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ABSTRACT

The objective of this research was to develop and implement a method
for analyzing three-dimensional static and transient behavior of reactors
composed of regular hexagonal subregions in radial planes with thermal-
hydraulic feedback option.

A nodal method for analyzing reactors composed of hexagonal
subregions in radial planes is described. Within each hexagon the shapes of
transverse integrated group-fluxes are approximated as quadratic
polynomials. Discontinuity factors are introduced to account for this
approximation and for approximations made in replacing physically
heterogeneous nodes by "equivalent" homogeneous regions. A simple,
constant pressure, one-dimensional (parallel channel) thermal-hydraulic
model is also incorporated.

Numerical comparisons with static reference calculations indicate that,
without the use of discontinuity factors, the method provides predictions of
nodal fluxes and global eigenvalue that are slightly less accurate than those
obtained using somewhat more complicated nodal model and much more
accurate than finite difference model with one mesh cube per node.
Additional test comparisons suggest that discontinuity factors obtained from
infinite lattice calculations are marginally acceptable for small, heavy water
moderated and reflected cores composed of heterogeneous subassemblies.
The thermal-hydraulic feedback option of the model is proven to work
properly and provides excellent agreement with other nodal methods in
Cartesian geometry.

Numerical comparisons with transient reference calculations indicate
that the method is consistent in predicting the behavior of large heavy water
reactors. Its thermal-hydraulic feedback option yields an excellent
agreement with Cartesian geometry nodal methods. However, the method is
slower than other nodal methods primarily because of the relatively higher
number of unknowns per node per energy modeled and because no special
acceleration procedures were applied.

Thesis Supervisor: Allan F. Henry
Title: Professor of Nuclear Engineering
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CHAPTER

ONE

INTRODUCTION

1.1 Overview and Motivation

The safe operation of a nuclear reactor requires the accurate prediction

of its neutron population at all time for all possible conditions and

configurations. Although this might look as straightforward as solving a set

of differential equations that govern the neutron behavior in a reactor, in real

life the picture is somewhat more complicated than this. The reason is that

the problem is non-linear: neutron behavior is affected by the thermal

conditions while thermal hydraulic analysis of the reactor requires accurate

information concerning the neutron flux distribution.

Traditionally, reactor neutronic analysis is done using few group

diffusion theory with fine-mesh, finite-difference solution techniques.

However, constraints on problem size (large number of mesh spacings

needed) and angular behavior (diffusion theory not valid) are major

drawbacks of the finite-difference method. These have been overcome by now

well-known techniques. The first problem can be overcome by using nodal

techniques (Smith, 1979 and Lawrence et al., 1978) and the second one can be

overcome by using modern homogenization methods (Henry, 1975) which



introduce "homogenized" diffusion theory parameters to represent the

heterogeneous nodes of a reactor.

Although the world nuclear industry is primarily based on light water

reactors of Cartesian geometry, the hexagonal lattice is very attractive for

many advanced reactor concepts like liquid metal fast breeder reactors,

modular high temperature gas cooled reactors, and heavy water moderated

reactors. Although results will be applicable to a broad class of reactors

composed of hexagonal assemblies, the primary emphasis of this thesis is

directed towards the analysis of heavy water reactors such as those located in

the Savannah River Site. The objective will be to develop a nodal method

requiring the use of only one mesh point per hexagon in a hexagonal plane,

yet capable of providing an accurate simulation of three-dimensional,

transient power behavior.

1.2 Background

1.2.1 Homogenization Methods

A basic assumption of diffusion theory is that the neutron angular

distribution is, at most, linearly anisotropic. This assumption is invalid in

regions which contain highly absorbing materials (such as control rods) or

near interfaces between regions having different scattering properties (such

as near reflectors). In a highly heterogeneous reactor, these problems are

augmented by the fact that a large number of regions are required for

accurate presentation of the reactor geometry.

10



A standard way to overcome this difficulty (Henry, 1975) is to

introduce a set of "homogenized" nuclear parameters that replace those of the

different materials making up regions in the "real" heterogeneous node. This

new set of "homogenized" parameters is evaluated on the basis that it

correctly reproduces the interaction rates in an integral sense over those

heterogeneous regions of the node under consideration. Consequently, a

heterogeneous reactor can be transformed into one that consists of relatively

large homogeneous nodes resulting in considerable reduction in

computational costs (provided we manage to get these new sets of

"homogenized" nuclear parameters). Having achieved that goal, a nodal

method can be used to predict accurately the over-all core behavior.

Failure to reproduce exact results using standard homogenization

techniques (such as flux weighting) prompted Smith (Smith, 1980) to develop

an alternative method. This procedure was a variant of that suggested by

Koebke (Koebke, 1979). In this method, Smith introduced correction factors,

known as "discontinuity factors", to correct for errors associated with

homogenization techniques. These parameters, when used in a nodal

scheme, reproduce reference results.

1.2.2. Nodal Diffusion Methods

The essence of nodal methods is the reduction of computational costs

through reduction of the number of nodes needed to represent the reactor

accurately. For the same accuracy level, nodal methods typically reduced the

execution time required to solve a given problem by two orders of magnitude

over the finite-difference counterpart.

11
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The first step in deriving a nodal method (common to all schemes) is to

derive the nodal balance equation by integrating the Boltzman transport

equation over all directions of neutron travel, over individual energy groups

and over the volume of a node. To solve the nodal balance equation coupling

relations that relate the volume-averaged flux and the face-averaged currents

are needed. Fick's Law is used to obtain the desired relation. However, using

Fick's Law in conjunction with a finite difference or any higher order

approximation introduces additional unknowns to the problem namely, the

face-averaged fluxes. A second coupling relation is therefore required to solve

the problem.

Early nodal methods (Delp et al., 1964) generally used empirical

coupling parameters which were determined from the results of detailed fine-

mesh calculations or from actual operating data. More recent nodal schemes

have used coupling equations found by integrating the group diffusion

equations for the node over transverse directions. To solve the resultant

"coupling equation" the transverse-integrated flux is often assumed to be a

polynomial (Cadwell, 1967, Finnemann and Wagner, 1975 and Zerkle, 1992)

(hence the name polynomial nodal method). One of the principal advantages

of polynomial nodal methods is that they have no restriction on the number of

energy groups that are to be modeled.

Another approach to solving the transverse-integrated diffusion

equation is to do so analytically. This gives rise to the Analytic Nodal

Method developed at MIT by Smith (Smith, 1979). This method, incorporated

in the computer code QUANDRY, has demonstrated that very accurate



solutions can be obtained with assembly-sized spatial meshes. The

computational efficiency of the method has been shown to be at least two

orders of magnitude greater than that of finite-difference methods. However,

because of its complexity, the analytical nodal method is effectively restricted

to modeling problems with no more than two energy groups.

As stated before, nuclear reactors having hexagonal geometry have

become more attractive for a wide range of applications in the nuclear

industry. One of these applications is the production of special isotopes in the

heavy water moderated reactors at the Savannah River Site, usually known

as "K-reactors". They are heavy water moderated and cooled, low pressure

and low temperature reactors used for plutonium and/or tritium production.

Figure (1.1) gives an overview of a typical cross sectional area of one of those

reactors.

The success of nodal methods in Cartesian-geometry systems has

prompted the development of analogous techniques for systems having

hexagonal geometry. The Analytic Nodal Method was applied to hexagonal-

shaped nodes by Yarman (Yarman, 1983), but resulted in limited accuracy.

Other hexagonal nodal techniques have been developed and successfully

applied to fast reactors (Lawrence, 1983, and Wagner, 1989). Also, a finite-

difference nodal model (Gehin, 1990) was used to analyze small reflected

reactors composed of Savannah River type fuel assemblies for which

heterogeneity and mesh effects were corrected by the use of discontinuity

factors. It turned out that discontinuity factors found from a infinite lattice

calculations led to a unacceptably large errors for the finite reactor case.

Moreover, errors were about the same even if the hexagonal cells for those

13
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Figure (1.1) An overview of a typical cross sectional area of a ' 1-

reactor'.



infinite calculations were homogeneous. Finally, there is an ongoing effort

(Taiwo and Khalil, 1991 and 1992) to add a nodal kinetics capability to the

ANL DIF3D (Lawrence, 1983) code where the nodal hex-z spatial differencing

technique and the theta method for time integration are used.

1.3 Objective of the Present Research

The objective of the present research is to develop and implement a

method for analyzing three-dimensional static and transient behavior of

reactors composed of regular hexagonal subregions in radial planes. The

intent is to develop a nodal code in hex-z geometry capable of solving few-

group diffusion equations that predict the static as well as the transient

behavior of node-averaged group-fluxes. To correct for errors due to nodal-

homogenization and the use of the diffusion theory model, discontinuity

factors will be used, and a procedure for finding them by editing a lattice

spectrum will be worked out. Also, the assumption that transverse-

integrated group fluxes have quadratic (rather than flat) shapes across a hex

will be incorporated. This latter model should yield much more accurate

results and, when it is used, the discontinuity factors will be correcting

primarily for the heterogeneous nature of the nodes, rather than for both

heterogeneity and mesh size effects. This report describes a code that has

been written to implement the above method and to incorporate a simple,

constant pressure, one-dimensional (parallel channel) thermal-hydraulic

model has been written.

15



1.4 Thesis Structure

In Chapter (2) the static, three-dimensional, few-group nodal equations

are derived. First, the Boltzman equation is integrated over all directions

and over an energy range. The result is integrated over a node yielding a

nodal balance equation. Next, Fick's law is introduced along with the

quadratic-shape approximation for the transverse-integrated fluxes creating

a set of linear algebraic equations which are then solved for the volume-

averaged group fluxes in each node and the eigenvalue of the system. A

method for evaluating the discontinuity factors correcting for errors due to

heterogeneity, Fick's law approximation, and quadratic-shape approximation

will be outlined. Finally, a simple one-dimensional thermal-hydraulic

feedback model will be described.

In Chapter (3) the numerical solution method for solving the

eigenvalue problem and for determining the discontinuity factors and newly

updated macroscopic cross sections, due to thermal feedback, will be

presented, and numerical applications will be discussed.

Chapter (4) is analogous-to chapter (2) except for the fact that it will

deal with the transient part of the problem. The time dependent Boltzman

equation will be transformed to few-group diffusion equations, in a way

similar to what is described in Chapter (2). These will be solved for the

volume-averaged fluxes for different energy groups at each time step. Also, a

simple one-dimensional transient thermal-hydraulic feedback model will be

outlined.

16
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In Chapter (5), as in chapter (3), numerical solution methods for the

time dependent few-group diffusion equation will be described and numerical

applications of the method with and without thermal feedback will be given.

Conclusions of this thesis and recommendations for future work will be

presented in Chapter (6).
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CHAPTER

TWO

SOLUTION OF THE STATIC NEUTRON

DIFFUSION EQUATION

2.1 Introduction

The goal of this chapter is to derive the static, three-dimensional (hex-

z), few-group nodal diffusion equations with thermal-hydraulic feedback

option. For the sake of simplicity, a two-dimensional model will be discussed

first, then it will be extended to obtain three-dimensional results. Also, a

separate two-dimensional, few-group, finite-difference nodal diffusion model

for triangular-shaped nodes will be outlined. The triangular-shaped nodes

are required for the calculation of discontinuity factors and for obtaining a

fine-mesh, finite difference solution to serve as a reference. Moreover, we

shall allow for a general number of energy groups and for upscattering in

thermal groups. Finally, a simple, constant pressure, one-dimensional

(parallel channel) thermal-hydraulic model will be incorporated.

We begin the derivation by integrating the Boltzman transport

equation over all directions to obtain an equation that relates the scalar flux

density to the net current density. The resultant equation is then integrated

over an energy range and over the volume of the node. The resulting



equation is called a few-group nodal balance equation which is basically a

relation between the volume-averaged flux for a node and the face-averaged-

currents for that node. To solve the nodal balance equation coupling relations

that relate the volume-averaged flux and the face-averaged currents are

needed. Fick's Law is used to obtain the desired relation. However, using

Fick's Law in conjunction with a finite difference or any higher order

approximation introduces additional unknowns to the problem namely, the

face-averaged fluxes. Up to this point there is no distinction between the

hexagonal- and the triangular-shaped-node models mentioned above, but this

similarity will cease to exist when each model introduces the second coupling

equation needed to solve the nodal balance equation. In the triangular-

shaped-node model the face-averaged fluxes are assumed to have a flat shape

across the node, whereas in the hexagonal-shaped-node model they are

assumed to have a quadratic one. Discontinuity factors edited from the fine-

mesh, finite difference, triangular-shaped-node model will be used in the

hexagonal model to correct for mesh size effects, the Fick's Law

approximation and homogenization effects (if applicable).

Finally, a steady state WIGL (Vota, 1969) thermal-hydraulic model is

incorporated as a feedback mechanism to update the nuclear cross sections.

