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ABSTRACT

Design process of Stewart platform used as Vehicle Emulator System
(VES) was investigated and various aspects which affect the basic behavior
of the mechanism was examined. Two additional design considerations
were proposed: stiffness and admittance emulation accuracy. The analysis
reveals the relationship between the performance of VES and the
components of the system, and it provides a deeper understanding of the
behavior of the mechanism. Different kinematic models of the platform
were discussed and compared. A new approach for numerically solving
the forward kinematics was presented. Kinematic constraints of the
platform are analyzed and a new algorithm was developed so that the leg
interference problem could be sclved more realistically.

A powerful graphical computer-aided procedure based on analysis
was proposed and used as a valuable design tool to investigate the effects of
geometry and constraints on the motion of the Stewart platform, to provide
some important design information, such as platform's workspace, its joint
angle and hydraulic flow rate etc., and to evaluate a proposed platform
design. With the graphical simulation program, some design, control,
error improvement and VES application guidelines could be obtained.

This research also attempted to establish an approach for correcting
the position and orientation error of Stewart platform due to the variations
of geometric parameters by either modifying desired leg length or
modifying the desired position and orientation of the platform.

Thesis Supervisor: Dr. Harry West
Title: Assistant Professor of Mechanical Engineering
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

Many applications of robotic manipulators today require or would
benefit from the manipulator to operate on moving vehicle or other
nonstationary environments. Such vehicles are compliant in comparison to
stationary and rigid bases on which most conventional industrial
manipulators mount. Examples of such applications include robots
operating in space and mobile robotic system for nuclear environment.
The base flexibility of mobile manipulator may seriously degrades system
dynamic performance and a robot to operate from mobile base is subjected
to arbitrary base motion disturbances. Such applications present
challenging control problems not commonly found in conventional
industrial manipulators. Research is undertaken at M.I.T. and a vehicle
emulator was designed and built for experimental investigation of the
behavior of manipulators operating in space, on compliant bases and in

nonstationary environments. (see West et al [6], Dubowsky et al [7’9],

Tanner [14] and Nguyen et al [27])

1.2 VEHICLE EMULATOR SYSTEM

The Vehicle Emulator System (VES) comprises a six-degree-of-

Chapter 1: [ntroduction 8
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Figure 1.1 The Vehicle Emulator System

’

freedom, paralleled linked, hydraulic driven Stewart platform, a six-axis

force/torque sensor and a control computer, as shown in Figure 1.1.

VES serve as a programmable test bed in experimental studies of
robotic manipulator in space, on compliant bases and in nonstationary
environments. With a robotic manipulator mounted on top of it, the

platform acts as the dynamic system with which the manipulator interacts.
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The force sensor measures the forces acting on the platform due to the
motion of the manipulator. The platform controller model. the dynamic
response of the system to those forces, i.e. the trajectory which the
modeled system would follow if it were subjected to those forces, and
controls the six hydraulic actuators to achieve the leg lengths
corresponding to each desired platform motion and thus imposes the
trajectory of the modeled system on platform. Because VES is

programmable, the platform can emulate a wide range of different

dynamic system.

1.3 CONTENTS AND ORGANIZATION

The design process of Stewart platform is studied. Two new design
considerations for Stewart platform used as VES are discussed in Chapter
2. Detail accuracy and stiffness analyses of Stewart platform are also
included. Chapter 3 presents the kinematic analysis of the platform.
Different kinematic models are discussed, a new numerical method to solve
the forward kinematics is given and a new approach to predict the
interference between legs of the platform is presented. Chapter 4
described a computer graphical simulation program developed based on
kinematic analysis, it is used as a design tool for the visualization of the
mechanism, checking the design results and exploring different design
alternatives. In Chapter 5, kinematics error correction problems including

error calibration and tracking compensation are discussed. Chapter 6

Chapter 1: Introduction 10



concludes the investigation of design of Stewart platform use as VES and
suggests areas where further work is needed. The appendices contain

derivations which are too lengthy to be included in the main body.
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CHAPTER 2

DESIGN SPECIFICATIONS

2.1 DESIGN CONSIDERATIONS

Stewart platform, which is constructed by connecting two plates to
six adjustable legs, was originally designed as an aircraft simulator, and
was also suggested for the application of machine tool, space vehicle
emulator, etc. There have been many researchers who contributed greatly
to the design and construction of this type of manipulators, especially,
Fichter and McDowell [} 1,12] conceptually outlined the major criteria to
design such manipulators. For Stewart platform used as VES, Fresco [3],
Stelman [ ], and Ismail [4] proposed a set of design specifications, including
workspace requirements (vertical and horizontal range on motion, range
of rotations about all axes), load capacity, bandwidth and maximum
acceleration etc. Based on these design considerations, six geometric
parameters corresponding to six degrees of freedom of the platform were
determined and MIT first VES platform was designed anzi built. However,
this set of design specifications was not complete. The performance of the

platform designed only considering these specifications sometime was not

so satisfactory, e.g. MIT first platform was floppy in horizontal direction.

In order to assure overall satisfactory performance, more aspects of
the-Stewart platform should be considered for its design. A simple one-

degree-of-freedom model of VES was established and the characteristics of

Chapter 2: Design Specifications 12



simulation was analyzed, and an error factor was proposed to estimate the
accuracy of the simulation and used as a design factor to measure the
quality of the platform. Another important factor should be included in
the set of design specifications is stiffness of the platform. Through detail
investigation of static loading characteristics of the platform, the
appropriate geometric parameters can be chosen so that the configuration

of the platform can guarantee high rigidity in all directions.

2.2 ADMITTANCE EMULATION ACCURACY ANALYSIS

When Vehicle Emulator System is used to simulate a dynamic
system, the tracking error of the platform is required to be smaller than
certain number, in other words, the accuracy of the simulation should be
specified. This accuracy is a measure of the quality of Stewart platform
use as VES and should be taken into consideration when the platform is
designed. However, using only a number value as accuracy without
specifying other conditions is not correct for determining,the quality of the
simulation. We need to consider the relationship between the performance
specifications of VES and simulation error, e.g., for simulating the motion
of a robot working in space, the performance specifications will include the
range and frequency of the robot motion, the masses of robot and satellite
(the base system to be simulated) and the simulation time. Therefore,
accuracy analysis is not only important but also necessary to find the

fundamental characteristics of VES performance and thus to obtain insight
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and some guidelines to the design process of Stewart platform.

Here we define the accuracy of VES as the tracking error of Stewart

platform

_ __ tracking error
the range of motion Eqn. (2.1)

Relative error was used here, because absolute error is not a good measure
for simulation, e.g, a 2 inch error for simulation with a range of 2 feet

motion is large but maybe not so bad for a 20 feet motion.

There are many physical phenomena which cause a platform to
deviate from its ideal tracking position. The stiffness of the platform
affects the position accuracy of the system in the presence of static loads
and disturbances. Detail stiffness analysis is given in next section.
Kinematics error such as joint compliance, backlash and variation of
geometric parameters of Stewart platform due to imperfect assembly and
machining tolerances contribute to the inaccuracy of the tracking, however,
these errors could be remedied either by good design and assembly or by
kinematic error calibration and compensation. The mathematic model and

error correction method for geometric parameters variation are discussed

in Chapter 5.

The goal of VES is to make the platform simulate the response of a

mechanical system of arbitrary dynamics which is subjected to the forces
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acting on it. The performance in achieving this goal is affected by the
accuracy of the trajectory generated by the admittance model and by the
performance of the platform control system. The control of the hydraulic
actuators is accomplished by analog servoamplifiers using proportional and
derivative feedback. The model of the electrohydraulic actuator and
controller design for VES were investigated by a lot of researchers. (West
et al [6], Dubowsky et al [7’9], Fresco [3], Stelman [° ], and Ismail [4] )
Tracking error caused by PD controller, position sensor and servo actuator
dynamics were found small enough to be ignored for simulation within the
bandwidth of the system when controller gains were high. So, the major
error is caused by inaccuracy of the trajectory generated by admittance
model, particularly the accuracy of VES suffer from the error of the force

data obtained by the computer from the force sensor.

For accuracy analysis here, it is assumed that the VES controller is
good enough to drive the legs to reach exactly the desired lengths and this
section focuses accuracy analysis on the errors caused from force sensor.
Force sensor error can be divided into repeatable errors and stochastic
errors. Repeatable errors include non-linearity and cross-talk which could
be accounted for by force sensor characteristics tests and error calibration
program. Stochastic errors include amplifier noise and drift, hysteresis,
A/D quantization and temp-induced gain change. In order to simplify our
accuracy analysis, force sensor errors were modelled in two types: offset
error Af, which is constant, and gain error Afg which has a linear relation

with the force the sensor measures.
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Afy, = constant = Bfymax Eqn. (2.2a)

Af, =1, Eqn. (2.2b)

where [ and 7y are coefficients representing the quality of the force sensor,
and fs and fsmax are dynamic force the sensor measures and its maximum

value respectively.

For simplicity and without loss of the generality, a one-degree-of-
freedom model of VES, whose robot and platform move only along the
vertical direction, is studied. The model is shown in Figure 2.1, where me
is the mass of the robot and m is the mass of the base to be simulated.

This base model only considering a pure mass is very useful for analysis

Me |—F——— ‘l— w Sl

]
: l
|
Y i
: I
l

[Fs ] 1z
L m Y
l
:
1
l
|
|
|

Figure 2.1 One-Degree-Of-Freedom Translation Model of VES
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of robot working in space. A sinusoidal motion was chosen as typical

robot motion type, i.e.,

y = Ysinot Eqn. (2.3)

where Y and w represents the amplitude and frequency of robot motion
respectively. If we assume zero initial conditions and through the detail
dynamic analysis (see Appendix 1.1), the relative error corresponding to

two different force sensor error models are given as

Azl _ome 29
80 = =P t
o P Eqn. (2.4a)
Az _ M.
€ = =Ty Eqn. (2.4b)

It is very obvious that the inaccuracy of VES simulation was caused
by inaccuracy of the force data given to the admittance model from the
force sensor, so quality of the force sensor is critical to VES performance.
The results also shows that the ratio of robot mass to base mass determines
the accuracy of the simulation, if the mass of the base 'is very large, the
base system to be simulated is very similar to a rigid base case, so the error
caused by the flexibility of the base will approach to zero. Eqn. (2.4a)
shows that the offset error is proportional to square of the simulation time
and frequency of robot motion, so for space simulation, the offset error
will dominate and this error will limit the application of VES to simulate a

space robot with fast motion or motion with a longer period .
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Figure 2.2 One-Degree-Of-Freedom Rotation Model of VES

If we modify this one-degree-of-freedom model to analyze VES

rotational motion, as shown in Figure 2.2, and consider robot motion

0 = Osinwt . Eqn. (2.5)

[

Using the same initial conditions, and assuming small motion of the base,

we obtain very similar results. (see Appendix 1.2)

IA(XI = BJ_e_(DZIZ = B_m;eliwztz

80—

- |otmad J mr% Eqn. (2.6a)
gg =_Ag_=_:y.J_e =_'Y%_li
o 7 m Eqn. (2.6b)
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The difference between these two models is that relative error for
rotation motion is proportional to the ratio of moment of inertia instead of

ratio of mass as in the case of translational motion.

