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ABSTRACT

An experimental and theoretical study has been made of the
condensation of water vapor (with air carrier) in a supersonic nozzle
in order to investigate the possible existence of condensate droplets
which are substantially larger than predicted by the standard application
of classical condensation theory. Droplet size was measured using light
scattering techniques, which when combined with the total mass con-
centration of condensate, provided limits on the maximum and average
droplet size.

It was found that approximately one part in lO3 of the droplet con-
centration reached a size a factor of 10 greater than predicted by the
classical theory (radius in range 400 - 1000 A for water mass fractions
in range .005 < w, < .015). The maximum droplet size, furthermore, was
not seen to decrease proportionately as the nucleation zone was approached,
indicating that the larger droplets are formed during the early stages of
condensation. Inconclusive evidence suggests that this occurs following
the completion of nucleation but before the vapor supply is exhausted.

A calculation procedure which allowed the separation of the nuclei
into a distribution of sizes, arising from a varying stability criterion
and radius dependent growth rate, resulted in the establishment of a
qualitatively correct distribution shape but no theoretical substantiation
of an aging or coarsening mechanism. A separate application of Brownian
coagulation theory to surface-averaged condensation theory resulted in the
prediction that the average droplet size increased by a factor of between
2.5 and 4. No conclusion could be drawn concerning the actual existence
of this size increase due to the level of uncertainty in the determination
of average droplet size,
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PRINCIPAL NOMENCLATURE

A list of the principal notation follows. Other symbols are

defined as they appear.

fg

=i

nozzle flow area

nozzle flow area at throat

specific heat of condensate

specific heat of a perfect gas at constant pressure
specific heat of a perfect gas at constant volume

number of molecules in a critical sized cluster

free energy of formation of a critical sized cluster
scaling factor for assumed family of distribution curves,
no./unit volume

specific enthalpy of condensate

latent heat of vaporization

scattered light intensity, from experimental measurement
theoretical angular intensity function

nucleation rate, units of nuclei/unit volume - time
light scattering theory: a combination of geometric calibration

factors, constant for given experimental conditions;

condensation theory = a constant equal to (—;—%fi-+ % )
Boltzmann's constant

Mach number .

mass concentration of condensate, units of mass/unit volume

molecular weight

xi



light scattering theory: index of refraction of scattering
particle with respect to surrounding medium; other:
droplet, particle or molecular mass, as indicated

mass flow rate

number concentration of condensate particles, units of
no./unit volume

light scattering theory: exponent in assumed family of
distribution curves

condensation theory: number concentration of vapor molecules
number of vapor molecules impinging on unit surface area per
unit time

pressure

partial pressure

absolute distribution function, units of no./unit volume
light scattering theory: distance from scattering volume to
point of observation

other: gas constant per unit mass

droplet radius, radius of scattering particle

radius of critical sized cluster

surface area averaged radius

temperature

time

internal energy of condensate

local stream velocity; local droplet velocity

volume per molecule of liquid phase

streamwise coordinate (along nozzle axis)

xii



Yo

mole fraction of condensable vapor

Greek Letters

a

f|

w
(e]

light scattering theory: dimensionless size parameter
equal to 2nr/A

condensation theory: thermal accommodation coefficient
light scattering average size

upper limiting number average size obtained from "missing
mass' analysis

condensation theory: mass flux impinging on droplet surface
"gasification" correction factor to classical nucleation
theory

ratio of specific heats = cp/cv

angle of observation, as defined in Figure 1

wavelength of incident light

condensation theory: mass fraction of condensed moisture
other: viscosity

mass accommodation coefficient

density

surface tension

mass fraction of condensable vapor; specific humidity

Subscripts

1, 2

indicate perpendicular and parallel plane polarization,
respectively
light scattering theory: refers to incident light intensity

other: refers to initial or stagnation conditions
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conditions at incidence of condensation
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I. INTRODUCTION

A. Background and Previous Work

From an engineering point of view, the phenomenon of condensation
is of interest primarily due to the role it plays in various power and
propulsion systems. Of the various types of condensation, homogeneous
nucleation from the supersaturated vapor phase, in which nuclei are
spontaneously formed from vapor molecules, is the type usually en-
countered in flow devices and is of more basic theoretical interest.
Typically, condensation occurs when a vapor with an initial sub-
saturation level is expanded or cooled, producing an unstable super-
saturated condition. A large concentration of liquid or solid particles
are introduced into the stream and the aerodynamic properties of the flow
are altered by the release of fhe heat of vaporization. In steem turbines,
condensation must be considered in performance calculations and blade
erosion from the resulting water droplets can be the limiting factor
in operating life. In hypersonic wind tunnels, condensation will cause
a change in aerodynamic characteristics and requires a reliable calcula-
tion method to predict actual performance. Also, condensation of
metallic vapors in rocket nozzles can cause considerable thrust losses.
The recent increase in attention given to homogeneous nucleation stems
both from the discovery that classical theory is not always applicable
to fluids other than water vapor and from current trends in new power
systems. With the increased use of different operating fluids, such
as metal vapors in closed loop reactors, condensation studies have been
extended to a larger range of materials. The ultimate goal is to

develop a theoretical correlation which will accurately predict the



condensation behavior of any given fluid under given operating conditions.
This is particularly desirable when one considers that, for a variety of
reasons,-many fluids are not amenable to extensive experimentation.

The condensation phencmenon was observed well before a theoretical
treatment was available. The initial experiments were done in cloud

(1) (2)

and Powell with water vapor as the condensing

chambers by Wilson
fluid. Much additional work has been done, mainly using water vapor;

Hirth and Pound(3)

provide a useful review of the experimental data.
However, there sappear to be major difficulties associated with the
use of the cloud chamber for incidence studies. The most serious is
that the method depends on the visual sighting of a condensed cloﬁd,
something that may vary among observers and which certainly occurs
sometime after the actual incidence of nucleation. Also, due to the
relatively slow expansion rate, any appreciable concentration of foreign
particles (dust) or ions will favor heterogeneous nucleation. Finally,
the observations are qualitative rather than quantitative.

Owing to the difficulties in interpreting cloud chamber data and
to the fact that condensation in nozzles has direct application to
engineering problems, the supersonic nozzle has been used as an alterna-
tive for studying the condensation process. As demonstrated by Stodola(h)
and others, the expansion is sufficiently rapid that homogeneous nuclea-
tion should prevail even at the highest conceivable concentrations of
dust or ions. (The exception here is when there is a precondensing
vapor present in the flow.) In fact, the expansion rate is so much

faster that it affects the critical supersaturation; growth rates can

no longer be considered to be "infinitely" rapid and a drop growth



mechanism must be included in a theoretical description of the process.

Other advantages of nozzle studies are that a continuous process is

being viéwed, that the incidence of condensation and downstream growth

can be quantitatively deduced from static pressure data, and that wall

effects are virtually eliminated by the presence of a boundary layer

at near stagnation conditions. Furthermore, a one-dimensional friction-

less gas dynamic model is a very good approximation for typical experiments.
A substantial number of nozzle experiments have been perfonméd

using pure water vapor, water vapor in air, and a number of other fluids.

The existing data on water vapor have been comprehensively reviewed by

Hill(S)(é). Data on other fluids are not as plentiful and are generally

more recent. Hill et. al.(7) have treated the case of metal vapors.

Air and its principal components, relating to hypersonic wind tunnel
practice, have been studied most recently by Daum and Gyarmathy(a),

who include a comprehensive bibliography of earlier investigations. A
recent series of tests have been conducted in the Gas Turbine Laboratory
using a variety of fluids in an effort to further refine the experimental
correlation of existing theories. Kremmer and Okurounmu(9) studied

(10)

pure ammonia, Jaeger used water vapor and ammonia with an air

(11) (12)

carrier, Duff used pure carbon dioxide and Dawson 1 investigated
the behavior of several organic vapors.

The theoretical treatment of condensation requires a nucleation
theory, which predicts the formation of stable clusters, and a droplet

growth theory, by which these nuclei increase in size. There are

presently two conflicting versions of nucleation theory. The earlier



approach, now called the classical theory, is derived from classical
thermodynamics. It is most frequently comnnected with the names of
Volmer, Becker and Ddring, and Zeldovich; these early contributions

and many others are reviewed by Feder et. al.(13). Lothe and Pound

(1k)
and others have proposed a revised theory in which the partition
functions for the rotational and translational degrees of freedom of
the nuclei are explicitly taken into account. This results in about a

T

1015-101 factor increase in the predicted nucleation rate over that

predicted by classical theory. The new work, however, has been

challenged(lS)

and the debate  continues. There are in addition un-
certainties associated with thermal and mass accommodation coefficients
and with the applicability of bulk surface tension values to a cluster
containing 10-100 molecules, but these are not large enough to obscure
the difference between the plassical and revised theories. The droplet
growth process is assumed to be thermal diffusion limited and is
presently not a matter of dispute.

While the revised theory is believed to be more theoretically
correct, the experimental data do not always bear this out. Oswatitsch(lé)
and Hill(s)(é) have shown that water vapor behaves as predicted by
~classical theory. Following experiments in the Gas Turbine Laboratory,
carbon dioxide has been shown to obey classical theory with the assumption
of supercooled liquid droplets below the triple point(17); ammonia,
chloroform, benzene and Freon 11, on the other hand, adhere to the re-
vised theory. The present state of affairs is that although many
substances are empirically well understood, there is as yet no

universally applicable condensation theory.

A great majority of the work to date has concerned itself with the



measurement and prediction of incidence of nucleation. Along with in-
cidence behavior, condensation theory provides a prediction of condensate
particle4size and number concentration as a function of distance from
the nucleation zone. It would abpear that experimental measurements

of these quantities would enable the absolute verification of condensa-
tion theory for the fluid in question. This has been done in two inde-
pendent experiments, using water vapor in air as the condensing medium.

(18)

Thomann employed a probe sampling technique in a low pressure wind
tunnel. Working with water mass fractions less than .0007, he measured
ice particles having a radius of lhx, invariant with humidity. No con-
(19)(20)

centration measurements were made. Wegener and Stein used a
light scattering technique and a 5° included angle, two-dimensional
nozzle exhausting from atmospheric pressure into a vacuum. The water
mass fraction was varied over the range .OOl<wo<.Ol and measurements
were taken at a distance of between 1 and 4 cm. from the nucleation
zone. Condensate particle radius varied as 20-603 and number concentra-
tion varied as 2x1012 - 1Ox1012 with increasing W Both studies

fully support the classical nucleation theory. Wegener and Stein,
however, were unable to differentiate between supercooled liquid drops
and ice crystals exhibiting reduced surface tension (equilibrium con-

siderations require that the condensate be in the form of ice crystals

at temperatures below the triple point).

B. Introduction to the Present Study

In certain areas, such as the investigation of turbine erosion or

the design of colloid ion propulsion systems, it is important to be able



to accurately predict the size, and the size distribution, of condensate
particles that will occur. 1In view of the good agreement between

theory and experiment in the above investigations, this would appear

to be a minor problem. However, a number of observations have indicated

that larger particles can in fact be formed.

(21)(22) (11)’

Yellot , investigating condensing steam, and Duff
working with pure carbon dioxide, report visual observation of a con-
densate cloud coincident with the point of omset of condensation as
determined from pressure measurements. This observation remained valid
despite changes which resulted in the axial shift of condensation in
the nozzle. It is to be expected.that substantial nucleation would
occur‘somewhat before the appearance of a visible cloud due to the
theoretically small sizes of the forming nuclei. In addition, erosion
damage in steam turbines indicates that micron or supermicron sized
drops are present. The theoretically predictéd sizes are much smallér
and would be able to follow the flow. As a final instance, Linhardt(23)
has concluded from experiments with a wedge probe that the condensation
droplets obtained from potassium vapor are an order of magnitude larger
than would be expected from the theory.

In view of these differing observations, it was decided to further
investigate the particle‘growth process in a supersonic nozzle. The
work to be described in what follows was undertaken with the intention
of investigating the possibility of producing and measuring larger than
predicted condensate droplets. To complement the experimental work,

existing condensation theory was re-examined in an attempt to establish

a theoretical basis for the existence of these larger droplets. In



particular, theoretical support was sought for the presence of an
"aging" process, wherein a given size distribution is continuously

transformed to another of larger, more uniform size.



II. EXPERIMENTAL PROGRAM

A. Preliminary Considerations

In an investigation of condensate particle size in a supersonic

nozzle, the selection of a measurement technique becomes the first order
of business. For the vapor and concentration levels to be studied, the
€Xpected size range was SO-SOOOZ. This is seen to vary from considerably
below up to the order of the wavelength of visible light, and serves to
eliminate macroscopic optical techniques such as photography énd '
holography. In addition to the limitation imposed by the size range,

it is desirable that the measurements be taken without disturbing the
flow. A final qualification is that a well established and proven tech-

(2k)

nique should be used if possible. Following treatments by Winkler

and Durbin(zs) and the work of Wegener and Stein(zo)

» light scattering
in one of its variations presented itself as the obvious choice.
Although pure water vapor would have been more applicable to steam
turbine problems, it was decided to use water vapor in air due to its
ease of handling and its adaptability to existing metering and injection
equipment. In addition, a vapor-carrier mixture has the desirable feature
that the maximum amount of condensate is fixed by the vapor mass fraction.
In order to maximize the growth aspect of the condensation process,
& nozzle whose total length was large compared to the size of the nuclea-
tion zone was desired. As will be described later, a conical nozzle having
a supply pressure of about eight atmospheres, 0.25 in throat diameter,
1° included angle and length from throat to exit of 12.5 in. was con-

Structed. The flow residence time is about 0.5 millisecond under these

conditions. These specifications represent a considerably higher



operating pressure and a much smaller pressure gradient than was used in
the previously mentioned size studies.

Light scattering techniques are more easily applied when the opti-

cal path is unencumbered by glass windows or container walls, eliminating
the need to correct for reflections, etc. With this in mind, it was
decided to use a nozzle with atmospheric exit pressure and to teke the
light scattering measurements in the region Just beyond the exit plane.
fhe well known "diamond" shock pattern provides a conical volume beyond
the exit plane in which the flow remains supersonic (See Shapiro(26),
p.143). It was found to be very important that the condensate particles
be measured before passing through the shock, as this mechanism was
observed to cause an increase in size due to coagulation. No correction
was made for the fact that the incident and scattered light beams pass
through regions of varying density; this was assumed to be an insigni-
ficant source of error since the indices of refraction for air and
vacuum differ only in the Uth decimal'place(27).

To measure particle sizes at points closer to the nucleation zone,
another characteristic of supersonic flow was employed: namely, that
disturbances propagate at t!;é local speed of sound, with the result
that a change in flow conditions at a given point in the nozzle will
not affect the flow upstream of this point. Because of this, size data
corresponding to a shorter growth time could be taken by the simple
expedient of cutting off the end of the nozzle and realigning the optical
system to the new exit plane. The alternative of moving the incidence

point closer to the exit cannot be used, since the required increase in

stagnation temperature exceeds the limit imposed by the plastictnozzle



construction.

B. Application of Light Scattering Theory

'1l. The general Mie theory

Light can be represented as an electromagnetic wave and as such
has a transverse oscillating electric field associated with it, whose
direction is normal to the direction of propagation. When this energy
passes through a particle, the electric field causes the charges con-
tained in the particle to be set into forced oscillation at # frequency
equal to that of the incident light. These vibrating electric charges,
in turn, are each sources of electfomagnetic radiation, scattered light.
To describe the character of this scattered light, it is necessary to
account for the size, shape ahd composition of the scattering particle.
This amounts to finding a strict solution to the diffraction problem in
its most general sense, i.e. an integration of Maxwell's equations for
a plane parallel wave which strikes an arbitrary surface separating
two regions of differing optical properties. This operation has proven
to be possible only for particles having simple geometric shapes.

(28) in 1908 for the

The general problem was first solved by Mie
case of a single spherical particle suspended in a transparent, homo-
geneous and isotropic medium. A discussién of this derivation is
contained in the book by Born and Wolf(292 Mie expressed the solution
as the sum of a series of partial solutions, each corresponding to a
forced mode of vibration of the spherical particle at the frequency of
the incident light. If, in reference to Figure 1, the incident and

scattered light is resolved into two mutually perpendicular, plane

polarized components, the relations between scattered and incident light



are as follows:

For perpendicular polarization,
2.
I= 221
= ol

In2RZ (2.1)

for parallel polarization,

A° L |
Iz = 417? F?éz Ioz , - (2.2)

and for the total scattered light when the incident light is

unpolarized (contains both components),

2/3 3 |
_ ALt L) I (2.3)
= 8m? R? °
where:
A = wavelength of the incident and scattered light in the

medium surrounding the particle.
R = distance from scattering particle to point of observa-

tion, which must be large compared to the incident

wavelength, A.

I, Io = intensities of the scattered and incident light, per
unit area and time.
.il, i2 = the Mie scattering functions, which take the general form:

I

' 7, (x,m,8)
b ' (2.1)

i?_ ig_(x,w;e)



12

where:
. . . _ 27r
o = dimensionless size parameter ='—I—
r = radius of scattering particle
m = index of refraction of scattering particle with respect
to surrounding medium.
6 = angle of observation, as defined in Figure 1.

The complete formulations for i, and 12 are presented in section 1 of

1
Appendix A.

From the 2quations 2.1-2.4 it can be seen that for mixed values
of A, m, R and the intensity and state of polarization of the incident
light, the angular distribution of the scattered intensity is a function
only of a. It is interesting to note that, for the case of plane
polarized light lying in or perpendicular to the plane of observation,
the quantities Il and 12 are dependent only on the corresponding components
of the incident light; i.e., a perpendicularly polarized incident beém
will theoretically produce only perpendicularly polarized scattered light.
(For other orientations, the scattered light will be elliptically polarized.)
Polar diagrams of il(e) and iz(e) for a number of values of a and m

(30) (2&).

are given by Erickson and Winkler

The scattering theory, given above, is derived for a single particle.
In order to apply the Mie résults to the present experiment where a
large number of pafticles will be simultaneously observed, it is
necessary that the particles act as independent scatterers. If this is
the case, the total intensity of scattered light is simply the sum of
all the individual scattered intensities. Deviations from independent

scattering arise from two sources. First, if there is a sufficient uumber



13

of scattering particles in the optical path (proportional to particle con-
centration, optical path length), the incident beam will be attenuated and
all particles will not experience the same incident intensity. The\second
mechanism, known as multiple scattering, arises when the particles are so
closely spaced that the light scattered from one particle will cause secondary
scattering from another particle. In the present experiment, independent
scattering is assumed to prevail since the particle sepéfation is on the
order of 100 times their radius and since the incident beam was not signifi-
cantly attenuated in passing through the scattering region.

It is further assumed that the scattering particles are spherical
and isotropic, neglecting the fact that water is slightly anisotropic
at the molecular level. Thé ergodic condition, in which the time and
space averages coincide, may be éssumed to apply since the no;zle flow

9_101° condensate particles randomly

is steady and sincé there are 10
located in the test volume at any given time. It is not always necessary
to assume that the scattering particles are of uniform size.
2. Some limiting cases and techniques

By considering the upper and lower limits of light scattering
theory, a range of practical apﬁlication of the method is determined.
As presented in Appendix A, the equations for il and i2 are in the form
of infinite series and are quite complex.. In calculating these quantities
for particular values of o, m and 6, the number of terms that need to be
included increases with increasing values of . When o is very small,
i.e. when r<<i, the series converge very rapidly and only the first order

electric oscillation term need to considered. (An additional requirement

is that m should be close to 1, so that the incident light will experience
minimal distortion in passing through the scattering particle.) Mie's

general theory then reduces to the
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solution for an electric dipole, as was derived by Lord Rayleigh(31)
prior to the appearance of the general solution. Following Winkler(zh),
e 6 2 2
.l =64TT r m° - |
' N m2+2
(2.5)
6 .6 2 2
. m*e - \ 2
i é4—T!’6r L | cos?e
2 7a) mM2+2
2
: 4 6 2 (2.6)
= + = |4Cos%©
I I, 11 RZ 7\1 'YY‘!Z'*Z ( )Ie
In the range 0<a<0.2, the angular intensity functions (2.5)
exhibit no change in slope and hence this fact cannot be used

to determine particle size. When a fiked number of particies, N, are
contained in the scattering volume, the ratio between scattered and
incident intensity can be written with the assumption that the particles
are monodisperse (of uniform size). Typically, a measurement is taken

at a fixed angle and known polarization. For the case of perpendicular

polarization:
2
4 z _
L - MazTr4 | - &Nr(‘ (2.7)
i R*A* | m2+z |

With the product Nr6 thus determined, a different combination of these

factors must be measured before size and concentration can be separated.

(20)

In the case of condensation in an inert carrier s the total mass of

particles per unit volume is known, providing the factor %-npr3N.
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The upper limiting case occurs when a>>1. Here, a great many

terms are significant in the determination of il and i,, merging into

29
the diffraction pattern for a circular disc. The light scattering
solutions reduce to the simpler Huygen's principle as applied to
di ffraction and reflection problems in physical optics. In such cases,
the practical value of Mie's solution diminishes, and approximate
macroscopic theories should be used.

When a falls in the range 0.2<a<30, the full Mie solution must

be used. If it can be assumed that the scattering particles have uniform

size and fixed concentration N, equations 2.1 and 2.2 take the form:

.
LN g L (@

and
T N2, ] (2.9)
2z 4R o2

For fixed experimental conditions, the scattered light intensity is

seen to be a function of the product of N and i, the appropriate angular
intensity function. Curves of i, (a,6) and i, (a,8) are plotted for

the ranges 0.l<a<l.0 (Figure 2a.) and 1.0<a<k.0 (Figure 2b). As can be
seen, the angular intensity functions change principally in magnitude
and to a lesser degree in shape (slope) up to ¢ 1.0, beyond which

point there is a significant variation in detail in the form of relative
maxima and minima and a diminishing change in amplitude. For very

large values of a, the detail becomes difficult to measure experimentally.
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The range 0.1<a<l.0 witnesses the transition from pure Rayleigh scattering,
where intensity varies as r6 with no change in shape, to the case for
large a where the location and number of maxima and minima are the primary
variables.

The importance of this change in shape of the scattering diagram is
that if the particle size is sufficiently large (2>0.2), a may be uniquely
determined from it alone. A normalized curve of Il(e) 6r.12(e), measured |
with constant incident intensity, is compared with the corresponding
normalized curve of il(a,e) or iz(a,e) calculated from the Mie theory,
with o being determined by the best fit between theory and experiment.