Average fuel and coolant temperatures and average coolant density are

calculated for each node based on the power level of the system. These three

variables are used to update the nuclear parameters of the core by linear

interpolation.

19



2.2 Derivation of the Nodal Equations

By integrating the Boltzman neutron transport equation over all

directions and over an energy group g it is possible to obtain formally (Henry,

1975)

V.Isg(x)+ £g(r)¢g(L)= X 'XgV~fg'( )g'()

(2.1)
G

+ IEgg, (r)g (); g = 1,2,....,G
g'l
g'*g

where

G - total number of energy groups,

(g (r) group g scalar flux density,

4sg (r) - group g net current density,

g (E) - group g total macroscopic cross section minus the group g

in-group scattering cross section,

x - the critical eigenvalue (Keff),

Xg - neutron fission spectrum for group g,

vYfg () - number of neutrons emitted per fission multiplied by the

macroscopic fission cross section for group g,

Egg, ( = macroscopic scattering cross section from group g'

to group g.

Next, we integrate Equation (2.1) over the area of an arbitrary node-i

to obtain

A Jgp+Zg=gL XgV4g' <Pg' + gg Pg' (2.2)
A,,hgP=l g'=1

g'*g

20
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where

s - node face length,

A - node area,

I _ index representing the node upon which the balance is

performed,

p - an index representing the faces of a node;

p = 1,2,....,P; P being the number of faces (node faces

orientation is shown in Figure (2.1) for both triangular and

hexagonal models), and

Jgp - Jg().npds; p = 1,2,...,P

Vg J| g(r)dA,

19 g A| lg(Ig(t ' (2.3)

vfgg* -| vfg()9g(r)dA,

g q AIA 

Note that (for the two-dimensional case) we have assumed that all nodes

have the same area, that the node spacing is constant, and that all nodes

have regular geometry so that the face length is the same for all faces. Also,

note that according to the definition given above, Jgp is the face-averaged
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current leaving node-i through face p which has an outward-directed normal

unit vector Xp.

As stated before, the objective here is to solve the nodal balance

equation for the volume-averaged fluxes, gPs, and the system eigenvalue, X.

But as it is obvious from Equation (2.2) we need another relationship between

the face-averaged currents and the volume-averaged flux to be able to reach

our goal. This can be attained by using Fick's Law

J,(r,E) =-D(r,E) V4(r,E). (2.4)

This approximation, as will be clear in the coming two sections, introduces

additional unknowns (the face-averaged fluxes) to the problem, and the way

we are going to deal with those new unknowns in the triangular-shaped-node

model will be different from the way we deal with them in the hexagonal one.

2.2.1 Triangular-Shaped-Node Model

In this model, Equation (2.4) is cast into energy group form and

integrated over node-i assuming the flux divergence to have a truncation

error of the first order, O(h), i.e. "finite difference approximation". This will

allow us to write the face-averaged current in the form

Jg Dg h/2 (2.5)
bY2·

23
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In this equation Dg is the homogenized diffusion constant for node-i and (Pgp

is the group flux, averaged over face p of node-i (the face-averaged flux) given

by

WgP { s g()ds. (2.6)

Similarly for node-m, adjacent to node-i at face-p, we can write

-- h/2 (2.7)

We know that the net current and the flux densities must be continuous

across the interface between nodes 1 and m so that

~J-l~~ = 4(2.8)

and

Pi =p. (2.9)

Equations (2.5) and (2.7) are good approximations provided that

diffusion theory is valid, the nodes are truly homogeneous (or there is no

ambiguity in finding homogenized diffusion constants), and the mesh spacing

is small. If this is the case, we can combine these two relations (using the

continuity conditions (2.8) and (2.9)) and eliminate the face-averaged flux.

Substituting the resulting relation for Jgp into Equation (2.2) gives a

standard form of finite-difference equations
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A =1 [g - +gg
G p

=- z XgV4g Pg + X gg(Pg (2.10)
Xkg'= g'l1

g'*g
g = 1, 2, ..., G

which can be solved for the volume-averaged flux pg.

The reason for solving the nodal balance equation for the triangular

geometry is twofold: the solution will serve as 1) a reference, and 2) a means

for determining the discontinuity factors for the hexagonal geometry.

2.2.2 Hexagonal-Shaped-Node Model

The essential approximations of the hexagonal model are best

described by referring to Figure (2.2), which shows two neighboring

hexagonal nodes, for which it is assumed that homogenized group-diffusion

theory parameters are available. (The nodes might, in physical fact, be

heterogeneous with a pitch (h) of - 18 cm.) Also, we shall drop the energy

group index from now on for the sake of simplicity with the understanding

that all results obtained are for any energy-group g. From the figure we can

define the transverse integrated flux for the x-direction as

a. +
;A~x)- =| (x,y) dy ; xi <x<xi+h

s+ (x-xJ) 8X-xi 2
(2.11)

f (xy)dy ; xi + h < xx i+1
xi+1-x 2
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Note that if g(x,y) is a constant, C, then 'iOx) also equals C. For ~(x,y)

= C, the integrals in Equation (2.11) form a tent-like function of x. To obtain

an improved nodal coupling equation when ~(x,y) is not flat, we approximate

the shape of ;J(x) in the range (xi, Xi+1) as a quadratic in x.(Shatilla and

Henry, 1992)

'iJ(x) = iJ(xi)[1-4v+3v2] + i(xi+l)[-2v+3v 2] +
(2.12)

| i, + (Xi+l) + i(x)i))6[v-v2l v -Xi)

where the three quadratics in v have been chosen so that J(xi), iJ(xi + 1) and

P appear as coefficients.

For the range xi < x < xi + h/2, multiplying Equation (2.11) by (s + 2(x -

x)/'3) and differentiating both sides (using for the right hand side the rule for

differentiating a definite integral), and evaluating the result at x = xi yields

-gij(xi) + -4 -J(xi) -1 J(xi ) + 1+
f313h 13h 13h (2.13)

=--- (Xi,~) + 4(Xi, - i)] -i 2 djy
2

provided that we use the diffusion theory approximation

Js(x,y) = x (2.14)ax

(where j' is the homogenized diffusion coefficient for node ()).



If, in keeping with the convention that the surface-averaged net

currents are all directed out of the hexagon (ij), we define

- 1 Jx(xi,y)dy (2.15)

2

and make the assumption that

ipJ(xi) =l( (xi ) + 4(xi , ) (2.16)

Equation (2.13) simplifies to

JU =_ j i++. (2.17)

where

i - (xi + 1) (2.18)(2.18)

Since it is based on a quadratic expansion of the transverse integrated

flux, Equation (2.17) should be more accurate than one based on the finite-

difference approximation. However, it contains average surface fluxes on two

node faces, and both of these will have to be eliminated if we are to express J5

in terms only of volume-averaged fluxes such as J . To do this we first apply

to the other half of the node xi + h/2 < x < xi + 1 a procedure analogous to that

just described. The result is

28
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j= j = 1 _72-ij j (2.19)

By manipulating Equations (2.17) and (2,19) we obtain

~Jj -J 'j - 4 + (2.20)23 -- 23 -23
and

i2j 2Ji 2j=_ +>2Ej} (2.21)

- + - ij i+l1
Since P2 5 % and J = J2 (see Figure (2.2)), it is tempting to rewrite

-j
Equation (2.20) for i -, i+1 and eliminate (P2 from the result thereby obtaining

an equation relating J5 ,J and J2 to J and (p This result, along with

analogous equations for the faces (3,6) and (4,1) combined with nodal balance

Equation (2.2) form a set of equations that can be solved for the volume-

averaged fluxes and face-averaged currents. Unfortunately, no efficient

iterative procedure has been found for solving the resultant equations.

Accordingly, we have taken a different approach motivated by the fact that

for small mesh intervals, h, the resultant equations will take on the finite-

difference form for which there are well known, efficient iterative solution

procedures.

To attain this goal we add the nodal Equation (2.2) to Equation (2.21)

(after reintroducing the energy group index g and after taking note of the fact

that the node (ij) is the same as node-i ) to obtain
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g2 A; J I = 3h C ;ov~cXvfB + 3h gg,·g23 p 2,5 2g 2g'' g 2

14j J ) g'•g (2.22)

Then we subtract Equation (2.2) from Equation (2.20), but write the

result with i replaced by i + 1 (node-l replaced by node-m)

R72m G m - , g
-23'- 7 (P XgVy.fg IP' - -ggPg
23 p 2,5 2Xg= g 2

g'* g (2.23)

-144m + 144f
23 23

Since Vg2 = g5 and Jg2 = - we can multiply Equation (2.22) by 1Dz

and add it to Equation (2.23) multiplied by 1/ and thereby eliminate the

surface-averaged fluxes obtaining Jg2 in terms of 12 , (Pg and 8 transverse

currents.

However, before doing so we force Equations (2.22) and (2.23) to be

exact by introducing "discontinuity factors". Specifically, to take care of the

fact that the nodes are really heterogeneous, that diffusion theory may not be

valid, that ikJ(xi) may be approximated by Equation (2.16), and that the

quadratic expansion of the flux may still be inaccurate, we multiply 9Pg2 in

Equation (2.22) by 1/f/g2. Similarly, we multiply P5 in Equation (2.23) by

1/Pfg5 to force the two results to be exact. Then we eliminate (42 and (g.

The result is



Jg2 = 5+ f; ] fL 23hi G {f<
2 Dg5 g -y 144g gp]}g g(22

gg D
g m _ T, G }i (2.24)

96!D- '= 1 VI ;'g'- 1 gg
g * g

G -L G Ig- r( L qgPg 1 XgVyfg',P - _ -gg,,g]}
96D s '=1 g'1

= g

Substituting this result (along with the analogous expression for the

other five currents across the faces of the hexagon) into the nodal balance

Equation (2.2) yields an equation coupling the volume-averaged flux in node-i

to the volume-averaged fluxes in its six neighbors (m = 1, 2,..., 6).

Transverse face-current terms (the summation over p in Equation (2.24) will

appear in this seven-point" nodal equation. These must be updated

iteratively using Equation (2.24) and the analogous equations for the other

five currents across the node faces.

Finally, if we consider the derivation of Equation (2.24) we find that

the net effect of the introduction of the discontinuity factors is allow two

fictitious face-averaged fluxes to be discontinuous across the interface. Thus,
-I(hom) -n (hom)

we define fictitious face-averaged fluxes Pgp and (Pgp as

( (hom) _ P

gnp

and
m (hom) _ gp

(Pgpf gP
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Since the physical face-averaged fluxes (Pgp and gP are continuous across the
-- (hor) -n-m (hom)

interface, the continuity condition that is implied for gp and p

across the boundary between nodes 1 and m is

i(hom) = Wt (hom) fp

Since the correction factors fgP and fP are generally not equal, the above

equality indicates that the fictitious surface fluxes must be discontinuous;

hence the name discontinuity factors.

2.2.3 Evaluation of Discontinuity Factors

The above model will not be complete until we outline a procedure by

which the discontinuity factors introduced into Equation (2.24) can be

evaluated.

Rewriting Equations (2.22) and (2.23) with discontinuity factors

inserted yields

g2 + l; Jgp + g Pg Xg , fg' q' + gg .g
p 2,5 '= 1 g= 1l

D}J 144lp 1g ,(2.25)

'h 23 e 23 ',/

and
Jgp t ::,M =m G =n G m==m

- g5 Ig J P ;(g I- ,g Xg , (0. gg (Pg'
2,5 Xg g= 2 

23 p*2,5n~ g'1(2.26)

23 Q5 23
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from which we can get

...2aL.h . F72JJ· -- gqg +1 { XgVfg, qg' + ;g + Pg
i1 2 p'* 2,5 '= g'=1

(2.27a)

Another way to determine discontinuity factors is to use Equation

(2.20), after inserting the discontinuity factor, to get the following

P = Vh P -] ; where x = p + 3 if p S 3 else x = p - 3
23h[ 4a- =

(2.27b)

And similarly, we can get expressions for discontinuity factors for the other

five faces of a hexagon provided that we know all the variables on the right

hand side of Equation (2.27). One way to achieve that is to do a fine-mesh

finite-difference (triangular-shaped-node model) calculations to determine the

face-averaged fluxes and currents and the volume-averaged fluxes for all the

nodes in the system then edit the discontinuity factors according Equation

(2.27). This procedure would be redundant since, if we had already analyzed

the whole core, the problem would have been solved and no further

calculations would be needed.

A much simpler (but more approximate) approach is to treat identical

subregions of the reactor as parts of an infinite lattice for which discontinuity

factors can be edited from infinite-lattice, fine-mesh, finite-difference



calculations. For SRS type of reactors, the smallest repeating subregion is

shown in Figure (2.3). For infinite-lattice calculations, the arrows indicate

the relationship of the net neutron currents. For very simple geometrical

structures these infinite-lattice calculations can be performed using the fine

triangular mesh shown in Figure (2.4). The dotted region is used to simulate

the control, fuel, or target rods and their associated moderator. In practice,

the fuel, target, and control regions are not homogeneous so that preliminary

homogenization on the cell level is needed to account for heterogeneous,

spectral and transport effects. The development of such procedures has not

been considered in the present thesis.