Combining these two one-degree-of-freedom models, we can extend
our model to a simple two-degrees-of freedom model, as shown in Figure
2.3, where the robot motion is still a pure sinusoidal rotation, but the base
moves vertically and also rotates corresponding the force or torque the
force sensor measures. If we assume small motion of base and zero initial
conditions, and also for simplicity not considering the cross-talk effect

between force sensor channels, the accuracy of VES could be obtained. (see

Appendix 1.3)

Figure 2.3 Simple Two-Degrees-Of-Freedom Model of VES
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IAZI - Bmf-(oztzll + 12 E‘s._.]
" femad
Zm 3 Eqn. (2.7a)

_Az - _ M 2 ml?
=t i? . %r?] Eqn. (2.7b)

The results shows that the both offset error or gain error consists of
pure translational term, pure rotational term and a coupling term, which
reflects the difficulty of accuracy analysis when the degrees of freedom of
the system increases. However, this simple VES model relates the
simulation error with masses or inertias of the system, quality of force
sensor, frequency of robot motion and simulation time, and thus gives a
rough measure of the accuracy of the simulation for a given system
especially for the simulation of a robot working in space, and it provides

very helpful information for selecting a proper force sensor.

For VES to simulate more general base system, e.g., the suspension
system of a vehicle, the stiffness of the base system is a very important fact,
so, it should be considered in the base model in addition to the inertial
effect of the base, this two-degrees-of-freedom VES model is shown in
Figure 2.4. In the model the stiffness of the base system includes both
translational stiffness £ and rotational stiffness 4-. Since stiffness exists in
the base system, the base will produce a restoring force to balance the
error force caused by the offset error of the force sensor. Therefore, in
vehicle emulation case, the offset error is static and negligible and the gain

error will dominate.

Chapter 2: Design Specifications 20



Figure 2.4 Two-Degrees-Of-Freedom Model of VES

Using the same method and same conditions, the accuracy of VES

for the vehicle emulation could be obtained. (see Appendix 1.4)

g, =0z gy Mme Mml? | (Mm,)(M;m,1%)
8z m+(1-M)Me  mez+(1-Mmel2  [me+(1-M)me][mr2+(1-Mpme[?]
Eqn. (2.8)
where M and Mr are magnifying factors,
M=_@%
@*- 0} Eqn. (2.9a)
2
M =8
@’ Eqn. (2.9b)

and w, wr are natural frequencies of the system
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o2 =-K Eqn. (2.10a)

m+m;
= ke = ke
o I+J, mrg+mel? Eqn. (2.10b)

This model is consistent with previous models, e.g., let k—0, and
k,—0, S0, ®,—0, w,,—0, M—1 and M;—1, and the result will be the same as
that of simple two-degrees-of-freedom model. If let k—0 and k,—eo, then
M-1 and M,—0, the result is exactly same as the result from simple one-
degree-of-freedom translation model. Like previous models, the error of
VES emulation due to the gain error of the force sensor consists of three
terms: pure translation term, pure rotation term and a coupling term. The
difference between space system and vehicle base system is that due to the
stiffness of the base system, the error now is also related to the ratio of
frequency of robot motion to the natural frequencies of the system. For a

practical case, when ©<<®, and ® << @, we have

M—»—@E and M,—-)—&2 .
@ Eqn. (2.11a)

2
=M — 1492 551 and 1-M, — 1492 51

@ Eqn. (2.11b)

so the emulation error will approach to

2
_Az_ o o2l 2, melfe’
f = = M i g Eqn. (2.12)
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Therefore, for very low frequency robot motion, the error will be
dominated by quality of the force sensor, the mass or inertia of the robot,

the stiffness of the base system and the frequency of the robot motion.

The accuracy analysis reveals the relationship between the simulation
error, the components of Vehicle Emulation System and performance
specifications of VES. It shows the dominant factors which affect the
performance of VES in space simulation case or in vehicle simulation case,
so it provides insight and some guidelines to the design process of Stewart
platform. Although admittance emulation accuracy analysis results from
simple models, same method can be generalized for a six-degrees-of-
freedom case. And we should use the error factor as one of design
considerations for Stewart platform because error analysis results could be
used to approximately estimate the performance of VES, and Stewart

platform thus designed will satisfy customer's performance requirements.

2.3 STIFFNESS ANALYSIS )

Stiffness is a very important property of the manipulators. It
determines the strength of the manipulators and positioning accuracy in the
presence of disturbance and loads. Since it is very obvious that the stiffness
of parallel manipulator like Stewart platform is much better than serial
manipulator because the load of the platform are shared by its six legs,
people will be prone to take it for granted that stiffness of Stewart platform

is good enough and is not necessary to consider it as one of design
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considerations. The shape of the platform thus determined without detail
stiffness analysis resulted in a very floppy platform in horizontal direction
and caused unexpected and dangerous collapse of the platform. Therefore,
in order to design a platform with good stiffness in all directions within its
workspace, a thorough analytical investigation of the stiffness of the

Stewart platform should be made.

The idealized model for a symmetric Stewart platform is shown in
Figure 2.5. The base and platform ball joints lie on the circles with radius
R and r, respectively. Reference frame xyz is fixed to the platform and its

position and orientation is described with respect to the inertial reference

(a) (b)
Figure 2.5 A Symmetric Stewart Platform
(a) Model of Platform (b) Top View
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frame XYZ, whose origin locates at the center of the base, by the end-
effector position vector x = (x,y, z, &, B, ¥ )T, where o, B, v are roll,
pitch and yaw rotations. Let Bj = {Xp;, Y3;,Zgi}T, (i =1, 2, --- 6), be the
location of base joint center, defined as position vector with respect to
XYZ frame and let Ji = {xy;,y1i,25i)T and Pj = (Xp;, Ypi,Zpi)T, (i =1, 2, -

6) be the platform joint centers, defined as position vectors with respect to

xyz and XYZ frames, respectively. In matrix form, the transformation

from the xyz frame to XYZ frame is given by

(] =01 4 Eqn. (2.13)

where [D] is a 4x4 displacement matrix, given by

>

X
R z(Y)Ry(B)Rx(a) y

Z =

0 0 0 ll 0 0O ll Eqn. (2.14)

D;D;Ds |y

z

[D] = [D(x)] =

where
Dy ‘ ’ cosPcosy

cosPsiny '
-sinf3 I

D=

D
s |

Eqn. (2.15a)

sinasinfcosy-cosoasiny
D;= { sinasinBsiny+coscicosy

sinacosf

Eqn. (2.15b)

cososinfsiny-sinacosy

an |
2 |
I cososinPcosy+sinasiny 1
> | |

cosocosf

Eqn. (2.15c¢)
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If we define leg i as a vector 1j, (i =1, 2, -+, 6), we have

l|=”§"\=P§-B1
\liZ‘ Eqn. (2.16a)

or described in xyz frame,

’ Eqn. (2.16b)

substitute Eqn. (2.13) - Eqn. (2.15) into Eqn. (2.16a), we obtain

Ly D1x5i+D22y5i+D23zi+y-Yg;

{lix} Di1x5i+D12ysi+D13zji+x-XB; }
I = =
liz \ D31x5+D32yji+D3aszyi+z

Eqn. (2.17)

and the length of leg i, (i =1, 2, -+, 6), is given by

Li=|P;-Bi| =V x+1} +1% Eqn. (2.18)

and leg vector is defined as 1, given by

)
\‘5 I Eqn. (2.19)

According to the principles of virtual work, using the method very
similar to serial manipulator, it can be proved that there is a relationship

between the leg force and end-effector force. (Asada and Slotine (1] )
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{Flx =[J]T({F), Eqn. (2.20)

where
fy fy
’ fy fy
(Fly =/ fz {Fh = ?
X 4
m, fo Eqn. (2.21)

are end-effector force vector and leg force vector respectively, as shown in
Figure 2.6. (11T is the transpose of the manipulator Jacobian matrix, which

is defined as

i
ox dy oy
[J]=[%}= %133_1;_%
ox 3y av] Eqn. (2.22)

If we neglect gravity and friction, we can relate the, leg force to leg
deflection al = [al1, al2, -+, Al6]T by the individual stiffness, which is

modeled as

f; = k; al; Eqn. (2.23)

where fj is the force produced by leg i and alj is the deflection of leg i. k;

is the spring constant. Eqn (2.6) could be rewritten in vector form
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End-effector ’ ﬂ
Position =X

End-effector
Force

Figure 2.6 Forces Applied on Platform

(Fh =[K]Al Eqn. (2.24)

where [K] is 66 diagonal matrix given by
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Eqn. (2.25)

Since Jacobian matrix [J] relates platform deflection ax and leg

deflection al by

Al=[J] Ax
so from Eqn. (2.16) we obtain
{Fh =[K][J] Ax
substitute Eqn. (2.19) into Eqn. (2.13), we obtain

{Flx =[S]Ax

where
[S1=[J]T[K][J]

Eqn. (2.26)

Eqn. (2.27)

Eqn. (2.28)

Eqn. (2.29)

Thus the deflection of the platform is related the external force

applied to the platform by the 6x6 matrix [S]. The matrix [S] is called the

stiffness matrix of the platform.

Chapter 2: Design Specifications
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Since [S] consists of individual leg stiffness and Jacobian matrix, it is
configuration dependent. Based on above analysis, stiffness at any point

throughout the workspace of the platform can be obtained.

For a symmetric Stewart platform as shown in Figure 2.5, the

locations of the joints are given by

Xm = RCOS¢|; Ym = RSin¢1;
Xp2 = -Rsin(g - 01), Yaz = Reos(% - 1),

Xg3 = -Rsin( g+ 01); Yps = Reos(g + 01);

XBs = Xgs, Yps = -Ygs3;

Xss = Xp2; Yps = -Yaa

Xps = Xpy; Yes = -Ypi;

Xjp = rsin(%+ d2). yi = rcos(-:—-i- d2).

