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by
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Submitted to the Department of Mechanical Engineering
on September 30, 1974, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

ABSTRACT

An analytical investigation of the lateral dynamic behavior
of two-truck railway vehicles using steel wheels and steel rails
is described. Measures used to assess dynamic performance are
maximum stable operating speed and, for a specified rail roughness
input, power spectral density of lateral acceleration in the
passenger -compartment (ride quality) and the RMS lateral tracking
error. Static suspension performance is measured by the lateral
tracking error produced by steady curving. Linear, lumped-parameter
models are used to represent the carbody and trucks. Trucks are
modelled as rigid in the plane of the rails. Two models for the
carbody are employed: a rigid body with translational and yaw
freedom and with a truck at each end, and a translational mass with
no yaw freedom and a single truck. The latter model is simpler,
and is shown to be a useful approximation to the former in predicting
the influence of suspension parameters. Inclusion of yaw freedom
introduces further vibrational modes of the carbody which can reduce
ride quality or cause instability.

Vehicles with conventional rigid trucks, having opposite wheels
connected by rigid axles, are subject to lightly damped lateral
oscillations ("hunting") which may become unstable even at low
speeds. The effects of various suspension parameters on hunting are
discussed. An automatic controller is defined to supplement the
action of the secondary suspension. Two special cases of the
general controller (active steering, and asymmetry in the passive
suspension) are examined in detail and both shown to be capable of
improving all three measures of dynamic performance significantly;
both, however, can degrade steady curving ability.

The use of rigid trucks with independently rotating wheels,
ground to a concave tread profile to provide guidance, is evaluated
and found to be highly beneficial in improving ride quality, and
to eliminate the cause of hunting instability. Such trucks exhibit
less tracking error due to steady curving at low speeds than do
conventional trucks, but more at high speeds.

Thesis Supervisor: David N. Wormley
Title: Associate Professor of Mechanical Engineering
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SYMBOLS AND ABBREVIATIONS

In the following list of symbols, i represents a numerical
subscript.

A rail roughness parameter

A system characteristic matrix, Laplace transformed

A compressed and Laplace transformed characteristic matrix

a characteristic matrix

Bb secondary suspension yaw damping-

Bc setondary suspension lateral dampingas

B system input matrix, Laplace transformed

B input matrix, compressed and Laplace transformed

b input matrix

D control gains (Equations 6.2.1 and 6.2.2)

e base of the natural logarithms

F any force

Fb passive lateral secondary force

Fbc active lateral secondary force

f creep coefficient

G any transfer function

Ga carbody lateral acceleration transfer function

GTE truck center lateral tracking error transfer function

g parameter groups (Table 3-1)

g5  4f/(mbV)

H any transfer function

h half rail gauge
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Ib truck moment of inertia around center of mass

Ic carbody moment of inertia around center of mass

I I /(2m L2), normalized carbody inertia
c c c

i unit vector, forward direction

j unit vector, lateral direction

Kb secondary suspension yaw stiffness

Kc secondary suspension lateral stiffness

KL linearized lateral gravitational stiffness, per wheel

k ratio of wheelbase to gauge

k k2 for independently rotating wheels; k2+1 for rigid wheelsets

L half carbody length between truck attachment points

b distance to outboard truck dampers

kk distance to outboard truck springs

mb truck mass

mc half carbody mass

n order of system

P time derivative operator

Qk mbL/Ic

R radius of steady curving

R wheel tread radius of curvature
w

R railhead radius of curvature
r

r wheel rolling radius

r0  nominal or centered wheel rolling radius

S parameter group (Table 3-2)
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S matrix of Laplace variables (Appendix B)

s Laplace variable

T any torque

Tb passive secondary yaw torque

Tbc active secondary yaw torque

t time

V forward speed

Vc critical speed, at which lateral motions become unstable

v any lateral speed, =y

vb b

vc ;c

x distance along direction of forward motion

y any lateral displacement from track nominal centerline

yb lateral displacement of truck center of mass

yc lateral displacement of carbody center of mass

yrf lateral displacement of actual rail centerline at front wheels

yrb lateral displacement of actual rail centerline at rear wheels

yo initial lateral displacement of profiled wheels (Appendix A)

a effective conicity

A[] pure delay operator

AR R -R
w r

a + (l+e-Ts)/2

6~ (1-e-'s)/2

6L -T Ls

E ( 1,e2, 3 ), the list of active steering gains
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e active steering control gains (Equations 7.1.4 - 7.1.6)

( damping ratio

K (ak'Cib), the list of asymmetties

x a wavelength

P coefficient of sliding friction

v frequency (circular)

W 3.141...

Pm mb/mc

Pbb B bV/(4fh2k s

Pbc BcV/(4f)

ab secondary damper asymmetry

ak secondary stiffness asymmetry

T 2kh/V, wheelbase time delay

TL 2L/V, carbody time delay

D i any input power spectral density

any output power spectral density

D y power spectral density of rail lateral centerline roughness

b yaw angle of truck

c yaw angle of carbody

Q V/rO, rotational speed of axle

b b

c c

Wk kinematic hunting frequency (radian), V-Va/k sr0h
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Abbreviations

A.S.D. acceleration power spectral density in the carbody, lateral

HFA high-frequency asymptote of A.S.D.

HFE envelope of HFA, neglecting out-of-phase contributions

LFA low-frequency asymptote of A.S.D.

LMO lateral-mass-only carbody (lateral freedom only)

RC rigid conventional truck (rigid axles)

RIW rigid truck with independently rotating wheels

RPB rigid-plane-body (lateral and yaw freedom)

Subscripts

()b truck (or bogie) at center of mass; pertaining to dampers

oc carbody, at center of mass

(cb carbody, at truck attachment point

ocr due to creep forces

o g due to gravitational forces

( i arbitrary numerical index; or input

()k pertaining to springs

o)L pertaining to carbody length

(o output

(r rail
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CHAPTER 1

INTRODUCTION AND SUMMARY

Rail systems occupy an important place among ground trans-

portation modes. They also exhibit certain unique dynamic

characteristics which have constrained high-speed operation. With

the increasing demand for faster, more comfortable ground trans-

portation, railway technology is being seriously re-examined in an

effort to relax these constraints. Essentially conventional systems

in Europe, Japan, and the United States are operating in or planned

for a speed range around 150 miles per hour; but such speeds are

attained only with elaborate suspensions and over exceptionally good

track. The research described herein was undertaken to discover how

the performance of rail vehicles may be enhanced by the use of

unconventional design approaches -- especially automatic control

techniques. Emphasis is on passenger vehicles, but much of this work

is also applicable to high-speed freight cars.

1. Place of Rail Systems in Ground Transportation. The railroad

was historically the first machine-powered means of ground transportation,

and it has risen to a position of major importance in the century

since its invention. The bulk of land freight is moved by rail, at

least along some of its route, since this mode offers reasonable

speed together with an excellent ratio of payload to power. Passenger

service by rail has declined in recent years, however, in the face

of the automobile's greater flexibility and the airplane's higher
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speed; the drop has been especially severe in the United States,

where affluence and long travel distances have encouraged the shift

to the latter modes.

Recent studies [1,2]* have indicated, however, that there would

be a significant demand for intercity passenger service which would

be competitive with air in speed, cost, comfort, convenience, and

safety. Cruise speeds in the range of 100 - 300 mph would be required

for successful intercity operation. Another important and growing

application of tracked ground transportation is in urban rapid transit

systems, where speeds are moderate but other operating requirements

(curve negotiation, braking, and passenger comfort, for example) are

severe.

Other systems besides rails are suitable for tracked vehicles.

Rubber tires [3] offer a smooth ride, good tolerance to guideway

irregularities, and low "footprint" pressure (with correspondingly

low guideway wear). Tires, however, are subject to thermal deter-

ioration due to flexural deformations and appear unsuitable for high-

speed operation. Their use in rapid transit installations has been

plagued by high maintenance costs. Two types of non-contacting

suspensions appear to offer great promise for high-speed applications.

*Numbers in square brackets refer to the List of References at
the end of this thesis.
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By the use of air cushions [4] or magnetic levitation [5], friction

at the vehicle-guideway interface can be greatly reduced. The

advantages of low footprint pressure mentioned in connection with

rubber tires are more significant in these cases, where the cushion

or magnet may be several feet in extent. The disadvantages of air

cushion or magnetic suspensions lies in their use of power to produce

levitation. To keep power requirements down, they must be designed to

operate with very small gaps; but small suspension gaps require smooth

guideway surfaces in order to prevent contact with and possible damage

to the suspension.

Steel wheels rolling on steel rails provide both support and

guidance passively; no levitation power is required. The rolling

friction is quite low for steel surfaces, unlike rubber on pavement.

The railroad guideway is not especially inexpensive -- at least when

designed for 200 mph operation -- but it is geometrically simple and

largely prefabricated. The small area of the rail contact surface is

subject to high stress and wear, but less liable to crippling accum-

ulations of ice and snow than the broad, flat guideways required for

air cushions or repulsive magnetic suspensions.

Perhaps most important, there already exists an extensive network

of railroads and a large investment in railway equipment. If steel

wheel / steel rail technology can be adapted to the needs of high-

speed ground transportation, and if care is given to the requirements

of compatibility between the new and old systems, the transition may

be done in stages (staged introduction of fast service may be seen
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in the cases of the Metroliner and TurboTrain in this country).

2. Special Problems of the Rail Lateral Guidance System. The

use of flanged wheels to guide a vehicle along a track is familiar

and perhaps obvious, but the resulting system shows a type of

behavior not found with other forms of guidance. Certain concepts

essential to an understanding of railway guidance will be introduced

here.

Early systems used cylindrical wheels, and relied upon flanges

inside each rail to limit lateral displacement of the wheel and

thus to guide the vehicle along the track. It was later recognized

that by making the running surface of each wheel conical -- the

apices outside the rails as in Figure 1-1 -- a self - centering

action was obtained. Conical wheels significantly reduced rail

wear by suppressing the tendency of cylindrical wheels to run with

one flange continually against the rail, but they introduced a

phenomenon called hunting.

Hunting is a self - excited, speed - dependent sinuous motion

of the wheelset along the track. The hunting motion of a single,

unrestrained wheelset (i.e., two wheels connected by a rigid axle)

is illustrated in Figure 1-2. Assuming pure rolling contact and

a cone half - angle of a, a lateral displacement y of the wheelset

from its centered position results in the radii of the two wheels

being changed from the centered (nominal) radius of r0 to:

r+ = ro + ay for the left wheel, and (1.2.1)
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2h

(a)

View of Coned Wheelset

ro

(b)

Simplified Wheel - Rail Contact Geometry

FIGURE 1-1

Rigid Wheelset Geometry
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direction of
motion

y + 1-

FIGURE 1-2

Kinematic Hunting of an Unrestrained Wheelset

C)L4
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r_ = ro - ay for the right. (1.2.2)

Due to this difference in rolling radius, the wheelset is steered

back toward the center of the track. Let be the yaw angle of the

wheelset about a vertical axis; then if the angular velocity of spin

of the wheelset about the axle is 9,

d /dt = -P(r+ -r) / 2h ; (1.2.3)

the track gauge is 2h. Substituting (1.2.1) and (1.2.2) gives

d4/dt = -Vay / roh , (1.2.4)

where the substitution V=nr0 for the forward speed of the wheelset

has been included. Finally, noting that dy/dt=V4,

= rvh y .(1.2.5)

This is the equation of a linear, undamped, second - order

oscillator whose frequency,

Wk = V V'a/r 0h , (1.2.6)

is called the kinematic hunting frequency. Notice that since this

frequency is proportional to V, the wheelset will trace out a path

of constant wavelength, regardless of speed.

The- tendenuYt 1af the- wheOaliets o dsi-ikcftAte0iat thienl lidtematic

hunlth greqdehm nmanif eat-ta itsfeif eirtritwo fdaien- tye- 1oPtvehicle

ma-ti',broadly Eterme Atpiiaand& econidy A'untiln&g

Primavy huntIng , .so-alled because i-t isi usually importamte at Tow+
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speeds, involves relatively large motions of the carbody with little

wheelset motion. It occurs when the kinematic hunting frequency

coincides with some natural frequency of the carbody-suspension

system. Secondary hunting involves large-amplitude wheelset

oscillations with little relative lateral carbody movement.

Primary hunting can be unstable, but the term is used to apply to

any large-amplitude carbody response due to resonance. Secondary

hunting, similarly, refers to large wheelset oscillations whether

stable or unstable. For most speeds, there exist lightly damped

oscillatory modes which cannot be unambiguously identified as

either primary or secondary hunting; such situations fall only

into the generic category of kinematic hunting.

The pure rolling assumption made in the derivation of kinematic

hunting provides no mechanism for either damping or growth of

oscillations. The situation is different, however, when the effects

of inertia and finite coefficient of friction are included. Since

any slippage at the wheel / rail interface will result in imperfect

steering action, the motion of a real wheelset can exhibit unstable

growth in amplitude (limited, it is to be hoped, by impact of the

wheel flanges against the rails). An unrestrained wheelset will be

unstable at any forward speed. Attached to a vehicle, a wheelset may

be stabilized in several ways -- the most usual one being to

introduce a yaw stiffness between wheelset and carbody -- but any

such stabilization through conventional means is effective for only
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a limited range of speed. There exists a linear critical speed of

forward vehicle motion, Vc, below which the motion is stable and above

which it is unstable [6].

The rigid coned wheelset is also central to the quasi-steady

curving mechanism of a conventional rail vehicle. Consider a

single wheelset negotiating a curve of constant radius R in pure

rolling, as in Figure 1-3. The yaw angular velocity of the wheelset

must be

= -V / R . (1.2.7)

Equation 1.2.4 continues to apply; combining these two equations

yields

y = roh / aR (1.2.8)

as the lateral tracking error for kinematic curving of a single

unrestrained wheelset. Observe that no mention has been made of

centripetal force, slippage, or yaw restraint of the wheelset;

these effects, if present, further increase the error and intro-

duce yaw deviation away from the radial. Curving of conventional
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R

FIGURE 1-3

Quasi - Steady Curving of an Unrestrained Wheelset
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vehicles will be examined in Chapter 10.

In summary, a rail vehicle derives lateral guidance not from

any stiffness in the lateral direction, but rather from a steering

action coupled with the vehicle's forward motion. (An exception is

the independently - rotating wheel suspension which will be intro-

duced in Chapter 3.) The resulting dynamic system is lightly

damped and prone to instability. For these reasons it is of both

interest and importance to study lateral dynamics and to bring them

under control.

3. Design Considerations for Lateral Suspensions. The preceding

section suggests that the requirements for a satisfactory lateral

spspension may be quite different from those for a vertical suspension.

The similarities and differences will now be briefly discussed.

A lateral suspension is -~tica &pduapoXUr supportcthe

static weight of the vehicle. It shares with the vertical suspension,

however, the function of negotiating the track while partially

isolating the passenger compartment from the effects of track

irregularities. The primary function of the suspension thus has

two facets: tracking accuracy and ride comfort. Tracking accuracy

in the lateral direction is important for several reasons. There is

a limited amount of clearance beside the track, so the vehicle may

only deviate so far from its nominal course without danger of

interference. Similarly, tracking should be good enough that the

wheel flanges very seldom contact the rails. Flange impact (flanging)

is undesirable because it is felt by the passengers as a jolt, to the
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detriment of comfort; because it accelerates wear of both wheel and

rail; and because it increases the likelihood of wheel climb and

possible derailment. Tracking error may be caused by the kinematic

constraints and centripetal force encountered in curves, and by the

suspension's dynamic response to track irregularities. Wind loading

on the vehicle is another source of error, and one which may be

expected to become more important with increasing speed.

The issue of ride comfort quantification has yet to be

satisfactorily resolved, but it is generally accepted that acceleration

experienced in the passenger compartment is an important -- if

incomplete -- measure of discomfort [7,8]. One of the more satis-

factory methods of expressing ride comfort is by displaying the

acceleration power spectral density of the passenger compartment,

given a specified track geometry and vehicle speed, in comparison

with some standard spectrum which has been shown to be acceptable

and which takes into consideration the variation of human sensitivity

to vibration with frequency. Such a standard can of course be only

a guideline until a better understanding of what determines comfort

is obtained. The standard acceleration spectral density profile

which will be referred to herein is one which was proposed by the

U. S. Department of Transportation for the Urban Tracked Air Cushion

Vehicle (UTACV -- now termed the Prototype TACV, or PTACV) and is

based on measurements of the ride of a Metroliner coach [9] -- see

Figure 1-4. Notice that the requirements are somewhat more strict in

the lateral direction than in the vertical.
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Stability is a vital aspect of suspension performance which,

although it figures in both tracking error and ride comfort, deserves

separate mention. The term "stable" as used in the context of this

thesis refers to asymptotic stability of the linearized, small -

disturbance model. It is possible for a real vehicle to be unstable

in this sense but stable in the sense of Lyapunov because of the

limiting action of flange impact [10].

Multiple - vehicle trains are also subject to coupling effects

grouped into the classification of "train action". If the couplers

transmit appreciable lateral force or yaw torque, the performance

predicted by the analysis of a single vehicle may be significantly

altered.

A final important consideration in the design of rail vehicles

is compatibility with current practice. The railway systems of

every country rely upon extensive standards to assure interchangeability

of equipment, and it is only reasonable to comply with these

standards in the design of advanced vehicles unless there is a strong

reason to do otherwise. A vehicle designed with compatibility in

mind can operate over existing track -- albeit perhaps at reduced

speed -- over part or all of its route while improvements in the

permanent way are made gradually.

4. High - Speed Rail Systems Proposed or In Service. Major

strides have been taken in recent years toward practical high - speed

(i.e., >100 mph) rail systems. The most notable achievement is

probably the New Tokaido Line (NTL) of the Japanese National Railways.



-27-

That system required the construction of an entirely new guideway to

achieve an operating speed of 130 mph. The new right - of - way is

free of sharp curves and other encumbrances to high speed; rails are

maintained in exceptionally good condition and alignment. The cars

used on the NTL are of a conventional two - axle truck design [11],

good riding quality being attributable more to the high track quality

than to vehicle suspension innovations. New Shen Kansen extensions

are being planned for 160 mph service.

New train design in Great Britain follows a different route.

Rather than relying upon radical improvements to the permanent way,

British engineers are requiring that the Advanced Passenger Train

(APT) be capable of 150 mph operation over existing track; it should

be noted, however, that mainline track in Great Britain is already

well laid and maintained. The APT, when completed, will have tilting

bodies and novel self - steering trucks to aid in curving at these

high speeds [12]. In the meantime, British Rail will use the 125 mph

High Speed Train -- a fast train of conventional design -- to phase

in high speed operation.

In France, SNCF has placed into service a number of RTG gas

turbine units on cross - country routes. These trains are designed

to operate at 125 mph, and achieves 100 mph routinely over existing

track. Two RTG turbotrains were leased by Amtrak recently for testing

in the United States. The next generation of French high - speed

trains is embodied in the TGV 001 five - car articulated set. The

TGV 001 is intended for eventual 190 mph service over special
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guideways, but for the present it will be operated up to 160 mph

over existing routes [12].

In West Germany, development continues on the ET-403 electric

locomotive for 125 mph service, but the emphasis there is on magnetic

levitation for higher speeds [13]. Italy has also chosen electric

power for its 160 mph ETR vehicles, which feature an ingenious

tilting-body mechanism.

In the United States, there have been two recent attempts at

increased speed. The Metroliner coaches, with top speed around

100 mph, are light vehicles of largely conventional design. The

United Aircraft TurboTrains, on the other hand, are articulated

trainsets with tilting bodies and represent a radical departure

from tradition. The TurboTrains have been tested to 150 mph, but

the condition of the track over which they operate between Boston

and New York limits them to a top speed of around 90 mph.

5. Scope and Summary of This Work. This investigation was

undertaken with three principal objectives in mind: (1) to develop

rail vehicle models which would be useful for purposes of design --

accurate enough to predict the most important phenomena affecting

dynamic performance, but simple enough to allow the effects of design

modifications to be easily assessed; (2) to use these models to acquire

information on the ride quality which may be expected from rail vehicles;

and (3) to investigate possible methods of improving performance,

especially using automatic control. Toward these ends, linear models

have been used; single vehicles have been treated as isolated; and only

lateral motions (translation, yaw) are included. Subsystems, such as
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the trucks, have been taken as rigid bodies wherever possible.

In Chapter 2, prior work in the area of rail vehicle dynamics

is reviewed. The models and methods which have gone before are

assessed, and principal findings presented. The need for further

modelling effort is pointed out.

Chapters 3, 4, and 5 taken as a group describe the performance

of vehicles without any form of automatic control. In Chapter 3

the necessary models for vehicle, track, and interactions are presented.

The equations of motion and some transfer functions are derived.

Also, the parameter values which will be assumed for "baseline" values

throughout the thesis are tabulated. Chapters 4 and 5 contain results

obtained using the so-called "LMO" model, in which the yaw of the

carbody is neglected, for the conventional rigid - axle wheelset and

for the independently - rotating wheel truck respectively.

Chapters 6, 7, and 8 introduce the use of automatic control in an

effort to extend stability and improve ride quality. The types of

control which will be considered are defined in Chapter 6; certain

important special cases are also noted there. The effects of two

promising candidates are examined : active steering in Chapter 7, and

a passive, asymmetric suspension in Chapter 8.

Chapters 9 and 10 concern the behavior of the more complete

vehicle model, which includes the effects of carbody yaw, in compari-

son with the simpler LMO model. The differences can be significant,

but Chapter 9 demonstrates that the LMO model can be an accurate and

useful predictor of actual performance. Chapter 10 is on the subject
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of quasi-static curving error, which can be adversely affected by

some of the proposed control schemes.

Chapter 11 presents a group of conclusions arrived at in the

course of this study. The LMO model is found to be an imperfect but

highly useful design tool. Both active steering control and the passive

asymmetric secondary have desirable dynamic effects, but the rigid

truck with independently-rotating wheels offers such significant

features unobtainable with the conventional rigid-wheelset truck

that it merits strong consideration in future rail systems designed

for either high or low speeds.
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CHAPTER 2

SURVEY OF PRIOR RESEARCH

The lateral dynamic behavior of rail vehicles has long been

the source of operational problems, and numerous studies have been

undertaken in an effort to understand-and control lateral motions.

Some of the more important studies are cited in this chapter,

together with results which are fundamental to the modelling effort.

Significant gaps still remain, however: most work to date has

considered only conventional, passive primary and secondary sus-

pensions; and virtually no evaluation of ride quality has been carried

out.

For the reader interested in a more complete literature survey,

Law and Cooperrider [14] have compiled a critical summary of publications

in the field of rail vehicle dynamics.

1. Fundamental Studies of Wheel - Rail Interactions. The

assumption of pure rolling which was made in Chapter 1 to derive the

equations of kinematic hunting is not adequate to describe all aspects

of rail vehicle behavior. Beginning with Carter [15], various

investigators have developed more elaborate theories to account for

small slippage at the wheel - rail interface. Although the early

impetus for these studies came from the need to drive locomotive

wheels without slip, the resulting ideas are central to dynamic analyses

even when gross slip is not an issue.

The small differential motions of two bodies in nominal rolling
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contact are referred to as creep. After Carter, Vermeulen and

Johnson [16], Johnson [17], and Ollerton [18] refined the theory of

creep by modelling the wheel and rail as two bodies in Hertzian

contact. If there are forces parallel to the contact plane, part of

the elliptical contact patch will undergo slip at the coefficient of

friction, V (See Figure 2-1). The bodies accommodate to this partial

slippby small elastic deformations in the slip region, which manifest

themselves in a slight.Ldiffefeneetin overall rolling velocity (i.e.,

creep). When the tangent force reaches pN, where N is the normal

contact force, the region of adhesion disappears and gross slippage

begins. Figure 2-2 shows the relationship between tangential force

and creepage, E, where

relative velocity-ef-patch (2.1.1)
rolling velocity of patch

,for, if V is the forward speed of the wheel hub and v is the relative
-~1C -P'C cr

(creep) speed at the contact patch,

V
= cr (2.1.2)

V

The normalizing factor, pW/Gfrab, is typically of the order of 0.1%,

with

V = dynamic coefficient of friction,
W = normal load, per wheel,
G = shear modulus,
a = major axis of contact ellipse, and
b = minor axis of contact ellipse.