Discontinuity factors calculated from Equations (2.27a) and (2.27b) are

identical. This suggests that although both equations have different

mathematical form and origin, they both carry the same physical information

(homogenization, diffusion theory approximation, geometrical effects, and

quadratic approximation).

2.3 Boundary Conditions

On each external surface of the system being analyzed boundary

conditions must be applied. Boundary conditions of the form

oa6_4-t Psp-p = o (2.28)

will be applied to node-i having an external surface p. All standard boundary

conditions can be expressed by the appropriate specification of ap and [gp.

Values of 04p and lgp for the most common boundary conditions are given in
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Figure (2.3) Smallest repeating subregion of the SRS reactos.
The arrows represent the relationships between currets.

24-Point Mesh System

Figure (2.4) Triangular mesh used in reference and infinite-
lattice calculations.

Minimum-Sized Repeating
Subregion

_T



Table (2.1).

For external surfaces the following equation replaces Equation (2.24).

____ f 23hJ4x =1
= 1 ; ifp<3..x=p+3 else x=p-3

1 4 pegph

144, Dis

(2.29)

Table (2.1) Values of a and P for standard boundary conditions.

Boundary Condition a 1

Zero Flux 0 1
Zero Current 1 0
Zero Incoming Current 2 1
Albedo 1 Ca

2.4 Thermal-Hydraulic Feedback Model

2.4.1 The WIGL Model

Since the SRS reactors are low pressure, low temperature reactors,

moderator outside the fuel, target or control element will be considered to be

thermally isolated from the rest of the node. This assumption neglects

a C is a constant relating the actual incoming current to the flux and is

defined by
C-J. n

where n is an inward-directed normal on the reactor surface.
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reaction and y-heating in the moderator and hence any moderator feedback

effect. However, it simplifies the problem and makes the thermal-hydraulic

node different from the neutronic one. Two typical thermal-hydraulic nodes

for tritium and plutonium production are shown in Figure (2.5). From the

figure we can see that they basically consist of a number of concentric

cylinders that contain fuel(target) material and separated by heavy water

coolant channels. We use the WIGL thermal-hydraulic model to analyze the

thermal part of the problem.

The WIGL thermal-hydraulic feedback model is a simple, constant

pressure, one-dimensional (parallel channel) thermal-hydraulic model. It has

three primary quantities of interest in each node: the average fuel

temperature, the average coolant temperature, and the average coolant

density. By performing a static energy balance on the fuel and the coolant in

node-i and by assuming that no boiling occurs, the following equations can be

derived:

i = EC + )(1 -r) sr M [^U ̂ (2.30)

(--r- C)[. + rq~1 + =0 (2.31)
A Ahho + VIz

and

= 2ic - Tim (2.32)

where

if = average fuel temperature in node-i

= average coolant temperature in node-i
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SRS Mark22 Fuel Assembly

Co
Ch

lel

SRS Mark31l A Fuel Assembly

InnerCoolant
Channel

Purge
Channel

TUr-s; ain'

"-Target
U238

Figure (2.5) Two typical thermal-hydraulic nodes for
plutonium and tritium production.
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=- inlet coolant temperature of node-l

r - fraction of fission power which is deposited directly into

coolant

ql = volumetric energy generation rate in node-i

Vl - volume of coolant in node-i

Vi - volume of fuel in node-l

Ah total heat transfer area/total coolant volume within a node

ho - heat transfer coefficient

U - conductivity/conduction lengths of the fuel, gap, and

cladding(i.e., the inverse of the resistance of heat flow),

Cc - specific heat of the coolant,

W/ - coolant mass flow rate through node-l.

The above three equations are solved directly for the two unknowns;

the average coolant temperature, the average fuel temperature for all nodes

in the reactor. Then, the average coolant density is evaluated for all nodes

using FLOWTRAN subroutine that utilizes explicit correlations based on the

average coolant temperatures with uniform pressure assumed throughout the

reactor core.

2.4.2 Cross Section Feedback

Feedback from the thermal-hydraulic equations to the neutronic

equations is accomplished by assuming that all macroscopic cross sections

(and inverse diffusion coefficients) are linear functions of the three-hydraulic

variables. That is, the cross sections are assumed to obey equations of the

form
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= c +~ aa~ (T-) + aaf (gF" - ,+ pc PC (2.33)
aTC aTf a 7P

where the starred quantities refer to references conditions.

It should be recognized that the partial derivatives w.r.t. average

coolant and fuel temperatures and average coolant density are changes in

cross section for the entire node including the isolated moderator. In the next

chapter a description of a numerical procedure to incorporate the feedback

option in the solution will be given.

2.5 Summary

The goal of this chapter was to derive the static, three-dimensional

(hex-z), few-group nodal diffusion equations with thermal-hydraulic feedback

option. An arbitrary number of energy groups and upscattering in thermal

groups were allowed for. For the sake of simplicity, a two-dimensional model

was discussed first, then it was extended to obtain three-dimensional results

to be incorporated in a computer code the outlines of which will be given in

the next chapter. A simple, constant pressure, one-dimensional (parallel

channel) thermal-hydraulic model was described. A separate two-

dimensional, few-group, finite-difference nodal diffusion model for triangular-

shaped nodes will be outlined in the next chapter. The triangular-shaped

nodes are required for the calculation of discontinuity factors and for

obtaining a fine-mesh, finite difference solution to serve as a reference.
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CHAPTER

THREE

NUMERICAL SOLUTION METHOD FOR

THE STATIC NEUTRON DIFFUSION

EQUATION AND APPLICATIONS

3.1 Introduction

In Chapter(2), the static, three-dimensional (hex-z), few-group nodal

diffusion equations with a thermal hydraulic feedback option were derived.

Also, a separate two-dimensional, few-group, finite-difference nodal diffusion

model for triangular-shaped nodes (needed for the calculation of discontinuity

factors and for obtaining a fine-mesh, finite-difference solution to serve as a

reference) was discussed. The remaining tasks are: 1) develop a numerical

solution method by which these equations can be solved, and 2) apply the

proposed nodal method to benchmark problems for evaluation and

verification purposes.

To understand the nature of the numerical problem, governing

equations for both triangular- and hexagonal-shaped-node models should be

converted to a matrix form. This will permit a better understanding of the

properties of the matrix equations we are dealing with and will finally result

in an iteration procedure to be incorporated in a computer code specifically

written for those equations. Next, the theory will be applied to two- (hex) and



three-dimensional (hex-z) cores using a two-group analysis which includes

upscattering from the thermal group with thermal-hydraulic feedback option.

The accuracy of the model is determined by comparison to reference solutions

which use the triangular-mesh, finite-difference method.

3.2 Numerical Properties

3.2.1 Triangular-Shaped-Node Model

Part of Section (3.2.1) is taken verbatim from (Gehin, 1990).

Equation (2.10) can be put in the following matrix form

[A] [,] = 1[M] [] (3.1)

where [A] and [M] are square and of order N*G (N is the number nodes) and

[4] is a column vector of dimension N*G. As can be seen, Equation (3.1) is in

the form of an eigenvalue problem the numerical behavior of which depends

on the nature of matrix [A].

In the limit of infinitely-fine mesh spacing, not only is Equation (3.1)

guaranteed to converge to the exact solution (Wachspress, 1966) of the

diffusion equation, but also the [A] matrix has the following properties:

1. [A] is real and symmetric,

2. the diagonal elements of [A] are positive,

3. the off-diagonal elements of [A] are non-positive,
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4. [A] is diagonally dominant, and

5. [A] is irreducible.

A matrix which has these properties is called an S-matrix, and its inverse,

[A]-1 , exists and has all positive elements (Varga, 1962). therefore we may

write Equation (3.1) as

[] = 1 [R][,] (3.2)

where

[RI [Al-1 [MI.

Since [Ml is a non-symmetric matrix with elements that are either positive or

zero, [R] is a non-symmetric non-negative matrix.

With all that in mind, a numerical solution method will be developed in

the next section.

Numerical Solution Scheme

The method that will be used to solve Equation (3.2) is standard and

comprises of two iterative schemes: outer iterations and inner iterations. In

this method no acceleration technique will be used and hence will eliminate

most of the complications from the solution method.

Outer Iterations

The solution of Equation (3.2) that we seek is the one with the largest

eigenvalue. The solution can be found by using the Power Method

(Nakamura, 1986), which can be written as
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[ t + 1)) [RI [](t) (3.3)

and

)t + 1) = xt w kt) ) t = 1,2,..., (314)

where t is the iteration number and [WI is a weighting vector. The selection

of the weighting vector is arbitrary, but does affect the convergence rate of X(t

+ 1). One common choice is to set the elements of [W] to unity so that the

inner products in Equation (3.4) perform a simple summation of the elements

of [~](t + 1) and [](t). Using [](t). as weight function, however, improves the

convergence rate by a factor of two over that of a sum vector (Nakamura,

1986).

The iteration is terminated when the following convergence criteria are

satisfied

I (t + 1) e (t)xI < 

and

max t) < 

where i(t) is the ith element of the vector [](t) and ex and £e are small, pre-

selected values.

According to the Perron-Frobenius Theorem (Varga, 1962), an

irreducible matrix having non-negative elements has a single positive
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eigenvalue greater in value than the modulus of any eigenvalue of the matrix.

It is this positive eigenvalue and the corresponding positive eigenvector that

we are interested in. Using this theorem and the properties of [RI matrix

given in the previous section it is possible to show that the power method

outlined in Equations (3.3) and (3.4) are guaranteed to converge to the largest

positive eigenvalue and the unique positive eigenvector (Nakamura, 1986).

Inner Iterations

Since the [A] matrix may be large, its inversion required to determine

[R] may not be practical. Therefore at each outer iteration, the new flux

vector [] in Equation (3.3) must be determined iteratively. The method used

to perform this inner iteration will be the Gauss-Seidel Method (Varga, 1962).

We begin the application of this method by defining an additional

vector known as the fission source vector

[F]-1 [M][ (3.5)

Using this definition, the original equation can be written as

[A] [4] = [F] (3.6)

In the Gauss-Seidel Method the coefficients matrix, A], is broken into three

separate matrices

[A] = [Ad] + [Al] + [Au] (3.7)
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where [Ad] is a diagonal matrix, [Al] is a strictly lower matrix and [Au] is a

strictly upper matrix. Using q as an iteration index we can write the inner

iteration procedure for outer iteration (t + 1) as

[)](t + 1, q + 1) = ([Ad] - [Al])-l[Aj[](t + 1, q)

+ ([Ad] - [AI])il[F](t + 1). (3.8)

The fission source vector for outer iteration (t + 1) is given by

[Fjt + 1)_ 1 [ (t ) (3.9)
(t + 1)

The initial flux vector, [](t + 1, 0), used in the procedure is the eigenvector

from the previous outer iteration, [](t). Generally, it is necessary to fully

converge the flux vector in the inner iteration. In most situations, more than

three iterations provides little improvement in the rate of convergence of the

overall iterative procedure (Gehin, 1990).

Summary of the Iterative Method

A flow diagram of the iterative method is given in Figure (3.1). The

general scheme proceeds as follows

1. An initial guess is made for the flux vector [](t). (Usually all

elements are set equal to 1.)

2. From this guess the eigenvalue, (t + 1), and the fission source,



[F](t + 1), are calculated.

3. Several inner iterations are performed to calculate a new flux vector

[](t + 1)

4. With the new flux vector, we repeat the process starting with step 2

until the eigenvalue and the flux vector converge.

3.2.2 Hexagonal-Shaped-Node Model

The equivalent of Equation (3.1) for the hexagonal geometry is deduced

from Equation (2.24) and can be written as

[A] [] = L[M'] [ +[C][J] (3.10)

and

[J] = [C] [J] + [A"] [,] +[Mr] [ (3.11)

where [A'], [A"], [Ml, [M"], and [C] are square matrices and of order N*G and

[+] and [J] are column vectors of dimension N*G. Equations (3.10) and (3.11)

form a system that cannot be directly solved using the simple technique

explained in the previous section. In other words, if we used equation (3.10)

to solve for [] and X by inverting [Al, we would still need to determine [J] to

evaluate the second part of the right hand side of Equation (3.10). To get [J],

from Equation (3.11), we need to determine [] and the system eigenvalue, X.

However, if the problem is broken into two parts, namely Equation (3.10) and

Equation (3.11), an iteration procedure can be devised to enable the solution

of the nodal balance equation in the hexagonal geometry.
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Figure (3.1) Flow diagram of iterative solution method
(from Gehin, 1990).
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Numerical Solution Scheme

The method that will be used to solve Equations (3.10) and (3.11)

comprises three iterative schemes: fission source iterations, flux iterations,

and current iterations. In this method acceleration techniques will be used

for fission source iterations and for flux iterations while current iterations

will remain unaccelerated for reasons will be obvious in the coming sections.