Here normalized means divided thfough by the value of intensity of the
perpendicular component at 90°, so that all curves have the value 1.0 at
this angle. The qomparison procedure is nécessarily iterative due to the
complicated nature‘of the relationships for i (see Appendix A); the experi-
mental curve of Il(e) or 12(6) is broken down into a series of values at
discrete angular intérvals and the best fit is taken to be that value

of o for which the root-mean-square error betwgen theory and experiment

is minimized. When the scattering particles are of uniform size, either
Il(e) or 12(9) may be used independently or in any combination since they
both provide the same information. . The experimental technique may be
simplified when ais below 2-2.5. Here the angular intensity functions

are sufficiently simple in shape that a unique value of a is provided

by single angle measurements such as the polarization ratio, 12(61)/11(61),
or the dissymuetry, Il(el)/Il(180°-el). These may be plotted versus a,
thereby removing the need to iterate. Other combinations can of course

be used, but all share the shortcoming of not providing a unique result

when o is large.
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Once a has been determined, the absolute value of either 11(6) or
iz(e) may be calculated; N is then a function only of the ratio of
scattered to incident intensity and a number of experimental constants
for a particular angle and may be easily calculated from either 2.8 or
2.9.

In general, it cannot be assumed that the scattering particles
are of uniform size unless some additional test, such as the presence
of higher order Tyndall spectra, or suitable theoretical argﬁmeht4can
be made. When there is indeed a distribution of sizes present, the total
scattered intensity Il(e) or 12(9) will be the sum of the contributions

of all scattering particles:

A L. o
L(e)= =5 ), i.(x5,0) (2.10)
j |

or, if the absolute (units of no./unit volume) distribution function

is written p(a),

L(@): s RZ /p( ) 7, (X @)dcx (2.11)

with the integration carried out over the range of sizes present.

There are similar expressions for 12(6). It would appear at this point

that any number of distribution functions could be made to satisfy an

experimental curve Il(e), thus making the problem indeterminate or at

best, dependent on the appropriateness of an assumed distribution function.
The behavior of the integral in equation 2.11 will depend critically

on the range of sizes encompassed by p(a). For example, if scatterirg
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particles are present in the range 0<a<l.0 and p(a) is anything like
a uniform distribution, the light scattered by the larger sizes will
cbmpletely dominate the scattering pattern; conversely, 106 particles
of size a = O;l will have approximately the same scattered intensity as
one particle of size & = 0.1 (see Figure 2). If on the other hand, all
the scattering particles are larger than a = 2-3, the scattered intensity
is no longer monotonic with increasing size and the net scatyered intensity
will be a complicated function of both size and p(a).

A.number of experimental techniques have been developed for determining
the particle size distribution when the scattering particles lie in the

(32)(33)(34)

range l.0<a< 20-25. Kerker, Kratohvil, et.al. measure the

polarization ratio‘Iz(e)/Il(e) over a range of angles; Heller, et.al.(35)
take scattering measurements at a fixed angle for varying wavelengths of‘
incident light; Takahashi and Iwai(36) present a method which is essentially
a combination of these two techniques. These techniques share the common

feature that the Mie angular scattering functions in equation 2.8 and 2.9

are replaced by the integrated quantities

ji‘<o<.e) Px) clx
S (=)l

Si,(%, 0) pes) clx
Jplx)d=

i

1,(0)

(2.12)

i

1,

where p(a) is an arbitrarily assumed distribution function. In the above
cited references, the function is chosen by physical argument and is
characterized by a mean value @ ean and a standard deviation o¢. A series

of theoretical calculations are then compared with the experimental
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measurements until the best fit is obtained, fixing % ean and o. The

method depends on the different but known change in shape of i1 and i2

versus @, hence the practical lower limit of a = 1.0.
3. Application to the present experiment

By exhibiting measureable dissymmetry, the experimental light
scattering data indicated that an estimate of @ could be obtained by
comparison with normalized curves of il(u,e) and ia(a,e) in @he manner
indicated above. Taking the index of refraction of pure water to be
m=1.33 and for an incident wavelength of A = 23283 (red), a was found
to lie in the range 0.3<a<L.0 (the actual comparison procedure is outlined
in sections 2 and 3(a) of Appendix A). Since in the present case of a
vapor condensing in an inert carrief the mass of condensate/unit volume
is known, it is possible to check for uniformity of particle size. If
uniform size is assumed, equation 2.8 or 2.9 (with the instrument calibra-
tion described in Appendix B) leads to a value of number concentration N
at the already determined size a; a value of mass/unit volume follows
directly. When the values of mass concentration calculated in this manner
were compared with the known va;ues of total mass concéntration, it was
found that only 10-40% of the mass could be accounted for by the scattered
intensity. It is therefore evident that a distribution of sizes is
present. Furthermore, due to the fact that scattered light intensity
increases with r6 versus r3 for mass, the "missing'" mass must be found
at sizes smaller than the above measured a. This size, which is
obtained from the shape of the scattered intensity versus ©, repre-
sents a light scattering average size and will be designated by a.

In the usual application of light scattering theory, if particle



sizes less than a= 1.0 are indicated and a distribution of sizes is
known to be present, any number of arbitrary distrubition functions can
be made-to satisfy the light scattering measurements. This is shown by
equation 2.11. However, in the present situation where the total mass
under the distribution curve is fixed, it is to be expected that there
will be some reduction in the range of possible distribution functions.
The extent of this reduction is investigated in what follows.
‘There are three constraints which must be satisfied by a giien

distribution of particle sizes:

(i) Normalized slope of Il(e) or 12(9); provides an estimate of
the light scattering average size o by direct comparison with
Jf p(a)i (a,0)da or S p(a) i,(a,8)da in the manner described above.
In the present range of a, Il(e) and 12(9) give equivalent information;
there is no measurable difference in the behavior of the two curves
versus q.

(ii) The measured ratio of scattered to‘incident intensity; the

quantity Il(9o°)/IOl was used in the present analysis. The combination
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of (i) and (ii) completely characterizes the experimental light scattering

pattern, for fixed incident intensity. This latter statement is due
to the implied criterion that slope (or shape) of the scattering diagram
is a monotonically increasing and known function of size in the range of
interest, and that slope = 0 for o = 0.

(iii) Total mass/unit volume which must be contained by the size
distribution. .

These constraints are not sufficient to completely determine a

unique distribution curve, since a portion of the condensate mass may
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by contained in particles of very small size which will not contribute
significantly to the scattered light intensity. The introduction of
the mass constraint, however, does impose a definite qualitative limit
on the type of distribution which is possible. This will be shown by
the determination of a quantitative upper limit on number average
particle size.
Figure 3(a,b,c) shows the behavior of six types of distribution,
all of which satisfy constraints (i) and (ii) for a particular éaSe
(ub = .015, P/Po incidence = 0.30, distance from throat = 4.5 in.) as
can be seen from Figure 3(c). The distributions used are a delta function
located at o and the following céntinuous curves originating at a = .01.
l. linear triangle ‘:::]

2. linear triangle [:::_

|
3. pover law curve, h (;2.,3 -

A max
L. power law curve, h <-——- -
p ’ rERG O{;Ef.>
5 1 11( ! l )
. power law curve e g e
’ PN XC o

These are plotted in Figure 3(a). The corresponding mass distributions,
represented as a3p(a), are plotted in Figure 3(b) and the scattered
intensity distributions, Il(90°)p(a), are plotted in Figure 3(c¢). The
delta distribution and curves 1-+ 3 contain insufficient mass and curve
5 contains far too much mass.

It is evident from Figure 3 that for a given distribution curve,
the scattered light intensity dies off with decreasing a before the
number or mass distribution does. The significance is that below this

point of extinction, the remaining mass may be arranged any number of
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different ways without affecting the light scattering measurements.
However, some estimate can be made of the maximum size at which that
"missing“ mass may be placed. If the a axis of Figure 3(c) is

divided up so that 90% of the scattered intensity for a particular
distribution shape is due to particles lying to the right of a value

o and 10% is due to those lying to the left, this dividing size can
serve as a coordinate roughly corresponding to a 10% experimental
error in the measured value of Il(90°)/101. This value of a also
represents the minimum size which can be accounted for by light
scattering, again for a particular assumed distribution. (The error
levels associated with a and mass concentration are independent and are
not considered here--see Chapter II.D). The fraction of total mass
responsible for 90% of the scattered light is plotted versus this
dividing size in Figure 4. The data points corresponding to the
assumed distribution shapes in Figure 3 are indicated by the appropriate
number. This figure indicates that it is possible to have all the mass
contribute meaningfully to the scattered light. In this case, the
dividing size becomes the minimum particle size present and is, for
this example, around o = 0.2-0.25.

Now for those distributions where only a fraction of the mass
contributes to the scattered intensity, let us assume that the remaining
mass is located in a delta function at a size a' chosen so that the con-
tribution to the scattered intensity will be 10% of the total. This
again corresponds to the 10% error level in Il(90°)/IOl. The calculation
procedure for determining this size is given in Appendix A.3(b). The

resulting placement of the additional mass is shown in Figure 5, along
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with the correéponding number average size of the entire distribution
for each case. As in Figure 4, the numbered points correspond to the
distribution curves in Figure 3. The average size is very close to the
delta function due to the very large number of particles at the size a'.
The maximum possible a', for the assumed error level of 10%, is seen

to be around @ = 0.25. Thus it may be concluded, for the example in
question, that regardless of the type of distribution chosen the number
average particle size can be no larger than a 0.25 (2502 pa?ticle
radius).

It may be noted that for fixed values of "missing'" mass concentration
and scattered light intensity, the use of a delta function provides the
maximum placement of a'. If another distribution were assumed, the
number average size of the "missing" mass and consequently the upper
limiting number average size of the entire distribution would be lowered.
It should be noted also that the only arbitrary assumption involved in
the above determination of average size is the error level on
Il(9O°)/IOl; the value of 10% is representative of the actual experiment.
Entirely similar results would be obtained with a different family of
distribution curves, provided that they covered the range of from too
little» too much mass concentration. For other sets of experimental
data, the upper limiting number average size varied between a( or a')z
0.10 for the low mass fractions (.005) up to about o = 0.38 for the
largest mass fractions (.015).

As can be seen‘from Figure 3, the maximum particle size present

can vary from the light scattering average size, a = .Th, up to some
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very large size depending on the particular distribution assumed. The
experimentally determined value of o has the significance that there
are some particles present which are at least this big. However, it

is the number concentration at these larger particle sizes which is of
primary interest to people working in turbine erosion, etc. This
cannot be fixed as accurately as EL since the arrangement of particles
depends on the assumed distribution; curves 1-4 in Figure 3 as well as
the delta distribution at ¢ satisfy all the constraints when the appro-
priate delta function is added at a', and provide a variety of con-
centration behavior. A rough order-of-magnitude estimate can be
obtained by calculating the number concentration contained in the delta

9 .10

function at a. This typically results in a value between 107-10

particles/cm3, as shown in Figure 19, compared with a total concentration

3_lolh

predicted from the surface averaged condensation theory of lOl
particles/cm3.

In the treatment of the full set of experimental data, the upper
limiting value of average size is obtained by applying the above
described "missing mass" analysis to a delta distribution located at
size o . The calculation procedure is essentially the same as that
described above (Appendix A.3(b)) with the additional calculation of
the mass contained in the delta function at 5-. The difference between
the average size obtained in this way and the values obtained from the
other distributions (see Figure 5) is not enough to warrant calculating

a similar curve for each set of experimental measurements.

Thus two of the four limits on number average and maximum particle
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size are determined directly from the experimental measurements. The
corresponding values of lower limiting number average size and upper
limiting‘maximum particle size may be estimated with the assumption of
a specific distribution function as follows.

The minimum particle size can be as low as zero, as far as can be
determined from the light scattering measurements, but this limit is
raised by the physical considerations of the condensation phenomenon.
It is reasonable to assume that the particle size is no smaller than
the average droplet size obtained from condensation theory

(Chap. III.A).



This assumption is particularly valid when one considers the experiments

(19)(20)

of Wegener and Stein s in which the measured particle sizes were
found to be in good agreement with classical condensation theory. If
such a size is taken as the lower limit in the fitting of a distribution
curve to the three experimental constraints (i)-(iii), an estimate of
maximum particle size is obtained which is a good representation of the
maximum size present in significant concentration. A continuous, mono-
tonically decreasing distribution function is assumed. This has physical

basis in experimental distribution curves obtained in precipitation

studies in metals, a theoretically analagous process. An inverse power

law decay, h ( la-— i ), is used in place of an exponential or
a a
max

other curve of infinite bound in order to simplify the numerical calcula-
tions. This type of distribution may additionally be more valid;
Lifshitz and Slyozov(36a) have shown theoretically, for precipitatiqn
from a supersaturated solid solution, that the upper size pinches off
very sharply.

A calculation procedure which incorporates the above assumptions is
detailed in Appendix A.3(c). Briefly, curves of I1(90°)/IOl and the
best root-mean-square fit between Il(e) andqfil(a,e)p(a) da are plotted
versus n and @ ax® the distribution parameters. @ in and mass/unit
volume are held fixed in the calculations. The point of intersection
of the two curves determines values of amax and n, which are taken to
estimate the distribution. As an argument for the validity of this
approach, the calculated distribution curves were seen to steepen

(Figure 6) as the measuring station was moved closer to the nucleation

zone (shorter growth times).

26
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Thus from the scattered intensity measurements and the mass con-
centration of condensate, it is possible to determine limiting bands for
the number average and maximum particle sizes corresponding to each
set of experimental data. No further information about the average size

is obtainable without a reduced error level on Il(90°)/I Returning

oL
to the discussion of number concentration at the larger particle sizes,

it may be seen from Figure 6 that the assumption of a continuous dis-
tribution function sharply limits the concentration behavior.between a
and & ax® Since this sort of distribution function is reasonable to
expect, the calculated number concentration is probably quite representa-
tive of the experiment, at least in this upper size range. The calculated
concentration behavior for each set of experimental conditions may be

constructed using the assumed inverse power law distribution function

and the information contained in Table F.l.

C. Apparatus and Procedure

An experimental apparatus was designed and constructed for the
purpose of measuring the light scattered by condensation particles at
the exit plane of a supersonic nozzle. Since this work follows several
previous condensation studies in the Gas Turbine Laboratory, certain
pieces of equipment, such as the vapor injection system, were available
and could be adapted to the present experiment. The light scattering
apparatus however, had to be constructed especially for this project.
The general arrangem=nt of the various principal components is shown in
Figure T and.8. As can be seen, the test nozzle was positioned along a

vertical optical axis and angular scattering measurements were taken in
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a horizontal plane of observation. The nozzle was mounted on a telescoping
pipe to allow the exit plane to be adjusted relative to the light scattering
equipment, thus permitting the nozzle length to be varied. A detailed

description of the experimental apparatus follows.

1. Nozzle and related equipment
(a) Carrier air supply

The carrier air was provided by an oil-free, two-stage, reciprocating
compressor. To achieve stable steady-flow test conditions, the receiving
tank was bled to keep the compressor constantly under load. With the
regulator at its maximum setting of 125 psig, the compressor was capable
of supplying ~.12 lbm/sec at 105-110 psig, thus fixing the maximum
throat size of the nozzle. Other than routine filtering, no attempt was
made to clean the carrier air; when the apparatus was run at reduced
pressure, thus allowing the alumina dryefs to be used to reduce the
moisture content to a non-condensing level, there was no trace of light
scattering by suspended dust particles.

Since full pressure was needed for shock;free nozzle operation,
the dryers could not be used during actual condensation tests. There
was no harm done, since the condensation of water vapor was being
investigated, but it became necessary to accurately determine the
moisture content of the carrier air. An "Alnor Dewpointer'" was used
for this purpose. It is a cloud chamber device which relates the dew
point of the moist air to the expansion ratio at which a condensation
cloud first appears. The mass fraction of water vapor was found to

remain quite constant over the period of a few hours and to vary
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between w, = .0015-.003 depending on outside air conditions and cooling
cooling jacket temperatures. This measurement was made at a point up-
stream of the injection of additional water vapor. Although it would have
been useful to also check the moisture content at a point after injection,
this was not done because the scale of the instrument was exceeded.

The temperature of the air leaving the compressor was on the order
of 80°F; since higher temperatures were required to adjust the onset of
condensation to positions downstream of the nozzle throat, a high-
pressure steam heat exchanger capable of producing temperatures up to
240°F was used. The stagnation pressure and temperature, Po and To'
were measured at a point directly ahead of the nozzle entrance. A
Statham strain-gage transducing cell No. UC3, installed in a 0-200 psi
pressure fixture and connected to a model UR-L4 precision readout meter
was used to determine Po' It was calibrgted»against a mercury manometer
and was found to be both linear and stable. To was measured using a
bare copper-constantan thermocouple connected to a Leeds-Northrup
Model 8690 millivolt potentiometer with a 32°F ice reference Junetion.
This combination was checked at the ice and steam points of water and

was found to reproduce the standard values.

(b) Nozzle
In the theoretical treatment of condensation in a nozzle, the
flow inside the boundary layer is assumed to be that of a perfect gas
with heat addition due to the release of the heat of vaporization. It
is therefore essential that the wall boundary layer be well controlled.

Important factors here are a smooth entrance region and a steep negative
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pressure gradient. An axisymmet?ic geometry provides maximum flow area
versus wall surface and is desirable wvhere angular light scattering
measurements will be made. For a given air supply, these boundary
layer considerations compete with the requirements that the nozzle be
as long as possible and that there be shock-free flow to the exit. A
final consideration is that the nozzle should be able to be fabricated
using conventional methods.

A two-piece conical design was settled on, where the coﬁverging
section.is machined of aluminum and the diverging section is cast in
plexiglass. The plexiglass section was made by grinding a steel
mandrel to the specified dimensions on a center-type grinder and then
embedding it in the plastic. When external machining was completed, the
mandrel could be pressed out, leaving an accurately dimensioned passage;
After the two pieces were clamped together, the throat area was lightly
polished, providing smooth transition. Details of the nozzle construction
are shown in Figures 9 and 10. Following some experimentation, a nozzle
having a 0.25 in. diameter throat, 1° included cone angle and a
maximum length of lé.hs in. from geometric throat to exit plane was
constructed. This configuration is actually over expanded close to
the shock limit for atmospheric exit pressure, resu;ting in some boundary
layer thickening near the exit. It was found that smaller included
angles were not sufficient to keep the wall boundary layers apart,

causing a reduction in stagnation pressure and at the extreme & return

to subsonic flow.
Twenty-three static pressure taps of .016 in. diameter were

drilled as shown in Figure 9. The static pressures at these points



were measured simultaneously on a bank of 100 in. mercury-filled
U-tube manameters and were recorded photographically using 4x5 in.
Polaroid sheet film.

For the purpose of gas dynamics calculations, a supersonic nozzle
is described by the variation of its effective flow area with distance
from the throat. Here the effective flow area is defined as the
geometric flow area minus the boundary layer displacement thickness.
If it is assumed that the flow inside the boundary layer is a one-
dimensional, isentropic expansion of a perfect gas, the following

(

relation is obtained (from Shapiro 26)) between the area ratio and the

static pressure ratio:

S =[5 TR (87T e

(12)

+
=3
\

Dawson has shown that it may additionally be assumed, with reasonable
accuracy, that the boundary layer will not be greatly affected by small
changes in local temperature and pressure level. Thus the effective
area ratio distribution may be determined from a single set of
measurements of P/Po versus length along the nozzle for non-condensing
flow of the carrier air. Using equation 2.13 as tabulated in the

Gas Tables of Keenan and Kaye§37), with y = 1.4 for pure air, the

curve of A/A%eff. shown in Figure 11 was obtained. The curve of geo-
metric area ratio versus distance from the throat is also plotted in

Figure 11. Using these two curves, the displacement thickness at the

exit is calculated to be ~ .032 in. assuming a zero thickness at

the throat.
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At the higher stagnation temperatures, the plexiglass portion of the
nozzle was observed to be running quite hot. This appeared to be due to
conduction from the supply pipe through the aluminum converging_section
rather than local conduction from the boundary layer. Since plexiglass
loses strength rapidly with temperatures, a 1/2 in. thick phenolic
gasket and a water jacket were used as shown in Figures 9 and 10. A
very low water flow was used in the cooling jacket, and there was no
observable change in either the boundary layer or the condensatidn
behavior. The cooling jacket was not used at the shortest nozzle length
due to space limitations. Although precise measurements were not taken,
the plastic nozzle appeared to have sufficient dimensional stability

since the last data sets fell along the initially determined isentrope.

(c) Water vapor injection apparatus

To increase the carrier air moisture to the levels required in this
experiment, it was necessary to inject additional water vapor. A
schematic of the system used for this purpose is shown in Figure 12.
Liquid distilled water is supplied under pressure from a reservoir tank,
filtered, metered through a flat plate orifice, vaporized in a series
of heat exchangers and then injected into the carrier air stream. A
stainless steel supply tank with a capacity of about two gallons was
used. The supply pressure varied between 105 and 160 psig. and was
obtained from a bottle of compressed nitrogen. Two sizes of metering
orifice were used, .005 and .010 in. diameter, to provide water mass
fractions in the ranges .002 <w, <.008 and .008 <w, <.02 respectively.

They were made by drilling the appropriately sized hole in a disc of
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.005 in. steel shim stock. These were calibrated in the manner described

(12)

by Dawson » Yielding curves of ﬁw versus P -P2, the pressure

ater 1
differenée across the orifice. The pressures before and after the

orifice, P, and P2, were measured with the Statham pressure transducer

1
described above, using a network of valves to isolate the various
pressures.

Before the water could be combined with the carrier air, it had to
be vaporized and superheated to a point where it would not re-condense
during mixing. Four heat exchangers, connected in series, were used
for this purpose:

- A three foot counterflow-type exchanger, heated by 120-1L40 psig

steanm.

- A 15 foot length of 1/4 in. stainless steel tubing wound into a

6 in. diameter coil and wrapped with a 760 watt, 110 volt,
electric heating tape. This combination ran at about 350-400°F.

- Two 750 watt, 220 volt, Calrod-type immersion heaters, each wound

with 12 feet of 1/4 in. stainless steel tubing. The Calrod units
ran at temperatures around 1600-1800°F, quite a bit above their
~design limit, but proved to be quite reliable.

Following established practice, bleed air was mixed with the metered
liquid water to improve vaporization in the heat exchangers. The
pressure drop in the carrier air heater provided sufficient bleed air
for good heat exchanger performance. The superheated water vapor-bleed
alr mixture was injected into the two-inch diameter carrier air pipe at

a point several feet upstream of the nozzle by a short length of tubing
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directed against the pipe wall. Glass view ports were installed at this
point, allowing a visual check for complete vaporization. Incomplete
vaporization could be detected through wetting of the wall at the injection
point. The series of heaters described above proved to be sufficient for

water mass fraction up to w, = .02.

2. Light scattering apparatus

The principal components of a light scattering apparatus are‘an
incident light source, a transducer for measuring the scattered light,
associated optical systems for collimating the incident and measured
beams and in this case, since angular measurements will be made, a rotating
transducer mounting to allow the angle of observation to be changed about -
a fixed optical axis. Before considering these items in detail, there .
are some general requirements which affect the overall design and
operation of the apparatus. |

The application of light scattering theory to this experiment is
based on the assumption of a parallel monochromatic incident beam. It
is also important that the incident light be éuite intense, since the
intensity of light scattered by a cloud of particles is several orders
of magnitude below that of the incident beam. It is additionally
desirable that visible light be used for ease in aligning the.various
components. These specifications were best met through the use of a
continuous gas discharge laser, which had the further advantage of not
requiring the additional collimation and filtering needed with conventional
light sources.

