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Abstract
This paper describes a methodology for evaluating the rate-distortion behavior of combined

source and channel coding schemes with particular application to images. In particular, we demon-

strate use of the operational rate-distortion function to obtain the optimum tradeoff between source

coding accuracy and channel error protection under the constraint of a fixed transmission band-

width. Furthermore, we develop information-theoretic bounds on performance and demonstrate

that our combined source-channel coding methodology results in rate-distortion performance which

closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband

source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes

for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-

world images demonstrate the efficacy of this approach.

1 Introduction

Shannon's information theory has established that, in the limit of large block sizes, source and

channel coding can be treated separately and if the rate-distortion function of the encoded source

is smaller than the channel capacity,'theoretically achievable performance is limited solely by source

coding errors. However, it can be observed in real-world systems that, even if the source encoded

bit stream is almost statistically independent, the individual bits normally differ in their relative

importance or sensitivity, and thus should be protected against channel errors according to their

*This work was performed at the ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY 12180 and was supported
by the German Educational Exchange Service (DAAD) as part of the HSP II-program, and in part by ARPA under
Contract No. F30602-92-C-0030.; and DAAH04-95-1-0103 (Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology).



respective effects on the reconstructed image. In recognization of this fact a number of approaches

have been developed for improving the quality of reconstructed images under noisy channel con-

ditions while maintaining a fixed overall transmission bandwidth. These techniques include: a

number of source and channel coding strategies with specifically tailored assignment of channel

codes to different encoded bit positions [1, 2, 3]; various schemes that combine blocked source

data structures and channel coding to limit propagation of channel error effects for variable-length

and/or predictive coded data [4, 5]; and source-controlled channel decoding schemes [6] that use

residual correlation in the encoded data to improve bit-error performance and hence reconstructed

image quality. All of these techniques have been shown to provide some degree of performance

improvement in the presence of channel errors.

In this paper, we describe how the quantization errors and the channel error effects contribute

to the overall distortion as an explicit function of the number of quantization bits used for the

different source data streams and on the specific channel codes employed for operation over an

additive white Gaussian noise (AWGN) channel at a specific value of Es/No. This will enable us

to develop an approach for jointly distributing source and channel bits in an optimum way. In

distinction to the work in [3], where a two-stage bit-allocation, first for source and then for channel

bits under the constraint of a common overall rate, was used to find the minimum overall distortion

over all possible source rates, we describe an improved process with a single joint bit-allocation.

This approach considers both the effects of quantization and channel errors contributing to the

distortion in case of a noisy environment and allows a trade-off between quantization noise and

channel errors in an optimum way. Furthermore, in order to provide a context for this work, we

extend this approach to obtain a series of information-theoretic bounds on the achievable perfor-

mance of practical combined source-channel coding approaches. This allows direct evaluation of

the relative efficacy of different quantization, coding and error protection schemes and, in particu-

lar, demonstrates that the approach described here provides performance closely approaching these

theoretical limits.

This paper is organized as follows. In Section II, we first give a brief description of the source

coder, the statistical properties of the various data streams and the different quantizers used.

The derivation of the individual sensitivities of the coded bits, depending on the quantizers and the

number of quantization bits, is developed together with a comparison of simulated results in Section

III. In Section IV, we briefly discuss the channel coder and we describe an approach for optimizing

the rate-distortion performance for the (real-world) transmission systems employed, along with
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some simulation results. In Section V, we extend the rate-distortion approach to the development

of general information-theoretic bounds and compare different image transmission schemes. Finally,

in Section VI we provide a summary and conclusions.

2 Source Coder

2.1 Discrete Wavelet Transform

As in other source coding schemes, the image first undergoes a transformation before quantization

to decorrelate the source signal and to make the data more suitable for compression. This could be

done by a discrete cosine transform (DCT) [7] or a subband transform (SBT) [8]. Since multireso-

lution representations, or discrete wavelet transforms ('WVT), have been applied very successfully

in image coding [9] and have demonstrated superior performance, both subjectively and objectively

and for both low and high degrees of compression, we will combine this technique with two different

scalar quantization schemes to build a base for optimizing the rate-distortion behavior of the joint

source and channel coders.

The basic idea of the discrete wavelet transform is the approximation of a full resolution (r=O)

image, denoted A 0of, by its discrete detail representations D°lf, Dlf, /D2 1f together with the

subimage at resolution r = 1, denoted A-_f. A subsequent approximation of A-if by A- 2f and

& 2f, Dl 2f D 2_ 2f can be applied iteratively obtaining the mapping at resolution r

Aof - (A-rf, DO rf, Drf, D -rf, Dlir+f, D+lf r+f,... f, f, f) (1)

Here D°rf,X Dlrf and D2_rf are the detail representations of A-_+lf at resolution r and A_rf is

the resulting resolution r subimage. This discrete wavelet decomposition is illustrated in Fig. 1.

-0
D2 f=

-r f=T1 DTk5 I f = Tk-2

D_% f.= _22 f=

Tk-4 Tk-3

,, f= Tk-.I f= Tk

Figure 1: An illustration of the wavelet transformed image.

For images, the discrete representations D°r f, Dl, f, r2 rf and the subimage Arf at res-
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olution r can be computed from the subimage A-r+lf at resolution (r - 1) by filtering first the

rows and then the columns of A-r+lf followed by subsampling by a factor of 2. The discrete

representation of the original image at resolution r then consists of K := 3r + 1 subimages. The

two filters (gm)mEz and (hm)mEZ which are used to effect the iterative resolution into low and high

spatial frequency components, respectively, are related by the condition g, = (-l)l-m hl-m.

Furthermore, wavelet theory shows that IH(w)12 - IH(w + r)l12 = 2 for perfect reconstruction, so

the filters have the characteristics of quadrature mirror filters (QMFs). Finally, the inverse wavelet

transform can be performed by upsampling Dorf, DLrf, D2_rf and A_rf by a factor of 2 and

subsequent filtering. In the work reported here, the Johnston 16-tap (b) filter [10] was used for

the elementary row and column filtering steps. In the following, let us denote the subimages of

the wavelet transformed image matrix T as T1 = A-_f, T2 = D°rf, T3 = l rf, T4 = D2f,

T5 = Dfr+lf, etc.

2.2 Statistical Properties of the Source Coders

It has been shown [4] that the histograms of the various subimages can be modeled reasonably

accurately in terms of the generalized Gaussian (GG) distribution

p(X) = 2(1) exp /ai (2)

with a a scale parameter and the parameter /3 controlling the exponential rate of decay. The

parameters a, / associated with a particular subimage can be calculated from the corresponding

samples x = (xo, x1, ..., xs-1 ) of that subimage, their expectation /, their first two absolute moments

A1 = E(Ix - l) and A2 = E(lx- l2) as c = A1 Ir( ), using

2 _ F(1//3) .r(3//3)
3 = F-'(A2) ;with F(P)= r(1//) r(3/) (3)

A 2 r2(2//3)

Results have shown that all AC'-subimages match the GG-model very good, while the DC-subimage

does not and thus will be modeled by a Gaussian distribution (i.e., a = and /3 = 2, with a 2

the variance of the samples x).

