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ABSTRACT 
 
 
In recent years, the airline industry has seen diminished performance of traditional 
Revenue Management (RM) systems largely due to the growth of Low Cost Carriers 
and the increased use of their “simplified” fare structures.  With the removal of many 
of the fare restrictions essential to RM systems, standard demand forecasters can no 
longer segment demand and passengers are able to book air travel in fare classes 
lower than their actual willingness to pay.  These “semi-restricted” fare structures 
typically contain several homogenous fare classes undifferentiated except by price, 
as well as several distinct fare classes with unique combinations of booking 
restrictions and advance purchase requirements. 
 
This thesis describes “Hybrid Forecasting” (HF) – a new technique which separately 
forecasts “product-oriented” demand using traditional forecasting methods, and 
“price-oriented” demand for passengers who purchase only in the lowest priced fare 
class available when booking.  The goal of this thesis is two-fold: to first measure the 
potential benefit of Hybrid Forecasting in terms of network revenue in semi-restricted 
fare structures, and then to measure potential improvements to Hybrid Forecasting.  
“Path Categorization” attempts to improve revenues by exploiting the expected 
higher level of passenger willingness-to-pay for non-stop service versus connecting 
service.  And “Fare Adjustment” accounts for passenger sell-up behavior from lower 
to higher fare classes, and is applied within an RM system’s seat inventory optimizer. 
 
Experiments with the Passenger Origin-Destination Simulator demonstrate that HF in 
these semi-restricted fare structures can improve an airline’s network revenue by 
approximately 3% compared to traditional forecasting methods.  This improvement 
grows by 0.25% with Path Categorization, by 1% with Fare Adjustment, and by up to 
2.5% over Hybrid Forecasting alone with Path Categorization and Fare Adjustment 
together – all significant impacts on an airline’s network revenue.  Though these 
results are encouraging, the revenue gains of these new RM forecasting methods are 
still not enough to offset the revenue loss associated with the easing of traditional 
fare class restrictions. 
 
 
Thesis Supervisor: Dr. Peter P. Belobaba 
Title: Principal Research Scientist of Aeronautics and Astronautics 
 
Thesis Reader: Dr. Joseph M. Sussman 
Title: JR East Professor of Civil and Environmental Engineering 
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1 Introduction 
 
In the nascent years of airline Revenue Management (RM) systems, American 
Airlines once simplistically described the developing practice as “selling the right 
seats to the right customers at the right prices”1.  This was, and still is, the goal of 
Revenue Management, though our understanding of the problem and our approaches 
to solving it have evolved tremendously in a relatively short amount of time. 
 
A generation ago, RM could have been considered a narrow area of interest to 
academics and airline operations enthusiasts; it was somewhat of a curiosity in the 
heavily regulated industry where airlines had minimal control over fares and booking 
methods.  Today, RM is an indispensable tool, as nearly every carrier in the world 
seeks to maximize passenger revenue (and thus profits) by extracting fares at 
customers’ highest willingness-to-pay (WTP). 
 
Following deregulation of the US airline industry in 1978, airlines faced two choices: 
either adaptation to a new business environment – one without artificial limits on 
competition – or obsolescence.  And just as the nimble airlines once developed 
creative new RM approaches to confront wholesale changes in the business of 
providing air transportation to the public, today’s carriers are challenged to adapt to 
a new competitive environment – one where the assumptions previously made about 
customers’ booking habits have been invalidated. 
 
The goal of this thesis is to explore a new method of demand forecasting for airline 
RM in a changing competitive environment: hybrid forecasting (HF) in semi-
restricted fare structures.  Specifically, we will present and evaluate HF as a new 
approach to predicting passenger demand and maximizing passenger revenue when 
the top (and sometimes only) priority for many consumers is the minimization of 
spending on airfare. 
 
In this thesis, we will describe HF, and then demonstrate the potential revenue gains 
of HF alone, and in conjunction with selected other RM strategies including “Fare 
Adjustment” (FA) and “Path Categorization” (PCAT).  We will employ a simulation 
approach, utilizing the Passenger Origin-Destination Simulator (PODS) originally 
developed at the Boeing Company in order to model the airline booking process with 
competing carriers seeking to maximize passenger revenues over a given network. 
 

1.1 Deregulation and Revenue Management Background 
 
The first commonly accepted application of airline RM – then known as yield 
management (YM) – occurred in the early 1970’s when BOAC (later known as British 
Airways) introduced two fare products for a single inventory of seats.2  However, it is 
worth noting that operations researchers had been musing on overbooking – the 
practice of deliberately selling more seats than physically available in order to 
mitigate financial damage by absentee passengers – since the 1960’s; and airlines 
                                          
1 Smith, B. C., J. F. Leimkuhler, R. M. Darrow. 1992. Yield management at American Airlines. Interfaces. 
Volume 22, Issue 1, pp. 8-31. 
2 McGill, J. I., G. J. van Ryzin. 1999. Revenue management: research overview and prospects. 
Transportation Science. Volume 33, Issue 2, pp. 233–256. 
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may have been furtively engaging in the practice before then, though the potential 
for public relations fallout at the time likely precludes our latter day knowledge of 
such strategies.3  Regardless of these early contributions to the RM field, it is widely 
acknowledged that deregulation of the industry was the catalyst for tremendous 
gains in the field of RM.   
 
In the United States before deregulation, the Civil Aviation Board (CAB) set airline 
fares for the entire industry, denying individual airlines to right to increase (or 
decrease) fare levels except in the case where financial losses could be 
demonstrated.  Concerned that the CAB’s control of fares (as well as routes) 
inhibited growth of the nation’s air transportation network and permitted competitive 
inefficiencies, in 1978 Congress deregulated the industry and granted carriers control 
over their respective product offerings.4  Deregulation allowed not only existing 
carriers freedom to price flights in creative new ways, but relaxed barriers to entry 
and allowed new competitors to begin flying – competitors with much lower cost 
structures, which allowed them to charge lower fares to passengers. 
 
After deregulation, pricing structures quickly evolved to reflect demand for specific 
origin-destination (OD) market pairs, instead of the per-mile pricing previously 
enforced by the CAB5.  As prices dropped in many markets to reflect increased 
competition for passengers, many airlines – exposed to the open market for the first 
time – learned that profit maximization would theoretically occur when each 
individual consumer paid exactly the maximum amount that he or she was willing to 
pay for airfare.  Thus, the idea of differential pricing moved from operations research 
theory to heavy application within major airlines. 
 
The basis for RM over the last twenty years has been the distinction between two 
general types of airline passengers and forecasting the demand of each for air 
transportation: leisure and business travelers.  In general, leisure passengers tend to 
know travel plans weeks in advance of departure, are flexible in terms of departure 
and arrival times when booking, and have a low WTP for airfare.  In contrast, 
business passengers often travel with very little notice, exhibit schedule inflexibility, 
and are willing to pay for the convenience of last minute travel.   
 
In terms of revenue paid per passenger per mile, or yield, fares typically paid by 
leisure passengers are lower yield than those in the business segment.  And though 
the obvious revenue maximization strategy for any airline may seem to be yield 
maximization (or filling a plane entirely with high yield business passengers), in 
practice the marriage of demand and supply is an awkward one.  To an airline, 
demand is represented by an ever changing number of passengers, each with a 
different expectation of the cost of airfare; while supply is a fixed inventory of 
aircraft seats, unchangeable in the short term.   
 
The general supply-demand relationship for this situation – on the simplest basis of a 
single flight leg with no connecting traffic considered - is shown in Figure 1.  Note 
that this Figure assumes not enough high yield business demand exists to fill the 
aircraft to capacity, but that the overall number of number of people willing to pay 

                                          
3 Rothstein, M. 1985. O.R. and the airline overbooking problem. Operations Research. Volume 33, Issue 2, pp. 
237–248. 
4 General Accounting Office. 1999. Airline deregulation: changes in airfares, service quality, and barriers 
to entry. Report to Congressional Requesters. GAO/RCED-99-92. Washington, D.C. 
5 Pickrell, D. 1991. The regulation and deregulation of US airlines. Airline deregulation: international 
experiences. Ed: Button, K. David Fulton Publishers, London, pp. 5-47. 
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some price for this service exceeds the number of seats available – a common 
occurrence.   
 

 

Figure 1: Supply and Demand for Airline Bookings 

 
In the period surrounding deregulation, airlines quickly learned that charging a single 
fare for flights was not an attractive option in terms of revenue maximization in the 
newly competitive environment.  Consider the hypothetical example where a carrier 
decides to target high yield business passengers by charging a single high fare 
throughout the booking process: while yields may be high, planes depart with 
unused seat inventory because supply exceeds demand at that price.  This situation 
is known as overprotection, because the RM system refuses to sell those empty seats 
due to its (false) expectation that more high yield demand will materialize.  The 
aircraft ultimately departs with empty seats, which could have been filled by 
passengers paying lower fares than the carrier was charging.  The ratio of 
passengers to seats, or load factor, is typically low in the case of overprotection. 
 
Conversely, if the carrier seeks to fill its seats all the time, passengers will 
experience tremendous consumer surplus because the fare most of them pay will be 
less than their WTP.  This situation is known as dilution, as the strong revenue 
streams an airline expects from its high yield passengers have been diluted with low 
fares.  In this case, the load factor is very high because very few seats will ever go 
unused.  In terms of the supply-demand relationship in Figure 1, these cautionary 
examples of overprotection and dilution are shown below in Figure 2. 
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Figure 2: Overprotection and Dilution in Terms of Supply-Demand 
Relationship 

 
So clearly, single fare policies are unappealing because they result in lost revenue, 
either from unused seats, diluted fares, or some combination of both.  Around the 
time of deregulation, airline executives and academic researchers alike realized the 
way to maximize revenue was to charge every passenger his or her maximum WTP – 
a goal which required different sets of prices for identical units of inventory, or 
different fares for identical seats on a plane.  This concept is known as differential 
pricing, and represents a core component of successful RM, as described by 
Belobaba.6  An illustration of this concept of multiple fares being used to increase 
revenue in terms of the supply-demand relationship of Figure 1 is shown below in 
Figure 3. 
 

 

Figure 3: RM’s Effective use of Differential Pricing to Counteract 
Overprotection/Dilution 

 
So when trying to extract maximum revenue from booking passengers, traditional 
RM makes the classic decision of “whether to take a bird in the hand, or go for two in 

                                          
6 Belobaba, P. P. 1998.  Airline differential pricing for effective yield management.  The Handbook of 
Airline Marketing, D. Jenkins (ed.). The Aviation Weekly Group of the McGraw-Hill Companies, New York, 
NY, pp. 349-361. 
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the bush”7.  The way the field has evolved, today’s RM systems optimize the decision 
of whether or not to sell a ticket at some current price that a potential passenger is 
willing to pay, or wait for another passenger later in the booking process who will 
pay more and, thus, contribute more revenue to the airline. 
 
To segregate demand by different WTP levels, traditional differential pricing has 
attempted to separate business and leisure passengers with “fences” including 
advance purchase (AP) restrictions, mandatory Saturday night stays, round trip 
purchase requirements, and no-refund or partial-refund policies.  The goal of these 
fences is to add so much disutility to a low fare ticket such that a business 
passenger, in general, is willing to pay a higher fare (or forced to pay, in the case of 
advance purchase restrictions) to avoid the restrictions. 
 

1.2 Evolution of the Industry, Growth of “Low Cost Carriers” 
and Simplified Fare Structures 

 
As the airline industry matured following deregulation, RM systems adapted as well.  
The hub-and-spoke network model came into widespread use as a way to encourage 
efficient use of airline resources while connecting countless OD markets which 
themselves had demand insufficient for direct service.  At the same time, RM 
systems evolved to attempt to account for the network effects of selling not only a 
common seat inventory to passengers with different WTP levels, but now to 
passengers with totally different itineraries but who shared a flight leg in the 
network.   
 
Of course, different airlines embraced (and invested in) RM and operations research 
in general to different degrees.  The decades since deregulation are littered with 
examples of carriers with sophisticated RM competing directly with carriers less 
heavily invested in the “new” practice, leading to heavy financial losses, or even 
bankruptcy for the less adapted airline.  As the industry continued to sort itself out 
during the 1980’s and 1990’s, a new kind of competitor emerged to challenge the 
dominant positions of legacy airlines – the low cost carrier (LCC).   
 
As the science of RM evolved, it has become common for a single flight leg on a 
legacy carrier to have dozens of different fares sharing the same seat inventory – 
with the highest unrestricted business fare being an order of magnitude greater than 
the lowest, heavily restricted leisure fare.  There are countless anecdotal examples of 
the last minute traveler feeling gouged upon learning the “walk-up” fare he paid was 
priced at 15 times that for the leisure traveler who booked a month earlier and is 
sitting in the next seat.  And with stories of bad customer service, missed 
connections, confusing fare structures, and frustrating booking restrictions, legacy 
carriers undoubtedly left themselves vulnerable in the marketplace. 
 
Enter the LCC.  Characterized by more point-to-point service, lower fares, and 
simplified fare structures, carriers like Southwest, JetBlue, AirTran, and others have 
eroded the market share of legacy carriers in recent years.  And unlike the wave of 
low cost airlines in the 1980’s, which was weathered via RM-enabled fare matching 
by the legacies, this current incursion of LCCs is having more success thus far 
against its Major counterparts. 

                                          
7 Cook, T. M. 1998. SABRE Soars. OR/MS Today.  Volume 25, Issue 3, pp. 26-31. 
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Of course, the troubles of legacy carriers are not entirely due to LCC incursion.  The 
emergence of online airfare searching and booking has removed some of the pricing 
power legacies traditionally had by instantaneously expanding the consumer 
marketplace and rewarding diligent searchers with the lowest priced itineraries 
across the industry.  This is to say nothing of overall economic downturns, fuel 
prices, and air travel demand shocks by the September 11 terrorist attacks, the 
SARS outbreak in Asia, etc.  And, ironically, the confluence of these pressures has 
led many legacies to reduce costs by way of curtailing comforts like pillows and 
meals, thus further indistinguishing their on-board product from that of the LCCs – 
the same LCCs over whom the legacies once justified a price premium with on-board 
amenities to enhance the flying experience.  
 
Regardless of the causes, LCCs have undoubtedly claimed a significant share of the 
air transportation market – ECLAT Consulting8 has pegged it as 18% of 2005 US 
total air transportation capacity, in terms of Available Seat Miles (ASM) – and legacy 
carriers have been compelled to respond.  Regarding revenue management, several 
airlines have opted for simpler fare structures in an effort to match the fewer fare 
classes, relaxed booking restrictions, and fare ceilings trumpeted by LCCs.9, ,10 11   
 
While these new, simplified fare structures may be more appealing to consumers, 
they present a new set of challenges for RM systems.  Because of the fewer fare 
classes and relaxed booking restrictions, we are faced with a huge problem – no 
longer can we differentiate a business passenger from her leisure counterpart based 
on which fare product she chooses.   
 
The classic assumption of demand independence among fare classes – tenuous from 
the outset – is totally invalid when the consumer is presented with a set of simplified 
products completely identical save price.  And with the internet now enabling market 
transparency, no longer can we assume that those booking late in the process are 
business travelers willing to fly at any price.   
 
Clearly, the need exists to rethink the way tickets are sold when no barriers exist 
separating leisure and business travelers.  So just as RM once evolved to fit the 
changing air transportation marketplace left in deregulation’s wake, the field must 
again adapt to today’s changing competitive environment.   
 

1.3 New Approach – Hybrid Forecasting 
 
So the case has been presented for adapting RM in the context of simplified fare 
structures.  These simplifications to traditional fare structures typically consist of 
relaxations to Saturday night stay, cancellation, refundability, and AP requirements.  
As discussed previously, these simplifications present a daunting challenge to 
traditional RM systems – the inability to distinguish between business and leisure 
demand. 
 

                                          
8 ECLAT Consulting. December 2005. Converging Profiles? Presented by Swelbar, W. S. Arlington, VA. 
9 Adams, Marilyn. January 5, 2005. “Delta cuts, simplifies fares.” USA Today. 
10 Air Canada Press Release.  January 26, 2004. “Air Canada introduces low, simplified fares to the United 
States; Online ticket sales tripled at aircanada.com.” 
11 Zellner, W., M. Arndt. December 2, 2002. “American’s latest test flight.” Business Week. 
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To counteract this challenge, we explore a new methodology – hybrid forecasting – 
that ignores the conventional business/leisure paradigm in favor of a new distinction 
– “product-oriented” versus “price-oriented” demand.  In short, a product-oriented 
passenger is only interested in a specific fare product (thus, uninterested in its 
price), in contrast to the price-oriented passenger whose only objective is to pay the 
lowest fare possible.  Originally developed by Belobaba and Hopperstad12, the goal of 
HF is to classify all bookings into one of these two demand categories, and then to 
predict future demand of both product-oriented and price-oriented passengers in 
concert.   
 
Because we assume that these two groups of passenger demand exhibit vastly 
different airline booking behavior, we use different methods of forecasting the 
demand.  Hence, the word “hybrid” can refer to the simultaneous employment of two 
separate forecasting methods.  Another appropriate interpretation of the “hybrid” 
term in HF could refer to the coexistence of several differentiated fare classes (made 
unique by booking restrictions) with other undifferentiated fare classes (distinguished 
only by price). 
 
In conjunction with HF, we also explore the efficacy of two RM tools: Fare 
Adjustment and Path Categorization.  Both of these techniques were designed for 
network carriers in competitive environments where traditional fare structures have 
been eroded; thus, their inclusion in this thesis. 
 

1.3.1 Fare Adjustment 
 
This method, developed by Fiig and Isler13 at Scandinavian Airlines (SAS) and 
Swissair, respectively, is a technique to augment airline revenues in less restricted 
fare structure environments.  To briefly summarize, FA logic adjusts the fares used 
by a network seat allocation optimizer – not the actual fares offered to booking 
passengers – to proactively close selected lower fare classes and induce booking 
passengers to pay more.  Network inventory allocation optimizers are explained 
further in Section 2.2.3.2, as is FA in Section 2.4.2. 
 

1.3.2 Path Categorization 
 
Intuitively, one would expect that when multiple airlines offer competing service in 
an OD market, passengers prefer non-stop paths from the Origin to the Destination 
over connecting service on multiple flight legs, all else being equal.  By practicing 
more aggressive HF (and FA) in its non-stop OD markets, we expect that an airline 
can enjoy revenue gains via exploiting the higher WTP for direct service.  For 
simplification in this thesis, “Path Categorization” refers to an airline assuming 
different passenger sell-up behavior in dominant markets, and adjusting its HF 
and/or FA accordingly to improve revenues. 
 

                                          
12 Belobaba, P., C. Hopperstad. 2004. Algorithms for revenue management in unrestricted fare markets. 
Presented at the Meeting of the INFORMS Section on Revenue Management, Massachusetts Institute oof 
Technology, Cambridge, MA. 
13 Fiig, T., Isler, K. 2004. “SAS O&D low cost project.” PODS Consortium Meeting, Minneapolis. 
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1.4 Objectives of the Thesis 
 
As discussed above in Section 1.2, the simplification of traditional fare structures is 
common in today’s air transportation marketplace, and has the potential to erode 
revenue by blurring the business/leisure passenger delineation upon which RM 
evolved.  Hybrid forecasting offers a possible solution to this problem by rethinking 
the crucial question: what kind of demand can be expected for this flight?   
 
Forecasting is the process of quantitatively estimating the expected demand for a 
particular service, and relies on bookings for previous and current similar services.  
Needless to say, the demand forecast is a critical component of the RM process; 
despite its level of precision, a sophisticated (and expensive) RM system can be 
rendered ineffective when its seat allocation optimizing component is fed a bad 
forecast.  A particular method currently used with some effectiveness is known as 
pick-up forecasting, and is described in Section 2.2.1.1.  However, pick-up 
forecasting was not developed for simplified fare structures discussed here.  
 
Instead of predicting demand for various (and independent) types of business and 
leisure passengers, and matching those predictions with a set of customized fare 
class, HF imagines product-oriented and price-oriented passengers, and separately 
predicts their numbers throughout the booking cycle, ignoring any notion that a 
particular passenger is traveling for business or leisure purposes. 
 
Thus, the goal of this thesis is to answer the following question: Does hybrid 
forecasting lead to revenue improvement over pick-up forecasting when an airline 
uses a simplified fare structure?  Furthermore, this thesis also examines HF in 
conjunction with Fare Adjustment and/or Path Categorization in an effort to uncover 
any additional revenue improvements; all performance evaluations employed a 
competitive airline simulator, as described further in Chapter 3. 
 

1.5 Structure of the Thesis 
 
This thesis is comprised of three parts: a review of the relevant literature, a 
discussion of the PODS simulator and the approach to HF simulations, and an 
analysis of the results of those simulations. 
  
Chapter 2 presents a selective discussion of previous work done on revenue 
management with an emphasis on the problem of simplified fare structures 
examined in this thesis.  Topics covered in the chapter include forecasting, specific 
RM models, the emergence of simplified fare structures due to LCCs, and a 
discussion of product-oriented and price-oriented forecasting techniques. 
 
In Chapter 3, we discuss the Passenger Origin-Destination Simulator used for 
analysis of Hybrid Forecasting.  The chapter consists of a general discussion of PODS 
with a focus on the elements related to HF, as well as an introduction to the specific 
experiments performed in this thesis. 
  
The detailed methodologies for those simulations as well as their results are 
presented in Chapters 4 and 5, with an eye on determining revenue improvements 
enabled by HF.  Not only are the potential revenue benefits (or losses) quantified, 
but we also analyze some of the underlying effects these new RM tools have on 
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loads, yields, fare class mix, etc. in order to isolate the ramifications of each 
experiment.  And Chapter 6 attempts to summarize the experiments performed, as 
well as the revenue benefits possible with hybrid forecasting alone and with Fare 
Adjustment and/or Path Categorization; several directions for future work are also 
presented. 
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2 Literature Review 
 
This chapter begins by reviewing the use of forecasting in the airline industry, in 
general, followed by a more focused discussion of Revenue Management (RM) 
systems, stressing the specific algorithms and methods to be used for simulation.  
Next, we examine the evolution of the airline industry in general, and the emergence 
of less restricted fare structures in particular, in an effort to describe the need for 
changes in conventional RM.  Also, two methods recently developed to improve RM in 
the absence of traditional fare structure restrictions will be presented; Q-forecasting 
being the price-oriented component of Hybrid Forecasting (HF), and Fare Adjustment 
(FA) being a supplemental optimization tool to improve network revenues.  This 
chapter concludes with the presentation of price-oriented and product-oriented 
demand which is the basis of HF. 
 

2.1 Forecasting in the Airline Industry 
 
In his Ph.D. thesis, Lee14 provides a thorough review of airline passenger forecasting 
literature to that point; more notably, he also posits that airline demand forecasting 
can be done on three different levels of varying aggregation: macro, micro, and 
passenger. And though his own Ph.D. thesis focuses more heavily on demand 
detruncation, Zeni15 builds upon Lee’s three-tiered classification of airline demand 
forecasting and provides an overview of forecasting in the industry at large. 
 
Macro-level forecasts represent at the highest aggregation of predicted passenger 
demand, and can include overall projections of travel demand between two regions 
during a specific time frame. Taneja16, de Neufville and Odoni17, and sections of 
Sa’s18 Master’s thesis provide further discussions and examples of forecasting at the 
macro-level. 
 
Micro-level forecasts are at a more disaggregate level, such as passenger demand on 
a specific date or for a specific flight.  In this thesis, micro-level forecasting is the 
most important of the three classifications as it also encompasses the fare class 
booking estimates essential to effective RM, as described below in Section 2.2.  
Notable examples and descriptions of micro-level passenger demand forecasts 
include Ben-Akiva’s19 three models for flight and class specific reservations 
forecasting and Sa’s18 comparison of time series and regression models for demand 
by flight and fare class, among many others. 
 

                                          
14 Lee, A. O. 1990. Airline reservations forecasting: probabilistic and statistical models of the booking 
process. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA. 
15 Zeni, R. H. 2001. Improved forecast accuracy in revenue management by unconstraining demand 
estimates from censored data. Ph.D. thesis. Rutgers, the State University of New Jersey, Newark, NJ. 
16 Taneja, N. K. 1978. Airline traffic forecasting. Lexington Books, Lexington, MA. 
17 de Neufville, R., A. Odoni. 2003. Airport systems: planning, design, and management. McGraw-Hill, New 
York, NY. 
18 Sa, J. 1987. Reservations forecasting in airline yield management. Master’s thesis, Massachusetts 
Institute of Technology, Cambridge, MA. 
19 Ben-Akiva, M. 1987. Improving airline passenger forecasts using reservation data. Paper presented at 
the Fall ORSA/TIMS Conference, St. Louis, MO. 
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And finally, passenger level forecasting represents the highest resolution of demand 
modeling – the choices facing individual passengers; examples include models for 
airline choice, airport choice, itinerary choice, and even fare class choice. Further 
examples and/or models at the individual traveler level are given by Kanafani20, Ben-
Akiva and Lerman21, and Boeing22 (as discussed below in Section 3.1). 
 

2.2 Revenue Management Component Models 
 
There is no shortage of literature on revenue management. McGill and van Ryzin2 
provide a summary of RM’s history along with descriptions of many innovations over 
the years, as does Talluri and van Ryzin’s23 book, though in a more technical fashion.  
Boyd and Bilegan24 present a well organized and more technically detailed survey of 
many of the same developments, but not limited to the context of airline RM.  
Conversely, Clarke and Smith25 limit their scope to the airline industry, but discuss a 
range of operations research contributions, of which RM is included. 
 
Similar to Clarke and Smith, Barnhart et al.26 present more detailed overviews of 
fleet assignment, revenue management, and aviation infrastructure operations. 
Regarding the evolution of RM, they discuss the first generation systems of the early 
1980’s which simply collected and stored reservation data from a computer 
reservations system; this process could be more aptly described as data collection or 
revenue observation than actual revenue management.  The second generation of 
RM systems in the mid-1980s allowed airlines to follow bookings prior to a flight’s 
departure and compare to expected booking patterns. 
 
Operations research advances were finally integrated into the RM process with the 
third generation RM systems developed in the late 1980’s and early 1990’s.  As 
shown below in Figure 4, a typical third generation system took separate pricing 
structures (revenue data), the airline’s database of historical bookings, current 
booking data, as well as cancellation and no-show data and fed it into three 
component models: the demand forecaster, the overbooking module, and the fare 
class mix (seat allocation) optimizer.  The output generated from this process was 
the optimal booking limits for each flight and fare class.  According to Barnhart et al., 
most medium and large-sized carriers worldwide have implemented third generation 
RM systems with architecture similar to that of Figure 4, and typically they enjoy 
revenue gains of 4%-6% compared to no seat inventory control. 
 
This section of the literature review focuses on the three modeling components of a 
third generation RM system: forecasting, overbooking, and seat allocation.  Special 
emphasis is given to forecasting as it is the subject of this thesis. 

                                          
20 Kanafani, A. K. 1983. Transportation demand analysis. McGraw-Hill, New York, NY. 
21 Ben-Akiva M., S. Lerman S. 1985. Discrete Choice Analysis: Theory and Application to Travel Demand. 
MIT Press, Cambridge, MA. 
22 Boeing Airplane Company. 1997. Decision Window Path Preference Methodology Description. Seattle, 
WA. 
23 Talluri, K., G. van Ryzin. 2004. The Theory and Practice of Revenue Management. Kluwer Academic 
Publishers, Dordrect, Netherlands. 
24 Boyd, E. A., Bilegan, I. C. 2003. Revenue management and e-commerce. Management Science. Volume 49, 
Issue 10, pp. 1363–1386. 
25 Clarke, M., B. Smith. 2004. Impact of operations research on the evolution of the airline industry. 
Journal of Aircraft. Volume 41, Issue 1, pp. 62-72. 
26 Barnhart, C., P. Belobaba, A. R. Odoni. 2003. Applications of operations research in the air transport 
industry. Transportation Science, Volume 37, Issue 4, pp. 368-391. 
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Figure 4: “Third Generation” RM System (Barnhart et al.26) 

 

2.2.1 Traditional Forecasting Models 
 
As mentioned in Section 2.1, the forecaster in an RM system works at a micro-level, 
generating demand forecasts by fare class, either for individual flight legs or for 
overall Origin to Destination (OD) itineraries.  Weatherford27 and Zeni15 refer to five 
models commonly used in practice, which are mentioned in the sections below.  
Because HF makes use of pick-up forecasting as one of its components, that 
particular model is reviewed in greater depth in the next section. 
 

2.2.1.1 Pick-up Forecasting 

 
A pick-up model of demand is a simple forecasting technique that has proven to be 
effective under the traditional assumptions of RM.  In this method, the “pick-up” can 
be described as the forecasted number of incremental bookings over a specified 
future time period based upon historical trends. The pick-up is generally added to the 
number of current bookings to forecast the total demand at the end of the specified 
period.   
 
There are actually two versions of the pick-up model and they are similar in 
formulation: the classical pick-up model and the advanced pick-up model.  The 
classical model uses only data from departed flights, while the advanced model 
(developed by L’Heureux28 at Canadian Pacific) also makes use of data from flights 
that have not yet departed; only classical pick-up was used in the simulations for 
this thesis. 

                                          
27 Weatherford, L. 1999. Forecast aggregation and disaggregation. IATA Revenue Management Conference 
Proceedings. 
28 L’Heureux, E. 1986. A new twist in forecasting short-term passenger pickup. 26th AGIFORS Annual 
Symposium Proceedings, Bowness-on-Windemere, England, pp. 248–261. 
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For more information on the pick-up forecasting model, the reader is referred to 
Zickus29, Skwarek30, Usman31, Gorin32, or Wickham33.  
 

