

2d
VN(1+-)

N

VM* Vi - d(1log(N/d))+logN 2
N N

SPE' N - dN-d

Information-Based Criteria

AIC

AICc

AICu

BIC/MDL
/SC*

log( VN )+ 2dN N

NlogVN+N l+d N
1-(d +2)/ N

Nlog N ) 2N(d+ 1)d2

d
VN (1+-log N)

N

V log()d log log N
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* denotes consistent model order selectors. t The consistency of SPE depends on the SNR

level of the measured output data [32]. VN is the mean squared residual error [2], d is the

number of model parameters in the candidate model, N is the length of data available, A is

the known noise variance.

1.1.3 Model Validation

It is of great importance to validate the identified model once the preceding two steps are

completed. General guideline for model validation is to assess how the model relates to ob-

served data, to prior knowledge, and to its intended use. Specifically, often-employed meth-

ods include, but are not limited to: evaluating the estimated model parameters based on pos-
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sible physical interpretation [2], model reduction attempts to detect redundancy in model

structure [2], Chi-Square test and/or normality test of the residuals (if the noise is approxi-

mately Gaussian) [5], frequency domain analysis of the residuals (especially for white noise)

[2, 5], run test of the randomness of the residuals [5], Durbin-Watson test of the residuals

[5], correlation analysis between the input signal and the residuals [2, 5], et al.

If the model first obtained does not meet the validation requirements, the previous steps

need to be repeated until a reasonable representation of the system is reached. Therefore,

the system identification process can be an iterative task.

1.2 Cardiovascular System Identification

The cardiovascular system consists of the heart and the circulation. Its basic function is to

transport oxygen and nutrients to the tissues of the body, to carry waste products away and

to convey hormones from one part of the body to another. Hence, the cardiovascular system

maintains an appropriate environment for the normal functioning of the cells. This mission

is accomplished via a comprehensive regulatory system which includes the central nervous

system, the autonomic nervous system, the renal system, local tissue control, and hormonal

regulation et al. [45]. Because of its critical role, the cardiovascular system has been studied

intensively over many years and monitoring and evaluation of cardiovascular function are

conducted routinely in clinical practice.

To probe different aspects of the cardiovascular system, numerous techniques have

been/are being developed ranging from most simple and reliable measures of blood pressure

and heart rate to the more involved technologies, such as ultrasound imaging and implanted

ventricular pressure transducers. The system identification approach may provide a solid

technical basis for the study of the cardiovascular system partly because it has the following

advantages. First, it enables an integrated characterization of the system with minimally dis-

turbed physiologic state. This is because heart rate, blood pressure, respiratory signals, et

al., can be readily obtained with noninvasive techniques and the interactions between these
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signals can reflect the underlying regulatory mechanisms of the cardiovascular system. The

second advantage is that system identification technique facilitates a dynamic characteriza-

tion of the cardiovascular system since it considers at least two-time statistics of the signals.

A third advantage is that this technique can provide system characterization specific to each

subject. Meanwhile, normalization of the signals enables a comparison among different

subjects. For the cardiovascular system which is fairly complicated and contains many pa-

rameters whose values are unknown and subject-specific, the system identification approach

is well suited for studying its dynamical behaviors and regulatory mechanisms. Both linear

and nonlinear system identification techniques have been employed in investigating cardio-

vascular functioning. Next, we provide a brief review on some of the relevant studies in the

literature.

1.2.1 Linear Cardiovascular System Identification

Non-parametric Modeling

The complex transfer function between two signals can be calculated nonparametrically by

the ratio of the input-output cross-spectrum and the autospectral density function of the in-

put. This method has been applied repeatedly in cardiovascular research. Some of the rep-

resentative work is summarized here. Selman et al. investigated nonparametric linear trans-

fer function relationships between respiration and heart rate (HR) [46]. This work demon-

strated the adequacy of linear analysis in approximating the interaction underlying respira-

tory sinus arrhythmia (RSA). In this study, the subjects were required to perform fixed-rate

breathing at distinct rates between 6 and 24 breaths per minute to enable a frequency sweep.

Berger et al. [10] studied the transfer function relationships between direct parasympathetic

or sympathetic nerve stimulation and the resulting HR variability in dogs. They concluded

that the sino-atrial (SA) node operates as low-pass filters in response to parasympathetic or

sympathetic stimulation, but the characteristics of the filters differ for different mean rates of

neural stimulation. Therefore, the SA node may be modeled as a piece-wise linear device

relative to autonomic control. Saul et al. demonstrated low-pass filter characteristics in the



32 Introduction

relationship between instantaneous lung volume (ILV) and HR in humans [47]. They used a

similar transfer function analysis technique as in [10]. The persistently exciting requirement

of the input signal (ILV) for system identification is fulfilled by carrying out a random

breathing protocol [48]. Berger et al. also applied a similar transfer function analysis tech-

nique to analyze the interaction between HR and arterial blood pressure (ABP) in dogs [49].

They showed that this relationship also exhibits low-pass filter characteristics with an initial

delay of about 0.4s. Abundant other applications of nonparametric cardiovascular system

identification exist in the literature, see, e.g. [50-52].

Despite the demonstrated effectiveness of the nonparametric system identification

method, it poses some inherent limitations to the study of cardiovascular dynamics. For ex-

ample, this method is unable to model closed-loop interactions present in cardiovascular

regulation. It also encounters difficulty in coping with multi-input systems. In contrast, the

parametric system identification methods provide convenient solutions to these problems.

Parametric Modeling

Saul et al. developed a linear parametric modeling approach based on their aforementioned

nonparametric methods to study the closed-loop interactions between ABP, HR and ILV

[53]. Their findings demonstrated the effectiveness of first-order analytic transfer functions

in modeling the involved physiological dynamics. In a similar vein, Appel et al. also devel-

oped an LTI closed-loop model for the couplings between ABP, HR and ILV [54]. How-

ever, they adopted ARX models instead of pre-knowledge-based first order equations to en-

able a more flexible characterization. In a related framework, Perrott et al. developed an

efficient candidate model construction and selection algorithm for multi-input ARX system

identification with input delays [55]. Later, Mullen et al. [23] applied this algorithm to iden-

tify the closed-loop model formulated by Appel et al. They studied the impulse response

functions representing the couplings between ABP, HR and ILV in healthy subjects before

and after parasympathetic or sympathetic pharmaceutical blockade. Their findings indicated

that the ABP->HR and ILV->HR interactions are mainly regulated by the autonomic nerv-
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ous system, while the ILV->ABP coupling reflects the mechanical effects of respiration on

ABP mediated in part by the effects of intrathoracic pressure on venous return. The above

technique also proved successful in categorizing diabetic autonomic neuropathy patients

[56]. Furthermore, Mukkamala et al. conducted a forward model-based validation of this

closed-loop cardiovascular identification method [57]. The sensitivity of the method in de-

tecting small changes in parameters characterizing autonomic function in the forward model

is studied and their results consolidated the efficacy of the system identification method.

Also in the framework of studying the coupling mechanisms between HR and ABP, Vir-

gilio et al. developed a multivariate autoregressive time-variant method to follow the tran-

sient changes in the signals [58]. Their method provides a means for physiologic characteri-

zation during nonstationary epochs. Yamada et al. also examined the effect of arterial

baroreflex on HR with an ARX model [59]. The distinction of their study from the previous

ones is that a random perturbation of blood pressure was enforced through cuff inflation.

Kosaka et al. [60] proposed a system identification method using the delta operator to calcu-

late a few hemodynamic parameters used in forward modeling. This work showed an ex-

ample of the integration of system identification and forward modeling methods. As a fur-

ther demonstration of the vast potential of system identification in cardiovascular research,

Mukkamala et al. proposed a novel technique to noninvasively quantify the total peripheral

resistance (TPR) baroreflex based on ABP and cardiac output measurements [61]. Their

forward model-based analyses showed that this technique is able to track changes in the

static gains of both the arterial and cardiopulmonary TPR baroreflex. An application of this

method in studying TPR baroreflex after prolonged bed rest is presented in [62].

1.2.2 Nonlinear Cardiovascular System Identification

Considering the intrinsic complexity of the cardiovascular system, researchers have at-

tempted to employ nonlinear system identification techniques to study its underlying physio-

logical mechanisms. Ahmed et al. applied an algorithm of kernel identification of the

Volterra series up to the second order to investigate the coupling between respiration and
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HR [63]. They found that the response of the linear term (first-order kernel) exhibited a os-

cillatory-input and underdamped nature of the system, while the second-order kernel facili-

tated an indication of an escape-like phenomenon in the system. Similarly, Saul et al. also

explored the possible mechanisms underlying the interaction between respiration and heart

rate [64]. They postulated that the nonlinear component in this coupling may be the result of

either classical nonlinear physiology or entrained nonlinear oscillators. More recently, Chon

et al. performed a nonlinear analysis of the effect of fluctuations in ILV and ABP on HR

variations utilizing a Laguerre expansion-based technique [7]. They found that the linear

model accounted for approximately 67% of the variance in heart rate, while the nonlinear

model accounted for approximately 80%. In a related body of work, Chon et al. applied the

artificial neural network method to study the coupling between HR and ILV, the result of

which is compared to traditional least squares estimation [6]. Only slight difference was de-

tected in the identification results of these two methods.

To summarize the previous work on cardiovascular system identification, nonlinear iden-

tification methods may provide a more comprehensive characterization of the basic physio-

logical mechanisms, especially when time-varying processes are involved. However, when

the subjects are in a stable condition within the interested time frame, LTI modeling has

proved to provide a very effective and efficient tool to probe the cardiovascular system.

1.3 Motivation

In LTI modeling of the cardiovascular system, an often-employed model structure is the

ARX structure, the advantage of which has been discussed previously. A key question in

the application of the ARX model is: which input and output delays are needed to represent

the system? In principle, one could answer this question from the data and through an ex-

haustive search among all possible combinations of the input/output delays (candidate mod-

els). For example, if a maximum set of 10 input delays and 10 output delays is assumed to

be involved, then an exhaustive search needs to be performed among 20
12° c (=1048575)

candidate models. This is not computationally practical. To make the problem tractable, the
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delay terms in an ARX structure are usually added in, one at a time, in an order of increasing

time shifts relative to the current output. This conventional approach is based on the as-

sumption that the current output correlates more with the recent inputs/outputs than with the

remote ones. It does not allow construction of data-specific candidate models. Furthermore,

since it selects the model terms by their contribution in the time domain, this approach does

not impose explicit frequency-related constraints. Such constraints may prove useful in

physiological system identification since most signals involved in this problem are colored

with their energy concentrated in certain frequency range.

To this end, we propose an LTI parametric system identification method based on

weighted-principal component regression (WPCR). This method seeks solutions to achieve

the desirable goal of letting the data determine the candidate models in an efficient manner.

In addition, the candidate model terms considered by this method are components in the in-

put (and output) signal with different asymptotic frequencies, which facilitates model selec-

tion with a consideration of frequency properties.

Based on the above WPCR approach, we intend to design practical methods to explicitly

quantify parasympathetic responsiveness and sympathetic responsiveness in their control of

cardiac function. This work is motivated by the lack of a readily available technique to dis-

tinctively quantify the strength of the two branches of autonomic control noninvasively.

Previous studies on the interactions between ILV, HR and ABP signals have offered signifi-

cant insights about the involvement of autonomic mediation in these coupling mechanisms.

However, it still remains unclear how the parasympathetic and sympathetic control may be

quantified based on certain features of the corresponding transfer relationships. We there-

fore explore the WPCR system identification-based solutions to this problem in the contexts

of random breathing, spontaneous breathing and metronomic breathing of the subject under

study.

Once the quantification techniques for cardiac autonomic control are made available, they

may be applied in various practical scenarios in order to tackle some specific physiologic

problems. We choose to study the effect of microgravity on cardiac autonomic control and

orthostatic intolerance. The relevant significance of this problem to the medical considera-
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tions about long-term and short-term space mission is well-recognized. Despite the exten-

sive research effort devoted into this area, a universal consensus on the alterations of auto-

nomic function (especially the sympathetic branch) after microgravity exposure has not been

reached and the possible association of such alterations with orthostatic intolerance in astro-

nauts after spaceflight is still to be resolved. We therefore apply our proposed autonomic

quantification techniques to explore this problem, which also serves as a partial validation of

the techniques.

1.4 Specific Aims

There are three specific aims associated with the research presented in this thesis. They are

listed as follows:

1. To develop a system identification method based on the weighted-principal compo-

nent regression approach for both open-loop and closed-loop physiologic systems.

2. To develop and evaluate methods for quantification of the functioning of cardiac

autonomic nervous control based on the above system identification method.

3. To study the effects of prolonged bed rest (a simulation of microgravity) on cardiac

autonomic control and possible association of those effects with orthostatic intoler-

ance.

1.5 Thesis Organization

The current chapter provided an introduction of the general system identification method

with an emphasis on the practical problems of model structure selection, parameter estima-

tion and model order determination. We also conducted a brief review of the pertinent lit-

erature on cardiovascular system identification, in addition to a discussion of the motivation

behind this thesis and the aims it pursued.



Thesis Organization 37

In the remainder of this thesis, we first lay out the theory of system identification based on

the weighted-principal component regression (WPCR) method in Chapter 2, followed by a

discussion of its frequency domain interpretation. The WPCR method is presented in the

context of both an MA structure and an ARX structure. Subsequently, we discuss the appli-

cation of the WPCR method in closed-loop system identification. Lastly, computer-

simulated and experimental data were employed to demonstrate the applicability of the

method.

Based on the WPCR method, in Chapter 3, we present the development of identification

methods for quantitative characterization of the cardiac autonomic responsiveness which are

suited for data obtained noninvasively during random interval breathing, spontaneous

breathing or metronomic breathing. We then validate the proposed techniques with a thor-

ough analysis of experimental data, followed by a discussion of the applicability of the

methods.

In Chapter 4, we apply the techniques presented in Chapter 3 to study the effect of simu-

lated microgravity on cardiac autonomic function and orthostatic intolerance. We start with

a concise review of previous studies of autonomic function in association with microgravity

exposure. Subsequently, we present the results of the application of our proposed tech-

niques in analyzing data collected from 29 healthy male subjects in a 16-day head-down-tilt

bed rest study. The physiological significance of our findings and the effectiveness of each

technique are then discussed respectively.

Lastly, Chapter 5 concludes this document by summarizing the research presented in this

thesis and proposing potential future studies.
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Chapter 2

Weighted-Principal Component Regression
Approach for System Identification

In Chapter 1, we reviewed conventional system identification techniques and their applica-

tions in studying cardiovascular dynamics. In this chapter, we propose a competitive ap-

proach for LTI system identification based on principal component regression (PCR) and

evaluate its effectiveness in our intended application - system identification involving car-

diovascular signals. We begin with a brief introduction of PCR and its related singular

value decomposition (SVD) method. We then review the literature on the application of

PCR and SVD in the fields of system identification and time series analysis. Next, we pro-

vide a detailed presentation of our proposed method and its interpretation in the frequency

domain. Subsequently, we discuss the application of the proposed method in open-loop and

closed-loop systems respectively. The performance of our method is compared with con-

ventional approaches through both simulated and experimental data.

2.1 Introduction

The principal component regression (PCR) method belongs to the general principal compo-

nent analysis (PCA) family. PCA was first introduced by Pearson et al. in 1901 [65] and

developed independently by Hotelling in 1933 [66]. The central idea of PCA is to reduce

the dimensionality of the data set in which there exists intercorrelation, while retaining as

much as possible the variation present in the data [67]. This reduction is achieved by trans-
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forming the data into principal components (PCs) and by discarding the PCs with small vari-

ances. To compute the PCs [67], the first step is to look for a linear function of the original

variables in the data set which has maximum variance. The new variable resulting from this

linear transformation is the first PC of the original data. Next, look for another linear

function (PC) with maximum variance and uncorrelated with the previous one, and so on, so

that the variance of each PC is maximized subject to being uncorrelated with the previous

PCs. If there exists intercorrelation in the original variables, the first few PCs usually ac-

count for most of the variation present in the data. PCA is widely employed [67] to solve

problems related to multivariate analysis, outlier detection, prediction modeling and process

identification, et al. Regression analysis (or principal component regression - PCR) is one

of the most actively researched areas related to PCA in recent years.

In traditional PCR analysis, the regressor variables are transformed into PCs and the PCs

associated with relatively small variance are usually excluded from the regression. By re-

taining only a subset of PCs, the PCR method may reduce the complexity of a model struc-

ture and its associated computational load. Moreover, the problem of multicollinearity, a

major difficulty in least squares estimation when there are near-constant linear functions be-

tween two or more of the regressors, is solved owing to the zero correlation between the PCs

[68].

An efficient way to compute the PCs is through singular value decomposition (SVD)

which is based on matrix theories. We will employ this algorithm in the weighted-PCR ap-

proach to be proposed in this chapter. Given an arbitrary matrix, X, of dimension N x p, its

SVD can be expressed as:

X =UDVT (2.1)

where the superscript T denotes matrix transposition. U and V are both orthonormal matri-

ces. Their column vectors (we refer to those of U as PCs) are eigenvectors of the matrices

XXT and XTX respectively. Note that the column vectors of U and V are sometimes referred

to as left singular vectors and right singular vectors of X, respectively. D is a diagonal ma-

trix with its diagonal elements (singular values) being the square root of the eigenvalues of
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XTX (or Xy'). The singular values correspond to the variance/energy of their respective PCs.

The relationship between SVD and PCA is discussed in detail in [67].

2.2 Previous Applications of PCR and SVD

Although there are numerous applications of PCA in a variety of fields, in this section, we

focus on the application of PCR and SVD in system identification and time series analysis

since they are relevant to the intended scope of this thesis.

2.2.1 Time Series Analysis

In time series analysis, SVD and PCR are often employed in noise reduction [69, 70] and

filtering [71], data compression [72], feature extraction [72, 73], linear prediction [74-76]

and most importantly, spectral estimation. The application of SVD in parametric spectral

estimation is analogous to that in system identification approaches in general. Therefore, we

provide a detailed investigation on this topic.

Given a finite set of uniformly spaced samples of a signal, an autoregressive (AR) or

autoregressive moving average (ARMA) model structure is often utilized to estimate the

power spectrum of the signal parametrically. Those approaches based on an AR model can

often be regarded as an extension of the Prony's method. Around two hundred years ago,

Prony developed a simple procedure to approximate a signal by a weighted sum of exponen-

tials [77]. Today "Prony's method" usually refers to the least squares extension of the

method as presented, for example, by Hildebrand [78]. In this method [79], a short record of

a data sequence y(n), n = 1,2, , N, is assumed to be composed of uniformly spaced sam-

ples of the summation of a signal x(n) and white measurement noise w(n). In turn, x(n) is

represented by a sum of weighted exponential signals. The number of exponential func-

tions, their respective complex frequencies and weighting factors are unknown. Hildebrand

demonstrated that x(n) satisfies the following linear equation with constant coefficients:



42 Weighted-Principal Component Regression Approach for System Identification
M

jb(k)x(n-k)=O,for M<n<N (2.2)
k=O

The roots of the prediction-error-filter polynomial B(z) provide the values of the complex

frequencies in x(n). Hildebrand explicitly considered noisy data and solved for B(z) through

least squares estimate of the noisy version of Equation (2.2) (by substituting x(n) with y(n)).

Subsequently, the weighting factor of each exponential is estimated with a second least

squares minimization.

It is well-known that the errors in signal parameters which are estimated by Prony's

method can be large when the noise level is high [78, 79]. Tufts and Kumaresan [75] pro-

posed an SVD-based method to improve the performance of the above Prony's spectral es-

timation in the presence of noise. They included an increased number of signal delays

(greater than M - the true number of frequencies) in Equation (2.2). In solving the matrix

form of Equation (2.2), the Hankel matrix of the signal y(n) was represented by its SVD and

only the first M PCs are retained to obtain a pseudoinverse of the Hankel matrix through

which to compute the coefficients b(k). This approximation is based on the well-known

Eckart-Young theorem that the best rank-r approximation of a matrix A is given as the SVD

of A with only r terms [67]. This method was shown to have improved performance at low

SNRs. In a similar vein, Cadzow et al. [80, 81] proposed to generate the SVD of the ex-

tended-order autocorrelation matrix of y(n) to achieve the same goal. Tufts and Kumaresan

[82] also extended Prony's method in a forward-backward linear prediction setting and em-

ployed SVD to reduce the effect of noise in the autocorrelation matrix of the data. Note that

other investigators presented closely related approaches as well [83, 84]. In the above meth-

ods, if M is not known a priori, an estimated value is usually established by inspecting the

rate of decrease of the error in approximating the Hankel matrix or autocorrelation matrix

corresponding to increasing values of M or by inspecting the contribution of singular values.

M is determined as the value when the rate of decrease or the singular values are "satisfacto-

rily" small.

Similarly, an ARMA model structure is also used to estimate the spectrum of time series

[80, 81]. The MA terms are composed of unobservable white noise and the AR terms are

composed of the time series to be analyzed. The AR coefficients of the ARMA model were
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estimated from a set of normal equations analogous to the Yule-Walker equations for an AR

process. The extended Yule-Walker equations were solved using a generalized inverse of an

over-determined autocorrelation matrix. Given an estimate of the "true" ARMA model or-

der, the over-determined autocorrelation matrix was replaced by a reduced-rank matrix ob-

tained via SVD. Subsequently, the MA coefficients of the ARMA model were obtained af-

ter removing the effect of the autoregressive dynamics in the time series.

2.2.2 System Identification

In the field of system identification, PCR/SVD algorithm is also widely employed. For ex-

ample, it is used in the frequency domain to replace the input and/or output variables by

their PCs without much "loss of information" [85, 86]. SVD is also widely applied in neural

network models [87, 88], subspace identification [89], total least squares algorithms [90], et

al. In this section, we discuss the latter two applications in detail.

Subspace identification refers to the so called subspace-based state-space system identi-

fication (4SID). There are generally two classes of techniques in this category. One is

called realization-based 4SID methods. The other one is called direct 4SID methods.

The realization-based 4SID method can be viewed as an extension of the state-space re-

alization theory, a classic contribution of which is by Ho and Kalman [91], where a scheme

for recovering the system matrices from impulse response measurements is outlined. Based

on this theory, Kung introduced SVD as a tool to reduce the sensitivity to errors in the

measured impulse response [92]. Kung's method uses a "large" dimension of the Hankel

matrix H of the impulse response. In the presence of noise, the Hankel matrix will generi-

cally be of full rank. SVD can then be utilized to reduce the rank of H. The user must de-

cide on the number of "significant" singular values, which in turn will determine the result-

ing system order. The observability and controllability matrices are then computed based on

the reduced H and the system matrices can be obtained subsequently. This class of tech-

niques is referred to as realization-based 4SID methods by Viberg [93]. The eigensystem
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realization approach (ERA) [94], the Hankel-norm model reduction method [95], the Q-

Markov COVER (covariance equivalent realization) method [96], et al., are regarded as ex-

isting alternatives to Kung's approach. A problem inherent in this class of techniques is the

difficulty of obtaining the impulse response, especially when the system is complex, e.g.,

multi-input multi-output (MIMO) systems or systems with large orders.

An alternative method of subspace identification is to extract the system matrices directly

from the input/output data, without explicitly forming the impulse response. This class of

algorithms is referred to as direct 4SID methods by Viberg [93]. Ljung [2] provides a de-

tailed review on these methods. Using a state-space model, it is evident that the output vec-

tor can be expressed as a summation of three terms - the product of the observability matrix

and the state vector, the product of an impulse response matrix (composed of system matri-

ces) and the input vector, and the noise vector. A noisy estimate of the true observability

matrix can then be obtained if the terms involving the input and the noise vectors can be

cancelled by correlating the output vector with some variables called instruments. Such an

instrument is often constructed using past input and past output provided that only future

input and future output are utilized in the original summation and the system being studied

operates in open-loop. SVD is employed next to reduce the effect of noise in the estimated

observability matrix (this matrix is weighted sometimes to enhance its robustness to noise).

The system order is estimated as the number of singular values that are significantly larger

than 0 and the state vectors can be extracted from the singular vectors. The system matrices

and the noise statistics may then be identified once the observability matrix is estimated.

Different algorithms exist to implement the above procedures, such as the MOESP algo-

rithm [97], the N4SID algorithm [20, 98], the IVM algorithm [93], and the CVA algorithm

[99]. These algorithms differ by the weighting matrices applied to the estimated noisy ob-

servability matrix [2].

Total least squares (TLS) approach is a system identification technique that considers

the scenario when measurements of system input and system output are both corrupted by
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unknown noise'. A detailed discussion of the SVD-based TLS approach is provided in

[100]. The solution of the system parameters is considered to be the vector that minimizes

the weighted Frobenius norm of the total perturbation matrix which consists of the unknown

error vectors embedded in both input and output signals. This minimization is subject to the

constraint that the perturbed output vector is in the range of the perturbed data matrix. It has

been proved [100] that such a solution is the right singular vector associated with the small-

est singular value of the matrix composed of current output vector and current and past input

vectors. The SVD algorithm is widely exploited to solve TLS problems partly due to its tol-

erance to quantization and low sensitivity to computational errors [101].

Cadzow and Solomon [102] employed an ARMA model in solving the TLS problem. To

alleviate the bias in the solution of the Least Squares (LS) or Generalized Least Squares

(GLS) methods when the input is corrupted by noise, they proposed to use an ARMA model

whose order is believed to readily exceed that of the true model (assuming the noise-free

input and output are related by an ARMA model). Then, SVD is performed on the matrix X

containing all the input and output delayed vectors (including the current output). The vec-

tors in X are prescaled by the input and output white noise variances that are assumed to be

known a priori or through estimation. This procedure, aiming to alleviate the deleterious

effects of noise in the singular values, ensures that the variance of the noise contaminating

the rescaled input is equal to that in the output [102]. The solution of model parameters (AR

and MA coefficients), which should be in the null space of matrix X in the noise-free case, is

chosen to be a linear combination of the right singular vectors corresponding to the s small-

est singular values, where s is the difference of the assumed ARMA model order and the

true order. Note that the true order may be estimated by inspecting the singular values. The

above method was demonstrated to behave in an unbiased manner on a standard example in

which noise contaminates both the excitation and the response [102].

The conventional LS problem does not consider input noise explicitly.
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2.3 Preview and Motivation

In studying physiologic systems via system identification, the mathematical models em-

ployed merely serve as tools to describe the system behavior under certain approximations.

The complexity of the systems often makes precise mathematical modeling an impossible

task. Although the assumption of an appropriate model structure is important in system

identification, in many scenarios, the ultimate goal is to obtain an accurate description of the

system dynamics/behavior, as manifested through, for example, a precise estimate of the

system impulse response or an accurate prediction of future outputs. The mathematical ex-

pression of the model itself only serves as a means to reach that goal.

To this end, we introduce a weighted-PCR (WPCR) method for LTI system identification.

This method aims to obtain an accurate system impulse response and emphasizes less seek-

ing for a "correct" model structure. We adopt the same basic concept as involved in the

PCA applications discussed in Section 2.2, i.e. by using PCR, we aim to project the informa-

tion in the time-dependent data onto a space of PCs and then choose a subset of PCs to re-

duce the effect of noise on parameter estimation. The proposed method has some similarity

to the aforementioned parametric spectral estimation methods but it is applied in a system

identification context where both the input and output signals are accessible. In contrast to

the total least squares method, the WPCR method belongs to the traditional Prediction Error

Method (PEM) family [2] because a subset of PCs is selected to obtain a minimum predic-

tion error. To our knowledge, this PCR method together with the weighting scheme on the

data matrix was not proposed previously in the field of system identification.

We employ the moving average (MA) or autoregressive exogenous input (ARX) structure

to relate the system input and output signals in the WPCR method. These structures are

widely applied in physiologic system identification because of their effectiveness and sim-

plicity in practice. As discussed in Section 1.3, the conventional way of constructing candi-

date models is by adding to the structure one delayed input (or output) term at a time, in an

order of increasing time shifts relative to the current output (see Figure 2-1 for an illustration

of the conventional MA system identification). This conventional time-domain model selec-

tion approach incorporates the often-exploited a priori knowledge in system identification
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that the current output correlates more with recent inputs/outputs than with remote ones. It

does not allow construction of data-specific candidate models or impose explicit frequency-

related constraints. Since most physiologic signals are colored, it may be beneficial to take

into account the frequency information inherent in the signals in model selection.

The WPCR-based system identification method to be presented here seeks solutions to

achieve the desirable goal of letting the data determine the candidate models in an efficient

manner. In addition, the candidate model terms considered by this method are components

in the input (and output) signal with different asymptotic frequencies (Figure 2-1), which

facilitates model selection with a consideration of frequency properties. As will be demon-

strated, the basis functions of the estimated impulse response with the WPCR method are

sinusoids modulated by some weighting function (Figure 2-1).
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Conventional
* MA system ID

Linearly combined y(t)
to fit y(t)
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Figure 2-1 Graphical overview: the WPCR method and the conventional MA system identification
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2.4 Basic PCR-Based System Identification Approach

In this section, we start with open-loop single-input single-output (SISO) systems with the

input denoted as x(t) and output as y(t), where t is discrete time. The MA model (Equation

(2.3)) without any weighting scheme is analyzed first for the sake of simplicity. Note that

this model is appropriate provided that the system impulse response can be approximated by

a finite number of samples without loss of accuracy.

Y= XA+E (2.3)

y(t) x(t) x(t -1) ... x(t -p) ao

whr + ) =x(t + 1) x(t ) ... x(t -p + 1) al
y(t + N) x(t+N) x(t - p + N) a

and E is the error vector: E = [e(t), e(t+l), , e(t+N)]T that is often assumed to be uncorre-

lated with the input in open-loop systems.

The number of columns (p+1) in X should be sufficiently large to cover the whole dura-

tion of the finite impulse response (FIR) function which can approximate the system rela-

tively accurately. Ifp+1 is greater than the number of nonzero samples in the true impulse

response, then the true value of the corresponding extraneous elements in A should be zero.

We consider decomposing X into its principal components and solving the linear regression

problem in the domain of PCs. The standard singular value decomposition (SVD) of X is (as

presented in Equation (2.1) and rewritten below):

X = UDV T (2.4)

As aforementioned, the column vectors of U (principal components) are the eigenvectors

of the matrix XYT, the column vectors of V are the eigenvectors of the matrix XTX, and D is a

diagonal matrix with its diagonal elements (singular values) being the square root of the ei-

genvalues of XTX (or XXT).

Combining equations (2.3) and (2.4), we have:
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Y = UDVTA+E=UB+E (2.5)

where B DVT A.

If some of the diagonal elements of D are small or nearly zero, it means that the corre-

sponding PCs have small variances and consequently less information. We should, there-

fore, rank the PCs according to their singular values in evaluating their contributions to the

output. Specifically, we rank the PCs in a descending order of singular values and form a

series of matrices U each containing a subset of PCs by adding one PC at a time as a col-

umn vector. Hence, the matrices U differ by the number of columns involved and their as-

sociated regression equations (Y = UB + E ) represent the candidate models from which the

"best" model should be selected. Note that these candidate models are data-specific. For

model selection, we employ the widely used model order selection criteria (as discussed in

Chapter 1), such as Akaike's Final Prediction Error (FPE) criterion [27] and Rissanen's

minimum description length (MDL) criterion [40].

Assume q PCs are involved in the candidate model which minimizes the model selection

criterion, we denote the corresponding diagonal singular value matrix asD, and the corre-

sponding matrix V which consists of only the eigenvectors in pair with those in U as V (the

dimension of U is N x q, that of D is q x q, and that of V is p x q).

The least squares solution of B is:

B = ( T U)-IUTY = Ty (2.6)

Therefore:

A = VI/-}'B (2.7)

In the above setting, the basis functions of A (the impulse response) are the column vec-

tors in . Note that since the PCs are orthogonal, the linear least squares estimate of B via

U, the regressor matrix, has a succinct expression. Each entry in B is unbiasedly esti-

mated. However, the estimate A is biased relative to the true Ao in the MA structure in

Equation (2.3) due to exclusion of some of the PCs in U. In addition, it is evident that the

49
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variance of each element in B is the same as the noise variance r2 (in case of white noise).

Therefore, the variance for each element in A is:

q v2

var(aj) = (I- = 1, ,p (2.8)
k=1 d'k

where dk is the kth diagonal element of D. Vkj denotes the jth element of the kth column

vector of V (Vk). It can be seen that by excluding the PCs associated with smaller dk 's, we

are able to reduce the variances of the estimated model parameters. Hence, the PCR method

provides an estimate of the system parameters based on a trade-off between bias and vari-

ance which may possibly reduce the mean-squared-error.

2.5 Frequency Domain Interpretation

In this section, we interpret the basic PCR approach in the frequency domain. It can be

shown that the insights provided by a frequency domain analysis are very helpful in further

understanding and improving the basic PCR method. First, we briefly summarize some

well-known properties of Toeplitz matrices.

2.5.1 Property of Toeplitz Matrices

In the intended scope of this thesis, the physiological signals involved are usually. obtained

when the subjects/patients are in a stable, resting condition. Therefore, it is reasonable to

assume that x(t) and y(t) are stationary signals. The covariance matrix of a stationary ran-

dom signal is a symmetric Toeplitz matrix which means that its down-diagonal elements are

the same. It has been proved in statistics that the eigenvectors of this matrix are asymptoti-

cally sinusoids with different frequencies if the covariance function of the signal is abso-
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lutely summable2 [85, 103]. Specifically, assume that Ut is stochastic with zero mean and is

weakly stationary, that is, the sth autocovariance y = E(u,u,,+), s = 0,± 1,+2,... is independent

of t. Therefore, the variance matrix Y of T successive values of ut is a symmetric Toeplitz

matrix. It can be proved that the matrix Y is asymptotically diagonalized by an orthogonal

Fourier matrix F, whose first column F1 has constant elements 1/ I [85]. If T is odd, as-

sume T= 2m+1, then the (2j) th column F2j of F is represented by:

[2/T cos(2rjt/ T), t = 1, 2,...,T], j = 1, 2,..., m (2.9)

the (2j+1 )th column F2j+l of F is represented by:

[2/T sin(2rjt/ T),t = 1, 2,...,T, j = 1,2,..., m (2.10)

The eigenvalues associated with F2j (j = 1, 2, , m) and also to F2j+l (= 0, 1, , m) are

asymptotically:

- E y(h)e-i2'hj1 T (2.11)
2Jr h=-

If T is even, assume T = 2m+2, the first 2m+1 eigenvectors are the same as above, there is

an extra eigenvector (1/Tf)[1,-1,1,...,-1] associated withj = m+l, and its corresponding

eigenvalue is:

2zI y(h)coszrh

2r h=,

(Appendix A provides a detailed proof of the above property based on the presentations in

Refs. [85, 104].)

n

2 Absolute summability of a sequence {xj} is defined as Jim x < . Covariance functions of most sta-

tionary time series demonstrate this property.
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2.5.2 Frequency Domain Interpretation of the PCR Method

For the matrix X defined in Equation (2.3), when N - oo, p --- o, XTX and XXT can be taken

as approximations, within a scale factor, of the covariance matrix of x(t). Therefore, based

on the above property of the covariance matrix of a stationary time series, column vectors in

the eigen-matrices U and V are sinusoids asymptotically. In addition, the singular values

correspond to the "amplitudes" of these sinusoids. Therefore, the decomposition of matrix X

in Equation (2.4) is asymptotically equivalent to representing the information inherent in X

using sinusoids with different frequencies.