While the incident light is monochromatic, the multiplier phototube
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used to measure the scattered intensity is sensitive over a spectrum of
wavelengths. This requires that some provision be made to ensure that
only scaﬁtered light is being measured. This is typically done either

by installing an appropriate interference filter over the face of the
phototube or by excluding all outside light from the test area. In

the present experiment, it was preferable that the tests be run at night
for several reasons. These were the relatively long time required for

a series of data runs, the fact that other equipment in the lab disturbed
the light scattering apparatus, and the large amount of sound generated

by the open nozzle exhaust. It was therefore decided to take the light
scattering data under conditions of complete darkness and an interference
filter was not used. In addition to all room lights being off, a curtained
enclosure, visible in Figure 8, was built around the apparatus. Light ‘
emitted from the laser cooling slots and the reflection of the incident
beam off the opposite curtain were seen to affect the measurement of the
scattered signal. These sources of error were eliminated by attaching

a cover to the laser (Figure 8) and by cutting'a small hole in the curtain
opposite the laser, allowing the incident beam to leave the enclosure.

It soon became apparent that, due to laser intensity fluctuations
and the usual stability problems encountered with multiplier phototubes,
there was always a certain amount of noise present in the measured signal
(Becker, et. al.(38) provide a useful treatment of the sources of photo-
tube noise). 1In addition, there was occasionally some short-term
fluctuation in the scattered intensity arising from the condensation

process itself. Thus it was desirable to use some measurement technique
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which would allow the scattered intensity readings to be filtered or
averaged. Compounding the problem is the fact that the flow in the
nozzle musf remain absolutely steady for the time required to take a
full set of data, or conversely, that the light scattering data should
be taken as quickly as possible. For these reasons, it was decided to
continuously record the scattered light intensity versus angle of
observation on an X-Y recorder, thus removing the nged to ca;efully
align the apparatus to specific angles. Once a trace of the‘séaxfered
light intensity was obtained, a representative average line could be

drawn and obvious anomalies could be ignored.

(a) Incident light source

A Spectra-Physics Model 130B helium-neon laser was used as the
source of incident light. The oper#tigg wavelength is 63282. and the
output beam is plane polarized due to Brew#ter's angle windows at the
ends of the gas tube. Output power is specified at 0.3 mw and a beam
diameter of about .082 in. was observed at the exit plane of the nozzle.
A spherical resonator configuration was used, since it produces a more
collimated beam. An optional confocal resonator reduces the noise level
and ihcreases the power of the output light, but at the expense of a
more divergent beam.

The laser was mounted on an adjustable platform, as shown in Figure 8,
to enable the incident beam to be aligned to the fixed orientation of
the plane of observation. As mounted, the output beam was polarized in
the vertical direction, perpendicular to the observation plane. Since

it was desired to take scattered light measurements for both perpendicular
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and parallel polarized incident light, a Spectra-Physics Model 310
polarization rotator was mounted on the front of the laser. Rotation of
the plané of polarization is achieved by changing the orientation of a

half-wave retardation plate.

(b) Multiplier phototube

An RCA type 7265 multiplier phototube was used to measure the
scattered light intensity. It is a head-on type, flat face platé
design, featuring 14 dynode (or amplification) stages, a focusing
electrode for directing photoelectrons onto the first dynode and an
accelerating.electrode for minimizing space charge effects. It has
very low dark current and very short time resolution capability. The
semi-transparent photocathode has a multi-alkali (Sb-K-Na-Cs) composition
and exhibits an S-20 spectral response curve, covering the ra.ﬁge from
about 3000 to 7500 angstroms, with the ma#imum response at approximately
heooi. The S-20 curve was the best available for use in the red end
of the visible spectrum; its response at 63283 is about 40% of the
maximum response at hZOOZ. The 7265 is capable of multiplying a small
photoelectric current produced -at the cathode by a median value of 9.35x106
times when operated at a supply voltage of 2400 volts. The output
current is a linear function of the exciting illumination under normal
operating conditions.

The phototube was powered by a Hewlett-Packard Model 6516A 0-3000vde
regulated power supply. A voltage divider circuit was used to supply
the correct voltage to each stage of the phototube, following the

schematic provided in the RCA-T265 specification bulletin(39). The



38

current developed by the phototube, proportional to the incident intensity,
was measured in terms of the voltage across a 2T7KQ load resistor and was
recorded on the Y scale of a Hewlett-Packard-Moseley X-Y recorder.
For given experimental conditions, the supply voltage was adjusted so
that the anode current never exceeded 0.25 ma., as recommended for
maximum stability. The phototube was electrostatically shielded by
mounting in a grounded metal housing. No attempt was made to further
reduce phototube noise (dark current) with magnetic shielding of photo-
cathode cooling.

The phototube, voltage divider elements, and the collimation
system for the scattered light were all mounted in a single housing as
can be seen in Figure 8. This unit was fitted to the rotating arm by
means of an adjustable carriage, thereby permitting adjustment relative
to the laser beam and plane of observation. The collimation system for
the measurement of the scattered light has three principal elements; a
circular aperture to limit the solid angle of observation, a rectangular
. aperture to limit the scattering volume, and a lense to focus the
rectangular aperture at the axis of the rotating arm. With this geometry,
the scattering volﬁme is defined by the intersection of the laser beam
and the projection of the rectangular aperture. It will be a right
circular cylinder when the scattered direction is perpendicular to thé
incident beam. Further details and dimensions, along with the geometric
calculations necessary to compare Io and I, the incident and scattered
intensity readings, are included in Appendix B. The procedures and

equipment used to align the light scattering apparatus are also described

in this appendix.
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(¢) The rotating arm

A central pivot bearing and a rotating arm were designed to
position.the phototube housing, as shown in Figures 7 and 8. With this
arrangement, the scattering volume could be located along an optical
axis and hence would not change in focus or position as the angle of
observation was varied. The bearing proved to be the critical element,
since it must not only precisely determine an axis Qf rotatiqn, but
must be large enough to allow the nozzle to pass through its center.

A tapered journal bearing was machined from 6 1/2 in. i.d. x 8 in. o.d.
seamless steel tubing. Following cutting of the taper, the two pieces
were lapped together, grease retention grooves were cut and a coating
of graphite grease was applied to the mating surfaces. It is the design
of this part which required a horizontal plane of observation.

The amm for carrying the phototube housing was constructed from a
length of aluminum channel. A 20 1b. coupterweight was aﬁtached to
statically balance the rotating assumbly about its axis of rotation,
thus allowing the grease film to ﬂe loaded evenly. The lower part of
the bearing was so;idly mounted to the apparatus and carried four
adjustment screws to align and hold the nozzle along the axis of
rotation of the system. In this manner the location of the scattering
volume could be fixed at any point in the nozzle exit plane.

Since continuous angular readings were to be made, a 10-turn pre-
cision potenti§meter-battery combination was used to provide an electrical
signal proportional to the angular position of the arm. This signal
was used to drive the X-axis of the above mentioned X-Y recorder. The

potentiometer was driven at a 16:1 step up ratio with a nylon-core



rubber belt fitted in a groove cut in the outside surface of the upper
bearing half.

A féur-way adjustable fixture for mounting density or polarization
filters was installed on the rotating arm ahead of the phototube, as can

be seen in Figure 8.

3. Experimental procedure
For each nozzle length used, the light scattering apparatus was
aligned so that the centerline of the nozzle and the optical scattering
volume coincided with the axis of rotation of the phototube. A pre-
determined series of carrier moisture levels and supply temperatures was
used for each nozzle length, and a full set for a given length was
generally taken in one night of testing. In preparing for a set of
tests, the air compressor and all heat exchangers were allowed sufficient
time to reach stable operating conditions; usually about an hour. During
this period the laser, phototubé, high voltage power supply, and X-Y
recorder were warmed up.
To record data for a particular set of operating conditions, the
following operations were performed:
- The carrier air pressure and temperatures were adjusted to the
desired values.
-~ The water mass fraction, wy» of the carrier air was measured and
.the amount of additional water vapor required was determined.
- The water injection apparatus was adjusted to the correct mass

flow rate, as measured by the pressure drop across the injection

orifice.

Lo



- A period of time was allowed to check the stability of the above
conditions, during which the polarization setting of the laser,
the supply voltage to the phototube and the scale factor of the
X-Y recorder were adjusted.

- When a recheck 6f Po’ T° and w, indicated stable test conditions,
the room lights were extinguished and the scattered light
intensity was recorded. The arm holding the phototube was
manually swept through the desired range of bbservatién éngles as
steadily as possible. Two traces (forwﬁrd and backward sweep
through angular.range) were taken in this manner for each of two
incident polarizations, perpendicular and parallel to the plane
of observation. Wheﬁ complete, two reference angles were marked
on this recording. |

- At this poiﬁt, the values of Po’ To and the pressure drop across
the injection orifice were recorded and a photograph was taken of
the manometer board showing the static pressure profile in the
nozzle.

- The lights were again turned off, and the light scattering
measurementé described above were repeated. In this manner, four
traces were recorded for each polarization setting, and their
average was used for the determination of particle size. A
noticable difference in the separately recorded data sets usually
indicated that something had come out of adjustment, and in this
case the entire process was repeated.

The actual recbrding of the data took on the order of three to five

minutes for each set of test conditions. Incident light intensity
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measurements were taken for each supply voltage and recorder scale used.

D. Interpretation of Experimental Results

1. Data reduction

Figure 13 shows typical traces of the perpendicular and parallel
scattered light intensity as recorded on an X-Y recorder. Two such
recordings were made for each set of test conditions, as iﬁdicated_in
the Experimental Procedure. These experimental curves deviate from the
expected theoretical shapes due to the 1/sin 6 change in the scattering
volume (see Appendix B.l). Two operations are necessary before discrete
points can be taken from these experimental traces for use in the
estimation of particle size and number distribution. The first is to
draw smooth "average" lines through the recordings. This is done by
overlaying the two recordings taken at the same conditions oﬁ a light
plate and visually determining the best fit. The second operation is to
divide the X-axis into discrete angular intervals. This is accomplished
using two index marks at 30° and 90° which were made during the recording
of the data and the fact that the X-displacemént is a linear function
of angular positions.

With this preparation completed, the scattered intensity is
measured by the height of the trace above the baselline at a given angle.
In this experiment, scattered intensity data were usually read over
the range 40°<g<1L40° at 5° intervals. In some cases, where the
scattered intenstiy was low, the measurements taken at backward
scattered angles were influenced by reflections of the laser "fringe"

off the nozzle body. When this happened, the range of observation
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was reduced to 40°<6< 110°. For the estimation of number concentration,
the measurement Il(90°) was taken directly from the above data. Care

was takén that the corresponding value of incident intensity, I_ ., was

0l
recorded at the same scale setting.

The values of Po’ To, mass flow of injected water vapor, and the
static pressure profile are measured directly or are obtained from
the appropriate calibration chart. The mass fractipn of watgr'vapor
flowing in the nozzle, defined as the ratio of water vapor to the total

mass flow, is calculated by an iterative procedure as outlined in

Appendix C.

2. Estimation of experimental error

The maximum accuracy to which condensation behavior can be pre-~
dicted will be fixed by the uncertainty present in the measufement
of the nozzle flow conditions. The pressure and temperature measurements
are taken directly and are accurate to within * 1%. The mass flow of
injected vapor is determined by two pressure measurements from a
calibration curve and has a similar accuracy. The calculated value of
the total mass fraction, however, depends on a carrier air humidity
reading obtained with a cloud-chamber-type dewpointer and the assumption
of zero throat boundary layer. As a result, the uncertainty in the
absolute value of "R is increased to about 5-10%, with W tending to
be under estimated. The error is reduced when comparisons are made
between sets of experimental results, since here the throat boundary
layer assumption drops out.

The technique of using various nozzle lengths to investigate
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droplet growth depends for its success on the ability to reproduce a
given set of experimental conditions. In practice, it proved to be
quite difficult to adjust the apparatus to specified values of Po, '1‘°
and W . This was due both to oversensitive controls and to the fact

that the final value of w, could only be estimated as the data was

being taken. Such deviation from the intended test condi-tions shows up
in the form of varying incidence behavior, as can be seen in Figures

18 and 19.

In the present study, several size estimates are obtained from the
light scattering data. The first of these, the "light scattering average"
size, is obtained directly from the measured shape of the angular
scattered light intensity curve. The only significant errors which arise
are those associated with the drawing of an average line throﬁgh a
fluctuating data trace and the reading of-the resulting amplitudes at
discrete angles. If a number of independently drawn lines are passed
through the same recording of scattered intensity, these lines will be
seen to fall inside a certain band. This représents the level of dis-
crimination of the experimental procedure. The maximum expected error,
then, is determined by the upper and lower limiting values of size
parameter o whose curves just fall inside this band. This procedure is
complicated by the fact that the rate of change of slope of the scattered
intensity curve increases with o for the size range encountered in this
experiment, 0.1<a<l1.0. At the upper end of this range, the uncertainty
in o was found to be about * 3%, while at the smallest sizes measured

the error increased to about + 8-10%.
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The second size estimate obtained from the light scattering data
is the upper limiting number averﬁge particle size. This value is
calculated by the method outlined in section 3(b) of Appendix A.

It may be seen from equation A.31 that uncertainty in the values of M',
the concentration of condensed mass (obtained frommo), and o , the
light scattering average size, affects the computation. These errors

have been estimated above to be about * 10% and * 3-10% respectively.

I,(90°) |

To1

scattered to incident intensity, enters A.31. K is a combination‘of

In addition, the error in the measurement of K, the ratio of

geometric factors which are constant for given experimental conditions
' I.(90°)
1

IOl

(Appendix B.3). For this experiment, the composite error on K

is estimated to be + 10%.
Before the individual errors can be substituted into A.31 to

determine the total error in the calculated average size, an estimate

' L
must be made of the error in the term (M - Mvisible)' This may vary

L
over a wide range. However in the present expgrlment, Mvisible was

found to vary between 10-40% of M'; therefore a conservative estimate

can be obtained by assuming M' to be half of M'. With this assumption,

visible
1
the maximum error in (M' -M. . )is given by 2-error on M' + error on
visible
1 . .
risible® If the above errors are substituted into A.31, the error level
on the calculated value of average size is found to vary from +16% for
the larger values of e to * 23% for the smaller sizes. Again, the
relative error between sets of measurements will be lower due to the

removal of several constant calibration errors.



The minimum value of number average size and the upper limiting
maximum size are obtained Jointly.from a procedure which fits an
arbitrafy distribution function to the experimental measurements of
scattered light intensity and condensate mass (Appendix A.3(c)).
Numerical error estimates have a reduced significance because of the
strong dependence on the validity of the chosen distribution function,
particularly the assumed minimum size. The error due to uncertainty
in the input variables alone has been determined by working out fhe
calculation procedure for the limiting errors. The maximum expected
variations in M', Il(9o°)/IOl and Il(e) are found to produce a 2-3%
yariation in average size; this relatively mild effect is due to the
fact that the vast majority of the particles are located at the small
end of the distribution. The meximum size estimate was found to have
about the same level of uncertainty as the upper limiting average size

calculated above.

L6
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III. THEORETICAL PROGRAM

The work to be described in this section_was undertaken in an
attempt to establish a theoretical basis for the presence of large
condensate particle sizes. This was done by applying a refined calcu-
lation technique to existing condensation theory and by examining other
mechanisms which may be operating in the supersonic nozzle flow.

As has been indicated, the condensation behavior of water vapor
is predicted best by the classical theory. When applied to éupersonic
flow in a nozzle, condensation theory has three principal parts. These
are nucleation theory,.which describes the spontaneous formation of
stable clusters of molecules from the supersaturated vapor; droplet
growth theory, by which these stable clusters increése in size; and
compressible flow theory, which accounts fﬁr the effect of the released
heat of vaporization on the gas flow in the nozzle. In previous appli-
cations of the theory, a surface—ayeraged particle size has been used
to facilitate numerical calculations. In the present work, this con-
dition is removed through a modification to the calculation procedure.
By dividing the condensate up into a number of groups, different sized
drops are allowed to grow at different rates. In this situatiéh, if
the average size of a particular group falls below thé critical size,
due to a changing stability criterion, that group will evaporate and
disappear. This mechanism could thus form the basis for a spontaneous

"aging" process, whereby the initial distribution tends toward a larger

mean size.
When condensation occurs in a supersonic nozzle, a very large

number of particles is introduced into the flowing gas. In existing
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applicationsof condensation theory, it is commonly assumed that there
is no aggregation into larger sized particles. This is found to be a
valid assumption only under certain flow conditions. Two such aggrega-
tion mechanisms were investigated in the present study. The first is
aggregation by Brownian Motion, in which the condensate particles come
together and stick due to kinétic fluctuations. The second mechanism
is aggregation by particle slip-collision, in which particles of
different size lag an accelerating carrier flow by differing'améunts,

thus establishing a collision probability.

A. Classical Condensation Theory

The application of condensation theory to a nozzle flow has been
worked out in detail by numerous investigators. Since the formulation
used in the present study follows directly from these sources, a
rigorous development will not be presented. The particular equations
used are summarized and the general physical reasoning is indicated.

Source references are included where applicable.

1. DNucleation rate
Various methods have been used to derive an expression for the
classical nucleation rate. These differ somewhat in detail, but the

resulting expressions share the same general form:

L}

J= Zr’w(4Trr‘*2)n exp<_a67“‘/,{-}-) (3.1)



4o

where:
J = no. of nuclei produced per unit volume per unit time
Z = the Zeldovich non-equilibrium factor, which varies by one
or two orders of magnitude depending on the particular
approximations. used in deriving the equation.
n = no. of vapor molecules impinging on unit surface area per
unit time.
(4 nr*z) = surface area of a critical sized cluster
n = concentration of vapor molecules
AG* = free energy of formation of a critical sized nucleus

k = Boltzmann's constant
T = temperature at which the clusters form, assumed to be that
of the local stream.
In the above, the growing droplet is treated as a generdlized molecule
in which inter-molecular forces are neglected. If it is assumed that
the velocity distribution of the vapor molecules conforms to the kinetic
theory of gases, the impingement rate may be written:

Y= + (3.2)

(amm-r kT)"*

where p is the vapor partial pressure and m is the molecular mass.

The total change in free energy is assumed to be the work of
formation of the surface of the droplet plus the isothermal change in
state of g¥* molecules condensing from vapor to liquid:

~ ¥4
A(J*: A-rr\* O/ _ (‘:-!-’k k_’— ,aVL (% ) (3-3)
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where:
g = surface tension of cluster
g* = no. of molecules in a critical sized cluster
Py = flat film saturation pressure at temperature T.

This function has a maximum value of’

2
AGT TS

at a size
* 20V, _ 2
= P ) £ A
KT (5) ERT tn(E) (3.4)
where
v, = volume per molecule of the liquid phase

-]
[}

gas constant per unit mass
pp, = density of liquid phase

r* is called the critical radius, and is the most difficult size to form.
Once a droplet reaches this size, it has a 50% probability of

growth.

In a steady-state nucleation process, both evaporation and condensa-
tion take place simultaneously as' the cluster grows. A non-equilibrium
but steady-state distribution of cluster sizes up through the critical
size is postulated. The process of nucleation is then considered to be
a constant net flux of nuclei through a steady distribution of cluster
sizes, with the concentration of any particular size remaining fixed.

An infinite supply of vapor molecules is assumed, and clusters are

considered to be stable when they have reached a size of about 1.3r¥,

where the probability of further growth is approximately unity.

50
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By using this approach, Frenkel arrives at the following

expression for nucleation rate:

_ (LY 4 dr’
J= G & ( )@‘P( L) o

corresponding to a value of

/2 -
Z - [f/n(‘P/“Pao) ] | N |

Tt
in equation 3.1. Derivations by Vblmer(hl), Becker and DBring(hz),
Zeldovich(h3), Barnard(hh), Yang(hS) and others have resulted in similar

expressions (in some cases identical) for the classical nucleation rate,
differing only in the factor Z. Although the corresponding numerical
values range over two orders of magnitudé, the expression for nucleation-
rate is relatively insensitive to changes in the pre-exbonential factor
when applied to condensation in a nozzle. It may thus be concluded that
there are no significant differences in the classical treatment of the
theory.

Lothe and Pound(lh) have set forth a revised nucleation rate theory,
in which the free energy of formation, as written in equation 3.2,
is modified to explicitly take account of the translational and rotational
motion of the droplet. When these contributions are expressed as an
additional term in the summation, -kTlnl', the factor I may be trans-
ferred into the pre-exponential. [ is commonly referred to as the

"gasification factor" and takes on a value of around 101T for water

vapor. However, as noted earlier, water vapor obeys the classical

derivation.
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For a more detailed treatment of nucleation theory, reference may
be made to any of the above cited works or to Feder, Russell, Lothe

and Pound(l3).

2. Droplet growth

In the usual nozzle condensation process, nucleation ceases before
all the vapor present can condense. The nucleated clusters continue
to grow by vapor impingement and reaching a size up to aq order of
magnitude greater than the critical radius.

The growth of é droplet depends on the rate at which condensing
molecules enter its surface and on the raté at which energy is trans-
ferred between the droplet and the gaseous environment. This energy
transfer is accomplished through thermal accomodation of reflected
vapor and carrier molecules, and through evaporation of previously
condensed molecules. In the statements to follow, the growing droplet
is assumed to be spherical, stationary in space, and to be characterized

by its temperature and vapor pressure, T_ and Ppe Temperature variation

D
across the droplet is assumed to be negligible. Two accomodation
coefficients are defined to describe the droplet-molecule interaction:
& = condensation or mass accommodation coefficient = that
fraction of the impinging vapor molecules which enter
the drop surface; (1 - £) are therefore reflected.

@ =  thermal accommodation coefficient = the fractional temperature

change which occurs in the reflected vapor and carrier gas

molecules.
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X =

Al

-T
_Aj’

If £ is equal to one, only thermal accommodation with the carrier gas
needs to be considered.