Fission Source Iterations

The solution to Equation (3.1) can be found by using the Power Method

(Nakamura, 1986), which can be written as

[(t + 1) = 1[A ']- 1 [M] [](t) + [Al]- 1 [C] [J] (3.12)
(t + 1)

and

t+ t)W] [](t=)) 2...(3.13)

where t is the iteration number and [W] is a weighting vector. The selection

of the weighting vector is arbitrary, but does affect the convergence rate of X(t

+ 1). One common choice is to set the elements of [W] to unity so that the

inner products in Equation (3.4) perform a simple summation of the elements

of [](t + 1) and [](t). Another choice is to use [I][M'] as a weight function

where [I] is the identity row vector (Hageman, 1981). This turned out to

accelerate the above iterative scheme the most.
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The successive calculations of the fission source vary in the asymptotic

limit by an amount governed by the dominance ratio

where X and 1 are the fundamental and first harmonic eigenvalues,

respectively, of the iteration matrix of Equation (3.12). This ratio, which in

general varies from iteration to iteration, will be close to unity for most

problems, resulting in slow convergence.

Wielandt's method of fractional iteration (Wachspress, 1966), or

eigenvalue shifting, is one method for accelerating the convergence of the

outer iterations. It does that by effectively reducing the dominance ratio, and

this can be seen by changing Equation (3.10) to

[A'] 1 [M] [] = 1 [ [4] + [C] [JI (3.14)

where Xs is arbitrarily selected but subject to certain restrictions discussed

below.

According to the new scheme Equations (3.12) and (3.13) will become

[ =(t 1) -X(t) []t) []
8 Xs (3.15)

+[[A] x [ LJ] []
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1 .=1twl P0 1+-W ); t=1 2..., 00 (3.16)(t+ 1) (t) Xt) -t- [](t) t 1 )

and

1 (tt) (3.17)
(t + 1) t) (t + 1) )

Note that if l/Xs is closer to 1/k, than 1/X1, the converged eigenvalue and

eigenvector will be identical to that obtained using the Power Method. In

general, Xs is required to be greater than the largest X. In practice X is

assumed to be constant throughout the iteration procedure so that additional

complications of updating the shifted eigenvalue could be avoided. The

shifted dominance ratio is given by

dwhich is clearly smaller than the unshifted dominance ratio if is greater

which is clearly smaller than the unshifted dominance ratio if Xa is will bgreater

than or equal to . Therefore, the convergence of the outer iterations will be

accelerated using Wielandt's method. The Power Method may be obtained

from Wielandt's Method by setting Xs equal to infinity.

The fission source vector defined as

[F'] _- [M [] (3.18)
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can now be updated according to

[Fit + 1) = 1[ [+](t)
(t + 1 ] (3.19)

The iteration is terminated when the following convergence criteria are

satisfied

I ,(t + 1) - (t) I < 

and
i t + 1). it1

max i) < 

where i(t) is the ith element of the vector [](t) and ex and are small, pre-

selected values.

Flux Iterations

As in the triangular-shaped-node model, we shall use the Gauss-Seidel

method which will be accelerated using the Successive Over Relaxation

technique.

Equation (3.10) can be rewritten as

[A'] [] = [F] + [C] [J] (3.20)

which is solved using the method discussed earlier to yield



W[fit + 1, q + 1) = (Ad -[i]tAuj] [I]t + " q) (3.21)

+ (Aj - [Aj]lrF](t +1) + ([] -[Aj]t'C] [J]

The initial flux vector, [](t + 1, 0), used in the procedure is the eigenvector

from the previous outer iteration, [](t). Generally, it is not necessary to fully

converge the flux vector in the flux iteration. In most situations, more than

one iteration provides little improvement in the rate of convergence of the

overall iterative procedure.

The convergence of the flux iterations is accelerated by applying the

Successive Over Relaxation (SOR) technique to the Gauss-Seidel Method.

The basic idea is that a combination of the value of the flux vector at the

current iteration and its value in the previous iteration is all that is needed to

accelerate the convergence of the flux iterations. This can be expressed as

[~*](t + 1, q + 1) = (1 - r) [*](t + 1, q) + r [](t + 1, q + 1)

where r is a relaxation parameter that has a value between 1 an 2 and has to

be pre-selected before the iteration procedure begins. Strictly speaking, r

should be different for each energy group and, in principle, can be calculated

from the observed behavior of the iteration process. However, experience

with heavy water reactor problems suggests that r can be taken as a constant

in the range of 1.3 -1.5.

Current Iterations

Up to this point the current column vector, [J], has been taken to be

constant throughout the inner and the outer iterations. The situation thus
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resembles a fixed source problem for which we have a source of neutrons that

contributes independently to the balance of the neutron population in the

system. However, although we chose the current vector to be constant

throughout the iteration process, it is in fact a dependent contributor to the

overall balance of Equations (3.10) and (3.11). Equation (3.11) suggests a

straight forward method by which we can evaluate the current column vector

once we have calculated the flux column vector from the flux iterations.

The proposed iteration procedure will look like

[J]( +) = [C] [Jm) + [A"] [fit + 1, q + 1) + [M] []+ 1, q + 1) (3.22)
(t+ 1)

where m is the iteration number. This iteration procedure does not need any

acceleration; one current iteration per fission source iteration is quite

sufficient.

Summary of the Iterative Method

A flow diagram of the iterative method is given in Figure (3.2). The

general scheme proceeds as follows

1. An initial guess is made for the flux vector [](t). (Usually all

elements are set equal to 1.)

2. From this guess the eigenvalue, X(t + 1), and the fission source,

[F](t + 1), are calculated.

3. Several flux iterations (usually one per fission source iteration) are

performed to calculate a new flux vector [](t + 1).
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Figure (3.2) Flow diagram of iterative solution method.
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4. Several current iterations (usually one per fission source iteration)

are performed to calculate a new current vector [J](t + 1).

5. With the new flux and current vectors, we repeat the process

starting with step 2 until the eigenvalue and the flux vector

converge.

6. If thermal-hydraulic feedback option is chosen, the new flux and

current vectors are used to update the cross sections according the

core power level. Then the process is repeated starting with step 2

until the eigenvalue and the flux vector converge.

3.3 Applications

The accuracy of the nodal model described in the preceding sections

has been tested numerically by comparison with a number of reference

calculations. A computer code (referred to as ' MIHEX') has been written

in standard FORTRAN 77 to carry out these tests and perform numerical

analysis of the proposed nodal model. MITHEX-Z is a workstation-based

computer code that allows an arbitrary number of energy groups and

upscattering. It solves eigenvalue as well as transient problems with a

thermal-hydraulic feedback option. The results of these numerical tests will

be presented for two kinds of applications: 1) applications involve problems

without thermal-hydraulic feedback, and 2) applications involve problems

with thermal-hydraulic feedback.

3.3.1 Applications without Thermal-Hydraulic Feedback

The largest of these tests, designated as ANL-Mark22 problem,
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involves a three-dimensional (hex-z), two-group simulation of a heavy water

reactor of the Savannah River type. Figure (3.3) gives an over view of one-

sixth of a cross sectional area of the reactor. From the figure, we can see that

the core is composed of homogenized hexagons (about 18 cm across flats) and

has 600-degree rotational symmetry. Also, the core is heterogeneous in the z-

direction but is symmetric around the mid-plane. It has zero-flux boundary

condition in both axial and transverse directions. Material specifications and

core dimensions are given in Appendix A. Tests results are appear in Table

(3.1).

The DIF3D and reference calculations were performed at the Argonne

National Laboratory. The DIF3D quadratic model is somewhat more

complicated computationally than the MIT quadratic model. However, both

quadratic models have 27 times fewer unknown fluxes to find than the 6-

triangle/hex finite-difference scheme and hence for the same accuracy, should

be considerably faster (Shatilla and Henry, 1992).

Table (3.1) Accuracy of various models as applied to the simulation of
a heavy water production reactor (From Shatilla and
Henry, 1992).

Quadratic Models* Finite-Difference Model+*
MIT DIF3D 6T's/hex 24T's/hex
8Z/4Z

Error in Keff % -0.39/-0.42 -0.203 -0.211 -0.062
Max. Error in -1.38/-1.39 1.03 1.98 0.51

Assembly Power %
Avg. Error in 0.59/0.55 ---- ---- ----
Assembly Power %

Execution Time (sec) 3600/1800*** 3.9# ---- ----

* 1 unknown/hexagon; 8 axial segments (MIT model, 16 (or 8) axial segments)
** DIF3D; 36 axial segments
*** On IBM RISC/6000; convergence = 10-7 for Keff, 10-5 for flux.
# On ANL Cray X-MP; convergence = 10-7 for Keff, 10-5 for flux.
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Cross Section Set by Planar Region

and Axial Segment

Planar Region
A (Flat Zone Core)
B (Buckled Zone Core)
C (Gang 1 - Control)
D (Gang 2 - Control)
E (Gang 3 - Control)
F (D20 - Vacancies)
G (Blanket)
H (Thermal Shield)

Axial Segment
Segment Segment 2

[0, H/41 [H/4, H/2]

2
6
1

4
5
7
8
9

2
6
11
12
13
7
8
9

Figure (3.3) ANL-Mark22 reactor geometry and material

specifications.



We conclude from Table (3.1) that the MIT simplified quadratic model

is reasonably accurate. The MIT model may be slower than the DIF3D

model. However, it is difficult to come up with a definitive conclusion based

on the above table since the two machines used in the comparison are totally

different, and the MIT calculations were done for the whole core whereas the

ANL calculations were done for one-sixth of the core.

To test further the accuracy of the quadratic model and to examine

improvements brought about by the use of discontinuity factors, a much

smaller two-dimensional benchmark problem was analyzed. The geometry is

shown in Figure (3.4). As can be seen, the core, (D20 moderated and

reflected) is made of 'supercells" (or patches"), each patch consisting of a

control hexagon (about 18 cm across flats) surrounded symmetrically by three

target hexes and three fuel hexes. The core was subject to zero-incoming

current boundary condition (Shatilla and Henry, 1992).

Cores made up of both homogeneous and heterogeneous hexes were

analyzed. For the homogeneous cases each control, fuel and target hexagon

was partitioned with 24 equilateral triangles, the central six being

homogeneous control, fuel or target material and the remaining 18 being D20

(See Figure (3.4). Material specifications and properties are given in

Appendix A.

Two-group infinite lattice calculations with 24 triangles per hexagon were

run to obtain homogenized cross sections and discontinuity factors for the

individual, heterogeneous control, target, and fuel hexes. These values were

then used for the full core, nodal calculations. Full core reference
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Benchmark Core

Position where power
densities are shown
for thermal feedback
problems

densi

T; Target, C; Control, F; Fuel

Figure (3.4) Cross sectional area of the core used for
the benchmark problem.
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results for all cases were obtained 24 triangles per hex using MITHEX

(Gehin, 1990).

Table (3.2) shows results for cores composed of both homogeneous and

heterogeneous nodes. Both finite-difference and quadratic nodal calculations

were run with one mesh box per hexagon.

Table (3.2) Comparisons of quadratic and finite-difference results
(From Shatilla and Henry, 1992).

Finite-Difference Model Quadratic Model
Hom;1 Het;1 Het;i Hom;1 Het;1 Het;i

Error in Keff % 1.86 2.54 0.10 -0.66 -0.005 -0.4
Max. Error, -13.7 -10.6 -5.02 2.39 3.74 1.80
Nodal Power %

Avg. Error, 7.28 5.95 1.81 0.96 1.73 0.90
Nodal Power %

Execution Time, (s) 2.5 2.5 2.5 25 25 25a

Hom -- Homogeneous nodes; Het Heterogeneous nodes; 1 Unity
discontinuity factors used; i -Infinite-lattice discontinuity factors used.
a: Using IBM RSIC/6000.

We conclude from the cases run for homogeneous nodes that the simple

quadratic nodal method provides a substantial improvement over the finite-

difference method with one mesh box per hexagon. Whether homogenized

cross sections and discontinuity factors found from infinite lattice

calculations provide acceptable accuracy for the quadratic model remains an

open question. The small benchmark problems provides a very severe test,

since the reflector region influences the entire core. However, the

heterogeneities are mild, and, since the infinite lattice calculations were run

only with two-group diffusion theory, they provide no test of transport or

multigroup spectral effects. More work is called for on this question (Shatilla

and Henry, 1992).
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Also, as can be seen from Table (3.2), the simplified quadratic model is

slower than the finite-difference model. This can be attributed to the fact

that the number of unknowns per node per energy group is approximately

nine times that of the finite-difference model.

To evaluate the thermal-hydraulic feedback model incorporated in the

code, a one-dimensional problem was run. The core consists of 9 homogenized

nodes (20 cm each). The three middle nodes simulate fuel material whereas

the rest are target material. Zero-flux boundary conditions are imposed on

the core boundaries. Material specifications are given in Appendix A. First

the code was tested with the thermal-hydraulic feedback turned off. Figure

(3.5) shows normalized power densities across the length of the reactor

compared to results obtained from an independent nodal code, CONQUEST

(Gehin, 1992). The excellent agreement for the power densities is evident.