Xp = rsin( g - 92);  yr = roos( g - 62);

Xj3 = -1COSO2; yi3 = rsindy;

Xja = Xj3; yia = -Yi3; '

Xj5 = Xj2; yis = -y

Xj6 = XJjI; yie = -Yn;

Zpi = z5; =0 (i=1,2,-,6) Eqn. (2.30)

We define Xi and ¥i> (i=1, 2, -, 6), by

X; = Xji - XBi qu’l. (2.313.)
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Yi = yyi- Yai Eqn. (2.31b)

and the following relations can be proved (see Appendix 2.1),

ixﬂi=iym=ixu=iyn=0

i=1 i=] i=1 =] Eqn. (2.32a)

ixz=§yz=ixzy;=o
1=

=1 =1 Eqn. (2.32b)

i (x))* = i (yh? = 3[r2+R%-2rRsin(/6+@1+¢2)] = 3r*2
- - Eqn. (2.32¢)

i (x5i)? = ﬁ: (yr)? =312
i=1

i=1

f‘, (X5) = i (Y5)? = 3R
i=1 i=1 Eqn. (2.32¢)

Eqgn. (2.32d)

$ § l * 2
Y xiXei =Y, yiiYsi = —2(r"2 -r2-R?)
i=1 = 2 ~ Eqn. (2.320)

6 6
Y xiYBi= Y, yiXeiYai= —%rstin(n/6+<p2-2(p1)
i=1 i=1 Eqn. (2.32g)

6 6
Z Y%iXBi = E XJiysi Y Bi= %rZRsin(n/6+(pl—2(p2)
i=1 i=1 Eqn. (2.32h)

6 6

> y3Xgi = D x}Ygi= g-r2R2[3+20052((p1+(p2)-1/3_ sin2Q1+2(2)]

i=1 i=1

l l Eqgn. (2.32i)
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i x5y XgiYpi= -3-r2stin(1t/6—2(pl-2(p2)
i=1 Eqn. (2.32))

From Eqn. (2.17), (2.18) and (2.30), each term of Jacobian matrix
[J] can be given by (see Appendix 2.2),

i _lix _Duxsi+Diysi+x-Xpi
o i l Eqn. (2.33a)

dli _liy _D21xji+Da2ysi+y-Ysi
o k Eqn. (2.33b)

oli _liz _Daixsi+Dagyji+z
l.

i Ii Eqn. (2.33¢)
dLi _ysi(liD3) _ yriie
Jda L L Eqgn. (2.33d)
@_li=I.-(y;;sinaD1—xnsinaD2—-x;icosaD3)
oB l; Eqn. (2.33e)
dl;_li-[xjicosP(cosaD;—sinaD3)-yr(cosacosfD;+sinfDs)]
Y I Eqgn. (2.33f)

Based on above analysis, for platform at home position, where x =
{0, 0, 29, 0, 0, 0}, and due to symmetry of the configuration, the leg length
li=lg, (i=1,2, -, 6), and we assume that the individual stiffness of each
leg is same, i.e., ki=k, (i=1, 2, -+, 6), using Eqn. (2.28,2.29,2.32,2.33),
we can calculate [J] and [S], and some useful results are obtained, as shown

in Figure 2.7. (see Appendix 2.3 for detail)
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(i) At home position, the stiffness in horizontal direction is the same,
i.e., it is independent of direction. And both the vertical or horizontal
stiffness of the platform depends only on its height zp, or 8, one of the
design parameters. Here zy = lysin0, as shown in Figure 2.5. The vertical

stiffness increases with the increase of 6, but, horizontal stiffness decreases

when 0 is larger.

(ii) At home position, the maximum stiffness in horizontal direction

is just half of that in vertical direction.

(iii) © = 45° is the half point for stiffness both in horizontal or
vertical direction. Therefore, the design parameter 6 should be chosen not

far away from 45°.

Vertical Stiffness = 6ksin®0

Figure 2.7 Stiffness of the Platform at Home Position
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This stiffness analysis explains why the old platform is so floppy in
horizontal direction, because the design parameter 6 was 74°, so the ratio
of vertical stiffness to hcrizontal stiffness for the previous platform was
about 20. The stiffness analysis also provides us some guidelines for
determining the shape of the platform in terms of the locations of the joint
attachments to base, in other words, for a given home height of the
platform, z, another design parameter ¢] should be chosen as small as

possible, so that angle 6 could be smaller to improve the horizontal

stiffness.

Since the stiffness of the platform is Jacobian matrix dependent, it
will be zero at least in one direction if Jacobian matrix [J] degenerates at
singular positions of the platform. So the end-effector will deflect in that
direction with no force or moment induced to resist this motion. Platform

will gain an extra degree of freedom and may crash.
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CHAPTER 3

KINEMATIC ANALYSIS

3.1 KINEMATIC MODELS

The purpose of investigation of kinematics of Stewart platform is to
establish analytical methods and develop computer-aided procedure capable
of analyzing the basic kinematic characteristics of this mechanism, such as
its extreme range of motion and workspace, and recognizing its physical
limitations, so that we can obtain some design and application guidelines

for this type of manipulator.

The first step of kinematic analysis is to develop a kinematic model
of the platform. Several kinematic models of the platform were proposed
and a lot of researchers, such as Do [2], Fresko [3], Powell [IO], Fichter
and McDowell [12], McCallion and Truong [13], and Yang and Lee [17],
did great contributions to the developments and applications of these

models. Three models, among others, are mostly accepted and used.

Model 1: This model is described in Chapter 2, see Figure 2.2.
Using Cartesian coordinates and homogeneous transform matrix, the
displacement of the top plate (its position and orientation) is described with
respect to inertia frame XYZ. The locations of top joints described as
points in Cartesian space xyz are mapped to inertia Cartesian space XYZ

and each leg can be represented by a Cartesian vector in XYZ space.
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Figure 3.1 Pliicker Coordinates of Leg i

Model 2: The displacement of top platform and the locations of joint
attachment are described in the same way as model 1. But, the legs are
represented by Pliicker coordinates, as depicted in Figure 3.1. The legs
may be determined from any two distinct points on the line. The vector I;,
(i=1,2, -, 6), lies along the line in the direction of leg i. Vector M; is
perpendicular to the plane containing the line i and the origin, so it is the
moment of vector l; about the origin. The vector I; and M; are assembled

into the plucker coordinates vector Uj, given by

Eqn. (3.1)
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According to skew theory, at every instant during the motion of a
body in space, there is an instantaneous screw axis (ISA) and the

translational velocity v and angular velocity o has a relation
v=hao Eqn. (3.2)

where h is the pitch. From skew theory, given the displacement and

velocity of the platform, the velocities of the legs can be obtained. (see

Fichter [11 ])

Model 3: This model is based on model 1. In addition to reference

Figure 3.2 Local Coordinates of Leg i
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frames XYZ and xyz, Cartesian reference frame xyz;, (i=1, 2, -, 6), is

denoted as the local coordinates system fixed to leg i, as shown in Figure

3.2,

The origin of xyz; is joint B;j and the axis x; points towards joint J;.
The y;axis is parallel to the cross product of -Z and I;, and the axis z; is
defined by the right hand rule. Thus the motion of the leg i could be
described by the reference frame xyz; with respect to XYZ.

These three models are essentially the same, because they represent
the same physical plant, just different in the mapping of the coordinates
from one vector space to another one. However, a different model is more
than just a varying representation of the platform, it can elucidate aspects
of the underlying theory and suggest results that might be otherwise go
unsolvable or unnoticed. Model 1 is an easy, straight-forward and efficient
model for calculation of inverse or forward kinematics and for real time
control of the platform. But, model 1 does not consider the rotation of the
legs, so generally it could not be extended to a dynamic, model. Model 2
takes consideration of the rotation of the legs and skew theory provides
qualitative and physical insight into underlying geometry of the platform
while quantitative calculation could be easier via coordinate map. Model 2
is used to calculate the rate change of the leg velocity, to determine the
singular positions of the platform and to do dynamic analysis based on
screw theory. However, the calculation using model 2 is complicated and

time consuming. Model 3 puts emphasis on each leg, so it is easy to
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analyze relative motion of the legs, such as the interference problem
between the legs, and a local coordinates system is more convenient to use
for each part of the platform as a free body, so that the equation of motion

of the system can be formulated for dynamic analysis.

3.2 FORWARD KINEMATICS

There are two types of kinematic analysis, known as inverse and
forward kinematics, very important and useful in the design and control of
Stewart platform. The inverse kinematics calculates the leg lengths I; (i =
1, 2, -+, 6), corresponding to a given end-effector position x. Its solution
is straight-forward and unique, and is discussed in Chapter 2, Eqn. (2.17).
(also see McCallion and Truong “3], Fichter [“], Fresco [3]) The
forward kinematics transforms leg coordinates into the reference
coordinates of the end-effector, i.e. given the lengths of six variable legs, 1,
find the transformation of coordinates representing the position and
orientation of the top plate, x, with respect to inertia reference frame

XYZ. By contrast to inverse kinematics, forward kinematics is neither

well behaved nor easily described.

Although the inverse kinematics of Stewart platform has been
extensively studied, no closed form solutions to the forward kinematics
have been presented in literature. Landsberger [36] studied the existence
and solvability of the forward kinematics problems. Zhang and Song [21]

explored the condition under which the closed form solutions of forward
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kinematics of parallel platform. Griffs and Duffy (18] investigated a
special form of Stewart platform and reduced the forward kinematics
solution to a sixteenth degree polynomial after eliminations of unknowns.
Nunua and Waldron [19] studied the same problem by a different approach

and obtained the similar result.

It is very difficult to solve the forward kinematics by directly invert
Eqn. (2.18), because it involves simultaneous solution of six nonlinear
quadratic equations together with constraints equations. However, the
forward kinematics is required for dynamic simulation, workspace
analysis, error correction and other applications. So, that lead the
researchers to seek an iterate numerical method to solve the forward

kinematics. (Ismail [4], Cleary and Arai [22], Nguyen et al [27])

Two numerical techniques were often used. The first is a direct

integration. Given dl = [J] dx , then

X = f JTdl +xg '
o Eqn. (3.3)

where Xy is initial guess of x, lp is corresponding leg length vector. The
second method is using multidimensional Newton-Raphson procedure.
From Chapter 2, we know that the inverse kinematics can give the desired
leg length lg corresponding to a given position of the platform x4, so, we

define a multidimensional function
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Ifl(x)l ’ll-ldl
f(x) = f2(:X) = 12—:1d2 =1- Iy

fo(x)]  |ls = las Eqn. (3.4)

In the neighborhood of x, each of the functions fj, (i =1, 2, -+, 6), can be

expanded in Taylor series. By neglecting higher order terms and letting

f(x) equal to zero,

- of ,  _ ﬁl_
f(x+Ax) = f(x) +§;Ax = f(x) + x Ax

= f(x) +[J]Ax Eqn. (3.5)

therefore, we have an iterate formula for the forward kinematics,
Ax= —[JI"1 £(x) =—[JF! {1 - 1a) Eqn. (3.6)

Although these two methods can obtain rather accurate results
depending on a good initial guess of the position Xg, both methods need the
successive calculation of a 6x6 inverse Jacobian matrix [JI"' and lower
efficiency degrades the methods, especially for real-time applications.

Also, these methods could fail when Jacobian matrix is singular.