2.2.1.2 Other Forecasting Methods 

 
Besides the pick-up model, some other common RM forecasting methods include 
exponential smoothing, moving average, regression, and multiplicative pick-up27. 
Exponential smoothing (a form of time-series forecasting model), the moving 
average method, and the multiplicative pick-up model are discussed by Zeni15. And 
Zickus29, Skwarek30, Usman31, Gorin32, and Wickham33 all discuss versions of 
regression forecasting. 
 
In particular, Wickham’s Master’s thesis includes a comparison of the relative 
performance of several forecasting techniques, including simple time-series, linear 
regression, and pick-up models.  In general, his tests found that pick-up models 
consistently outperformed the other methods by leading to the largest revenue 
contributions.  
 

2.2.2 Overbooking Models 
 
Perhaps the earliest component of RM to be developed, overbooking models were 
originally used to intentionally accept more reservations than seats existed for flights 
in an effort to reduce the revenue loss and seat spoilage from no-shows and 
cancellations.  Beckman34 produced and early, static overbooking model, while other 
advances were made by Taylor35, Simon36, Rothstein37,3, and Vickrey38.  For a more 
thorough literature review of overbooking, the reader is referred to McGill and van 
Ryzin2.  No overbooking models were used in the simulations for this thesis. 
 

2.2.3 Seat Allocation Optimizers 
 

                                          
29 Zickus, J. S. 1998. Forecasting for airline network revenue management: revenue and competitive 
impacts. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA. 
30 Skwarek, D. K. 1996. Competitive impacts of yield management systems components: forecasting and 
sell-up models. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA. 
31 Usman, A. S. 2003. Demand forecasting accuracy in airline revenue management: analysis of practical 
issues with forecast error reduction. Master’s thesis, Massachusetts Institute of Technology, Cambridge, 
MA. 
32 Gorin, T. O. 2000. Airline revenue management: sell-up and forecasting algorithms. Master’s thesis, 
Massachusetts Institute of Technology, Cambridge, MA. 
33 Wickham, R. R. 1995. Evaluation of forecasting techniques for short-term demand of air transportation. 
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA. 
34 Beckman, J. M. 1958. Decision and team problems in airline reservations. Econometrica. Volume 26, pp. 
134-145. 
35 nd Taylor, C. J. 1962. The determination of passenger booking levels. 2  AGIFORS Annual Symposium 
Proceedings, Fregene, Italy. 
36 Simon, J. L. 1968. An almost practical solution to airline overbooking. Journal of  Transport Economics and 
Policy. Volume 2, pp. 201–202. 
37 Rothstein, M. 1968. Stochastic models for airline booking policies. Ph.D. thesis, Graduate School of 
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Typically thought of as the essence of RM, it is the seat allocation optimizer 
component of the RM system that actually sets the booking limits in an effort to 
maximize the revenue contribution of every passenger booking with the airline.  It is 
here that we make the important distinction between Fare Class Yield Management 
algorithms and OD algorithms based upon the level of optimization (flight leg versus 
OD path). 
 

2.2.3.1 Fare Class Yield Management – Leg-based Control 
 
Utilizing demand forecasts for individual flight legs, fare class yield management 
(FCYM) systems use optimizers which determine seat allocation for the set of fare 
classes on each leg within a network.  The most commonly used fare class mix 
allocation is the idea of serial “nesting” of fare classes – a problem first solved by 
Littlewood39 at BOAC for the case of two fare classes.  As opposed to allocating seats 
in partitioned fare classes, nesting instead protects seats in high fare classes by 
limiting the number of seats sold in lower fare classes based on a forecast of demand 
for each class, as well as the expected seat revenue. 
 
Belobaba extended the nested seat allocation problem from Littlewood’s two classes 
to multiple fare classes with the Expected Marginal Seat Revenue (EMSR) heuristic 
in his Ph.D. thesis40.  This algorithm employs leg-based demand forecasts by fare 
class to produce leg-based seat protection levels for nested booking classes.   
 
EMSR determines booking limits based upon the expected marginal revenue – the 
probability of selling an additional seat in a given fare class multiplied by the revenue 
gained from selling that seat. As the number of seats protected in a particular fare 
class increases, the probability of selling that next seat decreases; thus, the booking 
limit for a fare class is determined when the EMSR is equal to the fare of the next 
lower class. 
 
Belobaba’s updated EMSRb41 algorithm protects joint upper classes from the next 
fare class just below, and has become somewhat of an industry standard for 
establishing booking limits on a flight leg basis.  In order to simplify calculations for 
joint classes, the fare class demands are assumed normal and independent – 
assumptions which are violated when the fare class restrictions are eased, as 
discussed below in Section 2.3.  More information on the EMSRb algorithm can be 
found in Lee42 and Williamson43. 
 
In an alternative approach to the multiple nested class problem, optimal formulations 
for leg/class seat allocation have been (independently) introduced by Brumelle and 
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McGill44, Curry45, Robinson46, and Wollmer47, though they require much more 
significant computational effort and have been shown to only marginally outperform 
the EMSRb heuristic in terms of revenue gained24. 
 

2.2.3.2 Network OD Control Models 

 
The major shortcoming of fare class RM algorithms within a network carrier is their 
failure to model booking behavior in terms of the actual OD products passengers 
purchase, and instead simplifying analysis to a flight leg basis.  In general, we define 
a path as a feasible set of flight legs (or just one leg for non-stop services) 
connecting an Origin with a Destination within a given network.   
 
By ignoring network effects, leg-based inventory optimizers run a high likelihood of 
giving preference to local passengers on a given flight leg at the expense of higher 
fare connecting passengers on OD paths which include that particular leg.  For this 
reason, much effort has been expended to develop algorithms for path-based 
protection of booking classes (or OD control)48. 
 
The use of “virtual buckets” to compare network value of local and connecting fare 
classes is one approach to network OD control, as described by Vinod49.  The specific 
method known as Displacement Adjusted Virtual Nesting (DAVN), described by 
Williamson43, was used for simulation in this thesis.  DAVN couples OD forecasting 
with leg-based seat inventory control, and uses a deterministic linear program (LP) 
with an objective of network revenue maximization to calculate a “pseudo fare” for 
each fare class in the network; this pseudo fare corrects the regular fare for network 
displacement effects.  By grouping each leg’s pseudo fares into similar sets, or 
buckets, and then optimizing booking limits (in a manner similar to EMSRb) for those 
buckets, the airline has a mechanism for maximizing revenue while accounting for 
displacement costs over its network.  Lee42 and Williamson50 both discuss virtual 
bucketing, including DAVN. 
 
Another approach developed for OD control was the use of bid prices48,51.  Specific 
bid price algorithms include the Network Bid Price (NetBP) method, the Heuristic Bid 

                                          
44 Brumelle, S. L. and McGill, J. I. 1988. Airline seat allocation with multiple nested fare classes. Paper 
presented at the Fall ORSA/TIMS Conference, Denver, CO. Also presented at the University of British 
Columbia, 1987. 
45 Curry, R. E. 1990. Optimal airline seat allocation with fare classes nested by origin and destinations. 
Transportation Science. Volume 24, Issue 3, pp. 193–204. 
46 Robinson, L. W. 1995. Optimal and approximate control policies for airline booking with sequential 
nonmonotonic fare classes. Operations Research. Volume 43, Issue 2, pp. 252–263. 
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Price (HBP) method developed by Belobaba52, and the Prorated Bid Price (ProBP) as 
described by Bratu53. 
 

2.3 The Emergence of Low Cost Carriers and Simplified Fare 
Structures 

 
As described in the previous section, the field of airline revenue management has 
grown quite complex in a short amount of time.  Since the CAB’s deregulation of the 
airline industry, there have been tremendous advancements in the science of RM, 
including continuing improvements in forecasting, overbooking, and inventory 
optimization models (including OD control).  This section describes a further 
evolution of the airline industry – the low cost carrier (LCC) – as well as the growing 
use of less restricted fare structures and the need to adapt traditional RM systems to 
handle these changes. 
 

2.3.1 Characteristics of LCCs 
 
There is no one watershed event which marked the inception of low cost carriers.  
Even though it is widely accepted that 1978’s deregulation was the impetus for 
widespread change throughout the industry5, LCC archetype Southwest Airlines 
began operations years earlier in 197154, and numerous new-entrant airlines have 
come and gone in the years since deregulation.  In his Ph.D. thesis, Gorin55 provides 
a comprehensive summary of changes in the U.S. airline industry since deregulation, 
focusing on low-fare new entrant airlines in an attempt to characterize and define 
the LCC. 
 
But just as no distinct impetus exists for the low cost carriers’ development, no 
single definition of LCC (or legacy carrier, for that matter) suffices in today’s 
industry.  Supplementing Gorin’s55 description of the LCC business model, Dunleavy 
and Westerman56 contrast LCCs with legacies, as do Weber and Thiel57, among 
others; Table 1 below provides a brief comparison of some selected characteristics 
traditionally associated with legacies and LCCs. 
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Table 1: Differences Between Traditional Legacy Carrier and LCC Business 
Models (Gorin55, Dunleavy and Westerman56, Weber and Theil57) 

Legacy Carriers Low Cost Carriers 
• Mix of low and high fare products • Typically low fares 
• Up to dozens of fare products per OD 

pair 
• ~5 fare products per OD pair 

• Distribution via travel agents, third 
party vendors, carrier’s website… 

• Direct distribution and simplified 
passenger processing 

• Low aircraft utilization • High aircraft utilization 
• Low labor productivity • High labor productivity 
• Round trip & one-way fares • Only one-way fares 
• Typically connecting traffic through 

hubs 
• Typically point-to-point traffic 

• Complex segmentation through fare 
structures (business, leisure, etc.) 

• No customer segmentation 

• On-board amenities (meals, pillows, 
etc.) 

• “No frills” 

• Variety of aircraft types in fleet • Very few aircraft types 
 
However, it is important to note that the legacy and LCC characteristics in Table 1 
are generalities and not exclusive to either column.  For example, many of the larger 
legacy carriers have made significant efforts to reduce costs by reducing the number 
of aircraft types in the fleet and eliminating on-board amenities.  Conversely, several 
LCCs operate large hub operations and offer amenities like in-seat television.   
 
Ironically, the dramatic cost reductions undertaken at the legacies, coupled with the 
gradually increasing cost structures at several LCCs have led some to question if “low 
cost carriers” will continue to be characterized by lower costs. In fact, ECLAT 
Consulting8,58 has proposed branding this segment of the industry with the new 
moniker “large market oriented carriers” (LMOs) due to their propensity for point-to-
point service between major population centers.  However, an exhaustive discussion 
on the growing similarities between LCCs and legacy carriers is beyond the scope of 
this thesis, and this particular market segment will continue to be referred to as 
“LCCs” for the remainder of this work. 
 
In his Ph.D. thesis, Gorin55 examines the impact LCCs have had on the industry’s 
traditional giants, concluding that gradually increasing competition has contributed to 
the weakening of the legacy carriers.  In a presentation for the MIT Global Airline 
Industry Program, Swelbar59 details the extent to which LCCs have penetrated the 
U.S air transportation network and demonstrates that legacy carriers may have been 
experiencing profit deterioration since 1998.  And in an informational brief filed along 
with its December 2002 bankruptcy, United Airlines60 seemingly concedes that 
revenues eroded due to added competition from LCCs, critically crippling the legacy 
carrier to the point that drastic changes were sorely needed.  
 

                                          
58 ECLAT Consulting. 2005. Repealing the Wright Amendment – risks facing small communities and the 
Dallas Metroplex. Arlington, VA. 
59 Swelbar, W. S. 2002. The role and impact of low cost carriers. 1  Annual MIT Airline Industry 
Conference, Washington, DC. ECLAT Consulting, Arlington, VA.
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Tretheway61 believes that the traditional legacy carrier business model is 
dangerously flawed, and Franke62 analyzes the adverse financial effects LCCs have 
had on the legacies, while arguing for an overhaul of the traditional network carrier 
business model. 
 
In this new competitive environment, Ratliff and Vinod63 explain how legacy carriers 
often are compelled to match the fares – and sometimes even entire fare structures 
– of their LCC counterparts.  As mentioned previously, traditional network carriers 
such as Delta9, Air Canada10, and American11, among others, have experimented 
with the simpler fare structures of LCCs in an attempt to remain competitive.  And 
Donnelly et al. 64 describe the RM challenges faced by bmi when the carrier simplified 
its fare structures to one-way, restriction-free products due to competitive pressures 
from European LCCs in 2002. 
 

2.3.2 The Inadequacy of RM Systems under Fare Simplifications 
 
In a largely unscientific and anecdotal analysis, Kuhlmann65 asserts that the 
traditional revenue management systems have been rendered ineffective for three 
reasons: the growth of low cost carriers (as discussed above), increased pricing 
transparency for consumers due to the internet, and a general downturn in the 
economy beginning somewhere near the year 2000.  He continues by arguing that 
management teams at legacy airlines in the late 1990’s were largely oblivious to the 
emerging LCCs, unresponsive to customer dissatisfaction, and unconcerned with 
investing in RM systems suited for LCC competition.  In rebuttal, Cary66 refutes 
Kuhlmann’s criticisms of legacy management, yet concedes the fact that traditional 
RM systems are ill suited for environments where “business customers are 
demonstrating unusual levels of price-sensitivity.” So in essence, RM systems are 
unable to distinguish between business and leisure travelers.  And when the 
conventional fare structures are dismantled, the restrictions fencing business and 
leisure travelers into their respective classes disappear, making it impossible for an 
RM system to effectively segment demand. 
 
And according Boyd and Billegan24, the common assumption of demand 
independence is questionable even with the traditional fare structures and their bevy 
of booking restrictions.  Absent those restrictions, argue Ratliff and Vinod63, this 
assumption is totally invalid as no fences exist to prevent business passengers from 
booking in a fare class priced below his/her willingness-to-pay (WTP). 
 
Thus, when fare structures are simplified, conventional RM systems used by legacy 
carriers become inadequate for the two primary reasons described above: 
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1. The erosion of customer segmentation practices, both due to the elimination 

of fare class restrictions and a growing unwillingness of business travelers to 
pay fares so much higher than their leisure counterparts. 

2. With no differentiator among fare classes except price, passengers naturally 
buy the lowest class available. Besides clearly violating the demand 
independence among fare classes assumption, it also becomes difficult for a 
RM system to generate accurate demand forecasts due to the dearth of 
bookings in higher fare classes.  

 
The direct consequence of this fare structure simplification described above –
passengers booking below their WTPs – is known as “buy-down”, and undoubtedly 
leads to revenue dilution, as described above in Section 1.1.  
  
A more indirect consequence of easing fare structure restrictions is known as “spiral-
down”, and is depicted below in Figure 5.  Due to the structure of RM systems, future 
booking forecasts are directly dependent upon historical bookings, as described 
above in Section 2.2.1. Due to buy-down, the RM system records fewer bookings in 
higher fare classes.  As a result, the forecaster produces a lower projection of high-
fare demand, which leads the optimizer to protect fewer seats in the higher fare 
classes and make more seats available for the lower fare classes.  Of course, the 
surplus of lower fare class seats starts the cycle over again, with revenues becoming 
more diluted with each iteration. 
 

 

Figure 5: Spiral-Down Effect 

 
A result of making incorrect assumptions about customer booking behavior, the 
spiral-down effect has been discussed by both Kleywegt et al.67 and Cooper et al.68 
with an aim of modeling more general violations of traditional RM’s assumptions (i.e. 
not for the specific case of simplified fare structures discussed above). 
 
Both the buy-down and spiral-down effects as a result of fare structure 
simplifications have been described and analyzed in practical application at United 
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Airlines by Ozdaryal and Saranathan69 and in the Passenger Origin-Destination 
Simulator by Cusano70 and Cléaz-Savoyen71. 
 

2.4 RM tools for the New Competitive Environment 

2.4.1 Q-forecasting 
 
As described above, legacy carriers often react (sometimes out of necessity) to 
competition with LCCs by significantly changing their fare structures and loosening 
booking restrictions and/or advance purchase requirements.  But in doing so, 
traditional RM systems become ineffective due to the violation of the demand 
independence assumption among fare classes – a violation which invalidates the use 
of established demand forecasting techniques. 
 
To deal with totally unrestricted fare structures (that is, the only differentiator 
among fare classes is price), Belobaba and Hopperstad12 developed “Q-forecasting.” 
This forecasting method seeks to forecast demand only in the lowest class (denoted 
as Q-class) and then uses estimates of passenger WTP to close lower fare classes 
and force “sell-up” into higher ones, as shown below in Figure 6.   
 
By transforming all historical bookings (regardless of fare class) into an equivalent 
number of Q-bookings, the Q-forecaster can estimate the number of bookings 
possible in each fare class assuming a certain level of passenger WTP. Thus, the 
inventory optimizer can maximize revenue by strategically closing lower classes and 
forcing a certain fraction of the Q-bookings to sell up into higher fare classes.  In his 
Master’s thesis, Cléaz-Savoyen71 examined the process and concluded that Q-
forecasting was an effective technique for forecasting when restriction-free fare 
structures are used. 
 

 

Figure 6: Basic Q-forecasting Logic (Cléaz-Savoyen71) 
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2.4.2 Fare Adjustment 
 
As described and tested by Cléaz-Savoyen71, Fare Adjustment (FA) is a method of 
reconciling the coexistence of different fare structures sharing the same flight leg.  In 
his thesis, Cléaz-Savoyen tested FA in DAVN as a method of having a traditional 
network carrier’s restricted fare structure share virtual buckets with an unrestricted 
fare structure brought about by the entrance of an LCC to certain OD markets.  The 
conflict arises because of the different characteristics of the two structures.  Demand 
in the traditional restricted structure is assumed to be segmented, as discussed 
above.  However, in the unrestricted fare structure, there is no segmentation of 
demand and revenues are only maximized by selling-up passengers to higher fare 
classes after closing lower classes.   
 
So for an airline using DAVN, it may come to be that the two OD fare classes coexist 
in the same bucket – one for the restricted fare structure and the other for the 
unrestricted one.  It is possible that the closure of that particular fare bucket under 
DAVN logic may be the optimal strategy for the one structure, but suboptimal for the 
other.  He illustrates one such conflict below in Figure 7.  
 

 

Figure 7: Fare Classes and Virtual Buckets Before FA (Cléaz-Savoyen71) 

 
Using the Fare Adjustment techniques developed by Fiig and Isler13, the pseudo fare 
for the unrestricted fare structure (not the actual fare offered to passengers) can be 
lowered by a certain amount in order to shift it to a lower virtual bucket, and thus, 
close that unrestricted fare class sooner.  The quantity of this extra decrease is 
referred to as the Price Elasticity cost (“PE cost”), as shown below in Figure 8, and 
depends on estimates of passenger WTP, as with Q-forecasting.  This PE cost 
accounts for the risk of buy-down in the unrestricted fare structure.  In theory, both 
fare structures are will act more independently, and revenue gains will be realized 
network wide. 
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Figure 8: Fare Classes and Virtual Buckets After FA (Cléaz-Savoyen71) 

 
Cléaz-Savoyen71 tested the FA methodology in the context of the DAVN optimization 
process and concluded that FA had the potential to be an effective technique for 
forecasting in restriction-free fare structure environments.  In this thesis, we test its 
applicability in simplified fare structure environments, which share the characteristic 
of multiple undifferentiated fare classes of the unrestricted fare structures. 
 

2.5 Price-oriented versus Product-oriented Demand 
 
For all the attention given to those restriction-free fare structures in the development 
of techniques like Q-forecasting and Fare Adjustment, it is rarely the case in today’s 
industry where any airline – LCC or legacy carrier – uses a fare structure with 
multiple products differentiated by price and price alone.  Airlines are much more 
likely to use a so-called simplified fare structure (also referred to as semi-restricted) 
than a totally unrestricted one.  In a semi-restricted fare structure, there often exist 
several lower fare classes that are undifferentiated (expect by price, of course) just 
below two or three higher fare classes which are differentiated by a restriction (or 
lack thereof) uncommon to those below.   
 
In this case, a method like Q-forecasting is not completely appropriate because the 
fare structure is not totally unrestricted, and the differentiation between fare 
products will keep certain passengers from buying in certain classes for reasons 
other than price.  But traditional RM forecasting techniques will also prove 
suboptimal because of the presence of those undifferentiated fare classes which, 
again, invalidate the assumption of independence among classes.  Clearly, the 
demand must be modeled as some mix of passengers who are price sensitive and 
those who are shopping for a specific product. 
 
According to Boyd and Kallesen72, the changing business environment has made 
irrelevant the traditional demand segmentation which characterized RM systems.  
The increased ease and transparency of online booking and the less restricted fare 
structures being introduced to the industry at large by LCCs has led to more 
advanced traveler trip purpose anonymity.  No longer is it possible to recognize a 
passenger as either business or leisure based solely upon booking behavior.  In a 
departure from that typical business versus leisure passenger mix, Boyd and 
                                          
72 Boyd, E. A., Kallesen, R. 2004. The science of revenue management when passengers purchase the 
lowest available fare. Journal of Revenue and Pricing Management. Volume 3, Issue 2, pp. 171-177. 
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Kallesen propose a new segregation of demand that appears to suit semi-restricted 
fare structures quite well: yieldable versus priceable passengers.   
 

2.5.1 Product-oriented Demand (Yieldable) 
 
Under a yieldable model of demand, a product-oriented passenger is just that – 
specifically interested in a particular product, and only that particular product.  Under 
this model of demand, our previous assumption of demand independence among 
fare classes is again valid because each fare class product is matched with a specific 
product-oriented set of passengers who are uninterested in other fare classes.   
 
In terms of the implications for forecasting, the traditional method of pick-up 
forecasting remains relevant for predicting future demand of product-oriented 
passengers (and product-oriented passengers only) as it has always relied on 
independence among fare classes, as discussed in Section 2.2.1.   
 
In short, using a product-oriented model of demand changes nothing but 
terminology for our traditional RM systems – it has been used all along.  Thus, the 
literature is quite extensive on the subject of yieldable demand, as it encompasses 
nearly every major development made in revenue management; as such, Boyd and 
Kallesen suggest Boyd and Bilegan24 for a review of product-oriented demand. 
 

2.5.2 Price-oriented Demand (Priceable) 
 
Totally opposite from product-oriented demand, an “idealized” price-oriented 
passenger has no concept of the characteristics of multiple fare products and is 
simply interested in purchasing airfare at the lowest price, regardless of his or her 
WTP.  The notion of priceable demand has come to the forefront with all the work on 
restriction-free fare structures.  After all, if there are absolutely no differentiating 
characteristics among fare classes, every rational passenger exhibits priceable 
behavior because he or she will purchase at the lowest price, possibly unaware that 
multiple products are actually being sold. 
 
Because of the generalized nature of the optimal booking limit methods proposed by 
Brumelle and McGill44, Curry45, Robinson46, and Wollmer47, Boyd and Kalleson 
suggest that priceable demand can be analyzed “in a manner similar in spirit to that 
used by” those researchers, however noting that the price-oriented demand “leads to 
a much more complicated analysis.” 
 
Regarding the use of these optimal booking limit methods for priceable demand, 
even Curry acknowledges the computational difficulty in such an approach, writing 
“Optimal allocations are much more complex if class demands are not 
independent…An iterative approach may be possible, but seems unwieldy and 
unnecessary.” 
 
Regarding forecasting for price-oriented demand, Belobaba and Hopperstad’s12 Q-
forecasting technique described in Section 2.4.1 is valid because it does not make 
the classic assumption of demand independence.  Furthermore, it was designed for 
the environment of totally unrestricted fares, so it is seemingly well suited for 
passengers to which price is the only factor. 
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2.5.3 Product-oriented and Price-oriented Demand Together 
 
As described above, passenger demand for air transportation can be modeled as a 
mix of product-oriented and price-oriented demand, and a separate demand 
forecasting method is needed for each segment.  But when the wrong forecaster is 
used, the seat inventory optimizer will produce suboptimal results. 
 
According to Boyd and Kallesen, if a forecasting model for product-oriented demand 
(like pick-up forecasting, as discussed in Section 2.5.1) is used to project price-
oriented demand, the forecast will undoubtedly overestimate demand for the lower 
fare classes and authorize too many low-yield seats leading to both the (immediate) 
buy-down effect and the (eventual) spiral-down effect discussed in Section 2.3.2.  So 
the example of revenue loss due to dilution presented in Figure 2 will be realized. 
 
On the other hand, if a forecasting model for price-oriented demand (like Q-
forecasting, as discussed in Section 2.5.2) is used to project product-oriented 
demand, the forecast will overestimate demand for the higher fare classes and 
protect too many high-yield seats leading to revenue loss as those seats go 
unnecessarily unsold.  So the example of revenue loss due to overprotection also 
presented in Figure 2 above will be realized. 
 

2.5.4 Summary of Product-oriented and Price-oriented Demand 
  
We can summarize Section 2.5 as follows: 
 

• Demand is actually a mix of product-oriented and price-oriented passengers; 
• Pick-up forecasting can be used to predict product-oriented demand; 
• Q-forecasting can be used to predict price-oriented demand; 
• The use of pick-up forecasting to predict price-oriented demand should be 

minimized in order to avoid revenue dilution; 
• The use of Q-forecasting to predict product-oriented demand should be 

minimized in order to avoid revenue loss due to overprotection; 
 

2.6 Chapter Summary: The Need for “Hybrid” Forecasting 
 
We began this chapter with a review of passenger demand forecasting and its use 
within the airline industry at large; note that this thesis focuses on micro-level 
demand forecasts used to predict future bookings for Revenue Management systems.  
In Section 2.2 we reviewed the extensive literature on RM, discussing a typical RM 
system and its three component models: forecasting, overbooking, and optimizing 
seat allocation.   
 
We then turned our attention to Low Cost Carriers and their role in expanding the 
use of simplified fare structures in Section 2.3; this section continued by describing 
the inadequacy of traditional RM systems in these less restricted fare structures.  
And in Section 2.4 we described two new RM developments designed for use in these 
simplified structures: Q-forecasting and Fare Adjustment. 
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Finally in Section 2.5, we discussed the idea of modeling overall passenger demand 
as the sum of two contrasting components: product-oriented and price-oriented 
demand.   
 
Techniques exist for forecasting both product-oriented and price-oriented demand 
separately.  But to effectively practice RM in a semi-restricted fare structure 
environment, we should use a “hybrid” forecaster which combines product-oriented 
and price-oriented demand forecasting.  This thesis will present several methods of 
classifying product-oriented and price-oriented demand in order to define a 
successful hybrid forecasting approach; this thesis will then present several 
situations in which HF can be improved in terms of revenue gained in order to 
address the challenges posed by RM systems in today’s airline industry.  

 41



 

3 The PODS Approach to Revenue Management 
Simulation 

 
In the context of airline revenue management (RM), simulation is a valuable tool 
which allows for experimentation and validation within a competitive airline 
environment.  As Gorin and Belobaba73 describe, analytic RM models entail a certain 
level of simplification due to their static nature, oftentimes leaving such models ill-
prepared for competitive actions among airlines or arbitrary passenger booking 
behaviors.  By taking a simulation approach, a dynamic representation of RM 
practices can be modeled in a competitive framework characterized by realistic 
interactions between passengers’ booking decisions and RM systems.   
 
This chapter contains an overview of the Passenger Origin-Destination Simulator 
(PODS) used to test Hybrid Forecasting (HF) for this thesis.  Here we describe the 
PODS component modules, including passenger choice, forecasting, and seat 
inventory control methods; we also present the simulated air transportation network 
used for experimentation, consisting of the competing OD services and fare 
structures offered by two airlines.  Finally, we describe the specific experiments to be 
performed with HF in combination with Fare Adjustment (FA) and Path 
Categorization (PCAT). 
 

3.1 PODS Background 

3.1.1 Introduction 
 
Originally developed by C. Hopperstad, M. Berge, and S. Filipowski at the Boeing 
Company, PODS is an evolution of Boeing’s earlier Decision Window Model (DWM)22 
for passenger choice, and is a computer simulator of competitive airline networks.  
In the 1990s, the Massachusetts Institute of Technology and several major 
international airlines created the PODS Research Consortium – a partnership which 
employs the tool to study, develop, and test new RM techniques.  
 
Unlike other RM simulators, PODS does not model passenger demand as a 
computationally simple independent variable (analogous to Lee’s micro level as 
described in Section 2.1), but rather as the more realistic aggregation of millions of 
passenger level choices among competing airlines, schedules, and fare products.  As 
computing power has increased, so has the efficacy of PODS to simulate airline 
competition over larger, more complex networks using a greater repertoire of RM 
techniques. 
 
At its most basic, PODS can be described as a simulation of the interactions of two 
groups in a user-defined transportation network: airlines and passengers.  The airline 
side of the simulator consists of a third generation RM system, similar to that 
described in Section 2.2, which provides air travel offerings to consumers.  And on 
the other side of the fence are simulated passengers seeking air travel in a specific 

                                          
73 Gorin, T., P. Belobaba. 2004. Revenue management performance in a low-fare airline environment: 
insights from the Passenger Origin-Destination Simulator.  Journal of Revenue and Pricing Management. 
Volume 3, Issue 3, pp. 215-236. 
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OD market and trying to decide among multiple airlines, paths, and fare classes.  
This dichotomy is shown below in Figure 9.   
 