For small values of creepage, the exact creep relationship may be
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ADHESION

(a) Pure Rolling

ADHESION SLIP

(b) Creep

SLIP

(c) Slip

FIGURE 2-1

Creep in the Contact Patch. Direction of Roll is from Right to Left.
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approximated by

V

F f cr (2.1.3)
cr V

where f is known as the creep coefficient. Cooperrider, in [10],

gives the following approximation for f:

f [lbf] = 3500 / wheel dia.[ft].axle load[lbf]

(2.1.4)

Actually, the creep - force relationship is different for creep

parallel to and perpendicular to the rolling direction, and at least

two creep coefficients are necessary for precision. However, the

so - called lateral and longitudinal creep coefficients are

approximately equal in practice, and additionally are very imprecisely

known. Therefore, a single value of f is commonly used to apply to

motion in any direction.

Paul and Nayak [19] have carried out a series of experiments to

show the relationship of surface finish to creep coefficient.

There is an additional mode of creep, called spin creep, in which

rotation of the bodies in contact about an axis perpendicular to the

contact plane give rise to resisting moments [20]. Spin creep has

been shown to have a negligible effect on vehicle dynamics [303.

2. Properties of Track. The guideway structure, consisting of

rails, ties, ballast, and subgrade, has generally been assumed rigid

for the purposes of vehicle dynamic analyses. This assumption has

given good results except in cases when hunting has been violent. The
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elasticity of the track becomes important, however, when there is

flange contact [21]. Several analyses [22, 23] have been carried out

to test the stability of nonlinear oscillations with flange impact

against elastic rails.

The dynamic properties of track are most imperfectly known, and

they may naturally be expected to vary according to construction

details. One significant parameter which has been measured [24] is

the stiffness of a lain rail to a single lateral force, which appears

to vary between 5x10 5 and 5x106 lbf/ft [10]. Such a measure ignores

the continuous nature of the rail, due to which cross - coupling

among axles through the rail might be expected to be significant.

Mechanisms of wheel and rail wear have received some attention [25].

It has been recommended [25] that the wheel tread and the rail crown

be designed to a stable, "worn" set of profile which would exhibit

lower stresses and be more immune to further wear than is the

conventional new profile.

3. Curving Analyses. The quasi - steady guidance of a flexible

truck around a curve of constant radius has been studied in depth

by Newland [26]. He assumed that guidance forces would be provided

entirely by creep -- i.e., no flanging -- and discovered that the

tracking error in a curve is primarily geometry - constrained. That

is, the lateral force required to produce centripetal acceleration

contributes only a small additional error to that arising from rolling

of coned wheelsets around a circle (see, for example, Equation 1.2.8),

and that measures taken to reduce these forces (such as increasing the
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superelevation) will be relatively ineffectual. Notice, however,

that the contribution of centripetal force increases as V2 , whereas

the geometric factor remains constant with speed, so the former may

not be negligible for high - speed designs.

Curving with both creep and flanging has been treated by

MUller [27], whose results show that flanging is the predominant

mechanism of curve negotiation for virtually all conventional track.

4. Dynamic Models. The models which have been applied to rail

car dynamics range from simple wheelsets to complete cars and even

trains of cars. The complexity demanded of a model depends, first,

upon the questions being asked of it (for example, a model in which

carbody motions are neglected might yield information on flange forces,

but obviously cannot predict carbody acceleration); and second, upon

the frequency range of interest. In the case of conventional rail

vehicles, the predominant forcing frequency is that of kinematic

hunting, which is proportional to speed. (Equation 1.2.6). Therefore,

at higher speeds it becomes possible to neglect the overall motions

of the more massive elements, such as the carbody.

The least massive qompo-nent is the wheelset. Models of single

wheelsets, suspended from "translating reference" carbodies which are

assumed to move along the track at a constant speed V without moving

laterally, are useful in predicting secondary hunting instability.

Secondary hunting occurs at high speeds, and is characterized by large

motions of the wheelsets or trucks but very little motion of the

carbody. Wheelset models of this kind have been used by Wickens [28],
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Law and Brand [29], and Law [30]. The last two involved the nonlinear

dynamics of the wheelset.

The truck (or bogie) has received the most attention in dynamic

studies. A truck consists of two (or occasionally more) wheelsets

mounted in a frame, which is in turn suspended from the carbody. The

frame has usually been treated as rigid, an assumption which appears

adequate for most passenger trucks but less so for the typical three-

piece freight truck which has little resistance to a form of deformation

called "lozenging". The connection between wheelsets and frame may be

rigid in all but the vertical direction (see the comments on the rigid

truck below), or may have compliant primary suspension elements in any

or all directions.

It may be shown [61 that a so-called rigid truck is dynamically

equivalent to a single wheelset if gravitational stiffness (lateral

restoring force due to static displacement) is neglected. The rigid

truck is rigid only in the ground plane; the axles must be free to

spin in their bearings, and must also roll if all four wheels are to

stay in contact with the rails. The kinematic hunting frequency of

a rigid truck is

k = V / a / (kl)r0h , (2.4.1)

where the track gauge is 2h and the wheelbase of the truck is 2kh.

Benington [31] has proposed breaking the rigid axle of the

wheelset and replacing it with a viscous coupling. This, he shows,

would alleviate hunting without destroying the guidance action of the
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coned wheelset.

The rigid truck has been extensively studied by de Pater [32],

Clark and Law [33], Cooperrider [10], Jafar Shaghagi [34], and

Wickens [35]. Flexible trucks have been analyzed by Weinstock [6],

Matsudaira et al [36], Matsudaira [11], Yokose [37], Marcotte [38],

Joly [39], and Cooperrider [10]. A number of interesting results

have come from the flexible truck studies, but none as yet have been

shown to be of general applicability. Small amounts of primary

suspension flexibility have an effect only in the vicinity of

secondary hunting instability, and do not appear to affect overall

dynamic response appreciably.

A full vehicle, consisting of a carbody and two trucks (or, for

some designs, two wheelsets), thasaattaeart'six degrees of freedom in

lateral modes -- seven if roll is included. This fact has generally

prevented use of the more complicated flexible truck models for full -

vehicle analyses. There has been a trend recently, however, toward

the use of quite complete vehicle models simulated by numerical

integration.

Matsudaira [11] examined a complete vehicle with two rigid trucks;

he included carbody roll and yaw to yield a fourteenth - order system,

of which he found the eigenvalues. Matsudaira found that for NTL

prototype vehicles, the most significant mode of instability is yaw -

dominated primary hunting. Primary hunting occurs when the kinematic

frequency generated at the wheelsets coincides with some natural

frequency of the system; a resonance is excited, and the resulting
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motion may be truly unstable or merely lightly - damped, depending

upon suspension parameters. In practice, the distinction between

instability and resonance is somewhat academic, since a large ampli-

tude oscillation is likely to cause flanging and subsequent nonlinear

vibrations.

Matsudaira also investigated some simplifying assumptions about

the carbody, but found them inadequate to predict the observed

primary hunting. The assumptions tested were: (1) the body as a

translating reference of infinite mass; and (2) a half - body, split

at its center of mass and pivoted to allow yawing.

Others who have investigated full vehicles include Wickens [40,

41], Mauzin [42], Hobbs and Pearce [43], Weinstock [6], Marcotte [38],

and Joly [39]. In most cases these analyses apply, with changes in

parameters, to full vehicles with two rigid trucks or two wheelsets,

and to single, unrestrained, flexible trucks.

A few analyses have considered the distributed nature of the long

carbody [44].

A great deal of work has been done on carbody roll, which is a

major problem in freight car operation. Typically the problem has

been treated as a vibratory system (the carbody, center plate, side

bearers, and secondary suspension) driven by kinematic hunting without

back coupling [45, 46, 47, 48, 49].

From all the foregoing analyses, there are only a few results of

general applicability. The first is that the motion of a rail car at

any given speed consists mainly of a lightly - damped or unstable
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oscillation at a frequency very near wk; the shape of the mode is

more difficult to predict. Second, the onset of hunting instability,

primary or secondary, may be pushed to higher speeds by reducing the

constant of proportionality between wk and V:

k /V = / a / (kz+l)roh

from Equation 2.4.1. Third, when other constraints prevent reducing

this constant, hunting may be stabilized by increasing the yaw spring

constant between truck and carbody. The large number of parameters

required to characterize any but the simplest model have thus far

made further generalizations difficilt.

5. Novel Designs. The vehicles whose models have been discussed

above may be termed conventional, in that (1) they employ more - or -

less rigid wheelsets, (2) the vehicle is a distinct entity, which may

or may not be coupled into a train, and (3) the components, other

than distinct suspension elements, are intended to be approximately

rigid. A number of unconventional vehicle configurations have been

proposed as well, each of which is intended to overcome some of the

problems inherent in the conventional type.

Because the mechanism of hunting is caused by the connection of

two opposite wheels by an axle, some investigators have proposed

eliminating hunting by eliminating the axle. With independently -

rotating - wheels (IRW's), the guidance lost by discarding the action

of coned wheelsets is supplied by one of two principal means. The

Japanese National Railways are developing a trailing wheelset mech-
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anism steered by a light central guide rail [50, 51, 52]. Alternatively,

one may rely upon the gravitational stiffness of profiled wheels to

generate steering force [53, 54]. The latter method, applied to a

two - axle vehicle, eliminates hunting but introduces a new, lightly -

damped (but stable) mode of its own.

Flowers and Flowers [55] designed and tested a unique IRW truck

with a very flexible parallelogram linkage frame. Known as the

Difco truck, it was originally intended to negotiate tight curves in

mine service and was designed with cylindrical wheel treads. Fitted

with concave profiled wheels with significant gravitational stiffness,

however, the Difco truck might be suitable for high - speed appli-

cations.

The British have studied a self - steering flexible truck with

two rigid wheelsets so linked as to decrease curving error by yawing

into the curve [56, 57]. This truck is also said to offer certain

desirable dynamic properties.

A final design innovation worth noting is the Calspan proposal

for a flexible - spine unit train employing rigid wheelsets equally

spaced along the length.[58].

6. Automatic Control. To the author's knowledge, the techniques

of active automatic control have , areiyr. been applied to the problem

of rail vehicle lateral motions. Sarma and Kozin [59] carried out an

optimization of a rigid truck suspended from a translating reference

body. They used as a performance index a weighted sum of mean square

lateral error and control power. Some of the resulting optimal control
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gains were heuristically selected to give a suboptimal controller,

whose performance was found to be quite satisfactory. That suboptimal

suspension corresponds to a conventional rigid truck with the

additional feature of sizable gravitational stiffness at each wheel.

Active roll control devices intended to minimize passenger

discomfort in curves have been:inv4stigated, most recently by

Marcotte [38], and are being applied in the British APT.

Active suspensions have been applied frequently to solve the

problem of vibration isolation in vehicle suspensions [3, 4, 60, 61,

62]. Such studies commonly use optimization techniques to minimize

a weighted sum of mean square acceleration and displacement of the

passenger compartment, thereby including the conflicting requirements

of guidance and isolation. The difficulty in applying the results to

rail vehicles comes from two sources. First, the available control

studies have either assumed a spring - damper primary suspension or

have allowed complete freedom as to the suspension between the carbody

and the guideway; either assumption is unsuitable for a rail vehicle,

whose primary suspension contributes its own peculiar dynamics to the

problem. Second, the use of a mean - square performance index

disregards the grave impact of a pure tone (at the hunting frequency)

on passenger discomfort.

7. Systems Studies. Material on rail vehicle dynamics has been

integrated with other pertinent aspects of system design in TRW's

High Speed Rail Systems [1] and supporting studies. That report

contains information on propulsion, track and structures, signalling,
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economics, environmental constraints, and so forth. It is interesting

that the system recommended by the TRW study is a light - weight

electric train of essentially conventional design.

There is presently under way a cooperative effort among the

American Association of Railroads, the Rail Progress Institute, the

Federal Railway Administration, and other United States and Canadian

groups to develop and organize a body of theory on track and

train dynamics [63]. The main thrust of this program is toward

generating computer models to aid in making up and handling long

freight trains. Some of the tasks naturally involve modelling lateral

dynamics, such as that dealing with freight truck optimization [69].

8. Overview; Gaps in the Literature. From the number of studies

reviewed in this chapter, it should be evident that the lateral

dynamics of rail vehicles has been a subject of intense analytical

effort. The great bulk of prior work has attempted to find the linear

critical speed, Vc, above which small disturbances do not damp out.

Since large - amplitude hunting has been, and continues to be, the

most troublesome source of wear, damage, and derailment in freight

operations, it is to be expected that stability analyses would receive

first priority. Many investigators have gone on to include the effects

of nonlinearities on stability and on such large - amplitude problems

as flange forces and wheel climb; nonlinear studies have been done by

energy methods or, more recently, by computer simulation. Interest

in the transmission of lateral vibrations to the carbody has been

chiefly confined to some investigations of the gross rock - and -
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roll resonances exhibited by high center-of-gravity freight cars.

Certain serious gaps remain, however, in the information

available to the designer of high-speed rail vehicles. The issue of

ride quality has very seldom been addressed (an exception is in

Reference 1). The quality of the track and the sophistication of the

suspension combine to determine ride quality. Economics almost

invariably favor improvements to the suspension, so it is important

to understand the limitations and capabilities of advanced suspension

designs as they affect passenger comfort.

The possible application of automatic control to remedy the

inherent problems of the conventional rail vehicle has received

very little attention; neither has the use of independently-rotating

wheels, which have promise of being a simple solution to a number of

problems at both low and high speeds. Deliberate asymmetries in the

secondary suspension are similarly promising and similarly neglected.

These and other issues should be addressed, however, as pressure

for improved rail passenger service increases. Technically sophisti-

cated approaches to suspension design, perhaps justifiably rejected as

too expensive or too unreliable for freight operations, may appear

more attractive in the passenger environment. It is likely, too,

that there remain many improvements in freight car design which might

be made without incurring economic penalties. For these reasons it is

important that future studies of rail vehicle dynamics not be confined

to the formulation of ever more elaborate models of existing systems,

but should also point the way toward innovative and unconventional
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design concepts.
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CHAPTER 3

COMPONENT AND SYSTEM MODELS

This chapter contains the fundamental assumptions and models

which will be used in the remainder of this thesis. The vehicle is

divided into subsystems, and each subsystem (carbody, secondary

suspension, truck) is analyzed. Two complete vehicle models are

assembled from these subsystems, and their equations of motion

derived. Baseline parameter values, representative of a real high-

speed vehicle, are tabulated.

It was stated in Chapter 1 that the models developed here are

intended to be useful in discovering new ways in which to design

vehicles for better performance. Oversimplified models, which do not

adequately approximate the behavior of real systems, are clearly not

suitable; but neither are highly elaborate ones which, by including

effects which are minute under any foreseeable operating conditions,

become computationally unwieldy and opaque to physical insight. For

the purposes of this study, it was deemed essential that any dynamic

model reproduce the following three aspects of rail vehicle behavior:

(1) the mechanism of lateral guidance through creep forces, and the

possibility of instability due to hunting; (2) the influence of carbody

vibration, especially near resonance, upon stability; and (3) the

relationships between suspension design and the vibration transmitted

to passengers or cargo.
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1. Vehicle Subsystems and Coordinate System. A rail vehicle

may be conveniently divided into components as in Figure 3-1: a

carbody, supported on two trucks by means of two secondary suspensions.

The carbody is the structure which holds the passenger compartment;

in reality it also supports a collection of equipment, such as

generators and compressors, which are massive and resiliently mounted

and therefore may have significant dynamics of their own. Each

truck consists of four wheels, which may or may not be in the form

of two wheelsets (a pair of wheels connected by an axle is a wheelset),

attached to a basically rectangular truck frame by means of primary

suspensions (see Figure 3-2). The dimensions of the truck, measured

between contact points when it is in equilibrium between the rails,

is 2h (gauge) by 2kh (wheelbase). The length of the carbody between

truck attachment points is 2L. The secondary suspensions consist of

whatever assemblages of springs, dampers, and active devices connect

the trucks to the carbody.
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Axle positions shown dashed.

Circled numbers are wheel reference numbers.

FIGURE 3-2

Nomenclature for Truck Models
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The coordinate system being used is shown in Figure 3-1.

Lateral excursions from the nominal track centerline are termed "Y",

yaw angles are "$", and the direction of forward motion is "x".

2. Modelling Assumptions. A number of assumptions are necessary

at this point to constrain and simplify the analysis.

Rigidity. All trucks are rigid trucks as defined in 2.4.

Axles, if present, are rigid. The carbody is a rigid unit and so may

be characterized by its mass and moment of inertia.

Linearity. The equations of motion, in their final form,

will be linear. The effective conicity of the wheels, defined by

a = 3r / ay , (3.2.1)

is assumed constant; the assumption of constant a is exact for conical

wheel treads. The creep force relation is approximated by the linear-

ization of Equation 2.1.3 which, in vector form, is

F = -f v / V . (3.2.2)cr cr

The lateral gravitational stiffness at each wheel,

KL = -3F / 9y (3.2.3)

for static lateral displacements, is assumed constant (see Appendix B

for a derivation of KL under the assumption of constant radii of

curvature). All suspension elements are assumed linear; in particular,

no stops or flange impacts are permitted.

Symmetry. The carbody and trucks are assumed to be geo-
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metrically symmetric about their centers of mass. Passive suspension

elements (except as special cases of automatic controllers, as in

Chapter 8) have no preferred direction of action.

Constant Speed. The forward speed of the vehicle along the

track is assumed constant at V. If rigid wheelsets are used, their

rotational speed is constant at

= V / ro (3.2.4)

Small Motions. All linear and angular displacements are

assumed to be small. Therefore first - order approximations to

trigonometric functions (sinc~4, cos ~1) may be used.

No Roll. The carbody is assumed not to roll at all. The

roll of the axles, necessary to accommodate wheel conicity. with

lateral excursions, is assumed to be sufficiently slight not to affect

the wheel - rail contact angle (and hence the gravitational stiffness)

appreciably.

Notice that with all the foregoing assumptions, there are a

maximum of six degrees of freedom for a complete vehicle: translation

and yaw (y and b) for the carbody and each of two trucks.

Single Input from Rail. The only inputs considered are those

applied to the vehicle at the wheel - rail interface. This assumption

excludes body forces (e.g., wind), coupler forces, and braking and

acceleration.

The particular form of rail input being considered is of

importance. In general, the two rails might be treated as two distinct
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dynamic systems with different -- though correlated -- initial profiles.

The first assumption made here is that the two rails are rigid. The

second is that the rails do not deviate vertically from the ground

plane, an assumption justified by the fact that vertical inputs do not

couple to lateral motions in the absence of roll and of nonlinear

effects. The third and final assumption is that the rails undergo

lateral displacements while remaining parallel (i.e., at constant

gauge). Refer to Figure 3-8. An arbitrary pair of rail profiles

may, in the lateral direction, be decomposed into a component of

gauge variation about a fixed centerline, and a component of

centerline alignment variation at constant gauge. Under assumptions

of linearity, symmetry, and small motions, the action of gauge variation

may be seen always to be equal and opposite on opposite wheels. It

therefore contributes no net lateral force and may be correctly

dropped from further consideration. This thesis is concerned only with

parallel, rigid rails with alignment error from a straight ("tangent")

nominal centerline.

3. Carbody Models. Two models for the carbody will be used in this

work. The more complete is the "Rigid Plane Body" (RPB) model, in which

the body may both translate and yaw. A truck is at each end, at a

distance L from the center. The equations of motion for the RPB model

(using the force and moment direction conventions illustrated in

Figure 3-4) are:

(3.3.1)
y c = (Fbl+Fb2 ) / 2mc , and
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Carbody Models
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C -(TblTb 2) - L(Fbl-Fb2) (3.3.2)

I
C

The RPB model has two degrees of freedom. More importantly from the

standpoint of analytical complexity, it requires that the dynamics of

two complete trucks and their suspensions be included in the complete

vehicle model.

A simpler carbody model which preserves some important features

of the RPB model is the "Lateral Mass Only" (LMO) model shown in

Figure 3-4. The LMO model allows the carbody to translate but not

to yaw; only one truck is required. The equation of motion is

yC= -Fb / mc (3.3.3)

with $c EQ. The LMO model is a limiting case of the RPB model with

L + o and (3.3.4)

I -*2m L2  (3.3.5)C c

Furthermore, the commonly used "translating reference" carbody model is

a special case of the LMO model with m c-o*.
C

The utility of the LMO carbody model lies in the fact that,

without undue complexity, it takes into account the finite mass of

the carbody. It is therefore capable of showing primary hunting,

which occurs at a body resonance. It is also possible to examine the

vibration isolation properties of the secondary suspension using the

LMO model. The correspondence of LMO results to those obtained using

more elaborate models -- especially the RPB -- depends upon the values
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of system parameters. The latter issue will be examined in Chapter 9.

4. Secondary Suspension Models. The secondary suspension is the

connection between the truck and the carbody. For the purposes of

this work, the suspension acts in two directions, lateral and yaw. The

suspension elements may be active or passive. Of the infinite variety

of possible passive suspension configurations, the simple parallel and

series connections illustrated in Figure 3-5 have been selected as

representative. Inclusion of active elements will be deferred until

Chapter 6; at that time, the active force and torque, Fbc and Tbc, will

be assumed to act in addition to their passive counterparts, Fb and Tb'

In the lateral direction, the only passive suspension considered

consists of a linear spring and damper connected in parallel as in

Figure 3-5a. Such a parallel connection is necessary for there to be

a static stiffness in the secondary. Static stiffness is required to

resist side loads and to prevent lateral drift. It is defined by

Fb K bcb) - B (yb-ycb) , (3.4.1)

where y cb is the lateral displacement of the truck attachment point

(as distinguished from yc, the lateral displacement of the carbody

center of mass). Notice that Fb acts on the truck in the y direction.

No static yaw stiffness is required in the secondary for a four-

wheeled truck. The creep forces alone will keep the truck approximately

aligned with the track, and the flanges will limit yaw excursion. The

carbody, being supported at both ends, derives its yaw stiffness pri-

marily from the lateral stiffness of the two secondaries. Therefore it
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is reasonable to define two basic passive yaw suspensions as in

Figure 3-5a and 3-5b. The first ("K-B parallel") has the spring and

damper in parallel, so

Tb = ~Kb b- b( b c) , (3.4.2)

where again Tb is defined as positive acting on the truck. The

second arrangement ("K-B series") has the spring and damper connected

in mechanical series. This form of suspension introduces an addi-

tional order, viz.

Kb
T b _K(b - B T b (3.4.3)

The K-B series yaw secondary is of practical use when it is desired

to have a high stiffness against dynamic (high - frequency) motions

but a low stiffness against quasi - static motions (for example,

curving).

5. Truck Models. It is the behavior of the trucks which gives

the lateral motions of rail vehicle their unique character. Two

types of rigid trucks will be considered here: the "rigid conventional"

(RC) and the "rigid, independently - rotating wheeled"(RIW) trucks.

As shown in Figure 3-6, both share essential geometric properties. It

has already been stated that the trucks are rectangtlar and symmetric

with gauge of 2h and wheelbase of 2kh. The effective conicity is a,

and the equilibrium (centered) rolling wheel radius is r0. The

difference is that the RC truck has rigid axles which rotate at constant

speed, and the RIW does not.
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JIL

Fb

Tb

(a) Rigid conventional (RC)

(showing conical wheel treads)

Fb

Tb

(b) Rigid with Independently - Rotating Wheels (RIW)

(showing concave wheel treads)

FIGURE 3-6
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It is convenient at this point to introduce the following new

variable definitions:

; b b '

b cb

vc = c ,and

W c c

For this section on truck models only, the subscript "b" will be

dropped since just truck motions are of interest.

RC Truck. The RC truck is capable of deriving its guidance

from creep forces alone, and does not depend upon gravitational

stiffness. Consider Figure 3-7. LetAltand J be unit vectors in the

x and y directions respectively. Then the absolute hub velocities

are:

wheel 1: 1 (V + wh[coso-k- sinfi) + (v + wh[k cosq+sinf])

wheel 2: 1 (V - wh[cos*+k sinfl) + (v + wh[k cos -sin4])

wheel 3: 1 (V - wh[cos -k sinl]) + (v - wh[k cos +sin4])

wheel 4: 1 (V + wh[cos*+k sin*]) + J (v - wh[krces$-sinfJ)

(3.5.1)

Recall that from Equation 3.2.4, the spin or rolling angular

speed of the axle is constant at Q=V/rO, an assumption which is good

to second order for a rigid wheelset. Then the velocity of the wheel

rft at the contact point, -relative to the hub, is:
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Diagrams for Derivation of Creep Velocities
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wheel 1: r (-A ry cos) + j (-Q r1 sin4)

wheel 2: 1 (-Q r2 cos4) + j (-Q r2 sin4) (3.5.2)

wheel 3: 1 (-Q r3 cost) + j (-S r3 sin )

wheel 4: i (-Q r4 cosO) + j (-2 r4 sin4 )

-The lateral position of the rail under each wheel -- assumed here

to be equivalent to the lateral position of the contact point -- is

measured from the nominal gauge as yir for the ith wheel. Due to

the linearized action of the effective conicity, the rolling radius

r. for each wheel is:

wheel 1: r = ro - a(y+kho-ylr)

wheel 2: r2 = ro + a(y+kho-y2 r) (353)

wheel 3: r3  - ro + a(y-kh -y3r)

wheel 4: r4  = ro - a(y-kho-y4r '

where the small - angle assumptions have been made.