'We use a loose notation here, denoting the lowest-frequency band as the DC-subband and all the higher-frequency
bands as AC-subbands
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2.3 Quantization and Coding

2.3.1 Scheme A: Uniform Threshold (UT) Quantizer

In this very basic and very fast quantization scheme, the range Q of the samples2 of the subimage

is divided into N = 2n equally spaced intervals with Xt,k (O < k < N) the quantization thresholds

and n the number of quantization bits per sample. The reconstruction levels will be computed as

Xl,k = (xt,k - xt,k+l)l2. The mean-square error (mse) due to quantization can then be roughly

estimated as

eUT" = ) 1(4)

2.3.2 Scheme B: Optimum (nonuniform) Generalized Gaussian (GG) Quantizer

In the second scheme, the fact that the histograms of the AC-subimages can be modeled as general-

ized Gaussian (GG) distributions is used. We follow a procedure described by Roe [11] and applied

it to the generalized Gaussian distribution (see Appendix A), to calculate the optimum quantiza-

tion intervals with nonuniform spacing. Because of symmetry about the origin, the reconstruction

levels Xl,k for a mean-square error criterion (9 = 2) or a linear distortion measure (9 = 1) can easily

be derived as

sk, = a [(1 + 1) - P- p2k + - )] N for N/2 < k N , (5)

with P-l(a, x) the inverse function of the incomplete Gamma-function P(a, x). The reconstruction

levels for 0 < k < N/2 follow as XZ,k = xl,(N-l-k) and the correction term Ks for 0 = 2 can be

evaluated as (see Appendix A)

i~2 [~i (.3 r(2~r(l/$) )*(6)

The quantization thresholds xt,k can similarly be derived as

itk = a [(1 + ) - (- N )]1/3Xtk =[(1+ )0 (I N+ I J - j1s ;for N/2<k<N (7)

and for 0 < k < N/2 as xt,k = xt,(N-k) -

For N = 2n the number of quantization levels, the expected mse due to quantization can be

computed as [12]
S3 1

eGG, 3 (2 (2n + i2))2 (8)

2Q can easily be derived knowing the statistical properties of the subimages. In particular, we assumed Q as the
range that covers the underlying distribution with the probability of 0.999.
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with the correction term 72 given by

1 (Sg3r(1/) 1/2

Y2= 23) - ,(9)
3r(3/0)

and

Sg - 3 1/.3 (2ar(//3) ) 2 /3 (10)

2.3.3 Source Coding Rate and Distortion

Knowing the mean-square distortion ei,n, for each subband i = 1,2, ..., K (i = 1 denoting the DC-

subband and i = K denoting the highest-frequency subband), with ni the number of quantization

bits allocated to the ith subband, one can easily calculate the expected distortion of a compressed

image, Ds (measured as the mean-squared error on a per pixel basis), for every possible allocation

of different quantizers per subband as

K K

Ds = Ds,i= 'ei,n, (11)

with K the number of different subbands after the discrete wavelet transform, S the total number

of pixels in the original image and si = S/2 2ri the number of samples per subband (ri denoting the

resolution of subband i).

The corresponding source rate Rs in source bits per pixel (bpp) can also be calculated as

i K
Rs = si s n, (12)

Equations (11) and (12) can be written as Ds(n) = =l di(ni) and Rs(n) = [-l ri(ni)

for an arbitrary allocation n = [nl, n2 ,..., nK]. To optimally choose the vector n, we apply the

bit-allocation algorithm of Westerink et al. [13] which will also be used in the later joint source

and channel bit allocation. The basic idea is to choose (integer) allocations on the convex hull of

the operational rate-distortion function R(D). This is done by repeatedly finding a (neighboring)

vector 1 to the already known vector k (starting with k = [0, 0, ... , 0]) by solving

K

([ri(ni) - ri(ki)] - S(1, k) [di(ni) - di(ki)]) > 0, (13)
i=1

for every possible allocation vector n, with

R(1)- R(k)
(lk)= ()-(k) ' (14)
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the slope of a line on the convex hull for a (new) neighbor allocation vector 1 to the already known

allocation vector k. Though the solution of (13) normally yields 2 results, we choose the one with

the smaller distortion (i.e., di(li) - di(ki) < 0). The iteration is stopped when the allocated bit

rate reaches the target bit rate (or if a desired distortion is reached). An example of the resulting

bit-allocation is shown in Table 1 for the case of K = 16 subbands, the GG-quantizer and a total

rate of Rs = 1.0 bit per pixel, which leads to a mean-square error of Ds=20.419.

Result of the Bit-allocation
subband i variance i ni ei, [ (si/S) ei,,,

1 1678498 12 0.324 0.0003
2 198927 10 0.550 0.0005
3 41472 9 1.042 0.0010
4 56768 9 1.064 0.0010
5 34122 8 3.0 8 0.0118
6 7491 7 2.605 0.0102
7 8108 7 2.882 0.0113
8 4067 6 6.3 8 0.0987
9 1259 5 7.067 0.1104
10 1242 5 7.926 0.1238
11 523 4 11.889 0.7431
12 179 3 16.887 1.0548
13 130 3 11.474 0.7171
14 43 - 43.496 10.8741
15 17 - 16.748 4.1869
16 9 - 9.2:36 2.3090

E *20.419
Table 1: Bit-allocation for the 16-band GG-schenle and a total rate of Rs=1.0 bpp.

3 Channel Error Effects

For joint source and channel coding, one must now consider, in addition to source coding or quan-

tization errors, the effects of corrupted source bits, due to channel errors, on the reconstructed

image. In particular, knowing the distribution parameters of the generalized Gaussian distribution

associated with a particular subband i, denoted a i and ;3i, one can then evaluate the contribution

to the overall mean-square reconstruction error due to an error in any given bit position. These

contributions can be expressed in terms of individual bit sensitivities to errors in any given bit

position and lead to a useful and tractable approximation to the combined effect of source and

channel coding errors. To be sure, these bit sensitivities depend upon the particular coding scheme

used to represent quantizer output levels or indices. In the work to be described here we do not seek
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an optimum representation scheme as this depends rather explicitly upon the underlying source

distribution as well as the detailed statistical description of the channel bit-error characteristics. In-

stead, we will be specifically concerned with the use of a sign-magnitude representation of quantizer

output indices since it is uniformly applicable and leads to relatively robust performance. Indeed,

we demonstrate that the sign-magnitude representation leads to lower bit-error sensitivities, and

hence to improved performance, relative to either pure-magnitude or Gray-coded representations

(see Section 3.2).