 

Figure 9: PODS Structure 

 
From the customer standpoint (or the demand side), each prospective passenger 
decides upon some combination of carrier, path, and fare class (or does not 
purchase) to fit his or her needs; this booking information is passed over the fence 
to the airlines, which collect the revenue and record the bookings for future analysis.  
The PODS passenger choice model is described further below in Section 3.1.2.   
 
From the airline perspective (or the supply side), the RM system uses the current 
booking levels as well as historical booking patterns to determine the availability of 
fare classes on each path; this availability information is passed over the fence to the 
passengers in an effort attract future bookings.  The traditional RM components 
within PODS are described further in Section 3.1.3 below; the newer developments 
within PODS for less restricted fare structures are described further in Section 3.2. 
 
In PODS, the booking process stretches over 16 successive time frames, the first 
beginning 63 days prior to departure, and the sixteenth ending on the departure 
date.  Passenger events such as bookings and cancellations are randomly spread 
within each of these time frames, while the RM system’s major inventory actions 
typically occur at the start of each one (though certain PODS features modify 
availability throughout the entire booking process, regardless of time frame).  In the 
experiments for this thesis, the time frames initially last for one week, but shrink to 
two days as departure nears in order to capture the expected increase in booking 
activity, as shown below in Table 2. 
 

Table 2: User-Defined Time Frames 

Time Frame  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  

Days to Departure 63  56  49  42  35  31  28  24  21  17  14  10  7  5  3  1  0 
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Each PODS simulation actually consists of thousands of simulations averaged 
together to provide overall operating statistics for each simulated airline on a per day 
basis.  In PODS terminology, a “run” consists of “trials” and “samples.”  For the 
experiments in this thesis, a run – or an individual simulation – is the average of five 
independent trials; and each trial is the iterative result of 600 samples.  Each sample 
represents a single departure day, and the reason for the large sample size is to 
ensure statistical significance of a simulation’s results.   
 
Because the starting values for each of the five trials (i.e. sample 1 of 600) are 
arbitrarily user defined, and each sample has some degree of correlation to the 
previous one as described below in Section 3.1.3.1, we discard the first 200 samples 
as the user inputs are gradually replaced with calculated values from simulation.  So 
the results of each 600 sample trial are based only on the last 400 samples, and 
every PODS run is actually the averaged result of 2,000 daily simulations. 
 

3.1.2 PODS Passenger Choice Model 
 
In the airline industry, the success of a given RM technique depends directly upon 
passenger response (or non-response) to that technique.  And in the PODS 
simulator, those responses are governed by a particular choice model, as briefly 
described in this section.  A comprehensive discussion of the PODS Passenger Choice 
Model, including its assumptions, logic, and ultimate validation is provided by 
Carrier74. 
 
As previously mentioned, PODS itself, and especially its Passenger Choice Model, is 
an outgrowth of Boeing’s original Decision Window Model22, but with several notable 
enhancements.  Included among these changes to the original DWM is passenger 
consideration of fares on each path and recognition of advance purchase (AP) 
restrictions assigned to certain fare classes32.  The PODS Passenger Choice Model can 
be divided into four sequential steps: Demand Generation, assignment of Passenger 
Characteristics, definition of a Passenger Choice Set, and a specific Passenger 
Decision.  This structure is depicted below in Figure 10; implicit in this framework are 
the links to the RM system, as shown above in Figure 9.  
 

                                          
74 Carrier, E. 2003. Modeling airline passenger choice: passenger preference for schedule in the Passenger 
Origin-Destination Simulator (PODS). Master’s thesis, Massachusetts Institute of Technology, Cambridge, 
MA.  
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Figure 10: Passenger Choice Model in PODS 

 

3.1.2.1 Demand Generation  

 
In this initial step, the average daily air travel demand is generated for each OD 
market in the user-defined network.  While this estimate was formerly rooted in a 
gravity model between the origin and destination cities, the OD demand is now 
based upon data provided by the PODS Consortium’s airline members.  For the 
experiments in this thesis, the total passenger demand is apportioned between 
leisure and business passengers, 65% and 35%, respectively, according to recent US 
airline industry data.  Next, the Passenger Choice Model randomly generates 
variability around this average daily demand; however, the demand generation 
process does not include seasonal or day-of-week variability.  Finally, the passenger 
arrival patterns through the booking process are modeled for both business and 
leisure segments according to user-defined booking curves; the booking curves used 
for experiments in this thesis are shown below in Figure 11. 
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Figure 11: PODS Booking Curves 

In PODS, the intensity of bookings is governed by a “demand multiplier” (DM), which 
can be used to simulate periods of low and high demand.  In this thesis, the default 
DM used in experiments was 0.9, with a value of 0.8 used for low demand situations, 
and a value of 1.0 used for high demand situations.  The particular experiments in 
which the DM varied are described in greater detail in Section 4.2. 
 

3.1.2.2 Passenger Characteristics 
 
In this second step, three specific characteristics are assigned to the individual 
passengers generated in Section 3.1.2.1: a decision window, a maximum 
willingness-to-pay (WTP), and a set of disutilities associated with certain aspects of 
his or her booking, such as the potential fare restrictions.  
 

1. The decision window for each passenger is defined by that passenger’s 
earliest acceptable departure time and latest acceptable arrival time; business 
travelers tend to have smaller decision windows than their leisure 
counterparts reflecting their time sensitivity.  At this stage of the booking 
process, all path and fare class combinations which are feasible within a 
passenger’s decision window are considered equally appealing, and all 
infeasible paths are equally unappealing and require re-planning of the 
decision window. 

 
2. As its name implies, each passenger’s maximum WTP reflects the maximum 

out of pocket fare that he or she willing to pay for OD travel.  Any fare 
exceeding the WTP will be excluded from his or her consideration.  As a 
result, any fare above the maximum WTP of the passenger will be excluded 
from his choice set.  These WTP values are taken from a user-defined price-
demand curve, examples of which are shown below in Figure 12 for leisure 
and business passengers (the business passenger curve is typically flatter, 
representing less price sensitivity).   
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Figure 12: Sample Passenger WTP Curves in PODS 

 
3. A set of disutility values is assigned to each passenger, which represent his or 

her sensitivity to fare product restrictions, schedule preference (re-planning 
disutility, as mentioned above), and path quality (non-stop versus connecting 
paths).  In terms of booking restrictions, passenger disutility distributions are 
typically defined for Saturday night stay requirements, itinerary change fees, 
and non-refundability constraints.  For a generated passenger within PODS, 
his or her disutilities are randomly selected based upon these user defined 
passenger type probability distributions.  Lee75 provides more detailed 
descriptions of the passenger disutility assignment process in PODS. 

 

3.1.2.3 Passenger Choice Set 

 
In the next step of the PODS Passenger Choice Model, each passenger is presented 
with a set of fare products to consider.  The maximum size of this choice set is 
determined by the number of airlines, the network size, and the number of fare 
products offered per airline.  Some of the alternatives will immediately be eliminated 
from the passenger’s choice set for the following reasons: 
 

• The RM system for one (or more) airline has closed a particular set of fare 
classes and/or paths in the desired OD market.  This requires acquiring 
availability data from the airline side of the PODS simulator. 

• Advance purchase requirements are not met for certain fare products. 
• A particular fare exceeds the passenger’s WTP. 

 
It is also important to realize that the “do-nothing” option of not booking is always 
an option available to each passenger. 
 

3.1.2.4 Passenger Decision 

 
Faced with this choice set, the passenger must make a decision to either purchase a 
particular (available) fare product, or not to book.  The “total generalized cost” of 
each available alternative (including the do-nothing) is calculated by summing the 
fare and the relevant disutilities described in Section 3.1.2.2, and each passenger 
selects the option with the lowest generalized cost.  At this point, the Passenger-
Airline fence in Figure 9 is crossed again, as the booking decision is returned to the 

                                          
75 Lee, S. 2000. Modeling passenger disutilities in airline revenue management simulation.  Master’s 
thesis, Massachusetts Institute of Technology, Cambridge, MA. 
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respective airline’s RM system.  The airline decreases its available seat inventory and 
records the booking details in its historical database to aid in future demand 
forecasts.   
 

3.1.3 RM System within PODS – Traditional Components 
 
On the airline side of the PODS program, each user-defined carrier is represented by 
a third generation RM system similar in structure to the generic arrangement 
previously discussed (and illustrated in Figure 4).  In an effort to better isolate the 
effects of forecasting, seat allocation optimizers, and other RM techniques, an 
overbooking component has been excluded from the simulator.  The PODS RM 
system consists of three interacting components: the Historical Booking Database, 
the Forecaster, and the Seat Allocation Optimizer.  This structure, as well as the 
relationships among components, is depicted below in Figure 13; implicit in this 
framework are the links to the PODS Passenger Choice model, as shown above in 
Figure 9. 
 

 

Figure 13: PODS RMS Structure 

 

3.1.3.1 Historical Booking Database 
 
Analogous to the top level of Figure 4, the PODS Historical Booking Database is a 
repository for each respective carrier’s booking data by fare class and path.  It is this 
database that is initially filled with user defined default values at the onset of each 
trial; as bookings occur, the actual data gradually replace the initial default values.  
Thus, the need exists to discard the first 200 samples of each trial, as the 
replacement process enables us to minimize the correlation effects of these initial 
values absent booking data.  For the experiments performed in this thesis, the 
Historical Booking Database is limited to the previous 26 previous simulated 
departures of a particular service. 
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3.1.3.2 Forecaster 

 
One of the three Modeling Components of Section 2.2’s generalized RM system, the 
forecasting mechanism within PODS extracts data directly from the Historical 
Booking Database in an effort to estimate future demand for a given path and fare 
class.  The PODS user typically chooses one of the two forecasting methods: 
regression or pick-up 
 
As mentioned above in Sections 2.2.1.1 and 2.5.1, classical pick-up forecasting is 
used heavily in this thesis as the product-oriented component of Hybrid Forecasting.   
A pick-up model of demand generates a forecast of total bookings by adding the 
average of the incremental historical bookings to whatever current bookings have 
already been taken at a certain point prior to departure; that is, the final number of 
bookings depends on the number of current bookings in hand and the average 
number of bookings “picked up” between the current reading day and departure.  
This relationship is expressed below. 
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Where: 
 

•  signifies the total number of bookings after time frame i for flight F; iFB ,

•  signifies the flight for which the demand forecast is desired; F
•  signifies the number of time frames over which the pick-up is 

calculated; 
n

•  signifies the number of flights upon which the demand forecast is 
based; 

f

•  signifies the index of flights upon which the demand forecast is based; j
•  signifies is the weighting value applied to any particular flight (optional 

– not used in this thesis); 
jw

 
But forecasting upon the raw data is typically not sufficient for estimating demand in 
an unbiased fashion.  Data taken from historical bookings are often referred to as 
“censored” or “constrained,” because they reflect only actual bookings made while a 
fare class showed seat availability – not the hypothetical number of bookings that 
would have materialized had that fare class remained open indefinitely (again, 
assuming demand independence among fare classes).   
 
To overcome this bias towards underestimating demand, one of several 
“detruncation” techniques can be applied to estimate unconstrained historical 
demand.  In PODS, the two most common techniques are Booking Curve and 
Projection detruncation.  As illustrated in Figure 14, Booking Curve detruncation uses 
a percentage-based multiplier which extrapolates demand for closed fare classes 
using trend data from open ones.  Booking Curve detruncation was used for all 
experiments in this thesis. 
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Figure 14: Booking Curve Detruncation Example 

 
More thorough discussions of the various forecasting and detruncation methodologies 
in PODS (including experiments performed with their variants and combinations) is 
provided by Zickus29, Skwarek30, Usman31, Gorin32, and Wickham33, among others. 
 

3.1.3.3 Seat Allocation Optimizer 

 
In PODS, the user defines the seating capacity for each leg within the network (100 
seats on all legs for all experiments in this thesis).  And the Seat Allocation Optimizer 
determines the manner in which that fixed inventory of seats is made available to 
passengers requesting travel.  In the PODS RM system, this optimizer can take a 
variety of forms with various levels of sophistication. 
 
At its most basic level – the First Come First Served (FCFS) method – the inventory 
optimizer actually performs no optimization, and simply allows passengers to book 
seats in any fare class they request on a space available basis.  This method is 
typically used only for certain baseline comparisons, or to simulate the actions of an 
irrational carrier using a “dumb” RM system.  Slightly more refined, PODS also has a 
class of threshold algorithms which can limit the number of bookings in a specific 
class to a Fixed Threshold (FT) ratio of overall bookings, or even aim for a target 
load factor using an Adaptive Threshold (AT) methodology. 
 
The PODS Fare Class Yield Management (FCYM) scheme uses variants of the EMSR 
heuristic to determine the optimal protection levels for each leg in the system, as 
described above in Section 2.2.3.1.  Under the assumption of independent demand 
by fare class, EMSRb determines the nested booking limits by protecting incremental 
seats in each class as long as their EMSR exceeds that of the class beneath it.  So for 
an example flight leg with four fare classes and a 95 seat capacity shown in Table 3, 
Y class is protected as long its EMSR ($525 multiplied by the probability of selling 
just one more Y seat) exceeds the EMSR of B class ($400 multiplied by the 
probability of selling one B seat).  Of course, these calculations are straight forward 
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when demand is assumed to follow a Gaussian distribution; and the mean and 
standard deviation values for each fare class and leg are gathered from the PODS 
forecaster, as previously described in Section 3.1.3.2.   
 

Table 3: FCYM Example – Booking Capacity of 95 

Demand 

Class Fare µ σ 
Booking 
Limit 

Y $525 18 5 95 
B $400 25 8 81 
M $305 34 10 56 
Q $195 38 12 18 

 
For this example, the point of indifference occurs between the 14th and 15th Y class 
seat; by repeating this procedure for each fare class until the leg’s booking capacity 
is reached, the optimal booking limits can be determined as shown in the EMSR 
curves of Figure 15.  
 
 

 

Figure 15: FCYM Example EMSR Curves and Associated Booking Limits 

 
The booking limit for each class is the maximum number of seats the airline should 
sell for that particular class.  In the given example, if 16 Q class seats have already 
been sold, the airline will not sell more than 2 additional Q seats when using EMSRb; 
and if the limit of 56 total M and Q class seats has been reached, the airline will only 
offer Y and B class seats for the remainder of the booking period.  The entire nesting 
structure – including the protections for each fare class – for this particular example 
is shown in Figure 16. 
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Figure 16: FCYM Example Nesting Structure and Associated Booking Limits 

 
In terms of OD seat allocation, one strategy available in PODS involves the virtual 
nesting of all local and connecting fare classes sharing a particular leg into a set of 
buckets.  Each bucket can contain one or more fare classes, with the user 
determining the bucketing structure for the simulation.  Within PODS, the simplest 
implementation is known as Greedy Virtual Nesting (GVN) in which the connecting 
and local fare classes are sorted on the basis of overall fare, and the EMSRb logic is 
used to generate protections for each virtual nest on each leg throughout the 
network.   
 
A simple example of GVN for one 95 seat leg in a two leg network (so 2 local paths, 
1 connecting path) with eight virtual nests is shown below in Table 4.  This particular 
example is small enough that each fare class is assigned its own bucket.  And in the 
same manner as the FCYM example above, the optimal booking limits for this leg can 
be determined as shown in the EMSR curves of Figure 17. 
 

Table 4: GVN Example – Booking Capacity of 95 

 Demand  

  Class Fare 
Virtual 
Nest µ σ   

Virtual 
Nest 

Booking 
Limit 

Y $525 V2 10 3  V1 95 
B $400 V5 12 5  V2 88 
M $305 V6 18 5  V3 78 

Local 

Q $195 V8 16 6  V4 69 

Y $555 V1 12 3  V5 59 
B $480 V3 10 5  V6 43 
M $435 V4 12 6  V7 23 

Connecting 

Q $250 V7 12 9  V8 8 
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Figure 17: GVN Example EMSR Curves and Associated Booking Limits 

 
Under GVN, an airline will accept a booking only if the requested fare class shows 
availability on each of its legs.  So for the above example, if Virtual Nest 4 has 
reached its booking limit of 69 seats, the carrier will not offer any M class connecting 
service, even if the second leg for this connecting path has no bookings whatsoever. 
 
And herein lies the limitation of GVN: being too greedy.  By blindly protecting the 
fare classes on each leg which produce the highest expected revenue, regardless of 
local or connecting service, GVN ignores the opportunity cost of a connecting 
passenger, or the value of a local passenger being displaced on one leg due to 
accepting a connecting passenger on a different leg. 
 
As previously mentioned in Section 2.2.3.2, this thesis makes heavy use of the 
Displacement Adjusted Virtual Nesting (DAVN) method of seat allocation, which 
accounts for displacements within the network by way of applying a revenue penalty, 
or a displacement cost, to connecting fares.  The first step in calculating these 
displacement costs is the generation of demand forecasts.  And in contrast to the 
inventory optimization schemes described above, DAVN is one of the few methods to 
utilize path-based demand forecasting for each fare class. 
 
DAVN then solves a deterministic linear program (LP) to determine the optimal 
number of passengers for each OD path and fare class; the formulation of this LP, as 
explained by Williamson43, is shown below. 

 
OD
f

OD f

OD
f xfareMaximize∑∑  

 
Subject to two constraints: 
 

1.    fare classes, f, OD
f

OD
fx µ≤ ∀ ∀  paths, OD; 

 

 53



2.   fare classes, f, j
OD f

j
OD

OD
f Cx ≤∑∑ δ ∀ ∀  flight legs, j; 

 
Where: 
 

•  signifies a particular path, from Origin to Destination; OD
•  signifies a fare class on a path; f
• j  signifies a flight leg; 

•  is the decision variable; signifies the optimum number of passengers in 

the fare class, f, on the path, OD; 

OD
fx

•  signifies the revenue the carrier collects from a passenger booking in 

the fare class, f, on the path, OD; 

OD
ffare

•  signifies the mean forecasted passenger demand for the fare class, f, on 

the path, OD; 

OD
fµ

•  signifies the maximum number of passengers, or the capacity, for the 

flight leg, j; this value is 100 for all experiments in this thesis; 
jC

•  is an indicator variable; equals 1 if the leg, j, is on the path, OD; 0 

otherwise; 

j
ODδ

 
The objective function maximizes the revenue (the fare each passenger paid 
multiplied by the number of passengers, for all fare classes in all OD paths), subject 
to two constraints.  The first constraint limits the number of passengers booking in a 
particular fare class to the mean demand forecast.   
 
The second constraint limits the number of passengers on an aircraft (or the sum of 
the passengers in each fare class on each path sharing that particular flight leg).  
This constraint is vital to the DAVN algorithm because the LP’s dual solution reveals 
the value of increasing Cj by one seat for each leg, j, in terms of additional revenue 
to the airline.  This value is denoted as dj.   
 
Known as the “shadow price” for each leg in the network, dj can be interpreted as the 
minimum value the carrier would be willing to accept for an additional seat on leg j, 
or the expected network revenue increase when relaxing the capacity constraint on 
the leg.  In PODS, this shadow price is also the displacement cost used to penalize 
connecting fares for preventing the booking of local passengers elsewhere in the 
network.   
 
The next step in the DAVN process is the calculation of “pseudo fares” for each fare 
class f on leg x in network path OD by subtracting the displacement cost from each 
fare, as shown below. 
 

 ∑
≠
∈

−=

jx
ODj

j
OD
f

ODx
f dfareFarePseudo ,  

 
For a particular itinerary through the network, OD, the pseudo fare for a given leg on 
that itinerary is the path’s regular fare minus the shadow price for all other legs on 
that itinerary.  So for local passengers, the pseudo fare is equal to the actual fare to 
be paid; for connecting passengers, the pseudo fare is the difference between the 

 54



actual fare on the leg the passenger is booking and the shadow price of the other leg 
(in a two-leg case). 
 
The final step in DAVN is to bucket all the fare classes (both local and connecting) 
sharing each leg in terms of pseudo fares, and to determine the seat protection 
limits in terms of these buckets just as in GVN.  Thus, despite forecasting on the OD 
level, seat allocations in DAVN are still performed on the leg level.  But unlike in 
GVN, the bucketing of fare classes by pseudo fares (not regular fares) provides a 
correction for passenger displacement throughout the network. 
 
Beyond virtual nesting, PODS also has a class of OD optimizers that take a bid price 
(BP) approach, and several that utilize dynamic programming (DP).  For more detail 
on BP methods within PODS, including NetBP, ProBP, and HBP, see the sources 
described in the literature review, Section 2.2.3.2.  And Vanhaverbeke76 discusses 
the DP approach to RM and its use within PODS in this Master’s thesis.  Neither BP 
nor DP based optimizers were used in the experiments for this thesis. 
 

3.2 RM Developments within PODS for Simplified Fare 
Structures 

 
As discussed the previous section, PODS is a complex and valuable tool created to 
study RM issues in a competitive airline environment.  Yet, PODS was developed in a 
different competitive environment, before the pervasive growth of LCCs, as described 
above in Chapters 0 and 0.  In less restricted fare structure environments, carriers 
cannot rely on product restrictions to fence demand into neatly defined fare classes 
anymore.  In an effort to encourage more sell-up to higher classes, several different 
methods have been implemented and tested within PODS.  
 

3.2.1 Traditional Sell-up in PODS 
 
Belobaba and Weatherford77, in recognition of the revenue gains to be had by 
“selling up” passengers from lower fare classes to more expensive products (and in 
tacit acknowledgement of the weakness of the fare class demand independence 
assumption) developed a sell-up algorithm for use with EMSRb (and thus, GVN and 
DAVN when applied to virtual buckets on a leg).  Implemented in PODS and 
extended to the various RM techniques available, the Belobaba-Weatherford heuristic 
strengthens the Seat Allocation Optimizer’s protections of higher classes in order to 
account for passengers selling up to these classes. 
 
Designed to account for sell-up in unrestricted environments, this technique and its 
use within PODS is described in greater detail by both Gorin32 and Skwarek30.  It is 
important to note that the Belobaba-Weatherford heuristic does not actually estimate 
the WTP within a fare class or virtual nest.  Rather, PODS requires a user input sell-
up probability by time frame.  Thus, the effectiveness of the sell-up protections is 
highly dependent on the estimate of sell-up utilized by a specific airline (i.e. input by 
the user) – a recurring challenge in PODS. 
                                          
76 Vanhaverbeke, T.  2006.  Revenue management based on dynamic programming in unrestricted and 
simplified fare structures.  Master’s thesis.  Massachusetts Institute of Technology, Cambridge, MA. 
77 Belobaba, P. P., L. R. Weatherford. 1996. Comparing decision rules that incorporate customer diversion 
in perishable asset revenue management situations.  Decision Sciences. Volume 27, Issue 2, pp. 343-363. 
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3.2.2 Q-forecasting 
 
PODS utilizes the technique known as “Q-forecasting,” described in Section 2.4.1, as 
a method of managing passenger sell-up and counteracting the spiral-down effect in 
the restriction-free environments where all passengers will book in the lowest priced 
fare class.   In short, Q-forecasting entails using historical booking data to estimate 
the number of potential future arrivals in this lowest priced fare class, then 
converting that value into an equivalent number of potential bookings in each of the 
higher fare classes.  Thus, the optimizer strategically limits seat availability by fare 
class to induce sell-up from lower to higher classes and drive the carrier’s revenue 
upward based on passenger WTP.  But as with the Belobaba-Weatherford sell-up 
heuristic described above in Section 3.2.1, the Q-forecasting methodology does not 
actually estimate WTP, but requires a user input estimate of sell-up.  For Q-
forecasting, this sell-up input value is known as a “FRAT5.” 
 

3.2.2.1 Use of “FRAT5” Values 

 
Within the PODS Q-forecaster, sell-up is governed by a FRAT5 value, or the fare ratio 
between a low and high fare class which entices 50% of the demand for the lower 
class to sell-up to the higher class.  More specifically, the FRAT5 is a proxy for 
passenger WTP which quantifies the probability a passenger will sell-up from Q-class 
to some more expensive fare class.   Thus, a low FRAT5 value denotes high price 
sensitivity among passengers, and vice versa.  In PODS, sell-up is assumed to follow 
an inverse exponential shape, as shown below in Figure 18.  This shape has been 
chosen based upon empirical observation, intuitive expectation, and ease of 
computation. 
 

 

Figure 18: Inverse Exponential Form of Sell-up Probability versus Fare Ratio 
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So the probability of sell-up, psup, from Q-class to some higher fare class, f, is an 
inverse exponential function of the fare ratio between Q and f, and a sell-up 
constant, supcon, based on the FRAT5, as shown below. 
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−
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•  signifies the fare of the higher fare class, f; ffare
•  signifies the fare of the lowest fare class, Q; Qfare
•  signifies the fare ratio at which 50% of passengers will sell-up from 

fare class Q; 
5FRAT

 
As the FRAT5 values increase, the probability of sell-up to higher fare classes 
increases, as shown below in Figure 19.  Thus, passenger behavior becomes more 
aggressive with higher FRAT5s, and a simulated airline in PODS using a high FRAT5 
value will assume that passengers will demonstrate high WTP and will protect more 
high fare class seats to account for expected sell-up. 
 

 

Figure 19: Probability of Sell-up by FRAT5 Value 

 
But just as we assume that sell-up increases with higher FRAT5 values, we also 
assume that passenger sell-up is more prevalent closer to departure, as WTP 
increases (i.e. price sensitivity decreases throughout the booking process).  In PODS, 
we capture this behavior by assuming that FRAT5 values gradually increase as 
departure draws near.  We also assume that this increase generally follows an “S-
shape,” as shown below in Figure 20, where the rate of FRAT5 increase is higher 
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between time frames 8 and 11 than it is at the beginning and end of the booking 
process.  
 

 

Figure 20: S-Shape of FRAT5 (for FRAT5 Series “C”) 

 
The use of FRAT5s represents the WTP assumptions airlines must make for their 
internal RM systems – not a change to the PODS Passenger Choice Model.  The 
underlying WTP for simulated passengers does not change.  
 
For simulations of alternative scenarios in PODS, we use 17 distinct FRAT5 series, 
each assuming a different level of price sensitivity among passengers.  For each 
simulated airline using Q-forecasting, the PODS user must select a specific FRAT5 
series which the airline will assume represents passenger behavior.  These 17 
different series are labeled (“A9” through “A1”, and then “A through H”), and each 
takes the characteristic “S-shape” as shown in Figure 20 (which depicts FRAT5 series 
“C”).  The FRAT5 values for Time Frame 1 and Time Frame 16 for each of the 17 
series are shown below in Table 5.   
 

Table 5: FRAT5 Series 

FRAT5 Series A9 A8 A7 A6 A5 A4 A3 A2 A1 A B C D E F G H 

Time Frame 1 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.4 1.2 1.15 1.1 1.08 1.05 1.02 

Time Frame 16 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.8 1.5 1.2 

 
Clearly, A9 represents the most aggressive passenger behavior (highest FRAT5s), 
and H represents the least aggressive sell-up due to its lowest FRAT5s.  The FRAT5 
values by time frame for six arbitrarily selected series (A4, A2, A, C, D, F) are shown 
below in Figure 21. 
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Figure 21: Selected PODS FRAT5 Values by Time Frame  

 
Combining these time series FRAT5 values from Figure 20, and the sell-up 
probabilities by fare ratio (FRAT) from Figure 19, we can observe the probability of 
sell-up in each time frame at different fare ratios, as shown in Figure 22 (an example 
using FRAT5 series “C”).  This particular example also demonstrates the sell-up 
probabilities from Q-class to three higher classes, with fare ratios of 2.0, 3.0, and 4.0 
to fareQ.  As shown below, sell-up is always less for higher fare classes, as we would 
expect in an absence of fare class restrictions; and the probability of sell-up 
increases closer to the departure date, as previously mentioned. 
 

 

Figure 22: Probability of Sell-up in Time Frame by Fare Ratio (Assuming 
FRAT5 Series “C”)  

 

3.2.2.2 Q-Forecasting Methodology in PODS 
 
As previously mentioned, Q-forecasting was designed for use in the restriction-free 
environments characterized by multiple fare classes identical except for price; it is in 
these environments where airlines are vulnerable to spiral-down, as previously 
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mentioned in Section 2.3.2.  As with the traditional forecasters described in Section 
3.1.3.2, Q-forecasting relies on detruncated historical data.  And in unrestricted fare 
structures, booking data in each time frame can only exist for a single fare class 
because it is impossible for demand to materialize in higher fare classes with no 
booking restrictions to segregate passengers.  However, the use of observations 
from multiple departures allows the forecaster to gather data points in several fare 
classes in the same time frame. 
 
We illustrate Q-forecasting using a simple example with four unrestricted fare 
classes, priced at $400, $300, $200, and $100, as shown below in Figure 23.  In this 
example, we are forecasting for Time Frame i, and we have historical booking 
demand for Time Frames i+1, i+2, and i+3.  For example, in Time Frame i+1, the 
first observation of unconstrained demand in fare class 2 is 3 bookings, based upon 
historical data. 
 