The absolute velocity of the wheel rim at the contact point is

then the vector sum of the hub velocity and the relative rim velocity.

The creep velocity is the vector difference of the wheel rim and rail

velocities at the contact point. The rail velocity in the x direction

is zero. In the y direction, the apparent rail velocity is due to the

encounter of a spatial irregularity profile at the forward speed V,

but in any case is the time derivative of yir'

(3.5.4)ir yir
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For the assumption of parallel rails and small displacements,

lr = 2r rf

3r =4r rb

v =v
lr = v2r rf

V3r =4r vrb

(3.5.5)
, and

Combining Equations 3.5.1, 3.5.2, 3.5.4, and 3.5.5 gives for the

creep velocity at each wheel (with small - angle approximations):

wheel 1: 1

+j

wheel 2: 1.

+j

wheel 3: 1

+j
t

wheel 4: 1

+j

(V + wh - wkh$ - Or1 )

(v + okh + wh$ - Or 1 - v )

(V - wh - wkh$ - r2)

(v + wkh - wh4 - r2$ - vrf)

(V - h + wkh4 - Or3 )

(v - wkh - wh4 - Or 3 - v rb)

(V + wh + wkhp - Or4)

(v - wkh + wh$ - Or 4 - v rb)

(3.5.6)

The total net creep force is:

f + - + -
F - (v +v +v +v )-icr V crl cr2 cr3 cr4 (3.5.7)

where vcri is the creep velocity of the ith wheel. Similarly,

the net creep torque is:

f +- + + +- +T =--h (v -v 2 -v +vc)rcr V crl cr2 cr3 cr41

- kh (v +v 2-v 3-v 4).j
(3.5.8)
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Substituting Equations 3.5.3 and 3.5.6 into Equation 3.5.7 gives

the following expression for creep force:

4f 4f rf___rb
F = Vb + 4f + -- . (3.5.9)
cr b b V 2

The subscript "b" has been reintroduced for clarity. Notice that

for the parallel - rails assumption, nonlinear terms in QAyb vanish

identically.

In a like manner, substituting Equations 3.5.3 and 3.5.6 into

Equation 3.5.8 gives for creep torque:

T 4fh2 (k2+1) 4fha
cr V b ro -b

k vrb I r+y (3.5.10)

+4fkh vrf'-vrb +4fha Yrf rb
ro 2 r0  2

In addition to the creep forces, forces act at each wheel due to

the gravitational stiffness KL. The net force and torque on the

truck due to gravitational stiffness are:

F = - 4 ;.KL yb - YrfYrbj , and (3.5.11)

T = - 4 KL kh kh b- Yrf~ rb . (3.5.12)
g b 2 J

Finally, the truck is acted upon by the secondary suspension

with force Fb and torque Tb. If the truck has mass mb and moment of

inertia Ib' force and torque balance gives the following equations

of motion for the RC truck model:
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Ob Yb = F cr + F 9+ Fb

I O = Tcr + T + Tb

which, after making the indicated substitutions and defining

k = (k2 + 1) (3.5.13)

are:

= Vb

=- 4KL/mb)yb + (- 4 f/mbV)vb

+ ( 4 KL/mb ([Yrf+y rb]/2) +

~ "b

S(-4fha/Ibro)yb + (-4KLk2h2

+ (4 fha/IbrO)(y rf+yrb]1/2 )

+ (4fkh/Ib V )([vff, ]/2 )

+ (4f /mb b

(4f/mbV) [vrf+rb]/ 2 ) + (1/mb)Fb

fIb b + (-4fh2k /ibv)w

+ (4KLkh/Ib) YrfYrb] /2)

+ (l/Ib)Tb

(3.5.14)

Notice that the rail inputs appear both in an "in - phase" form

(e.g., yrf+Yrb) and an "out - of - phase" form (e.g., yrfCyrb '

RIW Truck. The truck with independently - rotating wheels

differs from the conventional truck in that there are no axles to

develop a centering torque by creep. The RIW truck derives its center-

ing action from the gravitational stiffness at the wheels; conical

wheel treads are therefore unsuitable for use with independent wheels.

The four wheels are assumed to roll without slip perpendicular to

their axes of spin, but they may slip or creep parallel to those axes.

yb

v b

$b

Wb
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The hub velocities are as given in Equation 3.5.1. The wheels will

not support creep along their spin direction; the direction of creep

at each is along the axle. The values of the creep velocity in the

direction

+
- i sino + j cosO

for each wheel are:

wheel 1: (v-v rf)cos + wkh - V sino +

wheel 2: (v-v rf)cos + kh - V sin$
rf (3.5.15)

wheel 3: (v-v rb)coso - wkh - V sino

wheel 4: (v-vrb)cos4 - wikh - V sin$ .

Making the small - angle approximations, Equation 3.5.15 yields the

following expressions for creep force and torque:

F 4Iv rfrb + 4 f (3.5.16)cr 2

4fk2 h2  ____IV ____ ;Tcr V + L rf-vb (3.5.17)

Gravitational force and torque are as in Equations 3.5.11 and

3.5.12. The resulting equations of motion for the RIW model are:

yb =vb

vb = (-4KL/mb)yb + (- 4 f/mbV)vb +b

+ (4 K/mb ([Yrf+yrb]/2) + ( 4 f/mbV) ([vrf+vrb]/ 2 ) + (1/mb)Fb

b b

=o (-4KLk2h2/ Ib b + (-4fk2h2 /,bV b +..
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+ (4Kukh/Ib )('Yrf-Yrb]/ 2) + (4fkh/IbV ([vrf-vrb]/2)

+ (l/Ib)Tb

(3.5.18)

Points of Commonality. Comparison of Equations 3.5.14 and

3.5.18 reveals that the RIW equations may be brought into correspondence

with the RC equations by making the following parameter identifications:

k + k2  , and (3.5.19)

a + 0 . (3.5.20)

This fact simplifies the analysis by enabling one to deal with only

one set of formal equations (the more general RC set), the model of

interest being determined solely by parameter values.

It is worthy of note at this point that the formal equating

of conicity to zero in the RIW model eliminates the source of stable

and unstable hunting action.

6. Equations of Motion: LMOOComplete Vehicle. In this section,

a vehicle model is introduced which will be the basis of much of the

analytical work in the remainder of the thesis. It consists of the

LMO carbody assembled with one RC (reducible to RIW) truck by means of

a K-B-parallel secondary (both lateral and yaw). The same model with

a K-B-series yaw secondary is also included for completeness. Full

equations of motion are generated, and transfer functions for carbody

Iatdral acceleration are derived.

K-B-Parallel Yaw Secondary. The vehicle model with secondary

yaw spring and damper in parallel is illustrated in Figure 3-8. The
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equations of motion may be obtained by combining Equations 3.3.3,

3.4.1, 3.4.2, and 3.5.14. For the LMO carbody, =0 and y =y .c cb c

The two rail inputs, yrf and yrb' and their derivatives are

perfectly correlated under the rigid - rail assumption. Therefore,

only one input (chosen as yrf) is necessary to describe the system.

Defining the truck time delay

= 2 k h / V , (3.6.1)

it is clear that

yrb Yrf A[T] , (3.6.2)

where A[T] is the linear delay operator. Then using the time

derivative operator P;

yrb AT] rf

V rf = rf (3.6.3)

vrb = rf

One may express the general linear single - input dynamic system

equations thus:

d
= A x + byf , (3.6.4)

a vector equation in which x is the state variable vector, and A

and b are matrices of dimension n by n and n by 1, respectively,

containing constants and linear operators. The A and b matrices for

the LMO system with K-B-parallel yaw secondary are in Figure 3-9.
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MODEL: RC (RIW) - LMO, K-B-Parallel Yaw Secondary. n=6.

STATE VECTOR:
T

INPUT VECTOR: for yrf' b

0

0

0

(1+[-l]) ([2KL/mb]+[ 2f/mbV]P)

0

[ (1+A[T]) (2fha/Ibr o)

CHARACTERISTIC MATRIX: A =

+ (l-A[1]) ( 2KLkh/Ib]+[2fkh/IbV]P)

0 0

(-Kc/mc) (-Bc/m) (+Kc /m) (+Bc/m)

0 0

(+K /mb) (+Bc/b) 4 KL-K
c i' 2%

0 0

-4fha
0 - I

Ibro

1

-4f/V-Bc

0

0

0

0

(+4f /mb)

0

0

0

0

0

1

-4KLk 2h 2,gKb -4fh 2 k /V-B
I b b

FIGURE 3-9

System Matrices for the LMO Vehicle Model with K-B-Parallel Yaw Secondary

0

0

0

0
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K-B-Series Yaw Secondary. The vehicle model with secondary

yaw spring and damper in series is illustrated in Figure 3-8b. The

development of equations of motion exactly parallels that above, except

that Equation 3.4.3 is used in place of Equation 3.4.2. The resulting

system is seventh order, with the matrices given in Figure 3-10.

7. Equations of Motion: RPB Complete Vehicle. The most complex

model to be considered is shown in Figure 3 -8c. It consists of an

RPB carbody with an RC (or RIW) truck at each end. The only yaw

secondary considered is of the K-B-Parallel type.

The development of equations of motion is similar to that of the

preceding section, with differences arising from the presence of two

spatially separated trucks. The truck attachment point lateral

displacements used in Equation 3.4.1 are:

front truck: ycbl yc + $cL , and
(3.7.1)

rear truck: ycb2 = Yc - *cL .

Also, the rail inputs at the rear truck are delayed by the time

TL = 2 L / V (3.7.2)

from the corresponding inputs at the front truck. It is useful-to

keep the rail input atethe front axle of the front truck as the

single input to the complete system. Therefore,

yrfl = rf , and
(3.7.3)

Yrf2 rf A[L)

where the numerical subscript refers to the truck in question.



MODEL: RC (RIW) - LMO, K-B-Series Yaw Secondary, n=7

STATE VECTOR:
T

x = yc , v ,j bl b b yl~ , T bw ]

INPUT VECTOR: for yrf' b =

0

0

0

(1+A[T])([2KL/mb]+[2f/mbV]P)

0

(1+A[T])( 2fht/Ibro) + (1-A[-l)([2KLkh/Ib]+[2fkh/IbV]P)

0

CHARACTERISTIC MATRIX : A ... see next page

FIGURE 3-10

System Matrices for the LMO Vehicle Model with K-B-Series Yaw Secondary

I

I Ij



0

(-B /m )

0

(+Bc/mb)

(+Kc /m )

0

- 4 KL-Kc

0 0

0 (- 4 fha/Ibr o)

0 0

1 0

FIGURE 3-10 (ctd.)

Characteristic Matrix (A) for the LMO Vehicle Model with K-B-Series Yaw Secondary

(-K /m )

0

(+K/c/mb)

0 0

0 0

0

0 0

0

0

(+Bc /m) )

1

-4f /V -B c

0

0

0

0

0

0

(+4 f /mb)

0

-4KLk 2h2

b

00

1 0

-4fh~k
S s

IbV

-I

(-Kb) (-Kb/Bb)

0 0
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The resulting equations of motion are twelfth order, and some

parameter group definitions will aid in presenting them. Define the

mass and inertia ratios

P = mb/mc (3.7.4)

P. = L b/I (3.7.5)

and the length parameter

q = (mbL)/Ic . (3.7.6)

These and other parameter groups (g1, g2 2 ''' g1 9) are tabulated

in Table 3-1. Groups g1 1 through g1 6 are reserved for later use in

the context of automatic control gains.

With the nomenclature defined above, the RPB model with RC or

RIW trucks obeys Equation 3.6.4 with the matrices of Figure 3-11.

8. Acceleration Transfer Functions: LMO Complete Vehicle. For

studies of ride quality, the output variable of primary interest is

the acceleration of a specified point in the passenger compartment,

or carbody. In the case of the LMO carbody: model, any point on the

carbody is equivalent and its lateral acceleration is yC. It has been

possible to obtain analytical expressions for the transfer functions

relating rail input, yrf, and carbody acceleration for the two LMO

models of Section 6 above.

For a single - input, single - output system, the transfer

function for the selected state variable may be obtained [64] by the
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TABLE 3-1

Parameter Groups for Rigid Plane Body Vehicle Model

parameter name definition

Pm mb/mc

Pi Ib /c

q z mbL/Ic

SBC/mb

92 ~K /mb

g3  Bb /Ib

g4 Kb/I b

g5  
4 f/(mbV)

g6 L4 Kb/mb

97 4f /mb

98 4fha/ (Ibro)

99 4fh2k /(IbV)

910 4KLk2h2/ib

g - g16  [reserved]

917 4fh2ks /b

918 1/(kh)

919 4fk2h2/Ib



MODEL: RC (RIW) - RPB, K-B-Parallel Yaw Secondary, n=12

STATE VECTOR:

INPUT VECTOR:

T
x = [y c, v c, w

for yrf' ,b=

0

0

0

0

0

[(l+A[T])/2]

[(1+A[T])/2]

Ybl, vbl' bl' Wbl' Yb2, Vb2 $ b2' Wb2I

[g 6 + g5P]
0

[g 8 ]
0

{A[t L]} {[(l+A[T])/2]

0

{A[T L]} {[(l+A[T])/2]

+ [(l-A[r])/2]
[g 1 0918 +(g 1 8g 1 9/V)P]

[g 6 + g5P]}

[Ig 8 ]
+ [(l-A[Tf]/2]

[g 1 091 8 +(g 18g1 9/v)P]}

CHARACTERISTIC MATRIX: A ... see next page

FIGURE 3-11

System Matrices for the RPB Vehicle Model with K-B-Parallel Yaw Secondary

-4
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0
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FIGURE 3-11 (continued)
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following procedure. First, apply the Laplace transform to Equation

3.6.4 to yield

s X(s) = A(s)X(s) + B(s)U(s) , (3.8.1)

where s is the Laplace variable and X, A, and B are matrices all of

whose elements have been transformed. Of especial importance-are the

following transforms:

L(A[T]) = e-tS , and (3.8.2)

L(P) = L(d/dt) = s . (3.8.3)

Second, solve Equation 3.8.1 algebraically for the required elements

of the transformed state vector X; Cramer's Rule may be used for this

purpose. Third, combine the elements of X as required to produce the

desired output. In the present case, the relationship between the

output, Yc, and the state vector is a simple one, namely

Y c(s) = s2y c(s) . (3.8.4)

This procedure may be further specialized for purposes of computation.

Appendix B contains the methods used during this work to obtain

transfer functions partially or wholly in symbolic form using the

formal algebra computer languages Formac [65] and Macsyma [66].

Transfer functions of acceleration for the IMO carbody model

involve only a single delay at the input -- the wheelbase transit

time -- and may be written in the general form:
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S1+e -)b . + ( 1 T )b } s. 1 2 pi 2 mii=O
G (s) = {s21

I . s
i=-0

(3.8.5)

with

G (s) L(yc (3.8.6)
a L(yrf

rf

For sinusoidal inputs, the coefficients b . represent the

influence of in-phase rail inputs at the front and rear axles, and the

coefficients b mi represent the influence of out-of-phase inputs. A

useful simplification is obtained by forcing T to zero -- i.e.,

neglecting the phase difference between axles. The resulting simpli-

fied transfer function will be termed the "envelope" approximation,

since at low frequencies the wheelbase-transit time is insignificant,

and at high frequencies the out-of-phase inputs do not couple

significantly to lateral displacement; at these extremes, then, the

approximation follows and limits, respectively, the exact transfer

function.

The parameter groups in Table 3-2 recur sufficiently often to merit

being given names. The acceleration transfer function coefficients are

tabulated in Table 3-3 (for K-B-parallel yaw secondary) and Table 3-4

(for K-B-series yaw secondary) using the new notation.

9. Baseline Parameter Values. The nominal values which will be used
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Parameter Groups for

parameter name

CABLE 3-2

Transfer Functions, LMO Models

definition

Mb/mc
BbV/ (4fh 2k s
B cV/(Of)

2kh/V,

4f / (mb

Kc (1+pm) + 4KL
Kb + 4KLk2h2

1 + Pbc 1+pm
Kc + 4KLPbc

4fh2ks

4fhaV/(Ibro)

Bb + 4fk2h2/V

P m

Pbb

Pbc
T

Si

S
2

S
3

S 4
S
5

S6

S 7



TABLE 3-3

Transfer Function Coefficients: RC (RIW), LMO, K-B-Parallel Yaw Secondary

n=6, m=4

DENOMINATOR

c5

c =c4

c 3

c =

c1

1

95 S 3 + S5(1+pbb

g5S3S5(+pbb) + S2 Ib+ S/b + g5 mPbc

95[( 2S3 / b)+(S4pm/mb)] + S5 (1+pbb) [(S1/mb)+g5 2 Pmpbc]

5 [S6+,(S4S5PM{1+bb}/mb)] + :(S2/b) [(S1 /mb)+g 25 P mbc] + (4KKLpm/b2 )
95 2mbcS6 + [4KcKLPrmS5(+Pbb mb2] + [g5pmS2S4 b b
5Kcm S6/mb + [4KKc K Sn2 )2b

NUMERATOR (in-phase)

b = g5 pmbc

bp3 = 5 m S4/b + g52 Pmbc(+Pbb)S5

bp2 25 mbcS2 1b + /m E5S4S5 1+pbb)+(4KC

bpi = pmbcS6 + (m [5S2S4 b)+(4KcKLS5{1+pbb

bp0 m b g5KcS 6 + (4KcKLS 2/fmblb})]

(continued)

I00



TABLE 3-3 (continued)

NUMERATOR (out-of-phase)

b =
bm 3
b =

b =,bml

0

0

95 3MbVkhpmpbc b
95

2Vkhp S4 / Ib

95 (4VkhK cK L pm) / (Mbb)

Is.



DENOMINATOR

c7 =
1

c6 5 S3 + S5 + (Kb/Bb

c5 (Kb /B) [g5 S3+S5] + g 5 S 3 S 5 + (Si/mb) + (S2 b + g5 mbc
c = [(Kb/Bb)+S][(Sm)+g5 2 PmPbc] + g5S(S2 /b)+S5 Kb b)] + (g5pmS4/mb) + [4K k2h2Kb b B
c3 = [S5 (Kb/Bb)+(S2 /I)][(S1/b)+g5 2P mbc] + (S g5pm/mb 5+(Kb b

+ g5 [S 6+(4K k2h2S 3K /{IbBb)] + 4p mKc KL/M 2

c2 5S6 (K b/B+b g5 Pmbc] + (4KCKLpm/mb2) [S5+(Kb/Bb)] + (5pmS4/mb 2 b)+S5(Kb b
+ [4KLk2h2Kb/ (IbBb)] [(S/b)+g5 2 mPbc]

C6 = 95S6Pm b+(g5pbcKb/B )] + [4pK Iu (mbbu2 Kcb k2h2 b b
+ [4 pmKclKS

5Kb/ (mb2Bb)]
c (PMKcK/Bb)[(g

5 S6/mb) + ({4KLk h /mbl2/ b

NUMERATOR (in-phase)

bp5 g5 2m~bc
bp4 = (g5PmS4/b) + (g5 Pmpbc[S5+(Kb /B)3

(continued)

TABLE 3-4

Transfer Function Coefficients: RC (RIW), LMO, K-B-Series Yaw Secondary

n=7, m=5

I00



TABLE 3-4 (continued)

bp3 5 mbc 2 b )+ 5 (K/Bb 5mS4/mb)[S5+(Kb/ b)] + (4KKp/m 2 )

bp2 = 5 mbc M6+(4KLk2h2Kb b Bb] + (g5-mS4/mb 2 b)+S5 Kb/Bb

+ (4KCKLpm/ 2) [S5+(Kb/Bb]

bpi = +5 mS6 [ 5pbc Kb b + 5[4&pmK/(mbBb)][(S K C/mb)+(S4g5 k2h2 /Ib
+ [4K cKLm 2 /(2Ib)]

p0 PmKcK/Bb) ( 6 5/b)+({4K kh/mb}2 b

NUMERATOR

b 
=

bm 4

b m2

b m2

bm

(out-of-phase)

0

0

95
3 nmbVkhppbc /b

(g5
2Vkhp /Ib S4+(g 5 mpbcKb/Bb)]

(g5Vkhp m/Ib [4gKK4 /B b)+(4KcKL

(g5 Vkhp m/I b )4cKLKb/(mbB b)

cx,
U,
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for parameters in the numerical examples throughout this work are

listed in Table 3-5. They are based on the measured data on the

Japanese New Tokaido Line (NTL) car studied by Matsudaira [36], and

are representative of U. S. practice for light rail vehicles. Two

baseline values are listed for KL, one of them zero. The zero value

is for conical wheel treads (as on the NTL vehicle), and is standard

for RC models. The nonzero value corresponds to concave treads with

AR=5 inches (see Appendix A), and is used for RIW models.

10. Importance of Finite-Mass Vehicle Body Models. It has been

remarked that the "translating reference" carbody models frequently

used to study secondary hunting may-not'provide a satisfactory

estimate of the critical speed, Vc, at which hunting becomes unstable.

Such models are based on the assumption that the truck mass is

negligible in comparison with the carbody mass -- an assumption which

is not justified for most passenger cars (p m=0.53 for the baseline

NTL vehicle, whereas p =0 would be required for the translating

reference model to be exact). An example will illustrate the

discrepancy between results obtained from the finite-mass LMO model

and from the infinite-mass model. Figure 3-12 shows the damping

ratio, E, of the most lightly damped pair of roots of a rigid truck

model studied by Clark and Law [33]; the frequency of these eigen-

values is very close to the kinematic hunting frequency. Both curves

were generated using the parameters of Reference 33 in the LMO

characteristic polynomial of Table 3-3. The solid line corresponds to

setting p m=0 to conform to the translating reference model used in the
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TABLE 3-5

Baseline Parameter Values

parameter and definition value

truck mass

carbody half mass

truck inertia

carbody inertia

half gauge

wheelbase/gauge ratio

equilibrium wheel radius

conicity (effective)

half carbody length

wheel-rail curvature
difference (profiled)

K b secondary yaw stiffness

Bb secondary yaw damping

Kc secondary lateral stiffness

B secondary lateral damping

grav. stiffness (RC)

KL grav. stiffness (RIW)

f creep coefficient

684.05

1300.

1.591x10 6

2.112x108

29.528

1.6667

17.91

0.025

25.

5.

4.196x10 8

0

4.834x104

6.714x10 3

0.

3.8367x104

2.896x10 6

V forward speed (default)

slug

slug

slug-in2

slug-in 2

in

in

ft

in

slug-in2/sec2

slug-in2/sec

slug/sec2

slug/sec

slug/sec2

slug/sec2

lbf

mph

units

Mb
m
c

Ib

c

h

k

r0

a

L

AR

100.
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FIGURE 3-12

Comparison of LMO and Translating Reference Models

(Based on Clark and Law [33])
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paper, and the dashed line to using the baseline value of p =0.5262.m

The introduction of finite carbody mass results in the reduction of

critical speed from 137 to 35 mph. The curves approach one another

in the high-speed limit, where the carbody may correctly be assumed to

be nearly stationary. At low speeds and low wk, however, hunting is

destabilized by finite carbody mass due to two mechanisms. First,

truck and carbody masses add at very low frequencies, so that more

stiffness is required to overcome dynamic inertial forces than would

be if the carbody were stationary. Second, a broad resonance due to

oscillation of the carbody on the secondary suspension is centered

around 90 mph, contributing to a primary hunting instability completely

absent in the translating reference model. It is clear that under

some conditions, a dominant mode of instability can be entirely missed

when carbody mass is not taken into account.

Figure 3-13 shows similar plots of damping ratio versus speed

based on Matsudaira's published results [36]. Three curves of E for

the least damped roots are shown, using the parameter values given in

Reference 36 in three models of successively increasing complexity:

(1) one truck attached to a translating reference (dashed); (2) one

truck attached to an LMO carbody (solid); and (3) two trucks attached

to a carbody with lateral, yaw, and roll freedom (solid-dashed). For

this set of parameter values, the three models agree within 5% in

their predictions of critical speed (about 250 mph). But in the range

of 0-200 mph, both the LMO and the seven degree-of-freedom models

show substantial reduction of damping due to carbody effects; the
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fact that field tests showed instabilities (or perhaps resonances)

in this speed range suggests that finite carbody mass cannot be

correctly ignored.