In the typical nozzle experiment, the critical radius is several
orders of magnitude less than the mean free path; at the completion of .
the growth process, droplet size is usualiy less than one mean free
path. Under such conditions, kinetic theory may be used fo prediét the
mass and energy flukes to and from the droplet surface. Using equation
3.2 with the above definition of £, the mass flux (per unit area per
unit time) into the droplet is

Eﬁ E ( Zﬂ_ RT )\/2

where p is the vapor partial pressure, T is the local stream temperature
and R is the appropriate gas constant. If it is assumed that the rate
of evaporation from the droplet is equivalent to the equilibrium rate
of condensation at the droplet temperature and pressure, the mass flux

evaporating from the droplet is

6, - & T
T (an RT, )P

Pp is the vapor pressure at the surface of a droplet of radius r, and is

related to the flat-film saturation pressure by the Helmholtz equation:

B [ 2d
b _ (3.6)
(“POO)TD QXP {OL R TD r ]

The droplet growth rate may be obtained from the expression for net



mass flux:

dr

dar _ 5 - (3.7)
ot g (P A)

The energy flux to the droplet is g*KRT, where K =
- . . i ded to the d d
[1/(YVapor 1)+1/2]. Of this, ¢B*KRT is ad o the drop an
(1-¢) B'KR[T+a(TD—T)] is reflected, following thermal accommodation.
There will be an additional energy flux away from the'droplef due to
collision and thermal accommodation with the carrier gas molecules,
)1/2

» with the subscript

given by BchRc“c(TD'T)' Here Bc=Pc/(2chT

¢ indicating the appropriate values for the carrier gas. Finaliy, the
evaporating mass flux will carry away the energy EBD'HRTD. The net
rate of energy flux to the droplet, found by suﬁming the above terms,

must be equal to the rate of change of its internal energy:

4 2 dTo 2 o T
where
e = specific heat of the condensate
UfD = internal energy at temperature TD
Y
o h . = —2RPOY _ ooy
= "fD Y -1 fg
vapor

An order of magnitude analysis indicates that the rate of which energy

must be added to change the drop temperature is negligible compéred to
aT
D

the rate at which condensing liquid supplies latent heat. The T

term in the above may therefore be neglected, allowing the energy

conservation equation to be reduced to the form:
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where
X hes
v f RT
M = molecular weight

For known flow cona.itions, the droplet temperature and pressure
may be obtained from a simultaneous solution of equations 3.6 and 3.8
if a value of the initial radius is assumed. This is commonly taken to
be 1.3r*, the size corresponding to a growth probability of about one.
Once Pp and TD have been determined, the instantaneous grbwth depends
on the ratio BD/B or alternatively, on the ratio TD/T. A growing drop
is characterized by a TD>T.

Since equation 3.7 cannot be evaluated for every size of drop, it
is usual to calculate the growth on the basis of a surface—avefaged
droplet size. This type of average is considered to be appropriate in.

view of the impingement controlled growth mechanism.

3. Gas dynamics
Since the condensation is occurring during expansion in a super-
sonic nozzle, the release of the heat of vaporization causes a change
in flow conditions. This heat addition is experimentally observed by

the departure of the static pressure from the non-condensing isentrope.
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The effect may be computed if the above nucleation rate and drop growth

equations are combined with conventional gas dynamics theory, making

use of the following simplifying assumptions:

1. The flow is steady, one~dimensional, inviscid, and exchanges
no heat with the surroundings.

2. The vapor and carrier gas are treated as a mixture of perfect
gases, the composition of which varies as the condensible
component changes phase.

3. The volume of the cohdensate is negligible compared to its
volume as a vépor, allowing it to be ignored in calculating
the specific heat of the liquid-vapor-carrier mixture.

4. The boundary layer thickness (and hence the effective area
distribution) is negligibly affected by small pressure and
temperature changes.

Under these assumptions, the equations governing the gas dynamics

continuity

. Ay
. % (3.9)
| — M
conservation of momentum
—AcdP = v du (3.10)

conservation of energy

(PCYT + ud = h g ol 4t (3.11)
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total mass flow rate = carrier + vapor + condensate

density of carrier gas-vapor mixture, approximately given by
P/RmixtureT

cross-sectional flow area

local stream velocity

mass fraction of condensed moisture

local stream pressure

local stream tgmperature

specific heat (of carrier gas + vapor mixture) at constant

pressure

heat of vaporization of condensing vapor

By considering the condensation process with respect to variable

nozzle position, rather than time, équations 3.9-3.11 may be written in

terms of five variables, P(x), T(x), u(x), u(x) and A(x). The function

A(x) is provided by the effective area distribution of the test nozzle,

determined as indicated in Chapter II.

u(x) may be obtained from the previously determined relations for

nucleation and growth in the following manner. A nucleus of radius r

is assumed to form at nozzle position xo.. At position x, it will have

grown to a larger size

X
. I dr
r=Yc + ./; '.E\— d'L C’x

and its surface area will be

‘ j cr 2
am (o~ | = Gpdx)
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The total number of nuclei formed in a volume A(xo)dxo is J(xo) A(xo)dxo.
The rate at which liquid is condensed in the volume A(x)dx on these nuclei

is

Rar(re+ [, L1 2 e dx)J<x°)A<xe)d:<° e X

Taking account of the nucleation at x, the expression for the relative
rate of formation of condensate along the nozzle is found to be

o T8 [len [t ) T Mg o
3.12

+ -.:;-n,"ﬂx)mx)]

The term %f- is calculated using the surface-averaged radius of the
droplets at the particular cross-section.
Equations 3.9-3.12 are rewritten in the following form for use with

a Runge-Kutta-Merson numerical integration procedure:

daYy, = en JA (3.13)
ay, = Y. -5—'75- r r7dY, (3.14)

- clr x 2 (3.15)
dYs = Y, ¢ + JA(4rr*")

(3.16)
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where M is the local Mach number, defined as

i} 2
M QRT)?

and the quantities y, R and cp apply to the mixture of carrier gas
and uncondensed vapor. Yl is the total number of droplets, Y2 is the
"total" radius and Y3 is the "™otal" surface area. With these variables,

a surface averaged radius is easily calculated:

— 2Y Wz
r =(——-—3
Y.
When equations 3.13-3.19 are applied to a situation where a re-
latively large amount of condensate forms, it may become necessary to

account for changes in the specific heat and molecular weight of the

flow. The procedure for doing this has been presented by Dawson(l2).

L. Application of condensation theory

In the usual application of equations 3.13-3.19 to a condensing flow,
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uncertainty in the values of I, o, £ and .aexerts a large influence on
the predicted results. The problem is considerably reduced in the
present case of condensing water vapor, since.the general behavior of
this substance is well known. By comparing available data with the

(5)(6)

classical theory, Hill has shown that agreement is obtained when
a= 1, £ 0.04 and o takes on the appropriate bulk liquid value. The
value of unity for a corresponds to the general agreemeﬁf that there
is complete thermal accomodation between a liquid and its vapor. . The
low value of & is taken from measurements made by Alty and MacKay(h6)
on water droplets evaporating into a vacuum.

The value assigned to ¢ 1is somewhat more arbitrary. There is
considerable question concefning the applicability of a flat-film value
of surface tension to a cluster containing.so—loo molecules, but various
schemes to correcﬁ for curvature have failed to agree even on whefher o
should be increased or decreased. The problem is complicated by the
fact that for condensation of watef vapor in an air carrier, nucleation
can occur at temperatures below the triple point. Under equilibrium
conditions, this would indicate that ice particles are formed, with the
requirement that an additional iatent heat term be included in the heat
addition calculation. But in the case of water, the heat of liquefaction
is small compared to the heat of vaporization with the result that the
presence of supercooled liquid or solid particles cannot be differentiated
in the experimental measurements. However, Duff(lT) has found for the
condensation of carbbn dioxide, where the two latent heats are comparable,

that agreement between theory and experiment could only be obtained with

the assumption of supercooled liquid drops below the triple point. On
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this basis, a value of surface tension corresponding to the supercooled

bulk liquid is used here (Jaeger(lo) presents an extrapolation procedure

for obtaining fluid properties below the triple point).

B. Differential @Growth and the Aging Phenomenon

As has been mentioned, it is usual in the applicaxion_of condensa-
tion theory to consider the growth of droplets of surface-averaged size.
However, if a distribution of sizes is allowed to exist, there are two
possible mechanisms by which growth of the larger particles will be
favored.

The firét of these is based on the fact that growth rate is dependent
on drop radius, as indicated by the factor r in equation 3.6 for the
droplet vapor pressure. A rather small effect is expected, since the
growth rate gf- asymptotically approachesAa constant value as.droplet
size increases (see Hill(5)(6)) in the free-molecule regime.

The second mechanism is expectéd to be more influential. As
nucleation is coming to a halt, there is an abrupt increase in the
size of the critical radius. The possibility arises that it will
exceed the size of a portion of the growing drops, thereby causing them
to evaporate. This will return vapor to the system, which can then
condense on the larger drops. The net effect will thus be an increase
in size of the drops at the high end of the distribution at the expense
of those at the lower end.

These mechanisms were investigated theoretically by dividing the
nucleating drops into a number of groups, each having a certain droplet

concentration and surface averaged size. The procedure used was to



rewrite the first four of equations 3.13-3.19 for each group:
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where the subscript n, n + 1, etc., identifies the particular group.

Equations 3.17-3.19 were applied in the same manner as before. The
variable p now represents the total moisture condensed and is determined’

by

/‘{ = \{n4 + ':"':*‘_’)4_ -+ Y(fl*‘2)4 Tt

where the summation is carried out over all groups. The groups are
initiated during the nucleation phase through the use of a dual criterion,
which is experimentally determined in the following manner. A surface-
averaged calculation is allowed to run to the completion of nucleation,
and the time and total number of condensate particles are recorded.

These values are divided by a factor N, set equal to 10 in this study,
and the calculation procedure is restarted. A new group is then
established whenever the elapsed time or the particle‘concentration of
the present group exceeds the appropriate limit. By this technique,

a maximum of 19 groups are possible, assuming that there is“no radical
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change in the nucleation behavior due to differential drop growth-
evaporation. In practice, between 10-15 groups were typically obtained.

The results for the condensation of water vapor in an air carrier
stream indicate that the effect is much smaller than anticipated. Two
distribution curves are shown in Figure 14, representing typical results
for the range of water concentrations used in this study (.005< w, < .015){
Typical group radius growth curves are shown in Figure 15. Note that
while ﬁhere was a size spread of up to a factor of 10, the v&st majority
of the condensed mass is located within a relatively narrow range. This
may be seen from Figure 1L, where the very large and very small sizes do
not appear.

The absence of a significant effect is due to the behavior of the
critical radius. As shown in Figure 15, r* rises only briefly, signalling
the end of nucleaﬁion, and then drops off again as the stream temperature
falls. Thus whenever a group with a sufficiently large amount of con-
densate does fall below r*, evaporation is quite slow. A series of
rﬁns was made with 100 times the negative growth rate, but the overall
distribution was not significantly affected.

It was observed that the céncentration of larger droplets increased
as the point of incidence was moved down the nozzle (corresponding to a
milder pressure gradient and a longer nucleation period) and as the
mass fraction of water vapor was increased. Although in no case was the
mass significant by itself, this behavior was found to agree qualitatively
with the experiment heasurements. This would suggest an influence on the
operation of some other mechanism.

In the condensation of pure steam, the critical radius would be
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expected to remain high following nucleation due to an essentially
infinite supply of vapor. Under such conditions, the aging phenomenon
should be more apparent. An application of the present calculation
scheme to a typical superheated steam flow, as presented in Figure 16,

shows that this is indeed the case.

C. Brownian Coagulation

With the incidence of nucleation, a large numﬁer of condensate
particles are introduced into the nozzle flow. If their ﬁumber i?
sufficiently 1arge,'there is the possibility of agglomeration arising
from contact between the particles. This mechaniﬁn is usually neglected
in the treatment of nozzle condensation, primarily because of the short
residence times involved. To estimate the magnitude of the effect, a
calculation of the coagulation due to Brownian motion (thermal fluctuation)
is incorporated into the surface-averaged droplet form of condensation
theory (equations 3.13-3.19).

Since the mean free path of the nozzle flow is on the order of 10-5
cm, versus initial droplet sizes of around 10-6 cm., it is appropriate
to apply the collision rate obtained from kinetic theory. Following
the development contained in Appendix D, the rate of change of particle

concentration is expressed in the form

l/z
dN < 4'8 k T ) -?‘/Z Ve (
dt Co N

N

where

N = particle concentration = no./unit volume
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t = time

Boltzmann's constant

=
"

L}
[}

" absolute temperature

Py, droplet density

T = surface-averaged particle size
This equation corresponds to a 100% probability that two droplets stick
together on contact. If agglomeration occurs in only a fraction of’the
collisions, equation 3.21 is modified by multiplying dN/dt by the‘appro-
priate fraction. For each integration step in the numerical progedure
for solving equations 3.13-3.1k4, a value of AN is calculated using 3.21
and the current values of ;, N,T, and&. N is then reduced by A N and
the average droplet radius is increased so that the total condensed mass
is conserved. The integration then proceeds to the next step with the
revised variables Yl, Y2 and Y3, where equation 3.21 is again applied.

The application of the coagulation rate for uniform particle size
to the surface averaged condensation theory ignores both the initial
size distribution due to a changing critical radius (Figure 14) and
any tendency for a distribution to develop as Brownian coagulation
progresses. This is shown in Appendix D.4 to provide an overestimate
of the actual coagulation rate when working in the free-molecule regime.
However, detailed applicatién of equation D.1 to an expected distri-
bution is not practical, particularly since a more detailed approach
should also include the spontaneous distribution change mechanism
described in the previous section. A full statistical treatment of the

condensation phenomenon will be very complicated indeed.



In the pfesent study, with the assumption of a 100% sticking
probability, the surface-averaged particle size was found to increase
by a factor of from 2.5 to 4 (depending on wo) for a nozzle residence
time of approximately 0.5 msec. This increase is too large to be
neglected, although it will decrease proportionately if the probability
of sticking is reduced. In the experiments of Wegener and Stein(lg)(zo), ‘
the assumption of negligible Brownian coagulation is juétified primarily
due to the lower pressures employed. For similar values of @o and TO,
they measured droplet concentrations approximately an order of magnitude
lower than expected in the present study; since Brownian coagulation is

proportional to N2, the mechanism theoretically has 100 times smaller

effect.

D. Coagulation due to Directed Motion

Due to the small size of the droplets predicted by condensation
theory, it is usually assumed that there is no slip relative to the
accelerating nozzle flow. However, if there is relative motion between
the condensate droplets and the carrier gas, the presence of a distri-
bution of sizes allows a particle slip-collision-coagulation mechanism
to operate. By this mechanism, larger droplets would react more slowly
to a change in stream velocity and be overtaken by the smaller droplets.

To investigate this probability, the calculation procedure detailed
in Appendix E was applied. It was found that for the maximum velocity
gradient available in the test nozzle and for the maximum expected
particle size (as indicated by the light scattering measurements), there

was completely negligible slip between the particles and the carrier flow.
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Thus the mechanism is inoperative. An order of magnitude analysis
indicates that a droplet radius of around 10 microns (10" 3cm.) is
needed for the effect to become significant.

However, it was noticed that the average particle size increased
with passage through the conical shock at the nozzle exit (increased
scattered light intensity). The abrupt velocity gradient associated
with the shock will make its presence felt in equation E.5 mainly
through a reduction in the value of Ax. That coagulation'shéuld occur
rather than droplet breakup is shown by the value of the Weber number,
given by

& (Ug = Us) 1y

= (3.22
We = | )

where

p. = gas density after shock

=
1
=1
i

velocity difference between droplet and carrier gas; taken
to be the velocity gradient across the shock

r ='droplet radius

Q
L]

D surface tension of liquid condensate droplet

For Weber.numbers greater than approximately 10, droplet breakup
is likely; in the present study, this number had a value on the order of
0.2.

There is also the possibility that high intensity turbulence is
responsible for coagulation between particles of different size. Such

turbulence may exist in the conical exit shock or any oblique shocks which



may be set up by the abrupt pressure rise at the incidence of nucleation.
Here again, larger particles would tend to lag smaller ones in response
to a velbcity fluctuation. However, Crowe, Willoughby, et.al.(hT)
present the calculated result that particles as large as 10003 in
diameter will be able to follow fluctuations of up to 20,000 cycles
per second with little or no lag. Based on this conclusioﬂ and the
fact that relatively few parﬁicles of this size range are expected in
the condensing flow, the mechanism is presumed to have an insignificant
effect.

A third mechanism for coagulation due to directed motion between

droplets has been proposed by Steinberger, et. al.(ha)

in which two
spheres move relative to a fluid along their common centerline. The
second sphere will experience a reduced drag force and will,'after a
sufficient time, contact the leading sphére. This mechanism, however,

cannot operate here due to the absence of relative motion between the

droplets and the carrier flow.
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IV. PRESENTATION AND DISCUSSION OF RESULTS

As has been indicated earlief, light scattering measurements were
taken at five nozzle lengths (12.5, 10.5, 8.5, 6.5, and 4.5 in. from the
throat) for several incidence conditions at each of three vapor mass
fractions (wo = ,005, .010 and .015). For fixed values of P° and w,,

the point of incidence of nucleation is moved down the nqzzle (to lower

P
o

values of ( £ % by raising T .

Prior to discussing any theoretical predictions, the applicability
of classical condensation theory should be checked. Figure 17 shows the
incidence data obtained by estimating the point of departure of the
experimental curves of P/P° versus A/A* from the non-condensing nozzle
isentrope. Accuracy is limited by the fact that the static pressure taps
were spaced 1/2 in. apart. Since a conical nozzle was used, the local
expansion ratio varied with position along the nozzle. The dashed lines

~indicate the incidence behavior predicted by classical condensation theory

for the limiting expansion ratios; the line closer to the saturation line

corresponds to the minimum value of ( § )i' When one considers the

accuracy to which incidence could be dete:mined from the experimental
measurements, it may be concluded from Figure 17 that there is general
agreement with the classical theory.

Figure 18(a,b,c) shows the limiting values of maximum and average
droplet size as obtained from the light scattering measurements. The
surface averaged radius predicted from classical condensation theory

is also shown. The three parts (a,b,c) correspond to nominal vapor

mass fractions of .005, .010 and .015 respectively. Droplet radius is
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plotted against the pressure ratio at incidence, as determined from the
experimental curves of P/Po versus A/A* described above. _The horizontal

scatter réflects the experimenter's inability to exactly repreduce the

P
flow conditions at the five nozzle lengths. ( 3
o

incidence parameter because it was found to clearly represent differing

)i is used as the

incidence behavior (Po is approximately constant for all_runs). Daum

4P
and Gyanmathy(a) suggest the use of the parameter (- i db )

p2 at i for this

purpose; in the present study, the two parameters provide about the same
spacing of incidence points. However, the factor %% depends on the local
flow temperature (local flow velocity) and is therefore somewhat less
universal than the simpler measurement of (%—)i. If it is desired,

1 dp . P °
(- =5 )i may be obtained from (5—01 and the curve of A/A* versus
diszance along the nozzle (Figure li). An attempt was made to correlate.
the incidence behavior using values of (gﬁigﬁi or (gﬁggﬁi calculated
. using equation 3.5. Aside from the fact that an arbitrary combination
of experimental measurements has uncertain validity, the resulting values
were found to provide poor separation of different test conditionms.

For each nominal incidence point in Figure 18, the particular
values of maximum and number average size corresponding to the differenﬁ
nozzle lengths are indicated by the set of five symbols. The lower
limiting maximum size is the only purely experimental measurement, being
equal to the light scattering average size a. The upper limiting value
of number average size indicates the largest size at which the mass

unaccounted for in the measurement of & can be positioned and still be

within the error level (10% on Il(90°)/IOl. The upper limit on maximum
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size and the lower limit on number average size were obtained simultaneously
by fitting an inverse power law distribution curve to the light scattering
measuremehts and the total mass constraint, assuming the minimum size
to be that predicted from surface averaged condensation theory. As has
been mentioned earlier, the actual average droplet size may reside
anywhere between the limits, but it is known that the concentration‘at
maximum size will decrease as a is increased away from the lqwer lihit
o (see Chapter II.B.3, Figure 3(a)). For given values of W (%}Oi and
nozzle length, a size range is defined by the vertical distance b:tween
similarly shaped symbols.

From Figure 18 it may be concluded that, within the indicated limits:

1. The maximum droplet size is at least a factor of 10 larger
than that predicted by the surface averaged condensation theory.

2. The number average droplet size may be as much as five times
~ larger than predicted by surface averaged condensation theory. The
lower limit on average size is 1.3 times larger than predicted by the
surface averaged theory. However, this value depends strongly on the
initial distribution size (assumed equal to the awerage‘droplet size
predicted by surface averaged condensation theory) and is therefore
somewhat arbitrary.

3. There is a general tendency for the mgximum droplet size to
increase as the point of incidence moves down the nozzle corresponding
to a smaller pressure gradient and longer nucleation time. The opposite
behavior is predicted by surface averaged condensation theory. The

maximum size also increases with increasing values of wy» as is predicted
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by the theory.

4, Maximum size decreases slightly as the observation point is
moved closer to the nucleation zone, although this effect is small
compared to the difference between the maximum droplet size and the
surface averaged theory. The only significant deviation shows up for

w, = .005, low (%—)i and short nozzle length. In this case, comparison
with condensation :heory indicates that a portion of the vapor has not
yet condensed (the nucleation zone is located in the interval 2.543.5 in.
from the throat), making the average size estimates invalid. The fact-
that the maximum size remains high indicates that the growth to large
sizes occurs during or very.shortly after nucleation.

Figure 19 (a,b,c) compares Yalues'of droplet concentration
(no./cm3) obtained from the light scattering meaéurements (concentration.
in a delta distribution at ;-) with the total concentration predicted
~ by the surface averaged condensation theory for the same conditions as
Figure 18 (a,b,c). It should be noted that there will be a general
increase in concentration as the measuring station is moved closer to
the throat due to the reduction in flow area (higher static pressure).
This effect is shown by the increase in the total concentration obtained
from the surface averaged theory; this version of condensation theory
contains no mechanism for reducing the total number of droplets present
in the nozzle. It should also be noted that if a continuous, monotonically
decreasing, number distribution is physically called for, the concentra-
tion calculated at @ can at best 5e only a rough estimate of the

population near the maximum size limit (Figure 3(a)).
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From Figure 19 it may be concluded that:

1. The number concentration in the vicinity of the maximum size
is about 3—3 1/2 orders of magnitude less than the total droplet concentra-
tion predicted from surface averaged condensation theory.

2. There is a general tendency for the number concentration at
maximum size to decrease as the point of incidence movesAawéy from the
throat. The points which deviate from this trend (Figure 19(a)) again
correspond to w, = .005, low (g—?i and short nozzle length and reflect

o
the low values of a shown in Figure 18(a). For these conditions, con-~

densation theory }ndicates that nucleation has ceased bﬁt that there is
still a significant amount of vapor present. This would seem to indigate
that the larger droplets develop following nucleation but before the
vapor supply is exhausted. Such a mechanism would require an'unexpectedi&

large radius dependence in the droplet growth process but might be

. explained by an increasing value of £ as the droplet grows.