The two calculations agreed in eigenvalue to the sixth decimal place. This

result provides another test of the code without feedback.

Normalized Power Distribution vs. Distance
Keff = 1.269357 & no feedback

3.5

fs

a

I 2.5

0
bottom0 50 100 150 200

Distance (cm)
Figure (3.5) One-dimensional problem results.
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3.3.2 Applications with thermal-hydraulic feedback

A three-dimensional core with a cross sectional area similar to that

shown in Figure (3.4) was used to verify the accuracy of the thermal-

hydraulic feedback component of the code. One-third of each of the five radial

planes (each 20 cm high) was assumed to contain fuel only. The reason for

this choice was to test how effectively thermal-hydraulic feedback will reduce

local power. Material specifications and thermal-hydraulic feedback

parameters are given in Appendix A. Figure (3.6) shows normalized power

densities along the length of the core (100 cm) at the target node position

indicated in Figure (3.4). As can be seen from the figure, since the core has a

negative power reactivity coefficient, the axial power shape experiences a

slight shift towards the bottom of the core.

The execution times for both cases, with and without thermal-

hydraulic feedback, were the same and approximately equal to 125 s. This

indicates that the thermal-hydraulic feedback calculations, because of their

relative simplicity, take comparatively negligible time to be execute.

Figure (3.7) shows power densities transversing seven radial nodes at

the last axial plane located at the core exit (see Figure (3.4)). The power

density change is only slightly altered by the thermal feedback effects.
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Power density vs. axial distance
(Power = 24 MWt)
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Figure (3.6) Power density vs. axial distance.

Finally the one-dimensional problem described in the previous section

was run again but with thermal-hydraulic feedback option turned on.

Material specifications and thermal-hydraulic parameters are given in

Appendix A. Figure (3.8) shows excellent agreement of normalized power

densities with those calculated using CONQUEST (Gehin, 1992). The

eigenvalues for the two calculations agree through the sixth decimal place.
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Power density vs. radial distance
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Figure (3.7)
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We conclude from the above tests that the thermal-hydraulic feedback

component of the code is working as it should and shows excellent agreement

when compared to one-dimensional benchmark results.
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Normalized Power Distribution vs. Distance
Keff - 1.19623 & 2.4 MWt
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Figure (3.8) One-dimensional problem results (with feedback).

3.4 Summary

In Chapter(2), the static, three-dimensional (hex-z), few-group nodal

diffusion equations incorporating a thermal hydraulic feedback option were

derived. Also, a separate two-dimensional, few-group, finite-difference nodal

diffusion model for triangular-shaped nodes (needed for the calculation of

discontinuity factors and for obtaining a fine-mesh, finite-difference solution

to serve as a reference) was discussed. In the present chapter a numerical

solution method by which these equations can be solved has been developed,

and results have been applied to benchmark problems for evaluation and

verification purposes. These tests show that the simple quadratic nodal

method provides a substantial improvement over the finite-difference method

with one mesh box per hexagon. Whether homogenized cross sections and
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discontinuity factors found from infinite lattice calculations provide

acceptable accuracy for the quadratic model remains an open question. Also,

the thermal-hydraulic feedback component of the code is working properly

and it has an excellent accuracy when compared to one-dimensional

benchmark problems. The simplified quadratic model is slower than the

finite-difference (one point/hex) model because of the larger number of

unknowns to be solved for per node per energy group. However, it is faster

and more accurate than the finite difference with 6 triangles/hex.
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CHAPTER

FOUR

SOLUTION OF THE DYNAMIC NEUTRON

DIFFUSION EQUATION

4.1 Introduction

The goal of this chapter is to derive the time-dependent, three-

dimensional (hex-z), few-group nodal diffusion equations with a thermal-

hydraulic feedback option. We shall allow for a general number of energy

groups and for upscattering in thermal groups. Finally, a simple, constant

pressure, one-dimensional (parallel channel) thermal-hydraulic model will be

incorporated.

As in Chapter (2), we begin the derivation by integrating the time-

dependent Boltzman transport equation and the time-dependent delayed

neutron precursor equations over all directions to obtain a set of equations

that relate the scalar flux density to the net current density and to the

concentrations of delayed neutron precursors. The resultant equations are

then integrated over an energy group and over the volume of the node. The

resulting equations are called few-group, time-dependent nodal balance

equations which are basically relations between the time-dependent volume-

averaged flux for a node, the time-dependent face-averaged currents, and the



time-dependent concentrations of delayed neutron precursors in that node.

To solve this set of equations coupling relations that relate the volume-

averaged flux and the face-averaged currents are needed. Fick's Law is used

to obtain the desired relation. However, using Fick's Law in conjunction with

a finite difference or any higher order approximation introduces additional

unknowns, namely, the face-averaged fluxes. Again, as in Chapter (2), the

face-averaged fluxes are assumed to have a quadratic shape across a given

node.

Finally, a time-dependent WIGL (Vota, 1969) thermal-hydraulic model

is incorporated as a feedback mechanism to update the time-dependent

nuclear cross sections. Time-dependent average fuel and coolant

temperatures and time-dependent average coolant density are calculated for

each node based on the power level of the system. These three variables are

used to update the nuclear parameters of the core by linear interpolation.

4.2 Derivation of the Time-Dependent Nodal Equations

By integrating the time-dependent Boltzman neutron equation and the

delayed neutron precursors equations over all directions and over an energy

group g it is possible to obtain formally

lg dt g(t) = - V.J.g(,t) - I;g(,t)Og(rt)

+ I Zixpg(l -(1 )3vf(t) g(r,t))
(4.1)

I+J
+ XigXi KI,r',t) ci(',t) dV

G
+ X gg (t)g ' (r,t); g = 1,2,....,G

g=l
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dci(, t) = G
dt ci(,t)=g iLvfg (,t)4g'(r,t) - kici(r,t); i = 1,2,..., I + J' (4.2)=lj

and

dt cit) g ' ,t) =g(t ,t) - xici(,t); i = I + J' + 1 .. I+J (4.3)
dt g' 1

where

G - total number of energy groups,

I _ total number of delayed fission neutron precursor groups,

J -total number of delayed photoneutron precursor group,

Og (rt) - time-dependent group g scalar flux density,

sg (rt) - time-dependent group g net current density,

Zg (t) - time-dependent group g total macroscopic cross section

minus the time-dependent group g in-group scattering

cross section,

Vg - group-g neutron velocity,

X - system eigenvalue (Keff) at t = 0,

Xpg - prompt neutron fission spectrum for group g,

Xig - i th delayed neutron spectrum for energy group g,

i ith delayed neutron decay constant,

VYjfg (t) - time-dependent number of neutrons emitted per fission

multiplied by the time-dependent macroscopic fission

cross section for group g for the jth fissionable isotope,

ci(t,t) - time-dependent concentration of the ith delayed neutron

precursor,

Ki(r,r',t)dV - probability that a yray emitter at r' from the i kind of Y

emitter will result in the isotropic emission of a neutron

into dV (i = I + 1, I + 2, ..., I + J),
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;icg(,t) - time-dependent capture cross section for the ith t

emitter for energy group g,

fraction of neutrons emitted from the jh fissionable

isotope that appear in the ith precursor group,

pi - fraction of all neutrons emitted from the jth fissionable

isotope( il1 ),
gg' (t] - time-dependent macroscopic scattering cross section from

group g' to group g.

Note that the fourth term on the right hand side of Equation (4.1)

accounts for delayed neutrons. The ci(r,t) for i = 1, 2, ..., I are concentrations

of delayed neutrons precursors. Since we assume the fuel is stationary, such

delayed neutrons appear at point, r, where the fission took place. Therefore,

£ KX,r',t) ci(r',t) dV = c,t); i = 1, 2, ..., I (4.4)

The behavior of these ci(,t)'s is described by Equation (4.2).

The remaining ci(r,t)'s, i = I + 1, I + 2, ..., I + J, account for

photoneutrons emitted by (y,n) reactions with nuclei such as deuterium. For

these, the neutron is not emitted from the spot at which the y-ray is released

but rather at the spot where the (y,n) reaction takes place. Thus we introduce

for each y-source, i, (i = I + 1, I + 2, ..., I + J), a kernel", Ki(,r',t) with the

above definition.
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The y-emitters are of two kinds: those which appear either promptly or

after a delay from the fissioning nucleus or its fragments, and those emitted

from certain isotopes created when neutrons are captured. The first kind of

behavior can be described by Equation (4.2) but with iv defined as iv - yi

that represents the average number of type-i y-emitters created by fission of

isotope-j. For prompt Ys, i is so large that we may set dci/dt = 0 and

introduce ici from Equation (4.2) directly into Equation (4.1). The

concentrations of those ci(r',t)'s arising from neutron capture are determined

from Equation (4.3).

Next, we integrate Equations (4.1), (4.2), and (4.3) over the volume of

an arbitrary node-i to obtain

V dt g(t) = - VIP Ap gp(t)- (t)g(t)

+G 1 Xpg(1. IV fg' (t)g(t)
g'=I+~~~~~~J~~ X(4.5)I+J

+ Xigi, K(t)'(t)
il 0

G -l
+ I;gg(t)g(t); g=1,2,....,G

g'=1
gg

d t)=1 iVg (t'(t) - g(-t); i = 1,2... I I+J' (4.6)
dt j

and

dt 4(t ) = I ~ccg' (tg, (t) - 4t); i = I + J' + 1,..., I + J (4.7
dt g'1

where

Vl - node-i volume,

Ap - face-p area,

l - index representing the node upon which the balance is



performed,

p - an index representing the faces of a node;

p = 1,2,....,P; P being the number of faces, and

JR(t) A slg(r,t).npdA; p = 1,2,...,P
APIA,

g4 (t)- ll g(r,t)dV,

I(tw(t)- itg(,t)gWV,

ve(tgg ( V ,t)g ( ,t,)dV, (4.8)
V l.g (t)g(t) - 1 g (,t)~g(,t)dV,

Igg (t)ogt) IJ gg(r,t)Og(r,t)dV;VIt

t)- Vl ci(I,t)dV,

Kf(t)- a i dV Kr,r',t) ci(r',t) d .

Note that we have assumed that all hexagons have the same cross sectional

area, that the node spacing is constant in the plane of the hexagons, and that

all nodes have regular geometry so that the face length is the same for all

faces. Also, note that according to the definition given above, Jgp is the face-

averaged current leaving node-i through face p which has an outward-

directed normal unit vector np.

As stated before, the objective here is to solve the time-dependent

nodal balance equation for the time-dependent volume-averaged fluxes, ,(t).
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But as it is obvious from Equation (4.5) we need another relationship between

the time-dependent face-averaged currents and the time-dependent volume-

averaged flux to be able to reach our goal. This can be attained by using

Fick's Law

J(LE,t) - -D(LE,t) V~,E,t). (4.9)

This approximation introduces additional unknowns (the time-dependent

face-averaged fluxes) to the problem, and the way we are going to deal with

those new unknowns will be that outlined in Chapter (2).

To start with, the time-dependent version of Equations (2.20) and

(2.21) is

JA (t) 4 + e.J(t)= -t- A4(t) +.144 t) (4.10)
23 h 23 23

and

49j(t)- Jjt (t)= + + ( t) - Ii (t)1 (4.11)
232 h 23 23

Also, the only difference (mathematically speaking) between Equation (2.2)

and its time-dependent counterpart, Equation (4.5), is that the latter has two

additional terms that account for the time evolution of the volume-averaged

flux and the contribution to this evolution by the delayed neutrons. This

allows us to write down the time-dependent version of Equations (2.22) and

(2.23) (for the two-dimensional case) as
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Vg dt g
+ M2j!(t) +23 g z Jgp(t) + Zg(t)9g(t) =

ps 2,5

' -- . +
= 1

g' * g

J2A -(t) 1AA-I23 g(t) __ .i 1 pgt)j
I+J

+ ii=l

+ 12J-(t) +23 Z
p * 2,5

~j(t) + g (t)g (t) =
-1m G

J(- 0 )vg,(t)ig'(t) + G
g'=l
g'*g

£gg (t) m(t)

+ -1442(t)
-h 23

"4=I(t)

and this will yield, after introducing discontinuity factors in the manner used

in the Chapter (2), the time-dependent version of Equation (2.24)

Jg2(t) = - (t) = 2 5(t)
'2L7(t)

+2 -1 2h[J it t2
+ I I -T (t '{

-l444 p 14 -Dg(t) p * 2,5 Dg(t)

+ g (t)g (t)

-pmh4 (tv(t) - I+J
I igix

i=1 0

"- i h2 tLd -4eg2 I 1 -2 ___ [vg dt (Pg(t)
9E5Dg(t)

(t (t)- Jli
i =i 0

G m

- gg (t(t)] }
= =1

g' * g

+ g(t)cpg(t)

I 1gg'(t)Pg(t)]} }
g'= 1

g* g

(4.14)

G

Xij g'=l

-+
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g, (t)g,(t)

and

(4.12)

Xigi' Vo(t) (t)

1 Vgdt=
Vg dt Pg (t)

G

Xj g'=l
(4.13)

I+J
i+ i=l xigkiC; T 0(t) g(t)

0

Xj

G

g = I

D- gp(t)

G

xi g'=l

+ rn ( 232 r-L L :In t
(1-96,n'<ttVvg dt Pgt

W. 10t) (t) 

40(t) ziow -xjgp(l - ___Y



Substituting this result (along with the analogous expression for the

other five currents across the faces of the hexagon) into the nodal balance

Equation (4.5) yields an equation coupling the volume-averaged flux in node-i

to the volume-averaged fluxes in its six neighbors (m = 1, 2,..., 6).