It should be noted that the parameters used in [36) correspond

to those of the baseline NTL vehicle with the exception of creep

coefficient f, which was effectively 1.448x10 6 lbf in the reference.

Use of the baseline value of f yields curves which are similar in

shape to those of Figure 3-13, but displaced downward; Vc is reduced

to approximately 200 mph.

11. Characterization of Rail Profile. Allowable lateral rail

profiles have been restricted by Equations 3.5.5 to those involving

parallel (or constant gauge) deviations of both rails from a straight

nominal centerline. This assumption is imbedded in the equations of

motion; any sort of function (e.g., steps, ramps, sinusoids) may be

used for the input yrf*

When a vehicle traverses a real guideway, however, it encounters

rail inputs which are at least partially random in character. There

may also be periodic components arising from such origins as rail

joints and track supports. For the purposes of predicting vehicle

response to this environment, it is necessary to find a statistical

description of the input. It has been experimentally discovered [1,3]

that for a wide variety of guideway types and over a broad band of

component wavelengths, the amplitude of irregularities at a given

wavelength (measured along the guideway) is roughly proportional to the
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wavelength. When irregularities of this nature are encountered by

a vehicle moving at speed V, the resulting temporal spectral density

of input displacement impressed upon the vehicle suspension is

A V AV , (3.11.1)
yys2

where A is a roughness parameter (with dimensions of length) and

s is the Laplace variable; in this context

s = j , where (3.11.2)

j = ~l .

If there are important periodic components in the input, or if it

is necessary to deal with a very wide range of frequencies, this

approximation is inadequate. In particular, notice that it gives

an infinite mean square deviation because of the large excursions at

long wavelength (low frequency). However, the expression of

Equation 3.11.1 is a satisfactory approximation over the frequency

range of interest to a guideway without periodic content, and due

to its analytical simplicity it will be used exclusively in this

work.

All spectral densities considered here are single - sided --

i.e., integration over positive values of frequencies only will yield

the correct value of mean square. With this definition, a suitable

value of the roughness parameter A is that for welded rail in good

condition. [11:

A = 1.2566x10-6 ft. (3.11.3)
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CHAPTER 4

PERFORMANCE OF CONVENTIONAL VEHICLE WITH LATERAL-MASS-ONLY

CARBODY, UNCONTROLLED

In this chapter three important measures of the performance

of a rigid conventional truck mounted on a lateral-mass-only carbody

(RC-LMO) are examined: stability, ride quality, and tracking error.

The most direct means of improving dynamic behavior is found to be

increasing the stiffness resisting yaw of the truck; this may be

accomplished either in the secondary by increasing the yaw stiffness

Kb between truck and carbody, or at the wheels by using profiled

treads to create a gravitational stiffness K1 . Putting a damper in

series with the secondary yaw stiffness is suggested as a means of

overcoming certain practical difficulties with the use of large Kb.

1. Stability. Stability of operation is essential to a vehicle,

and has been the property most extensively studied in the past. In the

context of this thesis, stability means asymptotic stability for small

perturbations; it is also possible for a system to be stable for small

perturbations but unstable for larger ones [30], a situation which

requires nonlinearities and is not considered here. For linear or

linearized systems, asymptotic stability depends only upon the

characteristic polynomial, or denominator of the transfer

functions. If any of the roots of the characteristic polynomial (C.P.)

have positive real parts, the system is unstable. The presence of

unstable roots may be determined in two ways: (1) by solving for the



-94-

roots explicitly (i.e., determining the system eigenvalues), or

(2) by applying an indirect test such as the Routh-Hurwitz criterion

[64]. Eigenvalues contain more information than is necessary to

answer the simple question of stability, so the second method is

used for the stability analysis.

Only parallel connection of Kb and Bb is considered in this

section. Series connection is discussed in Section 5.

The C.P. which applies to the RC-LMO vehicle is given by the

coefficients "c" in Table 3-3, with a nonzero and k =k2+1. Some
5

insight into the behavior of a conventional truck may be gained by

considering the limit of these coefficients for low speed (V-*O, or

"crawl"). Restricting attention to a truck with coned wheels (KL=O)'

and retaining only low-order terms in V-1, gives:

5 5 (1 + mbksh2/Ib)

S4 ~g5 
2 (mbksh2/Ib)

* 3 g 2 (p k h2B /I ) (4.1.1)3 5m s c b

* 2 g 2 (p k h2K /I )2 5 m s b

co g5 2V
2 (p K h/I ro)-a .

A necessary but insufficient condition for asymptotic stability is

that each of these coefficients have the same sign [64], which in

particular implies that Kc, BC, Kb, and a must all be positive if the

system is to be stable at even very low speeds. In the numerical
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examples which follow, it will be shown that large yaw stiffness

remains a primary means of stabilizing hunting at all speeds. The

physical interpretation of this stabilizing role of Kb is that

secondary yaw stiffness acts to align the truck with the carbody

(which in turn is approximately aligned with the track), thereby

opposing the buildup of kinematic oscillations. Yaw damping, Bb

has a negligible effect on stability at low speeds. At higher speeds

damping retards the steering action of the truck and thereby makes

hunting worse, although the contribution of the secondary damper is

normally very small compared to that of creep friction. For the

baseline vehicle, based on NTL parameters, B b=0. Many actual

vehicles, especially freight cars, use Coulomb friction yaw damping

to stabilize hunting; the effect of friction damping, however, is

radically different from that of linear damping and is beyond the

scope of this thesis.

An alternative means of obtaining the effect of yaw stiffness is

to use concave, rather than conical, wheel tread profiles. For such

wheels it has been shown that there is a gravitational stiffness KL.

If there are four wheels, each with KL, on a rectangular truck, the

net effective yaw stiffness from their action is 4KL(kh)2 -- a fact

embodied in the expression for S2. The use of gravitational stiffness

has certain advantages over secondary yaw stiffness as a means of

suppressing hunting. Since gravitational stiffness acts between rails

and wheels, rather than between carbody and truck, it does not rely

upon alignment of the carbody with the track for its proper effect.
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A high secondary yaw stiffness can impede curving by resisting the

truck's natural tendency to yaw with the curve; this problem does not

exist if the yaw stiffness is relative to the track. The difficulty

of aligning the truck in yaw so that there is no bias in the yaw

spring is eliminated. The net effective rotational stiffness

obtainable in this manner is considerable, arising as it does from

a component of the vehicle weight applied with a sizable moment arm.

There is no problem with transmitting torque through a flexible truck

frame, wince forces are applied directly at the wheels. The difficulty

with concave wheel treads is that if they are poorly designed, or

simply allowed to wear down, the effective conicity can increase

markedly. This increasing conicity increases the kinematic hunting

frequency (see Equation 2.4.1) and places added demands on yaw

stiffness which may exceed the extra stiffness made available by KL.

(As an example, if the conicity of the baseline RC-LMO vehicle is

increased to 0.05, total yaw stiffness must be nearly doubled to

8.1x10 8 slug-in2/sec2 in order to maintain critical speed at 200 mph.)

An idea of the potential added stiffness from worn or profiled

wheels may be obtained by taking the RIW baseline value of KL from

Table 3-5. Then the added effective yaw stiffness is

4KL(kh)2 = 3.717 x 108 slug-in2/sec2 ,

a value comparable to the baseline Kb for a conventional truck.

Figure 4-la shows, for an otherwise baseline RC-LMO vehicle, the

loci of one of a complex conjugate pair of poles corresponding to truck
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hunting for each of two speeds (100 and 200 mph), as Kb is increased

from zero to ten times its baseline value of 4.196x10 8 slug-in2/sec 2.

Both speeds are unstable (i.e., have poles in the right half-plane)

at Kb=0 . The nominal value of Kb stabilizes both, but the margin of

stability at 200 mph is very small. Further increases in Kb increase

the damping ratio significantly. The natural frequency increases

slightly also, but the fact that it remains fairly constant over a

wide range of yaw stiffness shows the strong influence of kinematic

hunting on the dominant frequency. For comparison, Equation 2.4.1

predicts a kinematic frequency of 0.99 Hz (6.226 sec1 ) at 100 mph,

-l
and 1.98 Hz (12.452 sec ) at 200 mph. The somewhat erratic path of

the 100 mph locus between stiffness factors 1 and 3 is due to a

carbody resonance pole in the vicinity, already mentioned in 3.10.

Figure 4-lb shows damping ratio versus speed for this case with

three values of Kb. Notice that Vc for the baseline RC-LMO vehicle

is just above 200 mph.

The trend of the hunting poles toward ever-higher damping, as

in Figure 4-1, is an artifact of the LMO carbody model. If the

carbody is allowed to yaw, damping increases up to a point along a

similar path. At very high values of Kb, however, the trucks become

so rigidly restrained that the entire vehicle begins to behave like

an unrestrained truck of very long wheelbase, and damping decreases

again. The stiffness values required for this type of behavior are

well outside the practical range.

Figure 4-2 contains curves showing the boundary between stable and



-100-

2

(a) half baseline f

0

0

0

2

0

t0
-WJ
Q

(b) baseline f

0

2

(c) twice baseline f

0

0
41

C)

0

0 200 400 600 800
V, ft/sec

2  b mbl v

baseline vehicle

0 200 400 600 800
V, ft/sec

2 mb mb/2

0 200 400 600 800
V, ft/sec

FIGURE 4-2

Variation of Critical Speed with Factors on Kb and mb
(Relative to Baseline)

Shaded Side of Curve is Unstable.

2

mb/2



-101-

unstable speeds as a function of Kb for various combinations of truck

inertia (mb and Ib) and creep coefficient f. The inertial properties

have been assumed to vary proportionally, with

Ib - mb - (2.326x103 in2) . (4.1.2)

In the figure, mb, f, and Kb are expressed as multiples of the

baseline value. The system is stable to the upper left of the

boundary, and unstable to the lower right. Notice that in some

curves, particularly those with low mb, it is possible to pass through

one region of instability, through a region of stability, and into

a second and final region of instability as V is increased; the two

regions of instability correspond to primary and secondary hunting,

respectively. The perturbations in the curves, even when not severe

enough to cause two unstable regions, illustrate the importance of

body resonances in vehicle dynamics. Figure 4-2 shows that the

critical speed Vc may be extended indefinitely by increasing Kb, and

that the Kb necessary to stabilize the system at a given V is

approximately proportional to mb. The dependency of yaw stiffness

on creep coefficient f is relatively weak -- a fortunate circumstance,

since f is known only approximately.

The baseline vehicle conditions are marked on Figure 4-2b with a

cross. Its critical speed is about 305 ft/sec, or 208 mph.

2. Ride Quality. Recall that from 1.3, the perceived ride

quality is assumed to depend upon the acceleration spectral density

(A.S.D.) of the passenger compartment location of interest. The rail
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centerline deviation is assumed to be a zero-mean Gaussian process

with spectral density given by Equation 3.11.1. For a linear system,

the output due to a Gaussian input process is also Gaussian, with

a spectral density given by [67]:

*
= (. G(s)-G (s) , (4.2.1)

0 1

where D and D. are the spectral densities of output and input,
0 1

respectively; G(s) is the complex transfer function relating output

*
to input, and G (s) is the complex conjugate of G. For the purposes

of ride quality evaluation, the appropriate transfer function is the

acceleration transfer function G a(s) given by Equation 3.8.6. The

acceleration response to the assumed rail input spectrum may be

computed and compared with the DOT/UTACV goal illustrated in

Figure 1-4; the comparison gives a qualitative idea of whether the

resulting ride would be considered "good". It is also possible to

integrate the acceleration spectrum and take the square root to find

root-mean-square (RMS) acceleration.

The A.S.D. for the baseline vehicle operating at 100 mph is shown

in Figure 4-3. Several important features may be illustrated in this

figure. There is a strong peak around 0.95 Hz, caused by a combination

of kinematic hunting and a carbody natural frequency. The hunting

frequency (neglecting dynamics) is given by Equation 2.4.1 and is

proportional to speed V; at 100 mph, vkk=pk/2f=0.99Hz. The secondary

resonance is independent of V. Its frequency may be approximated by

assuming the truck fixed, so that
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V =V K /m /2nr= 0.97 Hz ;
0 c C

coincidentally, this is close to the forcing (hunting) frequency at

100 mph, so a resonance condition is set up. The hunting peak exceeds

the UTACV goal by an order of magnitude. A second important feature of

Figure 4-3 is the succession of nodes and antinodes in the response at

high frequencies. These are due to the wheelbase time delay, and will

be examined in the next section.

The low- and high-frequency isymptoticfbehaviot.bf the A.S.D.

may be identified. At low frequencies, the vehicle follows the track

centerline exactly, so that its A.S.D. approaches

LFA = (s2)2 (-AV/s2) = AVw2  . (4.2.2)

At frequencies well above that of kinematic hunting, the lateral creep

force begins to dominate the tracking mechanism, as the difference in

wheel and rail lateral velocity is resisted by a force -fAv/V. Under

this condition, the wheels may be replaced by equivalent dampers of

constant

B = f/V (4.2.3)

as in Figure 4-4. Notice that the yaw restraints Kb and Bb have been

omitted, since yaw of the truck does not couple significantly to lateral

motion of the carbody at high frequencies; K has also been omitted for

clarity, as its effect is overshadowed by that of B at high fre-

quencies. The acceleration transfer function for this reduced system
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is:

G y (S) j+ts 4B B s2

a,HF yrf(s) 2s mms2 + (mbB+m B +4m B )s + 4B B
bc DC CC cr c r

(4.2.4)

The high-frequency asymptote (HFA) of the actual system is thus:

HFA = (-AV/s2)(4fB /(mbm V]) 2 1+e j (4.2.5)

The periodic component of this expression, due to wheelbase delay, is

evident between 10 and 100 Hz in Figure 4-3. A more convenient

expression, giving only the locus of the in-phase peaks (at e-TS=l)

is the high-frequency envelope (HFE):

HFE = (A/V)(4fB/ [mbmc)D 2 (l/w2) . (4.2.6)

The behavior of the LFA and HFE are illustrated in Figure 4-5 for two

values of V. The LFA varies directly with V, whereas the HFE varies

inversely. Also, the HFE is proportional to f2 ; this fact, together

with the HFE's importance in the region of highest human vibration

sensitivity for typical present-day speeds, accounts for the

observation that the ride is often smoother over wet rails (low f)

than over dry rails (high f).

Figure 4-6 compares the LFA and HFE with the A.S.D. of the baseline

conventional vehicle at 100 mph. Important deviation from the

asymptotes is concentrated within the region from 0.3 to 30 Hz. The

LFA at a given speed, being independent of suspension parameters,
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cannot be affected except by changing rail roughness A. The HFE may

be altered by changing any of the small group of parameters in

Equation 4.2.6 (notably Bc). Since the A.S.D. is governed by asymp-

totic behavior below 0.3 and above 30 Hz, the intermediate range

should be the main focus of efforts toward improving ride quality.

The variation of A.S.D. with V is shown in Figure 4-7. The low-

and high-frequency asymptotic behavior is clearly visible. Notice

that the hunting peak occurs at a frequency proportional to V, and

that its amplitude increases with V as V is approached. The UTACV
c

goal is seriously exceeded by (1) the hunting peak, for V=100 and

150 mph, and (2) the shoulder at the beginning of the HFA, which

occurs in the critical "dipper" range of the UTACV criterion.

Figure 4-8 shows the effect of varying the yaw stiffness Kb on

the A.S.D. at 100 mph; Kb is given the values 0.5, 1.0, and 2.0 times

its baseline value. Yaw secondary stiffness depressed the hunting

peak without changing the asymptotic behavior.

The effect of gravitational stiffness KL on A.S.D. at 100 mph is

illustrated in Figure 4-9, in which the two curves are for the

baseline vehicle with KL=O, and the same vehicle with KL=3.837x104

slug/sec2. The latter curve shows a suppressed hunting peak

indistinguishable from that which results from KL=0 and a secondary

yaw stiffness equal to the effective value

K = Kb + 4Kb(kh) 2  (4.2.7)

= 4.196x108 + 3.717x108

= 7.913xlO8slug-in2/sec 2
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for the present case. The asymptotes are unchanged.

Increasing Kb and KL, then, reduce the carbody vibration at the

kinematic hunting frequency at a given V, as well as extending the

range of stability. High-frequency behavior of the A.S.D., however,

may be affected only by (1) increasing mb, mc, or V, or (2) decreasing

f, B , or A. Of all the preceding parameters, Bc is probably that which

is most nearly under the designer's control; it should be reduced as

far as is possible without causing excessively light damping in the

secondary suspension.

3. Phasing of Inputs. Recall.from Chapter 3 that the numerator of

any of the transfer functions for the rectangular truck contain both

"in-phase" and "out-of-phase" elements relating output to the rail

input at the front and the rear axles. Above the kinematic hunting

frequency, in-phase inputs tend to add, and out-of-phase inputs cancel,

when the output is lateral motion. At lower frequencies, out-of-phase

inputs become important; they tend to generate yaw motions, which in

turn generate lateral translation by the action of the rigid axles.

In some studies (1], the effect of the wheelbase time delay T has

been neglected in an effort to reduce the complexity involved in

evaluating spectral density or RMS values. The so-called "envelope"

transfer function, defined in 3.8 by neglecting out-of-phase terms,

is in the convenient form of a ratio of two polynomials. Straight-

forward methods exist [68] for the evaluation and optimization of

performance indices based on such rational functions. Figure 4-10

compares the complete and the envelope A.S.D. for the baseline vehicle
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at 100 mph. The envelope reproduces the LFA and HFE correctly, and

shows a hunting peak at the correct frequency. It suffers from the

serious defect, however, of not reflecting accurately the behavior

near the hunting peak (about 0.4 to 6 Hz, here) where out-of-phase

inputs play an important role. The envelope cannot, of course,

show the complex high-frequency pattern of nodes and antinodes due

to the wheelbase time delay. In summary, the envelope approximation

must be rejected as insufficiently accurate for the prediction of

ride quality.

Notice that the envelope response is not the same as the response

of a vehicle with two-wheeled trucks. The latter does have T=0, but

it also has k=0, a different value of f, and a yaw gravitational

stiffness which may no longer be negligible (see Appendix A, A.6).

The spacing of the high-frequency nodes depends on the spatial

irregularity wavelength and the wheelbase, 2kh. A minimum response

is expected when the front and rear pairs of wheels are forced 180*

out of phase, i.e. when

2kh = X/2 + nX , or (4.3.1)

A = 4kh/(2n+l), n=0,1,2, ... (4.3.2)

When the irregularity wavelength X is encountered by a vehicle moving

at speed V, the corresponding frequency is given by v=V/A. Therefore

a minimum response occurs when

v = (2n+l)V/4kh , n=0,1,2, ... (4.3.3)

For the baseline vehicle, this means that nodes occur at odd multiples
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of 8.94 Hz (at 100 mph).

4. Tracking Error. Along with good ride quality, low tracking

error is a prime goal of suspension design. The truck should follow

the track sufficiently well so that excessive clearances are not

required to prevent frequent flange contact.

It has been shown that under the assumptions of linearity and

stationary Gaussian input, all state variables also have Gaussian

statistics. For a zero-mean Gaussian process, the standard deviation

a is identical to the RMS value:

a = RMS = V E[x2] , (4.4.1)

where x is the process and E[y] signifies the expected value of y.

The standard deviation is a measure of the spread of the signal. It

is possible, given a, to specify the percentage of time during which

the signal may be expected to stay within a given range of its mean

(see Table 4-1). A signal will spend 99% of its time within the

range 3a.

Standard deviation, or RMS, is therefore a suitable indicator

of tracking error if the output variable is suitably chosen. An

appropriate measure of tracking error is the difference between the

truck center position, yb, and the average of front and rear track

centerline deviation, given by (in Laplace notation)

y =a y +e ) . (4.4.2)
r,ave rf2

Therefore, the transfer function for tracking error may be written:

Y (s) s+ets
TE Yb ) - 2 (4.4.3)GTE Y (s) 2
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TABLE 4-1

Percentage of Time Within Range

For Gaussian Signal

Range Time Fraction in Range

G 68.26%

2a 95.46%

3a 99.74%

4a 100.00%
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Evaluating Equation 4.4.3, applying the usual input spectrum, and

integrating numerically over a range approximating 0 to w, yields the

curves for RMS tracking error versus speed in Figure 4-11. Three

values of Kb (0.5, 1., and 2. times baseline) and two values of KL

(0 and 3.837x,04 slug/sec2) are shown. The tracking error becomes

large at the critical speed, and shows an upward trend in the

vicinity of body resonance, but otherwise decreases slightly with

V. The baseline vehicle has an RMS tracking error of about 0.14

inches at 100 mph; decreases to less than 0.1 inches are possible

with increasing Kb or K .

Depending on the detailed nature of the system, what happens

when the allowable flange clearance is exceeded may range from a

mild nonlinear limiting action, through a violent shock, to continued

oscillations, breakage, or derailment. Although this issue will not

be further discussed here, it is clear that a rail vehicle should be

designed so that occasional flange impacts will not radically alter

dynamic behavior.

5. K-B-Series Yaw Secondary. By connecting the secondary yaw

spring and damper in series, rather than parallel, one may eliminate

the static yaw stiffness. This is useful for two reasons. First,

yaw stiffness impedes curving by acting to keep the truck aligned with

the carbody rather than with the rails; therefore, eliminating static

yaw stiffness reduces tracking error in curves. Second, a stiff damper

in series with the spring allows the truck to compensate for any initial

yaw misalignment by a process of gradual drift, yet does not reduce the
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high-frequency stiffness, necessary to avert instability. Conventional

passenger trucks designed without series dampers must be frequently

and precisely re-aligned to prevent them from being continually steered

against one rail or the other.

The equations of motion for the RC-LMO vehicle with K-B-series

yaw secondary are presented in Figure 3-10; the transfer function

coefficients for carbody acceleration are given in Table 3-4. Bb

should be chosen large enough so that the series combination acts

essentially like a spring at the hunting frequency; i.e.,

Kb/ b "k . (4.5.1)

Figure 4-12 compares the A.S.D.'s of the baseline vehicle (K-B-

parallel yaw, Bb=0) and of two similar vehicles using the K-B-series

yaw arrangement. For the latter, Kb retains its baseline value but

Bb is taken arbitrarily as 4.196x108 slug-in2/sec (Kb/Bb=l sec-1)

and 8.392x107 slug-in2/sec (Kb/Bb=5 sec 1). Use of the larger value

of Bb yields a spectrum almost identical to that for the baseline

vehicle, but the smaller value leads to a higher hunting peak at this

speed (wk=6.23 sec~1)

The added complexity introduced by the K-B-series yaw model does

not result in any significant alterations to vehicle dynamics when Bb

is large enough to make series. connection useful. Therefore, only

parallel connection will be considered further. It is tacitly assumed

throughout this work, however, that any yaw suspension considered may

be connected in series to an additional, large yaw damper in order to
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alleviate the practical problems of curving error and misalignment.

Certain trucks, in fact, are now being manufactured with Coulomb

friction dampers in series with the yaw springs for just such reasons.
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6. Overview. This chapter has not been intended as an exhaustive

survey of the influence of all the passive suspension parameters on

stability, ride quality, and tracking error. Instead, it has established

baseline measures of these characteristics based on a simple model of

an -unusially well - designed conventional passenger vehicle. The

passive performance data of this chapter will be drawn upon as a basis

for comparison with active and other unconventional suspension designs.

In addition, the effects of varying several of the most important

suspension parameters have been explored, leading to some general

conclusions:

- Secondary yaw stiffness, Kb, may be increased within

practical limits as a means of extending the stable

speed range and suppressing the hunting peak in the

carbody acceleration response. The values of Kb required

may be quite large, approaching the actual stiffness

of components usually assumed rigid. If a large Kb is

used, it is advisable to place it in series with a large

damper to permit self - adjustment to curves and to

misalignment.

- Lateral gravitational stiffness, KL, has a similar

effect to that of Kb for a rectangular truck, but is

applied directly to the wheels and therefore does not

depend on component stiffness. The potential problem

with relying on gravitational stiffness is that nonzero

KL requires concave wheel treads, which may also have

a large effective conicity offsetting the benefits of

gravitational stiffness.

- The tracking error for all designs considered is
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reasonably small, with RMS of less than 0.15 inches,

except in the vicinity of instability. Flange impact

on nominally straight track with random irregularities

should not be a problem unless nonlinear effects after

flanging are extreme. A gentle limiting action is

recommended.

There are a number of fundamental problems with any vehicle using

conventional trucks and suspensions. One is the decreasing margin

of stability with speed, resulting in eventual instability. Another

is the strong component of vibration transmitted to passengers at the

kinematic hunting frequency. Each of these is a result of the creep

steering mechanism of guidance. In the following chapters, various

methods of modifying or supplanting the hunting mechanism will be

explored.