 

Figure 23: Example Historical Bookings in Unrestricted Fare Structure 
Environment 

 
The first step in Q-forecasting is to use FRAT5s – as described above in Section 
3.2.2.1 – to determine the probability of sell-up from the lowest class for each fare 
class and each time frame.  This stage is illustrated below in Figure 24 for our basic 
Q-forecasting example.  Note that this process is independent of the actual historical 
bookings, and that these probabilities depend entirely on FRAT5 values for each time 
frame and the fare of each class – a dependence relationship depicted by the arrows 
in Figure 24. 
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Figure 24: Example Calculation of Sell-up Probability from Fare Class 4 to all 
other Fare Classes by Time Frame 

 
Using these sell-up probabilities for each time frame and fare class, the next step in 
Q-forecasting is calculating the equivalent number of Q-bookings for the historical 
booking observations in each fare class using the formula below. 
 

tffQ

tff
tffQ ppsu

hbk
hbk

,

,
,

→
→ =  

 
Where: 
 

•  signifies the estimated equivalent demand for fare class Q in fare 

class f in time frame tf; 
tffQhbk ,→

•  signifies the mean unconstrained demand in fare class f and time 

frame tf; 
tffhbk ,

•  signifies the probability of sell-up from fare class Q to f in time 

frame tf; 
tffQppsu ,→

 
For our simple example, the equivalent Q-bookings in each fare class and time frame 
are shown below in Figure 25, as are the total number of estimated Q-bookings in 
each time frame. 
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Figure 25: Example Equivalent Q-Bookings in Time Frame 

 
The next step is forecasting total Q-Bookings in each future time frame by applying 
traditional forecasting techniques to the series of estimated Q-bookings in each time 
frame.  For the experiments in this thesis, pick-up forecasting with booking curve 
detruncation were used for this step.  For the simple Q-forecasting example, the 
forecasted Q-bookings in each time frame, fcsttf, are shown below in Figure 26, 
assuming the total number of forecasted Q-bookings to come is 125.  
 

 

Figure 26: Example Forecasted Q-Bookings by Time Frame 

 
The final step in forecasting potential demand is the partitioning of the total 
forecasted Q-bookings in each time frame into demand for the separate fare classes, 
using the formula below. 
 

( )tffQtffQtftff ppsuppsufcstfcst ,,1, →−→ −⋅=  

 
Where: 
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•  signifies the mean forecasted demand in fare class f in time frame tf; tfffcst ,

•  signifies the total forecasted equivalent demand for fare class Q in time 

frame tf; 
tffcst

•  signifies the probability of sell-up from fare class Q to f (or f -1, 

the next higher fare class, as the case may be) in time frame tf; 
tffQppsu ,→

 
For our example, the forecasted number of bookings in each time frame and fare 
class, fcstf,,tf, is shown below in Figure 27.  Note that no demand is forecasted for fare 
classes in time frames which must be closed due to AP requirements.  Also, the total 
forecasted demand to come in each fare class is determined by summing over the 
remaining time frames. 
 

 

Figure 27: Example Forecasted Mean Demand by Time Frame and Fare Class 

 
And at this point, the standard deviation of the forecasted demand in fare class f can 
also be calculated as shown in the formula below. 
 

tff
tf

tf
tffQtffQtftff fcst

fcst

fcst
ppsuppsufcstfcst ,,1,,

σ
σσ =−= −→→  

 
Where: 
 

• tffcstσ  signifies the standard deviation of the forecasted Q-equivalent 

demand in time frame tf; 
 
So at the end of this Q-forecasting process, we have a forecast of demand in each 
time frame and fare class based upon historical booking data.  The process accounts 
for passenger sell-up in unrestricted fare structures, and produces mean and 
standard deviations values which allow for the use of the traditional seat optimizer 
methods. 
 
Cléaz-Savoyen71 and Vanhaverbeke76 both used Q-forecasting within PODS, and 
described its potential for revenue improvements over traditional forecasting 
methods.  But it is important to note that the method of Q-forecasting they used 
forecasted total bookings to come as well as sell-up to come, and did not account for 
AP restrictions (thus forecasting demand which can never be realized).  The version 
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used for this thesis represents a slight improvement.  Besides differing by using time 
frame forecasting and sell-up, this version also accounts for AP restrictions – an 
enhancement which helps guard against over-forecasting of demand.  
 

3.2.3 Hybrid Forecasting in PODS 
 
At this point that we examine the combination of Section 3.1.3.2’s traditional 
forecasting methodology (for fully-restricted fare structures) with Section 3.2.2’s Q-
forecasting (for unrestricted fare structures) to develop a “hybrid” forecast of 
demand for the PODS seat allocation optimizer in environments that are neither 
fully-restricted nor unrestricted.  As discussed in Section 2.5.3, we assume that 
general passenger demand is actually a combination of product-oriented and price-
oriented demand, and that it is important to differentiate between the two in order to 
avoid the spiral-down effect in semi-restricted fare structure environments.   
 
Clearly, the biggest challenge in HF involves the identification these of product-
oriented and price-oriented passengers, but using a separate forecasting 
methodology for each addresses this problem.  Thus, the challenge becomes 
developing an accurate forecast for each demand segment based upon historical 
booking data. 
 
It is not sufficient to simply classify all passengers who book in the lowest fare class 
available as price-oriented, because there are likely people who were specifically 
seeking that fare product and its restrictions.  Conversely, we cannot blindly classify 
all passengers booking in the highest fare classes as product-oriented as the closure 
of lower fare classes may have enticed demand to sell-up from lower priced 
products. 
 
But in developing ways to classify product-oriented and price-oriented demand, an 
airline is limited in its knowledge of the travel market.  A given carrier clearly has full 
knowledge of its own fare structure and availability of each of its fare classes in a 
given OD market.  But its knowledge of competitor offerings is often limited to 
awareness of a competitor’s fare structure, but not seat availability beyond the 
lowest open class (and especially not historical booking data).   
 

3.2.3.1 HF1, HF2, and HF3 Classifications 
 
One way an airline can classify an historical booking as either product-oriented or 
price-oriented is by examining the other services available to the passenger at the 
time of booking.  If multiple paths in an OD market are available, a carrier may be 
able to classify a passenger as product-oriented because that passenger chose the 
itinerary he or she did for a particular reason.  In PODS, we have three different 
methods, or rules, for classifying bookings as product-oriented or price-oriented 
based exclusively on path availability; note that we define a path as closed (and 
unavailable) only when the highest fare class on that path is closed. 
 
When a passenger books a ticket in a given fare class, he or she is counted as 
product-oriented if the next lower class is available… 
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• ...on the same path (i.e. same flight(s), same airline).  This classification is 
known as “the path rule,” or method HF1. 

• …on some path provided by the same airline.  This is known as the “the 
airline rule,” or method HF2. 

• …on some other path in the market (i.e. another airline).  This is known as 
“the market rule,” or method HF3. 

 
All other bookings are classified as price-oriented, except as described in Section 
3.2.3.2 below. 
 
The general idea implicit in these three methods is that if a similar service is 
available in a cheaper fare class, any passenger that books the more expensive 
itinerary must be product-oriented.  However, these three rules vary in defining 
similarity between paths from an origin to a destination. 
 

3.2.3.2 Classifications IAP0, IAP1, IAP2 

 
Beyond the three path availability methods, in PODS we also can classify historical 
bookings as product-oriented or price-oriented based upon the closure of lower 
classes – specifically closure due to advance purchase (AP) requirements (as 
opposed to closure by the seat allocation optimizer).  We have three different 
methods for classifying bookings as product-oriented or price-oriented based 
exclusively on AP requirements of cheaper products. 
 
In PODS, historical bookings where the next lower class is closed due to AP 
requirements are classified as… 
 

• …price-oriented when using method IAP0. 
• …product-oriented when using method IAP1. 
• …product-oriented only if there is a difference in booking restrictions between 

the chosen class and the next lower fare class when using method IAP2. 
 

3.2.3.3 Hybrid Forecasting Methodology 
 
So PODS actually has nine versions of HF from which the user must choose 
(combining the three path availability methods and three advance purchase 
classifications).  In the context of the PODS RM system for each airline, as shown in 
Figure 13, the hybrid forecaster first classifies historical bookings as either product-
oriented or price-oriented.  The price-oriented bookings are sent to the PODS Q-
forecasting module, which forecasts bookings in each undifferentiated fare class.  
Likewise, the product-oriented bookings are sent to a traditional forecaster – pick-up 
forecasting is used in this thesis – which forecasts future product-oriented bookings 
in each fare class.  The two sets of future bookings – product-oriented and price-
oriented – are aggregated and sent to the PODS seat allocation optimizer.  This 
methodology is shown below in Figure 28.  
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Figure 28: Hybrid Forecasting in PODS 

 

3.2.4 Fare Adjustment 
 
As mentioned earlier in Section 2.4.2, Fare Adjustment (FA) is a technique developed 
by Fiig and Isler13 to improve airline revenues in unrestricted fare structure 
environments for carriers employing virtual nesting-based seat allocation optimizers.  
Because the simplified fare structures tested in this thesis contain undifferentiated 
fare classes, FA can be applied in the context of hybrid forecasting. 
 
While Q-forecasting, as discussed above, deals with the class differentiation problem 
in the context of the RM system’s demand forecaster, FA approaches the 
differentiation issue from within the seat allocation optimizer.  Because an open class 
in an unrestricted fare structure must accept all demand, regardless of the WTP of 
those respective passengers, the opportunity to improve network revenues by 
inducing sell-up is unavailable. 
 
In DAVN, FA logic lowers the pseudo fares used for optimizing booking limits in 
virtual nests (see Section 3.1.3.3) by an amount called the “Price Elasticity cost” or 
“PE cost,” which reflects the lost opportunity for sell-up, as shown in the equation 
below.  By reducing the pseudo fares in each undifferentiated fare structure by the 
PE cost, we can shift these fare classes into lower virtual nests, forcing these low 
revenue classes to close sooner and stimulating sell-up into the higher fare classes. 
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This relationship can also be expressed as shown below. 
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This value, fare’, also represents the expected marginal revenue the carrier can 
expect to receive once correcting for the lost sell-up revenue of the undifferentiated 
fare class, as shown in Figure 29. 
 

 

Figure 29: Relationship of Fare, Marginal Revenue (fare’), and PE cost 

 

3.2.4.1 FA in PODS 
 
Within PODS, we have two FA methods available: a continuous marginal revenue 
formulation (MR), and a discrete one (KI, for Karl Isler).  The continuous FA method 
uses the formulation shown below to adjust fares. 
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And the discrete fare adjustment formulation is shown below. 
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In this thesis, we employ KI Fare Adjustment for all experiments involving FA.  But 
for both of these methods, the sell-up notation is similar to that used in Section 
3.2.2.2, with the exception of the FRAT5s. 
 

3.2.4.2 Use of FA FRAT5 Values 

 
Because FA seeks to capture sell-up behavior in unrestricted environments, some 
estimate of passenger WTP must be employed by the seat allocation optimizer.  As 
passenger WTP increases, the PE cost used in FA must increase in order to close 
lower classes more quickly.  Likewise, we would expect a lower PE cost to reflect 
lower WTP. 
 
As discussed in Section 3.2.2.1, PODS makes use of FRAT5 values in Q-forecasting to 
model WTP.  But as Cléaz-Savoyen71 describes in this Master’s thesis, the FRAT5 
values used for fare adjustment must be lower than those used for Q-forecasting.  To 
solve this problem, he uses a set of linear (i.e., not S-shaped) FA FRAT5s which are 
independent of the forecasting FRAT5 values. 
 
But because each airline in PODS assumes WTP for its passengers, it is unrealistic to 
use two unrelated FRAT5 values for Q-forecasting and Fare Adjustment.  In this 
thesis, we relate the two sets of FRAT5 values with a scaling factor, as shown below. 
 

( )15515 −+= tftf FRATsclfFRATFA  

 
Where: 
 

•  signifies the FA FRAT5 value in a particular time frame; tfFRATFA 5
•  signifies the FRAT5 value used for Q-forecasting in a particular time 

frame; 
tfFRAT5

•  signifies the scaling factor, between 0 and 1, between the two sets of 
FRAT5s; 

sclf 5

 
So for each airline within PODS employing Q-forecasting (or HF) and FA, the user 
must input not only a FRAT5 series which best describes passenger behavior for the 
forecaster, but also an appropriate scaling factor for Fare Adjustment.  For example, 
an airline within PODS that assumes passenger sell-up behavior can best be modeled 
with FRAT5 series “C” (see Section 3.2.2.1) must also scale that set of forecasting 
FRAT5 values for use with FA.  This example is illustrated in Figure 30 for scaling 
values between 0.1 and 0.5.   
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Figure 30: Selected PODS FA FRAT5 Values by Time Frame with Different 
Scaling Factors (FRAT5 “C”) 

 

3.2.5 Varying Sell-up by Path Quality in PODS 
 
As briefly mentioned in Section 1.3.2, we intuitively expect that WTP is higher for 
non-stop service, when available, and that any airline offering superior (i.e. non-
stop) service to the competition has the opportunity to extract more revenue in 
those specific OD markets.  By examining each path available through an airline’s 
particular network in the context of the overall air transportation network, we can 
selectively index all paths on all carriers in terms of relative path quality.   
 
Within PODS, the capability exists to index each path into one of three distinct Path 
Categories defined by this relative path quality.  Each path provided by each carrier 
can be labeled as… 
 

• …PCAT1 if the path is non-stop while the competition in the market only 
provides connecting service. 

• …PCAT2 if the path is non-stop and the competition provides non-stop 
service, or if the path is connecting and the competition provides only 
connecting service. 

• …PCAT3 if the path is connecting and the competition provides non-stop 
service. 

 
In this thesis, we perform only experiments in which the behavior of PCAT1 is varied 
by assuming higher WTP (i.e. using higher FRAT5 values) – a practice referred to 
“Path Categorization” (PCAT).  We test the expectation that an airline can enjoy 
revenue gains by exploiting the higher WTP for direct service through more 
aggressive HF and FA in its dominant OD markets. 
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3.3 Chapter Summary: RM in PODS 
 
In this chapter, we have presented the Passenger Origin-Destination Simulator used 
to test Hybrid Forecasting in this thesis.  Specifically, we described the two 
components of PODS: the Passenger Choice Model and the airline Revenue 
Management system.  We then explained the evolution of RM techniques within 
PODS to address less-restricted fare structures, including Hybrid Forecasting.   
 
In Chapter 4, we describe both the simulated air transportation network within PODS 
and the specific experiments performed in order to identify the impacts of 
categorizing product-oriented and price-oriented historical bookings for HF, given the 
limited booking information available to an airline; we also attempt to measure the 
value of Hybrid Forecasting in terms of the network revenue improvement for a 
particular airline.  Chapter 5 describes attempts to improve the performance of HF by 
accounting for the effects of path quality on sell-up potential, as well as by using 
Fare Adjustment within an airline RM system. 
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4 Defining and Testing Hybrid Forecasting 
 
In this chapter, we present and analyze a series of experiments using the Passenger 
Origin-Destination Simulator (PODS); our goal is to test Hybrid Forecasting (HF) as 
an effective Revenue Management (RM) tool in semi-restricted fare structures.  For 
the simulations in this chapter (as well as in Chapter 5), we model an air 
transportation network served by two carriers: “Airline 1” (AL1) and “Airline 2” 
(AL2).  This network is herein referred to as “Network D-6” and is described in 
Section 4.1.  Note that all experiments are described in terms of “the RM system 
used by AL1 versus that used by AL2” in Network D-6. 
 
In Section 4.2, we test all nine combinations of HF1, HF2, and HF3, and IAP0, IAP1, 
and IAP2, as described in Sections 3.2.3.1 and 3.2.3.2, to hypothesize which 
particular combination may be best suited for HF.  We perform these tests with 
different estimates of passenger WTP (in terms of FRAT5 input series, see Section 
3.2.2.1) for the airline utilizing HF (Airline 1) given that both carriers use the DAVN 
seat allocation optimizer; we also repeat these experiments in simulated 
environments of low and high demand, as well as for the EMSRb versus EMSRb case 
to test the use of HF with a leg-based optimizer.  And we close this chapter by 
testing for the potential revenue gains of HF over pick-up forecasting, as well as 
examining the sensitivity of HF to various FRAT5 series in Section 4.3. 
 

4.1 Experimentation Environment 
 
In this section we introduce the simulated competitive environment used for all 
experiments in this thesis.  Specifically, we present our simulated air transportation 
network and the carriers providing Origin to Destination (OD) service through it. 
 

4.1.1 Description of Network D-6 
 
Network D-6 is characterized by two competing hub-and-spoke carriers: AL1 and 
AL2.  In the context of the US domestic air transportation, Airline 1’s hub is the 
centrally located Minneapolis-Saint Paul (MSP) International Airport and Airline 2’s 
hub is Dallas-Fort Worth (DFW) International Airport.  The two carriers compete in a 
one-way, West to East network consisting of twenty Western spoke cities (Cities 1 
through 20) and twenty Eastern spoke cities (Cities 21 through 40), not including the 
two hubs (H1 and H2, or Cities 41 and 42, respectively).  Airline 1’s route network is 
shown in Figure 31, as is Airline 2’s in Figure 32. 
 
Also, each airline operates three connecting banks of flights, in which flights arrive, 
simulated passengers change aircraft, and then the aircraft and passengers continue 
on to their final destinations.  Both airlines have banks which begin (i.e., the aircraft 
arrive) at 10:30AM, 2:00PM, and 5:30PM.   
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Figure 31: Route Network for Airline 1 in PODS Network D-6 

 

 

Figure 32: Route Network for Airline 2 in PODS Network D-6 

 
As shown in these figures, each airline operates non-stop service between its hub 
and the 20 Western spokes, the 20 Eastern spokes, and the other airline’s hub.  
Network D-6 is characterized by 252 total flight legs, as described below; note that 
the network consists of 2 airlines and 3 banks per airline. 
 

• 20 legs per airline per bank from Cities 1 through 20 to the hub; 
• 20 legs per airline per bank from the hub to Cities 21 through 40; 
• 1 leg per airline per bank from the hub to the other airline’s hub; 
• 1 leg per airline per bank from the other airline’s hub to the hub;  
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Network D-6 is also characterized by 2,892 total OD paths, as described below; 
again, note that the network consists of 2 airlines and 3 banks per airline. 
 

• 400 paths per airline per bank from Cities 1 through 20 to Cities 21 through 
40; 

• 20 paths per airline per bank from Cities 1 through 20 to the hub; 
• 20 paths per airline per bank from Cities 1 through 20 to the other airline’s 

hub; 
• 20 paths per airline per bank from the hub to Cities 21 through 40; 
• 20 paths per airline per bank from the other airline’s hub to Cities 21 through 

40; 
• 1 path per airline per bank from the hub to the other airline’s hub; 
• 1 path per airline per bank from the other airline’s hub to the hub; 

 
So for each airline and each bank, 482 OD paths exist.  In terms of path quality, as 
described in Section 3.2.5, these paths can be classified as follows: 
 

• 40 paths categorized as PCAT1, in which the airline provides superior path 
quality to the competitor; 

• 402 paths categorized as PCAT2, in which both airlines provide equivalent 
service in terms of path quality; 

• 40 paths categorized as PCAT3, in which the competitor airline offers superior 
path quality; 

 

4.1.2 Semi-Restricted Fare Structures in Network D-6  
 
As described in Section 2.3, increased competition from LCCs has led many legacy 
carriers to simplify their traditional fare structures by relaxing Saturday night stay 
restrictions, itinerary change fees, and non-refundability requirements, as well as by 
easing advance purchase (AP) requirements.  The assignment of passenger 
disutilities for these restrictions is discussed in Section 3.1.2.2.  Shown in Table 6 are 
examples of a traditional, fully-restricted fare structure as well as a parallel totally 
unrestricted fare structure for an airline offering six fare classes.  Note that Fare 
Class 1 is the highest, most expensive class.   
 

Table 6: Fully-restricted and Unrestricted Fare Structures in Network D-6 

Fully-restricted  Unrestricted Fare 
Class AP R1 R2 R3  

Fare 
Class AP R1 R2 R3 

1 0 0 0 0  1 0 0 0 0 
2 3 0 1 0  2 0 0 0 0 
3 7 1 0 0  3 0 0 0 0 
4 10 1 1 0  4 0 0 0 0 
5 14 1 1 1  5 0 0 0 0 
6 21 1 1 1  6 0 0 0 0 

 
In the above table, as well as within PODS, the following nomenclature is used: 
 

• AP refers to advance purchase restrictions, or the number of days before 
departure in which the fare class will automatically be closed, independent of 
the seat allocation optimizer; 
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• R1 refers to the traditional Saturday night stay restriction; 
• R2 refers to existence of a fee for a passenger changing his or her itinerary; 
• R3 refers to the non-refundability restriction; 

 
A “1” indicates the presence of a certain restriction (R1, R2, or R3) in a fare 
structure, whereas a “0” indicates its absence.  In the fully-restricted fare structure, 
the highest fare class (Fare Class 1), is traditionally intended for high yield business 
passengers and is characterized by an absence of any kind of booking restrictions.  
Indeed, nearly each fare class has a unique combination of booking restrictions 
traditionally used to fence passenger demand.  But in the unrestricted fare structure, 
the six fare classes are identical with the exception of price, as discussed previously. 
 
In this thesis, we examine RM in so-called “semi-restricted” fare structures, which lie 
somewhere between the fully-restricted and totally unrestricted structures of Table 
6.  The particular fare structure used by both airlines for all our experiments is 
shown in Table 7.  As shown below, Fare Classes 3, 4, 5, and 6 share the same 
combination of booking restrictions (only R2 and R3), and AP requirements are used 
to proactively close these undifferentiated fare classes.  In PODS, the fares charged 
by each airline for each fare product vary by OD path; the average fare charged in 
each fare class is shown in Table 8. 
 

Table 7: Semi-Restricted Fare Structure 

Fare 
Class AP R1 R2 R3 
1 0 0 0 0 
2 0 0 1 0 
3 7 0 1 1 
4 14 0 1 1 
5 14 0 1 1 
6 21 0 1 1 

 

Table 8: Average Fares by Fare Class in PODS Network D-6 

Fare Class 1 2 3 4 5 6 
Average Fare $412.85 $293.34 $179.01 $153.03 $127.05 $101.06 

 
For consistency, Airline 1 is always the subject of experimentation, and its 
forecasting methodology is our variable of interest.  For all experiments, Airline 1 
uses the Displacement Adjusted Virtual Nesting (DAVN) seat optimizer in conjunction 
with various forms of HF (as well as Fare Adjustment and Path Categorization, in 
Chapter 5), unless otherwise noted.  Its competitor, Airline 2, uses DAVN with 
conventional pick-up forecasting, unless otherwise noted.  Because the goal of this 
thesis is to demonstrate improvements in airline RM due to HF, the primary statistic 
of interest is the percentage revenue increase (or loss) of Airline 1 due to a particular 
method.   
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4.1.3 Performance Measures and Base Cases in Network D-6 
 
In an effort to explain changes in network revenue for each simulation, we examine 
the fare class mix of each airline, as well as other typical measures of general 
interest in the airline industry, including load factor and yield, as defined below. 
 

• Load Factor (LF) is a measure of aircraft seat utilization, and is the ratio of 
passengers to seats for any given flight.  Over a network, it is the ratio of the 
number of miles flown by a carrier’s passengers, or revenue passenger miles 
(RPM), to the number of miles flown by the carrier’s aircraft seats, or 
available seat miles (ASM).  

• Yield is a measure of average revenue paid per passenger, normalized by 
distance flown.  Over a network, it is the ratio of total revenue paid by 
passengers to the total RPMs. 

 
In economic terms, the air transportation industry is characterized by extremely high 
fixed costs.  For example, the cost for an airline to fly an aircraft on a single leg 
includes fuel, crew salaries, ownership expenses, etc.  In contrast, the marginal cost 
of providing that air service to an additional passenger is very small (including 
baggage handling cost, on board services, reservation cost, etc.).  For this reason, 
the marginal revenue of carrying an additional passenger (the fare paid) nearly 
always exceeds that passenger’s marginal cost to the airline. 
 
So unused seats, or idle capacity, are often avoided by airlines as they represent lost 
revenue opportunities.  This is the reason for the traditional emphasis on high load 
factor within the airline industry, and its importance as a performance measure in a 
given carrier’s network.   
 
However, it is easy to envision a scenario where an airline compromises its overall 
health in an effort to maximize load factor.  As a given carrier continues to lower 
fares in order to attract more passengers, the average fare paid by per passenger 
will decrease – the case of dilution, as originally shown in Figure 2 in Chapter 1. 
 
For this reason, passenger yield is another critical metric for gauging the 
performance of an airline’s RM system.  But similar to the exercise of maximizing 
load factor, a carrier seeking to maximize yield by increasing its fares will quickly 
find that it denies too many bookings and again compromises its total revenue.  This 
is the case of overprotection, as also shown in Chapter 1’s Figure 2. 
 
Therefore, an airline seeking to maximize its revenue (not load factor or yield) will 
exhibit some “healthy” combination of the two, and it is important to study all three 
metrics – revenue, LF, and yield – together in order to appraise a carrier’s RM 
system. 
 
To properly evaluate HF’s potential revenue contributions to a given airline, we 
present several “Base Cases” (BC) which represent appropriate control 
environments.  These Base Cases act as the “before” scenarios for comparison to the 
“after” effects of our HF experiments.    
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For the first Base Case (BC1), both Airline 1 (AL1) and Airline 2 (AL2) use identical 
Revenue Management systems: DAVN optimization with standard pick-up 
forecasting.  The results of this simulation are shown in Table 9.   
 

Table 9: Base Case 1 Results – DAVN versus DAVN 

Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,040,277 82.46 0.1028 
AL2 $1,030,550 82.25 0.0984 

 
In this Base Case, Airline 1 enjoys approximately 1% more network revenue than its 
competitor due to asymmetry within Network D-6.  Its load factor and yield are also 
higher than Airline 2.  For the experiments in this thesis, we are concerned with the 
possible revenue improvements for Airline 1 when using various forms of HF.  
 
Furthermore, because the efficacy of Hybrid Forecasting’s price-oriented component 
– Q-forecasting – is governed by passenger sell-up from lower to higher fare classes, 
the estimation of passenger WTP is critical.  As discussed in Section 3.2.2.1, we use 
“FRAT5” values in PODS as a proxy of WTP, and we have 17 pre-defined FRAT5 
series from which a simulated airline can choose to represent WTP of its passenger.   
 
To simplify analysis, as well as to ease the simulation effort of PODS, most 
experiments in this chapter and Chapter 5 use FRAT5 series “C” as the default 
“baseline” estimate of WTP.  This is because we believe series “C” represents a 
reasonable estimate of WTP, and is moderate within the range of WTP estimates 
available (i.e. not too aggressive or too passive with respect to sell-up).  
 

4.2 Defining Hybrid Forecasting: HF1, HF2, HF3 and IAP0, 
IAP1, IAP2 

 
The first step in improving a given airline’s revenue with Hybrid Forecasting is to 
define what exactly constitutes a product-oriented historical booking and a price-
oriented one.  After doing so, traditional pick-up forecasting and Q-forecasting can 
be used to estimate future product-oriented and price-oriented bookings, 
respectively.   
 
As described in Section 3.2.3.1, we have three ways to classify historical bookings in 
terms of path availability: the path rule (HF1), the airline rule (HF2), and the market 
rule (HF3).  And we also have three ways to classify historical bookings where the 
next lowest class was closed due to Advance Purchase (AP) requirements: IAP0, 
IAP1, and IAP2, as described in Section 3.2.3.2 above.  In the following sections, we 
repeatedly experiment with all nine of these combinations to determine the “best” 
performing of the nine definitions of product-oriented and price-oriented demand. 
 

4.2.1 DAVN w/ HF (FRAT5 “C”) versus DAVN 
 
In this first series of simulations, Airline 1 uses DAVN with HF against a competitor 
using DAVN with pick-up forecasting.  All nine possible definitions of product-oriented 
and price-oriented demand were tested, and the revenue results for AL1 are shown 
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in Figure 33.  Because the price-oriented component of HF – Q-forecasting – requires 
an estimate of passenger Willingness-to-Pay (WTP), as described in Section 3.2.2 
above in order to assess sell-up, we have selected our baseline FRAT5 Series of “C”, 
as described in Section 4.1.3.    
 

 

Figure 33: Airline 1 Revenues, DAVN w/ HF versus DAVN 

 
As shown in Figure 34 and Table 10, the combination of HF1 and IAP0 leads to the 
largest revenue increase, by far, for Airline 1 over BC1 – 3.11%, or $1,072,646 to 
$1,040,277 in the Base Case. 
 

 

Figure 34: Airline 1 Revenue Changes from BC1, DAVN w/ HF versus DAVN 

 

Table 10: DAVN versus DAVN, Airline 1 Revenue and Change from BC1 

IAP0 IAP1 IAP2 DAVN vs. 
DAVN Revenue ∆ Revenue ∆ Revenue ∆ 
HF1 $1,072,646 3.11% $1,044,303 0.39% $1,060,161 1.91% 
HF2 $1,055,332 1.45% $1,050,673 1.00% $1,051,538 1.08% 
HF3 $1,046,757 0.62% $1,043,464 0.31% $1,045,284 0.48% 
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To focus on the effects of the individual path availability rules and AP purchase 
classifications, we center on this HF1-IAP0 combination and incrementally refine the 
product-oriented/price-oriented definition in the following sections. 
 

4.2.1.1 HF1, HF2, HF3 
 
By comparing HF1-IAP0, HF2-IAP0, and HF3-IAP0, we can isolate the effects of the 
HF1, HF2, and HF3 booking classification definitions.  The cumulative bookings in 
each of the six fare classes, or the fare class mix, are shown below in Figure 35, 
Figure 36, and Figure 37, for HF1, HF2, and HF3, respectively.   
 