3.1 Effects of Channel Errors

Suppose that Pi,l, I = 0,1, ..., (2ni - 1), represents the 1th error pattern associated with the trans-

mission of data of class i (subband i) for i = 1, 2, ..., K. It is a binary 3 ni-tuple with a 1 in those

positions corresponding to an error and O's elsewhere. For definiteness, for each i we take Pi,o to

be the all-zero sequence corresponding to no channel errors.

The average error due to the combined effects of sollrce and channel error effects associated

with transmission of subband i data is then

2ni-1

,ni = ei,,Pr{Pi,} , (15)
1=0

where e()i is the conditional mse given that transmission error pattern Pi, has occurred and

Pr{P i,l} is the corresponding probability of this event. Corresponding to (11) for pure source

coding, the combined distortion is then

Ds+c = Z S ei,ni
i=1

K !i 2ni-1 K i

- i 1- E] Pr{Pi,l} ei,,ni + YS E Prr{Pi,} , (16)

where we make use of the fact that e = the mse due solely to source coding effects. The first

term then accounts for quantization error effects while the second term represents contributions

due to both quantization and channel errors.

Assuming that all ni positions of a codeword for the ith subband data have the same probability

of error pi, we have

Pr{Pi,l} = Pi (1-pi) ' ; I = 0, 1, ... ,2n - 1 , (17)

3 Recall that data from subband i is encoded using an ni-bit quantizer



where di,l is the Hamming weight of error pattern Pi,I. More generally, assuming different proba-

bilities of error Pi,j for each of the ni positions of a codeword for the ith subband data. we have

ni

Pr{P i,/} = ]j(pi,' ). [1 - Pi,]1- i (Pi ") , (18)
j=1

where

(19)d~P )i 1; if the jth component of Pijl is a 1 (19)
0; otherwise.

In particular, the latter situation arises when unequal error protection is applied for different bit

positions of ni-bit codewords for subband i data.

By writing the conditional mse e(l)i as the sum of the quantization error ei,ni and a term

accounting for the effects due solely to transmission errors we have

e~7i~ = einj + A) (20)

where Aii denotes the bit-error sensitivity (additional nlse) of a codeword of length ni of subband

i data, given the Ith error pattern. Using (16) and (20), the combined distortion due to source and

channel coding can thus be written as

K AK 2niT -

c =s ~ E(S jA) .EPr{Pi,} (21)Ds-c = Z ' ei,ni q -ii (21)
i=l i=l /=1

where the first term denotes the source coding (quantization) error Ds and the second term the

additional mean-square error due to channel errors only.

We now approximate the additional distortion caused by error pattern Pi,l in terms of the

single-bit-error sensitivities Ai,j, which account for the additional mse, given a single error in bit

j, with j = 1,2,...,ni (i.e., the single-error patterns Pi,l with I = 1,2.4,..., 2(n'-1)), of a codeword

of subband i data as
ni

A!I,ni < E E j(Pi,l) .Ai,j, (22)
j=1

which is an upper bound for the case of multiple errors (i.e., I $ 1, 2, 4, 8, ..., 2 (ni- 1) ) . Nevertheless,

as the Pi,j become small, the probability of multiple errors tend to be very small and thus the error

terms for 1 # 1,2, 4, 8,..., 2(ni' - ) can be neglected, i.e., (22) holds with equality (single errors only).

Finally, using (21) and (22), the overall distortion can be written as

K K 2ni-1 i ni 1- Pk(P,1) 

Ds+c < i n .ei, (P,)A, + I [- Pi,.k] 
i~l i=1 i =1 j=1 k=l

K K niC Si Se tC si
= E '*eisn, + ES E Aij Pij (23)

'=l i=1 j=l
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where we have made use of the fact that

2n i -1 ni

p ) ik(PPi) I1- pik]1- '" (P ' j) = E{+j(P))Oj(Pil)' HP Pik-

1=1 k=l1

= Pij, (24)

for any given j E 1,..., ni.

3.2 Derivation of Bit-Sensitivities

The knowledge of the individual bit sensitivities Aij is essential for the joint optimization of source

and channel coding. In the following, the sensitivities will be derived for the general case of an

n-bit quantizer for both the uniform threshold (UT) and the generalized Gaussian (GG) quantizer.

3.2.1 Scheme A: Uniform Threshold (UT) Quantizer

For this basic quantization scheme, when quantizing the quantization range QR = [-Q; a] with n

bits, the sensitivity of the magnitude bits can be written as

AUTm,j=(2 j. 2) ; for j= 0,...,(n-2), (25)

where j = 0 denotes the least significant bit (LSB) and j = (n - 2) denotes the most significant

bit (MSB). The average sensitivity of the sign bit (SB) of the DC-band, which is modeled as a

Gaussian distribution, is the summation over all possible corruptions (i.e., all possible magnitude

values being corrupted to their negative values, resulting in twice the error of the actual magnitude)

and can be written as

Q2 2( n-) 2(k - I)Q/2 n k Q/2 n
AUT,s,dc = 2 (2k-1)2 [erfc (k - 1)Q/2) erfc ( (2622n k=1 k.Q/2 T h (26)

Similarly, the sensitivity of the sign bit of an AC-band can be expressed as (see Appendix B)

AUT,s,ac = 22n [ (2k( )- 1) P ( ( . P)27

with P(a, x) again the incomplete Gamma function. To obtain the final effect of a bit error in one

sample on the reconstructed image, one has to normalize the sensitivities Ai,j of the samples to the

image by multiplying with the factor si/S, as done in (23).
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3.2.2 Scheme B: Optimum (nonuniform) Generalized Gaussian (GG) Quantizer

Similarly, the sensitivity for the nonuniform quantizer based on the generalized Gaussian distri-

bution, which is applied to the AC-bands only, can be derived. Let's denote d(Xi,,,xlb) as the

distance between the reconstruction levels xI,a and xl,b, where, due to symmetry, we refer to the

positive range only (i.e., mean = 0, 0 < xl < oo, a,b E (0,...(2 n- 1 - 1))). The probability,

that a sample to be quantized falls into the interval [xt,k,xt,k+l] with k E (0,...,(2n-1 - 1)) is

Pr(xl,k) = 1/2. (P(1/, xt,k+l) - P(1/,3,xt,k)). So the sensitivity for the (n - 1) magnitude bits

can be expressed as (see Appendix B)

2j-1 (2n-2-1-1)

AGG,m,j = 2. E E [Pr(xl,a) + Pr(xt,b)] d2 (.Xl,,x1,b) ; for j = 0,...,(n - 2) , (28)
1=0 k=O

with

a = I + k 2(+ ) and b = I + .2 ( + ) + 2, (29)

where again j = 0 denotes the LSB and j = (n - 2) denotes the MSB. The sensitivity of the sign

bit can be derived in a similar way as

2(n-1)_-1

AGG,s =2 y Pr(xl,k) . (2xl,k) 2 , (30)
k=O

with xl,k the quantization level of interval k.