Figure 20(a-j) compares experimental values of droplet size plotted
versus distance from the throat with a number 6f theoretical predictions
for each nominal vapor mass fraction and point of incidence. The data
points shown are the light scattering average size and the limits of the
number average size. The theoretically predicted droplet sizes are

(i) surface averaged radius from the surface averaged theory
(Chapter III.A)

(ii) maximum group radius obtained from condensation theory with
differential growth (III.B)

(iii) surface averaged radius from the theory (i) with Brownian
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coagulation applied on an average—size basis (III.C)

It may be immediately observed that the size increase due to
Brownian ?oagulation does not become significant until some time after
the incidence of nucleation. This is due to the concentration dependence
of the mechanism; nucleation must be virtually complete before a
sufficient concentration of droplets is present. If the ultimate con-
centration were an order of magnitude lower, Brownian coagulation would
be negligible. It also may be observed that the maximum group size
rises quickly, even though the bulk of nucleation is delayed to a point
further down the nozzle. This group appears to grow quickiy as long as
there is vapor present. The bump in the surface average radius for
incidence at lower pressure gradients reflects the changing nucleation
criterion, r*. The critical radius is large for the initially formed
nuclei and then drops quickly; the average radius rises as the early
. droplets grow, falls as nucleation at smaller sizes overpowers the
average, and rises again as nucleation ceases and the existing droplets
growv.

The following conclusions may be drawn from Figures 20(a-j):

1. The theoretically predicted maximum group size is approximatel&
two to three times larger than predicted by surface averaged condensation
theory. The maximum group radius tends to be proportionately smaller
at the higher values of (-g—-)i where the vapor is exhausted more quickly.
This mechanism, consideredoby itself, is unable to account for the large
sizes which are measured experimentally. The theoretically predicted

maximum size group typically contains about 1% of the total mass, while



the fraction of mass responsible for the scattered intensity (at o) is
typically 10-40%. This mechanism does however provide the correct
qualitatife behavior, with the vast majority of the droplets located
at some small size and the larger droplets contained in a rapidly
diminishing tail.

2. Brownian coagulation theory applied on an average size basis
(shown in Appendix D to provide an over-estimate of the effEct) results
in a 2.5-4 factor increase in average size. The effect is larger for
points of incidence closer to the throat due primarily to the longer
residence time. No conclusion can be reached concerning agreement with
the experimentally determined average size due to the level of uncertainty

on the upper limiting average size. Since this limit depends on the

I,(90°)
IOl

possible to verify the effect of Brownian coagulation by reducing this

experimental error in the determination of » it would seem
~error. This is particularly true for incidence close to the throat where
the theoretical prediction and limiting average size are quite close.
However, it should be remembered that the upper limiting average size
(equal to the maximum placement of the 'missing" mass, a') is proportional
to (error)l/3 (see Appendix A.3(b)) so that a substantial improvement
is required.

3. The behawiorrof the experimental values of o versus distance
from the throat agrees qualitatively with the average size increase due
to Brownian coagulation. This would indicate that the mechanism
responsible for the formation of the larger droplets is likewise dependent

on droplet concentration.

75



T6

The fact that both the differential growth (or differential
nucleation) and the Brownian coagulation mechanisms are in qualitative
agreement'with the measurements of maximum droplet size appears to
indicate that the two mechanisms are inter-dependent and should be
combined into a single calculation scheme. This is very difficult
however, due to the fact that a varying distribution funqtion is
involved.

As mentioned in Chapter II.B.3, a description of concenfrafibn
versus droplet size for the large end of the distribution is obtainable
from the distribution curve fitted to the light scattering data and
total mass constraint for each case. Even when %nin® the assumed
minimum size, is incorrect, the behavior at the upper end is not greatly
affected. Rather than plot a series of distribution curves, the values
of Orin® %pax’ h and n which specify the distribution are tabulated

in Appendix F. As far as the general behavior is concerned, the set
of curves (4) in Figure 3(a,b,c) and the curves in Figure 6 are
representative. In addition, the experimental values of scattered

light intensity, static pressure ratio and initial flow conditions

(Po’ T» wo) are tabulated.
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V. CONCLUSIONS

The conclusions drawn from the present study may be divided into

three groups, as follows.

A. Application of Light Scattering Theory

When the total mass concentration is known, and the mgximum value
of size parameter is greater than o = 0.2-0.3, a considerable improvement
is available over the usual application of light scattering theory.
First, a simple, reliable check can be made for the presence of a dist;i-
bution of sizes. And second, once a distribution is known to be present,
the light scattering measurements together with the total mass constraint
provide distinct limits on the number average and maximum droplet sizes.
One of these, the upper limit on number average size, is dependent on
the experimental efror associated with measuring the ratio of scattered
to incident intensity.

In the present study, where thé light scattering average droplet
size was fcund to lie in the range .0l<a<l.0 (spattered intensity is »
proportional to r6), the assumption of a continuous distribution resulted
in the specification of a sharplj peaked, exponential-like decay from
some initial size. Since only a fraction of the mass was found to be
responsible for the major part of the scattered intemsity, there-is a
region at the lower end of the distribution (roughly defined by the
limits on number average size) in which, even for negligible error,
the details are obscured.

Maximum droplet size was found to increase with decreasing pressure
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gradient at incidence and with increasing vapor mass fraction. Droplet
size was not seen to decrease proportionately as the point of observation
was moved closer to the throat. The mass concentration in the vicinity
of the maximum size is estimated to be between about 10 and 40% of the
total, with the amount tending to be larger for increased vapor mass
fraction and reduced pressure gradient at incidence. More detailed
information concerning mass and number distribution is available from
the inverse power law distribution which has been fitted to each set

of experimental measurements.

B. Condensation Theory and Coagulation Mechanisms

A modification to the usual surface-averaged-radius formulation
of classical condensation theory permitted the initiation and growth of .
a theoretical size distribution arising from a varying nucleation
criterion and a diffefential growth rate. The predicted distribution
is very sharply peaked, with the larger sizes being contained in a
rapidly diminishing tail; the resulting number»average size is virtually
identical to that obtained from the surface-averaged condensation theory.
Negligible coarsening, in which iarger droplets are spontaneously formed,
was predicted for the case of water vapor condensing in an air carrier.
An application of Brownian coagulation theory to the surface-averaged
condensation theory was able to predict that average droplet size in-
creased by a factor of between 2.5 and 4. The application on an average
size basis is shown to over-estimate the effect when a distribution
of sizes is present.

A mechanism for coagulation due to droplet slip-collision was
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investigated and concluded to be inoperative since negligible relative
motion between the droplets and the accelerating carrier flow was
predictedl Due to the lack of relative motion, coagulation arising

from local turbulence also appears unlikely.

C. Comparison of Theory to Experiment

The experimental measurements indicate that maximum droplet size
is at least 10 times larger than predicted by the surfaced-averaged
condensation theory. The number concentration in the vicinity of the

9 10

maximum size is on the order of 107-10 droplets/cm3 as compared with

a theoretically predicted total concentration of around 1013—10lh
droplets/cm3.

No conclusion can be made concerning the actual operation of a
Brownian coagulation mechanism due fo the uncertainty in the déterminaxion
of number average size. There is, however, qualitative agreement between

"the behavior of the ﬁaximum size versus distance along the nozzle and
the predicted average size increase due to Brownian coagulation. In
addition, the differential growth mechanism provides a qualitatively
correct distribution shape. It would therefore appear that the two
mechanisms are.interdependent.

The nature of this qualitative agreement, combined with the
éxperimental observation that maximum size does not decline significantly
as the nucleation zone is approached, suggests that the larger droplets
are formed during the initial stages of condensation. Additionally,

some of the measurements (for low vapor mass fraction, low (g—?i and

short nozzle length) appear to indicate that this growth occurs following



the completion of nucleation but before the vapor supply is exhausted.
It is to be noted that these results differ from those of Wegener

(19)(20), who found good agreement between predicted and

and Stein
measured condensate droplet size in a similar study. A possible source
of this discrepancy lies in the differing experimental conditions. In
particular, the present study employed a nozzle with smaller divergence
angle (smaller pressure gradient) and operated at a stagnation pressure
of eight atmospheres, versus one atmosphere in the earlier investigation.
The increased pressure results in about an order of magnitude increase.

in droplet concentration, thereby allowing the theoretically predicted

Brownian coagulation rate to become significant.
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Vi. RECOMMENDATIONS FOR FURTHER STUDY

Since it has been shown that the larger size droplets appear
during the early stages of condensation, the logical next step is to
examine this area in detail, with measurements being taken at much
smaller increments of nozzle length right through the nucleation zone.

It is unlikely that the present uncertainty in average size can
be overcome solely by reducing the experimental error. The alternative
is to make the droplets look bigger by reducing the wavelength of the
incident light source. However, once one leaves the visible range for-
the ultraviolet and below, both the equipment and the experimental
techniques increase in complgxity.

Shortcamings in the present_formulatiqn of condensation theory may
be considered to be of two types, errors of omissiocn and errors of
incorrect applicationQ In the first category, a more careful estimate
lof the effect of turbulence, a possible variation in the value of mass
accommodation coefficient (&) of growth rate with drop radius, and the
possibility of a local change in flow area due to boundary layer
thickening at the onset point seem ripe for investigation. 1In the
latter category, it is desirable to combine the treatments of differential
growth and Brownian coagulation in such a way that distribution information

is retained. This, however, is a difficult problem.
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Appendix A

A.l. Formulation of the Mie angular intensity functions il and

12 for spheres of arbitrary size.

The following relationships, when combined with equations 2.1-2.3,

represent the full Mie solution for the light scattered by a sphere.

Using the notation of Gucker and Cohn(hg), .
[ 2 .
L, = 2, LanTlh(cose) + b, Tn(cose):] ‘ (A.1)
N=)
s 2
1, = Z [ bn TT,}(COSG) + Qn Tn (cos@)J (A.2)
n=|

Here a, and bn’ called the scattering coefficients, are complex numbers
and are functions only of the particle size and its index of refraction.
Hn and Tn are augmented angular functions which depend only on 8, the

angle of observation.

If o= §§£ as before, and 8 = ma, the scattering coefficients

take the form:

SEB) S (k)= Splx) Shim)
Sw () P (x)= ™ E7(x) S, ()

n -

) (A.3)
M Dn(R) Sn(x) — Salx) S~(3)

on = TS0 Fa) < Fi) Sala)

where m is the refractive index of the sphere relative to the surrounding
medium and a prime denotes a paftial derivative with respect to the

argument in parentheses. Sn, Cn and ¢n are Riccati-Bessel functions



and are related to the ordinary Bessel functiomns, Jn’ as follows:

Sa(z)= J(T2/2) T, ., (F)

Co ()= (=) f(mx /2)’ J_(nwz) (%) (A.4)

| P ()= Sp =)+ T Cn ()

where z is replaced by o or 8 as required in equations A.3 and i = /-1.
With O measured from the forward direction of the incident light

as before, the augmented angular functions take the form:

. (cose) = F(N) TTh (cose)

, (A.5)
T, (cos@)= F(n) Talcos®)
where
(2n+1)
F(n) = (A.6)
MN(n+1)
and
TTnh (cos®e) = Dnl (cose)
(A.T)

T / ", g
’z:’n(cose)=Lc<:se 3, (cose) - (1-cos?e) P, (Les2)



' "
Here Pn (cos 6) and Pn (cos 8) are, respectively, the first and second
derivatives with respect to cos® of the Legendre polynomial of argu-

ment cos6 and order n.

A.2. Transformations and calculation procedures used in the

evaluation of 1l and 12.

Using the equations for the Mie angular intensity functions as

outlined above, it is possible to calculate the theoretical scattered

light intensity for any values of r, A, m and 8. Gucker and Cohn(hg)

have developed a technique for transforming these into a form more

90

Suitable for direct computation. Beginning with the scattering coefficients,

an and bn (equations A.3), it is seen that the term ¢n(a) is complex-

valued and must therefore be separated into its real and imaginary parts

for numerical evaluation. Substituting according to equation A.lL, the

coefficients may be rewritten:

a.. = T,l - Sr‘l(,5> Cn(y)“r”‘ Cﬂ/CO() SY\ (ﬂ) .f’-'
“‘V Sa'(2) Sal=*)-m SJ/ (%) Sa (A) J
| N (A.8)
(el Cuixony]”
0, = [1 L 5 M S (2) Ca ) - Ch () 5n(/&)"]-‘
n = S SA(B) Salex) - S (%) Sa(s)
(A.9)

=[+ T HA (8]

The derivatives of the Bessel functions are eliminated by introducing

the relation between the derivatives and the Tunctions themselves:



5!\,(2) Sn-l(z)

_ 8]
Sh (Z) Sn(2z) z
Cn () _ Ca. () 2 (A.10)
Cr(x)  Calx) ES

where again z represents the argument o or B as required. Eliminating

|} 1
Sn (z) and Cn (a) in equation A.9 yields

A Rn(B) Cn(x) = Chn-y (X)

N d)ﬁ b3 Aoll
Mn € ) M Rn (P) Sn()=Sho () ( )
where
Snh-1 (#)
Rr‘:(ﬂ’> = Sh (/_5) (A‘lz)

(49)

Gucker and Cohn give a recursion formula for evaluating Rn(B) when

m and hence B are complex. Further steps in the evaluation of this

(30) in Appendix C of his paper.

recursion formula are given by Erickson
However, m is real in the present study and Rn(s) may be evaluated
directly from equation A.12 with no difficulty. Furthermore Hn(a,B)
is real, allowing bn to be easily split into its real and imaginary
parts:

bn = by: + th; = I Hr (A.13)

| + HY\Q
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b, = |+ HZ (A.1k)
) - Hn

b, = ~ (A.15)
4 | + Hn?

] 1§
In a similar fashion, 8 (z) and c, (a) may be eliminated from

equation A.8, resulting in

Won () Cn Tx) = Cpoy (X) (A.16)
1ﬁ =
G, (x, ) ) ey —
where
’ RA) )
f/n(/5>=y—';?n’\ﬂ) + (- %z) (a.17)

Reducing a to its real and imaginary components yields as above

q. = (A.18)
" I+ Gn
; - [=
an = o — (A.19)
|+ Gn

The calculation of the quantities Hn(u,s) and Gn(a,e) in the
above equations requires the numerical evaluation of Sn( z) and Cn(a)
from equations A.4. The required values of Jn may be obtained from
tables or may be calculated directly, as was done here in the interests

of increased accuracy and reduced card punching. The following Bessel



function recursion formula and initial values were used:
2n-|
Jr\+l/21 (2) 2_2—_ Jﬂ—‘/z(z) - jﬁ-3/2 (z)

J./z (2) \/_nfZ Sin 2 (4.20)

Jor (= 55 cosz

To evaluate nn(cos 8) and rn(cos 8), as given by equations A.T,

(49)

the recursion formulae given by Gucker and Cohn were applied:

Tv - *qu--[ (¢ ) — X .\T .
M, (co3@) = zrgm| B (cose)— cose F?,(cose/J

cose (A.21)

|
2n(cose) = h(r\-\-m)ﬁ(wse)— Py Ph_‘ (cose)
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These, together with the general recursion formula for Legendre polynomials:

(Mi+1)B,,, (cose) —
. (A.22)
(2n=+1)cose P, (cose) + n P, (cose) =0

results in the following initial values and recursion formulae from

which numerical values of wn(cos 0) and tn(cos 8) may be calculated:

Ir, (cose) = |

T, (cos@)= Bccs &

DT, (ccse)=C

DT, (cos@)= 3 (A.23)
T (cose )= LOS e
T, (cosa)= 3(2cos?e-)

and for 3¢nfw,



' -1
T (cose)= cose(Z2=l)m,  (cose)- o= T, (cose)
\ (A.23)
DT, (cose) = (2n-1)TT,,_, (cos@) + DThy., (cose) cont.

Th (cose) = cose T, (Cos@) - (i-cos?) Dm, (cose)

At this point, all elements appearing in the general equations
for il and 12 have been reduced to a form suitable for direct computation.
Since the scattering coefficients a and bn contain both real and'

imaginary terms, it is necessary to rewrite equations A.l1 and A.2 in

the form:

2

2'.<=<,e)=[ sa, (%) T, (cose)+ S b.f(«n) T,,(cose)]

_ B S 2 (A.24)
+ [2 an (=, 8) 1], (cose) + S ba(x2) |, (COS_G)}

2
2, (%, @) = [ S a7 (%, 3) rIHCCose) 56 fs)-ﬂ-n(cose)]

(A.25)
: - i .
+[E a, (=,) En(cose) + b, (%, ) 'Wn (Co:.\&_)]

where again £ = ma.

These eqﬁations form the basis of a computer subroutine which
calculates the theoretical scattered light intensity for specified
values of m and a at a fixed number of discrete angular intervals.
Since the angular functions, I (cos 8) and T, (cos 68), are dependent
only on the angle of observation, these factors are calculated for
order n=1-25 and stored on the first pass through the subroutine. The

number of terms to be included in equations A.24 and A.25 is determined

9k
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by the point at which the (n+l)th term falls below some specified
fraction of the nth term. The accuracy of the computation scheme was
checked by coﬁparing the calculated values with previously published
results. Although no tables of il(a,e) and iz(a,e) for m=1.33

(spherical scattering geometry) could be located, the calculated values

of nn(cos g€) and Tn(cos 8) agreed with those given by Gucker and Cohn(hg).
and the caiculated values of anr, ahl, bnr and bnl coincided with those
obtained by Penndorf and Goldberg(so).

A.3. The estimation of particle size and size distribution
(a) Light scattering average size |
An estimate of scattering particle size may be obtained
from the shape (slope) of the experimental curves of scattered intensity
versus angle of observation if fhe'particle size is sufficiently large.
" When a distribution of sizes is preseﬁt, this estimate becomes the light
. scattering average size, a. A computer program was written to compare
the normalized experimental curves with corresponding families of
normalized theoretical curves. An outline of its operation follows.
1. Specify discrete angles of observation at which comparison is

s 8 » AB8. Also specify index of

to be made, 91’ 62, etc., by emin
refraction, m, wavelength of incident light, A, and an initial size for
the jiteration procedure, a .
: min

2. Read experimental scattered intensity measurements for perpendi-
cular and parallel incident polarization at the above specified angles

of observation:



e=eo ;ez,n-
Only relative intensity measurements (with constant but unknown incident
intensity) are needed for the estimation of particle size.

3. Correct Il(e), 12(9) for 1/sin® change in scattering volume
(Appendix B.l); correct for change in phototube sensitivity with inci-
dent polarization (Appendix B.2).

4. Normalize by dividing Il(e), 12(6) by il(90°).

5. For the specified values of Gpin and angular range 91’ 52, etc.,
calculate the theoretical scattered intensities il(umin,e), iz(qmin,e)
in the manner indicated in section A.2. Normalize by

|e=el’ 62"‘.

PR o
dividing through by il(gmin’go ).
6. Calculate the root-mean-square deviation between Il(e) and

i(a

1 min’e) and between 12(6) and ia(amin,e) using the relation

¢ .
rYms, = i[ I,'(e.)— Z.l("(m(n y ©, )]z

(A.26)
. '/
+[ I|,<ez)" -l| ('(M'—n,ez)]2+ T 2

and similarly for ms, . Primes denote the normalized values.

T. Change @ in by progressively smaller intervals, returning to
steps 5 and 6 for each value of q, until the root-mean-squaré deviation
for the perpendicular component, rms, , is minimized. The iteration
continues until a specified minimum step size is reached, with the

final value of a being taken as the 'best fit" between theory and

96
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experiment.

The iteration is performed only on ms, , although rms,, is calcula-
ted for each step. This is due to the fact that in some cases,
especially where the scattered intensities were low (low condensate
mass fractions), the best fit for I.(6) and I,(8) occurred at different
values of a. It was decided to use only the perpendicular component .
Il(e) to estimate the light scattering average size since it is of
higher intensity than the corresponding parallel component, thereby
being less influenced by stray light and phototube noise. This is
particularly true in the region around 90°, as is shown by Figure 21.
The determination of rms, then serves as a check on the result obtained

2
from the minimum value of rms, .
(b) Upper limiting average size for a delta distribption at a.
A value of Ehe mass contained in a delta distribution located at
size E'(estimated in (a) above) may be calculated directly from equation

2.8 and the experimental measurement of Il(90°)/I01 = ratio of scattered

to incident intensity.

N . oirqa = — (A.27)
visible IO' L(o()qoh)

where

= particle concentration at o responsible for

3

Nvisible

scattered intensity = no./cm
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K = a combination of geometric factors which are con-

stant for a given scattering geometry (Appendix B.3)

' - N

Miisible = Mvisivle ° A (A.28)

where

M. . = mass concentration responsible for scattered
visible

intensity = gm/cm3

Therefore the mass not accounted for by the scattered light is

] 1] | ]
(M - Mvisible)’ where M is the experimental value of total mass of
3

condensate in gm/cm~. If this value is determined in some other way, as
was the case for the five non-delta distributions in chapter II.B,.the
computation scheme is entered at this point.

Let the size a’correspond to the placement éf-a daélta function

] Co.
containing mass (M - M ). This "missing" mass is located in such

visible
a way that its total scattered intensity is equal to the error level on
11(9O°)/101, in this case 10%. Thus the number concentration in the delta

function at a’is given by

.00 .
- (2. L1.(90°) | (4.29)
Nielta = (z). T T e K
I, L(x19C°)
and by
é(M/—-M:’iSI_‘nl ) e
Vgelta ~ Ao’ ? : T (A.30)

where Il(90°)/IOl is the ratio of scattered to incident intensity which
appears in equation A.27. A.29 and A.30 may be equated, yielding the

result
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<2 ¢ (M=Migibe )T I,

7, () 90°)  72(10) I, (90%) K

(A.31)

All factors appearing in the right side of A.31 are known; therefore a
may be obtained from a plot of a3/il(a,90°) versus q.
With aj Nie1tq H8Y be calculated from A.29 and the number average

size may be easily determined. In the present study, N was always

delta

about two orders of magnitude greater than Nv When this ié the

isible’
case, a'is a good estimate of the upper limiting number average size.
As can be seen from equation A.3l, a’ will depend on the assumed error
level; since il(a,90°) varies approximately as 06 for the present size
range, o’ will change with (error level)1/3.

(c) Particle size distribution

As described in Chapter II.B.3,lén estimate of the number average
and maximum particle sizes is obtained by fitting an arbitrarily
chosen inverse power law distribution curve to the experimental light

scattering and total mass measurements. A family of absolute distribution

functions (units of number of particles/cm3) of the form:

| ) ™
(%) = h (;—(—n— - —= ) (A.32)

2 Mmay

is assumed. With the addition of a minimum size limit, the distribution
is specified by values of the exponent n and the maximum size %rax’ The
advantage of this type of distribution, as compared to an exponential

or Gaussian function, is that it may be mathematically integrated withiu
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finite limits.

Particular values of n and A ax 2TC determined when the following

three equations are simultaneously satisfied.
'

M = experimental value of total mass of condensate = ma.ss/cm3
M e / > n(x) ol (A.33)
s —_— X ) Gt .
ez ) X P
]
I, (8)] = normalized curve of scattered intensity
1 e=el’ e2’ etc.

versus angle of observation.

Ji (,8)P (=) dx

Il'(e) =
. ~ . i
/l' {7(‘ '-/O°) —r)(ﬂ() [e1R8 &

(A.34)

e=e|,ez,--~

I1 (90°)/I01 = measured ratio of scattered to incident intensity

(907 i |
i‘f“—'i' = K f Ly (d, C)O“)«ra(o«) cl (A.35)

where K is as defined in A.3(b) above.