Transverse face-current terms (the summation over p in Equation (4.14) will

appear in this seven-point" nodal equation. These must be updated

iteratively using Equation (4.14) and the analogous equations for the other

five currents across the node faces. This seven point nodal balance equation

will serve, along with Equations (4.6) and (4.7), as the governing equations

that give the time evolution of the volume-averaged fluxes of the system.

Although all results obtained above, Equations (4.10 - 14), are for the

two-dimensional case (hex), the actual computer code used for the numerical

analysis of the proposed nodal model has been written for the one- (z), two-

(hex), and three-dimensional (hex-z) cases. The only difference between

equations of any two of these geometries is the geometrical coefficients which

appear in front of all the terms on the right hand side of Equation (4.14).

Note that discontinuity factors are assumed to be time-independent.

The reason for that assumption is based on experience gained from light

water reactor transient analysis that has yielded reasonably accurate results

when discontinuity factors were taken to be those at the beginning of the

transient.

4.3 Thermal-Hydraulic Feedback Model

4.3.1 The WIGL Model

By performing a time-dependent energy balance on the fuel and the
coolant in node-i and by assuming that no boiling occurs, the following
equations can be derived:
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d Tf(t) = (1 -r) q(t) V [1 +
dt f fAh

dAVc(t)=((3 {r qt) Vi + 1 -dt 'aic I vk C+ AhU A+ hO( ).8J Obt) -

and

Tf(t) = 2T:(t) - i'(t) (4.17)

where

1(~t) -time-dependent average fuel temperature in node-l,

c(t) time-dependent average coolant temperature in node-l,

Ti(t) - time-dependent inlet coolant temperature of node-i,

r fraction of fission power which is deposited directly into

coolant,

aTc - energy required to raise the average temperature of a unit

volume of coolant by one temperature unit,

q(t) volumetric energy generation rate in node-l,

CV - volume of coolant in node-l,

Vi _ volume of fuel in node-l,

Ah total heat transfer area/total coolant volume within a node,

ho - heat transfer coefficient,

U conductivity/conduction lengths of the fuel, gap, and

cladding(i.e., the inverse of the resistance of heat flow),
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(4.16)

Ah t) .'8
-W ' -"
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Cc = specific heat of the coolant,

Cf = specific heat of the fuel,

Pf - average fuel density in node-l,

Pc -- average coolant density in node-l,

Wo = total coolant mass flow rate into core at time = 0,

W(t) - time-dependent total coolant mass floe rate into core,

Wc(t) - time-dependent coolant mass flow rate through node-l.

The above three equations are solved directly for the two unknowns;

the time-dependent average coolant temperature, the time-dependent

average fuel temperature for all nodes in the reactor. Then, the time-

dependent average coolant density is evaluated for all nodes using

FLOWTRAN, a subroutine that utilizes explicit correlations based on the

average coolant temperatures with uniform pressure assumed throughout the

reactor core.

4.3.2 Cross Section Feedback

Feedback from the thermal-hydraulic equations to the neutronic

equations is accomplished by assuming that all macroscopic cross sections

(and inverse diffusion coefficients) are linear functions of the three-hydraulic

variables. That is, the cross sections are assumed to obey equations of the

form

-- ;I -*a + a t)f ((-t) - + p~(t) - P(4.18)



where the starred quantities refer to references conditions. In the next

chapter a description of a numerical procedure to incorporate the feedback

option in the solution will be given.

4.4 Summary

The goal of this chapter was to derive the time-dependent, three-

dimensional (hex-z), few-group nodal diffusion equations with thermal-

hydraulic feedback option. An arbitrary number of energy groups and

upscattering in thermal groups were allowed for. Finally, a simple, time-

dependent, constant pressure, one-dimensional (parallel channel) thermal-

hydraulic model was described. Numerical methods for solving the time-

dependent nodal balance equations with a thermal-hydraulic feedback option

will be discussed in next chapter.
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CHAPTER
FIVE

NUMERICAL SOLUTION METHOD FOR

THE DYNAMIC NEUTRON DIFFUSION

EQUATION AND APPLICATIONS

5.1 Introduction

In Chapter(4), the time-dependent, three-dimensional (hex-z), few-

group nodal diffusion equations with thermal hydraulic feedback option were

derived. The remaining tasks are: 1) develop a numerical solution method by

which these equations can be solved, and 2) apply the proposed nodal method

to benchmark problems for evaluation and verification purposes.

Prior to writing the time-dependent governing equations of the nodal

model in a matrix form, the time derivative of both the volume-averaged flux

and the concentrations of the delayed neutron precursors have to be

approximated numerically. To accomplish this, the fission source in the

delayed neutron precursor equations is assumed to vary linearly with time

which makes these equations analytically solvable. Then, for the neutron

equations, a fully implicit method with a truncation error of order O(At) is

used for its unconditional stability. This will yield a set of linear equations

that have the same shape as those of the static part of the problem mentioned

in Chapter (3). This will prompt the use of a numerical method solution



similar to what was used for the solution of the static diffusion nodal balance

equation as described in Chapter (3). Next, the theory will be applied to one-

(z) and three-dimensional (hex-z) cores using a two-group analysis which

includes upscattering from the thermal group with thermal-hydraulic

feedback option.

5.2 Numerical Properties

If we assume that the fission source on the right hand side of Equation

(4.6) (the same applies to Equation (4.7)) varies linearly with time, we can

solve Equation (4.6) analytically as follows

i"n = eAti' i+(n i -+ (1 -in e-A) j- 1 + inY , f (5.1)
j J

where n is the time index reflecting the value of the variable in question at

time t, whereas n - 1 reflects its value at time t - At, and

(Oin e- t -(1- ,iAt~)

XAtn

Atn = tn - , and

_ X Vlfg'n =Pg'n (X9 =- gn~n1 (5.2)

Now, if we substitute this result into Equation (4.5) and use a fully

implicit expression to approximate the flux time derivative we get the

following:
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I+J
+ _ Zig e'-"n- 1 i+ xig(l Oin - e ~ A i'~- -1 (5.3)

+ Xigin iW+ xg(- ; g= 1,2,....,G
J J

A close look at Equation (5.3) shows that it is similar in structure to Equation

(2.2), the static nodal balance equation, except that the former has a source

term that consists of values of all the variables at a prior time step (n - 1).

Also, (vgAtn)-1 is added to the removal macroscopic cross section in Equation

(2.2) and the fission source term is modified to account for delayed neutrons

emission.

Note that if Equation (4.7) is used instead of Equation (4.6) to account

for the emission of other types of delayed neutrons, the only difference that

this change will bring about is the use of the capture cross section instead of

the fission cross section, in Equation (5.3), along with the corresponding

neutron yield that goes with it.

If we follow the procedure outlined in Chapter (2) from introducing the

quadratic approximation up to defining the discontinuity factors and finally

eliminating the face-averaged fluxes, but use Equation (5.3) in order to

eliminate the unwanted face-averaged currents, we will get an expression for

the face-averaged currents analogous to Equation (2.24). For the two-

dimensional case we will have
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Jgf2n Jgm5 L + fg2 6 23hrJ fg2 J
T -zgn 144 gpr~ 1 gpn D

Dgn p 2,5 Dgn gn

+ fgnr 23hm -- .+J
+ fms {1 - Z4 1-v~t, + 2gn -n 'C | xigoinli + pgl - Wm )lkn

- 1 + gg nPg'n (5.4a)

2i~n-l+ ' 1' -Ig2 {1 -J

9 ¥ gAtn '+ g j jI+

| n-1+ }}

where Qn -1 is the source term that contains values of all the variables at the

time step (n - 1) for node-i.

Substituting this result (along with the analogous expression for the

other five currents across the faces of the hexagon) into the nodal balance

Equation (5.3) yields an equation coupling the volume-averaged flux in node-i

to the volume-averaged fluxes in its six neighbors (m = 1, 2,..., 6).

Transverse face-current terms (the summation over p in Equation (2.24) will

appear in this seven-point" (nine-point" in the case of hex-z geometry) nodal

equation. These must be updated iteratively using Equation (5.4) and the

analogous equations for the other five currents across the node faces.

There is an alternative way to eliminate the unwanted face-averaged

currents from the time-dependent nodal balance equation. Instead of

approximating the volume-averaged flux time derivative with a fully implicit

finite-difference expression, as in Equation (5.3), we rather substitute for the

time derivative of the volume-averaged flux in Equation (4.5) and the delayed



neutron precursor concentrations in Equations (4.6) and (4.7) the inverse

period multiplied by the volume-averaged flux and the delayed neutron

precursor concentrations at time step (n) respectively. The volume-averaged

flux and the delayed neutron precursor concentrations are assumed to vary

exponentially with time, and hence their inverse periods can be defined as

[J(t + 1) t +-[ ) --
Atn

and
[j(t+ 1) = [Cin(t1 - [Cin -

Atn

Then, if we follow the procedure outlined in Chapter (2) from

introducing the quadratic approximation up to defining the discontinuity

factors and finally eliminating the face-averaged fluxes, the face-averaged

current equation will then look like:

-l L =g2 Y1 23h -, g2 f g3+n1--n-D e'] '[i L gpn~ +- gpn?-ng

Nogn gn

D96D' g vg j Li=1 ov9 + j 

iQl 'Fl
g' * gg' g

-Uh211' [g4n VI+J iligiJ N.Jl)~nl-g2 {1-2h( + gn ,j[i1 1

~Zn1+ l, ggn Pgn }

g' g (5.4b)
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The reason for using this expression for the face-averaged current

rather than equation (5.4a) is that the former assumes that the volume-

averaged flux and the precursor concentrations vary exponentially with time

whereas the latter assumes that these two variables vary linearly with time.

For certain situations, this is a more realistic approximation for both the

volume-averaged flux and precursor concentrations which then eliminates

the first order truncation error associated with the linear approximation.

Substituting this result (along with the analogous expression for the

other five currents across the faces of the hexagon) into the time-dependent

nodal balance yields an equation coupling the volume-averaged flux in node-i

to the volume-averaged fluxes in its six neighbors (m = 1, 2,..., 6).

Transverse face-current terms (the summation over p in Equation (2.24) will

appear in this "seven-point" (nine-point" in the case of hex-z geometry) nodal

equation. These must be updated iteratively using Equation (5.4b) and the

analogous equations for the other five currents across the node faces.

To evaluate the face-averaged currents using Equation (5.4b), the

volume-averaged fluxes have to be determined, first to evaluate the inverse

periods and the delayed neutron precursor concentrations. But to evaluate

the volume-averaged fluxes (and the delayed neutron precursor

concentrations), the inverse periods have to be known first. A way out of this

problem, is to use the latest available inverse periods ( from the last outer

iteration) to determine the volume-averaged fluxes; then use these flux

values to determine the delayed neutron precursor concentrations and the

inverse periods. The resultant values are used to determine the face-

averaged currents from equation (5.4b).
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Another way to overcome the above problem is to substitute

algebraically Equation (5.4a) into Equation (5.3) to get the volume-averaged

fluxes (and the delayed neutron precursor concentrations) at time step n.

Then, use these values to determine the inverse periods for Equation (5.4b).

Now, we are ready to write down the time-dependent governing

equations in a matrix form so that an appropriate numerical solution method

can be devised. These equations are

[A"'] [n] = [M" [n] + [C] [Jn] + [Qn- 1] (5.5)

and

[Jn = C [CJn + IX [n] + [X1 Qn- l] (5.6)

where [A'"], [M"1, [Cl, [XI, and [X1 are square matrices and of order N*G

and [n], [Jn], and [Qn - 11 are column vectors of dimension N*G. In the next

section a iteration scheme to solve Equations (5.5) and (5.6) numerically will

be outlined.

5.3 Numerical Solution Scheme

The method that will be used to solve Equations (5.5) and (5.6) is the

same used to solve Equations (3.10) and (3.11) and consists of three layers of

iteration: fission source iterations, flux iterations, and current iterations.