To demonstrate the close correspondence between analytical and simulated bit-sensitivities,

both for the UT- and GG- quantizer, we plotted both results in Fig. 2 for a representative bit

allocation at a rate Rs = 1.0 bpp for the well-known LENNA image (see Table 1). The bit-allocation

assigned the optimum number of quantization bits ni to the different subbands, in order to obtain

the minimum distortion (from eqn. 11) for the given (maximum) source rate (from eqn. 12). As can

be seen, the DC-subband (denoted by i = 1) and the lower-frequency AC-subbands were assigned

a higher number of quantization bits, whereas the high-frequency AC-subbands were assigned only

a few bits or even none. To have a better view of the wide range of the Ai,j, we plotted loglo(Ai,j)

versus the subband i. The precise estimation of the bit-sensitivities, together with the analysis of

the quantization error, is the basis for the later joint source-channel bit-allocation. One can also

note in Fig. 3, which shows the simulated sensitivities for alternative representation schemes (which

again could very precisely be predicted), that this way of coding (sign-magnitude) results in lower

bit-sensitivities compared to pure magnitude or Gray coding of the samples (especially the first two

sensitivities of each subband). Although there exist optimum representation strategies to minimize
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sensitivities for a given source distribution, for simplicity, we restrict ourselves to sign-magnitude

coding.

Bit- Senrrsitivity (SB, MSESB .... L SB)
LEINN4A, FR s = .0 bpp, 16 bands. U-T-quaentizer

2-0 >1.0 J,

a.) UT-quantizer, subband i=1,...,12I I, P .0 topp, I i

- 0.0 10.0 0.0 30.0 0.0 50.0 0.0 70.0E.0 : andti

i ' 2

3.0

b.) GG-quantizer, subband i=1,...,13

Figure 2: Comparison of analytical and simulated bit-sensitivities, SB, MSB, ....LSB.4~~~~~1.0
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Magonitude-, Cray- and Sigrr-MVagrnitude Coding
LENNA, FR = 1 .0 bpp, 16 bands, GG-quarntizer, simulation

3.0 .....

,ut-band :. ' '. 2 , .. . .
2.0

1.o

0.0 10 0 400 0 0 70 

Figure 3: Comparison of bit sensitivities for magnitude, Gray and sign-magnitude coding of subband3.3- aGray CodingFor a real-world system with differen Si -Manitu channel code i for all bits of a codeword of subband i data, or one could allocate different channel code rates....0.0 1 0.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0irdex -- >

Figure 3: Comparison of bit sensitivities for magnitude, Grj =ay and sign-magnitude coding of subband
samples.

3.3 Channel Coding

For a real-world system with different sensitivities Aof, we allocate different channel code rates to

the different encoder output components, giving us different levels of protection (i.e., bit-error rates).

One can either allocate one single channel code rate, resulthe origin identical bit-error probabilities

ev for all bits of a codeword of subband i data, or one could allocate different channel code rates,

resulting in bit-error probability Pi, for the th bit, j = 1,2, ... ,ode-rates Rni of a sample within subband

i. In particular, this requires a class of codes that allow different rates. We chose the binary

rate-compatible punctured convolutional (RCPC) codes with memory v = 6, because they allow

convenient implementation of all codes of different rates within this class without changing the

encoder or decoder by simply varying the number of punctured bits. Furthermore, they allow

very precise prediction of the expected bit-error rate (BlER) for specified channel conditions and

a given channel code rate. The reader is referred to the original paper [14] for a performance

evaluation in an additive white Gaussian noise (AWGN) and a Rayleigh fading environment. When

calculating the expected bit-error probabilities for the different code-rates Rf, one has to deal with

the loose behaviour of the transfer-function upper bound for low signal-to-noise ratios. Since the bit-

allocation algorithm always considers the uncoded BER with code rate Rf =l1 first, any discrepancy

in BER for Rf $ 1 due to looseness of the upper bounds is avoided by choosing the smaller of
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the computed bound and the uncoded bit-error probability. Furthermore, it should be emphasized

that, although one could apply other families of channel codes, we restricted attention to binary

codes, which allow a reasonably accurate analysis of BER versus signal-to-noise ratio Es/No to

obtain an overall analysis of the combined source and channel coding.

By denoting as Rj the channel code rate (in bits per channel use) assigned to position j of

the ith subband, we can write the average channel code rate (in source bits per channel use) of

subband i as

' ZRc,= /R=.i (31)

The overall average channel code rate (in source bits per channel use) can then be written as

i=1[(·; · s;)/Rc = Z= Z= 1(32)
R C = _-[(n -si)/Rci] E= ·si E'1(/R,) ' (32)

4 Rate-Distortion Behavior

4.1 Overall Rate and Distortion

Being able to calculate the distortion introduced by source coding (eqn. 11) and the overall distor-

tion including the (remaining) channel errors (eqn. 23) (i.e., the sum of the source coding distortion

Ds and the distortion due to transmission errors Dc), one can rewrite the overall distortion Ds+c

(in mse) for every possible assignment of different quantization bits per subband ni and different

channel code rates Ri,j for the ni different positions of the samples of subband i (with a resulting

BER Pi,j) as

K K' Si n(33)
Ds+c = Ds + Dc = Ds+c,i = (en + A, A, (33)

i=l '=o j=l

The resulting overall rate Rs+c = Rs/Rc (in channel uses per pixel) can be written as

Rs+c =S E i* E Si * Rs+c, i (34)
½=1 Rij S i=1 Rc' ' i=1

The problem is then, similarly to the bit-allocation problem for pure source coding, to find the

number of quantization bits ni for every subband i together with the channel code rates Rij for the

different classes of sensitivities to obtain a minimum over all distortion Ds+c under the constraint

of a given maximum overall rate Rs+c. It is also possible to solve this problem to match a specified

overall distortion Ds+c with the minimum overall rate Rs+c.
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4.2 Joint Source and Channel Bit Allocation

The task is to allocate the bits corresponding to a certain overall rate Rs+c in a way, that we

obtain the minimum distortion for a certain (uncoded) bit-error rate or Es/VNo on the channel.

Therefore, we can apply the same optimal bit-allocation algorithm of Westerink et al. [13] to the

different subbands, knowing their overall rate-distortion behavior D(R) in exactly the same way as

described previously for pure source coding. To calculate the overall distortion (mse) corresponding

to a certain rate (c.u. per pixel), we start with the following approach.