A computer program was written to perform the calculations indicated
by equations A.33-A.35 for a series of values of n and Onax ® An outline

of the procedure follows.
1. Specify values of m, A and angular range as in program (a).

Specify a value of @in = starting point for the family of distribution

curves to be generated.

]
2. Read experimental values of M (total mass/cm3) and I .. (incident

01l
intensity); read values of Il(e) as in program (a).

3. Normalize Il(e); correct for 1/sin 6.

h. . o
Calculate and print I,(90 )/IolLexperimentalo

»



5. Calculate an array of il(a,e) for the specified angular intervals

and a specified range of size parameter, a Aa .

a
min’ max®

6. Calculate the corresponding array of the integrated quantities:

o
INT1(a,8) = / 1, (x,8) dx
«qu
using a procedure for numerical integration. By interpolating within
this table, the integrals in equations A.34 and A.35 may be gvaluated

for any @ without further recourse to numerical techniques.

7. Set up a two-dimensional array, n . , n  ,ADnjaq _ .,

a , Ao .
max max max

8. Proceed through the n, & ox lattice point by point, making the

following computations for each set of values of n and & ax’

- determine h in equation A.32 by satisfying equation A.33.

Olltheor. from equation A.35.

- with h, calculate 11(90°)/I

L
- with h, calculate Il (e)ltheor.

]
calculate rms, between I, (9) |

from equation A.34;

| ]
and I, (e)lexp in the manner

theor.

indicated in program (a).

- calculate the number average size for the distribution n, @ ax®

9. Set up an output array with coordinates n, umax; at each lattice

point n, @ print the values of Il(90°)/I0 » 'S, and average

lltheor.
size obtained in step 8.
Two curves are then drawn by hand on the printed n, Gmax array:

- those values of n, @ ax Which obey the mass constraint and which

Satisify the condition

ILcoc) | T.(90°) }

B Lo

t .
- ey
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- those values of n, O ax which obey the mass constraint and which
btest fit the shape of the scattered intensity versus angle curve (rms1
is minimized). If one is sufficiently clever in choosing the n and
& ax T2NBES, the two curves will intersect. The coordinates of the
point of intersection, along with the assumed value of Grin® fixes the
distribution which fits the experimental data.

A number of cases were checked by hand calculation to insure that

the program was working properly.
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Appendix B

B.1l. Scattering geometry

A schematic of the scattering geometry is shown in Figure 22(a),
looking down the vertical axis of rotation. This arrangement results
in a cylindrical scattering volume, as shown in Figure 22(b). Here
h and w are the dimensions of the rectangular aperture when projected
to the system axis. As can be seen, the scattering volume is a right
circular cylinder when the angle of observation is 90°, but is a éylindri-
cal prism at other angles. Since the dimension w does not change with
angle, the scattering volume has a minimum size at 90° and increases
with 1/sin 6 as the angle moves away from 90°. Thus it is necessary
to correct the scattered intensity measurements to a uniform scattering
velume by multiplying by the appropriate value of sin 6.

The dimensions of the optical syétem’used to measure the scattered
and incident light intensity are given in Figure 23. The solid angle
limiting aperture fixes the divergence of the measured scattered signal;
its size is a compromise between resolution of detail and signal inten-
sity. The present 0.186 in. diemeter aperture corresponds to a plane
divergence angle of 0.7°. A rectangular aperture, formed by two crossed
slits, is positioned ahead of the phototube. It determines the length
of the cylindrical scattering volume and together with the lens and
solid angle aperture, fixes its location at the system axis of rotation.
The height of the rectangular aperture is .025 in., resulting in a
maximum scattering volume height of .098 in. (dimension h in Figure 22

{v)). This is somewhat larger than the laser beam diameter of .082 in.,
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thus allowing the vertical position of the phototube to vary slightly
without altering the scattering geometry. The width of the rectangular
aperture is .005 in., producing a scattering volume width of .020 in.
(dimension w in Figure 22(b)). A larger value results in a greater
measured intensity, but at the same time averages out any local variations.
In the present experiment, the maximqm aperture width was limited by
the necessity that the scattering volume fit inside the cénical super-
sonic test region at low angles of observation. Since only one wave-
length of light was to be used in this experiment, a simple plano-
convex lens was used to focus the rectangular aperture at the system
axis. Two .20 in. light stops were installed as shown to prevent

outside light from reaching the photocathode via internal reflection.

B.2. Photomultiplier calibration

Although no absolute intensity méasurements were taken, it was
necessary to compare relative measurements taken at differing polariza-
tions both with each other and wi£h the corresponding measurements of
incident intensity. The photocathode surface of the phototube was fbpnd
to exhibit a different sensitivity for the two incident polarizations
used. For a fixed level of incident intensity, the ratio of reéponse
for perpendicular and parallel incident polarization was measured to
be L/11 = 0.9387. Thus in order to compare the experimental measure-
ments of perpendicular and parallel scattered light, the parallel
readings must be multiplied by this factor.

No filters were used when taking actual scattering data, but it
was necessary to reduce the laser intensity in order to measure the

level of incident light. This was done with three no. 6 glass density
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filters of the type used in welding face masks, mounted at the location
indicated in Figure 23. The calibration process involved the finding

and marking of a suitably sized area where the attenuation was uniform,
and care was taken to use this area when recording intensity measurements.
The filters proved to be only negligibly dependent on incident polariza-

tion and very stable over a period of time.

B.3. The comparison of scattered to incident intensity
In the present experiment, an integrated form of the general Mie
light scattering equatioms,
o 2
I,(90°) 4R (B.1)

S0 e, 909 doe = 2 TS

has been applied as part of a scheme for estimating the condensate
particle size and number distribution. p(a) is the abs&lute size distri-
bution, with units of number/unit volume. Il(90°) and I, are experi-
mental values of the scattered intensity at 90° and the incident inten-
sity, both for perpendicular polarization. They are measured in terms

of the voltage drop across a load resistor for a given phototube supply

voltage, and will be represented as el(90) and e.. respectively.

01
Before these relative measurements can be used, they must be expressed

in terms of intensity/unit area, as determined from the dimensions

shown in Figure 23. This comparison is made at the plane of the limiting
aperture, whose distance from the scattering volume enters equation B.l
as R. |

For the case of the scattered intensity, Il(90) is simply the

measured signal divided by the area of the limiting aperture:
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e,(90)
(. 186)*
4

T, (90°) =

3.8 -e,(9¢) mv/in? (B.2)

The laser beam is of circular cross section with a diameter of
.082 in. It would therefore easily pass through the solid angle
aperture but, since it was parallel rather than emanating from a point
source in the scattering volumé, would focus at a point a.head of the

rectangular aperture and be truncated by it.

measured intensity
. /.—

/ - projected area of laser beam

77" rectangular aperture

o
[}

measured intensity = (.005)(.0198)

projected area of laser beam = {—— (.0198)2

-

A
= =3.08
2

Thus, if f is the filter attenuation when measuring the incident

intensity,

o1 -
®'area of laser bean.
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I.=e (460)(460)(460)(3.03)
ol (1] I 2
7 (-082)
= 5.(68 x IC)'O . fio\ mv /in? (B.3)

If equations B.2 and B.3 are inserted in equation B.1, the vﬁiue
of the left-hand side is expressed in terms of the total numbér'of
particles in the scattering volume. To normalize.this to number/cubic
centimeter, the right-hand side of B.l must be divided.by the aéénal
size of the scattering volume.

For an angle of observation of 90°, the scatteriﬁg volume is the
cross-sectional area of the laser beam times the projected ?idth of the
rectangular aperture, resulting in a value of-.bOlfO cm3. For the

present case where:

R=38.23 cm

2. 9.93x10" cm™

1

and equation B.l thus reduces to the form:

e, (%90)

S 4,(x,90%) doc = 5.50% 10% =

(B.4)

B.4t. Alignment procedures

Before light scattering data can be taken, the apparatus must be
optically aligned so as to define a plane.of observation, perpendicular
and parallel polarization directions, and a fixed scattering volume size

and location. The following steps constitute the alignment procedure



used with this apparatus.

- The laser mounting bed is adjusted until the incident beam is
perpendiéular to the system axis, using plexiglass height gauges at
each end of the rotating arm. The target shown in Figure 24(a) is then
installed in the nozzle exit and the laser is adjusted vertically until
the beam is about .020-.030 in. above the exit plane of the nozzle.
This allows for thermal expansion of the nozzle and supporting pipe.
With this accomplished, the laser beam is adjusted in the pléne‘of
observation until it passes through the axis of rotation, as determined
by the.location of a circular light spot on the target (Figure 24(b)),

- At this point, the phototube is removed from its housing, the

108

target is removed from the nozzle exit, and the rotating arm is positioned

to allow the laser beam to enter the phototube housing. The lens is

in position but the rectangular aperture is removed. A cross-hair jig,
made by scribing and inking two perpendicular lines in a plexiglass
disc, is fitted to each end of the housing. The phototube housing is

then aligned to the laser beam by centering the rear cross in the

shadow formed by the front one, as shown in Figure 25(a). The adjustable

angle pointer is set to read 0° on the fixed protractor.

- With this accomplished, the front cross-hair jig is removed and
the slits forming the rectangular aperture ére installed. The two slits
are adjusted until a rectangle of light is centered on the rear cross
(Figure 25(b)). The fact that the incident light is coherent gives
rise to a series of diffraction lines which are useful in fixing the
orientation of the aperture.

- The front cross~hair jig is now removed and the nozzle target is
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re-installed. A slide projector is set up behind the rectangular
aperture in the position normallyvoccupied by the phototube. An image
of the réctangular aperture is thus projected on the target, allowing
the focus and the position of the aperture to be checked. The correct
position of this image is indicated by the dashed lines in Figure 2u(b).
This check is repeated at several angles.

- With these operations successfully completed, the target is
again removed and the phototube is installed and sealed in ifs housing.
The rotating arm is returned to the zero angle position and three density
filters are installed in the filter holder. A piece of polarizing
sheet is also installed with a known orientation, and the setting of
the polarization rotator is checked. Once this has been accomplished,

the filters are removed and the apparatus is ready for use.



Appendix C

Calculation Procedure for Vapor Mass Fraction

The mass fraction of water vapor present in the carrier air stream

is defined as

L] L ]
_Myapor _ Mvapor
- e - Py .
Mearrier _

w
[o] -m
mixture Myapor +

In the present case, where the carrier air has an initial moisture

level w this equation takes the form

110

oi’
'Y.r'va or, injected
mo = moi + ’;{ p 2 ’Y.Y (Col)
‘vapor, total + ' carrier
where ’n';va.por, injected and w,y are experimentally determined quantities.

For a chocked nozzle, the mass flow rate may be calculated from

the perfect-gas, isentropic flow relation

. AR 3 ( 2D L
[T R/F (+: )
where
R = universal gas constant
M = molecular weight
y = ratio of specific heats

In the case of pure air flow, y=l.L and ﬁ=29, this equation reduces to

the form (Shapiro( 26) ):
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A* R
JT°

with A* in in2, P, in 1bf/in2 and T_ in °R. The presence of water

™= 0.532

vapor will affect the mass flow by altering the net values of M and r.

Mmfﬂure = Y MvaPO\r + (1=¥) Miarrier (c.2)
= we( Mo tore ) (c.3)
Mvﬂpef
' X\M or K
—_L...—_ - \ corrler
5 - = Yo ( Xvapor —| M ¢ <Xw'..:£': - )
mixtore ) / \
Y' r\/‘fwr‘ ol * (' Yb )\ch. rier ~! )

vhere Yo is the mole fraction of water vapor present in the mixture.
Since y for water vapor is 1.32, close to the value for air, and since

Y, is very small, variation in vy

mxxture may be neglected. Thus the

total mass flow may be written:

P *

. ‘ My.. v

oty = €832 [ TExhee LR (c.b)
~ <« \/-r°

The value of A* is calculated from the geometric throat diameter of
250 in., with no correction being made for displacement thickness.
Calculations by Duff(ll) showed that this assumption results in about
a 5-10% underestimate of Wy vhich is relatively unimportant as far as
condensation behavior is concerned. Likewise, the error from this
source in the determination of average particle size is small compared

to other uncertainties that arise.

An jiterative procedure, combining equations C.l1 - C.L4, was used



Mmixture was initially set equal to Mcarrier

(=29)

to determine W,

to get a first approximation of m and Y, This value

mixture’® %o

of y, vas used to calculate a new value of ﬁm

ixture and subsequently

a new vglue of m , etc., until the values of @, converged. This

mixture
typically occurred after two or three cycles.
To calculate values of Py the local vapor pressure at inéidence,

and Ti from the observed value of (P/Po) i° the following equations were

used with the iterated value of Yo:

xmirh)re -1

T-T ( T )‘ - T <__%__){ Kmf;«-h,re.
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Appendix D

Brownian Co ation

According to the model for Brownian (or thermal) coagulation,
aerosol particles collide with one another due to Brownian -otionl and,
in a certain fraction of these collisions, stick together. This
mechanism causes a reduction in the number of particles present with
a corresponding increase in particle size. For the case vhere a con-
stant probability of sticking is assumed, the problem of esti.natipg the
Coagulation rate reduces to that of determining an expression fof 'th_e
collision frequency between particles.

In his classical work on this subject, Smoluchovski(sl)(sz) derives

the following discrete formulation for the rate of concentration change:

c-kl- - -

: -5
— D.1
d+t ( z L ij o 4 ij (D.1)
b J=| J:I
i=k-}
vhere
llk = no./unit volume of the kth sized particles
I.:1 3 = collision frequency between ith and jth sized particles

Expressions are developed for a discontinuous disfributim of particle
concentration in various sizes; i.e., there is an equation of the form
(D.1) for each particle size. Particles of a particular size are con-
sidered to be aggregates comnsisting of i, j, or k multiples of a unit
size. In treating the general case of Brownian coagulation, oxie' is

faced with the problem of simultaneously solving a very large number of



the above differential equations. An alternative approach is to appro-
Ximate the discontinuous distribution by a continuous function. The
use of similarity theory permits analytic solution of the resulting
integro-differential equation, but only for elementary boundary and
initial conditions. Both approaches have been successfully applied to
Brownian coagulation in a continuum, where collision frequency is

independent of particle size. Hidy(53)

(5L)

numerically handled the discrete
case and Friedlander and Wang have treated the continuoué case.
Both are in essential agreement that a self-preserving size distribution
is attained after a suitable time.

In deriving expressions for the collision frequency, the following
assumptions are made:

-- Encounters between two particles are of primary importance.

-~ The probability of sticking upon collision is unity.

—- The coagulating particles are spherical and are distributed at
random in a space larger compared to their total volume.

-- The carrier fluid is either stagnant or in uniform motion.

-- The only source of relative motion between coagulating particles
is that due to thermal (Brownian) fluctuation. Other sources of relative
motion such as laminar shearing flow, turbulence and inter-particle

forces (potential fields, electric charges, etc.) are all absent.

~~ There is no addition or removal of mass.

D.1. Collision frequency by continuum theory
The expressions to follow, combined with equation (D.1l), comprise

the classical Brownian coagulation theory due to Smoluchowski(sl)(sz).

11b
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In the continuum regime (Kn = particle Knudsen number EA/r.E mean free
path of carrier fluid/particle radius = 0), Fick's law of diffusion is
assumed to apply. The flux of aerosol particles to the surface of a

given particle is calculated by assuming the particle surfaces to be

at zero concentration. This assumption requires that two colliding
particles always adhere. Following the presentation by.Hidy and Brock(SS),

the collision rate for the ith and jth species can be written:

(<)
I—U = 41T My D.‘j'Ri_j N NJ' (D.2)
where

Mid = 1/2 i=]

MiJ = gymmetry number;
My =1 i#}

DiJ = net diffusivity = (Di + DJ)

R., = collision cross section = (r, + r,)

id i J
Ni’ NJ = no./unit volume of ith, jth species, respectively.

The diffusivity is given by the Stokes-Einstein relation:

_ kT
Df - CQTT‘/"“ h

where

Boltzmann's constant

w
"

L]
"

absolute temperature

viscosity of carrier fluid

=
n

r particle radius

i

For the case of a homogeneous aerosol where r, = rJ, the collision

frequency reduces to:



L_“, = (D.3)

The lack of any dependence on particle size is of interest; even when
a distribution of sizes is present, only the width of the distribution
is important (see equation D.10). The combination of equations D.1

and D.3 yields the result for the instantaneous rate of concentration

change:
dNi _  4kTN: o)
d+t 3 )

Equations D.2-D.4 strictly apply only for Kn<<l. The classical con-
tinuum results can be extended to Kn= 1 without serioﬁs error with
the Cunningham correction factor:
D.=__kI_('\ + M_)
' G

where

>
L}

mean free path of carrier fluid

>
L}

1.125 + 0.400 exp (-1.10 ri/A)

D.2. Collision frequency by free molecule theory

If Kn is of the order of 10 or greater, the collision frequency may

be evaluated directly from the kinetic theory of dilute gases. Here

attention is centered on the probability that a collision will occur

between the ith and jth species. A Maxwellian velacity distribution is

assumed, with an average particle velocity of:
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8kT
T ™
(55)

C =

Following the notation of Hidy and Brock » the resulting collision_

frequency can be written:

) kT "2
M. +"n; 2
L= MJ[ gk T (mivm;) ]Rq N:N;

™M mj
where

are as above;

m = particulate mass of the ith, jth species, respectively.

1, ™3

If m;= t:.grrr‘i"’ and density is constant:

/2 RN ~\2
) TekT 7 (ri®+q2) (e )0 AL 6

For the case of a homogeneous aerosol vhere r, = r (D.6) reduces to:

J’

. 12
| 0 [ 48k T r'* N (D.7)

L6

The rate of change of concentration is found by combining equations D.l

and D.T. Since only one size is present, the first term of D.1 is zero;

S T2
il e - B Y,

D.3. The transition zone

While the above expressions are incomplete in_their coverage,



they have been experimentally verified within their respective areas of
applicability. A number of attempts have been made to extend approxi-
mately either of the two derivations over larger ranges of Kn. None
have been elegant theoretical successes, largely due to the lack of a
quantitative understanding of gas-particle dynamics in the range .-

(56) is useful however. He extended

0.1<Kn<10. The approach of Fuchs
continuum theory by arranging a spherical layer around the abgorbing
particle vhere there is a jump in aerosol concentration. The thickness
of this layer is of the order of the mean free path of the particles.
Fuchs empirically took rarefaction effects into account by forcihg his
results to agree with the limiting cases at high and low Kn. 'He pro-
posed that the classical collision rate could be corrected in the form

(from Hidy end Brock'>?)):

(o) |
L_ij = fj L_ij (.9)

Where LiJ(C) is expressed by equation D.2 or D.3. The analytic expression
for B is quite involved, but its qualitative behavior is exhibited in
Figure 26, taken from Hidy and Brock(ss). Of interest are the peaking

of B in the region 5<A/r<8 and the relative behavior of the continuum

and free molecule theories.

D.h.Application of the theory

For other than long time intervals in the continuum regime, the
full general treatmentlof equation D.1 is difficult to apply to a given
experimental situation. The problem with the discrete case lies in the

large number of variables to be handled, while the continuous formulation
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is extremely difficult to solve for other than very simple boundary
conditions. For this reason, one is led to use the homogeneous rate

equations (D.4 and D.8). To do this with confidence, an estimate

119

should be made of the error involved. A polydispersion factor, PDF, is

defined to be the factorial change in the coagulation (or-collision)

rate due to size heterogeneity:

(80) e ()

polydisperse menodlis perse

This factor is determined by investigating the dependence of collision
frequency on particle size.

For the continuum case, equation D.2 may be written:
(e 2kT  (ri+vy)? |
L_Ij - P4(j a4 N N;

The size dependence term, normalized to equal one when r,=r

J,
is the polydispersion factor:

. D\
POF Cri, ry) = (et ) (p.10)

4y

This is the result obtained by Whytlaw-Gray and Patterson(57).
Numerical values of D.10 can be combined for any given distribution in

the following way:

POF = (£)+ (£) % o+ (£)'+ (6)(§2) PDF(r, M) aoo

« (£ )(#5) POF (i, 0y )+ + (£, (6 YPDF Mty N )

P # ]



or

k k
PDF = Z Z(#a)(h)PDFm,m (D.11)

i=t . j=I

where
k = no. of groups, 1, 2, 3 ...k
N = total number of particles present/unit volume;
group i has fin particles/unit volume, size ..

PDF (ri,rd) = 1.0 vhen { = J

As an example PDF(c) (1,5) = 1.80, but when the particles are evenly
divided among sizes 1 through 5, ppr(c) drops to 1.185.
In the free-molecule regime, equation D.6 gives the size dependence

directly:

3 3 e 2
(rii+r; ) (ri+r;)

(D.12)
(rf r‘; )3/2

1/2 even for a homogeneous aero-

Since this represents a net factor of r
sol, an expression for a polydispersion factor cannot be explicitly
written. What must be done to substitute the term D.12 for PDF

(ri ,rJ) in equation D.1l. This sum must then be "normalized" by
dividing by the value of D.1l2 for a monodisperse system of equal maSs
and number concentration:

4,7 F'I?

where

¥ = mass mean size .
'/
=(\C,r‘.5+ ‘Fz.r‘7,3+""‘ -+ 4|<n<3) 3
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Substituting:

(#)

é £:)(£5) (nPrr®)" (ra)®
j
PDF = ‘='i

(rir;)**

‘4\[57 ( é; £ r}B )‘ﬂo

(Dp.13)

For the numerical example above, where the particles are evenly divided

() has the value 0.755. When the size

(£)

by number among sizes 1-5, PDF
distribution width is 1-2 (mass=1,10), PDF has the value 0;877f

Thus, in the free molecule regime, heterogeneity in particle size tends
to reduce the coagulation rate when compared to the correspondiﬁg
homogeneous aerosol of mass-mean-size.

From the above it can be seen that the homogeneous coaguiation rate
equation will, in the continuum case, provide an underestimate and in
the free molecule case, overestimate the rate. What to do about the
transition zone remains unclear as the polydispersion factor changes
direction here. It appears that for reasonably short times and for
reasonably narrow distributions, the homogeneous equation may be used

to calculate the net change in particle concentration and the corres-
ponding change in mass-mean-size. For an initially wide distribution
but for short times, a value of PDF may be calculated based on the

initial distribution and allowed to remain constant.
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Appendix E
Coagulation by Slip-Collision

When a supersaturated vapor condenses in a nozzle, a distribution
of particle sizes is introduced into the accelerating carrier flow.
If it is assumed that there is relative motion between the particles
and the carrier, and in particular that there is a velocity lag dependence
on particle size, a slip-collision-coagulation mechanism will.a;ise from
the relative motion between particles of differing size. In the ;ase
of an accelerating flow, the larger particles will react more siowly
to a change in stream velocity and will be overtaken by the smaller
particles. The reverse can take place with passage through a hormal
shock; the smaller particles will decelerate rapidly and collide with
those of larger size.