There are some other numerical methods which could be used to
solve the forward kinematics, such as using a fixed 1! , using difference
quotients instead of partial derivatives in calculation of Jacobian matrix or

using some multidimensional optimization algorithms. But, these methods
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could not improve the efficiency of the calculation without losing the

accuracy of the results.

The following method for forward kinematics was developed and is
shown in Figure 3.3. For the given leg lengths, which are physically
realizable, we suppose that the platform consisting of pairs of springs and

dampers is at equilibrium state. Any state deviated from this equilibrium

Figure 3.3 Model of Platform for Forward Kinematics
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state will cause the deflections of the virtual springs, which are the
differences between the current leg lengths and given leg lengths. The
platform driven by the corresponding spring forces will move towards the
equilibrium position until the disappearance of deflections of the springs.
Lyapunov stability theory is used here to derive the numerical forward
kinematics algorithm. For simplicity, we only discuss the model where the
effect of dampers are neglected. For a desired leg length lg, let x be the
current desired end-effector position estimate corresponding to the state off

the equilibrium position, and define the current error, i.e. the virtual

spring deflections as

T=Al=1(x)-14 Eqn. (3.7)
Let us then select a Lyapunov function candidate as
1Tk 7
V=2l Kl Eqn. (3.8)

where [Kp] is a positive definite matrix. Differentiating Eqn. (3.8) and

substitute Eqn. (2.26), we get

v = 1T[K,Ji = 1K, )i = 1"[K,]J]Ax Eqn. (3.9)

so if we chose

Ax = -[J1 Eqn. (3.10)
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then
v=-TK,Ji 0 Eqn. (3.11)

This is essentially the multidimensional Newton-Raphson method.

However, if we chose
Ax = ~[JT KT Eqn. (3.11)

then, we obtain

V =-1T[Kp I [K T
=-Ax"*Ax S0 Eqn. (3.12)

For this method, it is not required to calculate the time consuming
inverse Jacobian matrix , [JI!, and it locally guarantees the convergence of
the algorithm, because we use the virtual mechanical energy V and
platform as a virtual passive physical system will eventually goes to its
equilibrium state. However, the number of iterations, i.e. the time of
calculation is dependent of the initial end-effector position guess Xp. If
Jacobian matrix is singular, this method will lead ax "stuck" at a non-zero

value, but a skew symmetric matrix will be helpful to remedy the situation.

3.3 KINEMATIC CONSTRAINTS

In order to investigate the effect of configuration on workspace,
analysis of kinematic constraints is necessary in the design process of

Stewart platform and it is also imperative for a safe operation of the VES
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system. The Stewart platform controller should ensure any position of the
end-effector in a trajectory from breaking the kinematic constraints or
being beyond the workspace. Stelman [5] investigated three types of
kinematic constraints of Stewart platform: maximum and minimum
actuator lengths, limits of rotation of joints and interference of the legs. A

new approach here was developed for the interference problem.

Interference of legs occurs in a variety of platform positions.
Obvious example is when platform rotates about its z axis at certain angle,
pairs of adjacent legs will hit each other. This will not only limit the
workspace of the platform, but also dangerously cause the damage of the

platform. Stelman (5] ysed a cylinder model, as shown in Figure 3.4, to

Figure 3.4 Single Cylinder Model for Leg Interference
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predict this phenomenon, where a cylinder contains all the geometry of the
actuator and at each time the shortest distance between two adjacent
cylinders is checked not exceeding the diameter of the cylinder. The model
using a single cylinder to represent the whole actuator, is very conservative
and will be fail to apply to an actuator whose lower portion may be thicker
than the upper portion due to the assembly of position sensor, hydraulic
hose, etc., and the locations of top joints are close. In order to overcome
this limitation, the actuator is modeled as a combination of two cylinders
with different diameters. The cylinder with a larger diameter and a fixed

length, represents the thicker geometry while cylinder with small diameter

Figure 3.5 Two-Cylinder Model for Leg Interference
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and a varying length represents the upper part of the actuator, as shown in
Figure 3.5. Now, the leg interference problem becomes the intersection
problem between cylinder ¢; C;, ¢j and Cj, (i, j =1, 2, -, 6), where ¢; and
c; represent small cylinder i and j, and C; and Cjrepresent large cylinder i
and j, respectively. If any two cylinders intersect at some point, no matter
in which direction to look at them, they must keep contact at that point.
Therefore, using model 3 of Stewart platform describing in Chapter 2, we
can project all four cylinders into plane y;z; and plane yjzj, respectively.
Criterion for interference is that it only occurs when two cylinders
interfere at both planes. This method is very effective and efficient if the
appropriate local Cartesian coordinates are used, because the interference
problem is reduced to just a check of intersection of circles and lines, e.g.
in plane y;z;, the projections of cylinder c; and C; are two circles and that
of cylinder cjand C; are just lines. Although this approach is still
conservative, it is much less conservative than the old one and it would

solve the leg interference problem more realistically.
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CHAPTER 4

GRAPHICAL SIMULATION

An interactive graphical simulation program was developed to
contribute to the design of the Stewart platform use as VES and its control
algorithm. The simulation program has been performed on Personal IRIS
workstation, using Unix operating system and C programming language.
Figure 4.1 shows the graphical output and user interface features of the
program. The main purposes of the program is to provide interactive
graphical simulation as a tool for the visualization of the mechanism, to
investigate the effects of geometric configuration on workspace and the
specifications of the hydraulic system. In addition to acting as a design
tool, the algorithm can also be used for graphical preview of the dynamic

behavior of the platform and verifying of the platform controller.

4.1 INTERACTIVE FORMAT

The graphical display consists of multiple windows, such as a
projected three-dimensional view of Stewart platform, a text area for data
entry from the keyboard, a ruler area showing several analog scales for
input and a display of top plate's position, orientation and other kinematic
parameters, a message area warning any violation of kinematic constraints
including leg lengths, joint angles and leg interference, and a menu column

containing 10 buttons for different actions, such as joint angle calculation,
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Figure 4.1 Graphical Simulation of Stewart Platform

hydraulic flow rate calculation, coordinate system transformation, etc. The
program displays Stewart platform in selected configurations and user
controls a mouse to change the viewing angle or the direction in which the
platform is projected. For the position or orientation of the platform, user
can either input the data from the keyboard or using a mouse to select the
analog scale. The orientation can be described using roll, pitch and yaw
coordinates or Euler angle coordinates. Alternatively the user can specify

a sequence of rotations about the axes fixed to the platform or fixed to the
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base. In addition to interactive control of platform position and
orientation, the program also provides sinusoidal motion and some other
types of motion. The program solve the inverse kinematics to get the leg
length, calculate joint angles and the clearance between the legs to check the
workspace violation, based on the analysis described in Chapter 2 and 3.
Also, the program calculates flow rate of the hydraulic pump according to
the amplitude and frequency of platform's motion, which is used to

establish the specification of the hydraulic pump and accumulator.

4.2 DESIGN TOOL

Because of the complexity of the geometry of the six-degree-of-
freedom Stewart mechanism, there is not a clearly defined optimal design
and it is not trivial to check whether or not a proposed design satisfies the
design requirements. Therefore, a graphical simulation program is vital to
the progress of the design of VES. As a valuable design tool, it provides
the visualization of the platform at each point throughout its workspace and
variation of the geometry of the platform is investigated f;!raphically until a
close to optimal design is achieved. Graphical simulation is used to
establish the basic shape of the platform, to check the violation of the
kinematic constraints, such as leg length limitations, joint angle limitations
and leg interference. The graphical simulation also provides information
of the flow rate design parameter which is used to determine the

specifications of the hydraulic system of VES.
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Table 4.1: Workspace Requirements of VES

Motion Displacement from Home Position

Translation

Rotation

4.2.1 WORKSPACE

The workspace of the Stewart platform is defined as the range of
allowable end-effector displacement, i.e. the region of three-dimensional
Cartesian space that can be attained by the end-effector with the given
orientation of platform of three rotational degrees of freedom. It is
determined by the scale and configuration of the mechanism, constrained
by the kinematic limitations. The optimal design of Stewart platform is to

choose a geometry for which the resulting workspace spans the desired

’

range of motion.

Based on the available laboratory space and the investigation of
applications of robot to operate from moving bases or in nonstationary
environment, workspace requirements of VES was specified in terms of the
amplitude of motion of the platform from its home position in three
translational and three rotational degrees of freedom, listed in table 4.1.

Here, numerical values are used to define the workspace of the platform,
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but in fact the workspace embedded in a six-dimensional space is not a
quantity. In recent years, several researchers have addressed the
workspace analysis, focus on generating planar graphical contour maps or
cross section of the workspace. (Yang and Lee [ 17], Fichter (1 1], Weng et
al [16], Cwiakala [23], Gosselin [24'25], Clearly and Arai [22])

Graphical simulation program, based on kinematic analysis, provides
a qualitative evaluation of the Stewart platform design, and feedback
information is then used to modify the design. In order to determine the
suitability of a proposed design for specified workspace requirements, the
simulation program searches the boundaries of the workspace where at
least one of kinematic constraints is violated and checks whether or not the
boundary point is within the desired range of motion. The searching is
undertaken in all directions and search space is scaled up and down as
appropriate. The graphical simulation provides some insight into the shape
of the workspace and effects of geometry on the relative amounts of
rotational and translational freedom. The simulation program allows the
user to interactively specify and change all the design parameters and chose
the type of scaling until the most appropriate platform geometry for VES

is achieved.