4.2.1 No Code-Allocation within a Subband

For the first step in evaluating the final rate-distortion behaviour, we restrict attention

to a single channel code per subband. This means every bit of the quantized samples

within subband i has the same channel code with the resulting bit-error probability pi, i.e.,

Ri,j = Rc,i for j = 1,..., ni. Therefore, we applied the following procedure for every subband i:

We first calculated the joint source and channel distortion depending on the rate Ds+c,i(Rs+c,i).

Taking a look at Fig. 4, one can see, we started with the case of no source coding at all (hi = 0),

resulting in the distortion Ds+c,i = Ds,i(ni = 0) = (1/S) Z=i Ym the weighted variance of

subband i, with yi,m the mth sample of subband i. We then quantize with ni = 1 bit and we

assign all possible F channel code rates Rf, with f = 0,1, ..., F (with f = 0 as no channel coding,

f = 1 as the weakest code with the highest code rate and f = F the best available protection with

the lowest code rate) to this ni = 1 source bit and, using (33), we calculate the joint distortion.

This procedure is repeated after incrementing the number of quantization bits ni until one reaches

a sufficiently low joint distortion within the subband i. This procedure can be seen in Fig. 4,

where we plotted the joint distortion (as logo0(mse) for a better representation of the wide range

of values) versus the overall rate (in c.u. per pixel) for subband i = 3 at an Es/iVo = 0 dB which

corresponds to an uncoded BER of p = 0.0786 with available channel code rates of 1/1, 8/9, 4/5,

2/3, 4/7, 1/2, 4/9, 4/10, 4/11, 1/3,.4/13, 4/15, 1/4. One can see the decreasing distortion with

the increase of quantization bits. The decrease in distortion due to more and more channel coding

saturates at a distortion equal to the quantization noise (when quantizing with ni bits). This is

why there is a 6 dB difference of the (horizontal) saturation lines corresponding to each increment

in quantization bits. In Fig 4, we also plotted the final operational joint rate-distortion function as
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the convex hull for this particular subband4 . This will be used in the following joint bit-allocation

procedure, together with corresponding operational R-D-functions (that show a similar behavior)

for all the K subbands.

Joi rnt Source-Ch arrrl Rate-Disto rtionr
LENNA, S Es/N0= O dB, BEREF=0.0786, i=0....11 bI its, i=3

2.5

n-~i=0 i n nri=2 I ~~R- ---. R-D (S+-C) for ni=0-1 1
final FR-D S+C) , UT, no C

- ii=3 . .. dB diffireren9c f

-~0.5~

_ ; " , / satuti lin s

\ 3. 5 / 10

0 5 10 15 20 25 30 35 4.0 i4FR'-., [C.u , p'r .>.... ni----

Figure 4: Overall rate-distortion behavior of joint source and channel coding, applied to subband
i=3, no code-allocation, UT-quantizer.

4.2.2 Code-Allocation within a Subband

To improve the overall performance, one can perform a code-allocation (CA) within every subband.

This means, that the ni different source bits of subband i can receive different protection (according

to their needs). This seems logical, since the source bits cover a wide range of sensitivities (see

Fig. 2), and it obviously is a waste of resource (redundancy) if we do not make use of some form of

unequal error protection (UEP). The calculation of the operational R-D-functions of the different

subbands is then altered in the following way. After assigning a specific number of quantization

bits ni one has to perform code-allocation procedures before incrementing ni. The code-allocation

is done for average channel rates ranging from Rmin = 1.0, which means every source bit has no

channel coding, to Rmax = Rf=F, which means every source bit obtains maximum protection.

An average channel code rate A with Rmin < R < Rmax means the available redundancy is

4Note that in this case (i = 3), all possible distortions for ni = I are greater than the variance (ni = 0) and thus
are not considered when evaluating the operational joint rate-distortion function.
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allocated in an optimum way to the different sensitivities (different code rates to the different

sensitive bits, UEP) as to minimize the channel distortion Dc,i(ni). WVe plotted this procedure for

the same conditions as above in Fig. 5a, where one can see, as a result of the performed code-

allocation, the much smoother and steeper behavior of the corresponding R-D-function (compared

to Fig. 4), which means increased performance and more variety for the later joint source-channel

bit-allocation to choose from.

To show the benefits of this code-allocation procedure and the better source coding performance

of the GG-quantizer, we plotted the final R-D-functions (the same conditions apply as before) for

the UT- and GG-quantizer in Fig. 5b. As one can see, the performance improves when using CA for

the UT instead of none. Furthermore, using the GG-quantizer increases the performance even more.

Furthermore, to dramatically enhance the performance of the source coder, similarly to [15], we

partitioned every subband into fields with size equal to that of the low-frequency subband (i = 1).

Since different fields of one subband represent different regions of the image, depending on the

image content they may have very different statistical properties. This gives the joint bit-allocation

a much wider variety of choices for allocating bits (i.e., local adaptivity). So, for the remainder, we

consider K=16 subbands after the wavelet transform, partitioned into Ik=1024 fields, and for the

source-channel coding, we use the GG-quantizer with CA.

4.3 Simulation Results

Having the operational R.-D-functions, the joint bit-allocation based on [13] assigns bits to the

bands, in order to obtain the minimum overall distortion for a given overall rate Rs+c for a

specific channel signal-to-noise ratio. Contrary to [3], where we used a two-stage algorithm for

the bit-allocation, to allocate the channel bits after the source bits, and then searched for the

optimum source-to-channel rate ratio, here we jointly allocate source and channel bits in a single

bit-allocation. The analytical overall performance is shown in Fig. 6a, where we plotted the R-D-

diagrams of the 1024 field-GG scheme for different Es/No on an AWGN channel. One can see the

typical R-D-behavior including the improved performance (lower distortion) with increasing signal-

to-noise ratio. We also included some simulation results with the LENNA image, being actually

source and channel encoded, transmitted and decoded (with some remaining channel errors) 50

times. This was done for the overall rates Rs+c=0.5, 0.75 and 1.0 bpp and an E8/No=O, 2 and

4 dB, using the v = 6 RCPC codes. The exact values of simulation and analysis can be found in

Table 2. The side information to be transmitted, which comprises the statistical properties of the
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Figure 5: Overall rate-distortiNN /=O , E =007,source and channel cod1 itng, i=i=3.

finalss of quantization C), , and bit-erro Crates.
1 n5 Fig. b, we compare the joint R-D-behavior of three different schemes (with CA), namely

fi0al 5R-E C--) -, with CA| 

the 16 band-UT, the 1024 field-UT and th e 1024 field-GG scheme for an Eg/N0 =0 dB. O ne can
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Es /No Rs+c Ds [mse] Dc [mse] Ds+c [mse] Ds+c [PSNR]
[dB]

(BER [c.u./
uncod.) pixel] analyt. [ simul. analyt. } simul. analyt. ] simul. analyt. I simul.