(58)(59) havé provided an analysis of this

Crowe and Willoughby
phenomenon. Following their presentation, the rate at which particles

of size 1 collide with a single particle of size 2 is given by

N|_,'?_ =_|T(PF'+FP2)2 N| up! - uF’i‘ (E.1)
where
T2 = particle radii
up1’2 = particle velocities
Nl = concentration of particles of radius Th1® no./unit volume
(r_.+r = collision cross-section

pl p2)



This equation assumes that the particle\trajectories are parallel and

that inter-particle forces are not active. Crowe, Willoughby, et.al.(6o)
show that the interaction of the particle flow fields has an insignifi-
cant effect. If it is further assumed that the probability of sticking

on contact is unity, equation E.1l also gives the rate of reduction of

Nl due to collision with a single particle of radius rp2' The rate of
mass accumulation by particle rP2 is then given by
o 2
A’YY]|-02 =.T\'(r‘P. + sz ) ’YY'\, N‘ IUP| - UPz ‘» (E.a)

where m, is the mass of an individual particle of size rpl- |

If Ax is\the distance travelled by particles of size n in time
At, equation E.2 may be generalized to include a multiplicity of
particle sizes

N
: z
M, (X+AX) = M (X)) + TTAX 3 (Ppn+ eI Mi N

j=

Uei - l (E.3)
u

rr

vhere j=1 represents the smallest particle present. As each collision
takes place, the larger particle will increase in size and the number
density of the smaller particles will be correspondingly reduced. The

change in number concentration is given by

N, (X+8Xx) = Nh(x)[v - Trax 2 (rem+ ey ) N;

jn
(E.4)
. E&? | Alx) Upn (X)
Upr A(X+AxX) tpn (X+ AK)

where A is the cross-sectional flow area and the summation is carried

out for all sizes larger than n. The term outside the brackets accounts



for the fact that the particle number density is also dependent on the
change in flow area and particle velocity.

Successive application of equations E.3 and E.4 provides the
variation of particle size and number density with distance along the
nozzle. In addition to specification of the area change and particle
velocities, it is necessary to know or assume the initial particle size
and number distribution. In practice, the calculation procedure is
applied to an initial distribution which has been broken down into a
number of discrete steps in order to facilitate the numerical treatment.

(58)(59)

Crowe and Willoughby have shown that the chief mechanism
responsible for the change in particle velocity is that due to aero-

dynamic drag (i.e., momentum exchange on coalescence may be neglected).

Assuming a constant gas velocity over an incremental size Ax, the change .

of velocity of a particle of size n is given by

A Upn = l:’uﬂ - Upn (x)]

,{,_M_,[_ 3Cp Re 4t AX ]
16 @ Mon Upn (X)

(E.5)

where

Q
"

particle drag coefficient

D
Re = Reynold's number of particle relative to gas
ug = gas velocity
u = gas viscosity
pp = particle density

Equation E.5 is thus used to determine the particle velocities for

insertion into equations E.3 and E.4. If the exponential in E.5 is
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consistently negligible, there will be no relative motion between the
particles and the carrier and the coagulation mechanism will be inopera-
tive.

An improvised universal drag law has been obtained by Crowe,

Willoughby, et. a1. *T)

by forcing an empirical curve to satisfy the
available data and several proven limiting theories. Rather than
present the extremely complicated expression for CD’ the behavior of

CD versus Reynolds and Mach number is shown in Figure 27, taken from

the above reference.
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Appendix F

Tabulation of Theoretical Distribution Parameters

Tabulation of Experimental Data

All data sets are identified by a number of the form a ¥ b ¥* ¢

with the following possible values:

.005
a. .010
015

o
FwhH

Table F.2.

I , are as recorded.
0l

nominal vapor mass fraction

nominal static pressure ratio at incidence, with
the lower value indicating a higher (P/Po); (closer
to the throat). '

distance from throat to plane of observation
(nozzle length).

The indicated values of incident light intensity,

They have not been corrected for scattering

geometry or filter attenuation (see Appendix B).

)
note: For the scattered intensity measurements taken at a nozzle

length of 12.5 in. (page F.3), the geometric correction factor has a

value of 6.33x106

rather than S.leO6 due to a change in scattering

geometry (see Appendix B.3).
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Table F.2. Experimental Scattered Light Intensity (millivolts)

Run | .N05%1%12.5|.005%2%12.5|.005%3%12,5|,005%4%12,5|.010%1%12.5
6 | I,(e) I,(e)| I,(6) I (0)T,(6) T,(6)|I,(8) I,(6) I1.(6) 1(6)
40| 9.0 5.1| 20.0 11.5] 20.1 12.4 172.0 99.0
45| 8.0 3.9 17.7 8.7| 17.8 9.1 154.0 717.0
5G| 7.2 3.0] 16el1  6.5| 16,0 6.5 140.7 58,0
55| 6.7 2.3| 14.9  4.9| 14.7 4.8 129.0 43,0
60 6.3  1.6| 13.9 3.7 13.7 3.5 121.0 33.0
65| 6.0  1.1| 13.1  2.B| 13.0 2.6] 13.3 2.7|114.0 20.0
70| 5.8  0.8| 12.6 1.9] 12.4 1.9] 12.7 1.8[111.0 12.0
75| 5.6 0.5 12.2 1.2| 12.0 1.2] 12.2 1.2|107.0 7.0
82| 5.5  0.3| 11.9 0.7| 11.7 0.7 12.0 0.7|104.0 4.0
85 5.‘? I)o? 11.6 0.4 11.4 N4 11'5 O-S 101.3 ZtO
95| 5.3  0.1| 11.5 0.3] 1le1  0.3] 11.3  0.4| 98.0 1.0
95| 5.3  0.2] 1l.4 0.4 11.1 0.4| 11.1 0.5] 96.0 2.0

100 5.3 0.3 11.4 0.6 11.1  0.7| 1lel 0.7 94.0 4.0

105 5.3 0.5 11.6 1.1]| 11.2 1.1| 11.3 1.1 95.0 7.0

110 5.4 0.8 11.9  1.6] 11.4 1.8 116 1.8| 96.0 12.0

115 0.0  G.0| 0.0 0.0 11.9 2.5 99.0 19.0

120 0.0 0.0| 0.0 0.0 103.0 28.0

125 0.0 0.0 0.0 0.0 168.0 39.0

130 0.0 G.0| 0.C 0.0 114.0 51.0

135 0.0 0.0| 0.0 0.0 123.9 68.0

1490 0.0 0.0| 0.0 0.0 135.0 89.0

I
ol 25,0 38.9 38.9 38.9 79.2
Run | .010%2%12.5|.010%3%12,5|.015%1%12.5|.015%2%12,5| .015%3%12,5

8 1,(e) I,(e)] 1,(e) I,(e) 1,(e) 1,(e)| 1,(e) I,(6) I,(e) I,(6)
402170 130.0]271.D0 165.0[171.C 101.0]/220.0 132.0|265.,0 157.7
45{198.0 100.0|242.0 127.0[152.0 77.0{198.0 122.0[234.0 121.0
50(179.72 77.0/218.0 93,0[139.0 59.0[179.0 78.0|210.0 91.0
55[165.0 58.0|201.0 69.0|128.0 44.C|164.0 57.0{191.0 67.0
60| 153.0 42,0/187.0 48.0[117.0 31.0|149.0 40.D|175.0 47.0
65|143.0 28.0[176.0 33.,0[108.0 21.C|[138.0 28.0/163.0 33,0
70/135.0 19.0|165.0 22.0[101.0 14.0[128.0 17.0[152.0 22.0
75(129.0 11.0[157.0 12.n] 96.0 8.0{121.0 11.0[144.0 13.0
B0|124.0  6.0|151.0 7.0| 93.0 4.0|114.0 6.7(135.0 7.0
85|121.0 3.0[145.0 3.0| 90.C 1.0[111.0 3.7|128.0 3.0
90| 119.n 2.0|140.0 1.0| 88.0 0.0|107.0 1.0/ 123.0 1.0
95(117.0 2.0|137.0 2.0| 87.C 1.0/105.0 2.0[120.0 2.0

10C[115.0  5.0{134.0 5.0| 86.0 3.0[104.0 4.0/116.0 4.0

195/113.0 9,0/134.0 9.0| 85.0 5.,0[/103.0 8.0/115.9 8.0

110[112.0 15.0[135.0 16.0| 86.0 11.0]104.0 14.0[116.0 14.0

115/114.9 22.0[139.0 26.0| 87.0 16.0[105.0 20.0[119.0 21.0

120/ 119.0 34.0|144.0 37.0| 91.C 23.0|199.0 28.0|122.C 30.0

125(127.0 47.3|151.0 51.0| 95.C 33.0{112.0 39.0[128.0 41.07

130137, 63.7]159.0 69.0[120.0 43.0/119.0 50.0/133.0 55,0

135[/151.9 81.0/171.C 91.0[109.0 55.0/127.0 64.0[142.0 70.0

140[168.0 193.,0[187.7 117.2|118.0 71.0[139.0 B84.0/153.0 88.0

To1 49.9 49.9 20.5 20.5 20.5

* See note

page F.1
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Table F.2. Experimental Scattered Light Intensity (millivolts)

Run | «005%1%19.5|.005%2%10.,5| .005%3%10.5]|.,205%4%10,5|.010%1*10,.5
0 Il(e) 12(6) Il(e) Ig(e) Il(e) I2(e) Il(e) Ie(e) Il(e) 12(9)
40| 12.9 7.9 24.0 14.8| 25.8 14.7| 22.9 14.1/183.0 107.0
45| 11.8 b.1] 217 11.6| 22.9 11.5| 207 11.1|/167.0 83.9
50| 10.9 4,8| 19.9 9.0 20.9 8.7 19.0 8.5|154.0 62.0
55| 1042 3.7| 18.5 6.8| 19.3 6.4| 17.6 6.3|143.0 47,0
60 9,6 2.8 17.3 5.0| 18.1 4.6| 16.5 4.6|133,0 34,0
65 9,2 2.0 16.3 3,5 17.3 3.2| 15.5 3,1[126.0 23,0
70 8.8 1.3 15.7 2.3 16.5 2.0| 1l4.7 2.1/119,0 16,0
75 8.5 1.0 15.2 l.4| 1640 1.3| 14.1 1.3[115.0 9.0
80 8e2 0e6| 1448 0.8] 15.4 08| 13.7 0.9/112.9 5,0
85 8.1 De4| 14.5 0.5| 15.0 0.5| 13.4 0.5[1709.0 2.0
90 8.C D.3| 14¢3 0.3| 14.7 0.4| 13.2 De4|107.0 1.0
95 7.9 0.4| 14,1 D.5| 14.5 0.5 13.2 D.5/107.0 2.0
100 7.9 0.6| l4.1 0.9| 14.5 0.8]| 13.3 0,.,8[(107.0 4,0
105 8.2 0.8| 1l4.1 1.5 14.7 1.5 13.7 1.2(108.0 9.0
119 8.4 1e3| 14.5 2.3| 15.1 2.2| 14.3 2.0/110.0 12,0
115 ‘ 112.7 20.0
120 116.0 30.0
125 121.0 43.0
130 129.0 57.0
135 142.0 77.0
140 158.0 101.0
To1 38.9 38.9 38.9 38,9 79,2
Run | .010%2%10,5|.010%3%10,5|.015%1%10.5]|.015%2%10.5|.015%3%10.5
] 43;(9) 12(9) Il(e) I,(e) Il(e) 12(9) Il(e) 12(9) I(e) I,(e)
40| 237.0 142.0|274.0 167.0[179.0 104.0(229.0 136.0[207.0 126.,0
45| 212.0 109.0[|25140 130.0(161.0 79.0[203.0 103.0{186.0 95.0
50| 192.0 84.,0(232.0 97.0{145.0 60.0|182.0 79.0{168.0 71.0
551790 63.0(216.0 70.0[132.0 45.0({164.0 67.0[151.0 51.0
60| 167.0 46.0[202.0 49.0[122.0 . 33,0|152.0 41.0/138.0 37.0
65[158.0 - 32.0/189.0 32.0[115.C 22.0(142.0 28.0|128.0 26.0
70| 1508 2N0.0[178.0 20.0|108.0 14.0/134.0 17.7|119.0 17.0
75| 144.0 12.0[169.0 12.0[{103.0 8.0{128.0 10.0[/112.0 10.0
80|140.0 6.0(|162.0 7.0(101.0 4.0[123,0 5.,0[{107.0 5.0
85| 136.0 3.0/156.0 3.0 97.0 2.0(120.0 2.0(102.0 2.0
90| 132.0 1.0{151,0 1.0 95.0° 1.0[117.0 1.0 97.0 1.0
95(131.C 2.0|148.0 2.0| 94.0 2.0[114.0 1.0] 94.0 2.0
100{129.0 5.0|146.0 5.0 94.0 4.0[113.9 4.0 91.0 3.0
195|130.0 9.0(145.0 10.,0| 93.0 7.3[111.0 8.0 9n.0 7.0
110{131.0 16.0|146.0 17.0| $3.0 11.0[{110.0 13.0| 96.0 11.0
115/135.0 24.0[148.0 25.0| 95.0 17.0[111.0 19.3]| 91.0 16.0
120[139.C 35.0[152.0 37,0 98.0 24.0(112.0 28.0| 93.0 24.0
125(146.0 46.0|159.0 51.0(101.0 33.0{117.0 39.2| 97.0 32.0
130[153.0 62.0[170.0 69.0[107.0 45.,0[125.0 51.0[10C.0 43.0
135(165.3 82.0[185.0 89.0[116.0 60.0|[135.0 67.0[106.0 55.0
140[181.0 105.0(205.0 114.G|128.C 77.0/149.0 87.2[(113.0 7n.90
To1| 49.9 49.9 29.5 20.5 10.5
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Table F.2. Experimental Scattered Light Intensity (millivolts)

Run |+ 005%1% 8,5|.005%2% 8,5|.005%3% 8,5|.005%4% 8,5|.010%1*% 8.5
6 |I,(8) 1I,(e)] I,(8) I,(6)| I,(e) I,(e) Il(e) 1,(8)]| 1,(8) 1I,(e)
40| 8.2 4.8| 23.4 13.3| 25.5 15.0| 21.9 12.7[168.0 97.0
45  T.4  3.7| 21.1 10.2| 23.0 1l.7| 19.9 9.7|150.0 75.0
50| 6.7 2.9| 19.3 7.8] 20.9 8.9| 18.1 7.1]|136.0 58,0
55| 6.2 242| 178  5.9| 19.2 6.6| 16.8 5.2[126.0 44.0
60| 5.8 l.6] 16.9 4.4| 18.0 4.7| 15.7 3.9|119.0 33,0
65| 5.5 1l.1]| 16.1 3.1| 16.9 3.3 14.9 2.8[112.0 22.0
70| 5.3  0.7] 15.4 2.1]| 16,1 2.1| 1l4.1 1.9/108.0 14.0
75| 5.2  0.4| 14.9 1.3| 15.5 1.2| 13.5 1.2[105.0 8.0
80| 5.1 0.3| 14.6 0.7 14.9 0.7| 13.1 0.7|102.0 4.0
85| 5.0 0.2 14,2 0.3| 14.7 0.4 12.8 0.4[101.0 1.0
90| 5.0 0.1 13.9 0.2| l4.4 0.2| 12.7 0.3| 97.0 0.0
95| 5.0 0.2| 13.8 0.3| 14.2 0.3] 12.5 0.4| 97.0 1.0
100 5.0 0.3 14.0 0,6] 14.2 0.7 12.5 0.7| 98.0 3.0
195 S.1 0.5 14.0 1.1| l4.4 1.3| 12.7 1.2| 98,0 7.0
110] 5.2  0.7| 14.2 1.9] 14.7 2.2| 12.9 1.9]| 98.0 12.0
115 99.0 18.0
120 102.0 27.0
125 107.0 38.0
130 117.0 51.0
135 127.0 67.0
140 143.0 86.0
01 28.5 44,5 44,5 44.5 58,2

Run |.010%2% 8.5[.010%3*% 8.5|.015%1*% 8.5|.015%2% 8.5|.015%3% 8.5
6 |I,(e) I,(e)f I,(e) I (e)|I,(8) I (e) I.(8) I(8)]| I (8) I,(e)
40{299.0 178.0[275.0 165.0{197.0 127.0313.0 189.0(319.0 193.Q
45(268.0 137.0|246.,0 125.0/175.0 96.0|281.0 142.0|287.0 15C.0
50]1243.0 106.0/224.0 94.0[160.0 73.0|254.0 107.0{260.0 111.0
55|224.0 T79.0[/206.0 70.0/145.0 54.0/233.0 81.0[237.0 82.0
60|209.0 57,0{192.0 51.0|135.C 38.0/216.7 59.0[220.0 59.0
65/196.0 39.0/181.0 36.9/126.0 27.0/201.0 41.0|205.0 40,0
70| 186.0 23.0[171.0 23.0{121.0 18.0|188.0 27.0[{191.0 26.0
75|178.0 13.0[163.0 13.0{115.0 10.0[179.0 16.0{180.0 15.0
80(171.0  7.0/158.0 . 7.0{111.0 5.0(172.0 8.0{172.0 8.0
85(167.0  3.0/154.0 2.0{109.0 2.0[166.0 3.0|166.0 3.C
90(164.0  1.0[150.0 1.0/105.0 1.0/161.0 1.0[160.0 1.0
95(162.0  2.0[149.0  2.0{105.0 2.02{157.0 2.0{157.0 2.0
100|161.0 5.0/ 148.0 6.0/ 104.0  4.0/154.0 5.9|154.0 5.0
105/162.0 10.0[/14R.C 12.0/104.0 7.0|152.0 10.0[153.C 19.0
110/165.0 19.0/149.0 17.0[105.0 12.0|152.0 17.9|153.0 16.0
115/169.0 30.0|153.0 26.0/106.0 19.0|154.0 27.0[155.0 25.0
120|174.0 44.0{158.0 38.0|110.0 28.0|157.0 39.0[156.0 36.0
125(183.7 62.0|165.0 55.0/113.0 39.0|162.0 54.0[/162.0 51.0
130/194.0 79.0|174.0 72.0/121.0 52.9|171.0 71.0|{170.0 66.7
135/207.0 101.0[186.0 93,0{130.0 68.0[183,0 92.0(182.0 87.0
140/225.0 129.0/203.0 120.0| 142.0 88.0|199.0 118.0|197.0 113.0

Ton | ss.2 58.2 23.3 23.3 23.3
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Table F.2. Experimental Scattered Light Intensity (millivolts)

LOO5%L%* 6.5

Run L005%2% 6,5 .,005%3% 6.,5|.005%4% 6,5|.010%1% 6.5
;] I,(e) I,(e) | I,(6) I,(e) I,(e) 1I,(e)1,(6) 1,(e) I,(6) I,(e)
40| 11.6 6.8] 24.6 14.2] 27.0 16.6] 21.0 12.3[106.5 65.5
45| 10.5 5.3| 22.3 11.0| 24.1 12.7| 18.9 9.7| 96.0 51,5
50/ 9.6  4.1] 20.4 B8.2| 22.1 9.5| 17.4 7.6| 87.5 39.0
55 9.0 3.2 18.8 6.0 20.4 7.0 1602 5.7 8005 29.5
60| 845 2.3 17.6  4.2| 19.1 4.9 15.2 4.3| 75.5 21.5
65 8.2  1.7| 16.7 2.8| 18.C  3.3| 14.3 3.0| 71.5 14.5
70| 7.8 142 15.9 1.7 17.1 2.0 13.6 2.0| 68.0 9.5
75| Te6  0.8] 15.4 1.0 16.6 1.1 13.1 l.3| 65.5 5.5
80| Te4 0.6| 14.9 D.4| 16.3 0.6 12.8 0.8| 63.5 3,0
85| 7.3  0.5| 1l4.6 0.1 16.2 0.2| 12.5 0.6 62.5 1.0
90| 7.2 0.4| 14.5 0.0| 16.0 0.0| 12.2 0.5| 62.0 0.5
95| 7.1 04| l4.4 0.1] 16.0 0.2| 12.0 0.6] 61.5 1.0
100  7e2  0.6] 145 0.4| 161 0.6| 119 0.9| 61.5 2.5
105 7¢3  0.9] 1446 1.0 16¢3  1.3| 11.9 1.3| 62.0 4,5
110 7.4  1.3| 14.9 1.9| 167 2.3| 12.1 1.9| 63.0 8.0
115 64.5 12.5
120 67.0 17.5
125 70.0 24,5
130 74.0 32.0
135 80.0 41.5
140 88.0 53.0
o1 | 44.5 44,5 44 .5 4445 52.5
Run | .010%2% 6.5|.010%3% 6,5 ,015%1% 6,5|.015%2% 6.5|.015%3% 6,5
6 I,(8) I,(e) 1,(e) I,(e) 1,(e) 1I,(e) I,(6) I,(6)| I,(6) 1I,(e)
40| 2510 149.0[217.0 132.0[160.C 103.0{270.0 166.0[244.0 146.0
4522540 117.0[196.0 104.0{145.0 79.0|240.0 129.0/219.0 111.0
50| 204.0 89.0[/178.0 80.0{133.5 58.0[219.0 98.0{199.0 83.0
55(187.0 65.0|164.C 59.0/123.5 43.0|202.0 71.0/182.0 61.0
60|175.0 47.0|154.0 43.0{115.C 30.0[188.0 50.0|168.0 44.0
65|165.0 31.0{145.0 30.0[109.0 20.0(176.0 35.0[157.0 30.0
70/157.0 20.9|138.0 20.0[103.0 13.0[165.0 23.0|/149.0 19.0
75/151.0 11.0/131.0 11.0| 99.0 8.0[158.7 14.0[142.0 11.0
80| 146.0  6.0[127.0 5.0| 95.5 4.0[152.0 B8.0|/136.0 6.0
85|142.0 2.0[124.0 3.0 93.5 2.0|146.0 3.0[{132.0 3.0
90| 140.0 1.0[122.0 1.0| 92.0 1.0[141.0 1.0/129.0 1.0
95[138.0  2.0[120.0 2.0| 91.0 2.0[137.0 3.0[127.0 2.0
100/137.0  5.0[120.0 5.0 91.0  4.0]135.0 5.0[126.2 4.0
105[137.0  9.0[121.0 9.0| 91.5 7.0[133.0 9.0|125.0 8.0
110/138.0 18.0[121.0 15.0| 92.0 11.0|132.0 15.7|126.0 14.C
115/ 140.0 27.0|124.0 22.0| 94.0 17.0[|133.0 23.0/127.0 22.0
120|144.0 41.0[127.0 33.0| 97.0 23.0[137.0 33.0/129.0 31.0
125[150.0 54.0[133.0 45.0/101.0 32.0|142.0 45.0|134,0 42.0
130{159.0 72.0/140.2 60.0/106.C 44.0[149.0 69.0[/141.0 57.0
135[172.0 9140|1510 77.0/115.0 58.0[157.0 78.0[151.0 74.90
140|188.0 114.0|166.0 100.0{128.C 77.0[169.0 193.0[167.0 95.0
I '
01| s8.2 58.2 23.3 23.3 23.3
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Table F.2. Experimental Scattered Light Intensity (millivolts)