To illustrate the above property, we simulated a simple stationary time series x(t) (Figure

2-2) sampled from a periodic, zero-mean square wave. The matrix X (dimension 1000 x

500) was constructed according to its definition in Equation (2.3). Due to the periodic na-

ture of x(t), the SVD of matrix Xresults in about 80 (the period of x(t)) nonzero singular val-

ues whose corresponding singular vectors are approximately sinusoidal. For illustration

purpose, Figure 2-3 displays the first and third column vectors in U and V respectively (the

second singular vector is not shown here since it has the same frequency (different phase) as

the first one). It can be appreciated that the first column vectors of U and V have the same

frequency as the dominant component in x(t). Note that the singular vectors have been rear-

ranged in descending order of their associated singular values. Therefore, the column indi-

ces are different from those in Equations (2.9) or (2.10). In addition, it needs to be pointed

out that since the mean of x(t) is zero, the eigen-matrix of the covariance matrix does not

contain a column with constant elements.
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Figure 2-2 A simulated stationary time series (for illustration purpose, only 500 samples are shown here.)
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Figure 2-3 Singular value decomposition results of X(note that only the first 500 samples of U and U3
are shown here for illustration.)

Based on the above properties, the proposed PCR method can be interpreted as, asymp-

totically, selecting the dominant frequency components (PCs) of the input signal according
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to their amplitudes and correlating them with the output signal. The computed coefficient

vector B in Equation (2.6) corresponds to the "weight" by which each input frequency com-

ponent is represented in the output. Asymptotically, the basis functions of the estimated im-

pulse response (Equation (2.7)) are sinusoids (Vi) corresponding to the PCs involved in the

regression. With the aid of a model order selection criterion, the PCR method chooses a

subset of PCs, thereby regressing the output only upon the dominant frequency components

of the input. Excluding the frequency components poorly represented in the input can im-

prove the accuracy of the estimated model parameters, which may be appreciated by in-

specting Equation (2.8) and also be demonstrated rigorously as follows.

Consider the least squares problem in Eqs. (2.5) and (2.6) in the frequency domain. We

assume N->oo such that:

B = arg minE 2 (t, B) = arg min 1 D, (, B)dco (2.12)
B B 2r 

where OD (co) represents the power spectrum of the residual error (t). From Equation (2.5),

we have:

p

Y=U)bi +E (2.13)
i=1

where Ui is the ith column of matrix U and bi is the i t
h element in vector B. Therefore, at

time t, (t) can be expressed as:

P P
E(t) = y(t) - , (t)b = u, (t)(boi - b) + v o(t) (2.14)

i= i=

where boi represents the true coefficient corresponding to the i
th PC and vo(t) is the true noise

term. Note that the true PCs and the ones in Equation (2.14) can be the same although the

matrix X in Equation (2.3) may be unnecessarily large compared to the data matrix neces-

sary to represent the true MA model of the system. This is because in the expression of the

true system, the same matrix X as in Equation (2.3) can always be utilized while setting the

coefficients in Bo which correspond to the extraneous columns of Xto be zero.
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The variance of the residual error is:

EE()E(s)= E lu(t)u(s)(b 1 - b + EvO(t)v(s)= E(t)ui(s)(bo(t)Vo)

(2.15)

+E[I u, (t)(b - b )vo (s)] + E (s)(boi - bj )vo (t)]

Note that we have utilized the property that the PCs are orthogonal to each other. It is

evident that the last two terms in Equation (2.15) reduce to zero because in open-loop sys-

tems, it is an acceptable assumption that the added noise is uncorrelated with the input x(t).

Using the equality in Equation (2.6), that is, bi = diViTA, where di is the i th singular value,

and Vi is the ith column of matrix V, Equation (2.15) can be simplified into:

E£E£ = i(t)E(si) (s)(dii (Ao - A))2 + Ev (t)Vo (s)

]~L (2.16)

= E d2E[u (t)u, (s)] IAO - A|2 + Evo(t)Vo(s)
i=1

Therefore,

A = arg.min 1 2A=argmin- [di'L,(o) A(eJo)-A(ew (2.17)A 2r i=1

Equation (2.17) indicates that, in the frequency domain, the least squares problem is

weighted such that the fit between the actual and the estimated transfer functions is favored

at frequencies associated with larger singular values. Since the PCR-based system identifi-

cation technique chooses a subset of frequency components based on the singular values, the

insignificant components that would be associated with larger estimation error in the model

parameters are discarded, therefore reducing the error (variance) in system identification.

In practice, since only finite data are available, the asymptotic properties of the singular

vectors may not be demonstrated precisely. In that case, they are not pure sinusoids, but of-

ten mixtures of several sinusoidal components. Those associated with large singular values

consist of some dominant frequency components in the signal x(t). This imperfect separa-

tion of difference frequency components is similar to the issue in Fourier analysis that the



56 Weighted-Principal Component Regression Approach for System Identification

resolution in the frequency domain is lower when fewer data are available. Nevertheless,

the compromise of the asymptotic properties of singular vectors does not affect the above

frequency domain interpretation of the PCR method.

Since a comparison of the PCR method and the traditional ARX method will be per-

formed in later sections, we next briefly summarize the frequency domain interpretation of

the ARX method in terms of the AR and MA transfer functions [2]. Specifically, assume

the measured input-output signals are related according to the following system:

y(t) = GO(q-')x(t) + vo (t) (2.18)

and the estimated model is of a traditional ARX structure:

M(q-l')y(t) = N(q-')x(t)+ (t) (2.19)

where q-1 is the delay operator, M(q' l) and N(q -1) contain the AR and MA transfer function

operators respectively. It can be proved that the least squares problem in this case may be

interpreted in the frequency domain as [2, 57]:

= argmin f LM(eJ)l[G(e)- N( 1) 2 () + (v ()do (2.20)0 ,') , (2)e Mv

where denotes the vector including both AR and MA parameters. This equation also sug-

gests that the least squares problem is weighted such that the fit between the actual and the

estimated transfer functions is favored at frequencies where the quantity IM(eo)l ou(o0) is

large [2, 57]. Since the traditional ARX model identification method does not impose a se-

lection criterion in the frequency domain, the estimation accuracy may be compromised if

the input spectrum has low amplitudes at some frequencies, i.e., when the signal is colored.
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2.6 Weighted-PCR (WPCR)-Based System Identification Ap-
proach and Its Interpretation

As aforementioned, the a priori knowledge often utilized in solving system identification

problems is that the current output is correlated more with recent inputs than with remote

ones. In this section, we incorporate this pre-knowledge by imposing a weighting scheme

on the input vectors to improve the PCR method. Specifically, we intend to define a weight-

ing factor for each delayed input term, i.e. each column in the data matrix X, prior to solving

the system identification problem. Therefore, a diagonal matrix W with its diagonal ele-

ments sorted in descending order needs to be constructed so that the matrix XW contains

weighted delayed inputs vectors. The explicit values of the diagonal elements of W and the

practical advantage of this weighting scheme will be discussed in Section 2.8.1.

Recall that the data matrix in Equation (2.3) is defined as:

x(t) x(t - 1) ... x(t - p)

X (t + 1) x(t) ... x(t - p + 1)

x(t + N) x(t -1 + N) ... x(t -p + N)

Wo O ... O0

O w *. O
We denote the diagonal matrix Was: W = [ . . .

O ... O wp

The system identification problem now becomes:

Y = XWAw + E (2.21)

where W is pre-defined, Aw is the parameter vector to be identified and WAw is equivalent to

A in Equation (2.3). To solve for Aw, similar procedures as proposed in the basic PCR

method can be carried out. Denote the SVD of XW as: UWDwVT, then the regression equa-

tion (2.21) can be written as:

Y = UwDwwVTA + E UB w + E (2.22)
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Assume q PCs are selected to minimize the model order selection criterion and they cor-

respond to the following matrices: Uw, Vw, Dw, then we have:

B = UwY (2.23)

and

A = VD,- B (2.24)

Therefore,

A=WA = WJ/D'Bk (2.25)

To explore the frequency domain interpretation of the weighted-PCR (WPCR) method,

we consider the following matrix multiplication:

x(t) 

(XW) * (XW)T = 2 x(t + 1)[x(t) x(t+(t 1) ... x(t+N)]+...+

x(t + N) (2.26)

x(t -p)

p2 x(t -p + 1) [x(t-p) x(t-p+1) ... x(t-p+ N)]

x(t -p + N)

It is evident that, asymptotically (p -> oo), the above expression is approximately propor-

tional to the covariance matrix of x(t) (with the proportional factor EPo w2 ). Therefore,

according to the property of Toeplitz matrices presented previously, the eigenvectors of

(XWXW) T, i.e., the column vectors in Uw, are also sinusoids with different frequencies, as-

ymptotically.

We next study the properties of Dw and Vw. Since the matrices Uw and Vw are orthonor-

mal, according to the definition of SVD, we have:

WXTUWi = d Vwi
(2.27)

X TU = d'I
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where the subscript i denotes the ith column vector of the corresponding matrix and i = 0, 1,

, p. Asymptotically, Ui = Ui because they both have unit norm and equivalent frequen-

cies. (For simplicity, we assume the weighting procedure does not change the indices asso-

ciated with the vectors in U.)3 Therefore, the following equalities are valid asymptotically:

divw, = WX TUwi = WX T Ui = W(d V) = di (WVI) (2.28)

Thus,

Vw = dWV (2.29)
d,,wi

Since it is known that Vwi has unit norm, we have:

w2

WI

That is: di = d WE (2.31)

where Vi denotes the th element of the column vector Vi. Then, substitute Equation (2.31)

into Equation (2.29), we have:

V = Wi (2.32)

It can be seen that the columns in are sinusoids of different frequencies proportionally

It can be seen that the columns in V are sinusoids of different frequencies proportionally

modulated by the weighting function (weighted sinusoids). In addition, the singular values

of the matrix XW are equivalent to the corresponding scaled singular values of the original

matrix X.

3 If the weighting matrix W changes the index of the column vectors in U, i.e., the order of the singular values
is altered, the derivation of properties of Vw and D. only differs by the notation of column indices. The conclu-
sions to be presented later that column vectors in Vw are sinusoids with different frequencies modulated by the
weighting matrix W and that diagonal elements in Dw are scaled version of those in D still hold.
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The above asymptotic properties of the SVD of XW can be illustrated with the following

example. The time series x(t) is again the one demonstrated in Figure 2-2. We construct the

matrix X with a dimension of 1000 x 500 and the diagonal elements of W are samples of the

exponential function: exp(-(i-1)/200), where i denotes the index of the diagonal elements.

Figure 2-4 illustrates the first and third column vectors of Uw and Vw respectively. Note that

the envelope of Vw and Vw3 proportionally fits the exponential weighting function (the red

dash-dotted lines in Figure 2-4 are the Vwi computed based on Equation (2.32)).

In summary, with the weighting factors applied to the data matrix X, the left and right sin-

gular vectors are still sinusoids or weighted sinusoids asymptotically. The previous fre-

quency domain interpretation about the proposed PCR approach is still applicable.

Uw1

0.05

0 100 200 300 400 500

Uw3

Vw1 V

-v. -v..
0 100 200 300 400 500 0 100 200 300 400 500

Figure 2-4 Singular value decomposition results of XW (note that only the first 500 samples of Uw, and
Uw3 are shown here for illustration; the dash-dotted lines in the lower two subplots represent V,i

computed based on Equation (2.32).)

Lastly, based on the above results, we can express the estimated parameter A as:
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A = WAW =VwiD B.

= W Vwi (2.33)
i= dwi

= W 2 d where k = 

where K is the ith column vector of matrix . Note that Equations (2.31) and (2.32) have

been incorporated into Equation (2.33). The above equality indicates that the basis functions

of the estimated impulse response are W2 (i = 0, 1, , q), which are, asymptotically, sinu-

soids modulated by the weighting factors in W2. When the noise is white, the variance of the

m th elements in A is:

var() (a m )W m2 1, 2 ,p (2.34)

2.7 WPCR and ARX Structure

Since the output signal accessible in practice is usually a combination of the system output

and some measurement noise, an ARX model structure, in which the output delays are in-

cluded in the regression, may be advantageous because it provides room to model the noise

and, thus, the possibility to reduce noise corruption in the estimated parameters. In this sec-

tion, we discuss application of the WPCR approach in conjunction with ARX structures. To

start, we include the delayed output vectors in the data matrix (as in Equation (2.3)) in addi-

tion to the input vectors. The system identification problem now becomes:

Y=FDA+E (2.35)
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b,

y(t - 1) ... y(t - m) x(t) ... x(t - p)
y(t) ... y(t - m + 1) x(t + 1) ... x(t - p + ) bm

where =,and A=
a 0

y(t- + N) ... y(t-m+N) x(t+N) ... x(t- p+ N)]
a

Simply substituting the matrix X in Equation (2.21) (the weighted MA equation) with the

new matrix I, the same approach can be employed to estimate A as delineated for the MA

structure previously. We should now investigate if there exists a similar frequency domain

interpretation for the ARX structure.

For stationary data, it is obvious that the principal components of <) (eigenvectors of

VDT), denoted as Ui, are still sinusoidal asymptotically (although contaminated by noise due

to the inclusion of y(t)) using the same argument as for the MA structure. On the other

hand, each of the eigenvectors of qDT( (i.e., V) can be proved to be a concatenation of two

sinusoids asymptotically.

To prove the above statement, consider the relationship between Ui and Vi:

TrU i = diV (2.36)

Denote 4< by two sub-matrices Dx and Or. 'Dx contains delays of the input vector and <by

contains delays of the output vector. Equation (2.36) becomes:

T [Uj] = d, [ L] (2.37)

where ViU represents the upper part of Vi that has the same number of rows as rT; ViL

represents the lower part of Vi that has the same number of rows as DT. That is:

OUi = dj/7 (2.38)

(DXUi = diVi (2.39)
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It is evident that the left sides of the above two equations are convolutions. Since U is

sinusoidal asymptotically, VU and VL are also sinusoids with the same frequency, but they

may have different phase. Hence, V is a concatenation of two sinusoids asymptotically.

Therefore, the asymptotic frequency domain interpretation of the PCR method is still valid

using an ARX structure.

In addition, although the derivation of Equation (2.17) is based on an MA-structured

model, it is also applicable to ARX models if the additive noise is white. Furthermore, the

basis functions of the coefficient vector A are Vi's, i.e., a concatenation of two sinusoids.

However, it is hard to derive the basis function for the system impulse response (denoted as

h) due to the nonlinearity in the relationship between A and h.

When the matrix '1 is weighted by a pre-defined weighting matrix W (as in Equation

(2.21)), assume DW = U,,DV,T, then the PCs (Uw) remain sinusoidal asymptotically and

V,i are related to Vi through Equation (2.29). The derivations are similar as presented in sec-

tion 2.6.

Heuristically, the advantage of using an ARX structure may be due to the fact that de-

layed output vectors in matrix ) contain frequency components from both the input and the

noise. Because SVD is carried out on the matrix ·D as a whole, the frequency components

from the input data were contributed by both Ox and (Dr, while the frequency components

from the noise disturbance were only contributed by (Dr. Under certain circumstances, for

example, when the input is colored and/or the noise is colored and out-of-band with the in-

put spectrum, the WPCR-ARX method may result in a more accurate estimate of A.

2.8 Application of the WPCR Approach with MA Structures

In this section, we discuss the application of the WPCR approach with MA structures

(WPCR-MA) in open-loop and closed-loop systems. Simulated impulse responses which

resemble those involved in cardiovascular systems are employed to generate the input/output

data. The performance of the WPCR approach is compared with that of the conventional
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method in constructing candidate models for ARX system identification and Generalized

Least Squares (GLS) system identification, i.e., adding to the structure one delayed in-

put/output term at a time in an order of increasing shifts relative to the current output.

2.8.1 The Weighting Scheme

To apply the WPCR-MA method, we should first determine the functional form of the

weighting factors in the diagonal matrix W. According to Equation (2.33), the weighting

function imposes an envelope upon the basis function of the estimated impulse response.

Since in the widely employed ARX model identification, basis functions of the estimated

impulse response are real or complex exponentials, we consider using a similar exponential

function as the weighting function for WPCR, i.e., the diagonal elements in W are defined as

e- "/ , n = 0, 1, 2, , p. This weighting scheme assumes a larger weight for the recent de-

lays in the data matrix than for the remote ones, which is consistent with the aforementioned

a priori knowledge.

The next step is to determine the value of the time constant r in the weighting function.

Evidently, it should be affected at least partially by the duration of the true impulse re-

sponse, which is, however, inaccessible. To solve this problem, one may search for the

"best" value of r according to the following procedure: 1) Use an MA model that has a suf-

ficiently large order to fit the input-output data through ordinary least squares estimation; 2)

Inspect the estimated impulse response, which may be heavily corrupted by noise, to deter-

mine the maximum number of columns (p) needed in the data matrix. Note that the above

two steps are necessary for most system identification approaches. 3) Take p/1.5 as the up-

per bound of the range of possible values of r, 4) The lower bound of this range can be taken

as in general or be determined also by inspecting the estimated impulse response in step 1)

- If the minimum possible length is approximately 1, then take the lower bound as 1/1.5. 5)

Perform WPCR-MA identification with r varying in the range (with an increment being 1 or

lower as needed) and select the value which leads to a minimum FPE or MDL. In steps 3)

and 4), the factor 1.5 is chosen empirically by noting that at n = 1.5x the exponential func-
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tion e- " decays to 77.7% of the value corresponding to n = 0. Since our goal is to obtain

an accurate estimate of the impulse response function, the effectiveness of the above proce-

dure depends on the ability of FPE or MDL to minimize the impulse response error, which is

equivalent to output prediction error.

To evaluate the performance of the above procedure in selecting a value of r that leads to

a small impulse response error, we simulated an LTI system y(t) = h(t)*x(t) + e(t) using the

transfer function, input spectra and noise spectra illustrated in Figure 2-5. This impulse re-

sponse consists of two triangular shapes and it is not analytical. It is a typical representation

of those often utilized in modeling cardiovascular autonomic control systems [57] which is a

main application to be studied in this thesis. The simulated input is a colored process as are

many physiologic signals. Two types of additive noise are implemented which are in-band

or out-of-band relative to the input spectrum. The previously proposed procedure was car-

ried out to determine the "best" value of r and to compute its associated impulse response

error. To obtain a "gold standard" for the value of , we explicitly computed the impulse

response error in each simulation corresponding to every value of r in the range being con-

sidered and take the optimal as the one leading to the minimum error. The impulse re-

sponse error is defined as:

Impulse response error = 100* (h - h) (h - )(2.40)

where ho is the true impulse response function and h is the estimate.

100 realizations were simulated for each type of noise. In each simulation, 30 input de-

layed vectors of 1000 samples long were included in the data matrix; therefore the upper

limit of the searching range of r was 10. We specified the lower limit as 4 and used a unit

increment. Figure 2-6 shows the impulse response errors resulted from the searching proce-

dure and the "gold standard". The model order is selected by minimizing the MDL criterion

(see Chapter 1).
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Figure 2-5 (a) Impulse response of the simulated system; (b) Frequency responses of the system transfer
function (solid), the filter generating colored inputs (dashed), the in-band noise (dotted) and the out-of-

band noise (dash-doted).
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Figure 2-6 Comparison of impulse response errors estimated through the proposed searching procedure
of the value of X (Weighting) and through the "gold standard" estimation of T (GS). The MDL criterion

was employed. (a) simulation with in-band noise; (b) simulation with out-of-band noise. (Values are
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Figure 2-7 Value of robtained with the "gold standard" (GS) and the proposed searching procedure
(Weighting). (a) simulation with in-band noise; (b) simulation with out-of-band noise. (Values are

meanfl.96*SE of 100 noise realizations)
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Figure 2-8 Comparison of impulse response errors estimated by the unweighted PCR method (No Wt)
and the weighted PCR method (Weighting). (a) simulation with in-band noise; (b) simulation with out-

of-band noise. (Values are mean±1.96*SE of 100 noise realizations)

Figure 2-7 shows the values of r determined by the "gold standard" and the searching

procedure respectively. Values resulted from the two methods are not statistically different
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ods lead to values of r around two thirds of the duration of the true impulse response

(20/1.5).

For comparison purpose, we present results of the unweigthed-PCR-MA and WPCR-MA

methods in Figure 2-8. It can be seen that the weighting scheme improved the identification

accuracy significantly especially at low SNRs.

From a practical point of view when only finite data are available for system identifica-

tion, the weighting scheme effectively enhances the performance of the PCR method due to

the following reasons (in addition to the incorporation of a priori knowledge): 1) With the

weighting scheme, the basis functions of the estimated impulse response (exponentially de-

caying sinusoids) are more appropriate for FIR systems than those in the unweighted case

(sinusoids) since such systems always have their impulse responses decay to zero; 2) The

distribution of weighted singular values is in a wider range and more regular (approximately

an exponential function in case of white noise as illustrated in Figure 2-9) than the un-

weighted ones. Therefore, if the data matrix is disturbed by noise (e.g., in ARX structures)

or if only finite data are available (which is the realistic case), the rank of the weighted sin-

gular values is more robust. This rank matters in the WPCR method because it determines

the order according to which the PCs are added into the regression, thus affecting the value

of MDL or FPE and how well they approximate the prediction error; 3) With finite data, the

first few weighted singular values usually represent a larger portion of the total energy than

the unweighted ones. Hence, the model order (number of PCs in regression) is often re-

duced by the weighting scheme which may enable a reduction in the variance of estimated

model parameters. Similar weighting scheme may be proposed in studying noise-perturbed

matrices in certain problems, such as in the total least squares (TLS) identification.
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Figure 2-9 An example of normalized singular values (dl/Z 1 d ) of the unweighted data matrix and

the corresponding values of the weighted data matrix

2.8.2 Open-loop Systems

In this section, we investigate the performance of the WPCR-MA method in identifying

open-loop systems. The applications of this method in SISO and MISO system identifica-

tion problems are very similar. For simplicity, only SISO systems are simulated here. The

evaluation of the WPCR-MA method is enabled through comparisons with the conventional

ARX model estimation approach. As aforementioned and discussed in Chapter 1, this ARX

method is often used in physiologic system identification.

White Input

First, we simulate a SISO system with the transfer function demonstrated in Figure 2-5.

Both the system input and the additive noise on the output are white random processes. 100

noise realizations were simulated and 1000 data samples were employed in system identifi-

cation. For the WPCR method, 30 input delays were included in the data matrix and the

weighting scheme proposed previously was incorporated. For the ARX method, the maxi-

mum model order evaluated contains 15 AR terms and 15 MA terms.
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The impulse response errors based on the WPCR and the ARX methods are displayed in

Figure 2-10. For illustration purpose, results of the basic PCR method without the weight-

ing scheme are also included. It can be seen that the performance of the WPCR and ARX

methods in this scenario is very similar and the weighting scheme of the WPCR method im-

proves the estimation accuracy at low SNR levels. The improvement resulted from the

weighting scheme can be explained by the same arguments presented in the last section.

Compared to the conventional ARX method, as discussed in Section 2.5, an important prop-

erty of the WPCR method is its ability to select dominant frequencies present in the data,

and carry out a weighted-parameter estimation so that the coefficients associated with these

frequencies are more accurately identified. However, in case of white input and white out-

put noise, there is no room for this frequency selective property to play a role since all fre-

quencies are equivalent in amplitudes and the PCs of the data matrix are ranked randomly

and, therefore, weighted randomly by the weighting scheme. Hence, it is expected that the

WPCR method does not possess any advantage over the ARX method in case of white sig-

nals.
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Figure 2-10 Comparison of impulse response errors estimated by the WPCR, PCR and the conventional
ARX methods, MDL minimization was employed as the model selection criterion. The system input

and the output additive noise are white processes. (Values are mean±1.96*SE of 100 noise realizations)
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Colored Input

Using the same system function as in Figure 2-5, we generate the system output corre-

sponding to colored input and colored output noise, the spectra of which are also illustrated

in Figure 2-5. Since physiologic signals (e.g. blood pressure, heart rate) involved in system

identification are often colored ones, our simulation resembles the realistic cardiovascular

systems. We again compare the performance of the WPCR and the ARX methods. The

same initial model orders and data length were used as employed for the white input simula-

tions. Note that in theory, the ARX method is able to model both the system function and

the noise spectrum. Figure 2-11 shows the impulse response errors induced by each method.

It can be appreciated that the WPCR method outperforms the ARX method regardless of the

type of output noise. In addition, note that the ARX method itself is more accurate in case

of in-band noise than of out-of-band noise, while the performances of the WPCR method in

the two cases are approximately equivalent.
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Figure 2-11 Comparison of impulse response errors estimated by the WPCR method and the
conventional ARX method, MDL minimization was employed as the model selection criterion. The

system input is a colored process. (a) simulation with in-band noise; (b) simulation with out-of-band
noise. (Values are mean±1.96*SE of 100 noise realizations)
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To further understand the above results, we illustrate the frequency responses of the sys-

tem function identified by each method when the noise is in-band with the input (Figure

2-12) and when the noise is out-of-band (Figure 2-13).

Based on the estimated frequency responses, it is evident that the ARX method does not

impose model selection constraints in the frequency domain while the WPCR method dem-

onstrates this property. In case of in-band noise (low frequency-dominant), the ARX esti-

mation error is relatively high at low frequencies due to the corruption of noise, while it is

relatively low at high frequencies because of low noise level (Figure 2-12). In contrast, the

WPCR estimation provides a good fit at low frequencies because the PCs with high frequen-

cies (associated with small singular values) are excluded from the regression so that more

weight is given to the low frequency coefficients to enhance their estimation accuracy

(reduce variance). The spectrum of the WPCR estimate in the high frequency range reflects

the summed effect of the dominant PCs at these frequencies which is small but not zero.

This is because only finite data are used in system identification and the PCs are not strictly

sinusoidal. In case of out-of-band noise (Figure 2-13), the ARX estimation error is rela-

tively small in the low frequency range due to the low noise level (high SNR), while it is

relatively high in the high frequency range because of increased noise corruption and de-

creased input energy (low SNR). Since the input spectrum has low amplitudes at high fre-

quencies, the dominant PCs identified by the WPCR method are mainly associated with

relatively low frequencies with little noise corruption. Therefore the WPCR estimate is ac-

curate at these frequencies. Meanwhile, the frequency selective property of WPCR enables

an exclusion of the high frequency PCs which have a low SNR. Hence, the overall estima-

tion accuracy of the WPCR method outperforms that of the ARX method. Note that in case

of out-of-band noise and low SNR, the WPCR method may still retain some extraneous PCs

that represent the noise frequency to reduce the output prediction error. This trade-off ex-

plains why the WPCR estimation errors with out-of-band noise are not significantly smaller

than those with in-band noise.
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In-Band Noise
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Figure 2-12 Comparison of frequency responses - true frequency response (solid line), ARX estimate
(dotted line), WPCR estimate (dash-dotted line); The input spectrum is shown by the dashed line.

Results are averaged over 100 simulations of in-band noise (SNR = -5 dB), whose spectrum is illustrated
in Figure 2-5.
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Figure 2-13 Comparison of frequency responses - true frequency response (solid line), ARX estimate
(dotted line), WPCR estimate (dash-dotted line); The input spectrum is shown by the dashed line.
Results are averaged over 100 simulations of out-of-band noise (SNR = -5 dB), whose spectrum is

illustrated in Figure 2-5.
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Narrow-Band Input

In system identification, it is generally required that the input signal be persistently excit-

ing. From a frequency standpoint, the input should have enough frequency components to

excite all the modes of the system, i.e., encompass the entire spectrum of the system func-

tion. However, under some circumstances, the signals involved are narrow-banded while it

is still desirable to identify the system dynamics within the frequency range excited by the

input as accurately as possible. For example, the breathing activity is an important factor

inducing variability in heart rate (HR), blood pressure (BP) and other cardiovascular signals.

This type of variability is mediated by autonomic reflexes, mechanical properties of the car-

diovascular system, local vascular regulation, et al. Therefore, an identification of the sys-

tem function relating instantaneous lung volume (ILV), HR, BP or other signals may help

characterize these underlying mechanisms. Since during spontaneous breathing, the ILV

signal is narrow-banded or even nearly sinusoidal, a complete identification of the involved

system dynamics is not achievable. However, system identification limited to the frequency

band of the ILV signal may still be informative under some circumstances (this specific

topic will be discussed in detail in Chapter 3). In this section, we investigate the perform-

ance of the WPCR method in the general scenario of narrow-band input.

We simulate the input signal as consisting of two sinusoids plus very low-amplitude white

noise (x(t) = sin(O.027t)/5+sin(O.06rct)/lO+e(t)), the spectrum of which is demonstrated in

Figure 2-14. The output signal is then constructed utilizing the system function and low-

frequency-dominant additive noise illustrated in Figure 2-5. The same initial model orders

and data length were used as employed for the white input simulations for both WPCR and

ARX identifications. Note that because of the limited frequency content in the input signal,

the error in the estimated impulse responses is expected to be very significant. As an exam-

ple, Figure 2-15 shows the averaged impulse responses estimated based on 100 noise reali-

zations with an SNR of 0 dB using the WPCR method and the ARX method respectively.

The impulse response error resulted from the WPCR method is 59.8 + 0.68% and that from

the ARX method is 320.3 ± 15.5%. These relatively large estimation errors are reflections

of the fact that reliable estimate at frequencies outside of the input spectrum are not obtain-
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able in linear systems. Therefore, we evaluate the performance of the system identification

methods only at the two input frequencies. The percentage errors of the amplitude of the

estimated frequency response resulted from the WPCR method and the ARX method are

shown in Figure 2-16.
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Figure 2-14 Input spectrum (consisting of two sinusoids and low-amplitude white noise); note that the
amplitude of the lower frequency component is twice that of the higher frequency component.
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Figure 2-15 Impulse responses estimated by the WPCR method and the ARX method (average of 100
simulations, SNR = 0 dB)
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Sinusoidal Input

15 -10 -5 0 5 10 15 20

SNR (dB)

Figure 2-16 Error of frequency response amplitude at the two input frequencies, fl = 0.02n, f2 = 0.067
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Figure 2-17 Comparison of system frequency responses estimated by the ARX method (dashed line) and
the WPCR method (dotted line). This result is the average of 100 simulations at an SNR level of 10 dB.
The true frequency response of the system is illustrated with the solid line. The two vertical dotted lines

correspond to the two input frequencies.
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As expected based on the discussion in previous sections, the frequency selective property

of the WPCR method enables a more accurate estimate compared to the ARX method. Re-

gardless of the method, the estimate at the first frequency (0.02n as in Figure 2-14) is more

precise than that at the second frequency (0.06n as in Figure 2-14) due to the difference in

the corresponding amplitudes of the two components (refer to Equation (2.17)). Note that

this difference is rather significant in the result of the ARX method. In addition, simulations

(not shown here) using the MA method demonstrated a result similar to that of the ARX

method. Neither method imposes constraints in the frequency domain for model selection.

Figure 2-17 delineates the averaged frequency responses estimated using both methods

with the SNR level being 10 dB. Although the amplitude errors at higher SNR shown in

Figure 2-16 are equivalent for the two methods, the overall frequency response curves differ

significantly. The ARX-estimated frequency response reflects its attempt to fit the output

across the entire spectrum thus inducing large errors at frequencies where the input energy is

low, while the WPCR method focuses on the estimation at the dominant input frequencies.

To summarize, in this section, we demonstrated, through simulated data, that the WPCR

method outperforms the conventional ARX method when colored signals are involved in

system identification. The major strength of the WPCR method lies in its frequency selec-

tive ability.

2.8.3 Closed-loop Systems

Brief Review on Closed-loop System Identification

Since many physiologic control mechanisms involve closed-loop interactions (e.g., the cou-

pling mechanism between heart rate and arterial blood pressure), we consider the application

of the WPCR approach in closed-loop systems. Figure 2-18 illustrates a typical closed-loop

coupling between two signals x and y where H1 and H2 are the transfer functions in the feed-

�
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forward and feed-backward pathways respectively and Nx and Ny are noise disturbances. In

general, the noise terms are colored random processes. In addition, in contrast to the open-

loop case, the noise processes (Nx, Ny) and the signal terms (x, y) are correlated with each

other in closed-loop systems.

V.

X -

C1

j-YLi. I _- -VIL' 1I

, )_I -
Nx

Figure 2-18 Block diagram of a closed-loop system with noise disturbances

Assume that the above system is stable and can be represented by the following equa-

tions:

P

y(t) = E hlkX(t - k) + Ny (t)
k=1 (2.41)
Q

x(t) = E h2ky(t - k) + Nx (t)
k=l

We next discuss the identification of this closed-loop system using MA and ARX model

structures. Equations (2.42) and (2.43) represent the two often-utilized LTI system models -

the MA model and the ARX model respectively.

y(t) = bix(t - i) + e(t) (2.42)
i=s

y(t) = ± bix(t - i)+ E ajy(t - i) + e(t) (2.43)
i=s j=1

-Yy

F

Y
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These two models can be written into a unified form as follows:

y(t) = OT (t)O + e(t) (2.44)

where, for the MA model,

(t) = [x(t- s),..., x(t- f)]
O Tr =[bs,...,bf]

and, for the ARX model,

O (t) = [(t - g), x(t-s),..., x(t- f)]
OT =[al,...,ag,bs,...,bf]

The least squares solution of Equation (2.44) is:

? E=00 + ) E(t)( (t) )e(t (2.45)
N =1 N t=l

This estimate is consistent, i.e., -- 90, when N--oo if the following two conditions hold: 1)

E(0(t)0 T(t)) is nonsingular; and 2) E(O(t)e(t))= 0.

Although the true system has an MA structure in each pathway, identification using MA

models gives inconsistent results because the colored noise processes are correlated with the

signals x and y in a closed-loop system. That is, the second condition for consistency

(E(O(t)e(t))= 0) does not hold. On the other hand, the ARX model is able to identify the

system function because 1) With the inclusion of the AR terms, e(t) can be assumed to be a

white noise process in Equation (2.43); 2) There is one delay (the value of k starts from 1 in

Equation (2.41)) each in the feed-forward and the feed-backward pathways which makes

this closed-loop system identifiable [105]. These two conditions ensure that the equality

E(O(t)e(t)) = 0 is valid. Therefore, although the true system does not assume an ARX struc-

ture, the ARX system identification can provide a "best" approximation of the system within

its limited set of candidate models. Equation (2.46) demonstrates the estimated system func-

tion and noise process of the true system using an ARX model (for the feedforward path-

way).
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y(q-')= G (q -) (2.46)
1 +G2(q- ') 1+G2(q-')

Hl (q) N (ql)

where q-1 is the delay operator, G (q- ) = q-' and G2(q- ') = ajq - j .
i=1l i=

To solve for the parameters in Equation (2.46), the "direct approach" for closed-loop sys-

tem identification can be employed. This approach applies the basic prediction error method

in a straightforward manner - use the output y and the input x in the same way as for open

loop operation, ignoring any possible feedback [2].