 

Figure 35: Fare Class Mix for HF1-IAP0 

 

 

Figure 36: Fare Class Mix for HF2-IAP0 
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Figure 37: Fare Class Mix for HF3-IAP0 

 
Illustrated in these Figures, as well as in Table 11, are the proportions of product-
oriented and price-oriented bookings in each fare class; furthermore, the price-
oriented bookings are distinguished between those where the next lower class is 
closed by the RM system’s seat allocation optimizer (RM) and those automatically 
closed by advance purchase (AP) requirements. 
 

Table 11: Product-oriented and Price-oriented Bookings by Fare Class – HF1, 
HF2, HF3  

HF1 HF2 HF3 
Price Price Price 

Fare 
Class Product 

AP RM 
Product 

AP RM 
Product 

AP RM 
1 117 357 41 120 376 28 116 356 30 
2 79 388 194 85 401 170 83 387 160 
3 0 584 233 0 653 195 0 648 167 
4 0 0 516 0 0 530 0 0 469 
5 0 441 884 0 608 783 0 644 810 
6 0 3,591 0 0 3,257 0 0 3,409 0 
Σ 197 5,362 1,867 205 5,295 1,705 199 5,444 1,636 

 
As shown in Table 11, these three scenarios actually have very similar fare class 
mixes.  The numbers of product-oriented bookings are 197, 205, and 199 – a tight 
spread.  Of significance is that HF1-IAP0 has the most bookings in the lower classes.  
In Fare Classes 4, 5, and 6, this combination has 5,431 total bookings, compared to 
5,178 for HF2-IAP0 and 5,332 for HF3-IAP0.  We hypothesize that these extra 
bookings in the lower fare classes somehow drive HF1’s revenue above the HF2 and 
HF3 booking classification definitions – a hypothesis we further investigate by 
examining the operating measures for each case. 
 
The revenue, load factor, and yield for both airlines in each of these three scenarios 
are shown in Table 12.  The HF1-IAP0 combination for Airline 1 not only has the 
highest revenue of the three (as well as of the nine total combinations), but also has 
the highest LF, by far, and the lowest yield.  The coupling of high revenues and loads 
for HF1 implies that HF2 and HF3 over-forecast demand in the higher fare classes.  
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Doing so likely leads the seat optimizer to overprotect in these classes (see Figure 2) 
and lose bookings in the lower fare classes.   
 

Table 12: Results for HF1, HF2, HF3 & IAP0, DAVN w/ HF versus DAVN 

Operating Statistic Airline HF1-IAP0 HF2-IAP0 HF3-IAP0 
AL1 $1,072,646 $1,055,332 $1,046,757 Revenue 
AL2 $1,014,617 $1,030,502 $1,029,679 
AL1 86.20 82.04 82.86 

Load Factor (%) 
AL2 81.42 82.85 82.47 
AL1 0.1014 0.1049 0.1030 

Yield ($/RPM) 
AL2 0.0978 0.0976 0.0980 

 
Thus, it appears that HF1, the path rule, outperforms the other two definitions of 
product-oriented demand in terms of path availability at the time of booking.  In our 
experiments here, the path rule does not seem to overprotect the higher fare classes 
as much as the market and airlines rules.  Furthermore, the higher number of 
bookings in fare classes 4, 5, and 6 (as well as overall LF) for HF1-IAP0 supports the 
idea that HF1 outperforms HF2 and HF3. 
 

4.2.1.2 IAP0, IAP1, IAP2 

 
By comparing HF1-IAP0, HF1-IAP1, and HF1-IAP2, we can isolate the effects of the 
IAP0, IAP1, and IAP2 AP classification definitions.  The fare class mixes are shown 
below in Figure 38, Figure 39, and Figure 40, for IAP0, IAP1, and IAP2, respectively.   
 

 

Figure 38: Fare Class Mix for HF1-IAP0 
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Figure 39: Fare Class Mix for HF1-IAP1 

 

 

Figure 40: Fare Class Mix for HF1-IAP2 

 
As with our simulations of the three path availability rules, the proportions of 
product-oriented and price-oriented bookings (both AP and RM) by fare class with 
IAP0, IAP1, and IAP2 are presented in these Figures, as well as in Table 13.  But 
relative to our comparison across HF1, HF2, and HF3, there is much more variation 
in booking levels across the three AP methods.   
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Table 13: Product-oriented and Price-oriented Bookings by Fare Class - 
IAP0, IAP1, IAP2 

IAP0 IAP1 IAP2 
Price Price Price 

Fare 
Class Product 

AP RM 
Product 

AP RM 
Product 

AP RM 
1 117 357 41 381 0 51 423 0 42 
2 79 388 194 401 0 189 446 0 186 
3 0 584 233 518 0 197 0 570 217 
4 0 0 516 0 0 435 0 0 468 
5 0 441 884 449 0 833 0 457 875 
6 0 3,591 0 0 4,210 0 0 3,867 0 
Σ 197 5,362 1,867 1,749 4,210 1,705 869 4,894 1,789 

 
Upon examination of the fare class mix for each of these simulations, we can make 
the following observations about IAP0, IAP1, and IAP2: 
 

• Based upon the definitions in Section 3.2.3.2, it is impossible to observe any 
AP price-oriented bookings in Fare Class 4 under any of the three 
classifications because Fare Classes 4 and 5 close simultaneously 14 days 
before departure (see semi-restricted fare structure in Section 4.1.2). 

• IAP0 shows the most AP price-oriented bookings and the fewest product-
oriented bookings.  This is a result of its blind labeling of all historical 
bookings in which the next lowest class closed due to AP requirements as 
price-oriented. 

• Conversely, IAP1 shows most product-oriented bookings and the fewest AP 
price-oriented bookings because it blindly labels so many product-oriented 
bookings, and IAP2 falls between IAP0 and IAP1. 

 
The revenue, load factor, and yield for both airlines in each of these three scenarios 
are shown in Table 14.  The HF1-IAP0 combination for Airline 1 not only has the 
highest revenue of the three (as well as of the nine total combinations), but also has 
the lowest LF, by far, and the highest yield (in direct contrast with our simulations 
across HF1, HF2, and HF3).  The coupling of higher revenues and high yields for IAP0 
implies that IAP1 and IAP2 under-forecast demand in the higher fare classes.  Doing 
so likely leads the seat optimizer to dilute revenue with excess bookings in the lower 
fare classes (see Figure 2) and lose the revenue of high yield passengers.  
 

Table 14: Results for HF1 & IAP0, IAP1, IAP2, DAVN w/ HF versus DAVN 

Operating Statistic Airline HF1-IAP0 HF1-IAP1 HF1-IAP2 
AL1 $1,072,646 $1,044,303 $1,060,161 Revenue 
AL2 $1,014,617 $1,030,362 $1,017,538 
AL1 86.20 89.10 88.01 

Load Factor (%) 
AL2 81.42 80.10 80.75 
AL1 0.1014 0.0955 0.0982 

Yield ($/RPM) 
AL2 0.0978 0.1010 0.0989 

 
This hypothesis is supported by the larger number of product-oriented bookings with 
IAP1 and IAP2 – bookings which increase the use of traditional pick-up forecasting.  
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Because it is this forecasting method (when used inappropriately in less restricted 
fare structures) which accelerates the revenue dilution of the spiral-down effect (see 
Section 2.3.2), the heavier use of Q-forecasting for the price-oriented demand in 
HF1-IAP0 implies IAP0 is characterized by less spiral-down than IAP1 and IAP2. 
 

4.2.1.3 Summary of DAVN w/ HF (FRAT5 “C”) versus DAVN 
 
Based upon these simulations of HF using FRAT5 series “C”, the HF1-IAP0 
combination outperforms the other eight in terms of network revenue improvement 
for Airline 1 over Base Case 1.  The higher revenue and LF observed with the path 
rule (HF1) compared to HF2 and HF3 indicate that the latter two rules overprotect 
the higher fare classes and lose out on revenue gains from selling in lower fare 
classes.  And the higher revenue and yields observed with IAP0 compared to IAP1 
and IAP2 indicate that the latter two classification methods are characterized by 
more spiral-down and revenue dilution.  Thus, HF1-IAP0 represents the “best” 
combination of load factor and yield, and leads to the best revenue improvement 
over standard pick-up forecasting. 
 

4.2.2 Low and High Demand 
 
To test the robustness of the HF1-IAP0 combination, we first examine the 
performance of all nine HF definitions under cases of lower and higher demand.  
More specifically, the experiments performed in Section 4.2.1 used a Demand 
Multiplier (DM) of 0.9, as previously mentioned in Section 3.1.2.1.  Here we use a 
DM of 0.8 to simulate lower demand and a DM of 1.0 to simulate higher demand. 
 

4.2.2.1 New Base Cases 
 
Because Base Case 1 uses a baseline DM of 0.9, we must simulate two more BCs for 
low and high demand.  Base Case 2 is identical to Base Case 1, except with an 
overall DM of 0.8.  The results of this simulation are shown in Table 17.  Due to the 
lower demand, both AL1 and AL2 experience lower network revenues, load factors, 
and yields compared to BC1. 
 

Table 15: Base Case 2 Results – DAVN versus DAVN, Low Demand 

Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $931,999 78.07 0.0973 
AL2 $920,372 77.28 0.0935 

 
In contrast, both airlines see higher network revenues, load factors, and yields in 
Base Case 3, as shown in Table 16; this simulation is identical to BC1 and BC2, 
expect the DM is 1.0. 
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Table 16: Base Case 3 Results – DAVN versus DAVN, High Demand 

Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,149,712 85.41 0.1097 
AL2 $1,138,380 85.18 0.1049 

 
As with BC1, Airline 1’s network revenue exceeds that of its competitor in low and 
high demand environments.  Also, Airline 1’s load factors and yields exceed that of 
Airline 2 in both BC2 and BC3.  These differences are likely due to asymmetries in 
Network D-6.  
 

4.2.2.2 DAVN w/ HF versus DAVN, Low Demand 

 
The changes in Airline 1’s revenue when using the nine various HF methodologies in 
low demand environments are shown in Figure 41.  As with the case of DM = 0.9, 
the HF1-IAP0 combination outperforms all others in terms of network revenue.   
 

 

Figure 41: Airline 1 Revenue Changes from BC2, DAVN w/ HF versus DAVN 
for Low Demand 

 
As shown in Table 17, HF1-IAP0 produces a revenue improvement of 2.41% over 
Base Case 2 – by far the largest increase of the nine historical booking 
classifications.  And as with the baseline demand case, all nine definitions improve 
revenue to some extent. 
 

Table 17: DAVN w/ HF versus DAVN for Low Demand, Airline 1 Revenue and 
Change from BC2 

IAP0 IAP1 IAP2 
DM = 0.8 

Revenue ∆ Revenue ∆ Revenue ∆ 
HF1 $954,416 2.41% $938,194 0.66% $947,869 1.70% 
HF2 $938,253 0.67% $940,705 0.93% $939,330 0.79% 
HF3 $936,753 0.51% $935,467 0.37% $935,911 0.42% 
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HF1 produces higher load factors than either HF2 or HF3 across a fixed IAP 
classification, as shown in Table 18.  Furthermore, IAP0 always has higher yields 
than IAP1 and IAP2.  These observations are consistent with the results for the 
baseline demand case. 
  

Table 18: Airline 1 Load Factors and Yields for Low Demand 

IAP0 IAP1 IAP2 
DM = 
0.8 LF (%) 

Yield 
($/RPM) 

LF (%) 
Yield 

($/RPM) 
LF (%) 

Yield 
($/RPM) 

HF1 81.84 0.0951 83.73 0.0913 82.91 0.0932 
HF2 77.39 0.0988 80.73 0.0950 78.74 0.0972 
HF3 78.91 0.0968 79.40 0.0960 79.15 0.0964 

 
So it appears that in low demand situations, HF2 and HF3 again lead to 
overprotection compared to HF1, and that IAP1 and IAP2 lead to more spiral-down of 
revenues than IAP0 – just as with the baseline DM of 0.9.  So as with the baseline 
demand case, the HF1-IAP0 combination outperforms the other eight definitions of 
product-oriented and price-oriented historical bookings for use with Hybrid 
Forecasting.  Of note is that the revenue gained over the appropriate Base Case for 
low demand – 2.41% - is smaller than the revenue gained for normal demand – 
3.11%.  This observation suggests that the benefits of HF are not independent of the 
level of passenger demand – an expected result because environments of low 
demand typically diminish the impact of RM systems. 
 

4.2.2.3  DAVN w/ HF versus DAVN, High Demand 

 
The changes in Airline 1’s revenue when using the nine various historical booking 
definitions in high demand environments are shown in Figure 42.  As with the cases 
of baseline and low demand (or DM = 0.9 and 0.8, respectively), the HF1-IAP0 
combination outperforms all others.   
 

 

Figure 42: Airline 1 Revenue Changes from BC3, DAVN w/ HF versus DAVN 
for High Demand 
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As shown in Table 19, HF1-IAP0 produces a revenue improvement of 3.63% over 
Base Case 2 – again the largest increase.  But unlike the normal and low demand 
cases, the HF1-IAP1 combination actually decreases Airline 1’s revenue by 0.22% 
compared to Base Case 3.  This fact suggests that the detrimental revenue effects of 
spiral-down can be intense enough in periods of high demand to actually hurt the 
airline more than if standard pick-up forecasting had been used instead – a critical 
observation which both demonstrates the potential severity of spiral-down, as well as 
provides strong evidence suggesting IAP1-HF1 combination is seriously flawed. 
 

Table 19: DAVN w/ HF versus DAVN for High Demand, Airline 1 Revenue and 
Change from BC3 

IAP0 IAP1 IAP2 
DM = 1.0 

Revenue ∆ Revenue ∆ Revenue ∆ 
HF1 $1,191,395 3.63% $1,147,195 -0.22% $1,172,254 1.96% 
HF2 $1,173,228 2.05% $1,159,153 0.82% $1,166,297 1.44% 
HF3 $1,159,782 0.88% $1,152,300 0.23% $1,156,197 0.56% 

 
HF1 produces higher load factors than either HF2 or HF3 across a fixed IAP 
classification, as shown in Table 20.  Furthermore, IAP0 always has higher yields 
than IAP1 and IAP2.  These observations are consistent with the results for baseline 
demand and low demand.  They also suggest, once again, that the HF1 definition 
leads to less overprotection in high demand environments than HF2 and HF3, and 
IAP0 appears to guard against spiral-down better than IAP1 and IAP2. 
 

Table 20: Airline 1 Load Factor and Yield for High Demand 

IAP0 IAP1 IAP2 
DM = 
1.0 LF (%) 

Yield 
($/RPM) 

LF (%) 
Yield 

($/RPM) 
LF (%) 

Yield 
($/RPM) 

HF1 88.74 0.1094 92.47 0.1011 91.16 0.1048 
HF2 84.80 0.1128 88.78 0.1064 86.88 0.1094 
HF3 85.44 0.1106 86.51 0.1086 86.04 0.1095 

 
And just as the revenue improvement grew as demand increased from low to 
baseline levels, the revenue gained over the appropriate Base Case for high demand 
– 3.63% - is larger than the revenue gained for baseline demand – 3.11%.  But as 
mentioned in Section 4.2.2.2 for low demand, this result is not surprising.  RM 
systems provide disproportionate gains in high demand when booking requests are 
intensified.  So not only does it appear that HF1-IAP0 again constitutes the best 
Hybrid Forecasting revenue improvement for an Airline using DAVN, we have 
observed that the percentage revenue gained over standard pick-up forecasting 
increases with the intensity of demand. 
 

4.2.3 EMSRb w/ HF versus EMSRb 
 
To further test the nine historical booking classifications, we simulate Hybrid 
Forecasting with a leg based seat allocation optimizer – the EMSRb heuristic, as 
described in Section 3.1.3.3.  This is in contrast to the Origin-Destination (OD) path-

 86



based optimizer of DAVN used for all other experiments.  For these simulations (and 
all others outside of Section 4.2.2) we again use the baseline Demand Multiplier of 
0.9.  
 
For the fourth Base Case (BC4), both airlines use identical Revenue Management 
(RM) systems: EMSRb optimization with standard pick-up forecasting.  The results of 
this simulation are shown in Table 21.  Due to the less sophisticated RM system, 
both AL1 and AL2 experience lower network revenues, load factors, and yields 
compared to BC1. 
 

Table 21: Base Case 4 Results - EMSRb versus EMSRb 

Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,029,823 83.61 0.1004 
AL2 $1,025,096 83.2 0.0967 

 
In this Base Case, Airline 1 sees approximately 0.5% more network revenue than its 
competitor (a difference smaller than in BC1).  Airline 1’s load factor and yield is also 
less than in Base Case 1, though still superior to Airline 2’s.  These observations 
suggest that the network asymmetries inherent in Network D-6 exacerbate revenue 
gains for Airline 1 in the more sophisticated DAVN optimizer more than with EMSRb.   
 
The changes in Airline 1’s revenue when using the nine various HF methodologies in 
with an EMSRb seat optimizer are shown in Figure 43.  As with the previous three 
cases (DAVN versus DAVN for baseline, low, and high demand), the HF1-IAP0 
combination outperforms all others.   
 

 

Figure 43: Airline 1 Revenue Changes from BC4, EMSRb w/ HF versus 
EMSRb 

 
As shown in Table 22, HF1-IAP0 produces a revenue improvement of 2.58% over 
Base Case 4 – a slightly larger increase than that with HF2-IAP0 or HF3-IAP0.  And 
as in the case of DAVN with HF versus DAVN, the HF1-IAP1 combination decreases 
Airline 1’s revenue by 1.03% compared to Base Case 4 – a significant degree of 
spiral-down. 
 

 87



Table 22: EMSRb w/ HF versus EMSRb, Airline 1 Revenue and Change from 
BC4 

IAP0 IAP1 IAP2 
EMSRb 

Revenue ∆ Revenue ∆ Revenue ∆ 
HF1 $1,056,385 2.58% $1,018,703 -1.08% $1,044,050 1.38% 
HF2 $1,053,652 2.31% $1,033,670 0.37% $1,047,265 1.69% 
HF3 $1,051,456 2.10% $1,035,775 0.58% $1,046,743 1.64% 

 
Regarding variations across HF1, HF2, and HF3, or IAP0, IAP1, and IAP2, the results 
are similar to those with the DAVN optimizer.  HF1 produces higher load factors than 
either HF2 or HF3 across a fixed IAP classification, as shown in Table 23 – a clue that 
it leads to less overprotection due to its higher revenues.  Furthermore, IAP0 always 
has higher yields than IAP1 and IAP2 – a clue that it guards against spiral-down 
better than the other two booking definitions. 
 

Table 23: Airline 1 Load Factor and Yield for EMSRb w/ HF 

IAP0 IAP1 IAP2 
EMSRb 

LF (%) 
Yield 

($/RPM) 
LF (%) 

Yield 
($/RPM) 

LF (%) 
Yield 

($/RPM) 
HF1 84.35 0.1021 87.57 0.0948 86.16 0.0988 
HF2 81.49 0.1054 84.58 0.0996 83.05 0.1028 
HF3 80.25 0.1068 83.27 0.1014 81.76 0.1044 

 
It is noteworthy that Airline 1’s revenue improvement for HF1-IAP0 Hybrid 
Forecasting when using EMSRb – 2.58% - is smaller than that when using DAVN – 
3.11%.  So not only do we again observe that HF1-IAP0 outperforms the other 8 
historical booking definitions for HF, but it also appears that the relative revenue 
gain over standard pick-up forecasting increases with the sophistication of the seat 
inventory optimization method.  This latter observation is not a surprise, as the path-
based DAVN optimizer should outperform the leg-based EMSRb in Network D-6. 
 

4.2.4 DAVN w/ HF (FRAT5 “A4”) versus DAVN 
 
As previously mentioned in Section 4.1.3, we have been using the baseline FRAT5 
Series “C” as Airline 1’s moderate estimate of passenger WTP.  In order to test the 
sensitivity of the nine historical booking definitions to the WTP estimate, we re-
simulate DAVN with HF versus DAVN with a different FRAT5 series.   
 
FRAT5 “A4” is more aggressive than “C”, as previously described in Section 3.2.2.1.  
Thus, if a particular airline uses “A4”, it assumes it can capture more sell-up by 
getting its passengers into higher fare classes than if that same airline uses “C”.  The 
changes in Airline 1’s network revenue when using the nine various HF booking 
classifications and FRAT5 “A4” are shown in Figure 44; the appropriate Base Case for 
comparison is BC1.  As with the case of FRAT5 “C”, the HF1-IAP0 combination 
outperforms all others in terms of network revenue over BC1.   
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Figure 44: Airline 1 Revenue Changes from BC1, DAVN w/ HF versus DAVN 
(FRAT5 “A4”) 

 
As shown in Table 24, HF1-IAP0 produces a revenue improvement of 3.45% over 
Base Case 1 – by far the largest increase of the nine methods.  And all 
methodologies improve network revenue for Airline 1 to some extent (though the 
HF3-IAP1 combination only improves AL1’s situation by a paltry $483. 
 

Table 24: DAVN w/ HF versus DAVN (FRAT5 “A4”), Airline 1 Revenue and 
Change from BC1 

IAP0 IAP1 IAP2 
FRAT5 “A4” 

Revenue ∆ Revenue ∆ Revenue ∆ 
HF1 $1,076,200 3.45% $1,045,611 0.51% $1,065,992 2.47% 
HF2 $1,051,019 1.03% $1,048,364 0.78% $1,049,161 0.85% 
HF3 $1,044,826 0.44% $1,040,760 0.05% $1,043,434 0.30% 

 
As with every other scenario discussed in Section 4.2 (baseline demand, low 
demand, etc.) variations across HF1, HF2, and HF3, or IAP0, IAP1, and IAP2 with 
FRAT5 “A4” suggest reasons why HF1-IAP0 outperforms the other eight definitions.  
Once again, HF1 leads to higher load factors than either HF2 or HF3 across a fixed 
IAP classification, as shown in Table 25, and IAP0 always has higher yields than IAP1 
and IAP2. 
 

Table 25: Airline 1 Load Factor and Yield for DAVN w/ HF (FRAT5 “A4”) 

IAP0 IAP1 IAP2 
FRAT5 
“A4” LF (%)

Yield 
($/RPM) 

LF (%)
Yield 

($/RPM) 
LF (%)

Yield 
($/RPM) 

HF1 85.09 0.1031 88.77 0.0960 86.34 0.1006 
HF2 80.38 0.1066 84.86 0.1007 81.15 0.1054 
HF3 82.07 0.1038 82.99 0.1022 82.33 0.1033 

 
So HF2 and HF3 overprotect the higher fare classes more than HF1, and IAP1 and 
IAP2 allow more spiral-down than IAP0.  However, the most critical result in this 
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series of experiments is that Airline 1’s revenue improvement with FRAT5 “A4” – 
3.45% - is greater than that when using FRAT5 “C” – 3.11%.   
 
When shifting from FRAT5 “C” to “A4”, Airline 1 assumed more aggressive sell-up in 
its passengers, and strengthened the booking protections of its higher fare classes.  
For this particular case, that strategy proved lucrative.  So not only can we conclude 
that HF1-IAP0 constitutes the best Hybrid Forecasting revenue improvement for a 
given airline using certain FRAT5 estimates, we have determined that there is some 
relationship between the aggressiveness of the input FRAT5 series and the revenue 
improvement that airline enjoys.  This relationship is further examined in Section 
4.3. 
 

4.2.5 Summary of HF1, HF2, HF3 and IAP0, IAP1, IAP2 Tests  
 
In this section, we have tested the nine possible combinations of HF1, HF2, and HF3, 
and IAP0, IAP1, and IAP2.  Each of these methods varies in defining historical 
bookings as either product-oriented or price-oriented based only on path availability 
and the state of the next lowest class at the time of booking.  And due to this limited 
booking information, each of these nine methods exhibits some form of bias towards 
product-oriented or price-oriented demand. 
 
Of the three AP classification methods, IAP1 appears to be the most biased.  Based 
on our understanding of passenger demand (see Section 2.5), we know that the set 
of all historical bookings in which the next lower class has been closed due to 
Advance Purchase requirements is comprised exclusively of product-oriented and 
price-oriented demand.  However, we do not know the proportion of these two, and 
cannot precisely determine it based upon the limited information available.   
 
We intuitively expect the set of AP bookings to contain more price-oriented than 
product-oriented passengers because selling up to the lowest open fare class is a 
primary characteristic of price-oriented demand.  For this reason, blindly classifying 
all such bookings as product-oriented (method IAP1) introduces a tremendous 
amount of bias into the forecasts of future bookings.  So it is no surprise that we 
observe significant spiral-down of revenues with IAP1, and this method was the 
worst performing IAP classification in nearly every experiment performed here 
(except for the HF2-IAP1 combination with low demand, in which not enough 
demand existed to fully initiate the spiral-down effect). 
 
IAP2 seeks to create a medium between the price-oriented focus of IAP0 and the 
product-oriented focus of IAP1, but does not succeed based upon the experiments 
performed.  Despite the obvious bias in labeling all AP bookings as price-oriented, 
IAP0 outperforms the others because it minimizes the use of traditional forecasting, 
thus limiting the spiral-down of revenues. 
 
Regarding the three path availability rules, both the airline rule and the market rule 
(HF2 and HF3, respectively) appear to be biased because they over-forecast demand 
in the higher fare classes relative to the path rule (HF1).  Doing so consistently leads 
to overprotection and lower load factors.  As described in Section 3.2.3.1, any 
historical booking able to be classified as product-oriented under HF1 is also product-
oriented under HF2 and HF3.  Because of the nested definitions of HF1, HF2, and HF3 
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shown in Figure 45, HF1 will always have the fewest number of historical product-
oriented bookings, followed by HF2.   
 

 

Figure 45: Overlap of HF1, HF2, and HF3 Definitions of Product-oriented 
Historical Bookings 

 
Therefore, we hypothesize that HF3 leads to higher product-oriented forecasts than 
HF2, which does the same relative to HF1.  Consequently, HF3 and HF2 tend to 
overprotect the higher fare classes more than HF1 due to their higher forecasts of 
demand in those classes. 
 
In conclusion, each of these nine methods is biased in that each systematically 
misidentifies a certain portion of product-oriented and price-oriented bookings.  We 
have simulated each HF method for a DAVN versus DAVN competitive environment 
of low, baseline, and high demands.  We have repeated the experiment in EMSRb 
versus EMSRb, as well as with a different estimate of passenger WTP.  In each of 
these scenarios, the HF1-IAP0 combination has consistently outperformed all others.  
For this reason, we believe that Hybrid Forecasting should define its product-oriented 
and price-oriented historical bookings as follows: 
 

• All bookings in which the next lowest fare class was available on the same 
path (same flight and airline) are product-oriented. 

• All other bookings, including those made when the next lower class has been 
closed due to AP requirements, are price-oriented.  

  
These definitions constitute our standard methodology for Hybrid Forecasting in 
PODS (see Figure 28), and were used for all HF experiments in Section 4.3 and 
Chapter 5 of this thesis. 
 

4.3 Hybrid Forecasting Over a Range of Passenger WTP 
Estimates 

 
In this section, we examine the relationship between input FRAT5 series and airline 
network revenue in the context of HF.  As discussed in Section 4.2.4, a shift from 
FRAT5 series “C” to the more aggressive “A4” leads to an increase in Airline 1’s 
revenue of 0.33%, from $1,072,646 to $1,076,200.  Relative to AL1’s BC1 revenues, 
FRAT5 series “A4” represents a 3.45% improvement and FRAT5 “C” a 3.11% gain - 
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so Hybrid Forecasting with either input series represents significant improvements 
over traditional pick-up forecasting. 
 

4.3.1 Examination of Network Revenues 
 
This situation was repeated sixteen times, with Airline 1 assuming WTPs of FRAT5 
series “A9” through “G”.  As shown in Figure 46, AL1 sees an increase in network 
revenue with all FRAT5 series except for “G”, which results in a loss of nearly 2% 
from pick-up forecasting.  In general, AL1’s revenue increases as the input FRAT5 
series becomes more aggressive, though the benefit over pick-up forecasting slows 
around FRAT5 “C”.  The change in revenue from BC1 significantly jumps from 0.46% 
with FRAT5 “F” to 3.11% with FRAT5 “C”; yet this benefit only grows to 3.56% with 
the most aggressive FRAT5 Series “A9”, as shown in Table 26.  Thus, the revenue 
benefit from using a WTP estimate more aggressive than FRAT5 “C” is marginal.  
Furthermore, it is highly unlikely that revenues increase indefinitely with more 
aggressive sell-up assumptions; however, that inflection point was not yet observed 
through the range of sixteen FRAT5 series simulated in this thesis. 
 

 

Figure 46: Network Revenue by FRAT5 Series for DAVN w/ HF versus DAVN 

 
Also of note is the inverse relationship shown between AL2’s and AL1’s network 
revenues.  As AL1’s revenues increase with more aggressive FRAT5 series, AL2’s 
decrease – an intuitive relationship in such a competitive network with only two 
carriers competing on every path. 
 

Table 26: DAVN w/ HF versus DAVN, Airline 1 Revenue Change from BC1 by 
FRAT5 Series 

FRAT5 Series A9 A8 A7 A6 A5 A4 A3 A2 

∆ AL1 Revenue from BC1 3.56% 3.58% 3.55% 3.48% 3.45% 3.45% 3.46% 3.30% 
         
FRAT5 Series A1 A B C D E F G 

∆ AL1 Revenue from BC1 3.27% 3.25% 3.09% 3.11% 2.98% 1.92% 0.46% -1.98% 
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4.3.2 Examination of Load Factors and Passenger Yields 
 
As input FRAT5 series become more aggressive, Airline 1’s LF decreases significantly 
from 89.6% to 83.99%, as shown in Table 27.  Furthermore, its yield increases from 
9.27¢/RPM to nearly 10.5¢/RPM. 
 