Using the simulation program, a design is found that meets the
workspace requirements given the dimensions of readily available
mechanical components and the available laboratory space. The resulting

geometric parameters and mechanical limitations are listed in table 4.2.
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Table 4.2: Platform Geometric Parameters

Platform Geometric Parameters

Base Radius R 52.77 in
Platform Radius r 12.0 in
Base Angle ¢, 3.26°
Platform Angle 62 14.48°
Angle of Legs to the Base 0 50°
Stroke of Actuator 30.0 in

Kinematic Limitations

Minimum Actuator Length 220 in
Top Joint Angle 45°
Base Joint Angle 45°

Figure 4.2 is an example of the shape of the workspace of the
platform, showing the reachable rotational degree of platform before the
violation of any kinematic constraints when the platform moves along the
vertical direction axis or along the horizontal axis. From the figure, it is
seen that the shape of the workspace has some concavities. For the purpose
of control, we model the nominal workspace as a convex shape within the
real workspace so that any line segment connected by any two points within

this space will not go beyond the real workspace of the platform.
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Figure 4.2 Workspace of the Stewart Platform

4.2.2 JOINT ANGLE

Since Stewart platform is a parallel configuration of six adjustable

legs connected by universal or spherical joints to the platform and the base,

joints play an important role in determining the flexibility and workspace

of the platform. Graphical simulation results are very useful in assessing
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Figure 4.3 The Range of Top joint Angle

the qualitative features of rotational freedom of the joints and the
orientation of the joint axes. Figure 4.3 shows a polar plot of the top
universal joint angles as the position of the platform is varied throughout
its workspace. A point on the plot gives the angle value of the joint by its
radius and shows the direction of the rotation by its location. The range of
the joints and the angle at which the joints are attached relative to the
platform or base are specified using this information. Joints are so

designed that they would not restricted the motion of the platform.
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42.3 FLOW RATE

The kinematic limitation on amplitude and frequency of the platform
motion is the flow rate of the hydraulic pump and the size of the

accumulator. Graphical simulation program determines the appropriate

requirements for a hydraulic system by considering sinusoidal motion of

the platform at the specified dynamic limits. For the selected platform

geometry, Figure 4.4 shows the hydraulic flow rate for a 0.5 Hz and 12"

Flow Rate (GPM)

Flow (G) in/out the accumulator
for a 40 GPM pump

100
90
80
70
60

50 F

40
30

Average Flow

I
VY

Flow In

/I_/l\

Flow QOut

Chapter 4: Graphical Simulation

-0.25
'0.35 L] L] L] T ¥ ¥ L]
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (sec)
Figure 4.4 Flow Rate of the Hydraulic Pump
56



amplitude sinusoidal motion in the vertical direction and accumulator flow
needed to sustain that flow rate with a 40 GPM pump.

4.3 VALIDATION OF CONTROLLER

In addition to acting as a valuable design tool for Stewart platform
use as VES, the graphical simulation is used to validate VES controller
algorithm. The simulation program also provides graphical preview of the
kinematic and dynamic behavior of the platform and error checking

schemes etc before applying them to the real platform.

The capabilities of the graphical simulation program could be
extended by introducing some other functions like error compensation,
stiffness analysis and dynamic analysis etc. These algorithms could either
work independently or in collaboration with other functions of the
program so that the whole graphical simulation program becomes
efficient, effective, flexible and very powerful. Some parts of graphical
simulation algorithm could be directly implemented on VES controller.to

control the plaiform in the laboratory.
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CHAPTER 5§

KINEMATICS ERROR CORRECTION

The improvement of the accuracy of the simulation of VES is related
to two important activities: calibration and compensation. Kinematic
calibration concerns the accurate mapping from leg space to end-effector
space while compensation is used in platform control to correct position
and orientation errors due to the difference between actual and nominal
values of platform parameters. Although calibration and compensation
techniques for serial type of manipulators and some closed-loop
manipulators have been received considerable attention in recent years (Wu
et al [33 ’34], Ahmad [29], Payannet [32], Vuskovic [301, Ziegert and
Datseris [3° ], Hollerbach and Bennett [31]), no analysis of calibration and
compensation for Stewart platform has been presented. Since a lot of other
error sources in addition to geometric parameters contribute to the
inaccuracy of the simulation of VES, such as non-geometric factors like
joint compliance and backlash, repeatability of platform, resolution of
instrumentation and control structure, error correction for VES will
involves theories and techniques in different fields. In order to provide
bounds on this topic, error correction problem discussed here is restricted
to a static geometric parameters analysis, leaving such non-geometric,
time-varying or dynamic effects as backlash, servo and force sensor errors,

and platform vibrations to future works.
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5.1 ERROR CALIBRATION

The purpose of calibration is to identify the actual values of
geometric parameters of the platform. The previous kinematic analysis is
based on such an assumption that the Jacobian matrix [J] represents the
mapping between leg vector space and end-effector vector space. But, this
is only true for ideal model of the platform. For the real platform,
variations of geometric parameters such as the locations of joints and the
concentricity of the top plate and base arise from imprecision in the
manufacturing and assembly process. The real geometric parameters
generally deviate from their nominal values. Let vector ¢ represent the
real geometric parameters of the platform, whose components are locations
of joints, the centers of base and top plate etc, and ¢, corresponds to the

nominal value of ¢ in the ideal case, we have
= Cp + AC Eqn. (5.1)

where ac is the parameter variations. For the real platform, leg length
vector is the function of geometric parameter ¢ and the configuration of

the platform x, i.e.

1=1(c,x) Eqn. (5.2)

For nominal value of geometric parameter ¢,, it becomes

1= 1(cp,x)=1n(x) Egn. (5.3)
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where |, represent the nominal leg length vector and it is exact Eqn. (2.19)

and corresponding Jacobian matrix is

ol

' ox Eqn. (5.4)

which is exact Eqn. (2.22). For the desired end-effector position vector

X4, We have

I(cn,Xa) =ln(xq) =14 Eqn. (5.5)

where l4 is the desired leg length corresponding to x4 at nominal value
case. However, for the real platform, due to the deviation of the geometric
parameters, the leg length corresponding to the desired end-effector

configuration x4 is

1=1(c,xq) % 1qg Eqn. (5.6)
therefore, even the VES controller is good enough to drive the legs to

reach exactly the desired lengths, there still exists an error between the

configuration of the platform and the desired configuration, i.e.

x =1"1(c,1q) # x4 Eqn. (5.7)

If we assume that error due to the deviations of geometric parameters is
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small, global constant and not dependent of configuration of the platform,
the desired leg length of the real platform could be written as

la=1(e,x)= l(cp+Ac,Xg+AX) Eqgn. (5.8)

where

AX = X-X¢ Eqn. (5.9)

is the configuration deviation of the real platform when its leg length is lg.
If we expand Eqn. (5.8) in Taylor series and neglect the higher order

terms, we obtain

_ “ Il ol
lg = I(cp, xq) + ['é‘é'],é:::Ac + -a;]:t::g:Ax Eqn (5.10)

substitute Eqn. (5.4) and Eqn. (5.5) into the above equation,

ol

dlp ol
3c L s Ac +

—a—-} Ax
X Jx=x, Eqn. (5.11)

la=lg +

Now, we have a relation between the deviation of the configuration and

deviation of geometric parameters.

[Ql'lJAc + [J]Ax =0

de Eqn. (5.12)
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With this relation, we can calibrate the platform to find the exact platform
geometric parameters. Eqn. (5.10) could be rewritten as

Ay
ac =-[2]" 514
¢ [ac] ]ax Eqn. (5.13)

Calibration proceeds by positioning the platform in many
configurations within the workspace of the platform or letting the platform
follow some known test trajectories. Since we can measure the
corresponding leg lengths for each configuration, using the forward
kinematics algorithm, discussed in Chapter 4, we can obtain the deviation

of configuration ax and so finally solve for geometric deviation ac.

There are a number of issues that arise when executing this
procedure, which will be related to techniques in different fields. One
issue has to do with the measurements of position and orientation of
platform as well as the measurements of leg lengths and the advanced
instrumentation is required. The effects on the accuracy of the
measurement by the error due to noise, drift and nonlinearity should be
diminished. Potentially the most serious issue is optimal choice of
geometric parameters to be calibrated. The dimension of the vector ¢ or
ac is not restricted. A large dimension vector will increase the possibility

of accurate and converging calibration but at the same time increase the
g i . [dl . :
difficulty of calculation of matrix [‘55} and its inverse matrix, and the

mount of experiment work might be excessive. A small dimension vector
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could result in an ill condition for the convergence of the solution or the

ol
invertability problem of matrix [“53*], arising from singularities or from

data not being "persistently exciting". Since we only deal with the
deviation of geometric parameters, how to delete the effects of non-
geometric factors such as backlash and joint compliance should be very
carefully considered in the experiments. In order to obtain an accurate and
stable solution, a parameter identification procedure including the method

of statistical approximation must also be applied.

5.2 ERROR COMPENSATION

Two approaches for the compensation of the position and orientation

errors due to the variations of geometric parameters are considered.

Method 1: This method is based on the redefinition of the desired
position and orientation of the platform before applying the nominal
inverse kinematics. The modified desired platform configuration vector
Xa, which will bring the legs into the correct lengths corresponding to the

desired position and orientation of the platform x4, is

x;=xd+Axd Eqn (5.14)

where

Axqg= -[J]-‘[Q'—“]Ac

dc Eqn. (5.15)
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This method requires the inversion of the platform Jacobian matrix.
Obviously, this approach cannot be applied for the singular configuration
or even near singular configuration of the platform, when the Jacobian

matrix becomes a singular or near singular matrix.

Method 2: Instead of redefining the position and orientation of the
platform, this method directly correct the leg lengths corresponding to the
desired configuration of the platform x4. For small geometric parameters

error Ac, the modified leg length is

13=1g+Alg Egn. (5.16)

where

sa=Dlax =-[Gelac Eqn. (5.17)

From the analysis in previous section, it is shown that both approaches are
equivalent in terms of the compensation effect if the geometric parameter
variations are sufficiently small. However, the second method does not
require computation of the inverse Jacobian matrix and thus can be used in
the singular configurations of the platform. In addition, this method is

superior in terms of time efficiency.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The design process of a six-degree-of-freedom, parallel linked,
hydraulic driven Stewart platform use as Vehicle Emulator System is

thoroughly discussed.

Two additional design considerations were proposed: stiffness and
admittance emulation accuracy. Detail analyses reveal the relationship
between the simulation error, components of Vehicle Emulation System
and performance specifications of VES. Analysis results show the
dominant factors which affect the performance of VES in static case, space
simulation case and vehicle simulation case, therefore, they provide insight

and some guidelines to the design process of Stewart platform.

Different kinematic models of the platform were discussed and
compared. A new approach for numerically solving the forward
kinematics was presented. In contrast to other numerical methods, it is
more efficient because of not requiring the calculation of 6%6 inverse
Jacobian matrix and it is also remediable when the configuration is in the
singular state. Kinematic constraints of the platform are analyzed and a
new algorithm was developed so that the leg interference problem could be

solved more realistically.
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A graphical simulation program based on analysis was developed and
used as a valuable design tool to investigate the effects of geometry and
constraints on the motion of the Stewart platform and to provide the useful
information about workspace, joint angle and hydraulic flow rate. The
simulation program allows the user to explore the different design
alternatives by interactively specifying and changing the design parameters
until a close to optimal design which satisfies all the design requirements is
achieved. The graphical simulation program is also used to preview the

experiment, to check the software error and to validate the control

algorithm.

The approach for correcting the position and orientation error of
Stewart platform due to the variations of geometric parameters was
discussed. The analytical formulas for improving the tracking accuracy
either by modifying desired leg length or modifying the desired position

and orientation of the platform were given.