-124-

CHAPTER 5

PERFORMANCE OF VEHICLE WITH LATERAL-MASS-ONLY CARBODY

AND RIGID TRUCK WITH INDEPENDENTLY-ROTATING WHEELS

The equations of motion developed in Chapter 3 may be used to

describe a vehicle with RIW trucks by the substitutions

a +0 and

k 2-

Eliminating the rigid axle between opposite wheels does away with

yaw - lateral cross coupling, and hence with the root cause of

hunting motion. This gain is offset by the loss of guidance from

coned wheels, which must be made up for by the action of gravitational

stiffness at the wheel - rail interfaces. The dynamic properties of

the RIW - LMO_ vehicle model are examined in this chapter, and

found to be highly attractive from the standpoints of stability,

ride quality, and tracking error.

Throughout this chapter, the baseline value of KL will be taken

as 3.8367x104 slug/sec2 , based on the assumption of a five - inch

difference in radius of curvature between wheel tread and rail crown

(see Appendix A for derivations).

1. Equivalent RIW-LMO Mechanical System. The pertinent equations

of motion are embodied in Equation 3.6.4 and Figure 3-9. They describe

the equivalent system illustrated in Figure 5-1. The creep dampers,

given by
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B = f/V , (5.1.1)r

are speed-dependent but always positive. Notice that truck yaw

generates a lateral force (shown active in the figure), due to the

preferred rolling direction of the wheels, of magnitude +4 f b; this

effect is the same for both RC and RIW models. Unlike the RC model,

however, the linearized RIW model exhibits no back-coupling from

lateral to yaw motions.

2. Stability. The absence of lateral-to-yaw coupling implies

that the RIW-LMO system is stable at all speeds for non-degenerate

parameter values (KL, Bc' K , mb, me, f, k, Ib, and h all positive

and finite).

Consider an arbitrary set of initial conditions for the system

of Figure 5-1. Truck yaw is independent of translation, and is a

damped second-order system. Translation of the truck and carbody is

described by a passive, damped, fourth-order system of equations

subject to an input force equal to 4f b(t). This lateral input is

bounded and tends to zero as yaw oscillations decay. Therefore,

arbitrary lateral and yaw errors tend to zero and the system is

asymptotically stable at any speed. Figure 5-lb shows the variation

of natural frequency and damping ratio with speed for the least

damped roots of the baseline RIW-LMO vehicle; those of the baseline

RC-LMO model are included for comparison. In the RIW case, natural

frequency is nearly constant with speed, and damping ratio decreases

with speed but always remains positive.
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3. Ride Quality. The RIW truck does not hunt. Therefore the

strong peaks of acceleration spectral density at the kinematic

hunting frequency, prominent in the RC curves of Chapter 4, are

absent from the corresponding RIW responses. The asymptotic

behavior, on the other hand, is as described in 4.2.

Figure 5-2 shows the A.S.D. of the baseline RIW-LMO vehicle at

100 mph, together with the response of the baseline RC-LMO model at

the same speed (cf. Figure 4-3). Comparison illustrates the

elimination of the 1 Hz hunting peak by the use of an RIW truck, and

the fact that the asymptotes (governed by creep forces, masses, and

secondary damping) are unchanged. Figure 5-3 compares RIW-LMO

acceleration response at three speeds.

Figure 5-4 is a comparison of the full A.S.D. with the envelope

approximation (cf. Figure 4-10). Again, the envelope is a poor

representation of behavior at low frequencies where yaw-to-lateral

coupling is important.

The fact that gravitational stiffness at the wheels alone provides

substantial yaw stiffness to the truck suggests that the secondary

yaw stiffness Kb may be entirely omitted. Figure 5-5 shows that setting

Kb=O raises the response slightly in the region of carbody resonance

(' ,l Hz), but does not alter it in the difficult band between 4 and 8 Hz.

The A.S.D. is relatively insensitive to the value of gravitational

stiffness KL, as Figure 5-6 shows. Reducing KL increases response at

low frequencies (<2 Hz in this case), but does not influence higher

frequencies where creep damping becomes dominant. The major impact of
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KL is on tracking and curving error, not on ride quality. Ride

quality of the RIW-LMO vehicle is improved (over that of an RC-LMO

vehicle with the same secondary suspension) primarily in the

elimination of the speed-dependent hunting peak. Use of the RIW

truck, however, allows greater freedom in the choice of suspension

components by guaranteeing stability. For example, the baseline

vehicle was designed with a relatively large value of lateral

damping Bc, needed to prevent unstable primary hunting at the

carbody resonance frequency. Since the high-frequency asymptote

fo the A.S.D. is proportional to B c2, performance in the 4 to 15 Hz

range can be improved by using the RIW truck with a lower value of

B instead of the baseline RC truck.
c

4. Tracking Error. The variation of RMS tracking error with

speed is shown in Figure 5-7, for both nominal and zero yaw stiffness

Kb and for various values of gravitational stiffness KL. Numerical

values for error range between 0.06 and 0.18 inches, and do not

differ greatly from those obtained for the RC-LMO model well

below instability (cf. Figure 4-11). Notice that for an RIW
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truck, there is no speed - dependent frequency to excite carbody

resonance and increase tracking error in a particular speed range.

Increasing Kb and/or KL reduces error by suppressing low - frequency

yaw.

5. Overview. The results of this chapter suggest that the RIW

truck is an excellent candidate for high - speed rail systems, at

least on the basis of dynamic considerations. Elimination of rigid

axles leads to elimination of self - excited hunting instability;

the RIW-LMO vehicle is stable at all speeds. No yaw restraint

between carbody and truck is necessary for satisfactory operation.

This guarantee of stability allows greater flexibility in choosing

suspension parameters to improve ride quality and tracking error

than is possible with an RC truck.

In contrast to the RC truck with concave wheel treads, recommended

in Chapter 4, performance of an RIW truck is independent of conicity a

and relatively insensitive to KL. This means that wear of the wheels --

tending to increase both a and KL -- is not a major problem.

The behavior of the RIW truck in a curve differs fundamentally

from that of the RC truck. Curving is discussed in Chapter 10.

A truck with independently - rotating wheels will probably be

more difficult to build than a conventional truck. The rigid wheelset

serves the very practical function of maintaining opposite wheels

separated by a fixed distance -- a requirement which must be met by

the truck frame if the axle is eliminated. In addition, more and

better bearings will be required to support the thrust and bending
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loads encountered in the RIW system. It appears likely, however,

that the potential of the truck for high speed passenger operation

may justify the added complexity and initial cost of independent

wheels.
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CHAPTER 6

MODEL FOR AN AUTOMATICALLY CONTROLLED SECONDARY SUSPENSION

Up to this point, modelling and analysis have been confined to

rail vehicle suspensions made up of passive elements. In this

chapter, a restricted but very flexible class of active sensing and

actuating elements are introduced in an attempt to achieve performance

improvements not possible through more conventional means. Equations

of motion with control are presented for both LMO and RPB carbody

models. In the case of the LMO model, it has also been feasible to

derive analytically an expression for the transfer function relating

carbody acceleration to rail input. Practical considerations affecting

controller design are discussed.

1. Rationale. The automatic controllers to be applied in this

and succeeding chapters will be restricted at the outset in a way

which takes into account the special nature of the rail vehicle

suspension. Sarma and Kozin [59], in a paper on the

subject, defined a broad class of controller which in general require

forces and torques to be applied between trucks or carbody and a

fixed inertial reference -- a system whose implementation would demand

the use of something like jet action. (It is interesting to note,

however, that the special case examined by Sarma and Kozin is

equivalent to the use of gravitational stiffness at the wheels.) A

more practical approach, however, is founded on two principles:
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(1) any actuators should act internal to (i.e., between parts of) the

vehicle, rather than directly on the environment; and (2) functions

which may be implemented passively with springs and dampers should be

so implemented. For the rail vehicle models being used here, the

first principle requires that active force and torque be applied only

between carbody and truck. The second means that the passive secondary

suspension elements Kb, Bb, Kc, and B will be left in place, with

active force and torque applied in parallel with them. The active

force and torque will be referred to hereafter as Fbc and Tbc'

respectively, as usual defined positive when acting positively on the

truck. The actuators are idealized as massless, implying that any

force or torque applied to the truck is applied oppositely to the car-

body.

Figure 6-1 is a block diagram of the dynamics of the RPB vehicle

model. Solid lines indicate interactions implicit in the passive case

studied in previous chapters, while dashed lines show paths which

cannot exist in general without active control. The latter paths may

be grouped into three classes: (1) relations whereby yaw motions give

rise to lateral forces and lateral motions give rise to yaw torques;

(2) relations involving absolute, rather than relative, carbody

displacement and yaw; and (3) relations involving acceleration feed-

back. Many other paths could be envisioned, but those in the Figure

have been chosen as especially basic to the control of truck hunting

motion. In particular, no active coupling among trucks is included.

2. Controller Definition. The most general controller to be
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studied is defined by the following relations:

T = -Dlybi + D2ycbi - D3ybi + D4ycbi - D5ybi + D6ycbi

-D6 lc -D 17 c -D l$c(621 - - (6.2.1)

Fbci = -Dbi + D8  - D9 bi + D4 c - Dll bi+ D c

- D13ycbi - D 4ycbi - D15Ycbi ' (6.2.2)

where i is a subscript denoting which end of the vehicle is being

considered (i=l for front, i=2 for rear, i is irrelevant to the LMO

carbody model) and y cbi is the lateral displacement of the carbody

at the truck attachment point :

ycb =y + L-c (6.2.3)

ycb2 = Yc - L-c . (6.2.4)

Equations 6.2.1 and 6.2.2 embody the relations set forth in Figure

6-1. Notice that the active force and torque at each end of the

vehicle depend only on displacements and angles which can be measured

at that end.

3. Special Cases. The control relations of Equations 6.2.1 and

6.2.2 are quite -general-in form. Practical considerations of power

and ease of measurement suggest that three special cases.of the control

rule are particularly convenient to implement and should be singled out

for study.

Relative Sensing. If the active secondary suspension

elements, like the passive, depend only on the relative displacement
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and yaw between truck and carbody, then:

D=D2 D7=D

D =D D =D3 4 D9 10 (6.3.1)

5= 6 D11 D 12

D13 14=D 5=0 D 16=D 7=D 8=0

The relative sensing case is important because it is usually much

easier to measure a relative quantity than an absolute one (although

acceleration is an exception). Furthermore, absolute position becomes

rather ambiguous when the track is not nominally straight. This

controller in general must sense six quantities (relative position

and angle, and derivatives), and is completely characterized by the

six gains on these quantities.

Steering. There is a strong coupling between truck yaw and

lateral motions arising from creep forces and forward motion.

Therefore it is possible to obtain large power gains by acting on the

truck in yaw alone. If F .=0, then:
bci

D =D =D =D=10=D 11=D 12=D 3=D 4=D 15=0 . (6.3.2)

The steering controller also requires measurement of six quantities

(car and truck displacements, and derivatives) and specification of

six gains.

Passive-Asymmetric. It is possible to obtain coupling

between lateral and yaw motions without active control. Consider

Figure 6-2, which represents one truck with two purely lateral
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Principle of Asymmetric Suspension

BK0 b0

b k

(b)
Passive - Asymmetric Suspension

FIGURE 6-2

Asymmetric Secondary Suspensions
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suspensions, G1 (s) and G2 (s), situated symmetrically a distance k

from the truck center of mass. These suspensions respond only to the

lateral relative displacements at their connection points,

forward: Ay1

rear: Ay2

, and(y c yb + "(c~b

(c yb - k -b)

Therefore the net torque and force on the truck are

Fb = (G1+G2 )(yc -yb) + k(G 1-G2)(4 b)

and

Tb = T(G-G2)(yc-yb) + Z2(G1+G2 -c~b)

(6.3.3)

(6.3.4)

(6.3.5)

Notice that such a system is of necessity relative sensing. The

following parameter identifications may also be made (assuming parallel
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yaw and lateral suspension notation from Chapter 3):

(G 1+G2 ) = K +B s , (6.3.6)

(G1+G2)2= Kb+Bbs , (6.3.7)

(G1-G2) = D1+ 3s+D5 s2 , and (6.3.8)

(G1-G2)= D=7 +D9 s+D1 1 s
2  . (6.3.9)

More than two lateral suspensions may of course be used to obtain the

desired combination of parameters. The important feature of this

suspension configuration is that Equations 6.2.1 and 6.2.1 are

implemented, with

D =D 2=D =D8

D 3D 4=D 9=D 1D3 4 9 10

=D 6 11D12 (6.3.10)

D =D =D15 16 =D17 18=0

The suspension is termed asymmetric because it reduces to the conventional

passive suspension if G 1=G It may be implemented passively if the

acceleration terms (D5, etc.) are zero. Figure 6-2b illustrates such

an implementation using two springs and two dampers, all of different

constants as shown. Then

Kc =K 0 (1+ak)

c 0 (6.3.11)
Kb = .K0 k2 (1+a k)

Bb = B b2(1+b ''
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1 2=D 7=D 8 =K0zk-k) (6.3.11 ctd)

D3 4 9 D10 B0 b b )

4. Equations of Motion -- LMO Carbody. The system consisting of

an RC or RIW truck, an LMO carbody, and K-B-parallel yaw and lateral

secondary suspensions, together with active control in parallel, has

equations of motion which may be obtained by assembling Equations

3.3.3, 3.4.1, 3.4.2, 3.5.14 (or 3.5.18), 6.2.1, and 6.2.2.

The use of compressed matrices will be introduced at this point,

since their use will greatly simplify the writing of controlled

equations of motion. The general linear system equations of

Equation 3.6.4,

x= a x + b yrf (6.4.1)

may be Laplace transformed to give

s x A(s) x + B(s)y . (6.4.2)

If Equation 6.4.2 can be partially solved -- e.g., if x2=x1, then

x2 (s) = s x1 (s) -- it may be rewritten thus:

S x = A x + B yrf ,6.4.3)

where x is a reduced set of state variables and A and B are compressed

matrices in s. S is also a matrix in s; when the original state

variables x are related by derivatives only, S is diagonal in powers of

s.
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In compressed matrix notation, the equations of motion for the

RC(RIW)-LMO controlled vehicle are given in Figure 6-3. The delay

abbreviations,

= 12 eTS and (6.4.4)

2-Ts (6.4.5)

have been introduced.

5. Equations of Motion -- RPB Carbody. The system consisting of

two RC or RIW trucks, an RPB carbody, K-B-parallel yaw and lateral

secondary suspensions, and active control, has equations of motion

which may be obtained by assembling Equations 3.3.1, 3.3.2, 3.4.1,

3.4.2, 3.5.14, 6.2.1, and 6.2.2. The equations are presented in

Figure 6-4, with the further definition

6L =eL . (6.4.6)

6. Acceleration Transfer Function: LMO Complete Vehicle. The

coefficients of the transfer function relating carbody acceleration

to parallel rail input, Equation 3.8.5, are tabulated in Table 3-1.

Notice that active control does not change the order of the system.

7. Control Power. A highly important aspect of active controller

design is the amount of power which must be supplied to the actuators.

The actual power consumed depends on the hardware employed, but a

consistent approximation to actual power may be obtained by computing

the net mechanical power delivered by the actuator. Let x1 and x2 be
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MODEL: RC (RIW) - LMO, Controlled, K-B-Parallel Yaw Secondary

^T
REDUCED STATE VECTOR: x =yc' b I

COMPRESSED INPUT VECTOR: for yrf- B

0

6 +([4f/mbV]s + [4K L/Mb]

6+ (4 fha/Ibr o) + 6 ([4fkh/Ib VIs + [4KLkh/Ib])

DERIVATIVE MATRIX: S = s2

0

-0

CHARACTERISTIC MATRIX: A= [aii1

a2 1

[a 31

a 1 2  a 1 31
a2 2  a2 3

a 3 2 a 3 3 j

where:

all = (D1 5 me)s2 + ([-B +D 1 4 ]/m )s + ([-K +D 1 3 ]/m )

a 1 2 = (B /m )s + (K /m )

a 1 3 = (D 1/m c)s 2 + (D /m c)s + (D 7/m c

a2 1 = (-D1 5 m.b)s2 + ([B-D 4 ]/mb)s + ([Kc-D13 ]/mb)

a22 = ([-4f/V - B ] /mb)s + ([-4KL-K ]/mb)

(... continued ... )

FIGURE 6-3

System Matrices for the Controlled LMO Vehicle Model

0 0

s2 0

0 s2j
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a23 = (-D 11mb)s2 + (-D 9 /mb)s + ([4f-D7 ]/mb)

a31 = (D6 /b)s 2 + (D 4/Ib)s + (D2 /b)

a32 = (-D5 b)s 2 + (-D3 b )s + ([-4fha/r 1 - D1 b

a33 = ([-4fh 2 ks /V - Bb]/Ib)s + ([-4KLk2h2-Kb] /Ib)

FIGURE 6-3

(continued)



-150-

MODEL: RC (RIW) - RPB, Controlled, K-B-Parallel Yaw Secondary

REDUCED STATE VECTOR: x = Iyc' c' b1' bl' Yb2' b21

COMPRESSED INPUT VECTOR: for yrf' B

0

0

([4f/mbV]s +

(4fha/Ibro)

([4f/mbV]s +

(4fha/Ibro)

[ 4 KL/mb])

+ 6 ([4fkh/IbV]s +

[ 4KL/U])

+ 6L 6 ([4fkh/IbV]s

[4KLkh/Ib])

+ [4KLkh/Ib])

DERIVATIVE MATRIX: S =

CHARACTERISTIC MATRIX:

0 0s2

0

0

0

0

0

0s2

0

0

0

0

0

0

0

s

s2

0

0

0

all

a 2 1

a31

agi

a 5 1

a61

0

0

a1 2

a2 2

a 3 2

a4 2

a 5 2

a6 2

0

0

0

2 0

0

0

0

0

0

s2

s2

0

a1 3

a 2 3

a 3 3

a 4 3

a 5 3

a 6 3

a1 4

a 2 4

a 3 4

a4 4

a 5 4

a 6 4

a1 5

a25

a 3 5

a45

a 5 5

a 6 5

a1 6

a 2 6

a 3 6

a 4 6

a 5 6

a 6 6

where:

(... continued ... )

FIGURE 6-4

System Matrices for the Controlled RPB Vehicle Model

+

6+

66+

6+

=A
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a = (D1 5 /M c)s
2 + ([-Bc 14 c)s + ([-Kc D1 3 /mC)

a1 2 = (-D12 C)s 2 + (-D10 Mc )s + (-D8 /Mc

a1 3 = (B c/2m )s + (K c/2m C

a14 = D1 /2m c)s2 + (D /2m)s + (D7/2mc

a 1 5 = (B c/2m)s + (Kc /2m C

a1 6 = (D1 1/2mc)s
2 + (D 9/2m C)s + (D 7/2m )

a2 1 = (-2D6 c)s 2 + (-2D /IC)s + (-2D2 / C

a2 2 = (2[D1 8+L
2D1 5 /, C)s 2 + (2[-Bb-BcL2 +D 7+L

2D14 ]/I c)s

+ (2[-Kb-KcL2+D 16+L2D 13]/I

a2 3 = (D5 c )s2 + ([B cL+D3 1c )s + ([K cL+D1 ]/1c

a24 = (D/1 1 1c)s 2 + ([Bb+D 9 ]/)s + ([Kb+D7 ]/Ic)

a2 5 = (D5 /c)s 2 + ([-B CL+D3 ]/c)s + ([-K cL+D ]/C)

a2 6 = (-D1 1 / / c)s
2 + ([Bb-D9]/ c )s + ([Kb-D 7]/I)

a31 = (-D15/mb)s2 + ([B C-D1 4]/mb)s + ([Kc-D1 3]/mb)

a 3 2 = (-LD15/mb)s 2 + ([Bc-D 4 ]L/mb)s + ([Kc-D1 3 ]L/mb)

a33 = ([-4f/V - B c]/mb)s + ([- 4 K --K]c/b)

a34 = (-D11/mb)s 2 + (-Dg/mb)s + ([4f-D7 ]/mb)

a 3 5 = 0

a 3 6  0

a4 1 = (D6 b )s 2 + (D 4 /b)s + (D2 /1b

a4 2  -([-D18+LD6 ]/b)s 2 + ([Bb-D17+LD 4 ]/Ib)s + ([Kb-D16+LD2 
11'b)

(... continued ... )

FIGURE 6-4

(continued)
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a4 3 -

a44 =

a 4 5 =

a 4 6 =

a51 =

a 52 =

a 5 3 =

a5 4 =

a55 =

a5 6 =

a 6 1 =

a 6 2 =

a6 3 =

a 6 4 =

a 6 5

a6 6 =

FIGURE 6-4

(continued)

(-D5 /1 b)s 2 + (-D3/ b)s + ([-4fha/r0 - D1]/1 b

([-4fh 2ks/V - Bb ]/Ib)s + ([-4KLk2h2 Kb] /Ib)

0

0

(-Dl5/mb)s2 + ([B -Dl 4 ]/b)s + ([Kc~D

(LD15/mb)s2 + ([-Bc+D14 ]L/mb)s + ([-Kc+D 1 3 ]L/mb)

0

0

([-4f/V - B ]I/mb)s + ([- 4 KL-Kc /mb)

(-D 1/mb)s2 + (-Dg/mb)s + (4f-D7]/mb)

(D6 b )s2 + (D4 /b)s + (D2 /b)

([-D18-LD6 ]/b)s2 + ([Bb-D 17-LD 4 ]/Ib)s + ([Kb-D16-LD 2]/Ib)

0

0

(-D5 /b)s 2 + (-D3 / b)s + ([-4fha/r0 - Di/1b

([-4fh 2ks/V - Bb ]/b)s + ([-4KLk2h2-Kb /b)
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TABLE 6-1

Transfer Function Coefficients: RC (RIW) - LMO, Controlled, K-B-Parallel Yaw Secondary

n=6, m=5

DENOMINATOR

c 6 = 1 (D5+pD6)(Dll/mbb) - (pDl 5/mb)

5 g5 S3 + S 5 (1+obb )(l-[pD 5 mb]) - (Pg5/mb (D1 5+D6 D1 1/ b]) - (1/mb 0 D 3 Dll+D 5 9

+pm [D4 D1 1+D6 D 9 )

* = S5(1+p)bb g5S3p m b][D 1 4+g5 D1 5 ]) + S2/Tb + Sllmb + g5 2Pmpbc - m D2 Dll/ jb)

+(g 5 VD5 /1b D(l[D1 5/mb]) - (pm 4/bIb) (D 9+g5Dl)

- (pD( g[KDlm] - l/b)(DlDll+DD+DD-(m 6/mb b) 7+g59+4 D (])-1/mb b) 11+D3 95 7

- (pm/mb)(D13+g5D 14+[4KLD 1 5/m]) - (PmS2D1 5/mbb) - S6Dll/mbV

= 5 (2S 3/ b I+[PS4/mb]) + S5(1+pbb) ([S1/mb]+g5 2 Pmpbc[P/m] [D 13+g5 D14+
4K D15/mb])

+ (g5D3V/I b )(l[pD15/m]) - (pmD2/mbb) (D9+g5Dll)

- (pm D4/mbb) (D7+g5D9+[
4KLD 1 /In]) - (p/mb D 6bb(g5 D7+[

4KLD/mb])

- (1/mblb) (DlD 9 +D3D7) - (g5p mV/b) ([D 5D 1 4 /mb]+g5 pbc [D6 D 5])

- (pm/mb)(g5 D 13+ [4KLD14 /n) - (PmS2 /mb1b) (D14+g5 D1 5  6 D9 /mbV

(... continued ... )



TABLE 6-1 (continued)

c2 95 S 6 + S5(1+Pbb )mb 5S4g5 13- [4K D /mb]) + (S2/Ib)(Sl/mb + 5 2PmPb)

+(4P Kc L/Mb 2) + (g5 VD1 /Ib)( mD15/mb) + (g5 Vp mD5/mbI (K c-D1 3)

+ (g5
2 vP Pbc /b (D3-D 4 ) - (pmD2 /mbIb) (D 7+g5 D 9+[4KD/.b])

- (pmD4/mb - (4KLpmD 13/mb2 )

- (PmS2/mbIb) (D 1 3+g5 D1 4+[
4K D1 5 /mb]) - (S6 /mbV) (D7+g5 Vpm D 15)

- (PMg 5V/mbb (KCD 6+D3 D 14) - (4pmKLD6D7 /mb2lb) - (DlD7 /mblb)

C, = g52S6PmPbc + (4KLPmS5[l+pbb]/m2 )(K-D 1 3) + g b 2 b D +[4KD/

- (pD /imIb)(g D+[4KCDg/mb]) + (pVnl(Kc[D -D ]-DlD -D D2 bb 5 7[ m5V/mbb c 3 4] 14 3 13

+ (g5
2V pbc /Ib) (D 1 2) - (4KpmD 4D7 /mb

2 Ib) -5S6mD1/mb

co 5 m S6/mb)(K c-D 13) + (4Kpm/m 2b 2 [KC-D 13]-D2 7 + 59m/Mb b c[Dl-D2]-DD13

NUMERATOR (in phase)

bp5 = -(pD5/mIb 5 D11)

b p4= 52mbc mD 5/mbb)(g5 D9+[4K /mbD11) m D 3/%Ibb)(g5 D 1 1) + GmS6 ll/mb

(... continued ... )



TABLE 6-1 (continued)

b p3 (g5 pmS4b + g 5 PmpbcS5(1+pbb) m 5 b D57+[4K /mb 9

- (pm D3/mbb)(g5 [4K/mb]D ) - (pD/mb)(g5 11) + (PmS6D9/mbV)

bp2 (5 2mbc2 b) + mb)(g5S4S5 [1+pbb]+[
4KcK/mb]) m 5 b KL/mb]D7)

- (pm D3/mbb)5 D7+[4Km]D) - (pmD /mb[) (gD+[4KL/mbD 1D) + (pS6 D7/mbV)

bp1 g5 2mbc S6 + (Dmb [5S2S4 ]+[4KcKLS5{1+pbb b m 3 /mbb)([
4KL/mb]D 7)

- (pm D /bIb) 5 D7+[
4K/mb]D9 )

bpo = 5KcS6+[4KcK LS2/mb~b3) - (pmDl/bIb)([4KL/mb]D 7)
U"I

NUMERATOR (out of phase)

bm5 = mkh/Ib) (g 5 D 1 1 )

bm4 (pmkh/Ib g5 D 9 +D 1 1 [g 5
2 + 4 KL /mb])

bm3 = m(kh/Ib g5 D 7 +D 9g 5
2 + 4K /mb]+D [8K g5/m D

bm2 (g5
3mbVkhppbc /I) + (pmkh/Ib) (D7 [g5

2 + 4K /mb]+D [8K g5/mb D [4K /mb]2)

bM ( 52VkhpmS4 b + (mkh/Ib)(D7 [8K g5/mb]+D

bm ( 5 4 VkhKCKPM/mbb) + (Pmkh/Ib) (D 7 [4KL/mb] 2 )
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a mechanical power pair (force and velocity, or torque and angular

velocity). Then instantaneous power is given by

P = x 1 x 2  . (6.7.1)

If xI and x2 are related to an input u by transfer functions Hll(s)

and H2 (s), respectively, and if the spectral density of the input

is given by ;U(s), then the spectral density of P may be written

= i H H 2* + H *H2
P u 12 2 1 , (6.7.2)

where the asterisk denotes complex conjugate [67]. The net power

is then obtained by integrating D between negative and positive

infinity. If there are several power pairs, power is additive among

them. For the active controller defined in this chapter, there are

two pairs:

F andy an
bci cbi bi , and

T bi and (c bi '

The fact that H and H2 must share a common denominator simplifies the

analysis somewhat.