Application of the WPCR-MA Method in Closed-loop System Identification

Based on the above review, it is desirable to use the ARX structure associated with the

WPCR method in closed-loop system identification. However, due to the nature of the

WPCR method, an ARX structure may not render any advantage applied to a closed-loop

system. The reason is as follows. 1) A consistent estimation is not the ultimate goal of the

WPCR method because it decomposes the data matrix J in Equation (2.44) into its principal

components and only selects a subset of PCs to minimize the prediction error of y(t). There-

fore, even though the noise term e(t) in the ARX model (Equation (2.43)) is white, the re-

sulted parameter estimation is biased in nature and a consistent estimation is not reached. 2)

Unlike in the open-loop systems where the past output terms in the data matrix 0 reinforce

the frequency components in the transfer function to be identified, in a closed-loop system,

the past input/output vectors encompass frequency components intrinsic in both H1 and H2

(x and y vectors are related through both HI and H2.) In this case, the dominant PCs reflect

contributions by both system functions. Thus, the inclusion of the past output terms in the

data matrix 0 complicates the estimation of HI or H2 in the closed-loop system.

In this section, we consider applying the WPCR-MA method in closed-loop systems. As

previously discussed, using an MA structure, correlation between the data matrix and the
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noise term causes a bias in the estimated model parameters. Although a consistent estima-

tion is not the ultimate goal of the WPCR method, it is still important to reduce the bias re-

sulted from undesired noise. In addition, there is one element in the WPCR estimation that

requires unbiasedness - the estimated coefficients of the PCs (B). To this end, we propose

a procedure to pre-whiten the noise (equivalent to using a fixed noise model) so as to reduce

its correlation with the input data.

The pre-whitening technique we employed can be described as follows. First, ordinary

least-squares estimate (ALs) of the coefficient vector A in Equation (2.3) is computed with

the same MA structure (same size) as used for WPCR identification. The residual error is

expressed as:

E = Y - XALs (2.47)

Subsequently, an autoregressive (AR) model of the residual is constructed, i.e.,

n

e(t) = a(t - i) + £(t) (2.48)
i=1

where (t) is white. The model order n may be determined by employing one of the afore-

mentioned model order selection criteria. In this way, a noise-whitening filter can be de-

fined as:

n

h(z) = (1- a,z - i) (2.49)
i=l

The input and output signals are then prefiltered by h(z) before performing a WPCR estima-

tion. Using this approach, we are approximating the real noise with the residual error in

Equation (2.47). To improve the accuracy of this approximation, an iterative procedure can

be carried out - once the model parameters are obtained through the WPCR method, the re-

sidual error can be computed again, and the pre-whitening and the WPCR procedures be re-

peated, until the estimated impulse response converges.

Based on the frequency domain properties of the WPCR method, the improvement in the

impulse response estimation due to prewhitening can be explained as follows. 1) If the real
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noise E0 is in-band with X, then the error in the estimate of Bo, i.e. B o - = UTEo can be

large because U represents the frequency components in X which are correlated with and

also dominant in Eo. Since prewhitening equalizes the strength of different frequencies in

E, it can reduce the error in the estimate of Bo. 2) If the real noise E0 is out-of-band with X,

the elements in B that correspond to the dominant frequencies in Eo have a very low signal-

to-noise ratio. If these values of B are large, their corresponding PCs may be selected in

order to reach a smaller prediction error which results in an unnecessarily high model order

and highly noisy estimate of the impulse response. Therefore, noise whitening could be

beneficial in this case. In addition, the pre-whitening filter is in-band with the dominant PCs

of Xand out-of-band with the real noise. From this perspective, prewhitening may also en-

hance the dominant PCs of the data and reduce the error introduced by out-of-band noise.

The above pre-whitening strategy is similar to that in the Generalized Least Squares

(GLS) method [15] first proposed by Clarke. The conventional GLS method also fits the

residual error using an autoregressive structure iteratively to generate a noise model. Ordi-

nary least squares estimation was employed to obtain the system parameters once the noise

model is specified. In the following simulations, we compare the performance of the

WPCR-MA method (with pre-whitening procedure) and the GLS method in closed-loop sys-

tem identification.

Simulation Results

We simulated a stable closed-loop system using transfer functions illustrated in Figure

2-19. One of the systems is a low-pass filter mainly and the other is a high-pass filter. The

noise spectra are delineated in Figure 2-20 and they ensure persistently exciting input to

each system. Note that in each pathway of this closed-loop setting, the noise disturbance is

out-of-band with its respective input signal. Thirty input delayed vectors were included in

the MA model of the WPCR method and the maximum model evaluated by the GLS method

contained 15 MA and 15 AR terms. The autoregressive structure utilized to model the re-

sidual error in both methods had a maximum order of 50. The MDL criterion was employed
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in all model order selections. 1000 data samples were used in each simulation. Figure 2-21

displays the impulse response errors of the WPCR-MA method (with pre-whitening proce-

dure) and the GLS method based on 100 noise realizations.

To study the performance of the two methods in the case when noise is in-band with the

input, we simulated another closed-loop system. H1 of this system remains the same as the

one demonstrated in Figure 2-19. Figure 2-22 delineates the impulse response and fre-

quency response of H2 and the frequency characteristics of the noise terms. It is evident that

the noises are in-band with their associated inputs in both pathways. Figure 2-23 displays

the impulse response errors induced by the WPCR method and the GLS method respec-

tively.

From the above results, it can be seen that the WPCR method outperforms the GLS

method, especially when the noise is out-of-band with the input and/or the SNR level is low.

The reasons behind these observations are essentially the same as discussed previously for

the open-loop systems where the frequency selective ability of the WPCR method has

proven to be a key factor. In addition, it should be noted that the GLS method is much more

computationally intensive than the WPCR method.

83



84 Weighted-Principal Component Regression Approach for System Identification

0

-2

-4
at

. _

C-
E -8

-10

-12

30 0 0.5 1 1.5 2 2.5 3 3.5

H,

5 10 15

Sample

a,
S0)'a
co2CI0)Cu

20 25 30

(a)

5

Normalized Frequency, rad/sample

(b)
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the corresponding transfer functions.

m
Zs
0)a)

._Vc
0)

0)
.El:S
CD-aR
0)
as2

5

0

-5

-10

-15

N
, x , , I

0 0.5 1 1.5 2 2.5 3 3.

N
.- vi

-10

-20

5

0 0.5 1 1.5 2 2.5 3 3.5

Figure 2-20 Noise spectra of the closed-loop system in Figure 2-18.

H

0.5 

0.4

0.3

0.2

0.1

0

-0.1

-0.2

I I

· Jl~l I I I I I 

qFr .. . . . y~~~~~~
,II

I 

r

A
f

)

�---

-

I __ _ __ 

c ~ ~ _

.' .-



Application of the WPCR Approach with MA Structures
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Figure 2-21 Impulse response errors of the two systems involved in closed-loop (Figure 2-19). The noise
is out-of-band with its respective input in each system. (a): H1; (b) H2 (MDL model selection criterion

was employed, values are mean±1.96*SE of 100 noise realizations. Note that at SNR = -10 dB, the GLS
method induces a very large error (-200%, not shown here), the WPCR method has an error of -90% )

H2 Impulse Response
0.5

0.4

0.3 A

0.2

0.1

0 -

-0.1

-0.2
0 5 10 15 20 25 30 35 40

Sample #

H2 Frequency Response
5

_5 

-10\

-15

-20

-25

-30

_.~ L i 

m

-Eca)V

0)
co(p

El
a)

'a

co

Nxx

N
y

2

0 

-2

-4

-6

-8 

-10

0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5

Normalized Frequency (xm rad/sample) Normalized Frequency (xm rad/sample)

(a) (b)
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Figure 2-23 Impulse response error of the systems in Figure 2-22. The noise is in-band with its
respective input in each system. (a): HI; (b) H2 (MDL model selection criterion was employed, values

are mean±1.96*SE of 100 noise realizations.)

2.9 Application of the WPCR Approach with ARX Structures

In this section, we discuss the application of the WPCR method with an ARX structure

(WPCR-ARX) in open-loop systems. As mentioned previously, due to the nonlinearity in

the relationship between model parameters and system impulse response, it is not evident

how pre-weighting on the data matrix affects basis functions of the estimated impulse re-

sponse. Since one of the main advantages of pre-weighting in MA structures is that it prac-

tically modulates the basis functions of the estimated impulse response, it is not clear

whether pre-weighting in the ARX structures renders significant advantage in theory. We

now compare the weighted and non-weighted PCR-ARX methods through simulations.

To define the weighting factors involved in the WPCR-ARX method, we again incorpo-

rate the a priori knowledge that current output is correlated more closely with recent in-

puts/outputs than with remote ones. We first calculate the ordinary least squares estimate of

the maximum ARX structure and denote the ratio of the computed coefficients of the first

MA term and the first AR term as R. Then, the p+l input vectors (as in Equation (2.35)) are

weighted by Re - "/', n = 0, 1, , p and the m output vectors are weighted by e -
n

/ , n = 1, 2,

, m. This pre-weighting scheme ensures that appropriate relative weights are assigned to
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the input and output vectors which is critical if multi-input signals are involved or if the in-

put and output data have different units/physical meanings. The upper bound of the search-

ing range of the time constant r is assumed to be 2/3 of the number of input/output delays

included in the data matrix.

The simulated data are the same as those employed in Section 2.8.2 for colored input.

100 noise realizations were simulated for each SNR value. In each simulation, 1000 data

samples were employed. The ARX data matrix (as in Equation (2.35)) contains 15 input

delayed vectors and 15 output delayed vectors. Figure 2-24 displays the impulse response

error for the weighted PCR method and non-weighted PCR method. For comparison pur-

pose, we include in this figure the results using the WPCR-MA method (demonstrated pre-

viously in Figure 2-11).
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Figure 2-24 Comparison of impulse response errors estimated by the WPCR-ARX method, the un-
weighted PCR-ARX method and the WPCR-MA method, MDL minimization was employed as the

model selection criterion. The system input is a colored process. (a) simulation with in-band noise; (b)
simulation with out-of-band noise. (Values are mean±1.96*SE of 100 noise realizations)

The above results demonstrate that the WPCR-MA method slightly outperforms the

WPCR-ARX method, both of which outperforms the conventional ARX method (refer to

Figure 2-1 l). The weighting scheme improved the identification accuracy especially when

the noise is out-of-band with the input. It should be pointed out that the WPCR-ARX
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method has one significant advantage over the WPCR-MA method - it needs less in-

put/output vectors in the model, i.e., a smaller data matrix. This advantage is evident when

the length of the impulse response is large which necessitates a large data matrix using the

WPCR-MA method and consequently, a high computational load in calculating the SVD of

this matrix. Therefore, the WPCR-ARX method is appropriate when the anticipated system

impulse response has a significant number of non-zero samples.

2.10 Application of the WPCR Method to Experimental Data4

To further evaluate the WPCR method, we study its performance in analyzing experimental

data. The goal is to identify the short-term closed-loop cardiovascular regulation model

(Figure 2-25) which was proposed in previous publications of our lab [23, 56].

4 Some of the content in this section has been published in the Journal of Applied Physiology [106]
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Figure 2-25 Closed-loop model of short-term cardiovascular regulation (Adapted from [231 with
permission granted by the APS)

The accessible signals in this problem are second-to-second HR (heart rate tachogram),

PHR (pulsatile heart rate), ILV (instantaneous lung volume) and ABP (arterial blood pres-

sure). HR and PHR are derived from standard surface electrocardiograms (ECG). PHR is

defined to be a train of impulses occurring at the times of contraction of the ventricles

(Figure 2-26) [23]. HR is defined to be a stepwise continuous process (Figure 2-26, bottom

trace) whose value corresponds to the reciprocal of the current inter-beat interval for the

time period corresponding to the duration of that interval [23].
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Figure 2-26 The relationship between HR, PHR, and ECG (adpated from [231 with permission granted
by the APS).

The short-term closed-loop cardiovascular regulation model consists of four couplings -

Circulatory Mechanics, HR Baroreflex, ILV--HR and ILV--ABP, whose transfer proper-

ties are represented below in terms of impulse response functions. We assume that the cou-

plings of the small spontaneous fluctuations in these signals about their mean values may be

represented by a linear, time invariant model. This model will generally change when there

is a change in physiologic state. The linearity assumption has been tested and validated [6].

Circulatory Mechanics impulse response represents the ABP wavelet generated with each

cardiac contraction. It primarily reflects the mechanical properties of the heart, great vessels

and peripheral circulation. The amplitude of the Circulatory Mechanics impulse response is

related to stroke volume, and the characteristic decay time of this impulse response is related

to the product of peripheral resistance and arterial compliance. The HR Baroreflex repre-

sents the change in HR in response to an impulse in ABP mediated via the baroreceptor re-

flex pathway (see Chapter 3). The ILV-HR impulse response reflects the change in HR in

response to a very rapid inspiration/expiration; this impulse response is centrally mediated

via the autonomic nervous system. ILV->ABP represents the mechanical effects of respira-

tion on ABP mediated in part by the effects of intrathoracic pressure on venous return.

L ' ~ ~
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In Figure 2-25, there is a fifth predefined coupling, sinoatrial (SA) node which relates HR

and PHR. The SA node is an "integrate-and-fire" device and is not identified from the ex-

perimental data since its dynamics are predefined [23]. NHR and NABP represent the fluctua-

tions in HR and ABP respectively that are not attributable to the couplings discussed above.

NHR may reflect, for example, perturbations to HR resulting from cerebral inputs and NABP

may represent perturbations to ABP resulting from autoregulation of local vascular resis-

tance in different tissue beds [23].

Since this model contains a mixture of multi-input single-output, closed-loop, open-loop,

causal and non-causal (ILV->HR) systems, the conventional ARX identification method is

not suitable to handle its complexity efficiently. To solve this problem, our lab previously

developed an efficient algorithm, namely, the Arma Parameter Reduction (APR) algorithm

[55]. This method models the system in terms of ARX models and evaluates the candidate

model terms based on their respective 'signal-to-noise ratio (SNR)'. Parameter estimates

with high SNR are considered more important than those with low SNR. The APR method

has been successfully applied in several studies [23, 56, 106].

In the remainder of this section, we discuss the application of the WPCR method in iden-

tifying the model in Figure 2-25 and compare its performance with that of the APR method.

The experimental data employed here was published previously in [106]. Briefly, 29

male subjects (age: 35.7±11.5 (SD) years, height: 70.3+2.5 (SD) inches, weight: 79.6±10.4

(SD) kilograms) were tested in the positions of supine, 30, 60 and 90 degree head-up tilt for

baseline measurements. Approximately 6 minutes of standard surface ECG, ABP and ILV

were recorded continuously and non-invasively after a stable state is achieved in each pos-

ture. Continuous blood pressure was recorded from the middle finger of the right or left

hand using a fingertip cuff transducer (Portapres, TNO, or Finapres, Ohmeda). ILV was

measured using a two-belt chest-abdomen inductance plethysmograph (Respitrace system,

Ambulatory Monitoring Systems, Inc). Calibration of ILV was performed by having the

subject alternately fill and empty an 800ml calibrated Spirobag. During data collection, the

subjects were instructed to breathe in response to auditory cues spaced at random intervals

ranging from I to 15 seconds with a mean of 5 seconds. This random breathing protocol
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broadens the spectral content of ILV thereby satisfying the 'persistently exciting' require-

ment for signals involved in system identification while preserving normal ventilation [48].

The signals were sampled at 100 Hz during data collection.

The WPCR-MA method with prewhitening procedure was employed to identify the trans-

fer relations involved in the closed-loop system consisting of ILV--HR and HR baroreflex

utilizing 6-minute of data sampled at 1.25 Hz. Zero-mean ABP and HR were normalized

with respect to their corresponding time-averaged values and zero-mean ILV with respect to

its standard deviation. The open-loop system involving ILV->ABP and the circulatory me-

chanics were identified in two steps since the latter coupling requires a much wider band-

width than the former one. Ninety-second segments of data sampled at 100 Hz were used in

the first step to obtain an accurate identification of the circulatory mechanics transfer func-

tion. The WPCR-ARX method was employed here since the impulse responses have a very

large number of nonzero samples (> 900) and thus the MA structure would be cumbersome.

Note that in this step, the PHR, ILV and ABP signals should not be normalized. Next, to

achieve an improved characterization of the ILV->ABP relation using a narrower bandwidth

matched more closely to that of the true transfer function, the component of ABP due only

to PHR was computed utilizing the circulatory mechanics relation identified in the first step

and subtracted from the original ABP. The resulting ABP component and the ILV signal

were then decimated to 1.25 Hz and a new ILV->ABP relation was obtained using the

WPCR-MA method (SISO system). The signals were normalized in the same way as for the

HR baroreflex and ILV-*HR relations.

In accordance with previous studies [23, 56], the impulse response curves of the transfer

relations were each characterized with two parameters: peak amplitude and characteristic

time. These parameters are defined as:

peak amplitude { I min[h(t)]l For HR Baroreflex response
max[h(t)] For other impulse responses

fth(t)dt
characteristic time =

f:h(t)jdt
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where h(t) is the impulse response function.

Mullen et al. [23] showed that the two impulse responses, HR baroreflex and ILV-*HR,

were nearly obliterated after total autonomic blockade. This indicates that these two cou-

plings are mediated primarily by autonomic activity. Hence, we postulate that their peak

amplitudes are determined mainly by parasympathetic responsiveness in HR regulation and

the characteristic time reflects the sympathetic/parasympathetic balance because sympa-

thetically mediated impulse response functions have much longer characteristic times than

parasympathetically mediated ones. The peak of the circulatory mechanics response is re-

lated to stroke volume and its characteristic time is determined by the combined effect of

vascular resistance, compliance and stroke volume. The ILV->ABP coupling is largely me-

chanically mediated.

It is well accepted that the postural change from supine to head-up tilt results in a relative

shift from parasympathetic-dominant to sympathetic-dominant cardiovascular control [45].

We assess the validity of our techniques using this physiological observation. Table 2-1 and

Table 2-2 present identification results using the WPCR and the previously employed APR

methods [55] respectively. Consistent with physiological notions, it can be seen from Table

2-1 (WPCR method) that the peak amplitudes of the HR baroreflex (at 900 tilt) and

ILV--HR impulse responses decreased significantly upon head-up-tilt, reflecting a reduc-

tion in the parasympathetic responsiveness. The corresponding characteristic times in-

creased significantly reflecting a shift to sympathetic-dominant control upon head-up-tilt.

The peak amplitude of the circulatory mechanics coupling decreased significantly upon

head-up-tilt while its characteristic time increased significantly which can be explained by

the reduction in stroke volume and increase in vascular resistance in the tilt positions. The

ILV--ABP impulse response demonstrates an increase in peak amplitude and a decrease in

characteristic time, which may be due to the change in intrathoracic pressure. Table 2-2

demonstrates the results reached by the APR method. The characteristic times of the

ILV--HR impulse response identified by the APR method demonstrates more significant

comparisons than those by the WPCR method. On the other hand, the APR method did not

detect significant changes in the peak amplitude of the HR baroreflex impulse response at
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any of the tilt postures and only showed an increase in the characteristic time at 900 tilt. The

changes in the ILV-*ABP parameters also seem to be more reliably identified by the WPCR

method. In total, the APR method identified less significant comparisons (13) than the

WPCR method (16). Note that the APR method leads to thirteen unstable estimates among

all the cases computed, while results from the WPCR method are all stable. The unstable

results have been excluded in the results shown in Table 2-2.
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Table 2-1 Identification results of closed-loop cardiovascular regulation using the WPCR method (Data
are from 29 subjects, Values are mean + SE; Superscripts are P values of paried t-test relative to the
supine posture, those that are statistically significant ( P < 0.05) are shown in bold face.)

Supine 300 600 90°

HR 026 0035BaHR 0.40±0.04 0.41±0.070'96 0.34±0.05026 0.32±0.03° ° 35
Baroreflex

(unitless, ILV HR 1.87±0.17 1.430.150'0006 1.08±0.142.3e-6 0.97±0.134.7e-5
(x 100)

except Circ.
Mech. -- Circulatory 621±208 51.82.680. 75 43.4±3.078e5 45.8±2.53

Mechanics
mmHg)

m gP 0.60±0.06 0.680.11042 1.020.2031 0.950.130013
(x 100)

HR 1.98±0.12 2.55±0.21°° 12 2.63±0.23 o'4 5 2.71±0.24 ° ° 13

Baroreflex

Characteristic ILV--HR 1.74±0.13 1.95±0.190.65 2.17±0.190.12 2.01±0.130'03

Time Circulatory 2 06 2190 123 2440 135 2430 65e-5(sec) Mcais 2.010. °06 2.419±0.13 o o 0 2.430.0965e-5Mechanics

ILV-ABP 7.37±0.61 6.29±0.65038 7.07±0.6162 5.32±0.37°0' 012

Table 2-2 Identification results of closed-loop cardiovascular regulation using the APR method (Data are
from 29 subjects, Values are mean - SE; Superscripts are P values of paried t-test relative to the supine

posture, those that are statistically significant ( P < 0.05) are shown in bold face.)

Supine 300 600 900

HR
PaBHR 0.43+0.04 0.55±0. 19056 0.54±0. 18 58 0.34±0.040 1

Baroreflex
ILV->HR e 6

(unitless, 1.99±0.19 1.70±0.190092 1.14±0.13 9 5 e-6 0.96±0.147.2e6
except Circ.

Mech. -- rculatory 61.42.07 50.92.68 5 44.5±3.10 °002 47.2±2.312.6,-5
Mechanics

mmHg)
m g) ILV-*ABP 1.22±0.10 1.35±0.180' 44 1.63±0.25° °32 2.74±0.120 22
(x 100)

HR 0007
BHR 4.42±0.54 5.93±0.50 ° 18 5.84±0.50017 5.99±0.54 °°7Baroreflex

Characteristic ILV->HR 3.24±0.36 5.72±0.810.0066 6.15±0.69 ° °0019 5.65±0.670.0002
Time
(sec) Circulatory 170±0.07 2.080.13 0'009 2.07±0.179 1.98±0.08Mechanics

ILV->ABP 8.04±0.59 8.67±0.88058 10.26I1.05 °0. ' 7 9.07±1.040.61
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It should also be noted that the characteristic times of the HR baroreflex and the

ILV-HR impulse responses computed by the APR method are seemingly larger than those

computed by the WPCR method. A careful inspection indicates that in some cases, the APR

method results in some additional dynamics in the latter part of the impulse responses (one

example shown in Figure 2-27) which induces a large value of characteristic time. The

mechanism of these dynamics is not clear. They may be caused by computational artifacts.

In summary, for the data presented above, the WPCR method may be more potentially

robust in terms of computational stability. Compared to the APR method which has been

applied successfully in studying cardiovascular regulatory mechanisms in previous publica-

tions [23, 56, 106], it demonstrated a better statistical significance in the results that are con-

sistent with general physiological notions.
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Figure 2-27 An example of the HR baroreflex and ILV-HR impulse responses of one subject at supine
posture identified by the WPCR and the APR methods respectively
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2.11 Conclusions

In this chapter, we presented a new system identification method named WPCR

(Weighted-Principal Component Regression). This approach transforms the system identifi-

cation problem from the time domain into the frequency domain asymptotically. The candi-

date models are the ones involving different subsets of PCs. Since the PCs reflect the domi-

nant frequency components specific to the data matrix, the candidate models are also data

specific. By excluding the frequency components poorly represented in the data, we im-

proved the estimation accuracy of the model parameters when the signals involved in system

identification are colored, as is the case for many physiologic signals. The weighting

scheme in this method incorporates some often-employed a priori knowledge and realisti-

cally modulates the basis functions of the estimated impulse response (in case of MA struc-

ture). With finite data used in system identification, the weighting scheme may regularize

the distribution of singular values and lower the estimated parameter variance via a reduc-

tion in model order.

Furthermore, the WPCR approach can circumvent some difficulties associated with con-

ventional ARX model selection in the time domain, e.g., when the true system has input de-

lays or multiple inputs [55]. As discussed in Chapter 1, in constructing candidate models,

the delay terms in an ARX structure are usually added in, one at a time, in an order of in-

creasing time shifts relative to the current output. This approach can not be applied to sys-

tems with input delays or multiple inputs. The WPCR approach circumvents these difficul-

ties by transforming the model selection problem into the frequency domain, which is real-

ized by lumping all input (and output) delays and decomposing them into PCs.

We applied the WPCR method in simulated systems whose impulse responses emulate

those that are often present in physiologic systems (for examples, see [23]). We demon-

strated that the WPCR method outperforms the traditional ARX and GLS methods in open-

loop and closed-loop systems respectively when the input signals are colored. Moreover,

the application of the WPCR method in experimental data showed more stable and statisti-
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cally significant results that are consistent with physiological notions than the APR method

which was successfully employed in previous studies.
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Chapter 3

Noninvasive Quantification of Cardiac Auto-
nomic Responsiveness

In Chapter 2, we proposed a new system identification method - the weighted principal

component regression method and demonstrated that it is advantageous over the conven-

tional ARX or GLS method for systems involving colored signals. As an application of this

method, we now consider the practical problem of non-invasively evaluating cardiac auto-

nomic responsiveness5. First, we provide a brief overview of the autonomic nervous system

emphasizing its role in regulating cardiovascular physiology.

3.1 Autonomic Nervous System Overview

The autonomic system is the portion of the nervous system that controls the visceral func-

tions of the body. It includes afferent nerves (from the Latin, ad = towards; ferro = carry),

which convey sensory signals from the end-organs to the controlling centers in the brain

(mainly the medulla, pons and hypothalamus) and efferent nerves (ex = from) which con-

ducts information from these controlling centers to the muscles and all the organs of the

body [45]. Efferent autonomic nerves have two major subdivisions called the sympathetic

s Since system identification models the relationship between the variation of the input and output signals,
autonomic quantification based on system identification techniques reflects the relative fluctuation in auto-
nomic tone, instead of the mean autonomic tone. We refer to this type of quantification as autonomic respon-
siveness in this thesis.
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nervous system and the parasympathetic nervous system. Sympathetic nerves originate in

the spinal cord between the segments T-1 and L-2 and pass into the sympathetic ganglia

along the spine and then to their end-organs (Figure 3-1) [45]. Parasympathetic nerves reach

the organs of the body through the cranial nerves III, VII, IX and X, and some sacral nerves

(Figure 3-1) [45]. By means of these pathways, autonomic nervous control results in largely

unconscious body adjustments such as changes in the size of the pupil, the digestive func-

tions of the gastro-intestinal system, and dilatation or constriction of the bronchi.

Figure 3-1 The sympathetic and parasympathetic nervous systems. Adapted from "Organization of the
Nervous System" (http://users.rcn.com/ikimball. ma.ultranet/BiolovPa-es/P/PNS.html )

The autonomic system plays a major role in nervous regulation of the heart and the circu-

lation. It controls the pumping activity of the heart and the constriction and dilatation of al-

most all arterioles and veins of the body. Specifically, stimulation of the parasympathetic

system mainly decreases the heart rate by way of parasympathetic fibers carried to the heart

in the vagus nerve. In contrast, stimulation of the sympathetic system increases the heart
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rate and force of contraction. The a sympathetic system constricts the coronaries and the 32

sympathetic system dilates them (a and 13 types are defined based on the types of adrenergic

receptors). In addition, the sympathetic system most often causes constriction of blood ves-

sels (with certain exceptions), enhances blood coagulation, increases glucose and lipids lev-

els, while the parasympathetic system has little effect in these aspects [45].

As a result of the above properties, the autonomic nervous system facilitates rapid control

of arterial blood pressure and enables redistribution of blood flow to different areas of the

body. The control of blood flow redistribution is achieved partially by autonomic mediation

of the contraction of blood vessels (vasomotor tone) as mentioned above (in addition to

autoregulation). It is related to the autonomic control of blood pressure and the subsequent

effect on cardiac output. The best known of autonomic nervous mechanisms for arterial

pressure control is the baroreceptor reflex (i.e. baroreflex). Baroreceptors are spray-type

nerve endings that are stimulated when stretched [45]. They are located mainly in the walls

of the arteries, the most important of which are in the walls of each internal carotid artery

(carotid sinus) and the aortic arch. The baroreceptor reflex is a feedback pathway that sends

signals to the brain center in response to arterial pressure fluctuation and leads to autonomi-

cally mediated changes in heart rate, heart contraction and peripheral resistance, with the

ultimate goal of maintaining arterial pressure within a normal range.

Due to the critical role played by the autonomic nervous system in normal physiological

function and in the pathogenesis of many medical disorders, an accurate quantification of its

functioning can help investigate certain diseases, symptoms or phenomena whose underly-

ing mechanisms are still unclear, such as sudden cardiac death [107-109], microgravity ex-

posure-induced syncope [106, 110, 11 1], circadian rhythms [1 12], et al. In addition, evalua-

tion of the autonomic function is often necessary for patients with diabetes [113, 114], renal

disease [115, 116], syncope [117, 118], ischemic heart disease [119, 120], chronic heart fail-

ure [121, 122], hypertension [123, 124], and other cardiovascular-related diseases to make

diagnosis, design treatment plan and perform follow-up.
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In the remainder of this chapter, we begin with a brief review on some of the previously

employed approaches for the quantification of autonomic function. We then provide a de-

tailed presentation of our proposed techniques which are based on the WPCR method. De-

pending on the breathing pattern of the subjects to be studied and the type of data available,

different approaches should be utilized. We discuss the quantification of sympathetic and

parasympathetic activity with respect to data collected during spontaneous breathing, ran-

dom breathing and metronomic breathing respectively. Experimental data will be utilized to

assess the performance of the methods.

3.2 Previous Approaches for Autonomic Function Quantification

The most intuitive way to evaluate autonomic function is by directly measuring the nerve

firing activity using electrodes. For example, muscle sympathetic nerve activity (MSNA,

e.g. from the peroneal nerve [125]) can be measured invasively to evaluate sympathetic

function. Another intuitive method of autonomic quantification is the biochemical meas-

urement of circulating transmitters in plasma secreted by the nerve fibers [45]. However,

the correlation between the measured concentration of neurotransmitters and the autonomic

tone is complicated by the duration of action, the diffusion ability of the neurotransmitters in

the bloodstream, the width of the synaptic gap and the specific tissue associated with the

nerve being studied, et al. [126]. Moreover, the above direct measurement techniques are

invasive to different extents and relatively hard to operate.

Early non-invasive techniques for analysis of autonomic activity were based on evaluating

heart rate or arterial blood pressure changes invoked by stimulation of cardiovascular re-

flexes. Heart rate response to provocative maneuvers such as deep respiration [127], pos-

tural change (tilt table testing or stand test) [128], and a Valsalva maneuver (the patient is

usually asked to expire for 15 to 20 seconds against a resistance of, e.g., 40 mmHg, in an

open loop system [129]) are often used to measure parasympathetic function. Sympathetic

function is typically evaluated by measuring the blood pressure response to postural change

[130], a cold pressor stimulus (the patient is usually asked to place his/her hand in cold wa-
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ter for 60 seconds [131]), and isometric exercise (the patient is instructed to squeeze a hand-

grip dynamometer for, e.g., 4 minutes [132]). These reflex tests suffer from similar prob-

lems. They are usually poorly standardized due to varying patient effort. Measurements of

these responses are often made over a short period of time, and may produce atypical results

solely due to natural variation [133].

Recent advances in signal processing have made it possible to non-invasively determine

changes in autonomic activity with minimal active patient participation. The most widely

used technique is the heart rate spectral analysis, which has been intensively studied since

the early 80 s [134]. Three main spectral components were distinguished in a spectrum cal-

culated from short-term recordings of heart rate: low-frequency peak (-0.04Hz), mid-

frequency peak (-0.12Hz) and high-frequency peak (-respiration frequency). It was dem-

onstrated that the mid- and high-frequency peaks are mediated by the parasympathetic sys-

tem whereas both the sympathetic and parasympathetic system may mediate the low-

frequency fluctuations [134]. In practice, power spectral component in the high frequency

domain (0.15Hz - 0.40 Hz) is usually deemed as an indicator of parasympathetic activity,

while spectral power in the low frequency domain (0.04 - 0.15Hz) is assumed to be an

indicator of sympathetic activity [135]. Other similar quantifications have also been

utilized. However, due to the overlapping of the effects of the two autonomic branches in

the low frequency domain, an accurate estimation of the sympathetic function has not been

provided through this method. In addition, a change in the high-frequency peak may be

caused by changes of respiratory volume or rate [136]. Lack of correlation between vagal

activity and the high-frequency peak has also been observed in conditions that involve a

strong vagal stimulation [136].

In recent years, a series of advanced techniques have been developed for the purpose of

autonomic function evaluation. Shin et al. [137] proposed the complex demodulation

method to examine the time varying characteristics of the respiratory frequency peak and the

low frequency (0 to 0.124 Hz) peak, supposedly related to parasympathetic and sympathetic

activity respectively. Complex demodulation enables a description of amplitude and phase

of particular frequency components of a time series as a function of time. Consequently,
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this method can be used to study local changes of a signal over time. Note that it does not

separate the effect of parasympathetic control from the sympathetic activity in the low fre-

quency range. Other closely-related techniques have also been proposed in literature [138,

139].

Vetter et al. [140] analyzed the time-domain fluctuations in heart rate (HR) and arterial

blood pressure (ABP) using the noncausal blind source separation (BSS) method. They as-

sumed that HR and ABP are linear mixtures of the cardiac sympathetic and parasympathetic

nerve activity related through the baroreflex pathway. BSS is a technique to separate the

statistically independent source signals using only their convolutive mixtures. This method

assumes mutual independence between the parasympathetic and sympathetic activity with

respect to HR regulation. This assumption may not be valid in practice since it has been

shown [141] that reciprocal relationships exist between the two autonomic branches. In ad-

dition, this method requires controlled breathing at 0.25 Hz to reduce the effect of respira-

tion in the low frequency range (0 to 0.15 Hz) within which the BSS of the HR and ABP

signals are performed. The authors also presented a similar method, but only requiring

measurement of surface ECG [142]. They assumed that the RR and QT time series are lin-

ear mixtures of the cardiac sympathetic and parasympathetic nerve activity. A BSS algo-

rithm for temporally correlated sources is applied to the RR and QT time series after noise

reduction. This method is also based on the assumption of mutual independence of the

sympathetic and parasympathetic nerve activity. It neglects the mechanical influence of res-

piration on ABP. The authors demonstrated that the sympathovagal balance (ratio between

sympathetic and parasympathetic nerve activity) can be estimated relatively accurately com-

pared to the conventional heart rate variability analysis. In a similar vein, Buckingham et al.

[143] proposed to analyze beat-to-beat QT interval variability as a quantitative index of

sympathetic activity provided that a reliable method of correcting for changes in heart rate

can be developed.