Table 27: DAVN w/ HF versus DAVN, Airline 1 Load Factor and Yield by 
FRAT5 Series 

FRAT5 Series A9 A8 A7 A6 A5 A4 A3 A2 

Load Factor (%) 83.99 84.23 84.37 84.62 84.75 85.09 85.24 85.61 

Yield ($/RPM) 0.1046 0.1043 0.1041 0.1037 0.1035 0.1031 0.1029 0.1023 
         
FRAT5 Series A1 A B C D E F G 

Load Factor (%) 85.77 85.91 86.12 86.2 86.13 86.89 87.86 89.63 

Yield ($/RPM) 0.1021 0.1019 0.1015 0.1014 0.1014 0.0995 0.097 0.0927 

 
With a more aggressive FRAT5 series, Airline 1’s RM system assumes passengers will 
engage in more sell-up and increases protections for higher fare classes in turn.  
Thus, the lower fare classes close sooner and receive fewer bookings – an action 
which reduces overall load factors, as shown in Figure 47.  Of note is the inverse 
relationship between AL1’s and AL2’s load factors, which is intuitive and similar to 
that of their revenue trends. 
 

 

Figure 47: Load Factor by FRAT5 Series for DAVN w/ HF versus DAVN 

 
For all input FRAT5 series, Airline 1’s LF exceeds that of BC1, suggesting that HF with 
any assumption of WTP books more passengers in lower fare classes than pick-up 
forecasting.  Because FRAT5 series “G” loses revenue compared to BC1, its high load 
factor implies that its WTP estimate is far too low, and the RM system allows 
excessive low fare class bookings – enough so to dilute revenue and produce a loss. 
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This least aggressive FRAT5 series also produces the lowest passenger yield for 
Airline 1.  But yields increase as FRAT5 series become more aggressive, as shown in 
Figure 48.  This upward trend in yield is expected with fewer passengers (i.e. lower 
load factors) and increasing network revenues as HF assumes more aggressive sell-
up. 
 

 

Figure 48: Yield by FRAT5 Series for DAVN w/ HF versus DAVN 

 

4.3.3 Summary of DAVN w/ HF versus DAVN 
 
In closing, the use of HF nearly always increases network revenues over traditional 
pick-up forecasting, except in cases where the assumption of passenger sell-up is so 
conservative that revenues are significantly diluted.  As inputs of WTP increase, the 
airline’s RM system becomes more protective of its higher fare classes.  Doing so 
limits bookings in lower fare classes and drives load factors downward.  
Consequently, the average revenue generated per passenger increases due to the 
reduced number of bookings.  And as shown in this section, network revenue 
continues to improve with more aggressive WTP estimates, though the incremental 
benefit declines near the level of FRAT5 series “C”, and that an Airline using HF may 
see an increase in revenue approaching 3% over pick-up forecasting.   
 

4.4 Chapter Summary: Simulations in PODS to Define HF 
 
This chapter first defined HF and then determined the revenue improvements 
possible relative to standard pick-up forecasting.  We began in Section 4.1 by 
presenting the simulated network in PODS – Network D-6 – as well as defining the 
semi-restricted fare structure used throughout this thesis. 
 
Then in Section 4.2, we experimented with the nine historical booking definitions for 
use in HF, as previously described in Section 3.2.3.1 and 3.2.3.2.  Specifically, we 
tested each of the nine scenarios in environments of baseline, low, and high demand 
within PODS, as well as with the leg-based EMSRb optimizer in lieu of DAVN, and 
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with a more aggressive estimate of passenger WTP.  The results of our experiments 
indicate that HF1-IAP0 outperforms the other 8 definitions for two reasons: 
 

1. HF1 is characterized by less overprotection than HF2 and HF3. 
2. IAP0 better guards against spiral-down of revenues than IAP1 and IAP2. 

 
Using this HF1-IAP0 combination to define product-oriented and price-oriented 
historical bookings, we then simulated HF in Section 4.3 to demonstrate the 
sensitivity of HF to an estimate of passenger WTP.  Based on our experiments, it 
appears that an airline using Hybrid Forecasting can experience an increase in 
network revenue of approximately 3% over traditional forecasting methods. 
 
In Chapter 5, we will present further experiments using PODS in which we can 
improve the performance of Hybrid Forecasting in terms of further increasing 
network revenues.  Specifically, we will demonstrate the value of varying the input 
WTP estimate by relative path quality – a technique referred to as Path 
Categorization.  Furthermore, we simulate another supplemental technique known as 
Fare Adjustment, which proactively accounts for passenger sell-up in the RM 
system’s seat optimizer (instead of the forecasting component, like HF).  
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5 Improving Hybrid Forecasting using Path Categories 
and Fare Adjustment 

 
In Chapter 4, we showed that the HF1-IAP0 combination often outperforms the other 
eight categorizations of product-oriented and price-oriented bookings as described in 
Sections 3.2.3.1 and 3.2.3.2, respectively.  We then demonstrated the sensitivity of 
an airline’s network revenues to its estimated passenger Willingness-to-Pay (WTP) 
inputs for Hybrid Forecasting (HF) with less restricted fare structures.   
 
Having demonstrated the potential value of HF to an airline in an environment with 
semi-restricted fare structures, our goal in this chapter is to expand our experiments 
to test additional improvement in Hybrid Forecasting in terms of increasing network 
revenue derived from HF alone.  More specifically, we present and analyze 
simulations of an airline using HF supplemented with two techniques: Path 
Categorization (PCAT, as described in Section 3.2.5) and Fare Adjustment (FA, as 
described in Section 3.2.4).   
 
As in Chapter 4, we use the Passenger Origin-Destination Simulator (PODS) to 
simulate the performance of HF, PCAT, and FA within an airline Revenue 
Management (RM) system in semi-restricted fare structures.  Again, we refer to 
experiments in terms of “the RM system used for Airline 1 (AL1) versus that used for 
Airline 2 (AL2)” in semi-restricted Network D-6; both carriers employ the 
Displacement Adjusted Virtual Nesting (DAVN) seat allocation optimizer, as described 
in Section 3.1.3.3.  Also, AL2 always uses standard pick-up forecasting, while the 
forecasting method used by AL1 varies in each experiment. 
 
We begin by we analyze the impact of Hybrid Forecasting with PCAT in terms of path 
quality in Section 5.1; next, we examine the effect of FA on HF in Section 5.2; and 
finally, we study the combination of PCAT and FA together, and their combined 
impact on HF in Section 5.3. 
 

5.1 Hybrid Forecasting using Path Categories to account for 
relative path quality 

 
In this section, we test the impact of an airline accounting for different passenger 
sell-up behavior in markets with non-stop service.  As mentioned in Section 1.3.2 
and discussed in Section 3.2.5, we intuitively expect that an airline offering superior 
service to its competition in terms of path quality (non-stop versus connecting) can 
extract more revenue because of passenger preference for non-stop service.  That is, 
passenger WTP should be higher for non-stop service compared to connecting.   
 
We refer to the set of Origin-Destination (OD) markets where a given airline 
dominates in terms of path quality as “PCAT1”.  Similarly, the OD markets where all 
competitors offer equal path quality (all non-stop or all connecting service) are 
“PCAT2”, and the OD markets in which a given airline is dominated by a competitor 
in terms of path quality (connecting versus non-stop) are “PCAT3”.  And in Network 
D-6, each airline in each bank has 40 PCAT1 paths out of 482, as discussed in 
Section 4.1.1. 
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Due to the preference for non-stop service, we expect a greater occurrence of sell-up 
in PCAT1 if the lower fare classes are proactively closed due to a lack of competing 
non-stop flights.  In terms of our simulated PODS environment, we test this 
hypothesis by having AL1 (using HF) selectively use more aggressive FRAT5 inputs 
for PCAT1 than for PCAT2 and PCAT3. 
 
Regarding the PCAT experimentation nomenclature in this thesis, we describe each 
combination as “PCAT1 FRAT5 – PCAT2 FRAT5 – PCAT3 FRAT5”.  For example, input 
FRAT5 series combination “A4-C-C” uses FRAT5 series “A4” for PCAT1 and “C” for 
PCAT2 and PCAT3.   
 

5.1.1 Path Categorization – Network Revenue 
 
To isolate the effects of PCAT, we return to our baseline input of FRAT5 series “C” 
(see Section 4.1.3).  Specifically, we fix FRAT5 “C” for PCAT2 and PCAT3, and vary 
the FRAT5 series used for PCAT1 to gauge the sensitivity of AL1’s network revenue 
to more aggressive input FRAT5.   
 
The Base Case (BC) for this scenario is “C-C-C”, where AL1 uses FRAT5 series “C” for 
every path irrespective of path quality.  This particular BC was presented previously 
in Section 4.3 (where no PCAT was used), and is summarized in Table 28. 
 

Table 28: Base Case “C-C-C” Results – DAVN w/ HF and PCAT versus DAVN 

Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,072,646 86.20 0.1014 
AL2 $1,014,617 81.42 0.0978 

 
In this Base Case, Airline 1 gets $1,072,646 in network revenue – 3.11% more than 
in BC1 (see Chapter 4) – because of its use of HF instead of pick-up forecasting.  
Also, AL1’s load factor (LF) is higher than in BC1 because the use of HF leads to 
more bookings in lower fare classes, as discussed in Section 4.3.  For the 
experiments in this section, we are concerned with the possible revenue 
improvements for AL1 when using more aggressive FRAT5 series for PCAT1. 
 
This situation was repeated thirteen times, with Airline 1 assuming WTP estimates 
for PCAT1 of FRAT5 series “A8” through “E”.  As shown in Figure 49, AL1 generally 
sees an increase in network revenue as its PCAT1 FRAT5 series becomes more 
aggressive – consistent with our intuitive expectation.   
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Figure 49: AL1 Revenue by FRAT5 Series Combination, DAVN w/ HF and 
PCAT versus DAVN, Using “C” for PCAT2 and PCAT3 

 
This revenue increase due to PCAT is relatively small – less than 0.25% over the “C-
C-C” Base Case, as shown in Table 29 – compared to the 3.11% revenue increase 
due to the use of HF alone.  The smaller magnitude of this revenue change can be 
explained by the small number of OD paths in PCAT1 for AL1 in Network D-6.  Note 
that less than 9% of AL1’s paths exhibit superior path quality to AL2’s competing 
service.   
 

Table 29: DAVN w/ HF and PCAT versus DAVN, Airline 1 Revenue Change by 
PCAT1 FRAT5 Series, Using “C” for PCAT2 and PCAT3 

PCAT1 FRAT5 Series A8 A7 A6 A5 A4 A3 A2 

∆ AL1 Revenue from “C-C-C” 0.22% 0.21% 0.23% 0.18% 0.15% 0.16% 0.16% 

∆ AL1 Revenue from BC1 3.34% 3.33% 3.35% 3.30% 3.26% 3.28% 3.28% 
        
PCAT1 FRAT5 Series A1 A B C D E  

∆ AL1 Revenue from “C-C-C” 0.09% 0.07% 0.09% - -0.07% -0.52%  

∆ AL1 Revenue from BC1 3.20% 3.19% 3.21% 3.11% 3.04% 2.57%  

 
So even though only 40 of AL1’s 482 paths saw a change in input passenger WTP 
estimates, the airline still experienced an increase in total network revenue of up to 
0.23% (with the best case input of FRAT5 “A6”).  This finding indicates that 
supplementing Hybrid Forecasting with Path Categorization can be an effective way 
to improve an airline’s revenue with only minor changes to the RM system, though 
the small magnitude of the gain leaves us unable to conclude the revenue gain is due 
exclusively to passenger sell-up in these PCAT1 paths. 
 

5.1.2 Path Categorization – Yield and Load Factor 
 
Because of this increase in revenue, we intuitively expect that PCAT captures sell-up 
in these 40 OD markets and thereby increases the average fare paid per passenger.  
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That is, we expect overall passenger yield to increase due to sell-up in the 40 PCAT1 
markets.  We further expect no increase in Airline 1’s load factor because sell-up 
does not attract additional passengers, but rather extracts additional revenue from 
existing passengers.  If anything, we expect a slight decrease in LF due to the use of 
PCAT, as the more aggressive booking limits in the PCAT OD markets may dissuade 
existing passengers from booking.  However, our intuitive expectations for both yield 
and load factor appear to be incorrect based on our experiments. 
 
In contrast to expected enhancement in passenger yield, we observe no discernable 
trend, as shown in Figure 50.  For all PCAT FRAT5 series “A8” through “C”, the yield 
only varies between 10.13 ¢/RPM and 10.15 ¢/RPM – not a significant departure 
from the 10.14 ¢/RPM yield of the “C-C-C” base. 
 

 

Figure 50: AL1 Yield by FRAT5 Series Combination, DAVN w/ HF and PCAT 
versus DAVN, Using “C” for PCAT2 and PCAT3 

 
And instead of Airline 1’s load factor remaining stable, or even slightly decreasing 
with more aggressive WTP estimates for PCAT1, we observe a slight LF increase over 
the “C-C-C” Base Case for all FRAT5 series more aggressive than “C” as shown in 
Figure 51.  This finding is counter-intuitive because the use of more aggressive 
FRAT5s on PCAT1 paths should result in stronger booking class protection levels and 
more denied bookings (thus, lower load factors).   
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Figure 51: AL1 LF by FRAT5 Series Combination, DAVN w/ HF and PCAT 
versus DAVN, Using “C” for PCAT2 and PCAT3 

 
To explain these results, we examine a representative case of Hybrid Forecasting 
with PCAT and observe a complex interaction between Airline 1 and Airline 2.  With 
the input FRAT5 combination “A2-C-C”, Airline 1’s network revenues exceed those of 
the “C-C-C” Base Case by 0.16%, or $1,704, as shown in Table 29.  In Table 30, we 
examine the sources of this revenue gain using Path Categories defined by relative 
path quality. 
 
When using PCAT, Airline 1 loses $11,686 from “1st Choice” passengers who are 
denied booking on their preferred OD path and fare class. for an example.  But note 
that over $10,000 of this loss occurs in the lowest two fare classes – an indication 
that the use of PCAT protects higher fare classes by originally denying bookings in 
the lower ones.  Furthermore, note that AL1 “recaptures” $8,967 more from these 
passengers by booking them on a different fare class or path when it uses PCAT than 
otherwise.   
 

Table 30: Changes in Airline Revenue by Fare Class, DAVN w/ HF, from "C-C-
C" Base to "A2-C-C" 

Fare Class Total 1st Choice Sell-up AL1 Recapture AL2 Spill-in 
1 $1,722 $350 $653 $205 $515 
2 $2,546 $352 $1,227 $615 $351 
3 -$1,328 -$2,067 -$77 $1,049 -$231 
4 $1,936 $150 $148 $1,284 $354 
5 -$7,583 -$8,123 -$1,721 $1,676 $584 
6 $4,411 -$2,348 $0 $4,138 $2,622 
Σ $1,704 -$11,686 $230 $8,967 $4,195 

 
Also, note that AL1 captures $1,880 more from sell-up to Fare Classes 1 and 2 when 
using “A2” in PCAT1 – an indication that PCAT leads to sell-up in the higher fare 
classes as originally hypothesized.  But the changes in 1st Choice and Recapture 
revenue for Airline 1, as well as the additional $4,195 captured from AL2’s denied 
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passengers indicates that the use of FA leads to gains in network revenue due to 
network effects beyond capturing sell-up in PODS Network D-6.   While we can 
observe the resultant change in revenue due to these network effects, it is clear that 
the use of Path Categories has an indeterminate effect on load factors and yields.  
However, we can conclude that this effect is somewhat muted due to AL1’s limited 
number of PCAT1 paths in Network D-6.   
 

5.1.3 Conclusions about Path Categorization 
 
Based upon the trends in Airline 1’s revenue, load factor, and yield over a range of 
PCAT1 WTP estimates, our simulations support the following two conclusions: 
 

1. An airline practicing PCAT by relative path quality can experience a significant 
positive impact on its total network revenues to due the higher WTP in a 
relatively small number of OD markets.  As shown in Table 29, this increase 
in revenue can approach 0.25% over Hybrid Forecasting alone. 

2. Despite possibly increasing revenues via sell-up in PCAT1 markets, the 
revenue benefits of PCAT appear to be due to network effects when one 
airline assumes higher WTP inputs in its dominant markets.  Due to these 
network effects in our experiments, we observe that load factors increase 
slightly due recapturing of denied bookings from both AL1 and AL2.  

 

5.2 Hybrid Forecasting using Fare Adjustment to account for 
passenger sell-up 

 
In this section we turn our attention to Fare Adjustment as another supplemental 
tool for improving the performance of Hybrid Forecasting.  Specifically, we 
demonstrate through simulation the incremental effect that FA has on HF (and vice 
versa) in terms of revenue for Airline 1.  To put these changes in context, we first 
demonstrate the effects that FA alone has on an airline in Section 5.2.1, and then we 
show the cumulative result of both HF and FA together in Section 5.2.2.   
 
As first introduced in Section 1.3.1, and then described in Section 2.4.2 and Section 
3.2.4, Fare Adjustment is another method of accounting for passenger sell-up in less 
restricted fare structures.  While Q-forecasting – the price-oriented component of 
Hybrid Forecasting – was developed to incorporate sell-up into the passenger 
demand forecasting step of RM, as discussed in Section 2.4.1 and Section 3.2.2, Fare 
Adjustment takes place within the RM system’s seat allocation optimizer.  For use 
within a virtual nesting environment, FA artificially lowers the fare of the lower 
classes to shift them into lower virtual nests.  Doing so closes these classes earlier 
and theoretically encourages sell-up into the higher fare classes.   
 
Because this passenger sell-up behavior is governed by a WTP estimate – or a FRAT5 
value in PODS – the aggressiveness of an airline’s Fare Adjustment methods must be 
dependent upon that airline’s estimate of passenger WTP.  In PODS, we continue to 
use the FRAT5 series first described in Section 3.2.2.1 to estimate WTP; but for FA, 
we apply a FRAT5 Scaling Factor, as described in Section 3.2.4.2.  So an airline in 
PODS practicing Fare Adjustment must now estimate two values: the overall FRAT5 
describing passenger WTP, and the FRAT5 Scaling Factor used exclusively for Fare 
Adjustment. 
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As an example of FA used in our simulations, consider the cases of FRAT5 series “C” 
and “A4”, both with a Scaling Factor of 0.25.  The examples presented below are for 
Airline 1 in the OD market from City 12 to Hub 1, as originally described in Section 
4.1.1’s discussion of Network D-6.   The adjusted fares, fare’, to be used in 
determining DAVN booking limits for each class and each Time Frame are shown in 
Figure 52 for FRAT5 “C” and in Figure 53 for FRAT5 “A4”.   
 

 

Figure 52: Airline 1 Adjusted Fares for City 12-H1 OD Market, FRAT5 “C”, 
FRAT5 Scaling Factor of 0.25 

 
The characteristic “S-shape” of our FRAT5 series is mirrored for the adjusted fares in 
both Figure 52 and Figure 53.  Also, note that no Fare Adjustment is ever performed 
on the highest fare class (Fare Class 1) because no sell-up to an even higher class is 
possible.  The actual fares paid by passengers, as well as the final adjusted fares 
used by the DAVN optimizer in Time Frame 16 are shown in Table 31. 
 
 

 

Figure 53: Airline 1 Adjusted Fares for City 12-H1 OD Market, FRAT5 “A4”, 
FRAT5 Scaling Factor of 0.25 
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Table 31: Adjusted Fares in Time Frame 16 for Airline 1, City 12-H1 OD 
Market, FRAT5 Scaling Factor of 0.25 

Fare Class 1 2 3 4 5 6 

Actual Fares $408.90 $292.40 $181.00 $154.70 $129.40 $104.10 

FRAT5 "C" - TF 16 $408.90 $260.50 $147.70 $91.90 $66.50 $41.20 

FRAT5 "A4" - TF 16 $408.90 $155.40 $41.90 -$21.30 -$46.70 -$72.00 

 
In comparing these two FRAT5 series, use of the more aggressive one (“A4”) leads 
to more aggressive Fare Adjustment in which the adjusted fares experience larger 
decreases (to the point of negative adjusted fares) than with the less aggressive 
series (“C”).  So if Airline 1 assumes FRAT5 series “A4” for passenger WTP, its FA will 
shift fare classes into lower virtual nests sooner than if Airline 1 had used “C”.  In 
doing so, these lower fare classes will close earlier in the booking process, and the 
airline will (it hopes) capture sell-up to the higher fare classes.   
 
The experiments described in Section 5.2.1 simulate FA alone, and are performed 
over a range FRAT5 Scaling Factors for FRAT5 series “C” and “A4”.  These 
experiments are then repeated in Section 5.2.2, but with HF added to FA.  To judge 
the impact of FA, each experiment must be compared to an appropriate Base Case 
without Fare Adjustment, or the “No FA Base”.  Of course, this “No FA Base” is 
different for each experiment, and will be described in turn. 
 

5.2.1 DAVN w/ FA versus DAVN – No Hybrid Forecasting 
 
Because HF is not used in this section, the appropriate “No FA Base” to measure the 
impact of FA alone is that of DAVN versus DAVN, which has been already presented 
in Chapter 4 as Base Case 1 (see Table 9).  Airline 1’s network revenue in BC1 is 
$1,040,277, which beats AL2 by $9,727 due to asymmetries in Network D-6.  In 
terms of Fare Adjustment, BC1 is equivalent to Airline 1 practicing FA with a FRAT5 
Scaling Factor of 0.0 (the choice of FRAT5 Series is irrelevant). 
 

5.2.1.1 Using FRAT5 Series “C” for Fare Adjustment 
 
For this set of experiments, we again return to our baseline FRAT5 series “C”, but 
now apply FA with ten gradually increasing Scaling Factors, starting with 0.05 and 
incrementing by 0.05 to a maximum of 0.50.  As this Scaling Factor grows, our FA 
becomes more aggressive, and the DAVN optimizer becomes more proactive in 
closing lower fare classes.   
 
Intuitively, we expect Airline 1’s network revenue to increase now that the FA 
process accounts for passenger sell-up in the semi-restricted fare structure.  But as 
illustrated in Figure 54, the simulations show counter-intuitive results.  The biggest 
beneficiary from AL1’s FA is actually its competitor, whose revenues increase 
tremendously as the FA becomes more aggressive.   
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Figure 54: Network Revenue by FRAT5 Scaling Factor for DAVN w/ FA 
versus DAVN, FRAT5 “C” 

 
The most startling result of these experiments is that the introduction of FA – a more 
sophisticated RM development – actually hurts AL1.  Note that the type of FA applied 
here is “universal” in that the same input FRAT5 series is used for all paths, in 
contrast to the relative path quality experiments performed in Section 5.1.  Airline 
1’s revenues slightly decrease from the “No FA Base” under all forms of universal FA.  
And as shown in Table 32, the revenue loss becomes magnified as more aggressive 
FA is used, growing (or actually declining) from 0.03% with the smallest Scaling 
Factor to 0.34% with a Scaling Factor of 0.50. 
 

Table 32: DAVN w/ FA versus DAVN, Airline 1 Change in Network Revenue 
from BC1 by FRAT5 Scaling Factor, FRAT5 “C” 

FRAT5 Scaling Factor 0.05 0.10 0.15 0.20 0.25 
∆ AL1 Revenue from BC1 -0.03% -0.07% -0.07% -0.07% -0.13% 
      
FRAT5 Scaling Factor 0.30 0.35 0.40 0.45 0.50 
∆ AL1 Revenue from BC1 -0.18% -0.27% -0.26% -0.22% -0.34% 
 
To explain these counter-intuitive trends, we examine both airlines’ load factors and 
yields in these ten FA experiments.  As shown in Figure 55, AL1’s load factor 
decreases almost linearly (and significantly) as FA becomes more aggressive.  Due to 
this heavy reduction in bookings (and only a slight decrease in revenues), AL1’s yield 
rises sharply with the Scaling Factor used for FA. 
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Figure 55: Load Factor and Yield by FRAT5 Scaling Factor for DAVN w/ FA 
versus DAVN, FRAT5 “C” 

 
This combination of AL1’s revenues, load factors, and yields indicates that FA causes 
the DAVN seat optimizer to overprotect the higher fare classes.  By adjusting fares 
too quickly, FA causes the optimizer to close lower classes too early in hopes of 
attracting high fare bookings which do not materialize.  The loss of network revenue 
due to FA only grows with use of more aggressive Scaling Factors.  So as the FA 
becomes more aggressive, the lower fare classes close earlier, and Airline 1’s load 
factor plummets due to the loss of so many low revenue bookings.  Consequently, its 
yield increases.  But those extra bookings in the higher fare classes – passengers the 
RM system sold up – cannot offset the revenue lost due to overprotection. 
 
Conversely, AL2 increases its load factors by capturing some of its competitor’s 
spilled passengers.  And because its own RM system manages to keep passenger 
yield from significantly decreasing with the additional passengers, Airline 2 
experiences the remarkable increases in revenue observed in Figure 54, and even 
manages to pass its competitor when AL1 uses a Scaling Factor of 0.30 or higher. 
 

5.2.1.2 Using FRAT5 Series “A4” for Fare Adjustment 
 
After observing Airline 1’s slight (and unexpected) revenue loss due to universal FA 
with FRAT5 “C”, we repeat the experiments to test the airline’s sensitivity to FA with 
a different input WTP estimate.  And with AL1 using the more aggressive FRAT5 
series “A4”, the loss of network revenue from the “No FA Base” becomes even more 
pronounced.  As shown in Figure 56, Airline 2 again experiences a surge in revenue 
due to Airline 1’s use of FA.   
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Figure 56: Network Revenue by FRAT5 Scaling Factor for DAVN w/ FA 
versus DAVN, FRAT5 “A4” 

 
At a Scaling Factor of 0.50, AL1 sees a revenue loss of nearly 8% (see Table 33) 
from the case of no FA – much higher than the loss of 0.34% at the same scaling 
factor with FRAT5 “C”.  So as demonstrated in the case of FRAT5 “C”, more 
aggressive FA – this time by way of a more aggressive FRAT5 – leads to a heavier 
loss of revenue for AL1 (as well as a greater increase for AL2).   
 

Table 33: DAVN w/ FA versus DAVN, Airline 1 Change in Network Revenue 
from BC1 by FRAT5 Scaling Factor, FRAT5 “A4” 

FRAT5 Scaling Factor 0.05 0.10 0.15 0.20 0.25 
∆ AL1 Revenue from BC1 -0.13% -0.18% -0.49% -0.85% -1.25% 
      
FRAT5 Scaling Factor 0.30 0.35 0.40 0.45 0.50 
∆ AL1 Revenue from BC1 -2.42% -3.50% -4.73% -4.88% -7.78% 
 
In terms of load factor and yield, we notice the same trends with FRAT5 “A4” as we 
did with “C” – only intensified, as shown in Figure 57.  In this case, AL1’s LF falls 
precipitously – approaching 50% with the highest Scaling Factor of 0.50.  And AL1’s 
yield skyrockets, approaching 16 ¢/RPM at the same high Scaling Factor.   
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Figure 57: Load Factor and Yield by FRAT5 Scaling Factor for DAVN w/ FA 
versus DAVN, FRAT5 “A4” 

 
Of course, AL2’s load factors creep upward accordingly as it captures AL1’s spilled 
booking requests.  Interestingly, AL2’s yields actually begin to rise too as the FA 
becomes extremely aggressive (Scaling Factors above 0.30), demonstrating that AL1 
is rejecting so many potential bookings, that AL2 can actually afford to reject some 
of those same spilled (albeit low fare) bookings as well.   

 

5.2.1.3 Conclusions about FA (without HF) 

 
In summary, it appears that Fare Adjustment on its own is an unappealing method 
for capturing sell-up in semi-restricted fare structures, despite its expected benefits.  
In the simulations performed here, FA actually leads to revenue losses for Airline 1, 
as shown in Figure 58.  And as the FA becomes more aggressive – both in terms of 
the Scaling Factor and the FRAT5 Series used to estimate passenger WTP – those 
losses become more severe. 
 

 

Figure 58: Change in Airline 1 Network Revenue by FRAT5 Scaling Factor, 
from DAVN (Base Case 1) to DAVN w/ FA versus DAVN 

 
Theoretically designed to encourage sell-up by closing lower fare classes earlier, Fare 
Adjustment (on its own) appears to be too aggressive in doing so.  As shown in our 
experiments, FA leads the DAVN optimizer to close these lower fare classes too soon, 
decreasing load factor and increasing yield.  The expected bookings in higher fare 
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classes fail to materialize – a case of revenue loss due to overprotection, as originally 
shown in Figure 2. 
 

5.2.2 DAVN with HF and FA together versus DAVN 
 
Despite the ineffectiveness of universal FA alone, we now examine the use of FA and 
Hybrid Forecasting in conjunction with an aim of improving network revenues.  As 
with the previous section, we first present HF and FA using two FRAT5 series: “C” 
and “A4”.  Doing so allows us a direct comparison of FA with and without HF for both 
of these series.  We also perform the complementary comparison of HF with and 
without FA, which allows us to measure the benefit of FA as a tool to improve the 
performance Hybrid Forecasting in semi-restricted fare structures – one of the goals 
of this thesis. 
 