8. Other Practical Considerations. The expressions for Fbc and

Tbc given in Equations 6.2.1 and 6.2.2 are convenient analytically, and

will be shown to produce systems with good dynamic properties. When

controller hardware is to be designed, however, their application must

be tempered by considerations of practicality. Several such consider-
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ations will be discussed briefly here.

The problem of forces arising from initial misalignment, mentioned

in connection with the K-B-series yaw configuration in Chapter 4, is

present also in the controlled vehicle when any of Dl, D2 ' D7, D8, D1 3 2

and D16 are nonzero. A different manifestation of essentially the

same phenomenon is drift, a slow variation of-parameter values

or null settings. Since active control is used to improve dynamic

response, it is not necessary at very low frequencies and measures

should be taken to "high - pass" control action to prevent steady -

state offset. A simple mechanical method of doing this is to place a

stiff mechanical damper in series with yaw and lateral actuators; this

method used alone can of course permit control power to be wasted at

low frequencies, so it should be applied in conjunction with some

system which would stop low - frequency control power flow at its

source.

Controller action at very high frequencies can also be a problem.

At such frequencies the contribution of the controller may be either

insignificant or unnecessary, serving only to drain power. It is also

possible for high - frequency instabilities to occur in a real system,

due to the excitation of component bending modes for example, which

would not be predicted by the simple rigid models being used here.

It is therefore good practice to cut off controller response above

the frequency range in which it plays a significant and beneficial

role. Part of this function occurs naturally because of the mechanical,

fluid, and/or electrical lags inherent in the sensing and actuation
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hardware.

The two above considerations suggest that a practical control

system should combine the basic properties of Equations 6.2.1 and

6.2.2 (or some more restricted case) with a band - pass characteristic

to confine response to a desired region. The controller definitions

are used unaltered for the purposes of this thesis, with a single

exception: control power is computed by integrating only over the

two decades between 0.3 and 30. Hz, which comprises the frequencies

of greatest sensitivity to acceleration.

A relative - sensing controller is by far the easiest type to

implement. Determination of absolute position and velocity would

require either inertial navigation or a specialized external input,

neither one of which seems worthwhile unless very great improvements

in performance are to be had. The exception to this general conclusion

is, of course, acceleration, which is more easily sensed absolutely

than relatively.

The impact of an automatic controller on performance in curves

should not be neglected. If response is band - passed as recommended

above, there should be no effect on quasi - static curving. Beyond

merely cutting off the control action at low frequencies, however, it

is possible to use the same hardware to aid in curve negotiation by

steering the truck into the curve. Further consideration of this

possibility is beyond the scope of this thesis, but it points up

one way in which active control can be used to achieve results difficult

or impossible to achieve passively.
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Two special cases of the general controller will be examined in

Chapters 7 and 8. The relative-sensing steerifig controller (Chapter

7) requires only three gains (D1 , D3, and D5 ) and the sensing of

only relative displacement and its derivatives. It acts directly

on the hunting mechanism and so offers the possibility of an efficient

cure for instability. The passive asymmetric secondary suspension

(Chapter 8) offers features similar to those of active steering, but

without its power requirements or complexity.
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CHAPTER 7

PERFORMANCE OF ACTIVELY STEERED CONVENTIONAL VEHICLE MODEL

WITH LATERAL-MASS-ONLY CARBODY

From the general class of controller introduced in Chapter 6,

two special cases have been selected for detailed study. This chapter

is devoted to a consideration of the relative-sensing, steering

controller applied to the LMO carbody model, while the passive-

asymmetric suspension is discussed in Chapter 8.

1. Controller Notation and Operation. The relative-steered

controller type, defined in H6.2 and 6.3, is a combination of the

relative-sensing and steering special cases. Steering action has

been identified as a potentially effective and low-power means of

reducing the hunting of an RC truck. Relative sensing has been chosen

because it can be readily implemented without any need for the

sophisticated instrumentation necessary to keep track of absolute

quantities; also relative displacements, unlike absolute displacements,

are well-defined in curves. The combination of the two results in a

system which acts to reduce the truck-carbody relative displacement and,

under appropriate conditions, to counteract hunting.

The controller is characterized by three gains only: D1 (position),

D3 (velocity), and D5 (acceleration). The values of gains in the

original control law (Equations 6.2.1 and 6.2.2) are:

D1=D2 , D 3 =D4 5 a6 (7..)

D7 = D8 9 = D10 = D11 = D12 = 0 , and (7.1.2)
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D 13" 14"D 15f D16- D7~ D8= 0 . (7.1.3)

A convenient scaling and abbreviation of these gains may be made by

defining:

,= D / (4fha/ro) , (7.1.4)

2 =D / (4fha sec/10r0 ) , and (7.1.5)

E3 D5 / fha sec 2/100r0 ) (7.1.6)

For the ranges of gain to be considered, all e's will be of order

unity. Thus the relative-steered controller may be completely

specified by the list

E = (61, E2, 3) (7.1.7)

A steering controller is especially well-suited to use with a

conventional truck because it acts directly on the lateral-yaw

coupling which causes hunting. The "steering" for which it is named

occurs when the truck, laterally displaced, receives a torque in a

direction which causes it to roll closer to the carbody. This

controller is inactive at low frequencies, where the carbody and

truck move together, and unnecessary at high frequencies, where

steering is ineffectual. It is active primarily in the regions of

carbody resonance and of kinematic hunting -- i.e., for both primary

and secondary hunting.

Figure 7-1 will illustrate the action of the steering controller.

It shows the loci of the two least damped pairs of poles (normally

identified with kinematic hunting and carbody resonance) for a 100 mph
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FIGURE 7-1

Locus of Least - Damped Poles of RC - LMO System with

Relative - Steering Control, e=(x,x,x).

Baseline Parameters at 100 mph.
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baseline RC-LMO model steering gain s=(x,x,x), as x is varied

from zero to fiye. The case x=0 corresponds to the uncontrolled

baseline vehicle. An examination of the eigenvectors corresponding

to these poles reveals that below x=0.2, the poles of smaller

modulus represent relatively small carbody motion with large truck

oscillations (truck hunting); whereas those of larger modulus show

large carbody amplitudes with little truck motion (carbody resonance).

Above x=0.2, the low-modulus pole begins to represent the carbody

and truck moving together in phase, with the high-modulus pole

representing out-of-phase motion. The identification of modes is

not, of course, completely clear-cut in this example, but it does

show several significant features of steering control. As gain is

increased, the truck follows the carbody more and more closely,

reducing the effective lateral spring and damper rates; thus the

carbody resonance frequency is decreased and the low-modulus locus

is generated. If the carbody moves relatively little, as in the

high-modulus locus, the controller acts similarly to increased

conicity and thereby reduces response time. Notice that the low-

modulus locus becomes unstable around x=10 due to oversteering.

2. Stability. Figure 7-2 consists of stability loci (planes)

for an RC-LMO relative-steered vehicle model for various combinations

of s, E2' e,: and V; all other parameters have their baseline values

as given in Table 3-5. The format of the figure is as follows: shaded

areas represent regions of instability; within each graph, the
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vertical axis is position gain e1 (0 - 11) and the horizontal is

speed V (0 - 800 ft/sec); a horizontal row of graphs share a common

velocity gain e2 (0, 1, or 2); and a vertical column share a common

acceleration gain e3 (0, 1, or 2).

Figure 7-2 demonstrates that very significant increases in

critical speed are possible with steering control. The uncontrolled

baseline system shows V =300 ft/sec. Varying e1 alone can increase

this only slightly, but c=(1,1,0) shows V C600 ft/sec, a 100% increase.

Adding acceleration gain can extend V to infinity, according to this
C

model: =(lll), for example, has an infinite critical speed. Such

extremely high critical speeds are not useful in themselves; but the

steering controller, by relaxing the stability constraint, allows

more freedom in designing toward other goals, such as reducing

secondary stiffness Yb or improving ride quality.

It should be noted that the stability planes for all three gains

nonzero possess another region of instability at large e (>50)

which does not show on the scale of the figure.
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3. Ride Quality. Examination of the transfer function coefficients

in Table 6-1 reveals that the relative - steering controller gains

appear in a very simple manner due to the fact that Dl-D2' D3=D4, and

D 5=D 6 The numerator for carbody acceleration is unaltered. In the

denominator, the effect of control is to add the following terms to

c2, c3, and c4:

to c2 , add Dl(4 f/mblb)

to c3 , add D3 (
4 f/mbIb) , and (7.3.1)

to c,, add D (4f/mblb)

These terms are speed - independent. Being confined to intermediate

powers of s, they cannot affect either low - or high - frequency

asymptotic behavior, but at intermediate frequencies can shift or

suppress some resonances and introduce others. Whether this action

improves or degrades ride quality depends on the magnitudes of the

control gains.

Figure 7-3 illustrates the improvement in ride quality attainable

with steering control. The four A.S.D. curves are all for a baseline

RC-LMO vehicle model at 100 mph, with steering gains as follow:

1. e = (0,0,0) -- no control
2. e = (1,0,0)
3. E = (1,1,0)
4. e = (1,1,1)

Position gain alone (curve 2) reduces the hunting peak by an order of

magnitude, and changes its location from about 1.0 to 1.8 Hz; the
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comfort goal is very nearly met at this peak, although it is still

exceeded by two high - frequency lobes. Velocity gain (curve 3)

further depresses and displaces the peak. With acceleration gain

(curve 4), the process is continued and extended to higher frequencies,

so that the goal is exceeded only slightly at 6 Hz and 20 Hz.

Figure 7-3 shows clearly that ride quality may be greatly improved

by active steering control. This fact, combined with the major increases

in critical speed reflected in Figure 7-2, attests to the suitability

of this type of controller for high - speed passenger systems.

If extremely high critical speed is not required, the steering

controller permits substantial reductions in yaw secondary stiffness

with only minor penalties in ride quality. Figure 7-4 shows A.S.D.

curves for the baseline vehicle at 100 mph with e=(1,1,1), for K b

equal to 1.0, 0.5, and 0.1 times its baseline value. Reduction of

Kb by a factor of ten is seen to have oiLy, a small negative

effect on ride quality between 0.5 and 2 Hz. V is still infinite
C

for each of these cases. Yaw stiffness may not be decreased to zero,

however, without introducing a range of low unstable speeds at which

the controller is inactive.

Figure 7-5 illustrates the variation of A.S.D. with gain for the

particular form e=(x,0,0), as x is varied from zero to 1. The out -

of - phase hunting peak is lowered and moved to higher frequencies,

while the in - phase peak is increased in magnitude; it is the latter

peak which eventually grows toward infinity as e I approaches its

stability limit. This figure is a good example of why the design of
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a comfortable rail vehicle suspension requires (for the present, at

least) that the entire acceleration spectrum, rather than a single

figure of merit, be considered. One possible estimate of

ride quality, RMS acceleration, increases monotonically with x for

the example. Yet it seems clear that the system with x=0.1 would

provide a better ride than that with x=O, because the hunting peak

is so greatly reduced. Extending x much above 1, on the other hand,

appears to be of little value; its main effect is to raise and spread

the two resonance peaks, moving the higher one into a region of increased

human vibration sensitivity.

Figure 7-6 shows the variation of A.S.D. with speed for the

baseline vehicle with e=(1,1,1). Although the ideal choice of 6

would depend on the planned operating speed, the figure shows that

any particular choice can be effective in improving ride quality

over a range of V.

4. Tracking Error. By suppressing hunting, the steering controller

also reduces tracking error on nominally straight track. Figure 7-7

shows the tracking error versus speed for E's of (0,0,0), (1,0,0),

(1,1,0), and (1,1,1). Except for the (1,0,0) case, which shows an earlier

onset of instability than does the uncontrolled vehicle (cf. Figure 7-2),

increasing the order of feedback results in progressively smaller

RMS error.

5. Control Power. The mathematical basis for estimation of

power delivered by an active controller was given in 6.7. Recall

that the frequency limits of integration of power spectral density
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have been fixed at 0.3 and 30 Hz, based on the practical necessity of

bandpass filtering the controller output. Inspection of Figures 7-3

through 7-6 shows that all important contributions of active steering

are confined to those two decades for all speed and gain combinations

considered. Of course, filtering may be expected to have a significant

effect at extreme speeds; in particular, the very high critical speeds

shown in Figure 7-2 would not be correct.

Figure 7-8 contains net power delivered to the active part of

the system in the 0.3 - 30 Hz band for three speeds and three sets

of controller gains. In no case considered does control power

exceed 0.6 horsepower. This modest figure should be applied with

caution, however, because it represents only the minimum power

required -- a real configuration may use significantly more.

6. Overview. This chapter has shown how the relative - steered

active control scheme may be used to improve the performance of rail

vehicles with conventional rigid trucks. Only the LMO carbody model

has been used -- the RPB model will be applied in Chapter 9 -- but

these results indicate that improvements may be substantial. Critical

speed may be extended greatly., Ride quality,-expressed

as acceleration spectral density, may be improved, and tracking error

may be reduced. In short, the hunting problem may be eliminated by

the expenditure of roughly one horsepower per vehicle.

The steering approach is not the only reasonable method of

actively controlling rail vehicles, but it has been selected for

study because (1) it represents a direct attack on the hunting
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mechanism, and (2) it promises to be relatively simple to implement

mechanically. An even simpler and lower - power "controller" -- the

passive - asymmetric suspension -- will be treated in the next

chapter.
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CHAPTER 8

PERFORMANCE OF CONVENTIONAL VEHICLE MODEL WITH LATERAL - MASS - ONLY

CARBODY AND ASYMMETRIC SECONDARY SUSPENSION

One special case of the general controller may be implemented

passively. The passive-asymmetric suspension, described in Equations

6.3.11, achieves some of the benefits of the active steering controller

through the use of unequal lineal springs and dampers in front of and

behind the truck center of mass (see Figure 6-2). In this chapter,

the passive-asymmetric suspension will be applied to the RC truck and

LMO vehicle models. It has the advantages of being passive (thus

requiring no additional power for operation) and mechanically simple.

It will be shown to offer significant increases in critical speed

compared to the conventional symmetric suspension, which may

alternatively be traded for improved ride quality at lower speeds.

1. Physical Constraints. Recall from 6.3 that ak and ab

represent the ratios of rear spring and damper constants, respectively,

to those of the front spring and damper within the truck (K and B0 ).

If ak and a b are both unity, there is no asymmetry and the suspension is

referred to as conventional or symmetric. A realizable passive spring

or damper must have a non-negative constant, which requires

ak > 0 , and (8.1.1)

a. >O . (8.1.2)

Equations 6.3.11 are rewritten here for convenience:
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K = K0(1+k) B= B0(l+fb

Kb = KOQAk2 (1+Csk) Bb = B0 b 2(l+ab) (8.1.3)

D =D2 D =D = K k k) D3=D =D=D10 = B0 b (1-ab )

The following discussion will be limited to springs, but the form of

Equations 8.1.3 shows that it applies equally well to dampers with the

substitutions of "B" for "K" and "D 3" for "D "

First, note that

Kb Kc k - (8.1.4)

The available length k is limited by truck size, and is unlikely

much to exceed the wheelbase kh. This puts a limitation on the Kb

attainable from the lineal springs alone at a given Kc

Kb max Kbo + Kc(kh)2  , (8.1.5)

where Kbo is a purely torsional stiffness provided in some way other

than by the lineal springs. The further requirement that ak be

non-negative sets a bound on DI (=D2=D7=D8

1 max c k

K- has been assumed as the primary variable because it is at least
c

partially determined by considerations other than dynamics, such as

suspension and trackside clearances.

Equation 8.1.5 includes a provision for a pure torsional spring

of constant Kbo. Such a spring may be required in order to attain the

very high yaw stiffness Kb needed to stabilize hunting at high speed,
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without raising the lateral stiffness K excessively.
C

The numerical examples in this chapter are based on parameters

for an "example vehicle", which differ from those for the "baseline

vehicle" tabulAted in Table 3-5 only in the value of B * K and B
b c c

retain their baseline values,

K = 4.834 x 104 slug/sec 2 , and (8.1.7)

c
B a = 6.714 x 103 slug/sec (8.1.8)

It is further assumed that

k b = kh = 49.213 inches ... (8.1.9)

i.e., that springs and dampers are located over the wheels. The

latter demands that Bb for the example vehicle cannot be zero as

before, but rather has a lower bound (from the damping analog of

Equation 8.1.5) of

Bb = Bc (kh)2 = 1.626 x 107 slug-in2/sec, (8.1.10)

which value will be used for the example vehicle. By contrast,

Kb for the baseline vehicle is greater than K C(kh)2 , and it may be

obtained through the use of an auxiliary torsional spring K b0:

Kb = 4.196 x 108 slug-in2 /sec2 , and (8.1.11)

Kb = b + KC(kh)2  , (8.1.5)

requiring that

K-bO = 3.025 x 108 slug-in
2/sec2  . (8.1.12)

The higher value of B b in the example vehicle results in a slightly
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reduced critical speed relative to the baseline vehicle (292 ft/sec

versus 294 ft/sec), but is required in order to demonstrate the effects

of damper asymmetry.

2. Notation. After all other parameters are specified, it remains

only to fix ak and ab. The degree of asymmetry in the suspension will

be denoted by the list

K = (ak'ab) . (8.2.1)

The symmetric (or conventional) secondary is thus denoted by

K=(1,1).

3. Stability. The action of the asymmetric suspension is similar

to that of the steering controller described in Chapter 7: lateral

error produces a torque which, by virtue.- of forward motion and creep

forces, steers the truck nearer the carbody. The asymmetric

configuration has also a complementary mechanism whereby truck yaw

generates lateral force. The contribution of asymmetry, like that

of the relative-steering controller, is significant only at relatively

high frequencies where the carbody undergoes little lateral motion.

Figure 8-1 is a plot of stability boundaries of the example

vehicle, D1 (or ak) versus V for several ab 's. Any D1 in excess of

that corresponding to ak=0 cannot be achieved passively. The figure

shows that asymmetry can extend Vc well beyond the 200 mph of the

conventional suspension. For K=(.25,.5), for example, the system is

stable from 0 to 300 mph.

The regions of instability in Figure 8-1 correspond to secondary
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or truck hunting. Two other modes of instability resulting from

asymmetric secondary suspensions have been observed in other numerical

cases. In vehicles with low yaw stiffness Kb, it is possible for the

onset frequency of hunting instability to be lower than the carbody

resonance frequency; hunting occurs at low speed and there is little

relative motion between truck and carbody. Since the asymmetric

secondary relies upon relative lateral displacement between the truck

and the carbody for its steering action, it is relatively ineffectual

in suppressing this type of low-speed instability. Another region of

instability may occur when KbO is small or zero and ak approaches its

limiting value of zero. Under these conditions and at low speeds,

their is little resistance to fishtailing motion of the highly

asymmetric truck, a motion which can become unstable at frequencies

up to the carbody resonance.

4. Ride Quality. Figure 8-2 shows the A.S.D. for the example

vehicle at 100 mph, for various degrees of asymmetry in the springs

ohly (K=(x,1)). The spectrum is unchanged at low and high frequencies,

but the hunting peak is lowered ( by as much as 90% ) and broadened

slightly.

Figure 8-3 is a similar set of spectra for variations of ab

only (K=(l,x)). The low-frequency behavior is unchanged. Reductions

in ab tend to increase the amplitude of the hunting peak ( up to

110% ), reduce its frequency, andnarioy it. The HFA is increased at

out-of-phase frequencies due to coupling from yaw angle to lateral

force; this may be seen by considering the high-order, out-of-phase
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numerator coefficient which for the asymmetric secondary is

4f p khB 2A (l-b~
b = m c b + . (8.4.1)
m4 ~mbIbV l+Yb

This out-of-phase contribution will exceed the in-phase HFE if

mLkh (1-C b) > 1 . (8.4.2)
I b(1+a b)

Figure 8-4 shows the variation of A.S.D. with speed for

K=(.25,.5). It demonstrates that the asymmetric suspension is

effective only when the hunting kinematic frequency is high

relative to the carbody resonance frequency. At 50 mph, wk is

about 0.5 Hz for the example vehicle, or half the carbody resonance;

accordingly, the A.S.D. curve at 50 mph is almost identical to that

for the conventional suspension. Thecurves for 100 and 150 mph

and the asymmetric suspension, on the other hand, represent major

improvements.

5. Tracking Error. RMS tracking error for the example vehicle is

plotted against V in Figure 8-5. Again, asymmetry has little effect

at low speeds, but reduces error significantly at higher V. There is

the expected rise in the vicinity of 100 mph where carbody resonance

is excited.

6. Overview. The passive-asymmetric secondary suspension has

been found to be helpful in extending the stable speed range of an

otherwise conventional rigid truck with given Kb, K , Bb, and Bc. It
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allows for less flexibility in design than does an active controller,

but has the advantage of requiring no control power. The stability

at low speeds is determined mostly by yaw stiffness Kbb, which should

therefore be kept reasonably high. As speed increases, however, the

asymmetry becomes important and permits faster operation than could

be obtained from a symmetric suspension with comparable parameter

values.
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CHAPTER 9

PERFORMANCE OF VEHICLES USING RIGID - PLANE - BODY

CARBODY MODEL

The Lateral - Mass - Only (LMO) carbody with a single truck

attached has been used in previous chapters to approximate the dynamics

of a complete rail vehicle. The approximation will be examined

in this chapter by comparison with a considerably more complex

model: the Rigid - Plane - Body (RPB) carbody with two trucks.

Significant differences between the two models are noted, but the

LMO model is shown to be a useful one from which to draw conclusions

about the effects of proposed changes in suspension design. Certain

general points concerning the influence of carbody length and

inertia on stability and ride quality will also be demonstrated.