Run | «005%1% 4.5|.005%2% 4.5|.005%3% 4.5|.005%4% 4.5|.010%1% 4.5
9 Il(e) 12(9) Il(e) 12(0) Il(e) 12(9) Il(e) 12(9) Il(e) 12(6)
40| 18.0 10.6| 32.5 21.0| 21.6 12.7] 19.0 12.5|153.5 89.0
45| 1643  B8.2| 29.4 16.4| 19.6 10.1| 17.2 9.7|137.5 68.0
50| 15.0 6.2| 27.0 12.4| 18.0 7.8| 15.9 7.4[126.0 52.0
55| 13.9 - 4.7| 25.0 9.2| 16.5 5.8 14.7 5.6|117.0 39.5
60| 13.2  3.5| 23.5  6.6] 15.5 4.2| 13.9 4.0/109.5 29.0
65| 12.5 2.4| 22.4 4.7| 14.8 2.8| 13.2 2.8/103.5 20.0
70| 12.0  1.6] 21.4  3.2| 14.3  1.7] 12.7 1.7| 99.0 13.0
75| 11.7 1.0| 20.6 2.0| 13.9 1.0| 12.3 1.0| 95.5 7.0
80| 11.4 0.6| 20,0 1.0 13.6 0.6 12.0 0.5| 92.7 4.0
85| 11.3  0.3| 19.6 0.6| 13.4 0.3| 11.8 0.3| 91.0 1.5
90| 11.2 0.2| 19.4 0.3| 13.3 0.2 11.7 0.2| 90.0 0.5
95| 11.3 0.3| 19.4 0.5| 13.3 0.3| 11.7 0.3| 89.5 1.0
100| 11.3  0.6] 19.4 0.9| 13.3 0.5| 11.7 0.5| 89.5 3.5
105| 11.4 1.0 1946 1.7| 13.5 0.9] 11.8 0.9] 90.0 6.0
110 1146 1.6 2040 2.7| 13.8 1.6] 12.1 1.5| 91.5 11.0
115| 12.0  2.4| 20.5 3.9| 14.3 * 2.6| 12.5 2.3| 9.0 17.0
120| 1226 3.4 21.3  5.5| 15.0 3.9| 12.9 3.3| 97.0 25.0
125| 1343 447 223  7.9| 1640 5.6| 13.5 4.5/191.5 35,0
130| 14.1  6.4| 23.8 10.8| 17.1 . 7.5| 14.4 5.8[108.0 47.0
135 15.2  8.0| 25.6 14.4| 18:4 ° 9.8| 15.5 7.5/116.5 6140
140| 16.6 10.3| 27.9 18.4| 20.0 12.6| 17.2 9.7|128.0 78.5
To1| 70.9 70.9 4642 4642 55,0
Run |.010%2% 4.5|.010%3% 4.5|.015%1% 4.5|.015%2% 4.5|.015%3% 4.5
o [1,(0) I,(0) [T,(8) I,(8) |I,(6) T(0) I,(6) I,(6)] I (6) T,(e)
40]258.0 152.0]222+0 129.0|260.0 164+0|306.0 183.0]206.0 122.0
45(233.0 117.0[198.0 100.0|232.0 124.0|274.0 143.0|186.0 95.0
50(213.0 90.0|180.0 77.0|211.0 93.0|249.0 108.0|168.0 70.0
55|19600 67.0|166.0 57.0{195.0 68.0|228.0 81.0|154.5 52.0
60[181.C 50.0[155.0 41.0[182.0 48.0|211.0 58.0|144.0 38.0
65(170.0 34.0[146.5 28.0|171.0 34.0[199.0 41.0[135.0 26.0
70|162.0 22.0[140.0 18.0|162.0 22.0/188.0 27.0|/128.0 17.0
75/156.0 13.0[134.5 11.0[155.0 13.0|180.0 17.0/122.0 11.0
80|152.0 7.0|129.5 5.0[{150.0 7.0|174.5 8.0/118.9 5.0
85(149.0 3.0[126.5 2.0(146.0 2.0[170.0 3.0]/115.0 2.0
90[147.0 1.0[/125.0 1.0[142.5 1.0[166.0 2.5|112.0 ~ 1.0
95/146.5 2.0|124.5 2.0(140.0 2.0/162.5 3.0/109.5 2.0
100[146.0  6.0]/124.0 4.0[139.6 5.9[161.5 5.0[/108.0 3.0
105[146.5 11.9]/123.5 9.0[138.0 9.0(161.0 10.0|107.0 6.0
110{148.0 17.0[125.0 14.0(139.0 15.0[162.0 17.0|107.5 11.0
1151153.0 27.0|127.5 21.0[142.0 24.0[165.5 26.0(109.0 20.0
120[158.0 40.0|132.0 33.0|146.0 36.0|170.0 37.0|112.0 28.0
125/165.0 56.0|137.0 46.0[151¢5 51.0[176.0 52.0|/116.0 39.0
130[173.0 74.0[144.0 62.0/159.0 68.0|185.0 71.0]122.7 52.0
135(185.0 97.0[154.0 81.0[170.0 B7.0[195.0 95.0(130.0 6840
14020540 12440[170.0 105.0(182.5 111.0[210.0 125.0[140.0 8640
- :
01 | 1.0 61.0 23.5 23.5 23.5
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Table F.3. Experimental Static Pressure Ratios, Nozzle Flow Conditions

Run |, 005%1%12,5 |.005%2%12.5|.005%3%12.5 |.005%4%12.5}|.010%1%12.5
x(in) 2/Pn p/p_ p/p_ p/p p/p

0.5 0.,4181 0.3922 0.3938 C.3957 0.4582
1.9] 0.3635 0.3327 0.3315 C.3324 0.3867
1.5 C.3121 C.3055 N.2845 0.2852 0.3282
2.0 0.2715 2.2705 0.2522 0.2508 0.2857
2.5 N0.2436 Ne2433 0.2385 C.2273 0.2536
3.0 0.2161 0.2165 0.2160 0.2057 0.2278
3.5 0.1994 2.1978 0.1980 0.1926 0.2057
4,0 0.1822 0.1817 0.1819 0.1785 0.1886
4,5 0.1665 7.1661 N.1661 0.1648 0.1729
5.0 0.1531 0.1532 0.1530 0.1526 0.1603
5.5 N.1425 D.1422 N.1428 0.1422 0.1489
6.0 0.1323 0.1324 0.1322 0.1321 0.1390
6.5 0.1233 2.1225 N.1228 0.1227 0.1293
7.0 0.1156 0.1160 0.1167 0.1162 0.1214
7.5 C.1086 0.1092 0.1097 0.1095 0.1144
8.0 0.1019 2.1021 N.1028 0.1027 0.1069
8.5 C.0974 0,C974 0.0981 0.0980 0.1022
9.0 0.0921 0.0922 0.0927 0.0925 0.0962
9.5 0.0866 N.0N871 0.0874 C.0876 0.0915
10.0 €.0823 5.MN824 0.0827 0.0827 0.0861
10.5 0.0778 0.0785 0.0791 0.C790 0.0822
11.0 N.0742 N,0742 N.0750 0.0749 0.0780
12.0 N.0674 J.0677 0.0682 0,0682 0,0712
P (in Hg 245,74 244, 34 244 .64 244, T4 241.99
?e(°K) 324, 20 342,97 363,30 38C .90 341.04
W, N.C049 ).C049 0.0049 C. 0048 0,0107

Run L O0Lr#2%12,5 |, 017%3%12,5 |,015%1%12.5|.015%2%}12.5|.015%3*%12,5

x(in) P/P_ p/pP_ p/p_ p/P_ p/P,_

0.5 0.3857 0.3891 0.4197 0.3906 0.3899
1.0 n.3330 N.3284 0.3939 0.3434 0.3293
1.5 0.3168 0.2835 0.3365 C.3275 0.2915
2.0 0.2828 0.2511 0.,2927 0.2902 0.2781
2.5 n,2539 J.2394 0.2620 C.2601 0.2551
3.0 N.2272 0.2224 0e2348 0.2337 0.2306
3.5 0.2053 7.2043 N0.2130 0.2121 0.2102
4.0 0.1883 0.1875 N.1944 C.1940 0.1926
4.5 N.1731 nN.1728 0.1797 C.1794 0.1787
5.0 0.160?2 C.1598 . 0.1651 0.1651 D.1645
5.5 0.1481 Ne1482 N.,1526 0.1526 N.1524
6.0 f.1381 0.1383 Del4l7 0.1417 0.1419
6e5 0.1282 0.1283 n.1318 0.1318 0.1318
7.0 0.1210 0.1211 N.1239 0.1238 0.1239
7.5 n.1139 N.1141 7.1175 0.1173 0.1170
8.0 C.1069 0.1067 0.1104 C.1101 0.1095
8.5 0.1020 J.1070 0.1052 C.1050 0.1047
9.0 0.0958 0.0963 N.0991 0.0990 0.0986
9.5 0.0913 7.0914 0.0940 0.0939 0.0936
10.0 0.0860 0.0862 D.0888 0.0889 0.0887
10.5 0.0821 D.0821 0.0846 0.0845 9.0845
11.0 0.0730 C.0784 0.0805 C.C804 0.0806
12.0 0.0719 J.C713 0.0733 0.0732 9,0731
¥ \1in Hg 243,95 243,87 247,64 347.94 247.34
T U°R) 361.99 384,87 354,22 368+ 9% 381.07
w, n.01c3 0.0106 0.0151 C.7148 N.J149
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Table F.3. Experimental Static Pressure Ratios, Nozzle Flow Conditions

Locsx1x120.5

SO0HK2%IU,L5

o 0N5%3%1(C.5

«005%4%1C, 5

«010%1%*10.5

x(in) p/p, p/p_ p/P_ p/p p/p
0.5 L4017 3.3955 0.3977 0.3968 0.4834
1.0 0.3682 N.3312 7.3300 C.3288 0.3865
1.5 n.3157 N.3066 0.2881 0.2868 0.3306
2.0 06,2759 D.2763 0.2578 0.2545 0.2887
2.5 NL2647 0.2457 0.23872 0.2284 0.2557
3,0 0.2199 nN.72211 0.2185 G.2074 0.2293
3.5 NL7019 0.2611 N.2007 0.1921 0.2083
4,7 N,1843 £,184% ).1340 0.1806 0. 1908
4.5 N, 1684 Y.15691 N, 1682 0.1662 0.1750
5.0 N.1554 0.1553 n".1553 0.1543 0.1622
5.5 27.1443 N.l4a? Je1443 0.1433 0.1504
6.0 0el343 0.1343 9.1349 0.1337 0.1394
6.5 No1244 N.1243 0.1252 0.1241 0.1304
7.9 J.1172 N.1177 1.1179 0.,1172 N.1223
7.5 n,1179 N.1105 0.1107 0.1094 0.115¢C
3,0 nL.1C 35 0.1037 2.1040 0.1033 0.1085
8.5 n,N983 Je 0999 0.0995 C.0986 0.1028
9.0 N.0932 0.0915 0.0937 0.0931 0.0967
9.5 Y.0873 N.N882 0.0886 0.0884 0.0922
2.0 0.0833 D.08136 0.0843 C.0841 0.0871
10.5
11.0
12.0 )
P (in Hg 262,01 244,01 244,41 245,01 245,81
Ti(°K) 324, R9 344,56 352,32 381.24 340, 88
"’w6 1,L052 0.0051 N.0051 0.,0050 0.0102
Run LOL1N%2%10.5 (o 0LD%3%10.5 |.715%1%10.5 [.015%2%10.5 |.015%3%1C, 5
x(in) p/DP_ UM p/p,. P/D_ p/p_
0.5 N,3054 De3980 N,a4253 C.3957 N.3961
1.0 2,333 0.330C 0.3952 0.3494 D.3303
1.5 0.3199 0.288"7 7.3381 Ce3334 Ne2948
2.0 N.28173 N.2580 n.2963 0.2941 0.2819
2.5 N.25563 D.24C5 N.26356 0.2621 9.2588
3.9 ne2299 De2247 D.2377 0.2306 C.2339
3.5 N.21C4 0.2074 0.2141 N.2157 N.2143
440 9.19154 0.1909 Del967 0.1973 9.1963
4.5 V1761 C.1758 C.1812 0.1817 D.1814
540 NL,1625 Del625 D.1658 0.1575 0.1675
5.5 N, 1592 Ne1500 0.1541 €.1552 J.1555
647 C L1400 N.1402 N.1436 0.1440 0.1444
6.5 N.1304 G.1304 N.1333 0.1337 D.1344
7.0 0.1224 541225 7.1256 0.1258 0.1261
7.5 n.1157 N.1156 n,1188 ¢.1187 0.1189
80 N.1085 0.1032 Y.1113 C.1114 0.1116
845 fo10232 D.1035 Y.1063 C.1068 0.1064
3.0 N.N973 V.07 4 n.1n0?2 C.1705% J.1005
9.5 n,Ca27 NeNy29 7.0951 (.0954 0.0952
10.0 J.ORTS L0882 N.N9N3 C.C9NR N.0939
10.5
11.0
12.0
Pe(haﬁg) 745,11 DLn, O 247.61 246,91 244,81
T ("K) 362,157 185,21 254,87 363,28 382,02
T NG ES) 2.0162 n,0151 r.N150 Je 154




135
F.10

Table F.3. Experimental Static Pressure Ratios, Nozzle Flow Conditions

Run Lo05x1x 3,5 (,005%2% 8,5 ].005%3% 8,5 |,005%4% B,5[.010%1*% 8.5
x(in) p/p, p/p_ r/p_ p/D_ p/p_
0.5 C.4135 0.3941 N.3956 Ce39560 De4751
1.0 0.3606 0.3305 N.3281 C.3285 0.3886
1.5 ".3105 0.3084% n.2869 .2870 0.3322
2.0 0,2715 0.2733 N.2561 C.2552 042900
2.5 0,2411 0.2429 N.2357 N.2232 N0.2569
3.0 N.2167 0.218¢C " 0.2165 C.2068 5e2237
3.5 £.1991 D.1994 0.1990C C.1913 Ce209C
4.0 0.1819 0.1328 0.182¢ 0.1801 0.1910
4,5 0.1660 0.1668 N.1668 C.1655 71,1752
5.0 0.1526 Je1540 0.1539 0.1533 0.1595
5.5 N.1423 0.1428 Nel4a32 0.1429 C.1501
6.0 N.1319 0.1324 0.1333 0.1325 7.1394
6.5 re1226 0.1235 N.1237 0.1238 0.1303
7.9 n.115C 0.1161 J.1166 C.1165 n,1222
7.5 fL1034 C.l0097 2.1097 0.1095 0.1150
8.0 n.1015 0.1074 N.1029 C.1030 0.1079
8.5
3.0
9,5
1C.C
1C.5
11.0
12.0 .
P (in Hg) 241, 38 261,31 240,21 240 .31 238,31
T  (°K) 324,78 342,51 363.56 351,92 333,31
= W, 0.0C 48 J).C050 C.0C4h4 0.0046 0.0102
Run L 210%2x 3,5 [,013%3% 3,5],015%1* B,5[,015%2% 8,5 ].015%3% 8,5
x(in) p/p_ p/p_ p/p p/p p/p_
0.5  ~.3950 0.3951 7.4719 C.3944 7.39%%
1.0 Ne3329 43303 43995 C.2364 N.3787
1.5 1.2175 0.2883 n,3401 Ne3279 0.2912
2.0 N,2870 0.2581 N.2976 £.2952 D 27838
2.5 0.2560 C.?2380 Ne?2655 0.7628 0.2579
3.0 r.2301 D.224T - 9.2390 C.2377 542340
3.5 N,2101 2.2278 N.2174 C.2168 0.2142
4.0 n.1914 0.1911 Nn.1980 D.1984 N.1961
4.5 Ne1764 D.1760 0.1823 Ge1827 d.1811
5.0 ".l6722 2.1622 0.1680 0.1687 041672
5.5 n,1501 5.1499 0.1556 C. 1559 N.1551
6ad Col401 N.1471 N.l444 Cel448 0.1437
6.5 ".1330 C.1301 D.1345% 0.1350C Cel1345
7.C na1275 N.1228 N.1261 C.1263 0.1262
7.5 ".1155 2.1155 D.1194 01197 0.1187
8.0 NL10S4 To1034 0.1121 r.112? D.1116
8.5
5.0
9,5
1C.0
1C.5
11.2
12.0
Folin Hgy 939 9] 239,51 T 237.91 239,01 240,21
T 1K) 362,08 385,09 154,98 369, 34 330 .83
w r.C098 2.C1%4 2.0156 N.0153 N,2155
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Table F.3. Experimental Static Pressure Ratios, Nozzle Flow Conditions

Run L006%1% 5,5 [.0C5%2% 6.5 |.0N5%3% 6,5 ].0C5%4% 6,5|.010%1% 6.5
x(in) p/p, p/p_ p/p_ p/p p/p_
T 0.5 n,4091 C.3928 £.3908 C.2931 0.4355
1.0 C+35R9 G.2306 £.3245 C.3266 0.3827
1.5 £.3C3% 0.2C85 1.2845 L2844 D.3261
2.9 C.27073 2.277C nN.2539 0.2523 0.2847
2.5 0.22307 0.72414 €.2349 C.?2261 N.2528
3.9 r.2163 2.2172 C.2164 .2068 0.2273
3.5 G.1990 0.1991 N.1987 0.1873 n,2058
4,0 r.1218 0.1824 £.1822 C.1795 0.1897
4,5 N.1655 N.16656 0.1561 C.1650 0.1730
5.0 r.1523 041530 ne1532 0.1533 0.16C6
5.5 N.1415 0.1432 D.1428 C.1430 0.1485
60 r.1316 241332 $.1330 C.1319 0.1380
6.5
7.0
7.5
8.0
8,5
9.0
9.5
12.0
10.5
11.0
12.9
F_{in Hg) 236,13 239,91 239,91 233,33 236.33
1, k) 325,59 341,90 363,52 380, 46 341.49
w ~ G0 4T Do 04T 2.0046 0.0045 0.0098
Run L0102 6,5 ],010%3% 6,5[,015%1*% 6,5 [, 015%2% 6,5[.0165%3% 6,5
x(in) p/p_ UN p/P_ pin plpo
0.5 C.3914 Je2G4] Neh4]3 C.3917 N.3913
1.0 3279 0.2282 M, 3950 C.3373 0.3266
1.5 f.3121 4?2353 Nn,3373 €.3265 (e29C5
2.0 n,2839 0.2544 £.2946 C¢.2918 0.2730
2.5 0.2527 £.2353 0.2618 C.2603 Ce2560
3.0 CW2279 N.2226 n,2359 ¢.2353 0.2325
3.5 n.2081 0.2C71 ",2153 C.2147 0.2130
4.C n.1899 Je1896 ".1963 1968 0.1958
4.5 N.1742 Co174% 0.1797 n.1802 J.1795
5.0 C.1603 1674 Del1664 0.1667 N.1659
5.5 f.1494 7.149? D.1536 C.o1545 ¢.1535
60 n.1389 3.1387 J.1435 0.1431 0el432
6.5 -
7.0
7.5
8.0
3.5
9.0
9.5
10.7
1.5
11.9
12.0
P {in Hg 227,53 237473 237.53 237.73 238.53
T (7K) 252,11 345,79 352,52 368,92 381.28
W EER 5.0094% n,J151 Codl48 De149
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Table F.3. Experimental Static Pressure Ratios, Nozzle Flow Conditions
Run L0005 %LE 4.5 [.005%2% 4.5].005%3% 4,5 |, 005%4% 4,5 |.010%1% 4,5
x(in) p/p_ p/p_ p/p,_ p/pP_ p/p,_
0.5 N.4111 N.3926 0.3899 0.3369 N 4661
1.7 03631 0. 3299 1.32258 C.3276 2.3855
1.5 na3122 0.3083 0.286C 0.2852 N.3282
2.0 CL2T2 N.2733 9.2556% 0.?2545 D.2866
2.5 no2L20 L 2424 0.2361 Ce2264 .2541
3.0 ".2192 2.2185 N.2176 0.2080 D.2290
3.5 £.2001 22008 1.2001 N.1929 0.2034
4.0 Co1823 Ce13745 N.1835 0.,18037 0.1925
4.5
5.0
5.5
6.2
6.5
7.0
7.5
8.0
3.5
9.7
9,5
10.0
1.5
11.2
12.° .
P_(in Hg 237,41 239, 31 237441 238.31 237. 11
T 1K) 325,13 342,97 363,39 380,86 341,26
ﬁrwsf N.0045 ). CO45 N .00%45 0.0045 J.31C0
Run LO1D%2% 4,5 [0019%3% 4,5 ].715%1*% 4,5 |.015%2% 4,5 [,015%3% 4,5
x(in) p/p_ p/p_ p/p_ p/p_ p/p,_
0.5 0.3866 Je3R69 ). 4090 Ce3370 7.3859
1.0 de 3340 D.2305 1.3970 Co3bl?2 0.3299
1.5 143244 " .2358 543406 C.3309 7.2919
2.0 N.284A U.2550 N,2963 C.2921 J.2825
2.5 " e2549 12,2399 0N.2638 N.2615 0,2578
31,0 2297 02252 323836 C.2366 0.2344
3.5 0.21599 N.2073 N.2174 Coe21h4 0e2142
4.0 ".1918% Ne1923 0.1983 0.1933 041953
4.5
5.0
5.5
6.0
6.5
7.0
7.5
840
R.5
3.0
9.5
1.0
1.5
11.7
12.0
F {in Hg 238,01 233, 1] 230, 1] 257,11 237. 41
T T°K) 350, 1) 384, 70 354,72 367, 1o 38V, 36
w VL0100 RGEE N, 14T CuN150 0,149
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N

IOl
o X
incident
I02 light, I0
scattered
light, I

P = scattering particle

Xy = plane of observation, contains the incident and scattered
direction rectors.

8 = angle of observation, lies in plane xy and is measured from
the forward direction of the incident light.

o1’ Il = perpendicular components of the incident and scattered
light, respectively; lie in z direction, perpendicular
to plane xy.

102, 12 = parallel components of the .incident and scattered light;
lie in the plane xy and are perpendicular to their
respective direction rectors.

Figure 1. Definition of perpendicular and parallel components of
scattered and incident light; plane of observation.
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Figure 2(a).
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Angle of Observation, 6

Angular intensity functions, i., i,, vs angle of observation,
8; 0.1l<o<1.0, m=1.33; perpendicular component,
—~-—parallel component.
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Layout of experimental apparatus(2)

Figure 8.
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Vapor Pressure at Incidence, ATM.
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Figure 20(b). Droplet size vs. distance from throat; comparison of theory
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Figure 24(a). Exit plane target

pany
¢

Figure 24(b). Position of alignment images on nozzle target
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Particle Drag Coefficient, CD
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