Acceleration techniques will be used for fission source iterations and for flux

iterations while current iterations will remain unaccelerated for reasons that

will be pointed out in the coming sections.
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Since the proposed numerical scheme has already been explained in

Chapter (3), we shall not describe it in detail. Instead, we shall give a

summary of the iterative method to highlight the difference between the

static and the transient problems.

Summary of the Iterative Method

A flow diagram of the iterative method is given in Figure (5.1). The

general iterative scheme proceeds as follows

1. An initial guess is made for the flux vector [u(t) at time step (n).

(Usually [n - 1).

2. From this guess the fission source is calculated.

3. Several flux (usually one per fission source iteration) iterations are

performed to calculate a new flux vector [n](t + 1).

4. The new delayed neutron precursor concentrations are calculated

using the new flux vector.

5. The inverse period for both the volume-averaged flux and the

delayed neutron concentrations are calculated.

6. Several current (usually one per fission source iteration) iterations

are performed to calculate a new current vector [Jnl(t + 1)

(Using Equation (5.4b)).

7. With the new flux and current vectors, we repeat the process

starting with step 2 until the flux vector converges.



ation
I

Figure (5.1) Flow diagram of iterative solution method.
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8. Update the nuclear cross sections according to the new converged

flux vector (If thermal-hydraulic feedback option is chosen).

9. Start a new time step (n + 1) and repeat the process starting with

step 1 until the transient ends.

5.4 Applications

The accuracy of the nodal model described in the preceding sections

has been tested numerically by comparison with a number of reference

calculations. The transient option of the computer code ' MITEX-Z ' solves

transient problems taking initial conditions from the static part of the same

code. The result of these numerical tests will be presented under two sets of

applications; 1) applications involve problems without thermal-hydraulic

feedback, and 2) applications involve problems with thermal-hydraulic

feedback.

5.4.1 Applications without Thermal-Hydraulic Feedback

The largest of these tests, designated as the Joshua problem, involved

a three-dimensional (hex-z), two-group simulation of a heavy water reactor of

the Savannah River type. Figure (5.2) gives an overview of one-sixth of a

cross sectional area of the reactor. From the figure, we can see that the core

is composed of homogenized hexagons (about 18 cm across flats) and has 600-

degree rotational symmetry. Also, the core is heterogeneous in the z-

direction but is symmetric around the mid-plane. It has zero-flux boundary

condition in both axial and transverse directions. The transient analyzed

involved a step reduction of the thermal removal cross section of the central
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patch (seven hexagons in the center of the core) by 15% at time t = 0.

Material specifications and core dimensions are given in Appendix B. Figure

(5.3) shows the normalized thermal flux at the central hexagon as a function

of time compared to results published earlier (Buckner, 1976).

As can be seen from Figure (5.3), MITHEX-Z shows consistency in

predicting the core behavior when the number of axial segments is increase

from 5 to 10. However, the model underpredicts the thermal flux as

compared with Buckner's results. This may be due to the spectral

approximation used by Buckner et al. MITHEX-Z took about one day (clock

time on IBM RISC/6000) to calculate the transient. This lengthy running

time is attributed to the fact that the whole core was analyzed (not one-sixth)

and to the relatively large number of unknowns per node per energy group

which is inherent in the model.

To test further the accuracy of the quadratic model, a much smaller

three-dimensional benchmark problem was analyzed. The core is the same as

the one that is shown in Figure (3.4) but with a total height of 200 cm.

Material specifications and properties are given in Appendix B.

The first test involved inputting as initial conditions the steady state

eigenvalue, fluxes and currents along with the steady state cross sections.

The code maintained the core steady state as expected. Second, the code was

given perturbed fluxes and current but with the steady state eigenvalue and

cross sections. The solution went back to a steady state condition as

expected. Finally, the core was set on a period of 10 s. by giving it a steady

state eigenvalue that corresponded to that of a core with the same geometry



and material compositions but with a increased removal cross section. The

amount of that increase was equal to (0.1/vg) where vg is the group-g neutron

velocity. The core followed the prescribed period asymptotically after one

hour (clock time on IBM RSIC/6000).
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Normalized Thermal Flux vs. Time
(Test III)
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Figure (5.3) Normalized thermal flux vs. time for Joshua problem.

Here, we do not have any reference execution time to compare with, however,

we believe that the inherent relatively large number of unknowns per node

I
I
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Po



per energy groups of the simplified quadratic model increases the overall

execution time of the code.

5.4.2. Application with Thermal-Hydraulic Feedback

The one-dimensional problem tested in Chapter (3) was run for a

transient with thermal-hydraulic feedback option and slightly different

macroscopic cross sections and thermal-hydraulic feedback parameters.

These constants are given in Appendix B. The transient involved a step

decrease in the inlet coolant temperature by 20 F0 degrees. Figure (5.4)

shows the history of the total power of the core which started at 2.4 MWt at

time t = 0 compared to results from CONQUEST (Gehin, 1992). Execution

time for MITHEX-Z was 70 s (on IBM RSIC/6000) and 54 s for CONQUEST

(on DEC 3100). Although we can not draw a definite conclusion regarding

the speed difference between the two codes (different machines, different time

steps, different solution method, and frequency of cross section updating)

there is definitely a room for improvement in the overall performance of

MITHEX-Z with respect to problem execution time.

We conclude from this test that the time-dependent thermal-hydraulic

feedback component of the code is working as expected and provides good

agreement with one-dimensional benchmark results. Note that there is

practically nothing in the public literature about either steady state or

transient thermal-hydraulic feedback benchmark problems for heavy water

reactors of Savannah River type. The reason for this goes back to the nature

of the applications for which those reactors are used.
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Total reactor Power vs. Time
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Figure (5.4) 20-FO-degree decrease in the coolant inlet temperature.

5.5 Summary

In Chapter(4), the time-dependent, three-dimensional (hex-z), few-

group nodal diffusion equations incorporating a thermal hydraulic feedback

option were derived. In the present chapter a numerical solution method by

which these equations can be solved has been developed, and results have

been applied to benchmark problems for evaluation and verification purposes.

These tests show that the time-dependent thermal-hydraulic feedback

component of the code is working correctly.

0

a1:
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CHAPTER

SIX

SUIMMARY AND

CONCLUSIONS

6.1 Summary

The objective of this research was to develop and implement a method

for analyzing three-dimensional static and transient behavior of reactors

composed of regular hexagonal subregions in radial planes. The intent was to

develop a nodal code in hex-z geometry capable of solving few-group diffusion

equations that predict the static as well as the transient behavior of node-

averaged group-fluxes. A simple, constant pressure, one-dimensional

(parallel channel) thermal-hydraulic model was also incorporated into the

code.

In Chapter (2) the static, three-dimensional (hex-z), few-group nodal

diffusion equations with thermal-hydraulic feedback option were derived.

Also, a separate two-dimensional, few-group, finite-difference nodal diffusion

model for triangular-shaped nodes was outlined. The triangular-shaped

nodes were required for the calculation of discontinuity factors and for

obtaining a fine-mesh, finite difference solution to serve as a reference. These

discontinuity factors were needed to correct for errors due to nodal-

homogenization, the use of diffusion theory and the quadratic approximation



of the face-averaged fluxes. In the triangular-shaped-node model the

transverse-averaged fluxes are assumed to have a flat shape across the node,

whereas in the hexagonal-shaped-node model they are assumed to have a

quadratic one. In addition, we allowed for a general number of energy groups

and for upscattering in thermal groups. Finally, a simple, constant pressure,

one-dimensional (parallel channel) thermal-hydraulic model was

incorporated.

The numerical properties of the nodal diffusion equations for both the

triangular and the hexagonal models were discussed in Chapter (3). An

iterative scheme was devised and the computer code ' MITHEX-Z ' was

applied to benchmark problems in one-, two-, and three-dimensional

geometries. The code accuracy was good compared to benchmark problem

results. However, it has a relatively long execution time and the primary

reason for this being the relatively large number of unknowns per node per

energy group.

In Chapter (4), the time-dependent, three-dimensional (hex-z), few-

group nodal diffusion equations with a thermal-hydraulic feedback option

were derived. We allowed for a general number of energy groups and for

upscattering in thermal groups. Finally, a simple, constant pressure, one-

dimensional (parallel channel) thermal-hydraulic model was incorporated.

The numerical properties of the time-dependent nodal diffusion

equations for the hexagonal model were discussed in Chapter (5). An

iterative scheme was devised and was applied to benchmark problems in one-
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and three-dimensional geometries. Again, the accuracy was good but the

execution time was relatively large.

6.2 Conclusions and Recommendations

The simple quadratic nodal method provides a substantial

improvement over the finite-difference method with one mesh box per

hexagon. In fact, the quadratic model is proved to be more accurate and

faster than the finite-difference model with 6 triangles/hex. Whether

homogenized cross sections and discontinuity factors found from infinite

lattice calculations provide acceptable accuracy for the quadratic model

remains an open question. The thermal-hydraulic feedback component, both

static and dynamic, is working properly and provides results which agree

with those of one-dimensional benchmark problems employing the same

equations.

Although there has not been any definitive comparison to show how

fast ' MITHEX-Z ' is, we believe that there is much to be done to achieve

improved computational speed. To begin with, the current model involves 9

unknowns per node per energy group, 8 of which are face-averaged currents.

This makes the code spends most of its computational time in determining

the face-averaged currents. Hence, an effort has to be made, either to reduce

the number of these unknowns or to compute them more quickly. Also, a

rotational symmetry option should be added to the code so that having to

solve for the whole core for symmetric problems can be avoided.
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Faster acceleration schemes for both the fission source and the flux

iterations should be explored and implemented. Numerical properties that

govern the convergence properties of these two iteration schemes should be

investigated and analyzed to find out the most efficient acceleration method.

The nonlinear iteration scheme introduced into recent nodal codes in r-

z and x-y-z geometries (Byers, 1992 and Gehin, 1992) should be explored and,

if attractive, implemented. Finally, a quasi-static model for solving the time-

dependent neutron diffusion equations should speed up the overall

performance of the code.
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APPENDIX

A

MATERIAL

SPECIFICATIONS

(Static Applications)

A. 1 Applications without Thermal-Hydraulic Feedback

A.1.l ANL-Mark22 Problem

The core height is 381 cm and the material specifications are given in

Table (A.1). All discontinuity factors are taken to be unity.

Table (A. 1) Group cross sections for ANL-Mark22 problem.

Mat. # Diff. Fiss. Prod. Scat. Rem.
Group (g) from g

1 1 1 .2742
2 0.85689

0.0
0.0

0.0
0.0

1.29322*10-2
1.55259*10-5

1.35165*10-2
1.15155*10-2

2 1 1.3484
2 0.86326

1.0561*10-3
1.0836*10-2

2.579*10-3
2.6366*10-2

7.83449*10-3
2.05684*10-5

1.04796*10-2
2.24906*10-2

4 1 1.2742
2 0.85689

5 1 1.2742
2 0.85689

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

1.29322*10-2
1.55259*10-5

1.29322*10-2
1.55259*10-5

1.35165*10-2
1.10155*10-2

1.35165*10-2
2.51552*10-3

6 1 1.3461
2 0.87207

1.0789*10-3
1.0842*10-2

2.6339*10-3
2.638*10-2

8.06868*10-3
2.30825*10-5

1.07802*10-2
8.06868*10-3



7 1 1.2482
2 0.84707

8 1 1.25929
2 0.836855

9 1 0.6616
2 0.283

11 1 1.2742
2 0.85689

12 1 1.2742
2 0.85689

13 1 1.2742
2 0.85689

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

1.3685*10-2
0.0

1.12824*10-2
1.8482*10-5

1.5811*10-2
0.0

1.29322*10-2
1.55259*10-5

1.29322*10-2
1.55259*10-5

1.29322*10-2
1.55259*10-5

1.07802*10-2
7.2945*10-5

1.25649*10-2
1.79703*10-2

2.0464*10-2
1.2404*10-1

1.35165*10-2
1.52155*10-2

1.35165*10-2
1.33155*10-2

1.35165*10-2
9.91552*10-3

A.1.2 Two-Dimensional Smaller Problems

Material specifications for both homogeneous and heterogeneous

problems are given in Tables (A.2-5).

Table (A.2) Heterogeneous group cross
dimensional problems.

sections for the two-

Mat. Diff. Fiss. Prod. Scat. Rem.
Group (g) from g

C 1 1.42322 0.0 0.0 2.48468*10-2 2.64234*10-2
2 0.95460 0.0 0.0 1.34505*10-4 2.17498*10- 2

M 1 1.2900 0.0 0.0 8.0000*10 - 3 8.02913*10 - 3

2 0.8830 0.0 0.0 0.0 7.96268*10-3

F 1 1.60065 3.81577*10-3 9.3291*10-3 2.90765*10-3 1.67614*10-2

2 1.00857 1.23103*10 -1 2.9953*10-1 3.55199*10-4 1.76437*10 - 1

T 1 0.80496 3.32233*10-3 6.1283*10-3 6.68233*10-3 2.79203*10-2

2 0.867324 2.0605*10-2 5.0136*10-2 3.55199*10-4 7.7294*10- 2

M - Moderator and reflector; C - Control; F - Fuel; T - Target.
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Table (A.3) Homogenized group cross sections for the two-

dimensional problems.