1. Response of a Symmetric Plane Body. The RPB carbody model, as

defined in 3.3, is free to yaw and translate laterally, but cannot

roll, pitch, heave, or deviate from a constant longitudinal speed V.

The body is further assumed to be symmetric about its center of mass,

and to be acted upon only at the truck attachment points. Such a

carbody is illustrated in Figure 9-1, with forces and torques (Fbl,

Fb2, Tbl, and T b2) following the convention of 3.3.

Dynamic equations of motion for the RPB complete vehicle were

derived in Chapter 3, and shown to be twelfth order, as compared with

sixth order for the equivalent LMO vehicle. It is apparent that the
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Rigid Plane Body: Geometry and Interactions
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use of the RPB model to improve accuracy results in a system

which is much more difficult to analyze than was the LMO vehicle. The

RPB model introduces two new sources of complexity not present in the

LMO model. First, there are two trucks present, rather than one.

Second, the carbody possesses a new degree of freedom -- yaw --

by which the trucks may be coupled. Such interaction of the two trucks

has an impact on vibration transmitted to the passenger compartment,

and may cause additional modes of instability or resonance.

The RPB model gives results identical to those obtained from

the LMO model (1) directly over the trucks, when front and rear

are decoupled, and (2) all along the carbody, when c EO and the front

and rear trucks move in phase with one another. The former situation

holds in the limit as L-+o and I -*2m L2 (mass concentrated over truckc c

attachment points). In this case the car may be conceptually broken

into two independent LMO systems. The second situation in which

the correspondence is exact occurs when the rail inputs at the front

and rear trucks are in phase and the secondary suspension torques (Tbl

and Tb 2) are zero. Under these conditions, the symmetry of the

vehicle results in the carbody moving in pure translation, with c=0.

The requirement that Tbl and Tb2 be zero would be met if all passive

and active secondary restraint in the yaw direction were removed.

Although there normally is some yaw restraint, yaw becomes insignificant

relative to translation at high frequencies, causing the LMO approx-

imation to be nearly exact at high frequencies which also correspond to
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in-phase front and rear inputs.

The effect of carbody yaw on vibration transmission may be under-

stood by writing the governing equations for the system in Figure 9-1:

2 m c = -Fbl -Fb 2  (9'11

I c = -T - Tb2 - F blL - F b2L . (9.1.2)

If a position along the length of the carbody measured from the

center of mass is designated by p L (p =+l for the front, p,=-l for

the rear attachment point), the net lateral acceleration at that

position is

y = + Lc . (9.1.3)

Therefore,

-(Fbl+Fb 2) (Fbl-Fb2 )pkL
2  (Tbl +Tb2 )pL

y- 2m I I
c c c

(9.1.4)

Tbl and Tb2 are often small compared with F biL, particularly at

high frequencies, and will be omitted in the following.

It is useful to normalize carbody inertia thus:

I = I / (2m L2 ). (9.1.5)
c c c

I =1 corresponds to the carbody mass being concentrated directly overc

the trucks ("dumbell" carbody); I c=1/3 corresponds to the mass being

uniformly distributed along the length 2L ("uniform rod" carbody).

With this definition,
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1 F2 (1 + (9.1.6)
= 2 [ Fbl(l+ -) + Fb 2 (1 - - ) ]

c I I
C C

If Fbl and Fb2 are sinusoidal at the same frequency and the same

amplitude FO, the acceleration response amplitude is bounded by the

following limits:

in-phase: Fbl=Fb2=F0,

/m -F 0 , for any p ;(9.1.7)

out-of-phase: F bl=-F b2=F

= (-F0 c 2/ c (9.1.8)

The RPB carbody with negligible yaw restraint behaves like the LMO

model for in-phase inputs, with constant acceleration (pure translation)

along its length. For out-of-phase inputs, the carbody undergoes pure

yaw. At the attachment points, the ratio of out-of-phase to in-phase

acceleration amplitude is (1/I ); this fact will be reflected in the
c

high-frequency behavior of acceleration spectral density curves for

RPB configurations for which I #1.
c

Carbody yaw has little effect on true secondary hunting instability,

since by definition secondary hunting involves little motion of the

carbody. The additional yaw degree of freedom can, however, have a

significant role in primary hunting instability, which is due to

carbody resonance. The natural frequencies of lateral and yaw carbody

oscillations may be estimated by assuming the trucks to be fixed.

Then,
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Wiat =,and (9.1.9)

W yaw = -(2KcLz+2Kb)/Ic

= [K +(K/LZ)]/[m ~ ] . (9.1.10)

Primary hunting is a potential source of instability when the

kinematic hunting frequency approaches either of these natural

frequencies. If the lateral and yaw frequencies happen to coincide

(I =1 and Kb/L 2<<K ), primary hunting is especially difficult to avert;

measures taken to suppress translational-mode hunting (e.g., increasing

yaw stiffness, Kb) can aggravate yaw-mode hunting or "fishtailing".

For the baseline vehicle, I =0.903. Also,
c

Kb/K cL2 = .0964 ,

W lat = 6.098 sec , and

W = 6.719 sec~ .
yaw

I is nearly unity, and the yaw and lateral natural frequencies arec

relatively close to one another, so primary hunting may be expected

to be an important cause of instability for the baseline configuration.

2. Behavior of Conventional Vehicle. The baseline RPB vehicle

with rigid conventional (RC) trucks shows a critical speed of 280 ft/sec

(191 mph), slightly lower than the 300 ft/sec computed for the LIMO

carbody in Chapter 4. Eigenvector analysis shows this instability to

be of the primary hunting type -- a fishtailing motion with large

excursions at the rear of the vehicle only. Such asymmetric response

is characteristic of a symmetric vehicle with yaw restraint in the
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secondary suspensions.

Figure 9-2 shows the carbody acceleration spectral density

(A.S.D.) of the baseline vehicle at 100 mph. Two locations are

shown, one at the front (p =+l) and one at the rear (p =-l) truck

attachment point. Due to the fishtailing motion, acceleration is

more severe at the rear of the vehicle in the vicinity of the

kinematic hunting frequency; both curves, however, approach common

low- and high-frequency asymptotes.

In Figure 9-3, the curve for the rear A.S.D. is repeated for

comparison with the LMO approximation to the same vehicle. RPB and

LMO models show the same low-frequency asymptote. The RPB model

shows a much higher hunting peak than does the LMO, due to yaw

coupling. The high-frequency portions of the two models lie close

to each other. Ripples of amplitude (1/I 2)=1.23 on the RPB curveC

exceed the in-phase (LM0) limit due to the vibrationitransmissibility

effect discussed above; their close spacing corresponds to the long

delay time T Le

Figure 9-4 is similar to Figure 9-3, except that I has been
c

changed from 0.903 to 1/3 to illustrate the effect of carbody inertia

on ride quality. In this case the high-frequency ripples due to out-

of-phase inputs exceed the LM0 limit by a factor of 9. Increasing I
c

above 1 would cause the out-of-phase A.S.D. limit to fall below the

LMO limit, but doing this would not seem to improve ride quality

significantly.

The LMO approximation is most accurate when I =1.. Since the
c
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amplitude and spacing of the high-frequency ripples may be easily

predicted from first principles, however, it is a useful indicator

of ride quality whenever front-to-rear yaw coupling is small.

3. Behavior of Vehicle with Independently-Rotating Wheels. The

RPB vehicle with rigid independently-rotating-wheel (RIW) trucks is,

like the RIW-LMO vehicle, stable for all speeds for any choice of

parameter values considered (see Chapter 5). The A.S.D. for the rear

of the baseline RIW-RPB vehicle at 100 mph is shown in Figure 9-5,

along with the comparable RC-RPB curve from Figure 9-2. As for the

LMO model, the hunting peak is eliminated but the asymptotes remain

unchanged.

The only source of asymmetry in the response of a symmetrical

vehicle is the yaw coupling between trucks and carbody. It was

shown in Chapter 5 that there is no need for yaw secondary stiffness

to stabilize the RIW truck. Figure 9-6 shows the front and rear A.S.D.

for the baseline RIW-RPB case at 100 mph with Kb=Bb=0; the two curves

are identical.

Use of the more complete RPB carbody model confirms the dynamic

advantages of independently-rotating wheels. Hunting is eliminated,

and with it the possibility of instability. Ride quality is significantly

improved by suppression of the kinematic hunting peak. The effect of

carbody yaw on vibration transmission at high frequencies is the same

as that for the conventional truck discussed in the preceding section.

4. Behavior of Actively Steered RC-RPB Vehicle. In Chapter 7 it

was shown that by using the steering, relative-sensing active control
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system, major improvements could be made in the stable speed limit and

in the ride quality of the RC-LMO vehicle model. Similar improvements

are indicated when the RPB carbody model is used, but the interaction

of control torque with carbody yaw introduces effects not observed in

the LMO case.

Figures 9-7 through 9-9 are loci of stability for varying control

gains e(E=(elE2' 3)), and may be compared with Figure 7-2, their

counterpart for the LMO carbody model. Parameters are for the baseline

vehicle (IC=0.903) in Figure 9-7; in Figure 9-8, I c=2/3; and in Figure

9-9, I =1/3 (uniform rod carbody). The boundaries for all three values

of I , and also for the LM0 model, are plotted together in Figure 9-10

for easy comparison. At the low values of I , two fundamental regions

of instability may be distinguished: a low-c, high-V region which

may be identified with translational hunting (primary or secondary);

and a high-E1 region related to yaw-mode primary hunting. The former

region in each case corresponds well to that previously obtained for

the LMO approximation. The high-s1 region, however, is a new

phenomenon which places additional limits on the feedback gains which

may be used without causing instability. Notice that as I increases
c

to unity, the regions tend to merge in a neck between 100 and 200 ft/sec.

This can be ascribed to the fact that when I ~1, the lateral and yaw
c

carbody natural frequencies coincide, and equal the kinematic hunting

frequency wk at-V~150 ft/sec.

That the two regions of stability are separated by an unstable

region does not necessarily disqualify a control system from further
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consideration. An example of such a system would be the s=(1,1,1)

controller in Figure 9-7. If this system were intended for 400 ft/sec

operation, it would need to accelerate through an unstable region

between 100 and 250 ft/sec in order to reach that speed. Passing

through the region could, however, result in acceptable performance

if such passages were infrequent and brief and if the nonlinear

behavior following the onset of linear instability were sufficiently

mild. Another option available when active control is used is to make

the feedback gains speed-dependent. Taking the same example of a

400 ft/sec vehicle, it would be possible to accelerate to 300 ft/sec

using the s=(1,0,1) controller, and then to switch to s=(1,1,1) for

the remainder of the acceleration. Instability would thereby be

avoided entirely. It should be borne in mind that any of the

relative-sensing controllers are useful primarily at high speeds,

where carbody motion is small.

The A.S.D. at the rear of the 100 mph baseline vehicle is shown

in Figure 9-11, for no control and for steering gain 6=(1,0,0).

Steering control significantly reduces the hunting peak and leaves

the asymptotes unchanged. These effects were accurately predicted by

the LMO analysis in Chapter 7 (see Figure 7-3). The other example

cases from Chapter 7, e=(1,1,0) and s=(1,1,1), are unstable for the

baseline RPBlvehicle at 100 mph.

In summary, active steering control is beneficial in controlling

oscillations of conventional trucks mounted on the RPB carbody. The

stable operating speed limit can be extended, and the ride quality
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improved, at only a moderate cost in actuator power. The actuator

for this type of controller acts in yaw between the truck and carbody,

so that large controller gains which can excite yaw-mode instabilities

must be avoided.

5. Behavior of RC-RPB Vehicle with Passive Asymmetric Secondary.

The passive-asymmetric secondary suspension, examined in Chapter 8, was

conceived as a mechanically simple way to accomplish steering action,

and as a result it shares many features with the active relative-

steering controller. In particular, yaw freedom of the carbody

introduces an additional mode of primary hunting instability. The

passive suspension does not have acceleration feedback, however, and

is therefore not capable of the "infinite" critical speeds calculated

for the active steering controller.

Figure 9-12 shows regions of stability for the example RPB

vehicle (Bb00; cf. Figure 8-1) for damper asymmetries ab=l, 0.5, and

0. The stability boundaries correspond closely to those in Figure 8-1

for an LMO vehicle, except for an additional unstable region (for ak

near 1 and V around 150 ft/sec) which corresponds to yaw-mode

primary hunting.

Figure 9-13 shows the.effect-of the asymmetric configuration

K=(. 25,.5) on rear A.S.D. of the example vehicle at 100 mph. The

asymmetric suspension reduces the hunting peak amplitude to

approximately 1% of its former value; the high-frequency asymptote

is changed slightly by damper asymmetry.

The passive-asymmetric secondary suspension has been shown to
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improve the dynamic characteristics of the RC-RPB vehicle in much the

same way as was predicted using the RC-LMO model in Chapter 8; the

hunting acceleration peak is reduced, and critical speed increased.

Like the active steering controller, however, the asymmetric secondary

involves yaw coupling and so can excite unstable modes absent in the

LMO carbody.

6. Discussion. The primary purpose of this chapter has been to

verify that conclusions based on the LMO carbody model can be

extrapolated to predict the performance of a vehicle which is in

reality much more complicated. The basis for comparison has been

taken to be the rigid plane body with two trucks, which, although it

is a greatly simplified model, is yet so much more complex than the

LMO approximation that symbolic results (such as the transfer function

coefficients in Table 3-3) would be extremely difficult to obtain.

The LMO model need not -- and cannot -- represent every aspect of RPB

model behavior exactly, but it should give a good idea of how

variation of a particular parameter will affect the performance of the

more complete model. Evidence has been presented here to suggest

that this is the case, at least for the particular vehicle configurations

studied. In each case where a particular technique improved the

ride quality of the LMO vehicle, the same technique (although not always

the same parameter values) had a similar effect on RPB ride quality.

The principal defect of the LMO model is its inherent inability to

predict yaw-mode instabilities.

In addition to reinforcing the validity of the LMO model, work
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with the RPB carbody model has pointed to two important roles of the

carbody moment of inertia. To minimize transmission of vibration to

the passengers, normalized inertia Ic should be unity or larger. To

avoid instability due to coincidence of eigenvalues, Ic should be as

far from 1 as possible, either larger or smaller. Taken together,

these two considerations suggest that vehicles should be designed

with I -+. Attainable values of I are limited by the need for
c c

structural integrity with reasonable overhang and load distribution;

the physical implication, however, is that heavy body-mounted

equipment should be kept near the ends of the car and beyond the truck

attachments insofar as is possible. Effects of carbody asymmetry

have not been included in this analysis.

All three of the unconventional approaches to rail suspension

design which have been examined in detail -- the RIW truck, the

relative-steering active controller, and the passive-asymmetric

secondary suspension -- have been shown to perform well dynamically

when applied to the RPB carbody. The next chapter will consider

their effect on quasi-steady curve negotiation.



-214-

CHAPTER 10

TRACKING ERROR DUE TO STEADY CURVING

The primary focus of this thesis has been the dynamic behavior

of rail vehicles moving along rough, but nominally straight, track.

An equally important aspect of a vehicle's performance is its ability

to negotiate curved track without excessive lateral tracking error.

In this chapter, the steady-state lateral error of a rigid truck

attached to a lateral-mass-only (LMO) carbody is calculated under

the assumptions of constant curve radius and constant speed. The

effects of various suspension parameters and of unconventional

designs (independently-rotating wheels, active steering control, and

the passive asymmetric secondary suspension) on the curving

performance of this simple model are then illustrated. It will be

shown that each of these techniques can adversely affect tracking

error if the lateral component of "centrifugal force" is not balanced

by banking (superelevation) of the track.

1. Simplifying Assumptions. A detailed, linearized study of the

behavior of trucks in curves has been carried out by Newland [26],

who included the effects of flexibility and of local curvature, but

did not explicitly consider the carbody or secondary suspension. The

present analysis will be confined to rigid trucks, either of the

conventional (RC) or independently-rotating wheel (RIW) type. The

vehicle is assumed to move at a constant circumferential speed V
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along a plane track of constant gauge 2h whose centerline is a

circular arc of radius R. R is assumed to be much larger than both

the gauge (R>>2h) and the car length (R>>2L). The motion is assumed

steady -- all time derivatives are zero. Any controller action

present in the secondary suspension must be of the relative-sensing

type (i.e., insensitive to absolute displacements or angles); a truly

absolute-sensing system would not permit steady curving to occur.

Even with these assumptions, analysis of an RPB vehicle model

(rigid-plane-body carbody plus two trucks) results in six simultaneous

equations in y 9c' bl' bl' b2, and $b2, whose solution is both

difficult and obscure. For large R and small V, however, the lateral-

mass-only (LMO) carbody with one truck provides a good estimate of

tracking error, and will be used exclusively in this chapter.

For large R, the effect of local curvature along the length of

the truck may be neglected. The approximate geometry is then- as

shown in Figure 10-1: the vehicle traverses two parallel rails whose

speeds, as measured in the frame of reference moving with the vehicle,

are:

vou V (1+-) , and (10.1.1)
out R

h
v. = V (1 -- ) , (10.1.2)
in R

for the outer and inner rails respectively. In order to use this

rotating frame of reference, it is also necessary to introduce the

fictitious centrifugal body forces
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F = m V2/R , and (10.1.3)
centr,c c

F ntrb = mbV 2/R , (10.1.4)

which appear to act outwardly on the carbody and truck.

Steady curving error willbe defined as yb, as illustrated in

Figure 10-1. This definition is consistent with that used previously

in the context of dynamic (RMS) tracking error. Another important index

of curving performance which should be noted is the maximum wheel

excursion, given by

ymax max lyb# bkh . (10.1.5)

Notice that b is positive when the truck yaws "out of" the curve.

This excursion should be less than the flange clearance for smooth

curving.

2. Governing Equations. The curving equations developed here

follow the same assumptions of linearity presented in Chapter 3. There

are only two new features in this analysis: (1) the presence of the

centrifugal body forces so that calculations may be done in a

reference frame revolving with the vehicle; and (2) a difference of

2Vh/R in the encounter speeds of the inner and outer rails.

The forces (real and fictitious) and torques acting on the truck

are diagrammed in Figure 10-2. Letting i designate the wheel

reference number as in the figure, they are:

centrifugal force, truck: Fcentr,b = mbV2/R

lateral suspension force: Fb
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yaw suspension torque: Tb
radial creep force, each wheel: Fcrri

circumferential creep force, each wheel: F cr,c,i

radial gravitational force, each wheel: F gr,i

Steady curving requires that these forces and torques be in equilibrium.

Radial creep forces arise from truck yaw coupled with forward

motion. They are:

RC: F cr.r = f 4 (r ./r0 ) (10.2.1)

RIW: Fcrri = . (10.2.2)

Circumferential creep forces occur only in the RC model, and are due

to a combination of unequal rolling radii and unequal rail encounter

speed (Equations 10.1.1 and 10.1.2):

RC: F crcl= f -l1 + (10.2.3)

-cr,c,1 ro
F =f 1 -
cr,c,2 r0  R)

Fcr,c,3= fo

r4 ---1+-cr ,c,4 ro RJ

RIW: F cr, = 0 . (10.2.4)

Gravitational forces are due to wheel tread profile (see

Appendix A). They act approximately radially. The difference between

these forces and their balanced (centered) values are:
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RC and RIW: Fg,r,1=Fg,r,2= yb+obk)
(10.2.5)

Fg,r,3=Fg,r,4= - bb

The difference in rolling radii due to displacement of the wheels,

of interest only in the RC model, is due to the effective conicity a:

RC and RIW: r1 = r0 - a(yb +bkh)

r2 = ro + a(yb+ bkh) (10.2.6)

r3 = ro + a(yb $bkh)

r = r0 - a(yb obkh)

The K-B-parallel models for both lateral and yaw secondary

suspensions are assumed, and the general control rule is restricted

to relative sensing only. The assumption of steady curving implies

that all time derivatives are zero at equilibrium. In that case the

suspension forces due to both passive and active components (from

Equations 3.4.1, 3.4.2, 6.2.1, 6.2.2, and 6.3.1) are:

Fb = K c b ) 7b , and (10.2.7)

Tb 1 c b - Kbob . (10.2.8)

The conditions for equilibrium of carbody and truck are:

carbody force, lateral: Fb = mVc 2/R (10.2.9)

truck force, lateral: F b+F +F +F
bcentr,b g,r,l g,r,2

+F +F +F +F +F
g,r,3 g,r,4 cr,r,l cr,r,2 cr,r,3

+F rr4= 0 (10.2.10)
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truck force, circumferential:

Fcr,c,l +Fcr,c,2 +Fcr,c,3 +Fcr,c,4 = 0 (10.2.11)

truck torque: Tb + (F grl+Fgr,2 -F gr,3 -F gr 4 )kh

+ (Fcr,r,1 +Fcr,r,2-F cr,r,3 cr,r,4)kh

+ (Fcr,c,1 +Fcr,c,4-F cr,c,2-F cr,c,3)h = 0

(10.2.12)

Equation 10.2.11, for circumferential force, is satisfied identically

for either model.

By combining all equations in this section except 10.2.7 and

10.2.8, one obtains:

RC and RIW:

(1+pMV)mc 2/R = 4K-yb b

RC:

RIW:

Tb = 4KLk2h2Pb + 4 fhayb /rO - 4fh2/R

T = 4K k2h24 bb L b

(10.2.13)

(10.2.14)

(10.2.15)

Equations 10.2.14 and 10.2.15 may be put into the same form by use

of the multiplier tS, defined thus:

6, = 1 for RC truck

S= f(10.2.16)
65= 0 for RIW truck .

Then

RC and RIW:

Tb = 4KLk2h2 b + I1
4 fhayb /rO - 6 4fh2/R. (10.2.17)
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Combining Equations 10.2.13, 10.2.17, 10.2.7, and 10.2.8 yields the

steady curving lateral and yaw errors. It happens that the expressions

for both contain a multiplicative factor of (1/R), showing that error

is inversely proportional to R for a given vehicle at a given speed.

It is therefore appropriate to deal with the groups ybR and $bR,

given by:

D(l+p )
6 (4fh2) +m V2 [ - + f mff
I c K 4f eff

bR = - (10.2.18)

6 1 no) +-Kr eff

(l+p)my2  K

bR f - + (yR) (10.2.19)

where K is an effective yaw stiffness defined as

effK

Keff Kb +4Kbk 2h2~ K (10.2.20)
c

The numerator of equation 10.2.18 consists of a "geometric

term", which is independent of V, and a "centrifugal term", proportional

to V2 . Notice that the tracking error of the RIW vehicle is zero at

zero speed, but that that of the RC vehicle with coned wheels (K=0)

has as its low-speed limit

roh

y+ -- . (10.2.21)

This value of lateral displacement allows the wheelsets to move around

the curve in pure rolling. Equation 10.2.19 shows that the RC truck
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with coned wheels tends to steer into the curve ($b<0) so as to offset

the centrifugal force with creep forces. The effects of a, KL, Kbp

Dl, and D will be examined in succeeding sections.

3. RC Curving with Conventional Suspension. Figures 10-3 through

10-5 are plots of ybR versus V for the RC-LMO vehicle model with the

conventional, K-B-parallel secondary suspension described in Chapter

3 (D1=D7=0). Figure 10-3 shows that the effect of varying yaw

stiffness Kb is to increase error at all nonzero speeds. Yaw springing

resists the tendency of the truck to steer into the curve and balance

centrifugal force, so that a larger displacement is required to

generate sufficient torque to produce the requisite *b. There is no

effect of Kb at zero speed, where Fb is zero.

Figure 10-4 is a similar plot showing the effect of increasing

gravitational stiffness KL. At high speeds, the effect is similar to

that due to increasing Kb. At low speeds (including V=0), gravitational

stiffness reduces error by supplying some of the restoring torque

which would otherwise be generated by creep alone.

The effect of conicity, a, on curving error is shown in Figure

10-5. A larger value of a results in a smaller error at all speeds,

because a given amount of torque can be developed with less lateral

displacement of the wheelsets.

4. RIW Curving with Conventional Suspension. The curving errors

of the baseline RC-LMO and RIW-LMO vehicles are compared in Figure

10-6. That for the RIW truck is zero at V=0 (since it displaces due to

centrifugal force only), then rises proportional to V2 . For these
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particular parameter values, RIW error exceeds RC error for speeds

above 110 ft/sec (75 mph). Figure 10-7 shows RIW curving error

to be inversely proportional to KL for all speeds. Notice from

Equation 10.2.19 that 4b=0 if Kb=O; the RIW truck resists lateral force

with gravitational, not creep, forces.