5.2.2.1 Using FRAT5 Series “C” for Hybrid Forecasting with FA 

 
We begin by experimenting exclusively with the moderate FRAT5 series “C” as Airline 
1’s estimate of passenger WTP.  In this case, the appropriate “No FA Base” is that of 
DAVN w/ HF versus DAVN where Airline 1 employs FRAT5 “C”.  Note that this 
scenario was presented previously in Section 4.3 and Section 5.1, and is summarized 
in Table 28.  With only HF, Airline 1 sees network revenues of $1,072,646 – 
significantly higher than Airline 2’s total of $1,014,617 (without the benefit of HF).   
 
As in Section 5.2.1.1, we apply FA ten times with Scaling Factors of 0.05 through 
0.50.  The aggressiveness of the HF does not change in any of these experiments; 
however the FA becomes more aggressive with increasing Scaling Factors. 
 
Intuitively, we expect revenues to increase over the “No FA Base” with the 
introduction of Fare Adjustment to Airline 1’s RM system.  As discussed in Chapter 4, 
HF is an effective way to capture passenger sell-up in semi-restricted fare structures.  
Fare Adjustment manages sell-up somewhat independently of HF because it operates 
within the RM system’s seat optimizer component (as opposed to the forecaster).  
Because we expect that HF gives the DAVN optimizer a better forecast of demand in 
each fare class (at least in semi-restricted fare structures) than traditional pick-up 
forecasting, we expect an improvement over HF alone.  That is, we intuitively believe 
that the use of HF will help guard against the overprotection of FA alone, as 
described in Section 5.2.1, resulting in an increase in network revenues. 
 
As shown in Figure 59, our expectations are realized for AL1 – at least through a 
maximum Scaling Factor of 0.50.  Using FA and HF together leads Airline 1 to 
network revenue gains for each FA experiment compared to the appropriate “No FA 
Base”.   
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Figure 59: Network Revenue by FRAT5 Scaling Factor for DAVN w/ HF and 
FA versus DAVN, FRAT5 “C” 

 
As shown in Table 34, AL1’s potential revenue increase grows as the Fare 
Adjustment becomes more aggressive – up to 1% over Hybrid Forecasting alone 
using the maximum Scaling Factor tested of 0.50.  Indeed, this gain in network 
revenue using FA to supplement HF is a departure from the unexpected losses of FA 
by itself demonstrated previously.   
 

Table 34: DAVN w/ HF and FA versus DAVN, Airline 1 Change in Network 
Revenue from DAVN w/ HF by FRAT5 Scaling Factor, FRAT5 “C” 

FRAT5 Scaling Factor 0.05 0.10 0.15 0.20 0.25 
∆ AL1 Revenue from HF Alone 0.00% 0.05% 0.13% 0.25% 0.39% 
      
FRAT5 Scaling Factor 0.30 0.35 0.40 0.45 0.50 
∆ AL1 Revenue from HF Alone 0.59% 0.71% 0.82% 0.95% 1.00% 
 
Also of interest in Figure 59 is that Airline 2 sees revenue gains due to its 
competitor’s use of FA.  Typically, we expect that a gain by one airline results in a 
loss for its opposite number.  To understand why we observe revenue gains for each 
airline, we again turn to their load factors and yields, as shown in Figure 60. 
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Figure 60: Load Factor and Yield by FRAT5 Scaling Factor for DAVN w/ HF 
and FA versus DAVN, FRAT5 “C” 

 
As was the case with FA alone, Airline 1’s load factor decreases as FA becomes more 
aggressive.  But the use of Hybrid Forecasting lessens the severity of these LF 
decreases.  For example, FA alone saw a decrease in LF of 7.5% - from 82.46% in 
the “No FA Base” to 76.25% with Scaling Factor 0.50.  With HF and FA 
simultaneously used by AL1’s RM system, LF only decreased by 3.3% - from 86.2% 
in its respective “No FA Base” to 83.35% with the same Scaling Factor.  Airline 1’s 
combination of reduced loads and passenger sell-up due to FA leads to higher yields 
as well.  And based on the overall increase in revenue, it appears that Airline 1’s use 
of FA and HF together is not characterized by nearly as much overprotection as that 
seen with FA alone. 
 
Regarding Airline 2, we observe increasing load factors due to AL1’s FA, as well as 
slightly decreasing yields.  But because its own network revenue slightly grows as 
AL1’s FA becomes more aggressive, we conclude that Airline 2’s revenue in the “No 
FA Base” was characterized by some overprotection as well.  With Airline 1 now 
spilling more passengers due to FA – especially as FA becomes more aggressive – 
AL2 captures enough of this spill to increase its revenues as well.  This is an example 
of a situation where both competitors improve their situations due to the strategic 
actions of only one. 
 

5.2.2.2 Using FRAT5 Series “A4” for Hybrid Forecasting with FA 
 
And just as in Section 5.2.1, we repeat these experiments with a different estimate 
of passenger WTP for Airline 1.  As we previously did, we replace the moderate 
FRAT5 series “C” with the more aggressive “A4” in order to gauge the performance 
of both airlines when AL1 uses HF and universal FA together, but with a very 
aggressive estimate of WTP. 
 
For this scenario, we must present a new “No FA Base” – one in which Airline 1 uses 
DAVN with HF only, and estimates WTP using FRAT5 series “A4”.  This scenario was 
previously presented in Section 4.3, and is summarized in Table 35. 
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Table 35: No FA Base Case Results – DAVN w/ HF versus DAVN, FRAT5 
Series “A4” 

Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,076,200 85.09 0.1031 
AL2 $1,014,869 82.89 0.0961 

 
As previously mentioned, Airline 1’s use of FRAT5 “A4” for passenger WTP increases 
its network revenue to $1,076,200 from $1,072,646 with “C” – a slight increase of 
0.33% with the more aggressive series.  Again, AL1’s use of HF gives it a significant 
advantage – approximately 6% – over its competitor in terms of network revenue. 
 
When adding Fare Adjustment to this Base Case, we again observe an increase in 
both airlines’ revenue as FA becomes more aggressive, as shown in Figure 61.  As in 
the case of FA alone, the biggest beneficiary to AL1’s FA appears to be AL2, whose 
revenues sharply increase as the FA becomes more aggressive.  But unlike with 
FRAT5 “C”, the use of “A4” for both HF and FA shows that there is indeed a limit to 
the benefit of FA before AL1’s revenue starts to decline. 
  

 

Figure 61: Network Revenue by FRAT5 Scaling Factor for DAVN w/ HF and 
FA versus DAVN, FRAT5 “A4” 

 
As shown in Table 36, AL1 experiences a peak revenue gain of 1.1% over the HF 
alone with a FRAT5 Scaling Factor of 0.25.  Beyond this point, revenue quickly 
declines and even leads to a loss from HF alone at Scaling Factors of 0.45 and above. 
 

Table 36: DAVN w/ HF and FA versus DAVN, Airline 1 Change in Network 
Revenue from DAVN w/ HF by FRAT5 Scaling Factor, FRAT5 “A4” 

FRAT5 Scaling Factor 0.05 0.10 0.15 0.20 0.25 
∆ AL1 Revenue from HF Alone 0.07% 0.41% 0.71% 0.96% 1.10% 
      
FRAT5 Scaling Factor 0.30 0.35 0.40 0.45 0.50 
∆ AL1 Revenue from HF Alone 1.03% 0.97% 0.64% -0.18% -1.77% 
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Once again, the load factors and yields for both airlines offer clues as to why AL1’s 
revenue peaks when using HF and FA together, while its competitor sees rapid 
escalation of its own network revenue.  As shown in Figure 62, Airline 1’s load factor 
sharply decreases and its yield sharply increases as the FA becomes more 
aggressive. 
 

 

Figure 62: Load Factor and Yield by FRAT5 Scaling Factor for DAVN w/ HF 
and FA versus DAVN, FRAT5 “A4” 

 
Due to its aggressive WTP estimate of FRAT5 series “A4”, when AL1’s Scaling Factor 
grows, the added benefits of FA to HF are outweighed by the growing severity of FA’s 
overprotection problem, as originally described in Section 5.2.1.  By the time the 
Scaling Factor reaches 0.50, the benefits of simultaneous HF disappear, and the 
overprotection causes load factor to tumble below 70% from a high of 85.09% with 
HF alone.  When AL1’s FA becomes this aggressive (not only because of the high 
scaling factors but because of the aggressive FRAT5 series used), the RM system 
performs as if no HF at all is being used, and we observe results as such. 
 
Of course, the beneficiary of AL1’s overprotection issues is Airline 2, which again 
observes a gradual elevation of its load factor.  But more interesting is that its yield 
– after slowly declining as with FRAT5 “C” – actually begins to climb upward again 
when AL1’s Scaling Factor reaches 0.30 or thereabouts – precisely the point where 
AL1’s revenues begin to decline.  This observation further supports the hypothesis 
that FA can become too aggressive to help AL1.  At this critical point, AL1’s FA is so 
aggressive and denies so many bookings that AL2 can become more selective with 
its own bookings, thus simultaneously increasing both its yield and load factor, and 
driving its revenue considerably upward. 
 

5.2.2.3 Summary of Adding HF to FA 

 
So an airline using DAVN in semi-restricted fare structures can not only improve its 
network revenue by switching from standard pick-up forecasting to HF (see Chapter 
4), but can see an even greater benefit when moving from pick-up forecasting with 
Fare Adjustment to HF with FA, as shown in the above discussion.  We have shown 
the potential increase in AL1’s network revenue can be substantial.  Dependent upon 
the Scaling Factor used, the benefit of HF with FA over FA alone approaches 5% for 
an airline assuming FRAT5 “C” for passenger WTP, and is upwards of 10% when 
using FRAT5 “A4”, as shown in Figure 63.  For example, HF with FA (FRAT5 “C”) 
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leads to a gain of 3.31% over FA alone at a Scaling Factor of 0.15; at a higher 
Scaling Factor of 0.25, this gain increases to 3.64%, and continues to grow with the 
Scaling Factor.  Of course, these results are even more pronounced with a more 
aggressive FRAT5 series. 
 

 

Figure 63: Change in AL1 Network Revenue by FRAT5 Scaling Factor, from 
DAVN w/ FA to DAVN w/ HF and FA versus DAVN 

 
However, these benefits are extremely misleading when taken out of context.  As 
shown in our experiments, these large revenue gains for adding HF to FA are not 
necessarily due to the strength of HF, but to the poor performance of FA with pick-up 
forecasting in semi-restricted fare structures. 
 
In the case of FRAT5 “C”, Fare Adjustment without HF leads to a slow deterioration 
of network revenues as the FRAT5 Scaling Factor becomes more aggressive.  When 
AL1 also uses HF in conjunction, an increase in revenue is observed over the “No FA 
Base”, as discussed in Section 5.2.1.1 (FA, no HF), Section 5.2.2.1 (HF, FA 
together), and illustrated in Figure 64.  As shown in this Figure below, the trends in 
network revenue diverge as FA becomes more aggressive.  So FA with HF appears to 
continuously help Airline 1 while FA alone continuously hurts it, thus explaining the 
ever-increasing benefit of HF as FA becomes more aggressive. 
 

 

Figure 64: AL1 Network Revenue by FRAT5 Scaling Factor, Comparison of 
DAVN w/ HF and FA, w/ FA, and w/ HF versus DAVN, FRAT5 “C” 
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However, this improvement for HF and FA together does not continue indefinitely as 
the Scaling Factor swells.  There exists that critical point where revenues will begin 
to decline, as demonstrated by switching from input FRAT5 series “C” to the more 
aggressive “A4”.  Again, we observe an increase in revenue from FA alone (discussed 
in Section 5.2.1.2) to the case of HF and FA together (discussed in Section 5.2.2.2), 
as illustrated in Figure 65.  However, AL1’s revenues for HF and FA together peak at 
a Scaling Factor of 0.25, and drop significantly thereafter.   
 

 

Figure 65: AL1 Network Revenue by FRAT5 Scaling Factor, Comparison of 
DAVN w/ HF and FA, w/ FA, and w/ HF versus DAVN, FRAT5 “A4” 

 
So as FA becomes too aggressive, both for the case of FA alone and FA and HF 
together, revenues decline considerably.  In the case of FA alone, this deterioration 
begins immediately, whereas when HF is added to FA, the airline experiences a 
period of revenue increase before the dramatic decline begins.  These large drops in 
network revenue are the result of overprotection due to FA, and grow in severity as 
FA becomes more aggressive, as previously discussed.  Adding HF to FA leads to 
gains in total revenue, as long as the FA is not too aggressive.  But as shown in our 
experiments, over-aggressive FA can erase these gains as the overprotection 
dominates HF’s benefits. 
 
While the switch to HF appears to be a potential revenue boon for an airline using FA 
and pick-up forecasting in semi-restricted fare structures, as shown in Figure 63, 
that airline should take pause.  Our simulations indicate that those revenue gains are 
largely the result of reversing the losses brought about by stand-alone FA itself.  
 

5.2.2.4 Adding FA to HF 
 
We now examine the complementary situation to Section 5.2.2.3 above.  Instead of 
an airline adding HF to FA, we turn our attention to an airline considering adding FA 
to HF.  Doing so addresses one of the goals this thesis – answering the question 
“Can Fare Adjustment be used to improve the performance of Hybrid Forecasting in 
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simplified fare structures?”  Based on our experiments in this section, the answer is 
yes. 
 
In addition to FRAT5 series “C” and “A4”, we repeated the experiments in Sections 
5.2.2.1 and 5.2.2.2, respectively, for the scenarios in which Airline 1 used “A” and 
“A2” as estimates of passenger WTP.  Relative to the appropriate Base Case from 
Section 4.3 – DAVN w/ HF versus DAVN, no Fare Adjustment – we observe a 
potential revenue gain for each input FRAT5 series, as shown Figure 66.   
 

 

Figure 66: Change in AL1 Network Revenue by FRAT5 Scaling Factor, from 
DAVN w/ HF to DAVN w/ HF and FA versus DAVN 

 
As the input FRAT5 series becomes more aggressive, the point at which Airline 1’s 
revenue peaks occurs earlier (in terms of the FRAT5 Scaling Factor).  For example, 
the most aggressive WTP estimate (series “A4”) has an observed maximum gain of 
1.1% at a Scaling Factor of 0.25, as discussed previously.  For less aggressive “A2”, 
its peak of 1.21% occurs at a Scaling Factor of 0.30.  Similarly, the peak for “A” of 
1.04% occurs at 0.40, and the peak for “C” has not been observed due to limiting 
Scaling Factors to a maximum of 0.50.  The revenue increases over the respective 
Base Cases are shown in Table 37. 
 

Table 37: DAVN w/ HF and FA versus DAVN, Change in AL1 Network 
Revenue by FRAT5 Scaling Factor from no FA Base Case 

FRAT5 Scaling Factor 0.05 0.10 0.15 0.20 0.25 
FRAT5 Series “C” 0.00% 0.05% 0.13% 0.25% 0.39% 
FRAT5 Series “A” 0.04% 0.16% 0.36% 0.54% 0.77% 
FRAT5 Series “A2” 0.08% 0.35% 0.65% 0.82% 1.08% 
FRAT5 Series “A4” 0.07% 0.41% 0.71% 0.96% 1.10% 
      
FRAT5 Scaling Factor 0.30 0.35 0.40 0.45 0.50 
FRAT5 Series “C” 0.59% 0.71% 0.82% 0.95% 1.00% 
FRAT5 Series “A” 0.92% 0.99% 1.04% 1.03% 0.96% 
FRAT5 Series “A2” 1.21% 1.15% 1.11% 1.03% 0.74% 
FRAT5 Series “A4” 1.03% 0.97% 0.64% -0.18% -1.77% 
 
This phenomenon occurs because the size of the actual adjustment applied to each 
fare is dependent both upon the airline’s estimate of WTP (FRAT5 series) and its 
choice of FRAT5 Scaling Factor.  So as the aggressiveness of one of these variables 
increases, the aggressiveness of the other decreases at the point of maximum 
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revenue impact.  In our case, as the aggressiveness of Airline 1’s input FRAT5 series 
increases from “C” to “A4”, the Scaling Factor for which its network revenue is 
highest decreases from 0.50 (or above) to an observed value of 0.25. 
 

5.2.2.5 Summary of Fare Adjustment and HF 

 
In conclusion, universal FA - using the same input FRAT5 on all paths regardless of 
path quality – appears to indeed be a valuable tool for improving the performance of 
HF in semi-restricted fare structures.  By itself, FA tends to hurt network revenues by 
overprotecting the higher fare classes (as shown in Section 5.2.2.1 and 5.2.2.2).  
The same can happen in conjunction with Hybrid Forecasting if the FA is applied too 
aggressively (as shown in Section 5.2.2.3 and 5.2.2.4).  However, an airline using 
moderate FA to supplement its HF can potentially see gains in its network revenues 
of over 1%, as demonstrated by the simulations in this section. 
 

5.3 Hybrid Forecasting using Path Categories and Fare 
Adjustment together 

 
In Section 5.1 we demonstrated how the use of Path Categorization to selectively 
adjust the aggressiveness of Hybrid Forecasting in terms of path quality can improve 
network revenue by nearly 0.25% over HF alone.  And in Section 5.2 (specifically in 
Section 5.2.2) we showed how the use of moderate Fare Adjustment with Hybrid 
Forecasting – independent of any Path Categorization – can improve network 
revenues by over 1% from HF without FA.  In this section, we combine PCAT and FA 
to demonstrate the combined effect both techniques can have for an airline 
practicing HF with a DAVN optimizer in semi-restricted fare structures.   
 
Similar to the organization of Section 5.2, we first present a series of experiments 
without Hybrid Forecasting in Section 5.3.1 to demonstrate the performance of 
combined PCAT and FA without the aid of HF.  Then in Section 5.3.2, we repeat these 
experiments with Airline 1 replacing its standard pick-up forecasting with Hybrid 
Forecasting.  Doing so allows us to best gauge the impact of HF and gain better 
insight into the performance of combined FA and PCAT.   
 
Because we simultaneously test three techniques in this section – PCAT, FA, and HF 
– we have multiple dimensions by which to analyze the performance of AL1’s 
Revenue Management system.  For this reason, we cannot refer to a single Base 
Case for comparison in each experiment.  Thus, the appropriate Base Case for 
measuring variation in network revenue will be presented for each simulation where 
appropriate.   
 
Furthermore, there are numerous variations of PCAT, FA, and HF thanks to the array 
of WTP estimates (FRAT5 series) and Scaling Factors available to AL1.  In an effort to 
both simplify analysis as well as further isolate the effects of these three techniques, 
we limit the scope of our experiments in this section in two ways: 
 

1. We restrict Airline 1 to the baseline FRAT5 series “C” – a moderate estimate 
of passenger WTP given the 17 series used in PODS (as discussed in Section 
3.2.2.1 and Section 4.1.3). 
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2. We restrict the scope of Airline 1’s Fare Adjustment FRAT5 Scaling Factors of 
0.15, 0.25, or 0.50.  As shown in Section 5.2, there is enough spread among 
these three values to demonstrate trends in FA despite the reduction in our 
simulation efforts.  

 

5.3.1 DAVN w/ FA and PCAT versus DAVN 
 
As described above, our initial experiments combining Fare Adjustment with Path 
Categorization exclude Hybrid Forecasting.  The simulations presented in Section 5.1 
indicate that the use of higher passenger WTP estimates in PCAT1 OD markets leads 
to revenue gains for an airline using Hybrid Forecasting.  Despite our inability to 
conclude that passenger WTP in PCAT1 indeed exceeds that in PCAT2 and PCAT3, we 
have an intuitive expectation of such passenger behavior, and the improvement in 
total revenue, as well as revenue due to passenger sell-up (specifically in the higher 
fare classes) supports the idea that non-stop service is preferred to connecting.   
 
Whereas we originally experimented with higher WTP in the context of HF, we now 
apply Path Categorization exclusively to Fare Adjustment, thus departing from the 
universal FA described in Section 5.2.   By using more aggressive FA in PCAT1 OD 
markets than in PCAT2 and PCAT3, we expect to improve Airline 1’s revenues.  
Within PODS, we can make FA more aggressive for certain OD markets by selectively 
increasing the WTP estimate (or input FRAT5 series) for those markets – not by 
increasing the Scaling Factor, which is a universal parameter for all markets served 
by a simulated airline. 
 
There are two appropriate Base Cases for this situation.  The first Base Case is the 
universal BC1 (originally shown in Chapter 4 and summarized in Table 9) which 
describes the scenario with neither Fare Adjustment nor Path Categorization.  
Comparison with BC1 is needed to measure the improvement in Airline 1’s revenue 
using FA and PCAT relative to using neither.   
 
The second (generalized) BC is that of FA without PCAT, as originally presented in 
Section 5.2.1, and referred to as the “No PCAT Base”.  Due to the tendency of FA by 
itself to lose revenue relative to BC1, this second BC is used to measure the 
improvement in Airline 1’s revenue due exclusively to Path Categorization.  Of 
course, the degree of FA (in terms of the Scaling Factor) must be normalized 
appropriately among all experiments to ensure an appropriate comparison.  For 
example, the “No PCAT Base” Case is summarized in Table 38 for our chosen FRAT5 
Scaling Factors of 0.15, 0.25, and 0.50. 
 

Table 38: No PCAT Base Case Results – DAVN w/ FA versus DAVN, FRAT5 
Series “C”, Scaling Factor of 0.15, 0.25, 0.50 

FRAT5 Scaling Factor Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,039,592 81.41 0.1041 0.15 
AL2 $1,033,529 82.81 0.0980 
AL1 $1,038,967 79.91 0.1060 

0.25 
AL2 $1,038,091 83.28 0.0978 
AL1 $1,036,786 76.25 0.1108 

0.50 
AL2 $1,052,509 84.85 0.0974 
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With a Scaling Factor of 0.15, Airline 1 has lost only 0.03% of its revenue from BC1 
without Fare Adjustment.  At this stage of mild FA, AL1’s revenue still exceeds AL2’s 
by $6,063.  When the Scaling Factor increases to 0.25, the gap between the two 
airlines has closed to only $876; AL1 has lost 0.13% of its BC1 revenue, while its 
competitor has experienced a revenue gain of 0.73% over its own BC1 level.  Under 
the most aggressive FA scenario here (a Scaling Factor of 0.50), Airline 2’s revenue 
has swelled to $1,052,509 – 2.13% greater than in BC1.  Conversely, AL1’s revenue 
falls by 0.34% under this scenario. 
 
So as Airline 1’s FA becomes more aggressive, its revenue gradually erodes relative 
to the case of no FA (BC1) while AL2 experiences significant increases in its own 
revenue.  These trends were previously described in Section 5.2.1.1 for FRAT5 “C”, 
and are attributed to FA’s tendency to overprotect in anticipation of future bookings 
in higher fare classes. 
 
Airline 1’s estimate of passenger WTP was then adjusted in the 40 PCAT1 OD 
markets, as in Section 5.1; the FRAT5 series used on these paths varied from “D” 
through “A9” for each of the Scaling Factor values described above.   As with HF by 
Path Category, we intuitively expect Airline 1’s network revenue to increase as the 
FRAT5 series used in PCAT1 becomes more aggressive.  And as illustrated in Figure 
67 for Scaling Factor 0.15, our intuition appears to be valid.  AL1 sees elevations in 
network revenue with more aggressive FA in its dominant markets.    
  

 

Figure 67: Network Revenue by FRAT5 Series Combination for DAVN w/ FA 
and PCAT versus DAVN, Scaling Factor of 0.15 

 
And unlike the case of HF by PCAT, there appears to be no general trend in Airline 
2’s revenue when the aggressiveness of Fare Adjustment is varied by Path Category.  
These observations regarding each airline’s network revenue indicate that FA and 
PCAT together helps AL1 and does not necessarily help (or hurt) AL2 in a predictable 
way, in contrast with our experiments with PCAT in Section 5.1. 
 
The revenue changes for Airline 1 relative to the “No PCAT Base” and BC1 are shown 
in Table 29 for a Scaling Factor of 0.15.  Compared to the “No PCAT Base”, AL1’s 
network revenue gradually increases to a peak gain of 0.72%, which occurs when 
FRAT5 “A8” is used on the PCAT1 paths.   

 118



 

Table 39: DAVN w/ FA and PCAT versus DAVN, Airline 1 Revenue Change by 
PCAT1 FRAT5 Series, Using “C” for PCAT2 and PCAT3 

PCAT1 FRAT5 Series A9 A8 A7 A6 A5 A4 A3 

∆ AL1 Revenue from No PCAT Base 0.58% 0.72% 0.45% 0.49% 0.41% 0.37% 0.30% 

∆ AL1 Revenue from BC1 0.51% 0.66% 0.38% 0.42% 0.35% 0.30% 0.24% 
        
PCAT1 FRAT5 Series A2 A1 A B C D  

∆ AL1 Revenue from No PCAT Base 0.22% 0.15% 0.09% -0.01% - 0.03%  

∆ AL1 Revenue from BC1 0.16% 0.09% 0.03% -0.07% -0.07% -0.04%  

 
And with respect to BC1, the use of FA and PCAT together produces revenue gains 
for all PCAT1 series more aggressive than “B” when FA is used with a Scaling Factor 
of 0.15.  This observation is significant because it indicates that an airline can 
somewhat correct (or at least offset) the overprotection issue which undermines any 
revenue improvements due to universal FA alone by augmenting its estimate of 
passenger WTP in its PCAT1 OD markets.  Indeed, it appears that the use of more 
aggressive FRAT5 series in a relatively small number of markets (only 40 of 482 in 
PODS Network D-6) can reverse the revenue losses due to FA originally observed in 
Section 5.2.1. 
 
The change in Airline 1’s network revenue relative to the “No PCAT Base” is shown in 
Figure 68 for Scaling Factors of 0.15 and 0.25.  As just discussed, AL1’s revenue 
gradually increases to a peak of 0.72% with a Scaling Factor of 0.15 for input FRAT5 
combination “A8-C-C”.  When more aggressive FA is used by way of increasing the 
Scaling Factor to 0.25, the same gradual increase in network revenue is again 
observed.  But in this case, the peak revenue gain is only 0.54% above the 
respective “No PCAT Base”; this peak also occurs earlier with input FRAT5 
combination “A2-C-C”.   
 

 

Figure 68: Change in AL1 Network Revenue by FRAT5 Series Combination, 
from DAVN w/ FA to DAVN w/ FA and PCAT versus DAVN 

 
Also of note is that for WTP estimates beyond FRAT5 series “A4” in PCAT1 (for 
Scaling Factor 0.25), Airline 1’s revenue follows no apparent trend, increasing and 
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decreasing unpredictably as the PCAT FRAT5 series becomes more aggressive.  
When repeated with a Scaling Factor of 0.50, no trend is observed at all, and the 
revenue swings from one FRAT5 combination to the next are even more severe than 
with a Scaling Factor of 0.25; for this reason, the set of FA and PCAT experiments 
using a Scaling Factor of 0.50 is not shown in Figure 68.   
 
These observations indicate – as in Section 5.2 – that the gradual revenue gains due 
to more aggressive FA eventually peak and then quickly deteriorate as the FA 
becomes too aggressive.  For the case of PCAT and FA together, our simulations 
indicate that beyond a certain point (for example “A4-C-C” with a Scaling Factor of 
0.25) AL1’s FA becomes too aggressive and produces unpredictable changes in 
network revenue.  Beyond this critical point, the randomness in PODS which 
describes passenger arrival and attempted booking behavior (see Section 3.1) 
becomes amplified in terms of network revenue because the FA is so aggressive (due 
to the input FRAT5 series) that very few bookings can occur. 
 
Also encouraging for the combination of PCAT and FA is the observed change in 
Airline 1’s network revenue relative to BC1, or the absence of both PCAT and FA.  
These changes for Scaling Factors of 0.15 and 0.25 are shown in Figure 69, which is 
very similar to Figure 68 (the relative increase over FA alone).  This similarity is due 
to the relatively small revenue losses between FA alone and BC1 with this 
combination of FRAT5 series and Scaling Factor (“C” and 0.15, 0.25), as discussed 
previously.   
 

 

Figure 69: Change in AL1 Network Revenue by FRAT5 Series Combination, 
from DAVN (Base Case 1) to DAVN w/ FA and PCAT versus DAVN 

 
Of note here is that PCAT and FA together can lead to revenue gains for Airline 1 
beyond 0.5% over BC1.  Because of the losses of stand-alone FA, our observed 
revenue improvement over BC1 via FA and PCAT together further emphasizes the 
value of Path Categorization by relative path quality – a point discussed in Section 
5.1.   
 
In summary, our experiments with Fare Adjustment in conjunction with Path 
Categorization support the following three statements: 
 

1. When added to FA alone, PCAT can improve network revenues by capturing 
more sell-up from lower to higher fare classes – an expected result given 
passenger preference for non-stop service. 
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2. In general, the network revenue for an airline using FA and PCAT together 
grows as the FA becomes more aggressive (either by way of more aggressive 
PCAT1 FRAT5 series or higher Scaling Factors).  But past a critical point, the 
FA becomes too aggressive, restricts too many bookings, and leads to 
unpredictable and/or undesirable changes in network revenue. 

3. While FA alone tends to erode revenues relative to no FA (see Section 5.2.1), 
FA and PCAT together can increase an airline’s revenue by approximately 
0.5%.  This supports our previous belief (see Section 5.1) that the value in 
Path Categorization by path quality lies in the significant revenue 
improvements made possible by increasing WTP estimates for a relatively 
small number of paths. 