The analysis of nonlinear dynamics [144] or chaos analysis [145] for evaluation of auto-

nomic control processes has also been investigated in normal subjects and patients with car-

diovascular diseases. Zhong et al. [4] proposed the application of a nonlinear analysis
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method - principal dynamic modes (PDM) [146, 147] - to separately evaluate the contribu-

tions of autonomic nervous systems to heart rate variability. PDM analysis is a method for

characterizing nonlinear physiological systems while reducing higher-order dimensions.

The PDMs are computed from first- and second-order kernel estimates obtained from the

data via a Laguerre expansion technique. The PDMs are orthogonal and no claim of

uniqueness can be made [146]. The authors concluded that two dominant PDMs reflect

parasympathetic and sympathetic activity respectively as manifested through data obtained

during autonomic blockade.

The above methods employ advanced signal processing techniques. They may prove use-

ful as noninvasive quantification of cardiac autonomic function. However, these methods

can only separate sympathetic and parasympathetic function based on independence or or-

thogonality assumptions which are unrealistic and they have yet to be extensively validated

or applied in clinical investigations. Nevertheless, the above studies are valuable in that

they provide abundant insights for further development and improvement of related tech-

niques and they demonstrate the effectiveness of signal processing and system analysis

methodologies in tackling problems related to medicine and clinical practice.

3.3 Proposed Methods for Autonomic Function Quantification

In this section, we present three approaches to separately quantify cardiac sympathetic and

parasympathetic control during random breathing, spontaneous breathing and metronomic

breathing respectively. All methods are built upon the basis of system identification theory.

They each require noninvasive measurements of one or more cardiovascular-related signals,

such as, the surface ECG, ILV and ABP, depending on the specific clinical application.
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3.3.1 Autonomic Function Quantification I - the Area Method6

This technique is developed based on the closed-loop cardiovascular control model pre-

sented in Chapter 2. In Section 2.10, we employed experimental data (random breathing

ILV, ABP and HR) from 29 male subjects and discussed the closed-loop WPCR identifica-

tion of these data. For illustration purpose, Figure 3-2 displays the impulse response func-

tions identified for one subject, in addition to the noise spectra. The works of Triedman et

al. [148] and Mullen et al. [23] demonstrated that both the positive wave and the negative

wave in the ILV--HR impulse response and the negative waves in the HR baroreflex im-

pulse response (see Figure 3-2) for humans were nearly obliterated after total cardiac auto-

nomic blockade. Therefore, these two couplings are mainly regulated by the autonomic sys-

tem. It is natural to postulate that certain characteristics of the impulse responses may con-

tain information about autonomic tone. However, the key question is whether or not there is

a way to distinctly identify the parasympathetic component and the sympathetic component.

Berger and coworkers [10] studied the dynamical behavior of the canine cardiac pace-

maker - the sinoatrial (SA) node. The excitation of this system was achieved with a broad-

band input signal whose frequency varied about some mean value in proportion to a band-

limited Gaussian white-noise signal. The impulse responses of the sinoatrial node discharge

rate under pure vagal stimulation and pure sympathetic stimulation at a mean rate of 4 Hz

and 1 Hz, respectively, are shown in Figure 3-3, as adapted from [10]. The parasympathetic

response reflects the lack of delay and the broad-band nature of the atrial response to vagal

excitation, whereas the sympathetic response reveals a delay of roughly 2 s and a slow-

changing feature [10]. Comparing Figure 3-3 to the ILV->HR impulse response in Figure

3-2, it can be appreciated that the parasympathetic and sympathetic impulse responses

mimic, respectively, the initial upright wave and the delayed negative wave (with a reverse

in polarity) in the ILV->HR impulse response.

6 Much of the content in this section has been presented in the Journal of Applied Physiology [106].

.
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Figure 3-2 Closed-loop model of short-term cardiovascular regulation identified by means of
cardiovascular system identification. Impulse response functions and noise sources are identified for a

subject in the supine position pre-bed rest. Ninty-five percent confidence intervals are provided for
impulse response functions. HR, heart rate tachogram; ILV, instantaneous lung volume; ABP, arterial

blood pressure; SA, sinoatrial; NHR, power spectrum of perturbations to HR not attributable to HR
Baroreflex and ILV-HR; NABP, power spectrum of perturbations to ABP not attributable to

Circulatory Mechanics and ILV-ABP (adapted from 11061 with permission granted by the APS).
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Figure 3-3 Impulse responses of the canine SA node discharge rate with vagal stimulation (upper) and
sympathetic stimulation (lower) (adapted from 1101 with permission granted by the APS)

The above experimental evidence indicates that the ILV->HR impulse response is mainly

modulated by the autonomic system. Moreover, assuming linearity of the system, we can

interpret and model it into two components as follows (Figure 3-4). The initial upright wave

represents the brief increase in HR mediated by parasympathetic withdrawal as a result of an

impulse ILV input (very rapid inspiration and expiration). The increase begins at time < 0,

indicating that HR rises in anticipation of the corresponding inspiration which reflects the

time delay between central initiation of cardio-respiratory activity and the physical onset of

inspiration [10, 148]. The delayed negative deflection is the consequence of sympathetic

withdrawal which is slower than the parasympathetic response. Therefore, the ILV->HR

impulse response consists of two main separable components each reflecting the modulation

of the sinoatrial node by autonomic efferent signals. If we divide the impulse response into

two components at the point where it first crosses zero after reaching the peak (Figure 3-4),

the areas covered by the two components quantify parasympathetic and P-sympathetic effer-

ent activity responsiveness, respectively. Note that from Figure 3-3, there is no significant

overlap in time between the parasympathetic response and the sympathetic response. Our

separation approach assumes that this overlap can be neglected. We will refer to the above

technique as the Area method in the subsequent sections.
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Figure 3-4 Model of a standard ILV-HR impulse response. The area of the initial upright wave
represents parasympathetic responsiveness and that of the slower negative deflection represents

sympathetic responsiveness. The axes are labeled only to provide an example of the scale (adapted from
[106] with permission granted by the APS).

HR Baroreflex impulse response (see Figure 3-2 for example) can also be modeled as re-

flecting parasympathetic and sympathetic components. However, in response to an impulse

change in ABP, stimulation of parasympathetic function and suppression of sympathetic

function both lead to a decrease in HR. Due to their identical polarity, the responses in HR

induced by the two autonomic mechanisms normally overlap each other in the HR Barore-

flex impulse response and are hard to separate. Therefore, we only employ the ILV->HR

impulse response to deduce autonomic responsiveness.

The Area technique has been applied to study autonomic function and its association with

tilt intolerance in healthy human subjects before and after prolonged head-down-tilt bed rest

(a ground-based simulation of microgravity) [106]. In [106], the APR method was em-

ployed to identify the impulse responses in the closed-loop model. As discussed in Chapter

2, our newly presented WPCR method can lead to statistically more significant results which

109
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are also more computationally stable. In Section 3.4.2, we will validate the Area technique

in association with the WPCR method via experimental data.

The above method for the quantification of autonomic responsiveness requires the subject

to follow a random breathing protocol to obtain persistently exciting signals for system iden-

tification. Although this procedure could be easily performed in research labs, it may be

cumbersome in clinical settings and an approach that works for spontaneous breathing

measurements is more desirable and practical. Furthermore, the above technique needs

three types of noninvasively measured signals - HR, ILV and ABP. However, in usual pa-

tient monitoring, the most conveniently measured signal is the surface ECG. Hence, a tech-

nique that requires only ECG measurements to quantify autonomic function is most practical

and readily applicable. To this end, we propose, in the following section, a new quantifica-

tion method for autonomic responsiveness which is also based on WPCR system identifica-

tion.

3.3.2 Autonomic Function Quantification II - the SD Method

Before going into details about the proposed identification method, we need to note that

instantaneous lung volume (ILV) signal can be extracted from surface ECG measurements.

The most widely employed method is the EDR method (ECG-Derived Respiration) [149]. It

is based on the phenomenon that physical influences of respiration lead to amplitude varia-

tions in the observed ECG and thus modulate the direction of the mean cardiac electrical

axis. The authors [149] proposed a robust method to measure the fluctuations in the mean

cardiac electrical axis (typically between 1° and 12° peak-to-peak) which was shown to be

well-correlated with respiration through experimental data. Although the method works best

when two ECG leads are available, it is possible to generate an EDR signal from only one

lead [149]. Other techniques have also been investigated for respiration monitoring based

on ECG signals, for example, the amplitude demodulation method [150], principal compo-

nent analysis on the QRS parameters [151 ], et al. In addition, a type of commercially avail-

able electrodes may be utilized to measure respiratory impedance pneumography (RESP)
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and ECG simultaneously. RESP measurement is accomplished by passing a very small high

frequency electrical current across the ECG electrodes and measuring the change in imped-

ance as the chest volume changes.

In this section, we propose a new method for the quantification of cardiac autonomic re-

sponsiveness utilizing ILV and HR data. Based on the above ILV-derivation techniques, our

method only necessitates surface ECG measurement. One advantage of this method is its

applicability to data collected during both spontaneous breathing and random breathing.

Two problems need to be solved in the development of this method. First, the ILV signal

during spontaneous breathing is generally narrow banded (0.15 - 0.25 Hz) and does not sat-

isfy the 'persistently exciting' requirement imposed by conventional system identification

techniques. The other difficulty is induced by the effect of arterial blood pressure on HR.

Based on the discussion in the last section, the ILV--HR impulse response contains evident

features which can be mapped to parasympathetic and sympathetic responsiveness. How-

ever, this impulse response can be obtained only when the ABP signal is also available such

that the variations in HR due to ABP may be accounted for. With only ILV and HR, one

may still attempt to identify the transfer relation between them (we denote it as ILV=HR to

emphasize the hidden effect of ABP). However, since the HR baroreflex (or ABP->HR)

pathway is also regulated by the autonomic nervous system, it is not apparent how

parasympathetic and sympathetic regulation is reflected in the ILV>HR coupling. In the

following section, we aim to explore the above questions and formulate the autonomic

function identification method using ILV and HR only.

Parasympathetic Index

We first study the ILV=HR coupling to extract parasympathetic index from its impulse re-

sponse function. For simplicity, the closed-loop cardiovascular regulation model (Figure

2-25) is redrawn in Figure 3-5 without explicitly showing the noise disturbances. In this

model, the couplings presented in the rectangular boxes are assumed to be linear. The only

nonlinear component is the SA node.
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Based on Figure 3-5, the HR variations are induced through two main pathways as repre-

sented by the following equation (note that the noise terms are omitted):

AHR = AILV * l + AABP* h2 (2.50)

where hi and h2 represent the transfer relations of ILV-*HR and ABP--HR respectively.

Since the characteristics of the ILV->HR impulse response and their association with the

autonomic function have been studied thoroughly in the last section, we intend to find some

correlation between the features in the composite impulse response (ILV>HR, enclosed by

the dotted box in Figure 3-5) and those in the ILV->HR coupling. Because our main inter-

est here is to define a parasympathetic index based on the ILV>HR impulse response, we

first consider the high frequency components in the HR data. If the contribution of the ABP

signal to HR variation is relatively small in the high frequency range, then the ILV->HR

coupling is the major contributor to HR variability in this range. In this case, the high fre-

quency components in ILV=HR may have the same interpretation as those in the ILV->HR

coupling. Therefore, it may be possible to define a parasympathetic index based solely on

the ILV>HR impulse response.

ILV

Figure 3-5 Short-term closed-loop cardiovascular regulation
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To empirically demonstrate the above conjecture, we employ ILV, ABP and HR data

from 10 healthy subjects (six males, four females, age: 23.9 + 3.9 (SD) yr) obtained during

both random breathing and spontaneous breathing. The data were collected in supine pos-

ture and 30° head-up-tilt posture respectively. The measurements were performed in the

Clinical Research Center of the Massachusetts Institute of Technology and all subjects pro-

vided written, informed consent. We first consider the case of random breathing because the

system identification method for this type of data is well established.

Approximately 6-minutes of ILV, ABP and HR signals were downsampled from 100 Hz

to 1.25 Hz. The transfer functions ILV->HR and ABP->HR can be identified using the

WPCR-MA method as presented in Chapter 2, Section 2.10 (same initial model orders,

model selection criterion and closed loop pre-whitening and weighting schemes). Next, the

HR components, which are due to ILV variation and ABP variation (denoted as HRILv and

HRABp) respectively, are calculated. The averaged power density spectra of these compo-

nents are shown in Figure 3-6. It can be appreciated that the HRABP signal is low-frequency

dominant. Quantitatively, in the relatively high frequency range (0.15 Hz to 0.4 Hz), the

power of HR is 42.4 (supine) (25.5 (tilt)) times that of HRABp and the power of HRILv is

26.1 (supine) (10.2 (tilt)) times that of HRABP. Hence, the contribution of ABP to HR in the

high frequency range may be considered to be small and the ILV>HR transfer function

within this range may possess similarity to the corresponding ILV->HR components.

Figure 3-7 displays the averaged frequency responses of these two transfer functions to

demonstrate this similarity.

Since only a parasympathetic index is being sought for in this section, we study the corre-

lation of one specific high frequency-related component, the peak amplitude, of the

ILV-->HR and ILV>HR impulse responses. As discussed in Chapter 2 and [106], the for-

mer has been demonstrated to be a robust indicator of parasympathetic function. Figure 3-8

displays the averaged ILV--HR and ILV>HR impulse responses of the 10 subjects in both

supine and 30° tilt postures identified by the WPCR method. Figure 3-9 shows the values of

the peak amplitude of the two impulse responses of individual subjects and the correspond-

ing correlation analysis. It is evident that the peak amplitude of the ILV=HR impulse re-
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sponse is closely correlated with that of the ILV-*HR impulse response. Therefore, the

former may also serve as an indicator of parasympathetic responsiveness. In Sections 3.4.2

and 3.4.3, we will further validate this conclusion via experimental data.

Random Breathing Data
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Figure 3-6 Power density spectra of the HR signal, the HR component due to ILV variations and the HR
component due to ABP variations, random breathing data. (a) supine posture; (b) 300 tilt-up posture.
Average of 10 subjects. Note that the HR signals have been normalized with respect to their respective

mean value to reduce inter-subject variability

0.16

0.14

0.12

0.1

0.08

ectrum
spectrum
spectrum

NI
0

- HR spi
HRILv

- HRABF

..... ..... ....... ... ...

0.2 0.4
Hz
(a)

NIl-
a)
3:
0o
n

U.UO

0.07

0.06

0.05

0.04

0.03

0.02

0.01

n

0.06

0.04

0.02

0 0.6 0.8

I - HR,,

0.2 04 . _ . _ . _~

Io

n reo
r I

(1



Proposed Methods for Autonomic Function Quantification 115
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Figure 3-7 Frequency responses of the ILV=>HR and ILV-HR transfer functions identified by the
WPCR method, random breathing data. (a) supine posture; (b) 300 tilt-up posture. Average of 10

subjects.
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Figure 3-8 Impulse responses of the ILV-HR and ILV=>HR couplings, random breathing data. (a)
supine posture; (b) 300 tilt-up posture. Average of 10 subjects.
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Figure 3-9 Correlation analysis of the peak amplitude (BPM/Liter/sec) of the ILV-HR and ILV=>HR
impulse responses, random breathing data. (a) supine posture; (b) 30 ° tilt-up posture

Next, we consider the case of spontaneous breathing. As aforementioned, the conven-

tional system identification requirement of persistently exciting input signals is not satisfied

by spontaneous breathing data. To illustrate this problem, an example of the ILV spectra of

one subject during spontaneous breathing and random breathing is demonstrated in Figure

3-10. It is apparent that the ILV frequency content is concentrated in the relatively high fre-

quency range in spontaneous breathing data, while significant low frequency components

are present in random breathing ILV signals. Thus, the major low frequency components (<

0.15 Hz) present in the ILV=>HR frequency response (see Figure 3-7) are underrepresented

in the spontaneous ILV spectrum and the persistently exciting requirement of system identi-

fication is not satisfied.

The WPCR method is suitable to cope with spontaneous breathing data for the purpose of

calculating a parasympathetic index. As demonstrated in Chapter 2 (Section 2.8.2) through

computer simulations, this method is able to estimate the impulse response at frequencies
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excited by the input signal relatively accurately owing to its frequency selective property,

even when the input signal does not encompass the entire spectrum of the transfer function.

Since in the current problem, spontaneous ILV signal has significant power in the high fre-

quency range, we anticipate that the high frequency components in the impulse response,

e.g., the peak of the ILV=HR impulse response, can be identified accurately with spontane-

ous breathing data. Further discussion in this aspect based on computer simulations is pro-

vided in Appendix B. Hereafter, the WPCR-ARX method will be employed to identify the

ILV=HR impulse response. The same weighting scheme as presented in Chapter 2 (Sec-

tion 2.8.1) will be incorporated. Note that because of the lack of information in the low fre-

quency range of the ILV signal, it is not possible to estimate the low frequency components

in the transfer function accurately via system identification.
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Figure 3-10 Power density spectrum of the ILV signal collected from one subject. (a) supine,
spontaneous breathing; (b) supine, random breathing; (c) 300 tilt-up, spontaneous breathing; (d) 300 tilt-

up, random breathing.
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Figure 3-11 displays the averaged ILV>HR impulse responses identified using random

breathing and spontaneous breathing data respectively in supine and tilt-up postures. Figure

3-12 compares the peak amplitude of the ILV>HR impulse response of each subject during

random breathing and spontaneous breathing. The correlation analysis demonstrates that

this value can be identified by the WPCR-ARX method with a good accuracy using sponta-

neous breathing data. In combination with the previous analyses on the random breathing

case, we conclude that the peak of the ILV>HR impulse response during spontaneous

breathing can also serve as a parasympathetic index. This conclusion will be further vali-

dated through experimental data in Section 3.4.3.
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Figure 3-11 Comparison of ILV=>HR impulse responses identified by the WPCR method using
spontaneous and random breathing data. (a) supine posture; (b) 300 tilt-up. Average of 10 subjects.
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Figure 3-12 Correlation analysis of the peak amplitude (BPM/Liter/sec) of the ILV=>HR impulse
responses during spontaneous breathing and random breathing. (a) supine posture; (b) 300 tilt-up.

In summary, given the ILV and HR data (which can be derived from ECG) of one subject

during either spontaneous breathing or random breathing, we can derive a parasympathetic

index based on the WPCR system identification of the ILV>HR coupling.

Sympathetic Index

Since sympathetic control of the cardiovascular system is low-frequency related (0 - 0.15

Hz in general), the sympathetic responsiveness can not be easily quantified based on the

ILV=HR impulse response due to the contribution of ABP to HR in the low frequency

range. In this section, we present a simple, but robust method to extract sympathetic index.

In the forward modeling of autonomic control of heart rate variation, the integral pulse

frequency modulation (IPFM) model [152] is often used to describe the response of the car-

y= 1.17 *x- 1.29
Correlation Coeff. = 0.952

p 2.2e-5 o

: : /oi ' i '



120 Noninvasive Quantification of Cardiac Autonomic Responsiveness

diac pacemaker cells to neural stimulation. Specifically, the IPFM process integrates its in-

put signal until reaching a predefined threshold, at which point a pulse is generated and the

integrator is set to zero to start the integration anew. This process can be expressed as:

T= "[m + m(t)]dt (2.51)

where mo is a constant contribution of the intrinsic cardiac pacemaker. m(t) is the modulat-

ing signal. T is the predefined threshold that determines the intrinsic frequency of the gen-

erated pulses when m(t) is equal to zero.

The modulating signal of the IPFM model reflects the parasympathetic and sympathetic

regulation on the sinoatrial node. In the literature, this signal is often modeled as a linear

function of the concentrations of the neurotransmitters combined by their corresponding

receptors [153, 154], i.e.,

m(t) = k, [NE](t)-k 2 [Ach](t) (2.52)

where [Ach] denotes the concentration of the parasympathetic neurotransmitter (acetyl-

coline) and [NE] denotes that of the sympathetic one (norepinephrine). The parameters kl

and k2 are some fixed proportional coefficients indicating the input to the pacemaker cell

generated by unit concentration neurotransmitter.

Based on the IPFM model, if representing the averaged [NE](t) in the time interval [t,

tn+l] as [NE][n], and that of [Ach](t) as [Ach][n], we have:

HR[n] = + kl[NE[n] - 2[Ach][n]) (2.53)

where HR[n] = 1/(tn+ -tn) is a measure of instantaneous heart rate. Therefore, HR is line-

arly related to the beat-averaged concentrations of the effective neurotransmitters (those that

are bound with receptors) which are in turn determined by the variation in the firing fre-

quency of the autonomic nerves and the chemical kinetics involved. This linear model has

been incorporated in the forward modeling of autonomic control of heart rate and simulation
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results that are consistent with experimental findings have been demonstrated in the litera-

ture [153, 154].

Based on Equation (2.53), it is apparent that variation in HR is contributed by two com-

ponents: one is due to parasympathetic regulation, the other is due to sympathetic regulation.

Importantly, a linear model may be assumed in relating these two components to the change

in HR. Inspired by this model, we utilize a similar linearity assumption in the following rep-

resentation of HR variation:

A(HRo) = aS, + fP, + AHR° (2.54)

where A(HR ) denotes the "change" of HR in a low frequency range to be defined. The pa-

rameters a and , are two coefficients whose values are to be determined below. S is the

sympathetic index to be computed which should be related to the change in HR resulted

from sympathetic regulation, while PI denotes the parasympathetic index to be defined

which reflects the change in HR owing to parasympathetic regulation. HR ° is the residual

HR variability when both the parasympathetic and sympathetic control on HR are com-

pletely obliterated (i.e., SI = 0, PI = 0, complete autonomic blockade). It may be due to

measurement noise or some mechanical mechanisms affecting HR [148]. Qualitatively,

Equation (2.54) is a mathematical expression of the a priori knowledge that HR variability

in the low frequency range reflects a combined effect of sympathetic and parasympathetic

modulation on HR.

Next, we define the specific computation of A(HRO). A natural choice for a scalar repre-

sentation of variation in a time series may be the standard deviation (or variance). However,

this measure is merely a quantification of variability in consideration of the entire frequency

spectrum. To have a more specific characterization, we limit the computation of HR change

in a particular frequency range, denoted by the subscript co in A(HR,(). Since our goal is to

quantify the sympathetic function which is low frequency dominant, we define this fre-

quency range to be between 0.05 Hz and 0.15 Hz. Note that a similar range is often utilized

to derive directly a sympathetic index based on HR spectral analysis [135], which is not ac-

curate due to the additional effect of parasympathetic control. The frequency components
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below 0.05 Hz may be closely related to the 1/f disturbance [57] or baseline drift. Thus, we

exclude those components in our current analysis.

For the parasympathetic index PI, we propose to use the normalized (to be discussed)

peak amplitude (Pmax) of the ILV=>HR impulse response (computed with ILV being divided

by its standard deviation). As discussed previously, Pmax reflects parasympathetically medi-

ated HR alteration excited by an impulse change in ILV. Note that although A(HR&) and PI

defined above both quantify HR change (with the same unit, e.g. beat/min), they differ in

their physical meanings. Thus, a proportional coefficient a is needed to represent the

amount of A(HRo,) that is equivalent to a unit PI.

In order to compute SI based on Equation (2.54), we need to calculate the unknown coef-

ficients a, W and AHIR°. When the alterations in the autonomic function are not very drastic

so as to challenge the extremities of the operating range, the values of these coefficients can

be assumed to remain constant among subjects. This assumption is corroborated by the

findings presented in [155]. We therefore propose to compute the unknown coefficients

empirically through experimental data. A data set containing 14 subjects under various

autonomic blockade conditions in supine and standing postures is employed (we name this

data set the CRC data). The data were published in a previous study [23]. The subjects are

healthy male nonsmoking volunteers (ages 19-38 yr, median 21 yr). ILV, ABP and ECG

signals were obtained with the subjects following a random breathing protocol [23]. After

collection of control data in the supine or standing posture, seven subjects received atropine

(0.03 mg/kg iv, a competitive antagonist of the muscarinic cholinergic recep-

tors/parasympathetic receptors), and data in each posture were again recorded [23]. These

subjects then received propranolol (0.2 mg/kg iv, a non-selective beta-adrenergic receptor

blocking agent), and a final set of recordings in each posture was obtained. The remaining

seven subjects received the same dosages of drugs but in the reverse order [23]. We employ

approximately 6 minutes of data in the analyses hereafter which were downsampled to 1.5

Hz from 360 Hz.

Before proceeding with the computation of the unknown coefficients, we first evaluate the

linearity assumption between A(HR,) and P1 in Equation (2.54) utilizing the CRC database.
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Figure 3-13 is the scatter plot of A(HR,), as defined above, versus the values of the peak

amplitude (Pmax) of the ILV>HR impulse response. Each sample point in the plot denotes

one subject in one of the following conditions: supine with propranolol injection and stand-

ing with propranolol injection. The line indicates the linear regression of the scattered sam-

ples whose correlation coefficient is 0.80. Since propranolol administration is expected to

block the sympathetic pathway, this result supports the assumption of a linear relationship

between PI and A(HR,), at least in the range encompassed by the samples in Figure 3-13. In

reality, the dosage of propranolol may not be adequate for a complete sympathetic blockade

which may induce the deviation of the samples from a linear relation in Figure 3-13. Since

the sympathetic pathway is a counterpart of the parasympathetic control, it is acceptable to

also assume linearity in the relationship of a sympathetic index and A(HR), at least as a first

attempt.
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Figure 3-13 Scatter plot of the standard deviation of HR versus the peak amplitude of the ILV=>HR
impulse response, seven subjects in the CRC database in SUP and STP conditions.

Next, we define PI as a normalized version of the peak amplitude (Pmax) of the ILV>HR

impulse response.
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P,= 0, at SUB
P = kp Pax + ko {P =, at SUBC (2.55)

where SUB denotes the SUpine, autonomic double Blockade condition, and SUC denotes

the SUpine, Control condition. Data of the 14 subjects under these two conditions can be

used to compute the coefficients kp and ko. Note that ko is not zero in general since Pmax is

not usually zero at SUB due to residual mechanical effects or measurement noise.

Subsequently, we defined the normalized range of SI,

F 0, at SUB
S = (2.56)

1 , at STC

where STC denotes the STanding, Control condition. Therefore, AHR ° can be computed as

the averaged standard deviation of HR in the low frequency range (0.05-0.15 Hz) of the 14

subjects at SUB. Subsequently, a and p can be calculated using the data at STC with SI be-

ing 1 and PI being computed through Equation (2.55).

In the identification of the ILV=HR coupling, we normalize the ILV signal by its stan-

dard deviation to account for the baseline difference in respiration need among subjects due

to, for example, different height, weight or metabolic rate, et al. Although the unknown

constants in Equation (2.54) are calculated using random breathing data, they are also appli-

cable to spontaneous breathing data after ILV normalization because random breathing does

not affect the normal operation of the autonomic system [48]. However, the values of the

autonomic indices of the same subject during random and spontaneous breathing are not

identical, which will be discussed in more detail in Section 3.5.

To summarize, the parasympathetic and sympathetic indices of any subject can be ob-

tained given the HR and ILV signals (both of which may be derived from surface ECG) dur-

ing either random or spontaneous breathing. Henceforth, we will refer to the above method

as the SD method for autonomic function quantification.
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3.3.3 Autonomic Function Quantification III - the SDm Method

The Area and the SD methods require that the ILV signal contains significant power either

in the whole frequency range being studied or in the high frequency range. However, there

are cases when only data during metronomic breathing are available, e.g., when the patient

is on a ventilator. In such situations, the above system identification involving the ILV sig-

nal is not practically realizable. To this end, we propose a slightly modified SD method (the

SDm method) for autonomic function quantification using metronomic ILV and HR signals.

Since the metronomic ILV signal has significant power at only one frequency, its effect

on HR is also concentrated at the same frequency based on the linearity assumption. In ad-

dition, this frequency, i.e., the rate of controlled breathing, is usually higher than 0.15 Hz

(higher than the upper limit of the effective range of sympathetic frequency response).

Therefore, HR variability at this frequency is mainly regulated by the parasympathetic sys-

tem. Moreover, as demonstrated previously (Figure 3-6), HR power around the usual respi-

ration frequency is mainly accounted for by ILV variation through the coupling of ILV-*HR

with the contribution of the ABP signal being negligible. Therefore, the coupling of the res-

piration frequency components in ILV and HR can serve as a basis for the derivation of a

parasympathetic index. In practice, the amplitude of the ILV-HR frequency response at

the metronomic breathing frequency computed as the ratio between the amplitudes of HR

and ILV Fourier Transforms at this frequency may be employed to derive the parasympa-

thetic index (this method belongs to the nonparametric system identification family).

Since significant amounts of energy in the metronomic ILV and HR signals are concen-

trated at the respiration frequency, the signal-to-noise ratio at this frequency is usually high.

Therefore, the above defined parasympathetic index is expected to be relatively accurately

computed. For random breathing or spontaneous breathing data, similar methods should not

be applied because the respiration-related spectrum is fairly broad-band and a high signal-to-

noise ratio at any particular frequency is not ensured.

For the sympathetic index, the model in Equation (2.54) of the SD method can still be

utilized due to a similar argument as in section 3.3.2. Ideally, a database with autonomic
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blockade during metronomic breathing should be employed to normalize the parasympa-

thetic index and compute the coefficients in Equation (2.54). With the lack of such a data-

base, the values calculated based on the CRC data may also be exploited, at least for the

purpose of validating the method. This approximation is based on the fact that the parasym-

pathetic impulse response (hp) usually has a brief duration (about 2 s, see Figure 3-3). With

a sample frequency of 1.25 Hz normally employed in data analysis, hp usually encompasses

two or three time intervals. It is expected that the value at the peak is significantly larger

than at the other samples due to the abrupt feature of this impulse response. From these ar-

guments and the definition of a frequency response:

Hp (o) = E hp [n ] -e- i' " , (2.57)
n

the amplitude of Hp(c) may be approximated by the peak of hP[n] without much compro-

mise of accuracy.

In summary, in cases of metronomic breathing, a parasympathetic index can be derived

from the amplitude of the ILV-+HR frequency response at the metronomic breathing fre-

quency and a sympathetic index can be computed based on Equation (2.54) and the CRC

database.

3.4 Validation Results

In this section, we apply the above proposed methods (Area, SD and SDm) to analyze ex-

perimental data obtained during random breathing, spontaneous breathing and metronomic

breathing respectively. These applications allow a validation and a further exploration of

the properties of each method.
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3.4.1 System Identification Using EDR Signals

Before engaging in the validation of the techniques for autonomic function identification, we

first demonstrate through a few examples that the ECG-Derived Respiration (EDR) signals

can be utilized as a substitute of ILV in the identification of the ILV=>HR impulse response.

As discussed in Section 3.3.2, the EDR technique derives a respiration signal from the ECG

data based on the phenomenon that respiration modulates the mean cardiac electrical axis

[149]. This technique provides one sample of the EDR signal per cardiac cycle by comput-

ing the area of each QRS complex. Given that heart rate is almost always greater than twice

the respiration rate, it suffices to interpolate the samples using cubic splines to produce a

continuous EDR signal [149]. In theory, two ECG signals measured simultaneously are

needed to compute the changes in the mean cardiac electrical axis. If only one ECG lead is

available, QRS area measurements from that lead can still be used as an approximation to

the respiration signal. In this case, it is desirable to have the lead axis significantly different

from the mean electrical axis to obtain a relatively large signal [149].

To demonstrate the applicability of the EDR technique in identifying the ILV=>HR im-

pulse response, we take one set of data from the MIMIC database [156] published in

PhysioNet [157]. This specific example is obtained from a male, 52 year old ICU patient

with congestive heart failure lying in the supine position during spontaneous breathing.

EDR is derived based on two ECG signals (with a sample frequency of 500 Hz) from leads

V and II. Figure 3-14(a) displays one segment of the EDR signal (at a sample frequency of

125 Hz) and the corresponding ILV signal measured directly via impedance pneumograph.

Note that the two signals are zero-meaned and normalized by their respective standard de-

viation in the frequency range of 0.15 to 0.4 Hz where the major respiratory energy resides.

The impulse responses identified with these two signals (- 6 min long) after being down-

sampled to 1.25 Hz are shown in Figure 3-14(b). It can be seen that the EDR signal agrees

with the ILV signals fairly well and enables an EDR~HR impulse response that is analo-

gous to the ILV>HR impulse response. In Figure 3-14(a), the EDR signal seems to be

shifted left relative to the ILV signal which may be due to the low sampling rate (one per

beat) in the computation of the EDR samples. This shift does not present a problem for the
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current system identification as long as enough causal and non-causal input delays are in-

cluded in the WPCR method (the ILV=>HR coupling is non-causal) and only the value of

the peak amplitude of the identified impulse response is sought. Note that the shape of the

impulse responses in Figure 3-14(b) appears to be different from those presented previously;

this may be due to some alterations in the patient's autonomic control as a result of treat-

ment or long-term heart disease.
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Figure 3-14 (a) two-lead ECG-based EDR signal and the ILV signal from direct meaurement on a ICU
patient during spontaneous breathing; (b) the impulse responses identified using the EDR and the ILV

signals respectively

In the databases to be used for validation in the next section, only one ECG signal is

available. In this scenario, it is still possible to derive a reliable EDR signal if the ECG lead

is significantly different from the mean cardiac electrical axis. As an example, Figure

3-15(a) and (b) demonstrate, respectively, the EDR signal and the respective impulse re-

sponses based on the EDR and ILV data of a healthy subject in standing posture during

spontaneous breathing (the data are from the AGE database, see Section 3.4.3). Figure 3-16
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demonstrates the EDR and ILV signals and their power density spectra for a healthy subject

in the supine position during metronomic breathing (the data are from the AM database, see

Section 3.4.4). In the above analysis, approximately 6 minutes of signals at a frequency of

1.5 Hz were employed. It can be appreciated that for the purpose of deriving a parasympa-

thetic index as described in the last section, the EDR signal can be used as a substitute for

the direct measurement of ILV.
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Figure 3-15 (a) the one-lead ECG-based EDR signal and the ILV signal from direct meaurement on a
healthy subject during spontaneous breathing; (b) the impulse responses identified using the EDR and

the ILV signals respectively

a)
=3

co

N
co
E
0z

'- ILV=>HI
| EDR=>l

I' .. ... . . .. . . ..

I. ..

II

I R

1

I



130 Noninvasive Quantification of Cardiac Autonomic Responsiveness

5.2 5.4 5.6 5.8
Sample

6 6.2

x 104

300

250

200

150

100

50

0 0.1 0.2 0.3 0.4
Hz

(a) (b)

Figure 3-16 (a) the one-lead ECG-based EDR signal and the ILV signal from direct meaurement on a
healthy subject during metronomic breathing; (b) the power spectra of the EDR and ILV signals

In the remainder of this chapter, we present the identification results of the previously

proposed methods for autonomic function quantification utilizing experimental data. The

effectiveness of each method will be evaluated based on well-known physiologic knowledge

relevant to specific experimental interventions. Since only one-lead ECG signals are avail-

able in the databases to be employed and the placement of the ECG leads was not optimized

specifically to derive an accurate EDR signal, we will use directly measured ILV signals in

system identification.