Future work to improve the design of Stewart platform used as VES
should include the development of a six-degree-of-freedom dynamic model
of Stewart platform which could be used in accuracy analysis, impedance
(dynamic stiffness) analysis and advanced VES controller. Forward
kinematics of Stewart platform is a good research topic, which is not only
of theoretical importance, and also practically critical for error calibration,
failure recovery and dynamic simulation. In order to obtain a good,

accurate VES simulation , we have to thoroughly study a lot of issues
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concerning error compensation for Stewart platform, such as error effects
due to backlash of joints, servo and force sensor errors, and platform

vibrations etc.
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APPENDIX

Appendix 1.1
The follwing figure shows a one-degree-of-freedom translation

model of VES. The robot and platform move only along the vertical
direction. me is the mass of the robot and m is the mass of the base to be

simulated.
Me |————-— -
1
I
: I
|
Y I |
I
b
[fs ] | | r4
m Y
l I
]
X|
l I
I I
R S B
NN\
Z=Xx+y mez = f o Me(X+y) = f )
since f; = —f cooomX=f=-f

S~ me(¥+) = -mX,  or (me+m)X = -mey

If we assume the motion of robot is a typical sinusoidal motion, y = Ysinat,
where Y is the magnitude of robot motion and  is the frequency of robot
motion, we have

y =Yaxoswt and j = — Yw?sinot = -w?y

We also assume zero initial conditions, i.e.,
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x=0,%x=0,y=0,y=0 whent=0.

" X=— and z=x+y=--n-;l%£y+y-—m+mey

_l‘!s__ y
m+m,

(i)Due to the offset error of the force sensor Af, = Bfymax = PmXmax, and from

the equation m(AX) = Af, = PMimax= —B-ﬁ]“—lmntym,, we integrate twice and get

Axlgg, =B +mer2t2

Since VES uses admittance model, the Ax won't affect y, i.e., Aylys, =0

Y w?t?

o Azlyg, = Axlyg, + Aylag, = Bmm,e

and also we have zmax = =Y, s0, the error of simulation due to offset

error of the force sensor is

'AZI me 2.9
=~ B ®°t
(i1) Due to the gain error of the force sensor Afg = ¥f; = —yf =ymx = m ,

and from the equation m(AX) = Af; = ymX, integration gives us

’

Axlyg, = —Ym+me =YX

therefore, the error of simulation due to gain error of the force sensor is

e A2, Axly, _mm’ __ ome
£87 z z T _m_g Ym
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Appendix 1.2

If we modify the one-degree-of-freedom model as shown in
Appendix1.1 to analyze VES rotational motion, and consider robot motion

0 = O®sinmt, we have
a=6+Q  Jo=mli=1, o mel2@+p) =1, since Ts=-T

L Jp=mrdp=1=-7
(mel2+mrd) =-m,128 .

0 =@wcoswt and 8 = -Ow?sinwt = —w?0

We assume zero initial conditions, i.e.,

6=O,é=0,(p=0,q')=0 whent=0

) ~_Jde 9=_ m,l? 9
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a=gea-Ll om0 4

Jg“‘J m‘lz+mr§
(i)Due to the offset error of the force sensor Afy = Btymax = PIPmax, and from

the equation J(A®) = Af, = PITymax= -ﬁj—%-é'mu, we integrate twice and get
e

=83 2,2
A¢lAf° Bnﬁ‘e‘eﬁ)t

since A6y, =0

2
v Adlyy = Alyg = B-Je @02 = p—el"_gy2
J+3e mrj+m,l?

and also we have o = -J-*-_lj—@, therefor, the error of simulation due to
e

offset error of the force sensor is

Aal

= = R1e 122 = RMe 112 (12,2
= = =
o] ijt B—(g)o)t

2

(ii) Due to the gain error of the force sensor Af; =yt =-yt=7J¢p = - ij 9,
e

and from the equation J(Ag) = Afg = YJ9, integration gives us

2
Jet] me12+mr§ ,

Alag, =vp =~

so, the error of simulation due to gain error of the force sensor is

_Aq _ _Je0/UeH]) ,ygg e ]2
= —Y=3-")
o 16/(J+J) J m Tg
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Appendix 1.3

Combining two one-degree-of-freedom models, which are discussed
in Appendix1.1 and 1.2, we can develop a simple two-degrees-of-freedom
model. The robot motion is still a prue sinusoidal rotation, but the base
can move vertically or rotate corresponding to the force or torque the
force sensor measuires. In order to simplify the analysis, small motion of
the base system is assumed and the cross-talk effect between force sensor

channels is not considered.

o =0+¢ z = x+lo Jea=mel20=1 mc12(§+i|i) =T
for the base system,

mx = I = mrde =1
since t,=-t and f, = -mz =-m(X +lor)

o (mel2+mrd)p = -melzé and (m+me)¥ =-mela

Appendix 1.3 72



Assuming zero initial conditions, integration gives us

=i =

S =0+ = ..Le _ﬁ_e
Jet] 12+mr§

and also

. md . ~(md)mr})
mtme <m+me)<me12+mr§)

Check the solution. Since initial conditions are all zero, the center of the
system must remain zero, i.e.,

z=0 or Zmiziso ie. mz+mx=0
i

: - - 1 —_ml
since z-x+la--—mﬂm—’:a +lo = m+mea

. MeZ = Me(X+la) = me

melo

mx = m(——=-) =-mez

. MmeZ+mx=0

(i)Assuming offset error of the force sensor is

sty = [25)  pffma
AT,

'tsmax

Integrating the equation

= JJe o - JJe 2
JA(P ATy = BTsmax = BJ(Pmax BJ—eIiemax BJe +Jm ©

and assuming zero initial conditions, we get
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R 2,2
Aglyy, pm:-em t

since A@ly, =0

. - —ade w2 = Y
o Aoy, = Aply, = By -0 BW&) t

Assuming zero initial conditions and integrating the following equation

o _ - " - m l“ - m tng! J M2
mAx = Afo - stmu = Bmeu - Bn—k%l%amu (me"'m) (J‘e+J‘) ) 9

. —p_Mml _JO 202
© A, = B e G

so, we have

! 110
Azlyy, = Axly, + 1Adlyy, = B (J:?J) WP Salt

= B2 Omel ) 2
=P e *

and also we have

—_ml =_m__J
Zmax = mim Mm% = meme 747,

so, the error of simulation due to offset error of the force sensor is
1Azl 2 Metm ] 2
Bw’t’m, mlJ [me+m ]

— Ren22 Me Me+M 12y _ 3,y22 Me 1y2 ,Me |12
= Bo-t m[1+—-—1m12;l] Bw“t m[1+(rg) +m(rg)]

&

1Zmax!

ii))Assuming gain error of the force sensor is

ste-for} o)
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Integrating the equation
JAQ = ATy =Yty = YJp =~ -J-;ﬂj-e

and assuming zero initial conditions, we get

A(p'Af. Y‘P = —YJ-{-J

since ABlyy, =0

‘ AaIA,. = A(p'Af. = 'Y}:%—e

Assuming zero initial conditions and integrating the following equation

¢ = Af, =1f, =ymi = —yDMel __ mmd _J
mAX = Afy =1y = ymX = -y —2 o ' (me+m) (J+J)

so, we have

-y mel T g . Bl g
Azlyg, = Axlyy, + 180day, = ~¥ = o +J)9 “YGAh

=y Omel [ J +12]
"(Je+)) "(me+m)

__ml —_ml
and also we have z = e ® = mrme _J+Je 0

therefore, the error of simulation due to gain error of the force sensor is

_Az _ MM me+m L py=—ye(q, Detmp
&=%2="Ym 5 [me-i-m 1= [1+ mr — 1

=Yg 1+ 607+ TGy
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Appendix 1.4

For VES to simulate more general base system, e.g., the suspension
system of a vehicle, the stiffness of the base system is a very important fact,
so, it should be considered in the base model in addition to the inertial
effect of the base. On the basis of simple two-degrees-of-freedom model,
which is discussed in Appendix1.3, we include stiffness of base system and
establish a two-degrees-of-freedom VES model. In the model, the stiffness
of the base system includes both translational stiffness £ and rotational
stiffness k. Since stiffness exists in the base system, the base will produce a
restoring force to balance the error force caused by the offset error of the

force sensor. Therefore, in vehicle emulation case, the offset error is static

and negligible and the gain error will dominate.
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0 = 0+¢ z = x+la Joo = mel2o =1 5 mel2(B+p) =t
for the base system,
MK+ ke = fy = ~f = -mek = —my(k+l6)  JO+kp=mfp+ko=1, =-1

Y (JeH DY +kep = —Jeé or  (mcl%+mrd)op +ko= -m,126'
and (m+meX + kx = —-mlaL
Assuming zero initial conditions and sinusoidal motion of the robot

0 = Osinat and 0 = -?Osinat
the forced response of the system is

I
ke~ (Je+D)w?

Define
# T (me‘:;m%) nd s m;—)zo)%r i 1—(‘1%"'—)2
o= "(%%79
L o=0+Q= J_*'(_Tlil;ﬁ)_!se R

Similar, the forced response of x is

o mde? o me? J+(-Mle o
k—(m+m,) k—(m+m,) Jet))
Define
= —————kr and M = m2 = 1
(me+m) - 1_(_‘2&)2
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J+(1-M,)Je

g 1

S X = Mn‘ﬂl._[
(m+m,)

Assuming gain error of the force sensor is

st~ {om =)

Mmgl_[J +(1—M,)Je]
.| ax } ol X\ g Metm) (et
o = y‘ 0 } =-v0 M
| 4 | o
Since A0 =0

. Aa=A0 +AQ =A@

Mm,l [J +(1“Mr)Je] — 6l M/J.

s Az=Ax+lAo = ""Ye (mc+m) (Je-{-J) (Je"‘])

__¥6mel M _ 2
= ) { (e ) [J +(1-M)Je] + M,1¢}

and z=x+loo=-6 anel [J +(1_Mr)Je} +IGJ +(1—'Mr)Je

(metm) - (Je+)) JetT)
= Ol _[y4(1- Mm. , _ _6l _ mH(1-M)me
T H1-MILIl-E20es ] = G sl +(1-Malell = === ]

3 . ! -
Therefore, the error of simulation due to the gain error of force sensor is

~¥0mel M o ,
Az _ UJet)) ‘(me+m)lj+(1 M,)J ] +M12)
z m+(1-Mm.,

ol _
(Je+J)[J+(l Mo)l]l notm)

. =Yme{ M[J+(1-Mp)J] + (me+m)M,12)
T J+(1-MpJe][m+(1 ~-M)m]

Mm. | M,m,]2 N Mm.M,m,]?
m+(1-M)m, [J+(1-MpJe]  [J+(1-MpJe][m+(1 —M)me]

. €g

=-{

Appendix 1.4 78



Let's discuss some special cases.

(1) k=0 and k;=0,S0 Wy =0, Wpr=0, M=1 and M, =1
el Bl

This is the same result as that we obtained from simple two-degrees-
of-freedom model.

2) k=0 and ky =, 50 W =0, Wpr —o,M=1 and My =0

o 88=Azz- - —y%—

This is the same result as that we obtained from simple one-degree-
of-freedom translation model. Very large rotational stiffness prevents the
base sytem from rotating.