5. RC Curving with Steering Control. The relative-sensing,

active steering controller was examined in Chapter 7. For the

purposes of steady curving analysis, this controller is defined by the

position gain D, where

D 1 e.-(4fha/ro) - (10.5.1)

D is zero. As shown in Figure 10-8, increasing c1 leads to increased

yb for nonzero speed. For centrifugal force mV2/R to be transmitted

through the lateral spring Kc , the relative lateral body-truck

displacement yc~yb must be positive. According to Equation 10-.2.8,

such a displacement causes a positive control torque which steers the

truck out of the curve. This effect was cited in Chapter 6 as one

reason to high-pass filter or otherwise to modify the control rules

of Equations 6.2.1 and 6.2.2.

6. RC Curving with Asymmetric Secondary. It was shown in Chapter

8 that some of the benefits of the actively steered suspension may

be achieved passively by using an asymmetric arrangement of springs and

dampers in the secondary suspension. In the notation of 6.3, ak

represents the degree of spring asymmetry, and

D = D7 = KO k(1-a k) . (10.6.1)
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Examination of Equation 10.2.18 reveals that use of an asymmetric

secondary increases the curving error at nonzero speed if

D1<4f/(+pm), and decreases it if D1>4f/(l+pm); the latter condition

is difficult to achieve in practice, however, so spring asymmetry

will normally increase curving error. Figure 10-9 shows ybR versus

V for the example vehicle- of Chapter 8, for three values of ak"

7. Other Effects. The models used in this chapter are highly

simplified to permit ready comparison of the effects of various

suspension parameters on steady curving error. Some effects which

could significantly influence the actual error, but which have been

omitted in the foregoing analysis, are:

- Local curvature at small R tends to cause the truck

to yaw out of the curve, increasing lateral error.

- Truck flexibility allows the wheelsets to yaw relative

to one another. Such motion, even if very small, can

be sufficient to change the calculated net creep forces

greatly. Truck flexibility tends to reduce curving

error [26].

- Finite coefficient of friction limits creep forces in

tight curves. This may have one of several possible

effects on lateral error, including gross slippage of

one or more wheels.

- Wheel tread profile can have three types of effects.

Concave treads give rise to a gravitational restoring

force which is not generally proportional to displacement,

but rather exhibits a stiffening characteristic; flanged

conical treads are a special case of concave treads, with

zero stiffness up to flange contact, and high stiffness

thereafter. This fact tends to reduce or limit large
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wheel-rail excursions. Secondly, concave treads

show increasing local conicity a with displacement,

which also reduces error of an RC truck. Finally, the

inclination of the wheel-rail contact surface from the

vertical due to tread profile can affect the assumed

creep force relationw appreciably at large displacements.

- Vehicle length and second truck, present in the RPB vehicle

models but absent in the LMO, become important at large

L/R and large Kb. Under these conditions the carbody

tends to yaw out of the curve, and both front and rear

tracking errors are increased over the LMO estimate.

- Superelevation or banking of the track allows a component

of the vehicle's weight vector, directed inward, to

offset some or all of the centrifugal force, thereby

reducing outward tracking error at all speeds (including

V=O). A good choice of superelevation is crucial if

a vehicle is to perform well in curves.

8. Observations on Steady Curving. The techniques studied to

improve dynamic performance may be grouped into two categories: those

which alter the primary suspension or truck (increasing KL, the RIW

truck); and those which alter the secondary suspension (increasing

yaw stiffness Kb, active steering control, the passive-asymmetric

secondary). In both groups, the underlying purpose of the suspension

modifications is to cause the truck to follow the track more closely

and with less oscillation. The difference between the two, however,

is that the primary suspension responds to the actual relative error

between the truck and the rails, whereas the secondary suspension

senses the error between truck and carbody. For nominally straight
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track and at high frequencies, the two errors are closely related,

and techniques of either class may be applied successfully. In a

curve, however, a method which causes the truck to follow the

carbody more closely ipso facto reduces its ability to follow the rails.

Hence, the approaches employing profiled wheel treads improve curving

performance -- at low speeds, at least -- while those involving

secondary suspension modifications degrade it. The reduction of a,

a primary suspension modification, extends the range of dynamic

stability but increases curving error.

The use of independently-rotating wheels should be seriously

considered for applications, such as urban rapid transit, where

speeds are low and curves are tight. Figure 10-6 illustrates how

tracking error for an RIW vehicle may be lower than that for an RC

vehicle at low speeds. Equally as important as the magnitude of

excursions is the nature of wheel-rail contact when they become large.

A conventional truck, negotiating a curve with insufficient flange

clearance, undergoes flange contact and possibly gross slippage; the

results are annoying squeal and rapid wear of both wheels and rails.

An RIW truck, on the other hand, negotiates any curve in pure

rolling if Kb=O. This fact suggests that the RIW truck may offer

reduced wear as well as attractive dynamic characteristics.
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CHAPTER 11

CONCLUSIONS AND RECONMENDATIONS

Three types of rail vehicle suspension modifications --

independently-rotating wheels, active steering control, and the passive

asymmetric secondary suspension -- have been examined in this thesis

and shown to offer significant advantages in lateral dynamic

performance over that normally obtainable using conventional methods.

All have the potential of increasing the cruise speed of steel wheel /

steel rail vehicles well above the present practical limit (about

160 mph), without adversely affecting passenger comfort or immunity

to derailment. Each method may, depending on speed and other

conditions, have an adverse effect on the ability of a vehicle to

negotiate curves without flange impact. The relatively simple Lateral-

Mass-Only (LMO) carbody model has been found to be a useful approx-

imation for design purposes, preserving important features of more

elaborate models without introducing undue analytical complexity.

Future work in the area of rail vehicle lateral dynamics should

include: model refinement, linear and nonlinear; optimization

studies; the use of other types of controller action; and design and

testing of vehicles which embody the ideas proposed herein.

Conclusions

1. Usefulness of the LMO Carbody Model. Most of the results which
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have been presented here were obtained using the Lateral-Mass-Only

(LMO) carbody model. This represents a compromise between the

simplicity of the "translating reference" assumption, frequently

made in studies of truck hunting, and the accuracy obtainable when

the length and inertia of the carbody and the presence of a second

truck are taken into account. The equations of motion resulting

from combining the LMO carbody with the rigid truck model are simple

enough to allow system functions to be obtained explicitly in terms

of the design parameters. Despite its simplicity, the model can

show carbody resonance (primary hunting), a phenomenon of great

importance in real vehicles which is entirely absent when the carbody

is modelled as a translating reference. The finite mass of the

carbody must also enter into any calculations of vibration transmitted

to passengers or lading.

The LMO model was compared in Chapter 9 to a more complicated

one -- the Rigid-Plane-Body (RPB) carbody with two trucks. The

additional degree of freedom in the latter was found to introduce

modes or oscillation, not predictable from the LMO model, which can

become unstable due to yaw coupling between truck and carbody; by

contrast, analysis based on the lIMO model generally suggests that

such yaw coupling improves dynamic performance. Despite this

limitation, correspondence between the models was close for the cases

examined. Suspensions which improved behavior of an LMO model had

a similar effect (over some range of parameter values) on that of an

RPB model. Any specific proposed design should be evaluated using the
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most complete model available, but the LMO approximation appears a

useful one with which to identify promising directions for inquiry.

2. Modifications to Conventional Suspension. Several modifications

to the rigid conventional (RC) truck, examined in Chapter 4, can

improve dynamic performance. The increase in critical speed Vc which

comes from increasing yaw stiffness Kb or decreasing conicity a is

well documented; either approach, however, impairs tracking ability,

and Kb is further limited by considerations of practical component

stiffnesses and tolerances. The possibility of placing a damper in

series with the yaw spring was examined and shown to eliminate the

misalignment and low-frequency tracking problems without adversely

affecting critical speed or ride quality.

The inclusion of acceleration spectral density (ASD) as an index

of ride quality leads to some constraints on performance not predictable

from computations of critical speed alone. Low- and high-frequency

ASD asymptotes may be identified which depend on only a few parameters.

The high-frequency asymptote is proportional to the square of the

lateral secondary damping, Bc; this damping should therefore be made

as small as possible, consistent with the requirement for adequate

damping of the carbody's natural modes.

Gravitational stiffness at the wheels, KL, was identified as a

means of extending Vc, improving ride quality, and reducing tracking

error of an otherwise conventional rigid truck. Gravitational

stiffness is effected by grinding wheels to a concave, rather than

conical, tread profile; it is also possible to obtain a concave profile
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through natural wear. The relationship between KL and a for naturally

worn treads, however, has not been established -- the increasing

conicity which accompanies wear may offset the benefits of increasing

KL. Furthermore, profiled wheels may be expected to have very

different effects depending upon whether they are mounted on rigid or

flexible trucks. Nevertheless, there exists a strong possibility

that designing with profiled wheels may offer both improved dynamics

and lower regrinding costs relative to coned wheels.

3. The RC Truck with Active Steering Control. One type of active

control device -- the relative-sensing steering controller -- has been

studied. This system would measure relative displacement, velocity,

and acceleration between the truck and the carbody in the lateral

direction, and use them to generate a torque tending to steer the

truck toward the carbody. It was found capable of extending stable

operation to very high speeds, and of improving ride quality at a

given speed, with the expenditure of a modest amount of control

power. Applied to the RPB carbody model, the active steering

controller had effects similar to those calculated for the LMO model

except for the presence of new regions of instability due to yaw inter-

action. Tracking error in curves is increased by the controller in

its pure form, but this problem can be circumvented by suitable

filtering.

Active steering control is an attractive means of providing good

dynamics at very high speeds. It is possible to implement the active

controller in such a way that it can (1) perform ancillary functions
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such as steering into curves to reduce error, in addition to its

primary function; (2) be easily modified or tuned after installation;

and (3) be made adaptive (e.g., speed- or load-dependent) so as to

function well under a wide variety of conditions. The price of these

advantages, in added cost, complexity, and maintenance, makes an

active system probably better suited to passenger service than to

freight.

4. The RC Truck with Asymmetric Secondary. The use of a

secondary suspension with an asymmetric front and rear distribution of

springs and dampers has been found to be a passive way of achieving

some of the advantages of active steering control. Such a suspension

requires no additional power for its operation; it would tend to be

mechanically simple, inexpensive, rugged, and reliable. It is

capable of extending the stable speed range considerably, while

improving ride quality and dynamic tracking error at any given speed.

Its two principal disadvantages are: (1) directionality -- an

asymmetric truck can be operated at full speed in one direction only;

and (2) increased steady curving error.

The features of the passive asymmetric secondary suggest that it

might be conveniently retrofitted on existing passenger or freight

cars for further evaluation.

5. The RIW Truck. The rigid truck with independently-rotating

wheels represents a major departure from current practice. By

eliminating the axle connecting opposite wheels, and relying on

gravitational stiffness alone to guide the truck, hunting instabilities
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are eliminated. The results are very high critical speed (infinite

according to the assumptions in this thesis), improved ride quality,

reduced dynamic (and at some speeds steady) tracking error, and

increased flexibility in the choice of secondary suspension

parameters. Drawbacks of the RIW truck include: (1) the necessity

for a very rigid truck frame and for special bearings to keep wheels

parallel and at constant gauge -- functions presently served by the

axles; and (2) the added difficulty of properly accelerating and

braking independent wheels.

The superior dynamic properties of the RIW truck recommend it

for further consideration in high-speed applications. Its curving

behavior also makes it especially suitable for rapid transit service.

Recommendations

6. Improvement of Models. This thesis has dealt only with

relatively simple models for vehicles and inputs, in an effort to

gain a physical understanding of the principal phenomena involved.

Some ways in which the models may be further developed are

summarized below.

- Carbody roll couples to lateral motions and can

significantly affect dynamics in some situations.

Its importance should be assessed.

- Nonlinear effects should be included where they are

important, especially in freight car models.

Important nonlinearities include flange impact,

profiled wheel treads, friction damping, stops,
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clearances, and the creep force relation.

- Additional flexibility may be introduced, especially

between the wheelsets and truck frame. Conclusions

based on a perfectly rigid truck become invalid

at high frequencies.

- Freight truck models should be developed. The

conventional three-piece freight truck is by no

means rigid, and efforts to improve its performance

should recognize this fact.

- Rail models should be developed which include their

flexibility and distributed character.

- Inputs should be extended to include wind gusts,

rail joints, and cross-level irregularities in order

to obtain a more realistic picture of ride quality.

- Coupling effects between cars in a train should

certainly be investigated. Models of long trains

can be developed using modal approximations, and

used to assess suspension designs.

- Acceleration and braking can affect lateral dynamics

and should be examined.

- Profile of wheels is an important parameter which is

not well understood. There is need for a means of

predicting what pattern of tread wear will result from

a given vehicle design and given operating conditions.

7. Further Control Studies. Active control was used successfully

in this work to improve rail vehicle dynamics, but no attempt was

made to optimize the suspensions using analytical control techniques.

Such optimization is a desirable goal, however, as it may identify

altogether new ways to improve dynamic behavior. The prerequisite

for system optimization is a meaningful performance index; in the
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case of rail vehicles, a suitable index must at least include

measures of carbody vibration, tracking error, and control power.

The strong but narrow hunting peak in the response of conventional

vehicles is believed to affect ride quality more than its

contribution to mean-square acceleration would suggest. and this

fact has thus far prevented formulation of a workable comfort index.

Further work in this area is required, both to ascertain the

passenger's tolerance to random vibration with large pure-tone

content, and to develop a convenient ride quality index which properly

reflects human sensitivity to such vibration.

Only a small group of control laws were considered here, and

others should be tried in the future. In particular, a rail vehicle

is well suited to control with preview, either within the vehicle or

along the length of a train.

8. Design and Experiment. The practical value of suspensions

based on this work can be established only by detailed design and

testing. Tradeoffs between active controller performance (sensitivity,

bandwidth, reliability, etc.) and cost (capital, maintenance, power,

etc.) should be investigated, as should constraints placed on new

designs by the need for compatibility with existing practice. RIW

systems as modelled have been shown to have excellent dynamics, but

they must be carefully examined to determine their feasibility.

Controlled experiments on rail vehicle dynamics are badly

needed. Efforts should be made to implement carefully scaled physical

models on which new concepts might be conveniently tried. Full-scale
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test facilities, such as that operated by the U.S. Department of

Transportation at Pueblo, Colorado [6], are of great importance in the

final stages of design.
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APPENDIX A

GRAVITATIONAL STIFFNESS

When a loaded wheel rests on a rail, it is acted upon by a

force vector at the contact point or points. The vertical com-

ponent of this vector is necessary to support the weight of the

vehicle; its lateral component, if unbalanced, will cause the

wheel to accelerate laterally. A concave wheel tread profile gives

rise to an increasing lateral restoring force with displacement

from the centered position. By linearizing this force - displacement

relationship, one can determine the linearized gravitational

stiffness, KL.

1. Idealized Wheel - Rail Contact Geometry. The exact geometry

of the wheel tread - railhead system is complicated and variable.

However, if only small motions in the plane normal to the direction

of forward motion are considered, the wheel and rail may be

characterized by their local radii of curvature in the region of

contact.

Figure A-1 illustrates the geometry assumed for the purposes of

this work. When viewed parallel to the rail, both tread and rail-

head are assumed to have constant radii, R and R respectively.
w r

Clearly R > R . The tread profile is assumed to be concave for
w r

two reasons: (1) a concave profile is necessary to provide a stable

restoring force with displacement, and (2) any initial profile will
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wear to a concave one in service. Point contact is assumed.

When opposite wheels are centered between the rails, the center

of each tread arc lies a distance yo outside that of each rail. This

initial displacement should be zero or positive as shown; a negative

value of yo causes the roll center of the wheelset to lie below the

plane of the rails, a situation which tends toward static instability.

The normal to both surfaces at the contact point is at an angle 0

to the vertical, where

O = sin~ 1(y0/AR) , (A.l.1)

and AR = R -R . The initial contact force F0 acts along thisw r

direction.

In most practical situations, it may be safely assumed that any

vertical motions (i.e., roll) caused by lateral displacement of

profiled wheels will not appreciably affect the contact geometry.

2. Forces at the Interface. It is assumed that each wheel

experiences a vertical loading W; taking W to be constant neglects

quasi-static (weight transfer or unbalance) and dynamic variations

in wheel loading. Force balance in the vertical direction requires

that the vertical component of F be equal to W, or

W = F cos * . (A.2.1)

This implies that the lateral component is

FL = W tan P ,( (A. 2.2)
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or

F = W _ (A.2.3)

L /(AR)z_ y2

Differentiating with respect to y gives

dF W 1 -
KL= dy AR 1 - (yo/AR)z . (A.2.4)

3. Choice of Initial Displacement. Figure A-2 illustrates

a constraint placed upon the choice of yo by conformity with current

practice. Rails are laid so that their plane of symmetry is inclined

from the vertical at an angle a. This is done so that a wheel of

conicity a will transmit a normal load directly along the web of the

rail. The same consideration demands that a profiled wheel designed

for use over conventional track should have 4O = a. Applying this

constraint gives

W
KL a - sec a . (A.3.1)

4. Sensitivity to Initial Displacement. An important considera-

tion in the use of profiled wheels is the sensitivity of KL to gauge

variation. If wheelset gauge remains constant, track gauge error is

manifested in error in y0. In Figure A-3, normalized lateral stiff-

ness is plotted against the quantity (y0/AR). KL is seen to be

insensitive to gauge error up to about 0.4AR.

5. Degree of Nonlinearity in Lateral Force Relationship. The

use of a constant, KL, to describe the lateral force relationship

rests upon the assumption that the relationship may be usefully
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Choice of Contact Angle to Conform to Standard Conicity
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linearized about its operating point. The net restoring force due

to the lateral displacement of a wheelset (pair of wheels) from its

central position is plotted in Figure A-4 for three values of

normalized initial displacement. The curves show a shape charac-

teristic of a stiffening, nonlinear spring. This stiffening

behavior is useful in that it gives a smoother limiting action than

does a conventional flange; but the significant feature of the

curves here is the extent of the nearly straight segments near the

origin. For yo=0 , for example, the linearization is good to at

least .4AR.

6. Yaw Gravitational Stiffness. When a wheelset yaws without

lateral movement, it experiences a torque due to the preload F0 .

To first order, F does not change with yaw; so the linearized yaw

stiffness KY may be written as

(-2 h y0 )
KY = / 1 - ay0/AR)

2  . (A.6.1)

Notice that for positive yo, K.y is negative and therefore

destabilizing. When a wheelset is rigidly mounted in a rectangular

truck of dimensions 2kh by 2h, howevertheototaleffective yaw

stiffness for the entire truck is 2Ky-4K kIh 2 . Comparison of

equations (A.2.4) and (A.6.1) reveals that the destabilizing

stiffness KY can be neglected when y0<<k
2h. Since this is almost

always the case for conventional trucks, KY is not used in the

remainder of this work.
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APPENDIX B

MATRIX METHODS FOR FREQUENCY - DOMAIN ANALYSIS

Once the equations of motion of a system have been written in

state - variable form, it is possible to obtain input - output

relations in the Laplace (or frequency) domain using certain widely

known techniques (64]. Important simplifications arise when only

a single input and a single output are of concern. When it is

possible to derive the transfer functions totally or partially

symbolically (as opposed to numerically), one may take advantage of

structural properties of the system matrices to reduce computation

further.

1. System Representation in State Variable Form. A linear,

time - invariant, single - input system may be represented thus:

dx
= a x + bu , (B..l)

dt

where x is a vector of the state variables xi, x2  *.' x n; a is

the n by n system matrix; b is the n x 1 input matrix; and u is

the input variable. Throughout this thesis, u is identified with

the lateral centerline deviation at the front axle, yrf. The system

responds not only to the front axle position, however, but also to

its velocity and to the position and velocity of the rail as propagated

(delayed) to the second and succeeding axle positions. The input

matrix b must therefore include linear operators -- the time

derivative, d/dt, and the delay, A(T) -- to account for these effects.
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Equation (B.l.l) is linear and may be Laplace transformed

(with the usual assumption of zero initial conditions) to give:

sX = A X + B U , (B.l.2)

where capitals denote Laplace transforms. The linear operators

imbedded in b,. when transformed, become:

L[d/dt] = s , and (B.l.3)

-Ts
L[A(t)] =e . (B.1.4)

2. Compressed Matrices. There are many formulations of system

equations which give rise to relatively sparse a matrices. An

especially common case is that in which some of the state variables

are derivatives of others. In such cases, it is straightforward to

solve for some transformed variables in terms of the others by

inspection. The result is a new set of equations which, although

reduced in number, are equivalent to the original set. In particular,

such compressed transformed equations of motion are nth order in the

Laplace variable s.

The compressed equivalent of Equation B.1.2 is

A AA A

S = A X + B U (B.2.1)

where X is the reduced state variable vector, A and B are compressed

matrices, and S is a diagonal matrix in powers of s.

As a simple example of this compression, consider a second - order

system subject to an input and its derivative. The system equations
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are:

d -[x 1] [0 1. fx]
dt x2  ~Wn2 -2 nJ [x2]

+ [ 2 + 2Ew (d/dt) ] . (B.2.2)
n n

Since x2 is the time derivative of x1 , compression of the matrices

is possible. The 2 by 2 A matrix, the 2 by 1 B matrix, and the

two - element X vector become scalar polynomials in s, with

A = -n 2 - 2W ns

B = wn2 + 2ns

S = S2 ,and

X = x .

The usefulness of compressing the system equations in this

manner lies in the fact that the number of element multiplications

required to solve for a transfer function given an n by n A matrix

is approximately proportional to n!. The symbolic evaluation

procedure must carry out or at least check all of these multiplications

to be valid. A reduction in the size of the matrices which also

reduces their sparseness therefore improves computational efficiency.

3. Solution for Transfer Functions. Given the set of n
c

compressed and transformed system equations of Equation B.2.1,

where nc < n, any required transfer functions may be obtained.

If the desired output is not among the state variables, it is first

necessary to transform the state vector according to the following
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linear combination:

X = T X , (B.3.1)

where T is a square, nonsingular matrix. Under this transformation

th
the i element of X is the required output. Substituting (B.3.1)

into (B.2.1) gives

(S-A) T-1 X = B U . (B.3.2)

th ^
In this form, one may solve for the i element of X using

-o

Cramer's Rule. The required transfer function is

G(s) Xi(s) numerator (B.3.3)
U(s) denominator

The denominator (or characteristic polynomial) has the value

det [ (S-A) T I;

and the numerator is obtained by substituting the column vector

th -1
B for the i column of the matrix [(S-A)T~ ] and taking the

determinant of the resulting matrix.

4. Implementation of Symbolic Transfer Functions using Macsyma.

The procedure described above for the evaluation of transfer functions

has been implemented using Macsyma, a symbolic mathematics computer

facility developed by Project MAC [661. The system allows for some

or all of the symbolic names used in the matrices to be specified

numerically, the transfer function being parametric in the unassigned

variable names.
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Figure B-1 illustrates the use of Macsyma to generate the

transfer function for the system of Equation B.2.2. The block

which computes the function is included in the figure. Input

consists of the compressed matrix (S-A) ("A" internally); the

compressed input matrix B ("B" internally); the transformation

-l
matrix T ("T" internally); the size of the compressed system,

nc ("N" internally); and the index of the selected output variable,

i ("J" internally). Notice that for the sake of illustration,

the A matrix is not compressed to a scalar.
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(Cl) "example of macsyma use to evaluate transfer functions" $

(C2) "definition of routine tf which carries out computation" $

(C3) "s is the laplace variable. etsp2, etsm2, etsl are

exponentials in s which are used for delays" $

(C4) tf(a,b,t,n,j) := block( w:a.t , w:ev(w) , den:determinant(w)

den:rat(den,s) , for i:1 thru n do

w[i,j]:ev(b[i,l]) , num:determinant(w)

num:rat(numetsm2,etsp2,etsl,s) ) $

(C5) "enter matrices for simple second-order system" $

(C6) a:matrix([s,-1], [omn**2,s+2*z*omn])

[ S -l ]
[ ]

(D6) [ 2 ]
[OMN S+ 2 Z OMN]

(C7) b:matrix([0], [omn**2+2*z*omn*s])

0 ]
[I ]

(D7) [ 2 ]
OMN + 2 Z OMN S

(C8) t:ident(2)

[1 0 ]
(D8) [0 1 ]

(C9) "find transfer function for first element of x-vector" $

(Cb) tf(a,b,t,2,1) $

(Cl) num / den

2
2 Z OMN S + OMN

(Dll) 2 2
S + 2 Z OMN S + OMN

(C12) "substitute a known value for z" $

(C13) z:.707 $

(C14) keepfloat:true $

(C15) tf(a,b,t,2,1) $

(C16) num / den ; 2
1.414 OMN S + OMN

(D16) 2 2
S + 1.414 OMN S + OMN

FIGURE B-1
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