3.4.2 Random Breathing Data

We analyzed two databases to validate the two methods applicable to random breathing data

- the Area method (Section 3.3.1) and the SD method (Section 3.3.2). The first data set is

the one containing the training data of the SD method, i.e., the CRC data. Since only data at
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SUC, STC and SUB conditions were employed to generate the model, the identification re-

sults for the other conditions still provide insights in evaluating the performance of the SD

method.

Although all fourteen subjects were tested in the SUC, STC, SUB and STB conditions,

only seven subjects are involved in the SUP and STP conditions and another seven are in-

volved in the SUA and STA conditions. Figure 3-17 illustrates the parasympathetic and

sympathetic indices identified by the Area method. Table 3-1 shows the corresponding P

values of the paired-T tests (for 14-subject comparisons) or Wilcoxon's signrank tests (for 7-

subject comparisons) between the supine and the standing conditions and between the con-

trol and blockade conditions. Statistical comparisons among the parasympathetic indices

demonstrate precisely the expected results consistent with general physiologic notion. For

example, it decreases significantly upon standing when the parasympathetic control is not

blocked. For each case of parasympathetic blockade, it decreases significantly compared

with the corresponding control condition. On the other hand, the sympathetic index is not

able to track changes due to postural shift in this data set. There is a significant drop in the

sympathetic index during STB and STP compared to the control condition (STC). The P

values are also nearly significant for SUB condition compared with their respective control

cases. Note that the sympathetic tone may withdraw to some extent when the parasympa-

thetic pathway is blocked (e.g. STC vs. STA in Table 3-1) and vice versa. This is due to the

compensation mechanisms in autonomic control - a withdrawal of the unblocked branch is

to compensate for the change in HR due to the blockade of the other branch.

Figure 3-18 and Table 3-2 demonstrates the results of the SD method on the CRC data.

Similar to the results of the Area method, the parasympathetic index accurately demonstrates

the expected alteration with each intervention consistent with physiologic notions. In addi-

tion, the sympathetic index also demonstrates statistically significant changes upon postural

shift (SUC vs. STC; the significantly higher value at STB than at SUB may be due to in-

complete blockade). In cases of sympathetic blockade (except SUP), statistically significant

reductions in the sympathetic index are detected (SUC vs. SUB, STC vs. STB, STC vs.

STP). The insignificant comparison between SUC and SUP may be reasonable because it is
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known that the baseline sympathetic activity in the supine posture is fairly weak [45]. The

sympathetic index decreased significantly at STA which may be a consequence of the com-

pensation mechanism aforementioned.

The second database employed here is named the TDR database. Ten healthy volunteers

(five males and five females) were studied (age: 25.2 + 3.7 (SD) yr; height: 170.3 ± 8.6 cm;

weight: 68.2 ± 8.4 kg). The experimental protocol has been described in [158]. Approxi-

mately 5 minutes of ILV, ABP and ECG recordings at a sample frequency of 100 Hz were

collected on two different days. On one day, the subjects were tested in the supine position

before and after administration of first propranolol (14.6 mg iv) and then atropine (0.04

mg/kg iv). On the other day, the medications were given in a reverse order while the sub-

jects were tested in a 30° head-up tilt position [158]. Four subjects were tested in the supine

position and six in the tilted position on the first day in a randomized order. The TDR data

analyzed in this section were obtained with the subjects following a random breathing proto-

col. Spontaneous breathing data were also collected (TDS data) and will be analyzed in the

next section.

Figure 3-19 and Table 3-3 demonstrate the results of the Area method on the TDR data.

It can be seen that the changes in parasympathetic control due to autonomic blockade have

been identified accurately, while a nearly statistically significant drop is detected upon

merely a 30° tilt. The sympathetic index also tracks the changes due to autonomic blockade

significantly and consistent with physiologic knowledge, except that the comparison be-

tween SUC and SUP is not significant. The change in the sympathetic function due to 300

tilt is not identified statistically.

Figure 3-20 and Table 3-4 demonstrates the results of the SD method on the TDR data.

Similar to the Area method, the SD method identifies all the changes significantly in para-

sympathetic control due to autonomic blockade, while the change due to a 300 tilt is not de-

tected statistically. The sympathetic index also tracks the changes due to autonomic block-

ade significantly, except that the comparison between SUC and SUP is not significant. The

change in the sympathetic index due to 300 tilt is nearly significant.
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To further study the performance of the SD and the Area methods, we performed correla-

tion analysis between the averaged autonomic indices identified by the two methods for the

above two databases respectively (Figure 3-21 and Figure 3-22). The parasympathetic index

resulted from the two methods reached a high correlation coefficient, while the sympathetic

indices correlate less closely. We will discuss these results in detail in Section 3.5.
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Figure 3-17 Autonomic function quantification results (mean + SE) using the Area method - CRC data
(SUC: supine control; STC: standing control; SUB: supine double blockade; STB: standing double

blockade; SUP: supine propranolol; STP: standing propranolol; SUA: supine atropine; STA: standing
atropine)

Table 3-1 P values of paired T tests (for 14-subject comparisons) and Wilcoxon's signrank tests (for 7-
subject comparisons) of the autonomic indexes identified by the Area method - CRC data

(a) Parasympathetic index

SUC vs. SUB vs. SUP vs. SUA vs.
Supine vs. STC STB STP STA
standing

3.67e-4 0.11 0.016 0.58

SUC vs. STC vs. SUC vs. STC vs. SUC vs. STC vs.
Control vs. SUB STB SUP STP SUA STA
blockade

2.0e-6 5.88e-5 0.58 0.38 0.016 0.016

(b) Sympathetic index

SUC vs. SUB vs. SUP vs. SUA vs.
Supine vs. STC STB STP STA

standing 0.46 0.40 0.22 0.94

SUC vs. STC vs. SUC vs. STC vs. SUC vs. STC vs.
Control vs. SUB STB SUP STP SUA STA
blockade

0.054 0.0085 0.58 0.031 0.16 0.016
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Figure 3-18 Autonomic function quantification results (mean ± SE) using the SD method - CRC data
(SUC: supine control; STC: standing control; SUB: supine double blockade; STB: standing double

blockade; SUP: supine propranolol; STP: standing propranolol; SUA: supine atropine; STA: standing
atropine).

Table 3-2 P values of paired T tests (for 14-subject comparisons) and Wilcoxon's signrank tests (for 7-
subject comparisons) of the autonomic indexes identified by the SD method - CRC data

(a) Parasympathetic index

SUC vs. SUB vs. SUP vs. SUA vs.
Supine vs. STC STB STP STA
standing

6.22e-4 0.79 0.11 0.81

SUC vs. STC vs. SUC vs. STC vs. SUC vs. STC vs.
Control vs. SUB STB SUP STP SUA STA
blockade

1.51e-6 2.27e-4 0.38 0.58 0.016 0.016

(b) Sympathetic index

SUC vs. SUB vs. SUP vs. SUA vs.
Supine vs. STC STB STP STA
standing

4.37e-7 0.0039 0.38 0.22

SUC vs. STC vs. SUC vs. STC vs. SUC vs. STC vs.
Control vs. SUB STB SUP STP SUA STA
blockade

0.0025 1.55e-7 0.45 0.016 0.81 0.031

* parasympathetic index
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Figure 3-19 Autonomic quantification results (mean + SE) using the Area method - TDR data (SUC:
supine control; SUP: supine propranolol; SUB: supine double blockade; SUC2: supine control on the tilt

day; TUC: 300 tilt-up, control; TUA: 300 tilt-up, atropine; TUB: 300 tilt-up, double blockade)

Table 3-3 P values of paired T tests of the autonomic indexes identified by the Area method - TDR data

(a) Parasympathetic index

SUC2 vs. SUC vs. SUC vs. TUC vs. TUC vs.
TUC SUP SUB TUA TUB

0.079 0.75 6.1 e-4 0.0024 6.4e-4

(b) Sympathetic index

SUC2 vs. SUC vs. SUC vs. TUC vs. TUC vs.
TUC SUP SUB TUA TUB

0.20 0.36 0.0024 0.0059 0.0045

Air
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Figure 3-20 Autonomic function quantification results (mean - SE) using the SD method - TDR data
(SUC: supine control; SUP: supine propranolol; SUB: supine double blockade; SUC2: supine control on

the tilt day; TUC: 300 tilt-up, control; TUA: 300 tilt-up, atropine; TUB: 30° tilt-up, double blockade)

Table 3-4 P values of paired T tests of the autonomic indexes identified by the SD method - TDR data

(a) Parasympathetic index

SUC2 vs. SUC vs. SUC vs. TUC vs. TUC vs.
TUC SUP SUB TUA TUB

0.68 0.60 2.55e-5 2.41e-4 1.06e-4

(b) Sympathetic index

SUC2 vs. SUC vs. SUC vs. TUC vs. TUC vs.
TUC SUP SUB TUA TUB

0.058 0.72 0.025 0.16 0.0096

*: parasympathetic index
o : sympathetic index
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Figure 3-21 Correlation analysis of the averaged results obtained by the SD method and the Area
method - CRC data
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3.4.3 Spontaneous Breathing Data

In this section, we apply the SD method to analyze spontaneous ILV and HR data in two

databases. The first database involves the same subjects and experimental protocol as the

TDR database except that the data were obtained during spontaneous breathing. We name it

the TDS database.

Figure 3-23 and Table 3-5 demonstrate the identification results of the TDS data using the

SD method. The changes in parasympathetic function due to autonomic blockade are identi-

fied significantly and are consistent with the a priori knowledge. Note that the parasympa-

thetic index decreased significantly after administration of propranolol which may be the

result of compensation due to the ensuing drop in HR. A decrease in parasympathetic func-

tion due to the 30° tilt is also identified. The sympathetic index decreased significantly dur-

ing autonomic double blockade, while no significant change was detected after injection of

propranolol. An increase in sympathetic function due to the 30° tilt is also identified.

Since the TDR and TDS data were obtained from the same subjects under the same ex-

perimental conditions, it is expected that the respective autonomic indices identified be

closely correlated. Figure 3-24 shows the correlation analysis results relevant to the two

data sets. The correlation coefficients are acceptably high to indicate that the SD method

applies to both the random breathing data and the spontaneous breathing data. In Section

3.5, we will further discuss the identification results for data with different respiratory pat-

terns.
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Figure 3-23 Autonomic function quantification results (mean + SE) using the SD method - TDS data
(SUC: supine control; SUP: supine propranolol; SUB: supine double blockade; SUC2: supine control on

the tilt day; TUC: 30° tilt-up, control; TUA: 30° tilt-up, atropine; TUB: 30° tilt-up, double blockade)

Table 3-5 P values of paired T tests of the autonomic indexes identified by the SD method - TDS data

(a) Parasympathetic index

SUC2 vs. SUC vs. SUC vs. TUC vs. TUC vs.
TUC SUP SUB TUA TUB

0.048 0.014 4.91e-5 0.0019 0.0050

(b) Sympathetic index

SUC2 vs. SUC vs. SUC vs. TUC vs. TUC vs.
TUC SUP SUB TUA TUB

0.041 0.65 0.047 0.15 0.025

* parasympathetic index
o sympathetic index
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Figure 3-24 Correlation analysis of the averaged results utilizing random breathing data and
spontaneous breathing data, SD method - TDR and TDS data

Another set of data is also analyzed using the SD method. This data set is part of the

HMS-MIT-FFMS database [159]. It was originally obtained to study autonomic function in

different age groups. For our purpose, we take the nine healthy volunteers who are younger

than 50 yrs (two males, seven females, age: 30.6 9.6 (SD) yr). We refer to this data set as

the AGE database. In this database, approximately 6 minutes of ILV and ECG signals with

a sample frequency of 360 Hz were collected during spontaneous breathing in supine and

standing postures. The data were downsampled to 1.5 Hz for the purpose of system identifi-

cation.

Table 3-6 shows the autonomic indices identified using the SD method. Significant

changes upon standing in both parasympathetic index and sympathetic index were identified

illustrating the effectiveness of the SD method in analyzing this data set.
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Table 3-6 Identification results of the AGE database using the SD method

Parasympathetic Index (BPM/sec) Sympathetic Index (BPM/sec)

Supine Standing Supine Standing

Mean ± SE 0.46 ± 0.10 0.24 ±0.047 0.075 ±0.046 0.93 ±0.20

P value 0.023 0.005

3.4.4 Metronomic Breathing Data

To validate the SDm method, we employ experimental data (referred to as the AM database)

from 11 healthy volunteers (three males, eight females, age: 30.0 + 8.5 (SD) yr) (also part of

the HMS-MIT-FFMS database [159]). The ECG and ILV signals were collected during

metronomic breathing at a rate of 14 breaths/min with a sample frequency of 360 Hz. Table

3-7 shows the identification results. A significant decrease in the parasympathetic index and

a significant increase in the sympathetic index are detected upon standing, which is consis-

tent with the a priori knowledge on autonomic function changes relative to postural shift.

Table 3-7 Identification results of the AM database using the SDm method

Parasympathetic Index (BPM/sec) Sympathetic Index (BPM/sec)

Supine Standing Supine Standing

Mean i SE 1.09 + 0.25 0.36 0.09 -0.63 ±0.17 0.26 0.10

P value 0.0095 0.00033
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3.5 Discussion

In this chapter, we presented three methods for autonomic function quantification. The Area

method requires measurements of second-to-second ECG, ILV and ABP signals during ran-

dom breathing. The other two methods (SD and SDm) only necessitate ECG measurement.

The SD method is applicable to data collected during either random breathing or spontane-

ous breathing, while its modified version, the SDm method, is suitable for data collected dur-

ing metronomic breathing. All three methods are built based on linear time-invariant system

identification and a priori knowledge about HR variability in the time/frequency domain.

The linearity assumption in system identification is valid if variation in the signals is rela-

tively small, as is the case when the subjects are in a resting condition.

3.5.1 Validation of the Methods on Random Breathing Data

For both random breathing databases, the Area method was capable of tracking all the

parasympathetic changes resulted from autonomic blockade or postural shift except for the

30° tilt in the TDR database which is not essentially a very significant postural change.

However, for the sympathetic alterations, the Area method only identified changes due to

autonomic double blockade, not those associated with postural shift.

In comparison, the SD method performed equally well in terms of the parasympathetic

function quantification. For the CRC database, the SD method accurately identified sympa-

thetic changes due to both postural shift and autonomic blockade. Note that the model coef-

ficients (Equation (2.54)) utilized by the SD method were computed based on a subset of the

CRC database. Hence, it is expected that the SD method performs the best on this training

data set. For the TDR database which was not employed to train the SD model, the SD

method detected sympathetic changes due to autonomic double blockade, similar to the Area

method. In addition, it indicates a trend (P = 0.058) of increase in sympathetic function

upon 30° tilt.
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The parasympathetic indices based on the Area method and the SD method correlate

closely with each other. However, the sympathetic indices of the two methods correlate

poorly for the CRC database and more closely for the TDR database. This observation may

be explained as follows. Since it is expected that the SD method performs the best on its

training data, there may exist much disparity between the results of the Area method and

those of the SD method on this database if the former performs only moderately well. For

the TDR database, the disparity is reduced because the accuracy of the SD method is not as

high as that for the training data set. Thus, the correlation coefficient of the results based on

the two methods is higher for the TDR database.

Based on the above discussion, the overall performance of the Area method and the SD

method is equivalent in terms of parasympathetic function quantification, while the SD

method may perform slightly better than the Area method in identifying the sympathetic in-

dex given a new data set. One limitation of the Area method is the possible overlap between

the parasympathetic and sympathetic components in the ILV--HR impulse response. We

assumed this overlap to be negligible which may cause some error due to inter-subject vari-

ability. Another inherent source of error lies in the WPCR system identification procedure

on which the Area method relies, since no system identification technique is error-free in

analyzing experimental data. On the other hand, one advantage of the Area method is the

standardization of the results because the autonomic indices are both derived from an im-

pulse response which enables a high consistency among subjects. Therefore, the Area

method may be more appropriate for population-based study. In comparison, the SD

method may be more suitable for individualized patient monitoring. Before further assess-

ing the SD method, we now discuss its performance on the spontaneous and metronomic

breathing data.

3.5.2 The SD Method on Spontaneous/Metronomic Breathing Data

From the results presented in Sections 3.4.3 and 3.4.4, the SD method is capable of track-

ing the changes in both parasympathetic and sympathetic function due to 300 (TDS data-
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base) or 900 (AGE and AM databases) postural shift and autonomic blockade (TDS data-

base). The only change it failed to identify was the expected decrease in sympathetic index

after administration of propranolol in the supine posture (TDS database). Note that such a

significant change was neither detected in the CRC or TDR databases. This may be because

of the already low sympathetic level in the supine control state.

Results of the SD method on random breathing and spontaneous breathing data of the

same subject group (TDR and TDS databases) correlates closely, which proves, to some ex-

tent, the effectiveness of the method to analyze spontaneous breathing data. Note that al-

though Figure 3-11 and Figure 3-12 demonstrated that the peak amplitudes of the ILVz=HR

impulse responses of spontaneous and random breathing data have similar values, the corre-

sponding parasympathetic indices should not be the same. This is because in the SD

method, the ILV data is normalized by its standard deviation as previously mentioned (Sec-

tion 3.3.2). Since the standard deviation of ILV during spontaneous breathing is usually less

than that during random breathing, a smaller spontaneous breathing parasympathetic index

resulted. Furthermore, because the ILV signal is an external excitation to the closed-loop

coupling between HR and ABP, the reduced energy in ILV during spontaneous breathing

(especially in the low frequency range) leads to a smaller variability in HR compared to the

case of random breathing. Consequently, the spontaneous breathing sympathetic index is

usually smaller than that of random breathing, as can be appreciated from Figure 3-24.

3.5.3 Respiratory Pattern and Autonomic Indices

Based on the above discussion, identified values of the autonomic indices by the SD

method are related to the respiratory pattern of the subject. Thus, they are comparable only

within data of the same breathing pattern. In general, the interference of respiratory effect in

the identification of autonomic function is a common issue in many techniques. For patient

monitoring purpose, the controlled breathing modes (random or metronomic) seem to be

more desirable because a fairly consistent respiratory signal can be obtained in different

measurements. However, it is more practical and realistic to collect data during spontaneous
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breathing at resting conditions. The SD method possesses some advantages in analyzing

such data. For the sympathetic index, since the SD method only utilizes HR information in

the low frequency range in which the spontaneous ILV signal usually contains little energy,

it is robust to the disparities present in the spontaneous breathing pattern of different sub-

jects and of the same subject at different times. For the parasympathetic index, note that it is

not technically necessary to normalize the ILV signal in the calculation. This procedure is

performed to account for differences in size and respiration need among subjects in order to

achieve a better inter-subject consistency. Without the normalization, the parasympathetic

index is not affected by respiration pattern because it is derived from the impulse response,

namely, the HR response to an impulse ILV, a stimulator that is identical for all subjects.

3.5.4 Limitations and Improvement

A further discussion is necessary about the assumption of linearity in the relationship of

parasympathetic or sympathetic indices with respect to HR variability (Equation (2.54)).

We assumed that a and flare constant since they are unitless proportional coefficients repre-

senting the value of A(HR,) that is equivalent to a unit PI or SI. In theory, since A(HR,), PI

and S1 reflect the variation relative to their associated mean level, a and , as proportional

coefficients, should not vary for different autonomic states. In reality, a and fl may differ

among significantly distinct pathophysiologic conditions which are associated with abnor-

mal parasympathetic-sympathetic interaction or balance.
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Figure 3-25 3-D scatter plots and linear regression of the standard deviation of HR in the 0.05 0.151 Hz
range versus the autonomic indexes of the CRC subjects identified by the Area method; The two plots

in the lower panel are the rotated version of the original 3-D plot (upper panel). The rotations were
performed for views parallel to the arrows.

Nevertheless, based on our experimental validation (Figure 3-13), the linear assumption is

realistic and enables a simple, concise model. To further test this assumption, we generated

Figure 3-25 to display the scatter plot of the A(HR) (to = 0.05-0.15 Hz) value versus the

parasympathetic area and sympathetic area of the CRC subjects identified by the Area

method under all interventions. The plane results from linear regression of the data. The

correlation coefficient (R2) is 0.75, the P value for this regression is 1.56e-12 and the F-

observed statistic (38.9) is much greater than the F-critical value (-3.1). These statistical

I
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analyses indicate that the linear relationship fits the data reasonably well. Although the Area

method may lead to some error in estimating autonomic indices, this result corroborates the

linear assumption in the SD method. However, it is safe to keep in mind that when a more

sensitive quantification of autonomic function is desired, a model with a complicated struc-

ture may be necessary.

It should be pointed out that there are still potentials of improvement in the application of

the SD method. First, the training data set of 14 subjects is a fairly small database. Second,

the training data were obtained from relatively young male subjects only. In reality, it is

known that baseline sympathetic and parasympathetic balance may be different in females

from that in males and it also changes with age. Although our results on the TDR, TDS,

AGE and AM databases (mixture of male and female subjects, and older subjects in AGE

and AM data sets) showed the effectiveness of the SD method trained by the small, unisex-

ual database, it would be more precise to group the general population according to sex and

age and apply different model coefficients to different groups.

3.6 Conclusion

In this chapter, we presented three techniques for autonomic function quantification ap-

plicable to different respiration modes. Experimental data were employed to evaluate the

validity of each technique. Both the Area method and the SD method are suitable to data

collected during random breathing. The Area method has a good inter-subject comparabil-

ity, while the SD method only necessitates measurement of ECG tracings and it is readily

applicable to spontaneous breathing data. Its modified version, the SDm method, was dem-

onstrated to work effectively on metronomic breathing data. The SD method may be easily

applied in clinical settings for general patient monitoring and diagnosis in the future.
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Chapter 4

Effects of Simulated Microgravity on Cardiac
Autonomic Control and Orthostatic Intoler-
ance7

In previous chapters, we presented a new system identification method named weighted

principal component regression (WPCR) based on which techniques for quantitative charac-

terizations of autonomic responsiveness were developed. In this chapter, we apply these

techniques to study the effects of simulated microgravity (prolonged bed rest) on cardiac

autonomic control and the association between orthostatic intolerance (OI) and alterations in

autonomic function. We begin with a brief introduction on microgravity-related cardiovas-

cular problems, followed by a review of previous studies on autonomic function and OI after

microgravity exposure. We then delineate the experimental protocol for OI testing and mi-

crogravity simulation. Subsequently, results of autonomic function identification using the

Area and the SD methods are presented, followed by discussions and conclusion.

4.1 Introduction

Microgravity exposure during spaceflight may impact many aspects of human physiology.

Alterations in the cardiovascular system [160, 161], the immune system [162, 163], the

7 Part of the content in this chapter has been published in the Journal of Applied Physiology [106]
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neurovestibular system [164, 165], and the psychological system [166, 167], etc, have been

studied intensively in recent years. Possible changes with regard to the cardiovascular sys-

tem consist of variations in the autonomic nervous control [111, 168, 169], vascular compli-

ance [170, 171], blood volume regulation [172-174], cardiac electrical stability [175, 176],

cardiac pump function [177-179], et al. An often-studied phenomenon, microgravity-

induced orthostatic intolerance (OI), is thought to be at least partially related to cardiovascu-

lar deconditioning. It affects up to 83% of astronauts and cosmonauts depending on the du-

ration of exposure to the weightless environment [180]. OI may be defined as the develop-

ment of some or all of the following symptoms while standing or sitting upright [181]: light-

headedness, dizziness, tiredness, blurred vision, palpitations, chest discomfort, throbbing of

the head, tremulousness during standing and occasionally syncope (fainting). The funda-

mental etiology of microgravity-induced OI remains unclear and therefore the development

of effective countermeasures has been hindered. Previous in-flight and ground-based ex-

perimental studies have focused on a variety of factors which may contribute to OI, such as

reduced blood volume [160, 172, 182, 183], cardiac atrophy [179, 184-186], and peripheral

blood pooling associated with increased venous compliance [187-189]. The autonomic sys-

tem may also be closely involved in inducing OI in view of its critical role in regulating

heart rate, blood pressure and other hemodynamic parameters. In the following sections, we

concentrate on the investigation of the effect of simulated microgravity on cardiac auto-

nomic control and its association with OI. Note that simulation of microgravity is realized

through prolonged head-down-tilt bed rest (HDBR) which is a widely accepted model for

this purpose [160].

4.1.1 Previous Studies on Autonomic Function and Microgravity

Different techniques have been utilized to evaluate the functioning of the autonomic sys-

tem during and/or after (simulated) microgravity exposure. Heart rate variability (HRV)

analysis is widely practiced for this purpose due to its noninvasive nature and simplicity. As

discussed in Chapter 3, the high frequency (HF, > 0.15 Hz) power in R-R interval or HR

spectrum (often normalized by the total frequency power) is usually employed as a para-
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sympathetic index. Note that definition of the upper bound of this frequency range may dif-

fer in various studies, for example, 0.25, 0.4 and 0.5 Hz have been utilized in the literature.

Sympathetic activity is often quantified by normalized low frequency (LF, < 0.15 Hz) power

or the ratio of LF and HF power. Table 4-1 displays a few examples of HRV analysis in bed

rest studies. Although only a small portion of the vast previous publications is listed here, it

can be appreciated that there is a lack of consensus about changes in the autonomic function,

especially the sympathetic one, after HDBR. Besides possible disparities in sample size,

protocol, the number of subjects who had pre-syncopal episodes and the fact that only a

small number of subjects are involved in some of the studies, another important factor caus-

ing the inconsistent results may be the inherent limitation of HRV analysis as discussed pre-

viously (Section 3.1).

Another technique for direct evaluation of sympathetic function, muscle sympathetic

nerve activity (MSNA) measurement, is also utilized in (simulated) microgravity studies.

Table 4-2 summarizes some of the publications to demonstrate the diversity in the findings

about changes in MSNA relative to microgravity exposure. Both reduction and augmenta-

tion in MSNA have been observed after bed rest or spaceflight. Alteration in MSNA in re-

sponse to external stimulus, such as head-up-tilt, was reported to be unchanged, increased or

decreased after microgravity exposure. Evidently, these disparities may be due to the differ-

ence in sample size, protocol and other underlying factors. However, they may also be con-

tributed by the inherent complexity of the technique. The level of MSNA reflects the bal-

anced effect of different factors contributing to metabolic need of the muscle and blood sup-

ply available. In addition, the perfusion process and the chemosensitive muscle afferent

pathway may also affect MSNA level [190]. Hence, it may not be a direct indicator of the

effective sympathetic tone regulating the body's hemodynamics in general. Moreover, the

accuracy and consistency of the MSNA measurement may be confounded by other factors.

In a typical laboratory setting, the MSNA recordings are likely to be clouded by frequent

baseline shifts, significant noise spikes, and muscle twitches [191], all of which may induce

an inaccurate quantification of MSNA. Furthermore, the dependence of visual identification

of sympathetic bursts by a trained microneurographer poses questions in the consistency of

the MSNA interpretation.
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Other studies considered the alteration in baroreflex sensitivity after microgravity expo-

sure. Sundblad et al. [192] defined arterial-cardiac-chronotropic baroreflex sensitivity

(ABS) as the ratio between tilt-induced heart rate transients and the preceding (and

reciprocal) transient in arterial pressure. No significant change in ABS was observed after

42 days of 6 ° HDBR in seven healthy male subjects [192]. Pagani et al. [193] defined a

similar spontaneous baroreceptor reflex sensitivity based on the changes in systolic arterial

pressure and in R-R interval. It was found that this measure was decreased significantly

after 42 days of 6 ° HDBR in seven healthy male subjects [193]. Convertino et al. [194]

studied the baroreflex response provoked with ramped neck pressure-suction sequences in

11 healthy men before and after 30 days of 6° HDBR and concluded that the responsiveness

and buffer capacity of vagal baroreflex-cardiac reflexes were impaired after HDBR. Fritsch-

Yelle et al. [168] measured responses to Valsalva maneuvers and carotid baroreceptor-

cardiac reflex responses with neck chamber suction in 16 astronauts before and after shuttle

missions lasting 8-14 days. They found a reduction in parasympathetic and an increase in

sympathetic influences on arterial pressure control after spaceflight [168]. Note that the

above techniques for quantification of baroreflex sensitivity are limited in that they are

affected by factors other than alterations in autonomic tone (e.g. respiration).
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Table 4-2 Effects of simulated microgravity on muscle sympathetic nerve activity (MSNA)

Study

Khan et al. [202]

Kamiya et al. [203]

Levine et al. [204]

Shoemaker et al. [205]

Cox et al. [206]

Pawelczyk et al. [207]

Kamiya et al. [208]

Protocol

24 h -6° BR

14 d -6° BR

16 d SF

16 d -6° BR

16 d SF

18 d -6° BR

60, 120 d
K0yg

Subjects

13 (9F, 4M)

16M

5M

16M

4M

7M

6M

Resting MSNA

1'$
T

AMSNA/Stimulation

/ LBNP

1 / PHMI

= / 600 HUT

/ Valsalva

= / PCWP

= / 600 HUT?

41: decrease after bed rest

change; h: hour; d: day;

negative pressure; PHMI:

or spaceflight; T1: increase after bed rest or spaceflight; =: no significant

BR: bed rest; SF: spaceflight; M: male; F: female; LBNP: lower body

post-handgrip muscle ischemia; Valsalva: valsalva straining; HUT: head-

up-tilt; PCWP: pulmonary capillary wedge pressure;

4.1.2 Previous Studies on Orthostatic Intolerance and Microgravity

In exploring the mechanisms responsible for reduced orthostatic tolerance after micro-

gravity exposure, it is often hypothesized that multiple contributing factors are involved,

e.g., decreased blood volume, increased peripheral pooling in the legs (and perhaps abdo-

men), altered cardiovascular neurohumoral regulation, abnormal regulation of cerebral per-

fusion et al. [110, 209]. Buckey and coworkers [110] studied 14 individuals before and after

space shuttle missions of 9-14 days. After spaceflight, 9 of the 14 (64%) subjects failed a

10-min stand test that all completed preflight. They observed, between the finishers and

nonfinishers, a similar cardiac output, postural reduction in stroke volume and increase in

hear rate upon standing [110]. However, the finishers had a higher total peripheral resis-

tance during standing [110]. Pavy-Le Traon et al. [201] observed no significant difference

in the parasympathetic and sympathetic indicators derived from heart rate variability analy-

sis between subjects who tolerated the stand test after HDBR and those who did not tolerate

the test. In contrast, another study on ten subjects after long-term spaceflight (90 to 198



156 Effects of Simulated Microgravity on Cardiac Autonomic Control and Orthostatic Intolerance

days) reported higher indicators of parasympathetic activity in HR spectrum when supine,

both pre and post-flight in the nonfinisher group [209]. Fritsch-Yelle et al. [169] carried out

an extensive study of cardiovascular responses to upright posture in 40 astronauts before and

after spaceflights lasting up to 16 days. Astronauts who could not remain standing for 10

min on landing day (nonfinishers) had significantly smaller increases in plasma norepineph-

rine levels while standing than the finishers [169]. In addition, they had significantly lower

standing peripheral vascular resistance and greater decreases in systolic and diastolic pres-

sures after spaceflight [169]. Based on the above studies, although a unanimous conclusion

has not been established about the mechanisms of increased incidence of OI after micrograv-

ity exposure, there are significant evidence that changes in autonomic control of the cardio-

vascular system may play an important role in this phenomenon.

In the remainder of this chapter, we will apply the techniques proposed in Chapter 2 to

quantitatively study cardiac autonomic responsiveness of subjects who underwent a 16-day

HDBR experiment. Changes in the autonomic indices after bed rest and their association

with tilt-tolerance will be explored.

4.2 Methods

Subjects

Twenty-nine male subjects (age: 35.7±11.5 (SD) years, height: 70.3+2.5 (SD) inches,

weight: 79.6+10.4 (SD) kilograms) were recruited for this study. All subjects were in excel-

lent health and passed the screening test for physical and psychological fitness. The Brig-

ham and Women's Hospital (Boston, MA) Research Committee approved the protocol and

all subjects provided written, informed consent.

Bed rest study protocol



Methods 157

Subjects were admitted into the hospital for a 3-day (subjects 1-4) or 5-day (subjects 5-

29) pre-bed rest ambulatory period at which time baseline testing was done and an isocaloric

diet was maintained (200 mEq sodium, 100 mEq potassium and 2500 ml fluid). Then sub-

jects underwent 9 (subject 1), 14 (subjects 2-4), or 16 (subjects 5-29) days of 4-degree head-

down-tilt bed rest with the same diet. Lastly, 2 (subjects 1-4) or 3 (subjects 5-29) days of

post-bed rest period were scheduled for the recovery when they were allowed ad lib activity

but continued the constant diet.

Throughout the in-patient course, the subjects maintained a constant light/dark cycle.

Subjects 1-21 participated in a non-sleep deprivation protocol (16-hour light/8-hour dark)

while subjects 22-29 participated in a sleep deprivation protocol with a shorter dark time

(17.9-hour light/6.1-hour dark). In addition, routine vital signs were monitored every eight

hours and daily weights were recorded.

At the end of bed rest (end-bed rest), midodrine was given to seven subjects in a random-

ized blinded fashion before the tilt/stand test (see Orthostatic Tolerance Testing) as part of a

parallel study on countermeasures of 01 [210]. It was hypothesized that midodrine causes

venous and arteriolar constriction thus increasing venous return and ABP. Since administra-

tion of midodrine may modify the hemodynamic response to the tilt/stand testing, end-bed

rest standing data from these subjects were excluded from analysis here.

Orthostatic Tolerance Testing

On the last day of the pre-bed rest phase, last day of the bed rest phase (end-bed rest day)

and last day of the post-bed rest phase, a tilt/stand test was used to determine orthostatic tol-

erance. After recording baseline data in the supine position, the subjects were then tilted

upright on a tilt table to thirty degrees for about ten minutes. The angle of tilt was then in-

creased to sixty degrees for about ten minutes. Finally the subjects were tilted to an upright

posture. After each posture was attained and a hemodynamically steady state was reached,

data for CSI analysis were collected (see Data collection for CSI). The test was immediately

terminated and the subject was returned to the supine position if there was evidence of a
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sudden drop in blood pressure and/or he had difficulty appropriately responding to ques-

tions, i.e., manifested mental status changes consistent with presyncopal symptoms. After

the CSI testing in the upright posture, the subjects were allowed to move their legs or walk

as needed while maintaining the upright posture for approximately 120 minutes and being

closely monitored for presyncopal symptoms.

Data collection for CSI As discussed in Chapter 2 (Section 2.10)

Data Analysis

System identification of the ILV--HR impulse response involving ILV, ABP and HR

signals using the WPCR method has been described in detail in Section 2.10. Subsequently,

the Area method (Section 3.3.1) can be employed to compute sympathetic and parasympa-

thetic indicators of each subject. We refer to this method as the Area-WPCR method in the

following sections.

On the other hand, utilizing the ILV and HR signals, we can also compute autonomic in-

dices via the SD method (Section 3.3.2). Approximately 6 minutes of data were downsam-

pled to 1.25 Hz. System identification of the ILV>HR impulse response was carried out

through the WPCR-ARX algorithm with a maximum AR or MA order of 10 and the pre-

weighting scheme as proposed previously (Section 2.9). A parasympathetic index was then

computed based on the peak amplitude of the ILV>HR impulse response and a sympathetic

index was obtained through Equation (2.54).