3) ky=0 and k >0, SO Wy =0, Wy =0, M;=1 and M -0

. 12
. €= Az_z - —y"—;rz:

This is the same result as that we obtained from simple one-degree-
of-freedom rotation model. Very large translational stiffness prevents the
base sytem from moving.vertically.

(4)For a practical case, when o <<, and o << oy, we have

2
M—-22 and 1-M - 1+ 51
M——92 and 1-M, - 1+ 2% 1
ok

so the emulation error will approach to

2,.2
1_2.+_me_l£)_.]

-1
= %Z- - —yme(oz[? ke kkp
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Appendix 2.1

Xj1 = 1sin(m/6+¢2), yin = rcos(n/6+@2).
Xj2 = rsin(m/6—¢2); yi2 = rcos(n/6—¢2).
Xj3 = ~1c0S(92); y13 = rsin(@2);

Xj4 = Xj3; Yi4a = =Yyi3;

Xj5 = Xj2; yis = -y,

X16 = XJ1; Yie = =Y,

XB1 = Rcos(@1); Ys1 = Rsin(¢)); ‘
Xp2 = —-Rsin(n:/6—(pl); Ys2 = Rcos(m/6-¢1).
Xp3 = —Rsin(n/6+¢1). Y33 = Reos(n/6+¢1),
Xp4 = Xp3; Yp4 =-Yp3;

Xps = Xp2; Ygs =-Yp;

X6 = Xpi; Yps =~Yai;

Let Xf=XJi—XBi and y;=YJi'YBi, i=1,...6., and denote

sO=sin(); cO=cos(); s>()=sin%() and c2()=cos?() etc.
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since Xi+Xp2+Xy3 = rS(W/6+92)+rs(n/6-02)~rc(¢2)
= r{s(7/6)c(2)+c(1/6)s(92)+5(1/6)c((2)-c(1/6)s(92)-c(p2)]
= r[0.5¢(2)+0.5¢c(¢p2)~c(@2)]= 0

) ﬁ X5i=XJ1+X 2+ X3+ X1+ X 15 +X16=X 1+ X2+ X3+ (X 3+ X )2+X11)
i=1
=2(xj1+x52+x33) = 0
since XB1+Xp2+Xp3 = Re(@1)-Rs(n/6—@1)-Rs(n/6+¢1)
= R[c(@1)-s(m/6 )c(@1)+c(m/6)s(P1)-s(T/6)c(@1)—c(n/6)s(p1)]
= R[c(1)~0.5¢(1)-0.5¢(p1)]= 0
$0
6
D, Xai=Xp1+Xp2+Xp3+Xps+Xps+Xps=(Xp1+Xp2+Xps)+(Xp3+Xpz+Xa1)

i=1

=2(Xp1+Xp2+Xp3) =0

6
D, VEEYIHFY Ay 3+yiatyIstye=(Yn+y it yis) - y-yn-yi)= 0

i=1

6
Y, Yi=Yn1+Ypo+Yps+Ypst+Yps+Yae

i=1

=(YB1+YR2+YB3)+(—YB3-Yp2-Yg1)=0

i=1 i=1 i=1 i=1
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i yi= 5: (y5i-Ysi) =£: yn-i Ygi =0

i=] im1 {=l i=1

L IR ] . n " W L R o % L I ] L K
i XiYi= X1Y1+X2Y2+X3Y3+X4Y4+X5Y5+X6Y6
i=1

= X1y +X2Y2 X3y X3 (=y3)+Xa(=y2)+x] (Y1) = 0

3 (02 = () ) ) () X = 2 2 ]

i=l

= 2 [(x51-XB1)*+(%12-XB2)*+(X13- Xp3)*]

= 2 [x}+xh+xh+ X1+ XEo+ XB3—2x11X1-2% X5~ 2x13X 3]

= 2 {r2[s2(1/6+ P2)+52(m/6~p2)+c2(©2)]+R2[c2(@1)+s2(T/6—@1)
+s2(1/6+@1)]-2rR[s(T/6+ ©2)c(P1)—-s(m/6—-92)s(r/6~P1)

+c(@2)s(n/6+¢1)]}
= 2 (r2flcAp2)+3s% 2+ Bs(p2)c(@2)+1cH92)+35%(92)

—Bs(g2)c(g2r+cA@)HRYcH@1+icXp1)+35%(o1)
—Bs(en)c(o)+ieXe1)+3s2(o1)+Es(p1)c(pD)]
~ 2R[ Le(o1)c(92)+Ec(@1)s(92)-Le(1)c(2)
+Ls(1)c(p2)+Be(91)s(92)-3s(@1)s(@2)+Le(p1)c(92)
+Bs(ene(@2)])
= 2(3r23R%-2R3{ Le(p1+92)+ Bs(p1+¢2)])
= 3[r2+R2-2rRs(n/6+ @1+ ¢2)] = 3[r>+R’>-2rRc(n/3-@1-¢2)]
=3r*2

where *2= r24,R2_2rRsin(n/6+¢1+¢2) = r2+R2-2rRcos(n/3-p1-¢2)
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S (i) = (D e Sy ey S ey = 20Dy )

im]

= 2 [(yn~Yp1)*+(yrz-Y52) 4 (y13- Y53)?]

= 2 [yh+yhryh+ Y81+ Yha+ Y8s-2y11 Yo1-2y12 Ya2-2y53 s3]

= 2 {2[c2(m/6+Q2)+cA(T/6—2)+52((92)]+R3(s2(1)+cX(T/6~p1)
+C2(n/6+p1)]-2rR [c(T/6+ @2)s(P1)+c(n/6~p2)c(T/6~p1)
+s(@2)c(n/6+¢1)]}

= 2 (23X p2)rLs2(92)-Ls(2)c(p2)+3cg2)+1sX(02)
+L5(02)c(92)+s2(92)[+R*(s2(01)+3c(p1)+1sX(p1)
+Ls(on)c(@1+3c(@)+isXo1)-Ls(1)c(p1)]
- 2rR[ Ls(p)e(92)-1s(@1)s(@2)+3c(p1)e(2)
+Bs(pn)c(p2)+ Le(@n)s(92)+ 1s(oDs@2)+Ee(p1)s(92)
~1s(p1)s(92)])

=2 %r2+%R2—2rR%[ %c((p1+(p2)+izzs((p1+<p2)] }

= 3[r2+R%=2rRs(rt/6+ 1+ 92)] = 3[r2+R2-2rRc(m/3-91-¢2)]

= 3r*2

6
z (ij)2 = XJ12+XJ22+Xj32+Xj42+X152+Xj62= 2[Xj]2+x_]22+x_]32] =312

i=1

6
Y (y5)* = yn2ynyttytyistyiel= 2lyn+yn+yst] = 32

i=1

6
Y (Xai)? = 2[Xp1*+Xp2*+Xp3") = 3R?

i=l
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i (Yn)? = 2[Y312+y322+Y332] = 3R?
je=1

i x5iXgi = 2(x Xp1+x2Xp2+x53XB3) = —%(3(3 ~3r2-3R?
i=1

= 3rRsin(rt/6+¢Q1+¢2)

6
Y. y1iYei = 2(ynYe1+yn Yeot+ynnYes) = —12-(3C -3r2-3R?
i=1

= 3rRsin(m/6+@1+¢2)

i x5iY8i = 2(xn Yé1+x2Yho+x13Y83) =2rR*[s(@1)s(n/6+¢2)
i=1

+C2(1/6-Q1)s(n/6- 92)—C3(r/6+P1)c(P2)]= 2rR2[-3c(2)c2(P1)

8
+3c@252@1-32 5221+ s(p2APD+Is(Pe(P13e(92)
-4ls(<p1 )c((pl)s((p2)]=2rR2[—%c(2(pl )S(/6+p2) +43-s(2(p1)c(1c/6+(p2)]
= —%rst(n/6+(p2-2(pl)

6
Z yJZiXBi =2 (y121X31+y%2X32+y}3X33) =2r2R [cz(n/6+(p2)c((pl)
i=1

~C2(m/6-P2)s(/6-P1)-SA(P2)s(n/6+P1)] = %rzks(n/écpl-chz)

(permutation of the subscripts)

6

Y. x5iy5Ysi = 2(x51y51 YB1+X52y52 Y B2+ X13Y13 Y 3)

i=1
=2r2R[s(n/6+Q2)c(m/6+(2)s(Q1)+S(n/6-P2)c(m/6-P2)c(n/6-P1)
~c(Q2)s(P2)c(n/6+ Q1) = 2r2R[—3-Sﬂs((pl)c(2(p2)—3§Zc((pl )s(292)

+%c((p1 ) (p2)+%s((pl )s(2@2)] = %—rZR[c(Z(pZ)s(n/6+(pl)
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-5(2Q2)c(n/6+p1)] = %r’Rs(u/ﬁﬂpl-Z(pZ)

i yiiXiYsi = 2(ynXp1Yp1+y12Xp2Yn2+y13Xs3Ys3)
i=1

=2rR2[c(1t/6+(pZ)c((pl)s((pl)—c(n/6~(p2)s(1t/6-(pl )e(r/6~ Q1)
~s((P2)s(n/6+@1)c(n/6+O1)]= ~%rR2s(n/6+(P2-2(P1)

(permutation of the subscripts)

i yaX3: = 2(yA X +yLXoo+y B X23) =202R2[c2(@1)cX(n/6+92)
i=1

+C2(1t/6-92)s2(m/6~ Q1) +S2(P2)s2( /6 1 -01)] = 2r2R2[%-67-c2((p1 )c2(2)
+LAQDAQD+I2e AP @12 A P1s(p2)c(92)
2@ 1s(2cp2 252 ps(p e -2 G2)s(@1)e(@1)
~25(PDS(Pe(@1)e(92) = 22R2 (L3 [e(@)e(P2)-s@Ds@)]?
4—126-{c«p1)s«p2)+s«p1)c(<p2)]2-11¢2'-[s(2cp1 )C2)+c2P1)s(292)])

= %r2R2[5c2((pl+(p2)+352((p1 +92)-Y3s2P1+202)]

= %r2R2[3+202(<p1+(p2)—\(3' sQQ1+2¢2)]

& 232 92 y2 2yl a2 2R 2012
Y, xhYei = 2(xf; Yar+xf Yeo+x$s Yas) =2r2R*[s(@1)s(n/6+2)
i=1

+C2(/6-@1)s2(n/6-92)+C2( P2)c3(n/6+P1))

= %r2R2[3+2c2(q>1 +(2)-V3 s(2(01+202)]

(permutation of the subscripts)