 

5.3.2 DAVN with HF, FA, and PCAT together versus DAVN 
 
Having demonstrated the potential revenue improvements for an airline using 
simultaneous Fare Adjustment and Path Categorization, we now demonstrate the 
performance of an airline RM system using HF, FA, and PCAT in conjunction.  To do 
so, we repeat the experiments presented in Section 5.3.1 – FA and PCAT using 
FRAT5 series “C” with Scaling Factors of 0.15, 0.25, and 0.50, and series “D” 
through “A9” for PCAT1 – but with Airline 1 now using Hybrid Forecasting instead of 
pick-up forecasting.   
 
As in that previous section, one of the appropriate Base Cases for comparison – of 
which there are now several – is the “No PCAT Base”, but with AL1 also using HF.  
This scenario was previously presented in Section 5.2.2, and is summarized in Table 
40 for our three FRAT5 Scaling Factors.   
 

Table 40: No PCAT Base Case Results – DAVN w/ HF and FA versus DAVN, 
FRAT5 Series “C”, Scaling Factor of 0.15, 0.25, 0.50 

FRAT5 Scaling Factor Airline Revenue Load Factor (%) Yield ($/RPM) 
AL1 $1,074,040 85.83 0.1020 0.15 
AL2 $1,015,585 81.69 0.0976 
AL1 $1,076,800 85.25 0.1030 

0.25 
AL2 $1,017,129 82.15 0.0972 
AL1 $1,083,398 83.35 0.1060 

0.50 
AL2 $1,023,682 83.36 0.0964 

 
As demonstrated in Section 5.2.2.1 and presented in Table 40, Airline 1’s use of the 
moderate FRAT5 series “C” as an estimate of passenger WTP leads to increases in 
network revenue for both carriers as Fare Adjustment becomes more aggressive. 
 
Relative to this “No PCAT Base”, we observe an increase in Airline 1’s revenue as its 
PCAT1 FRAT5 series becomes more aggressive, as shown in Figure 70 for a Scaling 
Factor of 0.15.  Due to the efficacy of Path Categorization to improve revenue as 
previously demonstrated in Section 5.1 and Section 5.3.1, this gain is expected for 
Airline 1.  But the revenue gains over the “No PCAT Base” are far greater than those 
seen over either HF alone or FA alone.  With FRAT5 series combination “A9-C-C” – 
the most aggressive tested – AL1 improves its revenues by 1.52% over that of the 
“No PCAT Base” of “C-C-C”. 
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Figure 70: Network Revenue by FRAT5 Series Combination for DAVN w/ HF, 
FA, and PCAT versus DAVN, Scaling Factor of 0.15 

 
As shown in Figure 71, this upward trend over the “No PCAT Base” continues for both 
Scaling Factors of 0.25 and 0.50.  In the case of the Scaling Factor 0.25, FRAT5 
combination “A9-C-C” again leads to the highest observed revenue gain over the “No 
PCAT Base” – now 1.86%.  Note that for the two smallest Scaling Factors (0.15 and 
0.25) even larger gains in revenue than those observed are likely because no peak 
had yet been observed at the most aggressive FRAT5 series combination tested 
(“A9-C-C”).   
 

 

Figure 71: Network Revenue by FRAT5 Series Combination for DAVN w/ HF, 
FA, and PCAT versus DAVN, Scaling Factor of 0.25 and 0.50 

 
This was not the case, however, for the largest, most aggressive Scaling Factor 
tested of 0.50.  Here, AL1’s network revenue peaked at 1.51% over the “No PCAT 
Base” with a combination of “A2-C-C”.  The observation of such a peak again 
indicates that there is a limit to the benefit of PCAT.  When combined with HF and 
FA, that limit is reached when the combination of forecasting and Fare Adjustment 
becomes so aggressive in determining booking limits and closing fare classes that 
AL1 can no longer extract further revenue from its network. 
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Regarding Airline 1’s competitor, for each of these three Scaling Factors we observe 
that AL2’s revenue slightly decreases as AL1’s improves – an intuitive trend 
representing the trade-off between two carriers in a highly competitive network.  
And in the case of Scaling Factor 0.50, AL2’s revenue starts to increase once AL1 
passes the critical point where its revenues peak.  To further understand each 
airline’s changes in revenue with different combinations of AL1’s input FRAT5 series, 
we examine load factors and yields. 
 
More specifically, we inspect each carrier’s LF and yield at each FRAT5 combination 
used by Airline 1, as shown in Figure 72 for a Scaling Factor of 0.15.  Remarkably, 
there is very little change in load factor – and certainly no trend – for either AL1 or 
AL2 as AL1’s PCAT becomes more or less aggressive.   Despite the complicated 
interaction of Hybrid Forecasting and Fare Adjustment in the different Path 
Categories, Airline 1’s RM system manages to keep approximately the same number 
of bookings over a wide range of WTP estimates in the 40 PCAT1 OD markets.  And 
because its LF is relatively constant in the face of increasing revenue, AL1’s yields 
also increase with more aggressive PCAT (combined with FA and HF, of course).  
These observations indicate successful capturing of sell-up by Airline 1. 
 

 

Figure 72: Load Factor and Yield by FRAT5 Series Combination for DAVN w/ 
HF, FA, and PCAT versus DAVN, Scaling Factor of 0.15 

 
In summary, we have briefly demonstrated the benefits of using HF, FA, and PCAT 
together by way of presenting a simple example.  Though the aggressiveness of the 
Path Categorization was varied for this example, we just as easily could have 
examined its sensitivity to input FRAT5 series (in the same manner as Section 4.3) 
or tested the sensitivity to a varying FRAT5 Scaling Factor (as in Section 5.2.2).  
With so many variables now in play, there are numerous tests and sensitivity 
analyses possible. 
 
We focus on the following two scenarios in an effort to further understand the impact 
of Hybrid Forecasting on an airline RM system, as well as the incremental impact of 
Fare Adjustment and Path Categorization on Hybrid Forecasting: 

 
1. In Section 5.3.2.1, we examine the incremental revenue gain when adding 

Hybrid Forecasting to simultaneous Fare Adjustment and Path Categorization. 
2. In Section 5.3.2.2, we examine the incremental revenue gain when adding 

Fare Adjustment and Path Categorization together to Hybrid Forecasting.  
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5.3.2.1 Adding HF to FA and PCAT 

 
By comparing our simulations of simultaneous Hybrid Forecasting, Fare Adjustment, 
and Path Categorization with those of FA and PCAT alone (see Section 5.3.1), we 
observe a potential revenue increase approaching 5% due to the addition of HF, as 
shown in Figure 73 for Scaling Factors of 0.15 and 0.20.  And as the PCAT becomes 
more aggressive, the revenue gain over FA and PCAT alone tends to increase. 
 

 

Figure 73: Change in AL1 Network Revenue by FRAT5 Series Combination, 
from DAVN w/ FA and PCAT to DAVN w/ HF, FA, and PCAT versus DAVN 

 
At a Scaling Factor of 0.15, we observe a revenue gain of 3.31% for the “C-C-C” 
combination; this gain grows to 3.64% at a Scaling Factor of 0.25.  Because the 
same FRAT5 series is used for all 482 OD markets, these values represent the gain 
due to HF over FA alone.  Note that the symmetry with Figure 63 in Section 5.2.2.3 – 
our discussion of the improvements HF can produce over FA alone.  
 
In Figure 74 for Scaling Factor 0.15, we show the overall revenue trend from HF, FA, 
and PCAT together (seen before in Figure 70) as well as the trend from FA and PCAT 
together (seen before in Figure 67) with respect to the FRAT5 series combination.  
The difference between these two trends represents the revenue gain due to HF.  
Because the HF, FA, and PCAT trend increases faster than that of the FA and PCAT, 
we observe the upward trend for Scaling Factor 0.15 in Figure 73.  In the same 
manner, the revenue benefit of adding HF also grows with more aggressive PCAT for 
Scaling Factor 0.25. 
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Figure 74: AL1 Revenue by FRAT5 Series Combo., Comparison of DAVN w/ 
HF, FA, & PCAT and DAVN w/ FA & PCAT versus DAVN, Scaling Factor 0.15 

 
Also, note that Figure 73 omits Scaling Factor 0.50, though not because no 
improvement due to HF is observed with such an aggressive Scaling Factor.  To the 
contrary, adding HF to FA and PCAT at this larger Scaling Factor still leads to a 
significant revenue gain at all FRAT5 series combinations, as shown in Figure 75.  
However, the magnitude of that gain follows no trend due to the lack of a revenue 
trend for FA and PCAT alone, as previously discussed in Section 5.3.1.    
 

 

Figure 75: AL1 Revenue by FRAT5 Series Combo., Comparison of DAVN w/ 
HF, FA, & PCAT and DAVN w/ FA & PCAT versus DAVN, Scaling Factor 0.50 

 
So switching from standard pick-up forecasting to HF appears to significantly 
increase network revenues for an airline using FA and PCAT together.  This is 
consistent with the jump in revenues previously seen with the switch from pick-up to 
Hybrid Forecasting in Section 4.3 and Section 5.2.2.3 overall gain, and further 
strengthens our belief that HF consistently outperforms pick-up forecasting in semi-
restricted fare structures. 
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5.3.2.2 Adding FA and PCAT to HF 
 
Finally, we focus on the incremental benefit that simultaneous PCAT and FA can bring 
to an airline using HF alone.  Here we compare our simulations of HF, FA, and PCAT 
together with our original HF experiments from Section 4.3.  As shown Figure 76, the 
addition of FA and PCAT appears to increase AL1’s revenues over stand-alone HF for 
all combinations of FRAT5 input series more aggressive than “C” for PCAT1. 
 

 

Figure 76: Change in AL1 Network Revenue by FRAT5 Series Combination, 
from DAVN w/ HF to DAVN w/ HF, FA, and PCAT versus DAVN 

 
Note that at the “C-C-C” combination AL1 sees a small revenue gain over DAVN 
alone of 0.13% at Scaling Factor 0.15; this value grows to 0.39% and 1.00% at 
Scaling Factors 0.25 and 0.50, respectively.  Because FRAT5 series “C” is applied to 
each of Airline 1’s 482 OD markets (i.e. no Path Categories are being used), these 
gains represent the revenue increase the revenue gains due solely to FA – consistent 
with our previous discussion of adding FA to HF alone in Section 5.2.2.4. 
 
As shown in Table 41, the largest observed revenue gain for the mildest Scaling 
Factor tested of 0.15 – 1.65 % - occurs with our most aggressive FRAT5 series “A9” 
applied to the PCAT1 markets, indicating that this Scaling Factor’s peak gain was not 
observed.   
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Table 41: DAVN w/ HF, FA, and PCAT versus DAVN, Change in AL1 Network 
Revenue by PCAT1 FRAT5 Series from DAVN w/ HF Alone 

PCAT1 FRAT5 Series A9 A8 A7 A6 A5 A4 A3 

FRAT5 Scaling Factor 0.15 1.65% 1.60% 1.53% 1.46% 1.36% 1.16% 1.04% 

FRAT5 Scaling Factor 0.25 2.25% 2.26% 2.15% 2.14% 2.05% 1.93% 1.81% 

FRAT5 Scaling Factor 0.50 1.16% 1.35% 1.50% 1.67% 2.15% 2.35% 2.47% 
        
PCAT1 FRAT5 Series A2 A1 A B C D  

FRAT5 Scaling Factor 0.15 0.91% 0.71% 0.56% 0.35% 0.13% -0.03%  

FRAT5 Scaling Factor 0.25 1.55% 1.37% 1.17% 0.81% 0.39% 0.22%  

FRAT5 Scaling Factor 0.50 2.53% 2.47% 2.15% 1.68% 1.00% 0.60%  

 
A peak in revenue improvement was observed for Scaling Factor 0.25 at combination 
“A8-C-C” (2.26%), and also for Scaling Factor 0.50 at combination “A2-C-C” 
(2.53%).   
 
Based on these results, it appears that we can indeed improve the performance of 
HF by simultaneously applying FA and PCAT.  As shown in our simulations, Airline 1’s 
RM system saw increases in revenue approaching 2% to 2.5% by supplementing 
Hybrid Forecasting with Fare Adjustment, and using more aggressive WTP estimates 
in its dominant OD markets.  
 

5.4 Chapter Summary: Using Path Categories and Fare 
Adjustment with Hybrid Forecasting 

 
In this chapter we have presented the results of simulations focusing on Path 
Categorization by relative path quality and Fare Adjustment both with and without 
Hybrid Forecasting.  And based on the results of our simulations, it appears that the 
performance of Hybrid Forecasting in terms of network revenue can significantly be 
improved through application of PCAT and/or FA.  
 
In Section 5.1, we demonstrated that passenger WTP seems to be higher for non-
stop service compared to connecting options, and we showed how an airline can 
exploit this elevated WTP in its dominant markets to improve its revenue.  Our 
experiments indicated that the gain over HF alone can approach 0.25%. 
 
Next in Section 5.2, we applied the technique known as Fare Adjustment within an 
airline’s RM system (specifically within the seat allocation optimizer) to test its 
potential for capturing sell-up.  While FA alone proved unsuccessful, and actually lost 
money from our Base Case, FA combined with HF improved revenues.  We 
demonstrated that not only can adding HF to FA improve FA’s performance (even to 
the point of revenue gains), but we also showed that supplemental FA can improve 
an airline’s revenues by approximately 1% over HF alone. 
 
In Section 5.3, we combined the PCAT and FA techniques of this chapter’s two 
previous sections.  Our experiments here showed that using more aggressive FA on 
an airline’s dominant paths can actually reverse the revenue losing performance of 
regular FA (i.e. applied in the same manner to all OD markets).  Furthermore, we 
showed that replacing standard pick-up forecasting with HF can significantly improve 
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the performance of FA and PCAT together.  Finally, we demonstrated that 
supplemental application of PCAT and FA can improve an airline’s revenues by up to 
2.5% over HF alone – a significant increase. 
 
To summarize the revenue impacts of HF, FA, and PCAT, we select a “Representative 
Case” from the set of experiments presented in this chapter (as well as Chapter 4).  
In this example, Airline 1 uses an input WTP estimate of FRAT5 “C” for its universal 
HF and/or FA.  When practicing a form of Path Categorization (HF, FA, or both), AL1 
uses the more aggressive “A2” in its PCAT1 markets.  And when practicing FA, Airline 
1 uses a Scaling Factor of 0.50. 
 
As shown in Table 42, Airline 1’s network revenue improves by 3.11% when 
switching from pick-up forecasting to Hybrid Forecasting.  When practicing FA, AL1 
sees a gain of 4.50% due to the switch from pick-up to HF, and when also using “A2-
C-C” PCAT, the revenue improvement due to the HF switch grows to 5.22%. 
 

Table 42: Airline 1 Revenue Improvement Due to HF, Representative Case 

AL1 RM System 
Reference 
Section AL 1 Revenue 

∆ Revenue 
With HF 

DAVN w/ pick-up (BC1) 4.1.3 $1,040,277 
…w/ HF 4.3 $1,072,646 $32,369 3.11% 

DAVN w/ pick-up and FA 5.2.1 $1,036,786 
…w/ HF 5.2.2 $1,083,398 $46,612 4.50% 

DAVN w/ pick-up, FA, PCAT 5.3.1 $1,045,249 
…w/ HF 5.3.2 $1,099,791 $54,542 5.22% 

 
Having demonstrated the potential revenue improvement by switching from pick-up 
to Hybrid Forecasting in semi-restricted fare structures, we now present the potential 
revenue improvement over HF alone due to FA and PCAT.  Focusing on our 
representative case, Table 43 shows the improvement in Airline 1’s network 
revenues for three scenarios.  By using HF varied by relative path quality (“A2-C-C”), 
AL1 improves revenue slightly by 0.16%.  When instead using FA with a Scaling 
Factor of 0.50, the improvement over HF alone is 1%.  And when combining FA and 
PCAT, Airline 1 sees a gain of 2.53%. 
 

Table 43: Airline 1 Revenue Improvement over HF, Representative Case 

AL1 RM System 
Reference 
Section 

AL1 
Revenue 

∆ Revenue from HF 
Alone 

DAVN w/ HF 4.3 $1,072,646 - - 
…w PCAT 5.1 $1,074,350 $1,704 0.16% 
…w FA 5.2.2 $1,083,398 $10,752 1.00% 
…w FA, PCAT 5.3.2 $1,099,791 $27,145 2.53% 

 
Finally, the overall potential revenue gains over standard pick-up forecasting (Base 
Case 1) in our representative case are shown in Table 44.  As described previously in 
this chapter, universal FA without the aid of HF leads to a loss of revenue (0.34% in 
this representative case) but the use of PCAT can help (0.48% over pick-up 
forecasting here).  The use of HF with PCAT improves Airline 1’s revenue by 3.28%, 
HF with FA improves it by 4.15%, and HF, FA and PCAT together improves it by 
5.72% over pick-up forecasting. 
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Table 44: Airline 1 Revenue Improvement over Pick-up Forecasting, 
Representative Case 

AL1 RM System 
Reference 
Section 

AL1 Revenue ∆ Revenue from BC1 

DAVN w/ pick-up (BC1) 4.1.3 $1,040,277 - - 
…w/ pick-up and FA 5.2.1 $1,036,786 -$3,491 -0.34% 
…w/ pick-up, FA, PCAT 5.3.1 $1,045,249 $4,972 0.48% 
…w/ HF 4.3 $1,072,646 $32,369 3.11% 
…w/ HF & PCAT 5.1 $1,074,350 $34,073 3.28% 
…w/ HF & FA 5.2.2 $1,083,398 $43,121 4.15% 
…w/ HF, FA, PCAT 5.3.2 $1,099,791 $59,514 5.72% 
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6 Conclusions 
 

6.1 Summary of the Problem and Thesis Objectives 
 
We began this thesis by introducing a problem specific to the air transportation 
industry: the effectiveness of the sophisticated Revenue Management (RM) systems 
employed by many airlines has weakened, ostensibly due to the growth of Low Cost 
Carriers (LCC).  Traditionally these RM systems have relied on a set of booking 
restrictions (Saturday night stay requirements, non-refundability, etc.) to fence 
potential demand into well-segregated fare classes.  By limiting passenger eligibility 
for these fare classes, airlines had segregated their passengers and steered them 
into booking specific classes – effectively making the passenger demand among 
various fare classes independent.  This independence assumption is at the core of 
traditional RM, as described in Chapter 1.  And it is this independence assumption 
which is violated when those fare class restrictions are lessened, requiring the 
development of new RM techniques for use in less-restricted environments.   
 
The primary technique examined in this thesis is Hybrid Forecasting (HF), and is a 
marriage of forecasting techniques designed to simultaneously forecast demand for 
two groups: 
 

1. Product-oriented passengers who seek a specific fare class when booking 
despite the potential availability of other classes (which may be lower priced); 

2. Price-oriented passengers who simply aim to book in the lowest available fare 
class for which they are eligible.  It is these passengers who dilute revenues 
in traditional RM systems in less-restricted environments due to the 
availability of multiple homogenous fare classes indistinguishable except for 
price.  

 
As introduced in the opening chapter, the primary goal of this thesis is to measure 
the potential revenue gains due to HF in semi-restricted fare environments.  Beyond 
this objective, we also seek to measure potential revenue improvements over HF by 
using two supplemental techniques: 
 

1. Fare Adjustment (FA) – a tool developed to encourage passenger sell-up by 
having the seat allocation optimizer proactively close lower fare classes; 

2. Path Categorization (PCAT) – the selective application of higher passenger 
willingness-to-pay (WTP) estimates in Origin to Destination (OD) markets 
where path quality dominates competitors (i.e. non-stop versus connecting); 

 
In Chapter 2 we presented a review of the relevant literature in order to understand 
the scope of our problem.  We began with a general introduction of passenger 
demand forecasting in the airline industry, followed by a more focused discussion of 
RM systems and their components, including the widely used method of traditional 
pick-up forecasting.  Next, we reviewed the emergence of LCCs, and how their 
simplified fare structures can diminish the performance of traditional RM systems by 
violating that critical demand independence assumption.  We continued by 
introducing Q-forecasting – a technique for estimating demand in totally unrestricted 
fare structures (as opposed to our semi-restricted ones) – as well as Fare 
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Adjustment.  Finally, we presented the idea of price-oriented and product-oriented 
demand, and introduced the concept of a “hybrid” method of demand forecasting to 
separately estimate both of them for the use of a traditional seat optimizer. 
 
To achieve the goals of this thesis, we simulated HF (as well as FA and PCAT) using 
the Passenger Origin-Destination Simulator (PODS), a tool introduced in Chapter 3.  
We first presented the background of PODS, including its passenger choice model 
and its RM system for each simulated airline.  Next, we explained the methodology 
within PODS used by each of our tools for dealing with less-restricted fare structures, 
including Q-forecasting (the price-oriented component of HF), FA, and Path 
Categorization.  Finally, we presented nine different ways in which Hybrid 
Forecasting can categorize historical bookings as product-oriented or price-oriented 
within the simulator. 
 

6.2 Summary of Findings  
 
As previously described, we used PODS to simulate the performance of HF (as well 
as FA and PCAT) in a two-airline environment where both carriers use the 
Displacement Adjusted Virtual Nesting (DAVN) seat allocation optimizer.  We began 
Chapter 4 by introducing this simulated network (Network D-6) as well as the semi-
restricted fare structure shared by both airlines.  In our experiments, Airline 1 (AL1) 
used various forms of HF while Airline 2 (AL2) always used standard pick-up 
forecasting.   
 
Our first set of experiments tested our nine classifications of product-oriented and 
price oriented demand by simulating each under several scenarios, including with low 
and high demand, with a leg-based seat optimizer, and with a more aggressive 
estimate of passenger WTP.  In each of these scenarios, one booking classification 
method outperformed the other eight.  When using the “HF1-IAP0” combination, we 
classify product-oriented and price-oriented bookings as follows: 
 

• All bookings in which the next lowest fare class was available on the same 
path (same flight and airline) are product-oriented. 

• All other bookings, including those made when the next lower class has been 
closed due to AP requirements, are price-oriented.  

 
Of the nine classifications available within PODS, we demonstrated that HF1-IAP0 
appears to outperform the others because method HF1 minimizes revenue loss due 
to overprotection of the highest fare classes (unlike HF2 and HF3) and method IAP0 
minimizes revenue loss due to dilution and spiral-down (unlike IAP1 and IAP2).  
Based on the results of our experiments in Section 4.2, we adopted HF1-IAP0 as the 
standard historical booking classification method used for Hybrid Forecasting in this 
thesis. 
 
In Section 4.3, we tested the sensitivity of HF to the input estimate of WTP used by 
an airline.  In PODS, a simulated airline uses a “FRAT5” value (as described in 
Section 3.2.2.1) as a proxy for WTP which governs the assumed behavior of 
passengers selling up from low to high fare classes.  By varying Airline 1’s input 
FRAT5 series, we showed that HF with low estimates of WTP can lead to large losses 
in revenue compared to the use of pick-up forecasting, while more aggressive 
assumptions of passenger WTP can improve network revenues between 3% and 4%. 
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After demonstrating the potential value of replacing pick-up forecasting with Hybrid 
Forecasting in semi-restricted fare structures, we focused on improving the 
performance of HF in Chapter 5.  We began in Section 5.1, by applying more 
aggressive WTP estimates (in terms of FRAT5 values) in OD markets where a given 
airline demonstrated dominant path quality (a technique referred to as Path 
Categorization, or PCAT).  Doing so resulted in revenue gains approaching 0.25% 
over HF with “universal” FRAT5 inputs for all paths.  While such a change seems 
small (especially compared to the 3-4% gains of universal HF over pick-up 
forecasting), the improvement is actually significant due to the relatively small 
number of dominant paths in which an airline augments its WTP estimate. 
 
We continued in Section 5.2 by experimenting with universal Fare Adjustment, first 
simulating FA without HF and demonstrating its inability to improve network 
revenues over pick-up forecasting.  Then we showed the significant revenue gains 
possible when combining universal HF and FA – greater than 1% over HF alone. 
 
And in Section 5.3 we combined FA and PCAT, which led to even larger revenue 
gains than with either technique separately.  We first showed that varying the 
aggressiveness of FA by relative path quality led to revenue gains over universal FA 
– sometimes large enough to improve over pick-up forecasting alone.  Finally, we 
combined HF, FA, and PCAT and demonstrated an improvement over universal HF 
alone of up to 2.5%. 
 
We summarized the possible revenue changes in each of these above scenarios by 
presenting a “Representative Case” of an airline switching from pick-up forecasting 
to Hybrid Forecasting.  In this example, Airline 1 used FRAT5 “C” for its universal FA 
and HF – a moderate value thought to be realistic in terms of passenger WTP.  To 
the extent the airline employed Path Categorization it assumed a more aggressive 
WTP of FRAT5 “A2” in its dominant OD markets.  And when performing Fare 
Adjustment, Airline 1 used a Scaling Factor of 0.50.  Each of the above scenarios 
involving HF, FA, and PCAT is illustrated in Figure 77 in terms of Airline 1’s network 
revenue.   
 

 

Figure 77: Network Revenue and Changes from Pick-up Forecasting, Airline 
1, Representative Case 
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Relative to the use of pick-up forecasting alone, universal FA decreased revenue by 
0.34%, while adjusting the aggressiveness of FA by relative path quality improved 
revenues by 0.48%.  The introduction of HF led to much larger increases in revenue 
– 3.11% over the use of pick-up forecasting.  Furthermore, adding PCAT improved 
revenues over universal HF by 0.16%, adding FA by 1.00%, and adding both 
simultaneously by 2.53%.  For each of these scenarios in our representative case, 
the gain over pick-up forecasting was 3.28%, 4.15%, and 5.72%, respectively.   
 

6.3 Future Research Directions 
 
Having demonstrated the potential value of employing Hybrid Forecasting in airline 
Revenue Management systems with semi-restricted fare structures, we now suggest 
two related avenues of interest ripe for future investigation.  First, it is important to 
note that the experiments in this thesis – while numerous – were certainly not 
exhaustive or even conclusive. 
 
As a demonstration of the concept of Hybrid Forecasting in semi-restricted fare 
structures, we have limited our simulations to two competing airlines with 
overlapping hub-and-spoke networks, one-way flows, and similar Revenue 
Management systems.  In this specific situation, we have clearly demonstrated the 
potential revenue benefit afforded to an airline using HF when its lone competitor 
uses traditional pick-up forecasting.  While a valuable initial step in understanding 
the impact of HF, our two carrier case greatly magnifies the competitive aspects of 
the airline industry.  As demonstrated in many of our experiments, a loss of 
passengers or revenue by one carrier typically led to a respective gain for the other 
due to the lack of alternatives as well as the similarity of the connecting service 
provided in nearly every OD market.  To better simulate the performance of HF, we 
could implement an expanded PODS network with additional competitors in more 
markets, such as the larger, more competitive “Network R”, as described by Dar78. 
 
Also interesting would be an expansion of the experiments performed here to include 
cases of competing airlines both using HF as well as with different combinations of 
seat inventory optimizers.  So beyond the “DAVN with HF versus DAVN with pick-up 
forecasting” case in this thesis, a more thorough evaluation could include the 
following: “DAVN with HF versus DAVN with HF”, or “versus the leg-based EMSRb 
optimizer” (discussed in Section 3.1.3.3), or versus any number of widely used RM 
techniques.  It is likely that the gains presented demonstrated in this thesis would be 
diminished if the techniques were used by competing carriers. 
 
Beyond extending the scope of simulations performed to better understand HF, the 
second suggested research direction is development of a method to estimate 
passenger WTP.  For all experiments in this thesis, we have assumed various levels 
of passenger WTP – which take the form of FRAT5 values in PODS – in order to 
manage sell-up behavior.  Doing so complicates both experimentation and analysis 
by necessitating the need for simulation at various assumed WTP levels.  
Furthermore, the absence of an estimate of passenger WTP hinders the applicability 
of HF in the airline industry. 
 

                                          
78 Dar, M.  2006.  Modelling the performance of revenue management systems in  
different competitive environments.  Master’s thesis,  Massachusetts Institute of Technology, Cambridge, 
MA. 
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In his thesis testing Q-forecasting in totally unrestricted fare structures, Cléaz-
Savoyen71 used a FRAT5 estimation process which performed relatively well.  But as 
described by Vanhaverbeke76, this estimator is far from perfect.  Specifically, this 
FRAT5 estimator should better vary WTP estimates in response to competitor actions 
as well as with decreasing days to departure. 
 
But beyond these challenges, our experiments illustrate the need for further 
estimation beyond that of network-wide FRAT5 values.  For use in Fare Adjustment, 
our simulations were repeated with ten different Scaling Factors applied to the 
normal FRAT5 values.  Clearly, we not only need an estimate of WTP, but the use of 
Fare Adjustment necessitates some estimate of this Scaling Factor.  And unlike with 
the FRAT5 estimates for passenger WTP, we currently lack even a rudimentary 
method of estimating this Scaling Factor in PODS. 
 
Furthermore, the revenue improvement in our Path Categorization experiments 
suggests a benefit to estimating an independent WTP value for OD markets with 
dominant relative path quality (in addition to the network-wide estimate for PCAT2 
and PCAT3 paths).  Taking this idea to its limit, we imagine the best performing RM 
system can ultimately estimate passenger WTP in each of an airline’s OD markets.  
While recent research efforts in PODS have begun to examine passenger demand at 
this most disaggregate level, so far these efforts have proved unsuccessful, with a 
primary obstacle being the scarcity and variability of booking data on an OD market 
basis.  Nevertheless, we believe continued study of passenger WTP estimation can 
provide dividends not only in improving Hybrid Forecasting, but in future airline 
Revenue Management endeavors. 
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