4.3 Results

Statistical comparison between sleep-deprived and non-sleep-deprived subgroups of subjects

demonstrated no significant difference in terms of impulse response parameters or noise
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source power spectra. In addition, there is no significant difference in the incidence of end-

bed rest orthostatic tolerance between the two groups. Therefore, in the results presented

below, we did not differentiate subjects in terms of sleep-awake patterns.

4.3.1 Supine vs. Tilt

It is generally accepted that postural change from supine to standing is accompanied by a

reduction in the parasympathetic activity and an enhancement in the sympathetic activity.

Autonomic indices calculated from data obtained in supine and in standing postures were

compared (see Table 4-3 and Table 4-4 for results using the Area-WPCR method and Table

4-7 and Table 4-8 for results using the SD method). Parasympathetic indices of both the

Area-WPCR method and the SD method demonstrate statistically significant changes upon

tilt-up from the supine posture. While the SD method tracks alterations in the sympathetic

function at all tilt angles significantly, the Area-WPCR method does not show any signifi-

cance in this respect. These results will be discussed in detail in Section 4.4.

4.3.2 Pre-bed Rest vs. End/Post-bed Rest

Autonomic indices obtained from data collected in all postures on the end-bed rest day and

on the post-bed rest day were compared respectively with those obtained from the pre-bed

rest data. In addition, the end-bed rest and post-bed rest autonomic indices were also com-

pared (see Table 4-3 and Table 4-4 for results using the Area-WPCR method and Table 4-7

and Table 4-8 for results using the SD method). The parasympathetic indices of both meth-

ods demonstrated significant reduction at end-bed rest compared with those at pre-bed rest.

The post-bed rest parasympathetic index is also smaller than the pre-bed rest one, which in-

dicates that the three-day post-bed rest recovery period is not long enough for the parasym-

pathetic index to return to its baseline level, although a trend of increase compared to end-

bed rest indices is demonstrated (Table 4-7). Sympathetic indices of both the Area-WPCR

and the SD methods demonstrate statistically smaller values after bed rest compared to pre-
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bed rest. The Area-WPCR method also shows smaller post-bed rest sympathetic indices

compared to the baseline values although there is a trend of recovery reflected in the end-

bed rest and post-bed rest comparison.

Table 4-11 lists the number of subjects who tolerated (T) the tilt/stand testing and those

who had a presyncopal event (NT) on each test day. Sixty-six percent of patients tolerated

tilt/stand testing before bed rest, 36% tolerated the test at end-bed rest, while 83% tolerated

the test after the recovery period. Fisher's Exact categorical test [211] was performed with

the following hypotheses: the proportion of subjects having presyncopal episode during

tilt/stand testing at end-bed rest is higher than those at pre or post-bed rest respectively and

the proportion of subjects having presyncopal episode at post-bed rest is the same as that at

pre-bed rest (complete recovery). If a P value less than 0.05 is considered significant, then

the statistical tests conclude that more subjects failed the tilt/stand testing at end-bed rest

compared to both pre and post-bed rest while post-bed rest tilt tolerance is not statistically

different from pre-bed rest tolerance. Note that those seven subjects who received mi-

dodrine (see Section 4.2) were excluded from the statistical analysis of tilt tolerance at end-

bed rest.

4.3.3 Toleration of Tilt/Stand Testing

Although monitoring of presyncopal symptoms lasted more than two hours for each subject,

presyncope always occurred during either the tilting or the early standing period. The time

to presyncope was: pre-bed rest: 25.5 + 10.8 (SD) min; end-bed rest: 22.2 ± 6.9 (SD); post-

bed rest: 30.8 12.2 min. Therefore, we categorize the subjects in this section as tilt-

tolerant or tilt-intolerant without a more detailed differentiation according to their presyn-

cope-free survival times.

At pre-bed rest, 10/29 subjects were tilt-intolerant. Eight subjects displayed a vasovagal

pattern of tilt intolerance (an abrupt drop in arterial blood pressure and heart rate), while two

followed a dysautonomic pattern of tilt intolerance with a gradual drop in arterial blood
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pressure and gradual increase or little change in heart rate. At end-bed rest, 14/22 subjects

were tilt-intolerant (excluding the 7 subjects who received midodrine at the end of bed rest).

Twelve subjects had a vasovagal pattern and two had a dysautonomic pattern of tilt intoler-

ance. At post-bed rest, 5/29 subjects were tilt-intolerant. All of them had a vasovagal pat-

tern of presyncope. The patterns of presyncope and syncope will be discussed further in

Section 4.4.4.

Autonomic indices were compared between the subject group who tolerated (T) the

tilt/stand testing and the group who experienced presyncopal episodes (F) on each test day

using data collected on the same day (see Table 4-5, Table 4-6, Table 4-9 and Table 4-10 for

the results of the Area-WPCR and the SD methods). The parasympathetic responsiveness

was higher for the F group while sympathetic responsiveness was lower for this group. We

also compared autonomic indices of subjects who tolerated (T) the tilt/stand testing with

those who experienced a presyncopal episode (F) on the end-bed rest day using data col-

lected on the pre-bed rest day. Therefore, this is an attempt to associate tilt tolerance after

bed rest with baseline measures. Based on both the Area-WPCR and the SD methods, those

subjects who experienced a presyncopal event after bed rest had a higher parasympathetic

responsiveness (P < 0. 1) and a lower sympathetic responsiveness prior to bed rest (at base-

line).
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Table 4-3 Group average comparisons of parasympathetic responsiveness results of the Area-WPCR
method: supine (Su) vs. tilt; pre-bed rest (Pre) vs. end-bed rest (End) or post-bed rest (Post); End vs.
Post; (29 subjects for Pre vs. End in supine posture, Supine vs. Tilt at pre-bed rest, Pre vs. Post and End
vs. Post in supine posture; 22 subjects for Pre vs. End at Tilt postures and Supine vs. Tilt at end-bed rest
- subjects treated with midodrine are excluded; Values are means ± SE.).

Parasympathetic Pvalue P value Pvalue
Area
Ar(meaSE) Su vs. Tilt Pre vs. End/Post End vs. Post(mean SE)

Su 0.016+0.0017
Pre-bed 30° 0.015±0.0024 0.60

rest 600 0.010±0.0014 0.0017
900 0.009+0.0012 0.0007
Su 0.013±0.0018 0.039

End- 300 0.009±0.0014 0.045 0.022
bed rest 60° 0.008±0.0019 0.058 0.25

900 0.005+0.0009 0.010 0.029
Su 0.012+0.0013 0.006 0.44

Post- 300 0.010+0.0013 0.078 0.027 0.32
bed rest 600 0.007+0.0014 0.0011 0.0096 0.65

900 0.006+0.0010 0.0002 0.080 0.85

Table 4-4 Group average comparisons of sympathetic responsiveness results of the Area-WPCR
method: supine (Su) vs. tilt; pre-bed rest (Pre) vs. end-bed rest (End) or post-bed rest (Post); End vs.

Post; (see the caption of Table 4-3 for the number of subjects in each category).

SympatheticSympathetic P value P value P value
(mArea SE) Su vs. Tilt Pre vs. End/Post End vs. Post

(mean SE)
Su 0.018+0.0033

Pre-bed 300 0.015+0.0021 0.15
rest 600 0.014+0.0028 0.28

900 0.015+0.0039 0.27
Su 0.007+0.0011 0.0019

End- 300 0.008+0.0014 0.37 0.002
bed rest 600 0.010±0.0017 0.11 0.18

900 0.007+0.0020 0.94 0.15
Su 0.010+0.0015 0.014 0.022

Post- 300 0.007+0.0015 0.10 0.001 0.30
bed rest 600 0.009+0.0018 0.62 0.083 0.79

900 0.006+0.0012 0.59 0.047 0.13
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Table 4-5 Group average comparisons of parasympathetic responsiveness results of the Area-WPCR
method: Subjects who tolerated (T) the orthostatic tolerance testing vs. those who failed (F); same day:

the orthostatic tolerance testing and data collection for system identification were performed on the
same day; End: the orthostatic tolerance testing was performed at end-bed rest. (Su: supine; Values are

means ± SE; see Table 4-11 for the number of subjects in each category)

Parasympathetic Area Parasympathetic Area
(mean ± SE) (mean t SE)

T-same day F-same day T-End F-End
value value

Su 0.014+0.001 0.025±0.004 0.002 0.012±0.002 0.019+0.003 0.076
Pre- 300 0.015±0.003 0.015±0.005 0.97 0.011+0.002 0.018±0.005 0.32
bed

600 0.009±0.001 0.011±0.004 0.61 0.008±0.002 0.010±0.003 0.61rest
900 0.009+0.001 0.007±0.002 0.62 0.008±0.002 0.008±0.002 0.90
Su 0.010±0.002 0.015±0.003 0.25

End- 300 0.008±0.001 0.009+0.002 0.86
bed
rest 600 0.006+0.001 0.009±0.003 0.35rest

900 0.005±0.001 0.005±0.001 0.90
Su 0.011±0.001 0.019±0.006 0.032

Post- 300 0.009±0.001 0.023±0.004 5e-5
bed
rest 600 0.006+0.001 0.018±0.007 0.001rest

900 0.006±0.001 0.0080.004 0.33

Table 4-6 Group average comparisons of sympathetic responsiveness results of the Area-WPCR
method: Subjects who tolerated (T) the orthostatic tolerance testing vs. those who failed (F); (see the

caption of Table 4-5 for more details)

Sympathetic Area Sympathetic Area
(mean + SE) (mean + SE)

P P
T-same day F-same day T-End F-End

value value
Su. 0.018±0.005 0.014±0.003 0.50 0.012+0.004 0.018+0.006 0.42

Pre- 300 0.016+0.003 0.010±0.002 0.19 0.015±0.003 0.014±0.003 0.91
bed

600 0.018±0.004 0.005±0.002 0.033 0.017+0.005 0.012+0.005 0.42rest
900 0.018±0.005 0.004+0.002 0.11 0.018±0.003 0.005+0.002 0.001
Su. 0.009±0.002 0.006±0.001 0.069

End-End- 300 0.007±0.001 0.008±0.002 0.89
bed
rest 600 0.014+0.003 0.006+0.002 0.035

900 0.009±0.003 0.006+0.003 0.43
Su. 0.01±0.002 0.008±0.004 0.66

Post- 300 0.006±0.001 0.013±0.007 0.15
bed

600 0.009±0.002 0.009±0.009 0.91rest
900 0.006±0.001 0.007±0.005 0.92
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Table 4-7 Group average comparisons of parasympathetic responsiveness results of the SD method:
supine (Su) vs. tilt; pre-bed rest (Pre) vs. end-bed rest (End) or post-bed rest (Post); End vs. Post; (see

the caption of Table 4-3 for the number of subjects in each category).

Parasympathetic p value P value P value

(meanSE) Su. vs. Tilt Pre vs. End/Post End vs. Post(mean + SE)
Su. 0.76±0.094

Pre-bed 30° 0.53±0.091 0.0026
rest 600 0.38±0.059 0.0002

900 0.34±0.061 8.2e-5
Su. 0.49±0.070 0.0013

End- 300 0.35±0.059 0.018 0.0064
bed rest 600 0.19+0.066 0.0004 0.0039

900 0.03 10.003 5.3e-5 3.6e-5
Su. 0.54+0.072 0.0018 0.40

Post- 300 0.36±0.057 0.0008 0.0026 0.52
bed rest 600 0.27±0.047 7.9e-5 0.034 0.062

900 0.15±0.035 1.5e-5 0.0021 0.05

Table 4-8 Group average comparisons of sympathetic responsiveness results of the SD method: supine
(Su) vs. tilt; pre-bed rest (Pre) vs. end-bed rest (End) or post-bed rest (Post); End vs. Post; (see the

caption of Table 4-3 for the number of subjects in each category).

Sympathetic P value P value P value

aIndex Su. vs. Tilt Pre vs. End/Post End vs. Post
(mean ± SE)

Su. 0.63±0.11
Pre-bed 30° 0.95+0.12 0.0047

rest 600 1.63±0.20 0.00017

900 1.40±0.16 0.00029
Su. 0.52±0.07 0.14

End- 300 0.90±0.16 0.012 0.72
bed rest 600 1.51±0.21 0.00017 0.17

900 1.14±0.20 0.014 0.019
Su. 0.55±0.08 0.47 0.34

Post- 300 1.00±0.12 1.3e-5 0.73 0.12
bed rest 600 1.49±0.17 3.6e-6 0.16 0.83

900 1.24±0.14 3.1e-5 0.17 0.057



Results 165

Table 4-9 Group average comparisons of parasympathetic responsiveness results of the SD method:
Subjects who tolerated (T) the orthostatic tolerance testing vs. those who failed (F); (see the caption of

Table 4-5 for more details)

Parasympathetic Index Parasympathetic Index
(mean ± SE) (mean + SE)

P PT-same day F-same day T-End F-End valuevalue value
Su. 0.65+0.08 1.04+0.20 0.051 0.50+0.11 0.82+0.11 0.079

Pre- 300 0.49+0.10 0.56+0.15 0.69 0.40+0.08 0.50+0.09 0.47
bed

600 0.39+0.06 0.35+0.11 0.75 0.38+0.09 0.47+0.08 0.48rest
90° 0.33+0.073 0.36+0.12 0.82 0.32+0.057 0.35+0.12 0.84
Su. 0.45+0.08 0.49+0.10 0.76

End- 300 0.34+0.06 0.35+0.07 0.93
bed
rest 600 0.14+0.06 0.25+0.09 0.36

900 0.074+0.03 -0.019+0.03 0.075
Su. 0.45+0.06 0.970.25 0.006

Post- 300 0.29+0.04 0.86+0.12 0.0001
bed
rest 600 0.19+0.03 0.65+0.14 0.0003rest

900 0.150.03 0.28+0.09 0.21

Table 4-10 Group average comparisons of sympathetic responsiveness results of the SD method:
Subjects who tolerated (T) the orthostatic tolerance testing vs. those who failed (F); (see the caption of

Table 4-5 for more details)

Sympathetic Index Sympathetic Index
(mean SE) (mean + SE)

PT-same day F-same day T-End F-End P valuevalue
Su. 0.73+0.13 0.32+0.11 0.07 0.64+0.08 0.57+0.13 0.69

Pre- 300 0.99+0.14 0.91+0.21 0.74 0.85+0.12 1.00+0.21 0.61bed
600 1.76+0.25 1.48+0.28 0.54 1.81+0.36 1.43+0.27 0.41
900 1.50±0.17 1.13+0.36 0.32 1.87+0.24 1.08+0.21 0.026
Su. 0.60+0.11 0.46+0.08 0.33

End- 300 0.92+0.23 0.93+0.19 0.98
rest 600 1.56+0.37 1.49+0.20 0.87rest

900 1.26+0.27 0.99+0.29 0.51
Su. 0.61+0.08 0.31+0.18 0.16

os- 300 1.06+0.13 0.59+0.12 0.19bed
rest 600 1.55+0.19 1.09+0.11 0.36

900 1.32+0.14 0.61+0.11 0.09
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Table 4-11 Number of subjects in the two groups: tilt-tolerant group (T) and tilt-intolerant group (F) at
pre-bed rest, end-bed rest and post-bed rest respectively. The P values were obtained using Fisher's

Exact categorical test (see text for details).

Number of subjects Pre-bed rest End-bed rest Post-bed rest

T 19 8 24

F 10 14 5

Percent Tolerant 65.5% 36.4% 82.8%

P value, pre vs. end/post 0.037 0.23

P value, end vs. post 8.7e-4

4.4 Discussion

This study employs the autonomic function identification techniques developed in Chapter 3

to analyze data obtained in a 16-day head-down tilt bed rest study. We may make three ob-

servations based on the data presented here. First, prolonged bed rest may impair autonomic

control of heart rate. Second, orthostatic intolerance after bed rest is associated with im-

paired autonomic responsiveness. Third, there may be a pre-bed rest predisposition to the

development of orthostatic intolerance after bed rest.

For comparison purpose, we included in Appendix C the identification results using the

Area-APR method on the same data set. This method was previously employed in [106]. It

implements the same Area method to compute sympathetic and parasympathetic respon-

siveness, but system identification was carried out through an ARX parameter reduction al-

gorithm (APR) [55] instead of the WPCR method.

4.4.1 Supine vs. Tilt

It is well accepted that postural change from supine to standing results in a relative shift

from parasympathetic-dominant to sympathetic-dominant cardiovascular control [45]. Re-

sults of the SD method conform very well with this general notion. However, the Area-
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WPCR method demonstrated the expected changes upon tilt only in the parasympathetic in-

dices. Its sympathetic index does not show any significant difference upon postural shift. In

contrast, the Area-APR method (see Appendix C, Table C - 2) detected some of the changes

in the sympathetic index upon tilt.

The difference of the APR and the WPCR methods have been discussed in Chapter 2

(Section 2.10). We observed that characteristic times of the HR baroreflex and the

ILV--HR impulse responses computed by the APR method were seemingly larger than

those computed by the WPCR method. A detailed investigation on the two methods indi-

cated that the APR method leads to a noisy estimation of the impulse response, especially

for the sympathetic component. In the results presented in this chapter, it can also be appre-

ciated that the WPCR method gives a much smaller group-averaged standard error in sym-

pathetic index than the APR method does. Therefore, the two methods displayed different

properties in dealing with noise-corrupted data. The APR method attempts to retain more

noisy components to model the underlying system dynamics, while the WPCR method im-

poses a stringent restraint to retain less noisy components and enable a succinct estimate of

the impulse response.

Data collected in tilt-up postures may have more inherent noise/instability than in the su-

pine posture. In addition, the ILV-HR impulse response in tilt-up postures may be compli-

cated by the resistance baroreflex more than in the supine posture. We postulate that the

WPCR method estimates the impulse response conservatively in tilt-up postures to reduce

the effect of noise. Therefore, it may underestimate the sympathetic area and lead to insig-

nificant comparisons between supine and tilt-up results. On the other hand, the APR method

retains more noisy components which induce a larger standard error for tilt-up data. Al-

though compromised by the uncertainties in the estimated impulse responses, significant

changes in sympathetic area are still detected upon tilt. The stringent estimation of the

WPCR method may prove advantageous in statistical comparisons involving data collected

in the same posture (see discussions below).
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4.4.2 Effect of Bed Rest

Both the SD and the Area-WPCR methods demonstrated that parasympathetic and sympa-

thetic responsiveness decreased significantly after bed rest. The SD method showed statisti-

cal significance in parasympathetic change upon every posture assumed, while the sympa-

thetic index was significantly reduced after bed rest only in the standing posture. In addi-

tion, the SD method did not demonstrate significant changes at post-bed rest compared to

both pre and end-bed rest. As discussed in Chapter 3, theoretical values of the SD model

coefficients (Equation (2.54)) may not change dramatically among subjects and among

physiological conditions. However, it is not clear if prolonged bed rest changes the state of

autonomic functioning and, therefore, requires modifications in the model parameter values

(for detailed discussion about the SD method, see Section 3.5.4). The Area methods de-

tected more significant changes with respect to sympathetic quantification than the SD

method. Furthermore, considering both Pre vs. End and Pre vs. Post analyses, the Area-

WPCR method resulted in smaller P values and more significant comparisons compared to

the Area-APR method, especially in terms of the sympathetic index. The WPCR method is

more effective in these scenarios than the APR method maybe due to its ability to reduce the

effect of noise in the estimated impulse response, as discussed previously.

Many researchers have shown that parasympathetic activity is impaired following simu-

lated or actual microgravity exposure using different techniques, such as, by analyzing R-R

interval of HR or by performing Valsalva's maneuver [11 , 168, 194]. However, there re-

mains a lack of consensus about the changes in sympathetic activity. For example, some

[205] showed a reduction in muscle sympathetic nerve activity (MSNA) after 14 days of bed

rest, while others reported an increase [207, 208] in MSNA reflex control after bed rest (see

also Table 4-1 and Table 4-2). In another study [135], HR power spectrum and urinary

catecholamine response were both analyzed. However, the two techniques resulted in dif-

ferent conclusions regarding changes in sympathetic activity following bed rest. Fritsch-

Yelle and coworkers [169] found that after 16 days of spaceflight, returning astronauts had

subnormal increases in plasma norepinephrine level on the assumption of upright posture.

Note that this indicates a functional change in the neurogenic feedback loop, which includes
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arterial baroreceptors, brainstem, spinal tracts and sympathetic nerves. One of the advan-

tages of our methods is that they estimate the modulation of the efferent autonomic activity

on the sinoatrial node directly without involving a reflex mechanism, thereby simplifying

the interpretation of the results.

In addition, our analyses (especially through the Area-WPCR method) showed that post-

bed rest autonomic indices are lower than the pre-bed rest measures. Therefore, the three-

day post-bed rest phase did not enable a complete recovery to the baseline level in cardiac

autonomic control. Results presented by Spaak et al. [212] demonstrated that the longer the

duration of microgravity exposure is, the longer it takes to reach a complete recovery of the

cardiovascular response to sustained handgrip exercise. Convertino et al. [194] studied 11

healthy men before and after 30 days of 6° HDBR. They showed that the baroreflex func-

tion was impaired after bed rest and did not recover to the baseline level after five days post-

bed rest. However, Fritsch-Yelle et al. showed that carotid baroreceptor-cardiac reflex re-

sponse returned to the baseline level on and after the 3rd day post-space flight in 16 astro-

nauts finishing shuttle missions lasting 8-14 days [168]. The above inconsistency in the re-

sults of different studies may be due to the difference in the HDBR/space flight duration or

in the protocols for the recovery period because the activities of the subjects after HDBR or

space flight are usually less strictly regulated or monitored than those before and during mi-

crogravity exposure.

4.4.3 Toleration of Tilt/Stand Testing

Our results suggest that those who tolerated the tilt/stand test had a lower parasympathetic

responsiveness and a higher sympathetic responsiveness measured on the day of the test than

those who did not tolerate the test. The SD method failed to detect statistically significant

difference in the sympathetic index (although having P values less than 0.1), the Area-APR

method failed to detect the difference in the parasympathetic index, while the Area-WPCR

method identified both types of significance. Note that the difference in parasympathetic

responsiveness between the two groups is statistically significant or nearly significant often
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in the supine posture, while that of sympathetic responsiveness is significant in the 60 or 90-

degree posture. This may be due to the fact that supine posture is a parasympathetic-

dominant state while upright posture is a sympathetic-dominant state. The above results

show that autonomic responsiveness is associated with tilt/stand test tolerance. Furthermore,

combining this result and the fact that more subjects failed the tilt/stand test (Table 4-11)

after bed rest and the result that bed rest impaired both parasympathetic and sympathetic re-

sponsiveness, one may speculate that autonomic control, sympathetic responsiveness in par-

ticular, may be mechanistically involved in determining tilt tolerance. The relation between

OI and various factors directly or indirectly related to autonomic function have been studied

[110, 194, 201, 213]. However, a general consensus has not been reached. Our results are

consistent with those of Fritsch-Yelle et al. [169, 214] who also showed that the tilt-tolerant

group on landing day had a greater sympathetic response upon standing than the tilt-

intolerant group.

At post-bed rest, a significantly higher proportion of subjects tolerated the tilt/stand test-

ing than at end-bed rest (Table 4-11). However, the autonomic indices at post-bed rest al-

most do not demonstrate any significant changes from those at end-bed rest. This apparent

disagreement with the pre vs. end comparisons may imply the intrinsic nature of complexity

in the underlying mechanisms of tilt tolerance. Given the evidences we have thus far, we

postulate that psychological factors may play an important role in inducing a better tolerance

of tilt/stand testing post-bed rest when the subjects' mental stress is lessened near the com-

pletion of the bed rest study. In addition, the previous two tilt/stand testings (at pre and end-

bed rest) may have served as a learning process for the subjects to psychologically adapt to

this test.

4.4.4 Prediction of Orthostatic Intolerance

The Area methods and the SD method all demonstrated that subjects with a relatively higher

sympathetic responsiveness pre-bed rest tended to tolerate the tilt/stand test after bed rest.

The Area-WPCR method gives the smallest P values in this comparison. The Area-APR
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method also indicates a significantly smaller pre-bed rest parasympathetic area in subjects

who tolerated the tilt/stand test after bed rest, while the P values induced by the SD and the

Area-WPCR methods for this comparison are nearly significant. Since we showed that

parasympathetic responsiveness was impaired after bed rest and more subjects failed the

tilt/stand test after bed rest, it is unlikely that reduced parasympathetic responsiveness con-

tributes mechanistically to orthostatic tolerance. Hence, the finding of a smaller parasympa-

thetic responsiveness in tilt-tolerant subjects may simply be a manifestation of the inhibitory

effect between sympathetic and parasympathetic control [45].

The above results suggest that an altered sympathetic function might be related mechanis-

tically to a predisposition to end-bed rest orthostatic intolerance, and they also raise the pos-

sibility of predicting end-bed rest OI using pre-bed rest measures. Few studies demonstrated

similar statistical significance in this aspect. Fritsch-Yelle et al. [169, 214] was the first to

suggest the possibility of predicting which individuals would be susceptible to OI post-space

flight. They found that baseline peripheral vascular resistances, systolic and diastolic pres-

sures before flight were significantly lower in the after-flight presyncopal group than in the

other group. Since autonomic function plays a major role in regulating these hemodynamic

variables, one might infer from their results a preflight intergroup difference in autonomic

responsiveness. Although various factors may be involved in the development of OI follow-

ing microgravity exposure, our results suggest that autonomic function might specifically

play a role in this process.

Most of our tilt-intolerant subjects followed a vasovagal syncope pattern [210], while

only two subjects showed a dysautonomic pattern. Both patterns have been documented af-

ter spaceflight [110, 180]. In addition, the above results may have relevance to the devel-

opment of vasovagal syncope upon adopting an upright posture in Earth-bound patients.

During vasovagal syncope, the efferent responses are increased vagal activity, especially to

the heart, and decreased sympathetic activity. Experimental evidence indicated that the pre-

cipitous fall in blood pressure in vasovagal syncope is preceded by both vagally mediated

bradycardia and inhibition of peripheral sympathetic nerve activity which causes vasodilata-

tion [215]. The most widely held explanation for this paradoxic response of blood pressure
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and heart rate is the Bezold-Jarish reflex [216, 217] mechanism - sensory receptors in the

left ventricular myocardium mediate vagomimetic and sympathoinhibitory effects when ac-

tivated by mechanical stretch or chemical stimulations [215, 216]. It has been hypothesized

that during orthostatsis, hypovolemic hypotension leads to augmented ventricular contrac-

tion resulting in a nearly empty chamber, thereby producing mechanical deformation of

these receptors and the ensuing paradoxic response [215, 216]. Our results also suggest that

patients with lower sympathetic responsiveness and higher parasympathetic responsiveness

at baseline may be predisposed to vasovagal syncope. However, a more specific study

needs to be conducted to further validate this hypothesis.

4.4.5 Limitations

When subjects in this study became presyncopal before finishing the CSI data collection in

the upright position, they were returned to the supine position for recovery thus only data

collected before the onset of presyncopal symptoms could be analyzed. The reduced length

of available data may adversely affect the accuracy of system identification. Since a signifi-

cant number of subjects became presyncopal during the tilt/stand test after bed rest, this

limitation affects end-bed rest results more seriously than pre-bed rest ones.

4.5 Conclusions

In summary, we studied cardiovascular autonomic function in healthy subjects before and

after 16 days of head-down-tilt bed rest. We found that bed rest impaired both parasympa-

thetic and sympathetic responsiveness. Higher parasympathetic and lower sympathetic re-

sponsiveness pre-bed rest identified individuals more susceptible to OI both before and after

bed rest. Our findings may have significance for studying Earth-bound orthostatic hypoten-

sion as well as for designing effective countermeasures to post-flight OI.
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In this study, we applied two methods, the Area method and the SD method, to quantify

sympathetic and parasympathetic responsiveness. Furthermore, two system identification

algorithms, the WPCR and the APR algorithms, were employed to compute the ILV-HR

impulse response which is needed by the Area method. Although the SD method is capable

of tracking changes due to postural shift, it is limited in studying the effect of bed rest on

sympathetic control and orthostatic intolerance due to a possible change of autonomic state

after bed rest. The Area-WPCR method outperforms the Area-APR method in this study

except for detecting changes in sympathetic control related to postural shift, which may be a

result of the stringency of the WPCR method in handling noise-corrupted data.
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Chapter 5

Conclusions

5.1 Summary of Contributions

The research presented in this thesis focuses on the development of an LTI system identifi-

cation method based on which new techniques for quantification of cardiac autonomic re-

sponsiveness are proposed, evaluated and applied to investigate practical biomedical prob-

lems. In this section, we summarize the major results of this research.

In Chapter 2, the new system identification method based on Weighted-Principal Com-

ponent Regression (WPCR) was introduced. This method was presented in conjunction with

both moving average (MA) and autoregressive exogenous input (ARX) model structures.

We investigated in detail the frequency domain interpretation of the WPCR-MA and

WPCR-ARX methods. It was demonstrated that the WPCR methods enable construction

and selection of candidate models in the frequency domain. In addition, the estimated

model parameters are weighted such that those associated with dominant frequency compo-

nents of the data are more accurately identified than those corresponding to the insignificant

components. By excluding the frequency components weakly-represented in the data, the

WPCR method reduces the variance of estimated model parameters when the input is a col-

ored signal. Furthermore, since the WPCR method builds data-specific candidate models in

the frequency domain, it is able to cope with systems with input delays and multiple inputs.

To practically implement the WPCR method, we proposed and validated weighting

schemes for the MA and the ARX structures respectively. We evaluated the performance of
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the WPCR methods through both simulated and experimental data. Both open-loop and

closed-loop systems were simulated whose dynamics resemble that of physiologic systems.

We incorporated a pre-whitening procedure into the WPCR-MA method for closed-loop

system identification. Compared to conventional ARX (open-loop) or GLS (closed-loop)

methods, the WPCR method demonstrated its advantage in terms of impulse response esti-

mation. In addition, we showed that the WPCR method is potentially effective when the

input signal is not persistently exciting relative to the system dynamics. Lastly, we evalu-

ated the performance of the WPCR methods via experimental data where open-loop, closed-

loop, multiple-inputs single-output and noncausal systems are involved. The effectiveness

of the WPCR methods in handling this complicated set of systems is confirmed through

comparisons with the previously exploited Arma Parameter Reduction (APR) method.

In Chapter 3, we applied the WPCR system identification method to study cardiovascular

autonomic control, which demonstrated the effectiveness of engineering methodologies in

tackling biomedical problems. Specifically, we proposed three techniques to quantify car-

diac autonomic responsiveness. The Area method was built based on the WPCR system

identification involving arterial blood pressure (ABP), instantaneous lung volume (ILV) and

heart rate (HR). The derivation of a parasympathetic quantification and a sympathetic one

from the ILV-*HR impulse response was based on solid experimental evidence. The Area

method requires data collected during random breathing to generate persistently exciting in-

put signals. In contrast, the SD method is suitable for both spontaneous and random breath-

ing data. The advantage of the WPCR method accredited to its frequency selective property

was well appreciated in dealing with spontaneous breathing data because the ILV signal is

not persistently exciting for the identification of ILV>HR impulse response. The SDm

technique, a modified version of the SD method, utilizes a straightforward nonparametric

system identification procedure. It is specifically designed to analyze ILV and HR data

when the respiratory activity is metronomic. The SD and SDm methods only necessitate

measurements of surface ECG signals.

We validated the above three techniques using experimental data. Both the Area and the

SD methods were applied to analyze random breathing data. Corresponding to different in-
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terventions involved in the databases, results consistent with expected physiologic changes

were obtained for both methods. Values of the parasympathetic and sympathetic indices

based on the two methods were fairly closely correlated. The SD method was also applied

to analyze spontaneous breathing data. Identified parasympathetic and sympathetic indices

of the same subject group during spontaneous breathing and during random breathing were

compared, through which applicability of the SD method to spontaneous breathing data was

confirmed. The SDm method was applied to one set of metronomic breathing data and it en-

abled a statistically significant differentiation of the autonomic responsiveness associated

with supine and standing postures.

In Chapter 4, we applied the Area and the SD methods to investigate one specific topic -

the effect of simulated microgravity on cardiac autonomic control and orthostatic intoler-

ance. We concluded that both the parasympathetic and sympathetic responsiveness were

diminished after prolonged head-down-tilt bed rest. We found that more subjects failed the

tilt/stand test at end-bed rest than at pre-bed rest and that those subjects who tolerated the

test had a higher sympathetic index and a lower parasympathetic index on the tilt/stand test

day than those who failed the test. These findings indicate that impaired sympathetic re-

sponsiveness may be closely associated with orthostatic intolerance. Moreover, we found

that subjects who tolerated the tilt/stand test on end-bed rest day had a higher sympathetic

responsiveness and a lower parasympathetic responsiveness pre-bed rest. This result raised

the possibility of predicting end-bed rest orthostatic intolerance using pre-bed rest measures.

Lastly, values of post-bed rest autonomic indices are statistically different from the pre-bed

rest values suggesting that the autonomic control system did not completely recover to base-

line three days after bed rest. The above application of the Area and the SD methods also

validated the techniques themselves and provided a better understanding of their applicabil-

ity. The Area method is suitable for population-based studies since it considers an impulse

response function which is intrinsically standardized, while the SD method is better suited

for patient monitoring because computation of the sympathetic impulse response depends on

some empirically-derived proportional constants.
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5.2 Future Directions for Research

There are a few potential areas of future research that could expand upon the work in this

thesis.

1. An important element of the WPCR method is the weighting scheme on the data ma-

trix which is a reflection of the a priori knowledge that current output is more

closely correlated with recent inputs/outputs and less with remote ones. This weight-

ing scheme proved very effective in both MA and ARX structures. It would be an

interesting attempt to investigate the applicability of a similar weighting scheme in

total least-squares (TLS) estimation or parametric spectral estimation problems. In

addition, the concept of WPCR may also be incorporated into nonlinear system iden-

tification settings such as those based on Volterra series.

2. Pertaining to the WPCR-ARX structure, there is one question remaining unresolved.

Due to the nonlinearity involved in the mapping between model parameters and the

impulse response function, it is unclear how the pre-weighting factors affect the basis

function of the impulse response. Since in physiologic system identification, pre-

knowledge about the shape of the impulse response is usually available which was

gained through past experience, it would be helpful to incorporate such knowledge in

the designing of the weighting function. To determine the basis function of the

weighted ARX impulse response, approximations based on linearization theory may

be required or another more involved weighting scheme may need to be developed.

3. As mentioned in Chapter 3, there is still much potential to improve the SD method.

One direction is to increase the size of the training data and categorize the subjects

according to their age and sex. In this way, different model parameters may be de-

rived for subjects in different categories which could enable a more accurate identifi-

cation of autonomic responsiveness for specific subjects. The other potentially inter-

esting work is to correct the model parameters based on some information derived

from cuff blood pressure, e.g., the pulse pressure. Because low frequency compo-

nents in HR variability are mainly contributed by blood pressure fluctuation, such
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correction may prove useful in improving the accuracy of the estimated model pa-

rameters.