6
Y xiiynXsiYei=2 (xnynXe1 Yei+xnynXe: Yertxiy;nXes Yes)
i=1

=ZrZRZ[i-s(n/ZJrZCPZ)S(Z(pI)—i—s(n/3—2(p2)s(n/3—2(p1)%s(2(p2)s(n/3+2(p1)}
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%rznz[‘%smpx)s(zwz)-gc(zqn)cs(2(p2)+3£3:s(z<px)c(z(pz)
+3-?c(2(pl)s(2(p2)] = i—ﬂR’[%c(Z(pl+2(p2)-1;s(2(p1+2(p2)]
= —%rszs(nlﬁf-Z(pl-mpZ)
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Appendix 2.2

Daixji+Dazysi+y-yBi

Dy 1x5+D12ysi+X-XBi }
Daxsi+D3s2ysi+z

v 1]
Eqn. (2.17) gives 1= ‘ :W I =
iz

and Eqn. (2.16b) shows lj described in platform coordinates, i.e., xyz
frame,

e[t | von
: (hosl

where the direction vectors D1, D2, and D3 are given by Eqn. (2.15)

[
] Dy cosPcosy
D;={ Dy ;= cosPsiny
\ D3l ‘ 'SinB

l sinasinfcosy-cosoasiny
Dz={ D2 ’= sinasinBsiny+cosacosy

sinoecosP

cosasinfcosy+sinasiny ,

Kl
D3= ‘ D23 [ =, cosasinfsiny-sinacosy
‘ cosocosp

the leg length is given by Eqn. (2.18)

L=V E+R+1
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and the Jacobian matrix will be -

ox dy oy
al_. .oy |dd O
{2-uffe 5 5

ox 3y
where
a7 212X
al 8( lxX+l|2Y+12) ox =h&=D“x,i+D,2y;;+x-Xgi

ox 2 BBy iy h
2l; yal'y
dli _ oV llx+],2y+l|z) "0y _Ly _Doarxsi+Doysi+y-Yai

¥ W BB iy h

al,z

2liz
al; _ 3V 1,x+l,2y+ B)_ “%%  _lz _Duxi+Dsyji+z
dz 2V lix+liy+ liZ [i li
since

au

Ja
oDy _/Jaba | _
Ja dot

aDy:

Jdx

da cosasinBcosy+sinasiny
oDy _ /oD | _ . . =D
e )\ e [T cosasinPsiny-sinacosy =D3

D32 ‘ cosocosp

Ju J
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Q
=
)

¢

-sinosinfcosy+cosasiny

== | ={ _sinosinPsiny-cosacosy j==D2

~sinoicosp

~sinfcosy l
=! —sinPsiny ;=—(sinaDj+cosaD3)

) \ —cosp

=sinaD,

I sinacosBcosy
‘ sinocosPsiny

—sinasinf

’ cosacosBcosy‘
= ‘ cosacosPsiny ;=cosaD,

—cosasinf

—cospsiny ‘ _siny ,
= { cosPcosy ’= cosﬂ{ c%sy} =cosf(cosaD,—sinaD3)

0

—sinasinfBsiny-cosocosy ‘
=—cosacosfD;-sinfD;

=\ sinasinBcosy-cosasiny
‘ 0
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Dy
D Y [ ~cosasinPsiny+sinacosy
-3-734 Q‘%ﬂ =‘ cosasinBcosy+sinasiny ’ﬂSiﬂaCOSﬂDH'SiﬂBDz

D3 0

ay

dlix dliy oliz
ali / +12 + lz 2!1 +21 a 4‘21 a
do - 2«/ B+ i+ 1

D1 aD:z dD2y gDz oDy dDxn

SO,

l.x( 3 Xt 5 +=—y5i)+liy(5— e it 5e Y1) Hiz(5— 3o Xt 5 =Y
l;
PCL I R:) )
=xJI(Ii aa )+y.’l(l| aa ) )’Ji('I'DS) - hl
al.x al,y allz
2|,x —=+2l;y +2liz
3 _ 3 B+ Byr ) Y Cop
op op 2‘\/ B+ + 1%
D D D D
lix(aaﬁll aaﬁn)'h) l.v(a ;'XJ. aapzz)'n) le( 3 xn+aa—;2)'1i)
= ;
D
x5i(ly a—)+y iy —= 9D, ,
B daf _—xysina(lyD2)+cosa(li-D3)]+ypsina(lyDy)
- I - I;
=|i-(yJiSlnaDl—XJiSIII.'IaDZ-XJiCOS(xD:;) _ yﬁsinali—f‘ —x;isinall x;.cosal—l‘l
1 1 1 1
dlix , 5, Oliy . _aliz
a2 [_—‘—‘—12 Bl 211X F2Liy 3y 23]
dy 21/ Bo+1A+ 1%
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lix(-g—xm-ryn)ﬂw( ay X Jir a n)+hz(aa,:'xm-5—w)
]

XJi(h'a%Y-’-)w“m(lra-%-)

I

=x1icosB[cosa(l|-Dg)—sina(lrDg)-—-yu[cosacosB(I,-D;)+sinl3(l;-D3)]

li

=xncosﬁ(cosa!-i-_l-sina!iF)-yu(cosacoth}-o-sinBll‘f)
1 1 1 1
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Appendix 2.3

Eqn. (2.29) gives [S]=lIT(K][J], so, for platform is at its rest
configuration, where x = {0, 0, zg, 0, 0, 0} and due to symmetry of the
configuration, each leg length will be same at this time, I =1lp, (i =1, 2,

-, 6), if we assume that the individual stiffness of each leg is same, i.e.,

ki=k, (i=1, 2, -, 6), the stiffness matrix [S] is
6
(8]= LI (K1 0] = k70 = [5:] =K 2] 21 - [ )y %ﬂ%‘fj—]

since x=0, y=0, z=z0, a=0, B=0, y=0, the direction vectors are

pi={ol p=f1l piefol

o Aol L1/

and the components of leg length are
lix=lix= D11x5i+Dr2ys+x—Xpi=x;
liy=liy= Da1x5i+Daoysi+y-Ygi=y;
liz=liz= D31x5i+D32ysi+zo=20

$0,
o _lix _x;

ox L lp
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? = YJi I = Yn-z-o-
ali . hz=_ Z
» KIp = X
o _ . Ly . lix_Xsiysi-xnYsi
5"/- = X ln RAL ll l0
and
S1=k3, Gl k}_‘, (—l—)’-k<2 (x; )2)=3k1f,_
i=] xal
where

r"2 = r24+R2-2rRsin(m/6+ @1+¢2)= r2+R2-2rRcos(n/3- ¢1- (2)

From the above figure, we have

sin@ =% and cosb = -
Io 0
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SO,
Sit -31?';—2 = 3kcos20
0

Szz-kZ <—§-)2= kZ (ﬁﬁak{Z i )2)=3kr— = 3kcos20

im] iml

Ssa--kZ (___)z-kz (59-)2-6k§ = 6ksin20

im]

s44—k2 <—)2-k§: (y3i Eﬂﬂ—kﬁz yf; = 3nz§1-3kr2smze

i=1 o i=1

Sss-kz (all)Z..kz (- xJ; ﬂ)z-kﬁz x}; = 3kr2§— = 3kr2sin20

i=1 0 i=1

SGG‘kz (32)2 kz (YJle:I'x.hYBx)z
l i=1 1

-f(Z Y}IXB.*' 2 X?:Ym —22 x5y XBiYBJi )

0 i=l i=1
=%{ 2%r2R2[3+2¢2(¢1+¢2>—»’3“ s(2<p1+2¢2)]—2[-%r2R2s('n/6-2<p1_z<p2)]}
I

= 222‘[%*%Cz(q’l+<P2)—%zs(2<pl+2<p2)+}c(2<p1+2(p2)]
Iy

=kr_R_22 2 %4%[202((01"'([)2)-0(2@ +202)]+3s(n/6-2¢1- 2¢2)}
Io

=&I§R—2[I+s(n/6—2(pl—2(p2)] -
0
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S12= 8y 'kz (g::g::) &Z X11y3) =0

im1

S13= 83, =k2 (g::gli) *k (Z x3;) =0

inl

& dl; d}; 2 S
S14=Sa; =k2; Gish) =k i (§ x}iy5i) =0
{e= 1=

S15= Ss; -kz (g"‘ 10l —";-0{2 x5ix11) -—-——-[3r2—3rRs(1t/6+(pl+<p2)]
B I o= 3

& Alidli, .
S16= Se1 =kz (§;(-§Y-) = 15(2 [x5i(y5iXBi— x5i YBi)]

= 1&[): (x:.y:,xs,)-z (x5iXp; YBi)] =0

0 i=1 i=1

S23= 832 =k.2 (glglz)— (Z y5)=0

S24= Sa42 -kz (al al’) =kzo (Z YLYR) = ——[r2 -3rRs(n/6+p1+¢2)]
dyda. 12

S25= Ss2 —kz, (g;g;) = II(ZO(E% Y3ixs) =0
0 i=

S26= Sé2 —kz (al ?;Y) = K‘{Z [Y5i(y5nXei—(x5 Ygil)}

0 i=1

Z (}'nXBz)—Z (xeYJxYBu)"‘Z (XJme)-Z (y15iXBiYB)] =0

i=1 i=1 i=1

&‘o]br
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a4 &
S34= 843 =k}, (=5=) =kL(), y1) =0
2 dzdo 12 i-zl

S3s= Ss3 "kz (al dl —1-6(2 x5) =0

i=1 aZB ]o i=1

S36= ez =k, 2l 33) —EQ[Z (9 Xa)-3 (x1:¥a] = 0
i=1 o i=1 i=1

S45= Ss4 -kz al al TZZQ[Z (x1iy5)] =

i=1

S46= Se4 —kz (88(113; kz“[Z (y§: XBi) - z (x5iysiYei)l =0
i=1

6 -l —_
Ss6= Ses =k, (2ikiy _ ‘“0[2 (xayiXaieY, (4 Ya)] = 0
i=1 aBaY 13 i=1

We know that if displacement only in x direction, i.e., Ax={Ax00 00 0|',
the corresponding force will be

Fx= S11Ax
so, the stiffness in x direction is

Sx=Fyx/Ax = §11= 3kcos20

and if displacement only in y direction, i.e., Ax={0Ay0 0 0 O}t, the

corresponding force will be
Fy= Szsz

Appendix 2.3 96



so, the stiffness in y direction is
Sy=Fy/Ay = S33= 3kcos20

if in oxy plane, there is a displacement Ap in the direction at the angle V
with x axis, i.e., Ax={Apcosy Apsiny 0 0 0 O}t, and the corresponding force
is

Fx=S114pcosy and Fy=SApsiny
the force in V¥ direction is then

Fy=V F2+F2=V (S14pcosy)?+(S22Apsiny)? = 3kcos20Ap

so, the stiffness in ¥ direction is
Sy=Fy/Ap= 3kcos20 = Sy = S,
the stiffness in horizontal direction at platform's rest position is the same,

and is independent of direction V.
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