0 dB 0.5 42.42 43.15 4.26 4.67 46.68 47.82 31.44 31.34
0.75 27.56 28.27 3.06 3.09 30.62 31.37 33.27 33.17

(7.9.10-2) 1.0 19.81 20.30 2.46 2.40 22.26 22.70 34.66 34.57
2 dB 0.5 32.93 33.42 3.31 3.41 36.24 36.83 32.54 32.47

0.75 20.85 21.28 2.25 2.24 23.11 23.53 34.49 34.42
(3.8.10-2) 1.0 14.89 15.29 1.56 1.49 16.45 16.78 35.97 35.88

4 dB 0.5 26.41 26.98 1.86 2.89 28.28 29.87 33.62 33.38
0.75 16.31 16.60 1.37 2.05 17.68 18.65 35.66 35.43

(1.3.10- 2) 1.0 11.57 11.83 0.94 1.33 12.51 13.16 37.16 36.94

Table 2: Performance of joint source channel coding for code memory i, = 6.

see the improvement as one moves to more and more sophisticated schemes. Note that these

overall operational R-D-functions can be calculated, for every source-channel coding scheme, once

a specific channel code family is chosen (with the knowledge of the associated BER-performance)

and provided that there exists an analysis of source coding error and of the sensitivity to channel

errors.

We also illustrated in Fig. 7 some representative images, which were transmitted over an

AWGN-channel at a signal-to-noise ratio of Es/No=O dB and an overall rate of Rs+c=l.0 bpp. One

can get a very good indication of the improvements if one compares the images, beginning from

an unprotected image with no transmission error (a), to an unprotected image with channel errors

(b), on to the various schemes with increasing performance (16-UT (c), 1024-UT (d) and 1024-GG

(e)) and, finally, comparing them to the result of a transmitted image at the channel capacity (f).

The same results for EslNo=2 dB and R,+,=0.5 bpp can be seen in Fig. 8. Both figures show

the large amount of distortion due to channel errors in the unprotected images (b). The jointly

optimized images of the 16-UT (c) scheme look much better, but still the images indicate the effects

of the quantization error due to the-suboptimum source coding performance. With better source

coding (1024-UT (d)), we increase the quality of the image, but there is some distortion noticeable.

The best results can be obtained with the 1024-GG scheme (e), which combines sharpness with

less annoying noise. The best theoretical quality, assuming the 1024-GG scheme, but no channel

errors when transmitting at the channel capacity (f), shows only minor improvements in the case

of Es/No=2 dB and Rs+¢=0.5 bpp (Fig. 8) and almost no improvement in the case of Es/No=O

dB and Rs+c=1.0 bpp (Fig. 7). The coding results (PSNR and Rs) of the images can be seen in
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b.) Rate RS+c in c.u. per pixel versus distortion Ds+c for various joint S+C schemes

Figure 6: Overall rate-distortion behavior of joint source and channel coding.

Table 3.

5 Theoretical Performance Bounds

We are now interested in obtaining theoretical bounds on the R-D behavior of combined source-

channel coding approaches which will prove useful in assessing the relative efficiency of different

real-world schemes, such as the approach described here. In fact, we will develop a sequence
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a.) Source coding only, l"1.R=0.0 bX.) Source codling only, 11!'"1.,=0.079

c.) UTJ'I-16, /,, = 0.18 ibpp d.) U'-1024, R. = 0.56 ))1)

e.) G;I- 1021, 1?,=0.57 bpp f.) (C(-1021 at capacity, /?,=0.60 bpp

Iligurc 7: Sinlulalioi results for i/,,: = 1.0 bipp al,(l !s/, 1=0 Oll.
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a.) Source codillg only, 1 1t.=i0.0 b.) Source c(xling only, l1E1{.=0.038

c.) UT'-16, /?, = 0.-35 bpp d.) U'i'-1021, , = 0.35 Ipp

e.) (I(C- 1(024, /1=0.3,6 bpp f.) C(C-1021 at. capacity, /iA=0.38 bpp

Figure 8: Siiuilatioii results for I?,+,: = 0.5 bpp iand Ls/ v= 2(1
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Joint Es/No=O dB - BER=0.079 Es/No=2 dB - BER=0.038
Source-Channel Rs+c = 1.0 bpp Rs+c =0.5 bpp
Coding Scheme Rs PSNR Rs PSNR

no trans. errors 1.00 38.175 0.50 34.480
unprotected 1.00 16.040 0.50 18.224

16 - UT 0.48 29.683 0.35 29.489
1024 - UT 0.56 33.766 0.35 31.765
1024 - GG 0.57 34.594 0.36 32.477
Capacity 0.60 35.470 0.38 33.201

Table 3: Simulation results of the images depicted in Fig.'s 9 and 10.

of such bounds predicting successively improved performance but implying increasing levels of

system complexity. These bounds will be useful in assessing additional performance/complexity

tradeoffs above and beyond the specific combined source-channel coding approach considered here

and provide the basis for potential further improvement.

As a first step, assume that it is possible to transmit at the channel cutoff rate Ro, in bits/c.u.,

and that this results in negligibly small bit-error rate. The cutoff rate is generally accepted as the

largest signaling rate practically achievable for which arbitrarily small bit-error probability can be

expected [16]. This information-theoretic bound is said to be practically achievable in the sense

that in many real-world situations it's possible to design specific channel coding schemes requiring

only reasonable decoder complexity and yet demonstrating performance approaching theoretical

predictions based upon cutoff rate considerations. This assumption then allows us to assess the

additional improvement in R-D performance possible if the binary RCPC codes were replaced by

more powerful, yet practically implementable, binary channel coding schemes. The cutoff rate for

binary antipodal signalling on the AWGN channel is given by [16], [17]

Ro=log( 1 + e-E/N) bits/c.u. (35)

The first information-theoretic performance bound will then be obtained under the assumption of

equal error protection (EEP) at the largest practical signalling rate for all bits of all subbands 5, i.e.,

we assume Rc,i = Ro, i = 1, 2, ... , K, and that this assignment results in zero channel errors. The

resulting performance bound, illustrated in Fig. 9b for subband i = 3 and in Fig. 10 for overall

system performance, provides only marginal improvement over the best of our real-world coding

results (e.g., 1024 field-GG, with CA). This is due to the fact that, although the operational R-D

5 This is stronger than the no CA case considered previously in that now all subbands are assumed coded identically
but result in zero channel errors.
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functions of selected subbands (e.g., i = 3) show considerable improvements for very low distortions

(i.e., loglo(mse)< 0), as illustrated in Fig. 9b, the joint source-channel coding allocation algorithm

results in distortion allocations for these subbands at higher levels (i.e., loglo(mse)> 0) where

the performance improvement is rather small. This would indicate that with EEP schemes, it's

difficult to improve much on the practical approach described here, even with the use of more

powerful binary channel codes.