4. The study of effects of microgravity on cardiac autonomic control and orthostatic in-

tolerance presented in this thesis is merely a first step in investigating this highly

complicated topic. Continuing studies may involve an in-depth examination of simi-

lar problems in female subjects and subjects with older ages. It is also desirable to

analyze data directly collected from astronauts at baseline and after spaceflight of

varying durations. Importantly, countermeasures may be designed and tested based

on the study on autonomic function and its association with orthostatic intolerance.

We hope that the presented work will stimulate further research into the application of

system identification techniques in studying cardiovascular dynamics and its neural control.

It is also desired that the methodologies developed in this thesis may inspire development of

novel techniques in probing other physiologic mechanisms.
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Appendix A

Proof of the Asymptotic Property of the Co-
variance Matrix of a Stationary Time Series [85,
104]

It is well-known that the covariance matrix of a stationary time series is a symmetric Toe-

plitz matrix. If the covariance function of a time series is absolutely summable, we proof in

the following that the eigenvectors and eigenvalues of the covariance matrix have certain

special forms asymptotically. (This section mainly follows that of Ref. [104].)

Definition: Consider a T x T matrix C = [Cjk], if Cjk, the element residing in thej th row and

the kth column, depends only on j-k, that is, Cjk = c(i-k) for some function c(.), then the ma-

trix C is defined as a finite Toeplitz matrix.

Asymptotic Property: Let F be the matrix whose columns are the asymptotic eigenvectors

of the T x T covariance matrix of a stationary time series with absolutely summable covari-

ance function y(h). If T is odd, assume T = 2m+ 1, then the first column F1 has constant ele-

ments 1/ IT, the (2j)th column F2j has elements 2 / T cos(2irjt/T), and the (2j+l)th col-

umn F2j+1 has elements 2/T sin(2rjt/T), for t = 1, 2, , Tandj = 1, 2, , m, where T=

2m+l. The orthogonal matrix F is called Fourier matrix. The eigenvalues are asymptoti-

cally:

d, -- E y(h),

d2j = d2j+l = Ey(h)ei2rh
2n' h=o
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If T is even, assume T= 2m+2, the first 2m+ 1 eigenvectors are the same as above, there is an

extra eigenvector 1/JxT[1,-1,1,...,-1] associated withj = m+l, and a corresponding eigen-

value:

dr =2 y(h)coszrh
h=- h=o

To prove the above property, we first consider the following theorem:

Theorem A-1: Let Z = [z(k-j)] be a Tx Tcirculant matrix, then its eigenvalues are given by:

T-

z(j)exp{-i2nrjk/T}, k= O 1,1, T-1,
j=o

and the corresponding eigenvectors by:

/ 1y[exp(-i2rjk/T); j = j=O, ..., T -1], k , T-1.

Proof:

A circulant matrix Z is defined as:

z(0)

z(T -1)

zl)

z(l)

z(0)

z(2)

... z(T-1)

... Z(T - 2)

... z(O) 

That is: in matrix Z, there are T independent elements: z(0), z(1), , z(T-1). They appear

in the 1st row, and the elements in successive rows are the successive cyclic permutations of

the first row.

Since the eigenvalues ~ and eigenvectors x; of Z satisfies:
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Zx = x ,j = 1, 2, ,T (A.1)

We have:

+ z(T -2)xT_ + z(T -1)XTJ = ijXlj
·+ z(T - 3)T_j + z(T - 2)X, = jx 2j

(A.2)

·.. + z(T - )xT_,j + z(O)XT,j = AjXTj

where Xkj is the kh element of the jth eigenvector. Let r be a root of the scalar equation

rT= and set Xkj = rfk, the above equation becomes:

z(O)rj + z(l)r2 +... + z(T - 2)r -' + z(T - )r = rj
z(T - 1)rj + z(O)r + ... + z(T - 3)rj-1+ z(T - 2)rf =

z()rj + z(2)rj2 + ... + z(T - 1)r-' + z(O)rj = jrjT

(A.3)

If multiply the Ist equation by rjT- 1, the 2nd by rT- 2 , and so forth, using rjT+k= rk, we see

that the equality will be obtained for each equation if:

T-1

Aj = z(h)r
h=O

(A.4)

The equation rT=l has T distinct roots: exp(i27nj/T),j = 1, 2,

expressed as: rj = exp(-i2irj/T) ,j = 0, 1,

, T, which may also be

, T-1. Therefore, the eigenvalues of Z are:

L z(j) exp{-i2rjk/T} , k = O,
j=O

,T-1,

The eigenvectors are:

1oe [ , eF-i2irjlT-i2'f2j/T ... e-i2r(T- ,j= , 1 , , T-1

Note that the scale factor / is to have unit norm for the eigenvectors.

End of Proof
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Next, we construct a T x T circular symmetric matrix by replacing z(T-1) by z(1), z(T-2)

by z(2) in matrix Z.

Z, =

z(O) z(1) z(2) ... z(2) z(1)

z(1) z(O) z(1) ... z(3) z(2)

z(2) z(1) z(O) ... z(4) z(3)

z(1) z(2) z(3) ... z(1) z(O)_

(A.5)

Substituting into Equation(A.4), we obtain for the eigenvalues of Z,:

(T-1)/2

y z(h)e-i2 hj/ T,T odd
h=-(Tr-1)/2

~J = (A.6)

i z(h)e-i2Rhj/r,T even
h=-T/2+1

For the case of Tbeing odd, Equation (A.6) may also be written as:

(n-l)/2 2g
Aj= I z(h)cos hj,j= , 1, ,T-I (A.7)

h=-(n-l)/2 T

Since, for 0 < m < 2n, cosm = cos(2-m), the eigenvalues associated withj = 1, 2, , (T-

1)/2 have multiplicity of two. For each of the repeated eigenvalues, we can find two real

orthogonal eigenvectors. These are chosen to be:

2[l,cos27I ,cos2rj,... cos2r (T -I)j]
V/T T T T

and (A.8)

[ O,sin 2 , sin 2 ,.sin 2,sinr (T- )
' T T

Much the same pattern holds for the roots of a circular symmetric matrix of dimension Tx

Twhere Tis even. There is an eigenvector I1/ [1,1,...,1] associated withj = 0 and a vector

1/J- [1,-1,1,...,-1] associated withj = T/2. The remaining (T/2)-2 roots have multiplicity

two and the eigenvalues are given by Equation (A.6).
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Now, consider the

112Q' equal to:

case of T being odd, define the orthogonal matrix Q by setting T 22-

2-1/2

1 cos 2r-
T

O sin 2r-
T

1 cos 4r-
T

T-1 1
O sin- 2r-

T T

2-1/2

2
cos 2r-

T
2

sin 2r-
T

cos 4r-
T

sin T-1 2r 2
T T

... 2 -1 /2

·-. cos 2rT
T

T-1
*.. sin 2rT

T
T-1

*.. cos 4rT
T

T-1 T-1
·.. sin 2;r

T T

Note that Q is the matrix composed of the T characteristic vectors defined by Equation

(A.8). Define the Tx Tdiagonal matrix D by

where

(A.10)

(A.1 1)

D = diag(dl,d2,I...,d)

27T h=

d2j = = z(h)ei
2;r h=-o

It is evident that for Z, defined in Equation (A.5), the matrix Q'ZsQ is a diagonal matrix

whose elements converge to 2irD as T increases. This also holds for even T if the definition

of Q is slightly modified. An additional row,

T-1/2 [1, -1,1,, 1, -1]

which is the eigenvector associated withj = T/2, is added to the Q' of Equation (A.9) when

T is even. The last entry in D for even T is

dT = - I z(h)cos Th
27T h=

2-1/2

(A.9)
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Now, we construct a symmetric Toeplitz matrix C using the elements z(/), j = 0, , T-1,

which can represent the covariance matrix of a stationary time series:

z(0) z(l) ... z(T-1) 

C = 1) z(0) ... z(T - 2)

z(T -1) z(T - 2) ... z(0)

We next demonstrate that Q'CQ' also converges to 27D. Let qi = [qli,q2i, ,qTi]' be the ith

column of Q. We have:

M

qi'Zsqj -qiCqj = [z(m)-z(T-m)] (A.13)
m

x E [qkiqT-m+k,j + qT-m+k,iqk ]
k=l

where M = (T- 1)/2 if T is odd and M = (T/2)-1 if T is even. It is evident that Equation (A.13)

is less than

4 jmlz(m)+Emz(T--m) )
[m=l m=l

(A. 14)
mlf Z(m) l+ Mlz(h)|

T m= ) h=M+l

since qkiqrj < 2/T for all k, i, r, j E (1, 2, , T). As T increases, the limit of the first term is

zero by Lemma A-i (see below) and the limit of the second term is zero if z(h) is absolutely

summable. Therefore, the elements of Q'CQ' converges to 2nrD.

In summary, the asymptotic property of a stationary time series with absolutely summable

covariance function stated in the beginning of this section is proved.
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n

Lemma A-1 (Kronecker's lemma): If the sequence {a}) is such that lima = A < oo, then

nei) j=o n

Proof:8 By assumption, give c> 0, there exists an N such that

E aj<e
j=N+l

Therefore, for n >N, we have

a <- ja + 
j=o n j.0

Clearly, for fixed N,

lim N
lim-E jjaj = 0
n---o n j=0

and since was arbitrary, the result follows.

End of Proof

Finally, note that for any Toeplitz matrix (not necessary symmetric), its eigenvectors are

asymptotically:

/p-[exp{-i2rjk / T}; j = 0,..., T- ],k = 0,..., T-1 (A.15)

and the corresponding eigenvalues are asymptotically:

T-1

E c(u)exp(i2rukT),k = 0,..., T - (A.16)
u=-T+l

The proof for this property is presented in [85].

8 This proof is adapted from [104]
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Appendix B

Identification of the ILV=>HR Impulse Re-
sponse from Spontaneous Breathing Data

In the SD method for autonomic function quantification (Section 3.3.2), the peak amplitude

of the ILV=>HR impulse response is utilized to derive a parasympathetic index. If data col-

lection is carried out during spontaneous breathing, the ILV signal normally does not con-

tain adequate frequency components to encompass the entire spectrum of the ILV>HR fre-

quency response (see Figure 3-10 and Figure 3-7). This presents a problem for system iden-

tification since it is generally required that the input signal be persistently exciting so as to

all the modes in the system are identifiable. A closer study at the features of the ILV>HR

impulse response is necessary to solve this problem.

Based on the identification results on random breathing data (e.g. Figure 3-8), a normal

ILV=>HR impulse response contains two prominent components. One is the initial upright

wave whose shape resembles a symmetric triangle. The second one is the delayed slower

wave which is low-frequency dominant. Hence, the relatively high frequency power in the

ILV=HR spectrum is mainly contributed by the first component. Since spontaneous

breathing ILV signal has significant energy in this frequency range, heuristically, the first

component, especially the peak amplitude of the impulse response based on which the para-

sympathetic index is derived, is more identifiable than the second one. However, given that

there are still inherent low frequency factors in the first component, it needs to be evaluated

how much the lack of low frequencies in the input signal would affect the estimation accu-

racy of the peak amplitude, the parameter we are mainly interested in.
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We constructed an impulse response analogous to the previously identified ILV=HR im-

pulse response and the input signal was band-limited that mimics the frequency ranges of

spontaneous breathing ILV data (Figure B - 1). Low and high frequency noise disturbances

were simulated respectively. Figure B - 2 shows the estimation error of the peak amplitude

of the impulse response using the WPCR-MA, WPCR-ARX and the conventional ARX

method. 30 input delays were included in the WPCR-MA structure and 15 AR and 15 MA

terms were included in both the ARX and the WPCR-ARX maximum models. The weight-

ing schemes as discussed in Chapter 2 were employed for the WPCR methods.

System Impulse Response

10 20
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1

1

1

1)- I

01
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Frequency Responses

0 0.1 0.2 0.3 0.4
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(a) (b)

Figure B - I (a) the simulated impulse response of the system; (b) the frequency responses of the system,
the band-limited input signal and the noise terms
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Figure B - 2 Estimation error of the peak amplitude of the ILV=>HR impulse response (a) low frequency
noise; (b) high frequency noise (values are mean ± 1.96*SE, 100 noise realizations)

The simulation results showed that the WPCR-ARX method outperforms the conven-

tional ARX method for both types of noise disturbances, which is expected since the fre-

quency selective property of the WPCR method renders it advantage when coping with col-

ored signals, as discussed in detail in Chapter 2. However, the WPCR-MA method performs

poorly in this application. It may be explained by the fact that inclusion of the AR terms (in

the ARX structures) enables a better estimation of the noise disturbance. In case of inpersis-

tently exciting input, there exist noise components that are out-of-band with the input but in-

band with the system function. Such noise disturbances may corrupt the estimation results

significantly. Therefore, an ARX structure which provides room for an explicit noise model

is more desirable. Interestingly, when the simulated noise level is zero (SNR = o), all

methods reached a nearly zero estimation error which implies that the band-limited input

contains adequate information for the identification of the peak amplitude.

Based on the above simulations, we propose to employ the WPCR-ARX method in the

ILV=>HR system identification in this thesis.
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Appendix C

Autonomic Indices of Subjects in the Bed Rest
Study Computed by the APR Method

In using the Area method to compute autonomic indices based on heart rate (HR), arterial

blood pressure (ABP) and instantaneous lung volume (ILV) collected during random breath-

ing, the ILV->HR impulse response needs to be identified first. A method previously used

in our lab for this purpose is the ARX Parameter Reduction (APR) method [55]. This algo-

rithm estimates the signal-to-noise ratio (SNR) of each moving average (MA) or autoregres-

sive (AR) parameter in the maximum ARX model. Candidate models are then constructed

according to the SNR value associated with each MA or AR term. Model parameters with

higher SNR values are considered first based on the hypothesis that such parameters have a

larger likelihood of being "true". A model selection criterion (e.g. MDL) is then utilized to

choose the best performing "minimal" model from the set of candidate models.

We employed the Area-APR method to analyze the bed rest data in order to compare with

the proposed Area-WPCR method. The identification results are shown in Table C - 1,

Table C - 2, Table C - 3 and Table C - 4. A detailed discussion on these results is provided

in Chapter 4 (Section 4.4).
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Table C - 1 Group average comparisons of parasympathetic responsiveness results of the Area-APR
method: supine (Su) vs. tilt; pre-bed rest (Pre) vs. end-bed rest (End) or post-bed rest (Post); End vs.

Post; (29 subjects for Pre vs. End in supine posture, Supine vs. Tilt at pre-bed rest, Pre vs. Post and End
vs. Post in supine posture; 22 subjects for Pre vs. End at Tilt postures and Supine vs. Tilt at end-bed rest

- subjects treated with midodrine are excluded; Values are means ± SE.).

Parasympathetic Pvalue value P value
Area
Ar(m eaSE) Su. vs. Tilt Pre vs. End/Post End vs. Post

Su. 0.020±0.002
Pre-bed 300 0.013±0.002 0.036

rest 60° 0.011±0.002 0.003
900 0.012±0.002 0.026
Su. 0.014±0.001 0.015

End- 300 0.008±0.001 0.001 0.003
bed rest 60° 0.008±0.002 0.012 0.30

900 0.006±0.001 0.031 0.03
Su. 0.016±0.002 0.25 0.72

Post- 300 0.014±0.002 0.14 0.43 0.14
bed rest 600 0.012±0.002 0.008 0.88 0.80

900 0.007±0.001 0.0005 0.002 0.50

Table C - 2 Group average comparisons of sympathetic responsiveness results of the Area-APR method:
supine (Su) vs. tilt; pre-bed rest (Pre) vs. end-bed rest (End) or post-bed rest (Post); End vs. Post; (see

the caption of Table 4-3 for the number of subjects in each category).

SympatheticSympathetic P value P value P value
Area SE) Su. vs. Tilt Pre vs. End/Post End vs. Post

(mean SE)
Su. 0.027±0.007

Pre-bed 300 0.030±0.010 0.79
rest 600 0.010±0.012 0.48

900 0.028±0.012 0.54
Su. -0.002±0.005 0.019

End- 300 0.001±0.009 0.15 0.032
bed rest 600 0.020±0.009 0.016 0.46

900 0.03 10.007 0.025 0.43
Su. 0.006±0.007 0.054 0.19

Post- 300 0.012±0.008 0.33 0.27 0.41
bed rest 600 0.037±0.011 0.011 0.51 0.19

900 0.025±0.010 0.11 0.31 0.56
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Table C - 3 Group average comparisons of parasympathetic responsiveness results of the Area-APR
method: Subjects who tolerated (T) the orthostatic tolerance testing vs. those who failed (F); same day:

the orthostatic tolerance testing and data collection for system identification were performed on the
same day; End: the orthostatic tolerance testing was performed at end-bed rest. (Su: supine; Values are

means ± SE; see Table 4-11 for the number of subjects in each category)

Parasympathetic Area Parasympathetic Area
(mean + SE) (mean ± SE)

P P
T-same day F-same day T-End F-End P

value value
Su. 0.017+0.003 0.026+0.004 0.07 0.010+0.002 0.024+0.003 0.004

Pre 300 0.013+0.001 0.013+0.003 0.89 0.013+0.002 0.012+0.002 0.77
bed
rest 600 0.010+0.002 0.010+0.003 0.99 0.006+0.002 0.014+0.003 0.054

900 0.010+0.001 0.017+0.005 0.092 0.009+0.002 0.015±0.004 0.26
Su. 0.014±0.002 0.014+0.002 0.99

End- 300 0.007±0.001 0.009±0.002 0.58
bed

60° 0.007±0.001 0.008±0.004 0.70rest
900 0.006±0.002 0.006+0.003 0.78
Su. 0.014±0.002 0.018±0.003 0.30

Post- 300 0.011±0.002 0.018±0.004 0.14
rbed 600 0.010+0.003 0.014+0.004 0.34rest

900 0.007±0.001 0.007±0.002 0.89

Table C - 4 Group average comparisons of sympathetic responsiveness results of the Area-APR method:
Subjects who tolerated (T) the orthostatic tolerance testing vs. those who failed (F); (see the caption of

Table 4-5 for more details)

Sympathetic Area Sympathetic Area
(mean + SE) (mean ± SE)

P P
T-same day F-same day T-End F-End

value value
Su. 0.030±0.010 0.021±0.010 0.58 0.027+0.015 0.025±0.008 0.93

Pre 300 0.026±0.010 0.031+0.020 0.81 0.034+0.013 0.026+0.015 0.74
bed

rest 60 0.007+0.013 0.023+0.011 0.39 0.032+0.015 -0.005±0.02 0.12rest
900 0.034+0.011 -0.018+0.010 0.029 0.058+0.020 0.001±0.008 0.013
Su. 0.013±0.008 -0.011+0.010 0.10

End- 300 0.021+0.014 -0.010±0.10 0.09
bed
rest 600 0.029+0.011 0.014+0.013 0.42

900 0.027±0.012 0.035±0.006 0.59
Su. 0.008+0.007 -0.005±0.02 0.48

Post- 300 0.014+0.008 0.001+0.024 0.53
bed
rest 600 0.047-0.012 -0.007+0.023 0.063

900 0.034±0.011 -0.018±0.010 0.043





197

Bibliography

[1] T. Soderstrom and P. Stoica, System Identification. Englewood Cliffs, NJ: Prentice
Hall, 1988.

[2] L. Ljung, System identification, theory for the user: Prentice Hall, Inc, 1999.

[3] K. AbedMeraim, W. Z. Qui, and Y. B. Hua, "Blind system identification," Proc.
IEEE, vol. 85, pp. 1310-1322, 1997.

[4] Y. Zhong, H. Wang, K. Ju, K. M. Jan, and K. H. Chon, "Nonlinear analysis of the
separate contributions of autonomic nervous systems to heart rate variability using
principal dynamic modes," IEEE Trans Biomed Eng, pp. In press, 2004.

[5] R. Haber, Nonlinear system identification: input-output modeling approach.
Dordrecht; Boston: Kluwer Academic Publishers, 1999.

[6] K. H. Chon and R. J. Cohen, "Linear and nonlinear ARMA model parameter estima-
tion using an artificial neural network," IEEE Trans Biomed Eng, vol. 44, pp. 168-
74, 1997.

[7] K. H. Chon, T. J. Mullen, and R. J. Cohen, "A dual-input nonlinear system analysis
of autonomic modulation of heart rate," IEEE Trans Biomed Eng, vol. 43, pp. 530-
44, 1996.

[8] J. Allen and A. Murray, "Modelling the relationship between peripheral blood pres-
sure and blood volume pulses using linear and neural network system identification
techniques," Physiol Meas, vol. 20, pp. 287-301, 1999.

[9] K. H. Chon, Y. M. Chen, N. H. Holstein-Rathlou, D. J. Marsh, and V. Z. Marma-
relis, "On the efficacy of linear system analysis of renal autoregulation in rats," IEEE
Trans Biomed Eng, vol. 40, pp. 8-20, 1993.

[10] R. I). Berger, J. P. Saul, and R. J. Cohen, "Transfer function analysis of autonomic
regulation. I. Canine atrial rate response," Am JPhysiol, vol. 256, pp. H142-52,
1989.

[11] Y. Zhu, Multivariable system identification for process control. Oxford, UK: El-
sevier Science Ltd, 2001.

[12] J. B. Moore, M. Niedzwiechi, and L. Xia, "Identification/prediction algorithms for
armax models with relaxed positive real conditions," International Journal ofAdap-
tive Control and Signal Processing, vol. 4, pp. 49-67, 1990.

[13] J. Durbin, "Efficient estimators of parameters in moving average models," Biomet-
rica, vol. 46, pp. 306-316, 1959.

[14] K. J. Astrom and P. Eykhoff, "System identification - a survey," Automatica, vol. 7,
pp. 123-167, 1971.



198 Bibliography

[15] D. W. Clarke, "Generalized-least-squares estimation of the parameters of a dynamic
model," presented at 1 st IFAC Symp. Identification Automat. Contr. Syst., 1967.

[16] L. Ljung and B. Wahlberg, "Asymptotic Properties of the Least-Squares Method for
Estimating Transfer-Functions and Disturbance Spectra," Advances in Applied Prob-
ability, vol. 24, pp. 412-440, 1992.

[17] B. Wahlberg, "System-Identification Using Laguerre Models," Ieee Transactions on
Automatic Control, vol. 36, pp. 551-562, 1991.

[18] B. Wahlberg, "System-Identification Using Kautz Models," Ieee Transactions on
Automatic Control, vol. 39, pp. 1276-1282, 1994.

[19] P. S. C. Heuberger, P. M. J. Vandenhof, and O. H. Bosgra, "A Generalized Or-
thonormal Basis for Linear Dynamical-Systems," Ieee Transactions on Automatic
Control, vol. 40, pp. 451-465, 1995.

[20] P. Van Overschee and B. De Moor, Subspace identification for linear systems: the-
ory, implementation, applications. Norwell, MA: Kluwer Academic, 1996.

[21] E. W. Jensen, P. Lindholm, and S. W. Henneberg, "Autoregressive modeling with
exogenous input of middle-latency auditory-evoked potentials to measure rapid
changes in depth of anesthesia," Methods InfMed, vol. 35, pp. 256-60, 1996.

[22] D. Liberati, L. Bedarida, P. Brandazza, and S. Cerutti, "A model for the cortico-
cortical neural interaction in multisensory-evoked potentials," IEEE Trans Biomed
Eng, vol. 38, pp. 879-90, 1991.

[23] T. J. Mullen, M. L. Appel, R. Mukkamala, J. M. Mathias, and R. J. Cohen, "System
identification of closed-loop cardiovascular control: effects of posture and autonomic
blockade," Am JPhysiol, vol. 272, pp. H448-61, 1997.

[24] P. Bodin, L. F. Villemoes, and B. Wahlberg, "Selection of best orthonormal rational
basis," Siam Journal on Control and Optimization, vol. 38, pp. 995-1032, 2000.

[25] J. Shao, "Linear-Model Selection by Cross-Validation," Journal of the American Sta-
tistical Association, vol. 88, pp. 486-494, 1993.

[26] F. Gustafsson and H. Hjalmarsson, "Twenty-one ML estimators for model selection,"
Automatica, vol. 31, pp. 1377-1392, 1995.

[27] H. Akaike, "Fitting autoregressive models for prediction," Ann Inst Statist Math, vol.
21, pp. 243-247, 1969.

[28] C. L. Mallows, "Some comments on cp," Technometrics, vol. 15, pp. 661-675, 1973.

[29] P. Craven and G. Wahba, "Smoothing Noisy Data with Spline Functions - Estimat-
ing the Correct Degree of Smoothing by the Method of Generalized Cross-
Validation," Numerische Mathematik, vol. 31, pp. 377-403, 1979.

[30] R. Shibata, "An Optimal Selection of Regression Variables," Biometrika, vol. 68, pp.
45-54, 1981.



Bibliography 199

[31] V. Cherkassky, X. H. Shao, F. M. Mulier, and V. N. Vapnik, "Model complexity
control for regression using VC generalization bounds," Ieee Transactions on Neural
Networks, vol. 10, pp. 1075-1089, 1999.

[32] X. Xiao, Y. Li, and R. Mukkamala, "A Model Order Selection Criterion with

Applications to Physiologic Systems," To apprear in IEEE TBiomed Eng, 2004.

[33] O. Chapelle, V. Vapnik, and Y. Bengio, "Model selection for small sample regres-
sion," Machine Learning, vol. 48, pp. 9-23, 2002.

[34] H. Akaike, "Information theory and an extension of the maximum likelihood princi-
ple," presented at Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, USSR,
1971.

[35] H. Akaike, "On entropy maximization principle," in Proc. Symp. on Applications of
Statistics, P. R. Krishnaiah, Ed. Amsterdam, Neitherlands: North-Holland, 1977, pp.
27-41.

[36] G. Schwarz, "Estimating the dimension of a model," The Annals of Statistica, vol. 6,
pp. 461-464, 1978.

[37] E. .. Hannan and B. G. Quinn, "Determination of the Order of an Autoregression,"
Journal of the Royal Statistical Society Series B-Methodological, vol. 41, pp. 190-
195, 1979.

[38] C. M. Hurvich and C. L. Tsai, "Regression and time series model selection in small
samples," Biometrika, vol. 76, pp. 297-307, 1989.

[39] A. McQuarrie, R. Shumway, and C. L. Tsai, "The model selection criterion AICu,"
Statistics & Probability Letters, vol. 34, pp. 285-292, 1997.

[40] J. Rissanen, "Modelling by shortest data description," Automatica, vol. 14, pp. 465-
471, 1978.

[41] S. Beheshti and M. A. Dahleh, "A new minimum description length," presented at
IEEE Conf. on American Control Conference, 2003.

[42] M. Qi and G. P. Zhang, "An investigation of model selection criteria for neural net-
work time series forecasting," European Journal of Operational Research, vol. 132,
pp. 666-680, 2001.

[43] C. W. J. Granger, "Strategies for Modeling Nonlinear Time-Series Relationships,"
Economic Record, vol. 69, pp. 233-238, 1993.

[44] J. Yen and L. Wang, "Application of statistical information criteria for optimal fuzzy
model construction," Ieee Transactions on Fuzzy Systems, vol. 6, pp. 362-372, 1998.

[45] A. C. Guyton and J. E. Hall, Textbook of medical physiology: WB Saunders, 1994.

[46] A. Selman, A. McDonald, R. Kitney, and D. Linkens, "The interaction between heart
rate and respiration: part I - experimental studies in man," Automedica, vol. 4, pp.
131-139, 1982.



200 Bibliography

[47] J. P. Saul, R. D. Berger, M. H. Chen, and R. J. Cohen, "Transfer function analysis of
autonomic regulation. II. Respiratory sinus arrhythmia," Am JPhysiol, vol. 256, pp.
H153-61, 1989.

[48] R. D. Berger, J. P. Saul, and R. J. Cohen, "Assessment of autonomic response by
broad-band respiration," IEEE Trans Biomed Eng, vol. 36, pp. 1061-5, 1989.

[49] R. D. Berger, M. Fogaca, J. P. Saul, and R. J. Cohen, "Transfer function analysis of
cardiovascular regulation in an open-loop animal model," Computers in Cardiology,
pp. 331-335, 1989.

[50] G. Stanley, D. Verotta, N. Craft, R. A. Siegel, and J. B. Schwartz, "Age and auto-
nomic effects on interrelationships between lung volume and heart rate," Am J
Physiol, vol. 270, pp. H1833-40, 1996.

[51] C. Julien, B. Chapuis, Y. Cheng, and C. Barries, "Dynamic interactions between ar-
terial pressure and sympathetic nerve activity: role of arterial baroreceptors," Am J
Physiol Regul Integr Comp Physiol, vol. 285, pp. R834-41, 2003.

[52] T. Kawada, T. Miyamoto, K. Uemura, K. Kashihara, A. Kamiya, M. Sugimachi, and
K. Sunagawa, "Effects of neuronal norepinephrine uptake blockade on baroreflex
neural and peripheral arc transfer characteristics," Am JPhysiol Regul Integr Comp
Physiol, vol. Epub ahead of print, Feb 12, 2004.

[53] J. P. Saul, R. D. Berger, and R. J. Cohen, "A simple analytical model mimics com-
plex physiological behavior," Computers in Cardiology, pp. 335-338, 1990.

[54] M. L. Appel, J. P. Saul, R. D. Berger, and R. J. Cohen, "Closed-loop identification of
blood pressure variability mechanisms," in Blood Pressure and Heart Rate Variabil-
ity, M. D. R. e. al., Ed.: IOS Press, 1992, pp. 68-74.

[55] M. H. Perrott and R. J. Cohen, "An efficient approach to ARMA modeling of bio-
logical systems with multiple inputs and delays," IEEE Trans Biomed Eng, vol. 43,
pp. 1-14, 1996.

[56] R. Mukkamala, J. M. Mathias, T. J. Mullen, R. J. Cohen, and R. Freeman, "System
identification of closed-loop cardiovascular control mechanisms: diabetic autonomic
neuropathy," Am JPhysiol, vol. 276, pp. R905-12, 1999.

[57] R. Mukkamala, "A forward model-based analysis of cardiovascular system identifi-
cation methods," in Electrical Engineering and Computer Science. Cambridge, MA:
Massachusetts Institute of Technology, 2000, pp. 1 12-113.

[58] V. Di Virgilio, R. Barbieri, L. Mainardi, S. Strano, and S. Cerutti, "A multivariate
time-variant AR method for the analysis of heart rate and arterial blood pressure,"
Med Eng Phys, vol. 19, pp. 109-24, 1997.

[59] K. Yamada, H. Asanoi, J. Takagawa, S. Joho, T. Kameyama, T. Hirai, T. Nozawa,
and H. Inoue, "Parametric system identification of arterial baroreflex with random
perturbation of blood pressure in normal subjects," J Cardiovasc Pharmacol, vol. 42,
pp. S11-3, 2003.



Bibliography 201

[60] R. Kosaka, Y. Sankai, T. Jikuya, T. Yamane, and T. Tsutsui, "Online parameter
identification of second-order systemic circulation model using the delta operator,"
Artif Organs, vol. 26, pp. 967-70, 2002.

[61] R. Mukkamala, K. Toska, and R. J. Cohen, "Noninvasive identification of the total
peripheral resistance baroreflex," Am JPhysiol Heart Circ Physiol, vol. 284, pp.
H947-59, 2003.

[62] X. Xiao, R. Mukkamala, N. Sheynberg, G. H. Williams, and R. J. Cohen, "Effects of
Prolonged Bed Rest on the Total Peripheral Resistance Baroreflex," Computers in
Cardiology, vol. 29, pp. 53-56, 2002.

[63] A. K. Ahmed, S. Y. Fakhouri, J. B. Harness, and A. J. Mearns, "Modelling of the
control of heart rate by breathing using a kernel method," J Theor Biol, vol. 119, pp.
67-79, 1986.

[64] J. P. Saul, D. Kaplan, and R. Kitney, "Nonlinear interactions between respiration and
heart rate: clinical physiology or entrained nonlinear oscillators," Computers in Car-
diology, pp. 299-302, 1988.

[65] K. Pearson, "On lines and planes of closest fit to systems of points in space.," Phil.
Mag., vol. 6, pp. 559-572, 1901.

[66] H. Hotelling, "Analysis of a complex of statistical variables into principal compo-
nents," J. Educ. Psychol., vol. 24, pp. 417-441, 498-520, 1933.

[67] I. T. Jolliffe, Principal component analysis. New York: Springer-Verlag, 1986.

[68] J. Mandel, "Use of the singular value decomposition in regression analysis," AM
STAT, vol. 36, pp. 15-24, 1982.

[69] B. Pilgram and W. Schappacher, "Estimation of the dominant singular values for svd
based noise reduction methods," International Journal of Bifurcation and Chaos,
vol. 8, pp. 571-580, 1998.

[70] K. Shin, J. K. Hammond, and P. R. White, "Iterative svd method for noise reduction
of low-dimensional, chaotic time series," Mechanical Systems and Signal Process-
ing, vol. 13, pp. 115-124, 1999.

[71] K. Konstantinides, B. Natarajan, and G. S. Yovanof, "Noise estimation and filtering
using block-based singular value decomposition," Ieee Transactions on Image Proc-
essing, vol. 6, pp. 479-483, 1997.

[72] J. J. Wei, C. J. Chang, N. K. Chou, and G. J. Jan, "ECG data compression using
truncated singular value decomposition," Ieee Transactions on Information Technol-
ogy in Biomedicine, vol. 5, pp. 290-299, 2001.

[73] R. Swiniarski and A. Swiniarska, "Comparison of feature extraction and selection
methods in mammogram recognition," in Techniques in Bioinformatics and Medical
Informatics, vol. 980, Annals of the New York Academy of Sciences. New York:
NEW YORK ACAD SCIENCES, 2002, pp. 116-124.



202 Bibliography

[74] P. P. Kanjilal and S. Palit, "The Singular-Value Decomposition - Applied in the
Modeling and Prediction of Quasi-Periodic Processes," Signal Processing, vol. 35,
pp. 257-267, 1994.

[75] D. W. Tufts and R. Kumaresan, "Singular Value Decomposition and Improved Fre-
quency Estimation Using Linear Prediction," Ieee Transactions on Acoustics Speech
and Signal Processing, vol. 30, pp. 671-675, 1982.

[76] M. Uike, T. Uchiyama, and H. Minamitani, "Comparison of Linear Prediction Meth-
ods Based on Singular Value Decomposition," Journal of Magnetic Resonance, vol.
99, pp. 363-371, 1992.

[77] R. D. Prony, "Essai Experimentale et analytique," J. Ecole Polytechnique (Paris), pp.
24-76, 1795.

[78] F. B. Hildebrand, Introduction to Numerical Analysis. New York: McGraw-Hill,
1956.

[79] R. Kumaresan, D. W. Tufts, and L. L. Scharf, "A Prony Method for Noisy Data -
Choosing the Signal Components and Selecting the Order in Exponential Signal
Models," Proceedings of the Ieee, vol. 72, pp. 230-232, 1984.

[80] J. A. Cadzow, B. Baseghi, and T. Hsu, "Singular-Value Decomposition Approach to
Time-Series Modeling," lee Proceedings-F Radar and Signal Processing, vol. 130,
pp. 202-210, 1983.