Mat. Diff. Fiss. Prod. Scat. Rem.
Group (g) from g

C 1 1.31919 0.0 0.0 1.16912*10 -2 1.20594*10-2
2 0.901342 0.0 0.0 3.44566*10 - 5 5.63097*10 -3

F 1 1.38504 1.16741*10 -3 2.8542*10 - 3 6.44203*10 - 3 8.86506*10-3
2 0.898526 1.52191*10-3 3.7031*10 -2 4.39128*10 - 5 2.18825*10 - 2

T 1 1.17097 5.69905*10 .4 1.5039*10-3 6.68233*10 -3 1.29105*10 - 2

2 0.880244 3.62256*10 -3 8.8144*10-3 3.55199*10 - 4 1.36547*10 - 2

C _ Control; F - Fuel; T- Target.

Table (A.4) Discontinuity factors for the two-dimensional

heterogeneous problem.

Face Control Fuel Target
Gr. (g)

1 1 0.885373 0.911467 1.02478
2 1.07866 1.41692 1.11079

2 1 1.16916 0.927869 0.898176
2 1.01053 1.23505 1.21855

3 1 0.885373 0.904496 1.06441
2 1.07866 1.22472 1.04198

4 1 1.16916 0.941519 0.936213
2 1.01053 1.06817 1.16806

5 1 0.885373 0.924038 1.02274
2 1.07866 1.16567 1.06240

6 1 1.16916 0.913307 0.913401
2 1.01053 1.15798 1.23035



Table (A.5) Discontinuity factors for the two-dimensional

homogeneous problem.

Face Control Fuel Target
Gr. (g)

1 1 0.858707 0.975408 1.03509
2 1.10407 1.19461 0.972797

2 1 1.15601 1.00217 0.905985
2 0.982936 1.00978 1.10956

3 1 0.858707 1.01040 1.08484
2 1.10407 1.00414 0.913804

4 1 1.15601 1.09665 0.958337
2 0.982936 0.875806 1.03711

5 1 0.858707 1.04456 1.03518
2 1.10407 0.952904 0.933542

6 1 1.15601 1.01220 0.922531
2 0.982936 0.950889 1.10200

A.1.3 One-Dimensional Problem

All discontinuity factors are taken to be unity.

Table (A.5) Homogenized group cross sections for the one-

dimensional problems.

Mat. Diff. Fiss. Prod. Scat. Rem.
Group (g) from g

F 1 1.38504 1.16741*10-3 2.8542*10 - 3 6.44203*10-3 8.86506*10 -3

2 0.898526 1.52191*10 -3 3.7031*10 -2 4.39128*10- 5 2.18825*10-2

T 1 1.17097 5.69905*104 1.5039*10 - 3 6.68233*10 - 3 1.29105*10-2
2 0.880244 3.62256*10-3 8.8144*10-3 3.55199*10-4 1.36547*10-2

F - Fuel; T - Target.
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A.2 Applications with Thermal-Hydraulic Feedback

A.2.1 Three-Dimensional Smaller Problem

Nuclear macroscopic cross sections are the same for the homogenized

two-dimensional problems in Section (A.1.2). All discontinuity factors are

taken to be unity. All the partial derivatives with respect to coolant density

are taken to be zero.

Total reactor power = 24.0 MWt.

Energy conversion factor = 3.2*10-11 Joules/fission.

Specific heat of coolant = 5.43*107 ergs/(gm*KO).

Conduction length = 2.2*106 ergs/(cm 2 *KO*s).

Heat transfer coefficient at initial flow = 2.71*107 ergs/(cm2*KO*s).

Fraction of energy released in coolant = 0.0.

Core inlet temperature = 300.0 K0.

Core flow rate = 3.0 kg/s/node.

Core pressure = 15.3 MPa.

Density of fuel (target) = 10.3 g/cm3.

Fuel reference temperature = 500.0 K0.

Coolant reference temperature = 300.0 KO.

Coolant reference density = 1.0 gm/cm3.

Coolant volume fraction = 0.363784.

Surface area of clad/coolant of volume = 4.54444 cm-1.
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Table (A.6) Partial derivatives

at. Diff.- 1 Fiss.
Group (g)

with respect to fuel temperature.

Prod. Scat. Capt..
from g

108

F 1 -2.6*10- 6 5.000*10- 8 3.000*10 -8 -8.500*10 -8 3.300*10-7
2 -2.6*10-6 1.000*10 -7 2.430*10 -7 8.000*10 -10 3.800*10-9

T 1 -1.6*10-6 5.000*10-8 5.000*10-8 -8.500*10-8 -3.300*10 -8

2 -2.6*10-6 7.000*10-8 2.430*10- 7 8.000*10-10 1.800*10-7

F - Fuel; T Target.

Table (A.7) Partial derivatives with respect to coolant temperature.

Mat. Diff.-1 Fiss. Prod. Scat. Capt..
Group (g) from g

F 1 -8.0*10- 5 -5.000*10 -8 -5.000*10-7 -5.500*10 -7 -3.000*10-7
2 -1.3*10- 4 -8.300*10 - 7 -2.017*10 -6 7.000*10 -8 -5.200* 10-7

T 1 -8.0*10 -5 -5.00*10 -8 -5.000*10 -7 -5.500*10 -7 -3.000*10 -8

2 -1.3*10 .4 -8.30*10-7 -2.017*10 -6 7.000*10-8 -5.200*10-7

F - Fuel; T - Target.

A.2.2 One-Dimensional Problem

Material cross sections are the same given in Section (A.1.3). All

discontinuity factors are taken to be unity. All the partial derivatives with

respect to coolant density are taken to be zero.

Total reactor power = 2.40 MWt.

Energy conversion factor = 3.2*10-11 Joules/fission.

Conduction length = 2.2*106 ergs/(cm 2*KO*s).

Heat transfer coefficient at initial flow = 2.71*107 ergs/(cm2 *K0*s).

Fraction of energy released in coolant = 0.0.

M
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Core inlet temperature = 300.0 K0 .

Core flow rate = 3.0 kg/s.

Core pressure = 15.3 MPa.

Fuel reference temperature = 500.0 K0 .

Coolant reference temperature = 300.0 K0 .

Coolant reference density = 1.0 gm/cm3.

Coolant volume fraction = 0.363784.

Surface area of clad/coolant of volume = 4.54444 cm-l.

Table (A.8) Partial derivatives with respect to fuel temperature.
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Mat. Diff.-1 Fiss. Prod. Scat. Capt..
Group (g) from g

F 1 -2.6*10 -6 5.000*10 -8 3.000*10 -8 -8.500*10 -8 3.300*10 -7

2 -2.6*10-6 1.000*10-7- 2.430*10-7 8.000*10 -10 3.800*10 - 9

T 1 -1.6*10-6 5.000*10 -8 5.000*10 - 8 -8.500*10 -8 -3.300*10 -8

2 -2.6*10 -6 7.000*10 -8 2.430*10 -7 8.000*10-10 1.800*10 -7

F Fuel; T Target.

Table (A.9) Partial derivatives with respect to coolant temperature.

Mat. Diff.-1 Fiss. Prod. Scat. Capt..
Group (g) from g

F 1 -8.0*10 -5 -5.000*10 - 8 -5.000*10 -7 -5.500*10 -7 -3.000*10 -7

2 -1.3*10- 4 -8.300*10 -7 -2.017*10 - 6 7.000*10 - 8 -5.200*10- 7

T 1 -8.0*10 -5 -5.00*10 -8 -5.000*10 -7 -5.500*10 - 7 -3.000*10-8
2 -1.3*10-4 -8.30*10-7 -2.017*10-6 7.000*10 -8 -5.200*10-7

F - Fuel; T - Target.
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APPENDIX

B

MATERIAL

SPECIFICATIONS

(Transient Applications)

B.1 Applications without Thermal-Hydraulic Feedback

B.1.1 Joshua Problem

The core height is 250 cm and the material specifications are given in

Table (B.1). All discontinuity factors are taken to be unity.

Table (B.1) Group cross sections for Joshua problem.

Mat. #a Diff. Fiss. Velocity Scat. Rem.
Group (g) from g

1 1 1.370 8.1665*104 00 1.00*10- 2 1.300*10-2
2 0.840 6.1249*10 - 3 5.00*106 0.0 b

a: All materials have the same macroscopic cross sections except for the
thermal removal cross sections.

b: Thermal cross sections for different materials are given in Table (B.2).

v = 2.43 neutrons/fission

Number of precursor groups = 1

Precursor constants: 1 = 0.1 sec-1 , 31 = 0.0065, Xll = 1.0 and X12 = 0.0



Table (B.2) Thermal removal cross section for different materials.

Mat. # Rem. Mat. # Rem.

1 1.355*10 -2 8 1.325*10-2

2 1.355*10-2 9 1.320*10-2
3 1.350*10-2 10 1.315*10-2

4 1.345*10 -2 11 1.310*10-2

5 1.340*10 -2 12 1.305*10-2

6 1.335*10 -2 13 1.300*10-2

7 1.330*10-2

B.1.2 Three-Dimensional Smaller Problems

Nuclear macroscopic cross sections are the same for the homogenized

two-dimensional problems in Section (A.1.2). All discontinuity factors are

taken to be unity. Precursor constants are given in Table (B.3).

Fast group neutron velocity = 1.0*107 cm/s.

Thermal group neutron velocity = 3.0*105 cm/s.

Table (B.3) Precursor constants for the three-dimensional smaller

problems.

Fuel Target
Gr. i i Xi Pii i

1 1.27*10 -2 2.66*10-4 1.27*10-2 2.85*10-4
1 1.27*10-2 2.66*10-4 1.27*10-2 2.85*10-4
1 1.27*10-2 2.66*10-4 1.27*10-2 2.85*10-4
1 1.27*10 -2 2.66*10-4 1.27*10-2 2.85*10-4
1 1.27*10-2 2.66*10-4 1.27*10-2 2.85*10-4
1 1.27*10-2 2.66*10-4 1.27*10-2 2.85*10-4
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112
B.1 Applications with Thermal-Hydraulic Feedback

Material cross sections are the same given in Section (A.1.3). All

discontinuity factors are taken to be unity. All the partial derivatives with

respect to coolant density are taken to be zero.

Fast group neutron velocity = 1.0*107 cm/s.

Thermal group neutron velocity = 3.0*105 cm/s.

Number of precursor groups = 1

Precursor constants: X1 = 1.4 sec-1 , 31 = 0.00096 Xll = 1.0 and X12 = 0.0

Total reactor power = 2.40 MWt.

Energy conversion factor = 3.204*10-11 Joules/fission.

Specific heat of coolant = 5.43*107 ergs/(gm*K0).

Conduction length = 2.2*106 ergs/(cm 2 *KO*s).

Heat transfer coefficient at initial flow = 2.71*107 ergs/(cm2*K0*s).

Fraction of energy released in coolant = 0.0.

Core inlet temperature = 300.0 K0.

Core flow rate = 3.0 kg/s.

Core pressure = 15.3 MPa.

Density of fuel (target) = 10.3 g/cm3.

Fuel reference temperature = 500.0 KO.

Coolant reference temperature = 300.0 K0 .

Coolant reference density = 1.0 gm/cm3.

Coolant volume fraction = 0.363784.

Surface area of clad/coolant of volume = 4.54444 cm-l.

Derivative of density*enthalpy w.r.t. coolant temperature = 1.60*107

ergs/(cm 3 *KO).
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Table (B.4) Partial derivatives with respect to fuel temperature.

Mat. Diff.-1 Fiss. Prod. Scat. Capt..
Group (g) from g

F 1 -2.6*10- 6 5.000*10 -8 3.000*10 -8 -8.500*10-8 3.300*10-7
2 -2.6*10- 6 1.000*10 -7 2.430*10 -7 0.0 3.800*10-9

T 1 -1.6*10 -6 5.000*10 -8 5.000*10 -8 -8.500*10 -8 -3.300*10-8
2 -2.6*10 -6 7.000*10-8 2.430*10-7 0.0 1.800*10 -7

F Fuel; T -Target.

Table (B.5) Partial derivatives with respect to coolant temperature.

Mat. Diff-1 Fiss. Prod. Scat. Capt..
Group (g) from g

F 1 -8.0*10 -5 -5.000*10-8 -5.000*10 -7 -5.500*10-7 -3.000*10-7
2 -1.3*10 -4 -8.300*10-7 -2.017*10 - 6 0.0 -5.200*10 -7

T 1 -8.0*10- 5 -5.00*10- 8 -5.000*10 -7 -5.500*10-7 -3.000*10-8
2 -1.3*10 - 4 -8.30*10 -7 -2.017*10-6 0.0 -5.200*10 -7

F -= Fuel; T -Target.