As a second, improved bound we consider the case where limited CA is now allowed within

each subband. More specially, we consider either 6 no channel coding with Ri.j = 1 or chan-

nel coding with Ri,j = Ro for the different coded bits of each subband (field). In the former

case, the bit-error probability is taken as the raw symbol-error probability, while it is assumed

zero for the latter. We make use of the same optimization strategy as employed in Section 4.2.2

to assign the Rij E {1, Ro}. This approach allows more flexibility in tailoring the degree of

coding to the sensitivities of the individual bits in an effort to minimize the overall distortion

subject to a total transmitted rate constraint. Furthermore, even though it has the same R-D

performance as the case where all bits are coded at the cutoff rate (Rc,i = Ro), it provides a higher

degree of freedom in choosing distortions (rates) for the following bit-allocation process. Indeed, a

similar analysis of our previous example (subband i = 3, E/INo=OdB) exhibits a steeper behavior

than the optimized RCPC coding approach as illustrated in Fig. 9a,b. For the overall R-D perfor-

mance, the resulting bound is only marginally improved over the case with EEP (Rc,i = Ro) at the

channel cutoff rate as illustrated in Fig. 10 (e.g., 1024 field-GG, Ri,j = 1l[Ro). Nevertheless, this

case (Ri,j = l[[Ro) does have some advantages since it assigns just the right amount of protection

to the coded bits and, due to wider selection of possible distortions (or rates), the bit-allocation

can be more efficient.

The preceding two bounds are representative of practically achievable performance with real-

world systems provided we use state-of-the-art channel coding of reasonable complexity and restrict

attention to fixed-level quantizers for each subband (field). We now consider the potential perfor-

mance achievable if some form of variable-length entropy coding of the (optimum) GG-quantizer

output indices is employed to further reduce the source coding rate for a given level of distortion.

More specifically, the first-order entropy of individual subbands (fields), when quantizing with ni

bits, is

6 This case is referred to as 1l1Ro in what follows.
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b.) Rate Rs+C,i versus distortion Ds+c,i for various joint S+C schemes, subband i=3

Figure 9: Rate-distortion behavior of joint source and channel coding for subband i=3.

2ni

H(y;ni) = - P(Yk) log 2 P(Yk) ; bits/sample, (36)
k=l

where Yk, k = 1,2,..., 2ni, represent quantizer indices and P(Yk) is the corresponding probability.

The operational R-D functions for each subband (field) are then modified by assuming the source

coding rate (in bits/sample) is measured as the corresponding first-order index entropy. Note that
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Figure 10: Comparison of overall rate-distortion behavior of joint source and channel coding for
various schemes.

in order to achieve this performance some form of variable-rate entropy coding will be required

which is extremely sensitive to channel errors, and associated error propagation effects, if there are

no other precautions taken such as providing periodic embedded synchronization marks. Since the

differential effects of individual channel errors on these practical variable-length coding schemes

is difficult to analyze, we will restrict attention to EEP schemes. In particular, we will develop

additional information-theoretic bounds by assuming EEP channel coding operation at either the

cutoff rate (Rij = Ro) or the channel capacity (Ri,j = C); in either case, we assume zero bit-error

probability. The first of these bounds (Ri,j = Ro) provides a useful bound on practically achievable

performance while the second (Ri,j = C) provides a bound on theoretically achievable performance

and is useful in assessing absolute performance limitations. We should note at this time that these

same assumptions will lead to even improved R-D bounds if entropy-constrained quantizer (ECQ)

design approaches were employed rather than simply entropy coding the level-constrained quantizer

(LCQ) designs as used here. This is considered outside the scope of the present investigation.

The resulting performance bounds for these two cases is illustrated in Fig. 9b for subband i = 3,

and in Fig. 10 for the overall R-D performance. In Fig. 9b, we illustrate results for both analytical

evaluation of the entropy under the GG assumption as well as use of simulated performance. The

difference between the simulated and analytically derived entropy results are due to at least two

reasons. First, there is some statistical variability in the simulated results due to the relatively small
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number of samples per subband7 (field) si = 256. Secondly, there is some modeling mismatch under

the GG assumption which results in some inaccuracies in the analytical results. Consequently, we

expect that the actual R-D performance is somewhere in between those two results. It follows

then from Fig. 9b that these entropy-derived bounds demonstrate some additional potential for

performance improvement by use of more efficient source coding (e.g., entropy coding of quantizer

indices) provided we are willing to accept the increased complexity associated with the variable-

length entropy coding. Furthermore, it should be noted from Fig. 9b that the potential performance

improvement for subband i = 3 is substantial only at very low distortions8. Since the combined

source-channel coding allocation scheme typically allocates a range of rates and/or distortions

to the various subbands, the overall R-D performance is a weighted average over these individual

subband allocations. The resulting overall R-D performance, as illustrated in Fig. i0. indicates that

the entropy-derived bounds are only marginally better than the fixed-level information-theoretic

bounds which are in turn quite close to the achievable performance with our proposed combined

source-channel coding approach.

Some final comments on the results in Fig. 10 are in order. These results, including the

information-theoretic bounds, although useful, apply only to the specific wavelet-based encoding

scheme here and for the fixed image LENNA. Nevertheless, subject to these qualifications, the

results are useful in comparing different combined source-channel coding strategies and in relating

their performance to theoretical limits. In particular, they demonstrate the excellent behavior of the

best of our UEP strategies (1024 field-GG, with CA) which is readily implemented using existing

source/channel coding techniques. Furthermore, the results indicate that only marginal perfor-

mance improvements can be expected using more powerful channel codes (i.e., Ro or II Ro level-

constrained bounds) or more complex entropy coding of quantizer indices (i.e., Ro or C entropy-

derived bounds). Clearly, additional work using a wider range of source material is required to

firmly establish the efficacy and robustness of the proposed procedure.

6 Summary and Conclusions

In this paper we described a methodology for evaluating the rate-distortion behavior of combined

source and channel coding approaches. We applied this evaluation procedure to the quantization

7For i = 1, 2, 3, 4 the number of samples per subband and per field are the same since they are of size of the
DC-subband.