[81] J. A. Cadzow, "Spectral estimation: an overdetermined rational model equation ap-
proach," Proc. IEEE, vol. 70, pp. 907-939, 1982.

[82] D. W. Tufts and R. Kumaresan, "Estimation of Frequencies of Multiple Sinusoids -
Making Linear Prediction Perform Like Maximum-Likelihood," Proceedings of the
Ieee, vol. 70, pp. 975-989, 1982.

[83] A. Cantoni and L. C. Godara, "Resolving the Directions of Sources in a Correlated
Field Incident on an Array," Journal of the Acoustical Society of America, vol. 67,
pp. 1247-1255, 1980.

[84] S. S. Reddi, "Multiple Source Location a Digital Approach," Ieee Transactions on
Aerospace and Electronic Systems, vol. 15, pp. 95-105, 1979.

[85] D. Brillinger, Time series, data analysis and theory: Holden-Day, Inc, 1981.

[86] M. B. Priestley, T. Subba Rao, and H. Tong, "Applications of principal component
analysis and factor analysis in the identification of multivariable systems," IEEE
Transactions on Automatic Control, vol. AC-19, pp. 730-734, 1974.

[87] R. RicoMartinez, J. S. Anderson, and I. G. Kevrekidis, "Self-consistency in neural
network-based NLPC analysis with applications to time-series processing," Com-
puters & Chemical Engineering, vol. 20, pp. S 1089-S 1094, 1996.

[88] G. Castellano and A. M. Fanelli, "Variable selection using neural-network models,"
Neurocomputing, vol. 31, pp. 1-13, 2000.



Bibliography 203

[89] P. V. Overschee and B. De Moor, Subspace identification for linear systems : theory,
implementation, applications. Norwell, MA: Kluwer Academic, 1996.

[90] D. Z. Feng, Z. Bao, and L. C. Jiao, "Total least mean squares algorithm," IEEE T.
Signal Proces., vol. 46, pp. 2122-2130, 1998.

[91] B. Ho and R. Kalman, "Efficient construction of linear state variable models from
input/output functions," Regelungstechnik, vol. 14, pp. 545-548, 1966.

[92] S. Kung, "A new identification and model reduction algorithm via singular value de-
compositions," presented at Conference Record of the Twelfth Asilomar Conference
on Circuits, Systems and Computers, 6-8 Nov. 1978, Pacific Grove, CA, USA, 1978.

[93] M. Viberg, "Subspace-based methods for the identification of linear time-invariant
systems," Automatica, vol. 31, pp. 1835-1851, 1995.

[94] J.-N. Juang and R. S. Pappa, "An eigensystem realization algorithm for modal pa-
rameter identification and model reduction," Journal of Guidance, Control, and Dy-
namics, vol. 8, pp. 620-7, 1985.

[95] K. Glover, "All optimal Hankel-norm approximations of linear multivariable systems
and their L/sup infinity /-error bounds," International Journal of Control, vol. 39, pp.
1115-93, 1984.

[96] A. M. King, U. B. Desai, and R. E. Skelton, "A generalized approach to q-Markov
covariance equivalent realizations for discrete systems," Automatica, vol. 24, pp.
507-15, 1988.

[97] M. Verhaegen, "Identification of the determinstic part of MIMO state spae models,
given in innovations form from input-output data," Automatica, vol. 30, pp. 61-74,
1994.

[98] P. Van Overschee and B. De Moor, "N4SID: subspace algorithms for the identifica-
tion of combined deterministic-stochastic systems," Automatica, vol. 30, pp. 75-93,
1994.

[99] W. E. Larimore, "Canonical variate analysis in identification, filtering, and adaptive
control," presented at Proceedings of the 29th IEEE Conference on Decision and
Control (Cat. No.90CH2917-3), 5-7 Dec. 1990, Honolulu, HI, USA, 1990.

[100] G. H. Golub and C. F. Van Loan, "An analysis of the total least squares problem,"
SIAMJ. Numer Anal, vol. 17, pp. 883-893, 1980.

[101] F. Deprettere, "SVD and signal processing, algorithms, applications and architec-
ture." Amsterdam: The Netherlands: North Holland, 1988.

[102] J. A. Cadzow and 0. M. Solomon, "Algebraic approach to system identification,"
IEEE TAcoustics, Speech, and Signal Processing, vol. ASSP-34, pp. 462-469, 1986.

[103] J. Durbin, "Present positiona dn potential developments: some personal views, time
series analysis," JR statist Soc A, vol. 147, pp. 161-173, 1984.

[104] W. A. Fuller, Introduction to Statistical Time Series. New York: J. Wiley, 1996.



204 Bibliography

[105] P. E. Wellstead and J. M. Edmunds, "Least-squares identification of closed-loop sys-
tems," Int. J. Contr., vol. 21, pp. 689-699, 1975.

[106] X. Xiao, R. Mukkamala, N. Sheynberg, S. M. Grenon, M. D. Ehrman, T. J. Mullen,
C. D. Ramsdell, G. H. Williams, and R. J. Cohen, "Effects of Simulated Micrograv-
ity on Closed-loop Cardiovascular Regulation and Orthostatic Intolerance: Analysis
by Means of System Identification," JAppl Physiol, vol. 96, pp. 489-497, 2003.

[107] D. P. Zipes, M. N. Levy, L. A. Cobb, S. Julius, P. G. Kaufman, N. E. Miller, and R.
L. Verrier, "Task Force-2 - Sudden Cardiac Death - Neural-Cardiac Interactions,"
Circulation, vol. 76, pp. 202-207, 1987.

[108] R. L. Verrier and B. D. Nearing, "Method and apparatus for prediction of sudden
cardiac death by simultaneous assessment of autonomic function and cardiac electri-
cal stability." USA: Georgetown University (Washington, DC), 1993.

[109] K. E. J. Airaksinen, "Autonomic mechanisms and sudden death after abrupt coronary
occlusion," Annals of Medicine, vol. 31, pp. 240-245, 1999.

[110] J. C. Buckey, Jr., L. D. Lane, B. D. Levine, D. E. Watenpaugh, S. J. Wright, W. E.
Moore, F. A. Gaffney, and C. G. Blomqvist, "Orthostatic intolerance after space-
flight," JAppl Physiol, vol. 81, pp. 7-18, 1996.

[111] W. H. Cooke, J. I. Ames, A. A. Crossman, J. F. Cox, T. A. Kuusela, K. U. Tahvana-
inen, L. B. Moon, J. Drescher, F. J. Baisch, T. Mano, B. D. Levine, C. G. Blomqvist,
and D. L. Eckberg, "Nine months in space: effects on human autonomic cardiovascu-
lar regulation," JAppl Physiol, vol. 89, pp. 1039-45, 2000.

[112] D. J. Ewing, J. M. M. Neilson, C. M. Shapiro, J. A. Stewart, and W. Reid, "24 Hour
Heart-Rate-Variability - Effects of Posture, Sleep, and Time of Day in Healthy Con-
trols and Comparison with Bedside Tests of Autonomic Function in Diabetic-
Patients," British Heart Journal, vol. 65, pp. 239-244, 1991.

[113] D. J. Ewing, C. N. Martyn, R. J. Young, and B. F. Clarke, "The value of cardiovas-
cular autonomic function tests: 10 years experience in diabetes," Diabetes Care, vol.
8, pp. 491-8, 1985.

[114] D. Ziegler, "Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and
treatment," Diabetes Metab Rev, vol. 10, pp. 339-83, 1994.

[115] G. Vita, R. Dattola, R. Calabrio, L. Manna, C. Venuto, A. Toscano, V. Savica, and
G. Bellinghieri, "Comparative analysis of autonomic and somatic dysfunction in
chronic uraemia," Eur Neurol, vol. 28, pp. 335-40, 1988.

[116] A. Reockel, H. Hennemann, A. Sternagel-Haase, and A. Heidland, "Uraemic sympa-
thetic neuropathy after haemodialysis and transplantation," Eur J Clin Invest, vol. 9,
pp. 23-7, 1979.

[117] D. R. Grimm, "Neurally mediated syncope: a review of cardiac and arterial recep-
tors," J Clin Neurophysiol, vol. 14, pp. 170-82, 1997.

[118] H. Kaufmann, "Neurally mediated syncope and syncope due to autonomic failure:
differences and similarities," J Clin Neurophysiol, vol. 14, pp. 183-96, 1997.



Bibliography 205

[119] P. A. Kelly, J. Nolan, J. I. Wilson, and E. J. Perrins, "Preservation of autonomic
function following successful reperfusion with streptokinase within 12 hours of the
onset of acute myocardial infarction," Am J Cardiol, vol. 79, pp. 203-5, 1997.

[120] A. D. Flapan, R. A. Wright, J. Nolan, J. M. Neilson, and D. J. Ewing, "Differing pat-
terns of cardiac parasympathetic activity and their evolution in selected patients with
a first myocardial infarction," JAm Coll Cardiol, vol. 21, pp. 926-31, 1993.

[121] J. Nolan, A. D. Flapan, S. Capewell, T. M. MacDonald, J. M. Neilson, and D. J. Ew-
ing, "Decreased cardiac parasympathetic activity in chronic heart failure and its rela-
tion to left ventricular function," Br Heart J, vol. 67, pp. 482-5, 1992.

[122] J. Nolan, P. D. Batin, R. Andrews, S. J. Lindsay, P. Brooksby, M. Mullen, W. Baig,
A. D. Flapan, A. Cowley, R. J. Prescott, J. M. Neilson, and K. A. Fox, "Prospective
study of heart rate variability and mortality in chronic heart failure: results of the
United Kingdom heart failure evaluation and assessment of risk trial (UK-heart),"
Circulation, vol. 98, pp. 1510-6, 1998.

[123] J. P. Singh, M. G. Larson, H. Tsuji, J. C. Evans, C. J. O'Donnell, and D. Levy, "Re-
duced heart rate variability and new-onset hypertension: insights into pathogenesis of
hypertension: the Framingham Heart Study," Hypertension, vol. 32, pp. 293-7, 1998.

[124] S. Akselrod, O. Oz, M. Grinberg, and L. Keselbrenner, "Dynamic autonomic re-
sponse to change of posture investigated by time-dependent heart rate variability
among normal and mild-hypertensive adults," JAuton Nerv Syst, vol. 64, pp. 33-43,
1997.

[125] J. McClain, C. Hardy, B. Enders, M. Smith, and L. I. Sinoway, "Limb congestion
and sympathoexcitation during exercise: implications for congestive heart failure," J
Clin Invest, vol. 92, pp. 2353-2359, 1993.

[126] M. J. Brown, "The measurement of autonomic function in clinical practice," JR Coil
Physicians Lond, vol. 21, pp. 206-9, 1987.

[127] T. Wheeler and P. J. Watkins, "Cardiac denervation in diabetes," Br Med J, vol. 4,
pp. 584-6, 1973.

[128] D. I. Ewing, I. W. Campbell, A. Murray, J. M. Neilson, and B. F. Clarke, "Immedi-
ate heart-rate response to standing: simple test for autonomic neuropathy in diabe-
tes," Br Med J, vol. 1, pp. 145-7, 1978.

[129] A. B. Levin, "A simple test of cardiac function based upon the heart rate changes in-
duced by the Valsalva maneuver," Am J Cardiol, vol. 18, pp. 90-9, 1966.

[130] G. Sundkvist, B. Lilja, and L. O. Almer, "Abnormal diastolic blood pressure and
heart rate reactions to tilting in diabetes mellitus," Diabetologia, vol. 19, pp. 433-8,
1980.

[131] E. A. Hines and G. E. Brown, "The cold pressor test for measuring the reactibility of
the blood pressure: data concerning 571 normal and hypertensive subjects," Am
Heart J, vol. 11, pp. 1-9, 1936.



206 Bibliography

[132] D. J. Ewing, J. B. Irving, F. Kerr, J. A. Wildsmith, and B. F. Clarke, "Cardiovascular
responses to sustained handgrip in normal subjects and in patients with diabetes mel-
litus: a test of autonomic function," Clin Sci Mol Med, vol. 46, pp. 295-306, 1974.

[133] J. Pumprla, K. Howorka, D. Groves, M. Chester, and J. Nolan, "Functional assess-
ment of heart rate variability: physiological basis and practical applications," Int J
Cardiol, vol. 84, pp. 1-14, 2002.

[134] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger, and R. J. Cohen,
"Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-
beat cardiovascular control," Science, vol. 213, pp. 220-2, 1981.

[135] D. Sigaudo, J. O. Fortrat, A. M. Allevard, A. Maillet, J. M. Cottet-Emard, A. Vouil-
larmet, R. L. Hughson, G. Gauquelin-Koch, and C. Gharib, "Changes in the sympa-
thetic nervous system induced by 42 days of head-down bed rest," Am JPhysiol, vol.
274, pp. H1875-84, 1998.

[136] E. Toledo, O. Gurevitz, H. Hod, M. Eldar, and S. Akselrod, "Wavelet analysis of in-
stantaneous heart rate: a study of autonomic control during thrombolysis," Am J
Physiol Regul Integr Comp Physiol, vol. 284, pp. R1079-91, 2003.

[137] S. J. Shin, W. N. Tapp, S. S. Reisman, and B. H. Natelson, "Assessment of auto-
nomic regulation of heart rate variability by the method of complex demodulation,"
IEEE Trans Biomed Eng, vol. 36, pp. 274-83, 1989.

[138] V. L. Schechtman, K. A. Kluge, and R. M. Harper, "Time domain systems for as-
sessing variation in heart rate," Med Biol Eng Comput, vol. 26, pp. 367-373, 1988.

[139] P. Coumel, J. S. Hermida, B. Wennerblom, A. Leenhardt, P. Maisonblanche, and B.
Cauchemez, "Heart-Rate-Variability in Left-Ventricular Hypertrophy and Heart-
Failure, and the Effects of Beta-Blockade - a Non-Spectral Analysis of Heart-Rate-
Variability in the Frequency-Domain and in the Time Domain," European Heart
Journal, vol. 12, pp. 412-422, 1991.

[140] R. Vetter, J. M. Vesin, P. Celka, and U. Scherrer, "Observer of the human cardiac
sympathetic nerve activity using noncausal blind source separation," IEEE Trans
Biomed Eng, vol. 46, pp. 322-30, 1999.

[141] M. Kollai and K. Koizumi, "Reciprocal and non-reciprocal action of the vagal and
sympathetic nerves innervating the heart," JAuton Nerv Syst, vol. 1, pp. 33-52, 1979.

[142] R. Vetter, N. Virag, J. M. Vesin, P. Celka, and U. Scherrer, "Observer of autonomic
cardiac outflow based on blind source separation of ECG parameters," IEEE Trans
Biomed Eng, vol. 47, pp. 578-82, 2000.

[143] T. A. Buckingham, Z. R. Bhutto, E. A. Telfer, and J. Zbilut, "Differences in Cor-
rected Qt Intervals at Minimal and Maximal Heart-Rate May Identify Patients at
Risk for Torsades-De-Pointes During Treatment with Antiarrhythmic Drugs," Jour-
nal of Cardiovascular Electrophysiology, vol. 5, pp. 408-411, 1994.

[144] S. Guzzetti, S. Mezzetti, R. Magatelli, A. Porta, G. De Angelis, G. Rovelli, and A.
Malliani, "Linear and non-linear 24 h heart rate variability in chronic heart failure,"
Auton Neurosci, vol. 86, pp. 114-9, 2000.



Bibliography 207

[145] S. Kagiyama, A. Tsukashima, I. Abe, S. Fujishima, S. Ohmori, U. Onaka, Y. Ohya,
K. Fujii, T. Tsuchihashi, and M. Fujishima, "Chaos and spectral analyses of heart
rate variability during head-up tilting in essential hypertension," Journal of the Auto-
nomic Nervous System, vol. 76, pp. 153-158, 1999.

[146] V. Z. Marmarelis, K. H. Chon, N. H. Holstein-Rathlou, and D. J. Marsh, "Nonlinear
analysis of renal autoregulation in rats using principal dynamic modes," Ann Biomed
Eng, vol. 27, pp. 23-31, 1999.

[147] V. Z. Marmarelis, "Modeling methodology for nonlinear physiological systems,"
Ann Biomed Eng, vol. 25, pp. 239-51, 1997.

[148] J. K. Triedman, M. H. Perrott, R. J. Cohen, and J. P. Saul, "Respiratory sinus ar-
rhythmia: time domain characterization using autoregressive moving average analy-
sis," Am JPhysiol, vol. 268, pp. H2232-8, 1995.

[149] G. B. Moody, R. G. Mark, A. Zoccola, and S. Mantero, "Derivation of respiratory
signals from multi-lead ECGs," Computers in Cardiology, vol. 12, pp. 113-116,
1985.

[150] J. Felblinger and C. Boesch, "Amplitude demodulation of the electrocardiogram sig-
nal (ECG) for respiration monitoring and compensation during MR examinations,"
Magn Reson Med, vol. 38, pp. 129-36, 1997.

[151] A. M. Bianchi, G. D. Pinna, M. Croce, R. Maestri, M. T. La Rovere, and S. Cerutti,
"Estimation of the respiratory activity from orthogonal ECG leads," Computers in
Cardiology, vol. 30, pp. 85-88, 2003.

[152] B. W. Hyndman and R. K. Mohn, "A model of the cardiac pacemaker and its use in
decoding the information content of cardiac intervals," Automedica, vol. 1, pp. 239-
252, 1975.

[153] E. Pyetan and S. Akselrod, "Do the high-frequency indexes of HRV provide a faith-
ful assessment of cardiac vagal tone? A critical theoretical evaluation," IEEE Trans
Biomed Eng, vol. 50, pp. 777-83, 2003.

[154] H. W. Chiu and T. Kao, "A mathematical model for autonomic control of heart rate
variation," IEEE Eng Med Biol Mag, vol. 20, pp. 69-76, 2001.

[155] E. Pyetan, E. Toledo, O. Zoran, and S. Akselrod, "Parametric description of cardiac
vagal control," Auton Neurosci, vol. 109, pp. 42-52, 2003.

[156] G. B. Moody and R. G. Mark, "A database to support development and evaluation of
intelligent intensive care monitoring," Computers in Cardiology, vol. 23, pp. 657-
660, 1996.

[157] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,
J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, "PhysioBank, Physi-
oToolkit, and PhysioNet: components of a new research resource for complex physi-
ologic signals," Circulation, vol. 101, pp. E215-20, 2000.

[158] M. Elstad, K. Toska, K. H. Chon, E. A. Raeder, and R. J. Cohen, "Respiratory sinus
arrhythmia: opposite effects on systolic and mean arterial pressure in supine hu-
mans," JPhysiol, vol. 536, pp. 251-9, 2001.



208 Bibliography

[159] J. F. Sobh, R. M., R. Barbieri, and J. P. Saul, "Database for ECG, arterial blood pres-
sure, and respiration signal analysis: feature extraction, spectral estimation, and pa-
rameter quantification," IEEE-EMBC and CMBEC, Theme4: Signal Processing, pp.
955-956, 1995.

[160] C. G. Blomqvist and H. L. Stone, "Cardiovascular adjustments to gravitational
stress," in Handbook of Physiology. The Cardiovascular System Peripheral Circula-
tion and Organ Blood Flow, vol. III. Bethesda, MD: Am. Physiol. Soc, 1983, pp.
1025-1063.

[161] J. B. Charles and C. M. Lathers, "Cardiovascular adaptation to spaceflight," J Clin
Pharmacol, vol. 31, pp. 1010-23, 1991.

[162] G. Sonnenfeld, "Space flight, microgravity, stress, and immune responses," Adv
Space Res, vol. 23, pp. 1945-53, 1999.

[163] G. Sonnenfeld, "The immune system in space and microgravity," Med Sci Sports Ex-
erc, vol. 34, pp. 2021-7, 2002.

[164] "Vestibular function in microgravity," Lancet, vol. 2, pp. 561, 1984.

[165] H. Scherer, U. Brandt, A. H. Clarke, U. Merbold, and R. Parker, "European vestibu-
lar experiments on the Spacelab-1 mission: 3. Caloric nystagmus in microgravity,"
Exp Brain Res, vol. 64, pp. 255-63, 1986.

[166] Q. J. Zhang and Y. Q. Bai, "[Psychological issues in manned spaceflight]," Space
Med Med Eng (Beijing), vol. 12, pp. 144-8, 1999.

[167] V. I. Gushin, "Problems of psychological control in prolonged spaceflight," Earth
Space Rev, vol. 4, pp. 28-31, 1995.

[168] J. M. Fritsch-Yelle, J. B. Charles, M. M. Jones, L. A. Beightol, and D. L. Eckberg,
"Spaceflight alters autonomic regulation of arterial pressure in humans," JAppl
Physiol, vol. 77, pp. 1776-83, 1994.

[169] J. M. Fritsch-Yelle, P. A. Whitson, R. L. Bondar, and T. E. Brown, "Subnormal
norepinephrine release relates to presyncope in astronauts after spaceflight," JAppl
Physiol, vol. 81, pp. 2134-41, 1996.

[170] W. E. Thornton, T. P. Moore, and S. L. Pool, "Fluid shifts in weightlessness," Aviat
Space Environ Med, vol. 58, pp. A86-90, 1987.

[171] D. E. Watenpaugh, J. C. Buckey, L. D. Lane, F. A. Gaffney, B. D. Levine, W. E.
Moore, S. J. Wright, and C. G. Blomqvist, "Effects of spaceflight on human calf
hemodynamics," JAppl Physiol, vol. 90, pp. 1552-8, 2001.

[172] P. C. Johnson, T. B. Driscoll, and A. D. LeBlanc, "Blood volume changes," in Bio-
medical Resultsfrom Skylab. Washington, DC: NASA, 1977, pp. 235-241.

[173] C. Drummer, C. Hesse, F. Baisch, P. Norsk, B. Elmann-Larsen, R. Gerzer, and M.
Heer, "Water and sodium balances and their relation to body mass changes in micro-
gravity," Eur J Clin Invest, vol. 30, pp. 1066-75, 2000.



Bibliography 209

[174] A. I. Grigoriev, I. A. Popova, and A. S. Ushakov, "Metabolic and hormonal status of
crewmembers in short-term spaceflights," Aviat Space Environ Med, vol. 58, pp.
A121-5, 1987.

[175] J. M. Fritsch-Yelle, U. A. Leuenberger, D. S. D'Aunno, A. C. Rossum, T. E. Brown,
M. L. Wood, M. E. Josephson, and A. L. Goldberger, "An episode of ventricular
tachycardia during long-duration spaceflight," Am J Cardiol, vol. 81, pp. 1391-2,
1998.

[176] D. S. D'Aunno, A. H. Dougherty, H. F. DeBlock, and J. V. Meck, "Effect of short-
and long-duration spaceflight on QTc intervals in healthy astronauts," Am J Cardiol,
vol. 91, pp. 494-7, 2003.

[177] M. W. Bungo, D. J. Goldwater, R. L. Popp, and H. Sandler, "Echocardiographic
evaluation of space shuttle crewmembers," JAppl Physiol, vol. 62, pp. 278-83, 1987.

[178] D. S. Martin, D. A. South, M. L. Wood, M. W. Bungo, and J. V. Meck, "Comparison
of echocardiographic changes after short- and long-duration spaceflight," Aviat
Space Environ Med, vol. 73, pp. 532-6, 2002.

[179] M. A. Perhonen, F. Franco, L. D. Lane, J. C. Buckey, C. G. Blomqvist, J. E. Zer-
wekh, R. M. Peshock, P. T. Weatherall, and B. D. Levine, "Cardiac atrophy after bed
rest and spaceflight," JAppl Physiol, vol. 91, pp. 645-53, 2001.

[180] J. V. Meck, C. J. Reyes, S. A. Perez, A. L. Goldberger, and M. G. Ziegler, "Marked
exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in
veteran astronauts," Psychosom Med, vol. 63, pp. 865-73, 2001.

[181] P. A. Low, T. L. Opfer-Gehrking, S. C. Textor, E. E. Benarroch, W. K. Shen, R.
Schondorf, G. A. Suarez, and T. A. Rummans, "Postural tachycardia syndrome
(POTS)," Neurology, vol. 45, pp. S19-25, 1995.

[182] D. E. Watenpaugh and A. L. Hargens, "The cardiovascular system in microgravity,"
in Handbook of Physiolgoy Environmental Physiology, vol. I. Bethesda, MD: Am.
Physiol. Soc, 1996, pp. 631-674.

[183] C. L. Fischer, P. C. Johnson, and C. A. Berry, "Red blood cell mass and plasma vol-
ume changes in manned space flight," Jama, vol. 200, pp. 579-83, 1967.

[184] B. I). Levine, J. H. Zuckerman, and J. A. Pawelczyk, "Cardiac atrophy after bed-rest
deconditioning: a nonneural mechanism for orthostatic intolerance," Circulation, vol.
96, pp. 517-25, 1997.

[185] W. L. Henry, S. E. Epstein, J. M. Griffith, R. E. Goldstein, and D. R. Redwood, "Ef-
fect of prolonged space flight on cardiac functions and dimensions," in Biomedical
Resultsfrom Skylab. Greenbelt, MD: NASA, 1977, pp. 366-371.

[186] S. M. Fortney, V. S. Schneider, and J. E. Greenleaf, "The physiology of bed rest," in
Handbook ofphysiology. Environmental Physiology, vol. II. Bethesda, MD: Am.
Physiol. Soc, 1996, pp. 889-939.

[187] V. A. Convertino, D. F. Doerr, and S. L. Stein, "Changes in size and compliance of
the calf after 30 days of simulated microgravity," JAppl Physiol, vol. 66, pp. 1509-
12, 1989.



210 Bibliography

[188] J. C. Buckey, L. D. Lane, G. Plath, F. A. Gaffney, F. Baisch, and C. G. Blomqvist,
"Effects of head-down tilt for 10 days on the compliance of the leg," Acta Physiol
Scand Suppl, vol. 144, pp. 53-60, 1992.

[189] L. Beck, F. Baisch, F. A. Gaffney, J. C. Buckey, P. Arbeille, F. Patat, A. D. J. Ten-
harkel, A. Hillebrecht, H. Schulz, J. M. Karemaker, M. Meyer, and C. G. Blomqvist,
"Cardiovascular response to lower body negative pressure before, during, and after
ten days head-down tilt bedrest," Acta Physiol Scand Suppl, vol. 604, pp. 43-52,
1992.

[190] D. Michikami, A. Kamiya, Q. Fu, J. Cui, H. Usui, S. Atsuta, Y. Niimi, S. Iwase, and
T. Mano, "Responses of muscle sympathetic nerve activity to static handgrip exer-
cise after 14 days of exposure to simulated microgravity," J Gravit Physiol, vol. 7,
pp. P175-6, 2000.

[191] J. W. Hamner and J. A. Taylor, "Automated quantification of sympathetic beat-by-
beat activity, independent of signal quality," JAppl Physiol, vol. 91, pp. 1199-206,
2001.

[192] P. Sundblad, J. Spaak, and D. Linnarsson, "Haemodynamic and baroreflex responses
to whole-body tilting in exercising men before and after 6 weeks of bedrest," Eur J
Appl Physiol, vol. 82, pp. 397-406, 2000.

[193] M. Pagani, F. Iellamo, D. Lucini, M. Cerchiello, F. Castrucci, P. Pizzinelli, A. Porta,
and A. Malliani, "Selective impairment of excitatory pressor responses after pro-
longed simulated microgravity in humans," Auton Neurosci, vol. 91, pp. 85-95, 2001.

[194] V. A. Convertino, D. F. Doerr, D. L. Eckberg, J. M. Fritsch, and J. Vernikos-
Danellis, "Head-down bed rest impairs vagal baroreflex responses and provokes or-
thostatic hypotension," JAppl Physiol, vol. 68, pp. 1458-64, 1990.

[195] A. R. Patwardhan, J. M. Evans, M. Berk, K. J. Grande, J. B. Charles, and C. F.
Knapp, "Spectral indices of cardiovascular adaptations to short-term simulated mi-
crogravity exposure," Integr Physiol Behav Sci, vol. 30, pp. 201-14, 1995.

[196] P. J. Lacolley, B. M. Pannier, J. L. Cuche, J. S. Hermida, S. Laurent, P. Maison-
blanche, J. L. Duchier, B. I. Levy, and M. E. Safar, "Microgravity and orthostatic in-
tolerance: carotid hemodynamics and peripheral responses," Am J Physiol, vol. 264,
pp. H588-94, 1993.

[197] D. Sigaudo, J. O. Fortrat, A. Maillet, A. M. Allevard, A. Pavy-Le Traon, R. L. Hugh-
son, A. Guell, C. Gharib, and G. Gauquelin, "Comparison of a 4-day confinement
and head-down tilt on endocrine response and cardiovascular variability in humans,"
Eur JAppl Physiol Occup Physiol, vol. 73, pp. 28-37, 1996.

[198] A. Pavy-Le Traon, D. Sigaudo, P. Vasseur, J. O. Fortrat, A. Geuell, R. L. Hughson,
and C. Gharib, "Orthostatic tests after a 4-day confinement or simulated weightless-
ness," Clin Physiol, vol. 17, pp. 41-55, 1997.

[199] A. Pavy-Le Traon, A. M. Allevard, J. O. Fortrat, P. Vasseur, G. Gauquelin, A. Guell,
A. Bes, and C. Gharib, "Cardiovascular and hormonal changes induced by a simula-
tion of a lunar mission," Aviat Space Environ Med, vol. 68, pp. 829-37, 1997.



Bibliography 211

[200] K. 1. Iwasaki, R. Zhang, J. H. Zuckerman, J. A. Pawelczyk, and B. D. Levine, "Ef-
fect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate
and blood pressure," Am JPhysiol Regul Integr Comp Physiol, vol. 279, pp. R2189-
99, 2000.

[201] A. P. Traon, D. Sigaudo, P. Vasseur, A. Maillet, J. O. Fortrat, R. L. Hughson, G.
Gauquelin-Koch, and C. Gharib, "Cardiovascular responses to orthostatic tests after
a 42-day head-down bed-rest," Eur JAppl Physiol Occup Physiol, vol. 77, pp. 50-9,
1998.

[202] M. H. Khan, A. R. Kunselman, U. A. Leuenberger, W. R. Davidson, Jr., C. A. Ray,
K. S. Gray, C. S. Hogeman, and L. I. Sinoway, "Attenuated sympathetic nerve re-
sponses after 24 hours of bed rest," Am JPhysiol Heart Circ Physiol, vol. 282, pp.
H2210-5, 2002.

[203] A. Kamiya, S. Iwase, D. Michikamia, Q. Fua, and T. Mano, "Muscle sympathetic
nerve activity during handgrip and post-handgrip muscle ischemia after exposure to
simulated microgravity in humans," Neurosci Lett, vol. 280, pp. 49-52, 2000.

[204] B. D. Levine, J. A. Pawelczyk, A. C. Ertl, J. F. Cox, J. H. Zuckerman, A. Diedrich, I.
Biaggioni, C. A. Ray, M. L. Smith, S. Iwase, M. Saito, Y. Sugiyama, T. Mano, R.
Zhang, K. Iwasaki, L. D. Lane, J. C. Buckey, Jr., W. H. Cooke, F. J. Baisch, D. L.
Eckberg, and C. G. Blomqvist, "Human muscle sympathetic neural and haemody-
namic responses to tilt following spaceflight," JPhysiol, vol. 538, pp. 331-40, 2002.

[205] J. K. Shoemaker, C. S. Hogeman, U. A. Leuenberger, M. D. Herr, K. Gray, D. H.
Silber, and L. I. Sinoway, "Sympathetic discharge and vascular resistance after bed
rest," JAppl Physiol, vol. 84, pp. 612-7, 1998.

[206] J. F. Cox, K. U. Tahvanainen, T. A. Kuusela, B. D. Levine, W. H. Cooke, T. Mano,
S. Iwase, M. Saito, Y. Sugiyama, A. C. Ertl, I. Biaggioni, A. Diedrich, R. M. Robert-
son, J. H. Zuckerman, L. D. Lane, C. A. Ray, R. J. White, J. A. Pawelczyk, J. C.
Buckey, Jr., F. J. Baisch, C. G. Blomqvist, D. Robertson, and D. L. Eckberg, "Influ-
ence of microgravity on astronauts' sympathetic and vagal responses to Valsalva's
manoeuvre," JPhysiol, vol. 538, pp. 309-20, 2002.

[207] J. A. Pawelczyk, J. H. Zuckerman, C. G. Blomqvist, and B. D. Levine, "Regulation
of muscle sympathetic nerve activity after bed rest deconditioning," Am JPhysiol
Heart Circ Physiol, vol. 280, pp. H2230-9, 2001.

[208] A. Kamiya, S. Iwase, H. Kitazawa, T. Mano, O. L. Vinogradova, and I. B. Khar-
chenko, "Baroreflex control of muscle sympathetic nerve activity after 120 days of 6
degrees head-down bed rest," Am JPhysiol Regul Integr Comp Physiol, vol. 278, pp.
R445-52, 2000.

[209] D. Sigaudo-Roussel, M. A. Custaud, A. Maillet, A. Geuell, R. Kaspranski, R. L.
Hughson, C. Gharib, and J. O. Fortrat, "Heart rate variability after prolonged space-
flights," Eur JAppl Physiol, vol. 86, pp. 258-65, 2002.

[210] C. I). Ramsdell, T. J. Mullen, G. H. Sundby, S. Rostoft, N. Sheynberg, N. Aljuri, M.
Maa, R. Mukkamala, D. Sherman, K. Toska, J. Yelle, D. Bloomfield, G. H. Wil-
liams, and R. J. Cohen, "Midodrine prevents orthostatic intolerance associated with
simulated spaceflight," JAppl Physiol, vol. 90, pp. 2245-8, 2001.



212 Bibliography

[211] B. Rosner, Fundamentals of Biostatistics: Duxbury Press, 1995.

[212] J. Spaak, P. Sundblad, and D. Linnarsson, "Impaired pressor response after space-
flight and bed rest: evidence for cardiovascular dysfunction," Eur JAppl Physiol,
vol. 85, pp. 49-55, 2001.

[213] D. A. Ludwig and V. A. Convertino, "Predicting orthostatic intolerance: physics or
physiology?," Aviat Space Environ Med, vol. 65, pp. 404-11, 1994.

[214] W. W. Waters, M. G. Ziegler, and J. V. Meck, "Postspaceflight orthostatic hypoten-
sion occurs mostly in women and is predicted by low vascular resistance," JAppl
Physiol, vol. 92, pp. 586-94, 2002.

[215] M. L. Smith, "Mechanisms of vasovagal syncope: relevance to postflight orthostatic
intolerance," J Clin Pharmacol, vol. 34, pp. 460-5, 1994.

[216] A. L. Mark, "The Bezold-Jarisch reflex revisited: clinical implications of inhibitory
reflexes originating in the heart," JAm Coll Cardiol, vol. 1, pp. 90-102, 1983.

[217] A. Jarisch and Y. Zotterman, "Depressor reflexes from the heart," Acta Physiol
Scand, vol. 16, pp. 31-51, 1949.