8The R-D behavior of the entropy-derived bounds, particularly for Ri,j = C, appear non-convex in the logarithmic
scale although the actual behavior is, in fact, convex-cup on a linear scale.
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of images with an encoder using a discrete wavelet transform. In order to derive the dependence of

rate and distortion for a combined source and channel coding scheme, we calculated the effects of

channel errors, the bit-error sensitivities to the reconstructed image, both for a uniform threshold

(UT) quantizer and an optimum nonuniform quantizer, based on the generalized Gaussian (GG)

distribution. We showed how to perform an optimum bit-allocation procedure, where the bits were

jointly allocated to source and channel coding in one operation. Considerably better performance

of the jointly optimized scheme employing the GG-quantizer (making use of local adaptivity) under

noisy channel conditions (additive white Gaussian noise) was shown. Furthermore, we compared

the performance to theoretical performance bounds and we showed that the real-world system

closely approaches the rate-distortion behavior of our system operating at the (theoretical) cutoff

rate. Other theoretical limits based on the channel capacity and the real source entropy are much

harder to approach. Simulation results demonstrate the very close correspondence of theory and the

actual system performance and also show the improvements and the benefits that can be realized

by using a combined source and channel coding scheme.

Although our results are derived for BPSK signalling in AWGN, there are still ways to improve

the overall performance of a source-channel system by using higher-order modulation schemes (i.e.,

QPSK, 16 QAM etc.) or combined modulation and channel coding schemes (coded modulation,

multi-resolution modulation), especially when the channel bit-error rate is not as high as in our

examples. One can also develop both practical and theoretical limits for these techniques and

determine the proper modulation scheme for the best overall efficiency. The evaluation of the

combined source and channel performance can also be performed for other channels, and especially

for the Rayleigh fading channel we would expect to see even higher performance gains of the

proposed methods compared to uncoded transmission.

APPENDIX A

Optimum (nonuniform) Quantization Levels for the Generalized Gaussian Dis-

tribution

For N = 2n the number of quantization levels and n the number of quantization bits, the limits

of the quantization range can be estimated for a linear distortion measure (9 = 1) or a square

distortion measure, i.e., the mse (9 = 2), using Roe's formula [11], by

fXk 1 /3 
lp(t)+Medt = 2Ck +C 2 ; with p(t) = , e-() and = 2 ) (A - 1)
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To calculate C 1 and C 2, we set Xk = 0o (k = N), substitute with y = ( )1 I and obtain

c1+ e(( )( 1+ ) dt = 1+ 

Using the Gamma-function r(z), (A-2) can be written as

nK+ * .(1 + )'l/Fr(l1/3) = R. (A - 3)

Due to symmetry, for k = 0 (xk = -oo), (A-1) becomes -R, so one obtains

C 2 = -R ;for k= 0, (A- 4)

and with (A-4),(A-1) and setting k = N, which results in C1 = RIN, (A-1) becomes

2Clk + C 2 = R(2k ) (A - 5)

For xk > 0, with the same substitution we obtain

i° 1n+~ a.( )(1+e0) = + (1, + 9)11/3j y()edy (A - 6)

with

Y(Xk) = ( )/ + (A- 7)

Using the incomplete Gamma-function P(a, x)

P(1/,x)_ r(=/P)/ e- · x(l)dx , (A - 8)

(A-2) can be written as

nA j, (l + )1/ ( 1/ 3).P 1//3, 1+9 (( ) ) (N -_) (A - 9)

Using (A-3) and (A-9), we obtain

P(i//3 1+ = ( 1) = S ;for k > O. (A - 10)

To prevent the limits of the quantization thresholds (k = 0 and k = co) to be identical with ±co

of the distribution, we introduce a correction term no, which results in

2k- N N
St = ;for - < k < N, (A - 11)

N + KB2 -

for the quantization thresholds, and

2k + 1 - N N
S= ; for < k < N, (A - 12)
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for the reconstruction levels. So finally, using the inverse function of the incomplete Gamma-

function P-1(1/,3, y), with (A-10) and (A-11) we obtain for the quantization thresholds

Xtk_·= (1P- ;for - < k <N (A- 13)
/' 1N +o 2--

and for the reconstruction levels

X,k= N[+s) -· ( 1 +* ; for -<k <<N . (A - 14)
P' N+no 2 -

Using symmetry, one obtains the values for 0 < k k < as Xt,k = -xt,(N-k) and similarly as

Xl,k = -Xl,(N-1-k)-

The correction term fK will be calculated under the assumption that for N = 2 levels, the

reconstruction levels xl,0 and xI, 1 will be the the first absolute moment of the distribution. This

assumption also provides a. good matching of the formulas for small N. The first absolute moment

(due to symmetry) can be written as

xa = 2 fl t p(t)dt = 2 t . 2e r)dt, (A- 15)

and using the substitution x = (t/a)' one can easily obtain

a. r(2//3)
Xa= a (1//) (A- 16)

So, for the case N = 2 and especially k = 1, one can write using (A-14) and (A-16)

X =I,,)p1p 1 = F(-c ' (1/-a /3) (A -17)
O' 2 + n0 MO)

which results in the solution for the correction term

fr / rF(2'/0) 1
P [ l /( I T(+/))/1+ -2. (A- 18)

APPENDIX B

Derivation of Bit-Sensitivities

Scheme A: UT

The average sensitivity of the sign bit of an AC-band is the weighted summation over all possible

corruptions (i.e., all possible values being corrupted to their negative values, resulting in twice the

error of the actual value) and can be written as

2
(n - l ) Q 2

AUT,s,ac = ZprkA (2k -1).J I (B-)0
k=l
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with n the number of quantization bits, QR - [-Q; ] the overall quantization range and prk the

probability of samples x to be coded as amplitude k. This probability can be expressed as

prk = Pr{xE [(k-1)2Q'-k2]}

- k Qe
ii .e(x/l)0

2arF(1/)

So considering that due to symmetry the probability doubles, and by using (B-l) and (B-2), one

obtains

AUT sac= 2n = (2k -1)2. P , -P . (B- 3)

Scheme B: GG

For the bit sensitivities of the magnitude bits of the non-equidistant quantizer based on the

generalized Gaussian distribution, we have to take a closer look at the error, that occurs, if a bit

is corrupted. All the possible pairs of reconstruction levels (xl,a,xl,b) on the positive half of the

distribution, that go with a bit corruption of bit j with j = 0, ... , (n - 2), where j = 0 denotes the

LSB and j = (n - 2) denotes the MSB, can be described as

(I + (k2j+'), 1 + (k.2J+')+2j) ;for I = 0,...,(2 -1) and k = 0,....,(2n-2--1).

(B -4)

So one has to sum twice (symmetry) over all these possible pairs (xl,a, zl,b), weight the associated

errors d2 (Xl,a,xl,b) with the probabilities Pr{xl,a} and Pr{xl,b} and one obtains

23 -1 (2n-2-J_1)

AGG,m,j = 2. E [Pr{xl,a} + Pr{xl,b}].d 2(xt,,a XI,b) ; for j = 0,..., (n-2). (B - 5)
1=0 k=O
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