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Abstract

The past few years witnessed a dramatic shift in computer microprocessor design.
Rather than continue with the traditional pursuit of increased sequential program
performance, industry and academia alike chose to focus on distributed, multi-core
designs. If multi-core designs are to maintain the decades-long trend of increased sin-
gle threaded performance, compiler technology capable of converting a single threaded
program into multiple programs must be developed. In this thesis I present the Raw
Explicitly Parallel Tile Compiler (Reptile), a compiler targeting the RAW computer
architecture capable of converting a single threaded program into multiple threads
communicating at the instruction operand granularity. On applications with suffi-
cient amounts of parallelism Reptile has generated code which, on the Raw processor,
achieves a speedup of as much as 2.3x (cycle to cycle) over an Athlon64.
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Chapter 1

Introduction

This thesis presents the Raw Explicitly Parallel Tile Compiler (Reptile), a compiler
capable of compiling arbitrary sequential c-programs and parallelizing those programs
at the instruction level, targeting the MIT Raw architecture. On applications with
sufficient amounts of parallelism Reptile has generated code which, on the Raw pro-
cessor, achieves a speedup of as much as 2.3x (cycle to cycle) over an Athlon64.
Reptile facilitates exploration of the issues surrounding compilation for Distributed
Instruction Level Parallelism (DILP) and provides a stable framework for DILP re-
search.

The past few years witnessed a dramatic shift in computer microprocessor de-
sign. Rather than continue with the traditional pursuit of increased single threaded
performance via complex centralized mechanisms, deeper pipelines and higher clock
frequencies, industry and academia alike chose to focus on distributed, multi-core
designs. Multi-core designs consist of several simple processors, each with a program
counter, connected via a network. Motivated by conservative energy budgets and
an ever increasing transistor surplus, Intel [16], AMD, IBM, SUN [G] and ARM all
opted in favor of multi-core designs. Current multi-core designs offer the benefits
of increased throughput, better transistor utilization, and increased power efficiency.
From an energy perspective, executing two threads in parallel at a frequency of f
requires less energy than executing the threads sequentially at a frequency of 2f. A
lower frequency facilitates a lower frequency voltage, allowing parallel designs to reap
the benefits of the quadratic relationship between energy and voltage.

Unfortunately, most industry implementations of multi-core designs do little to
increase the performance of existing single threaded applications. Continuing the
decades-long trend of increased single threaded performance will require novel re-
search at both the compiler and programming language level. Shifting the burden
to the programmer requires software engineers to write multi-threaded code or learn
a new, thread-friendly language. Moving the burden to the compiler requires devel-
opment of compilers capable of automatically converting a single threaded program
into multiple programs working together to achieve the task of the original program.

The recent transition in industry from complex single-core designs to simpler,
multi-core designs foreshadows a technology trend toward chips with tens, even hun-
dreds of cores. Academia [J7], [2] [21], and to a lesser extent, industry [1 ], have
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both expressed interest in chips with tens/hundreds of cores. To successfully utilize
the copious resources of future processors, development of compilation technologies
exploiting parallelism all forms of parallelism must occur. Simply re-writing a se-
quential application into a multi-threaded application will not utilize the copious
resources available in future processors. Exploitation of parallelism must occur at the
loop level, the thread level, and the instruction level.

This thesis proposes Distributed Instruction Level Parallelism (DILP) as a means
for fine grain automatic parallelization of sequential applications targeting multi-
core systems. Instruction Level Parallelism (ILP) [4], involves executing independent
instructions in parallel to increase performance. Modern superscalars exploit ILP by
dynamically executing independent instructions in parallel, often speculating across
basic block boundaries to expose more parallelism at the instruction level. Similarly,
modern Very Long Instruction Word (VLIW) architectures utilize advanced compiler
technology to expose ILP within a program and convey that ILP to the processor
through an ISA that explicitly expresses instruction independence. Distributed ILP,
like ILP, involves executing independent instructions in parallel. However, in the
case of ILP, all of the instructions execute on the same physical core. In DILP, the
independent instructions need not execute on the same physical core.

The major contribution of this thesis is the Reptile compiler, a compiler infrastruc-
ture designed for DILP exploration. Reptile takes as input an ANSI-c program and
outputs multiple assembly files targeting a distributed architecture (see the Raw ar-
chitecture in Chapter 3). The assembly files communicate at the instruction operand
level, and work together to perform the same task as the original c program.

Chapter 2 of this thesis presents the background and related work. Chapter 3
introduces the Raw Microprocessor. An in depth explanation of the Reptile compiler
is presented in Chapter 4. Chapter 7 steps through the Reptile compilation of a
simple piece of code. Performance results for code generated with Reptile is presented
in Chapter 8. Chapter 9 presents the conclusion and future work sections.

16



Chapter 2

Background and Related Work

2.1 Instruction Level Parallelism

To increase the performance of single threaded applications, many modern computer
architectures exploit Instruction Level Parallelism (ILP). By executing multiple in-
dependent instructions in parallel, architectures may achieve significant performance
gains. Unlike other types of parallelism, ILP exists within all types of applications,
from highly sequential integer applications to dense matrix, scientific programs. Fig-
ure 2-1 shows a simple example of ILP. Part A of the figure depicts assembly code for
a loop that copies values from one array to another. On a single-issue machine, the
loop takes 5 cycles to execute. On a two-issue machine, the first two instructions and
last two instructions may execute in parallel, decreasing the loop cycle time from 5
cycles to 3 cycles (Figure 2-1, Part B).

Almost all modern computer architectures support some form of ILP. The de-
tection and subsequent expression of ILP to the hardware has traditionally come in
two different flavors, hardware or software. Superscalars, an example of the former
approach, exploit ILP via complex hardware mechanisms capable of dynamically de-
termining instruction independence, allowing the processor to execute independent
instructions in parallel. Modern VLIW/EPIC architectures support an ISA that ex-
presses instruction independence to the hardware, allowing the compiler to statically
determine instructions that should execute in parallel. Compiler/Software based ap-

addu $8, $8, 4 addu $8, $8, 4

(A) (B)

Figure 2-1: (A) Sequential schedule without ILP. (B) Code exploiting ILP.
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proaches to ILP have the advantage of shifting complexity from the hardware to the
software. Decreasing hardware complexity helps to aid the verification process as well
as cut down on design time. The trade-off, however, comes in the form of increased
compiler complexity.

Compiling for increased levels of Instruction Level Parallelism was first proposed
two decades ago [1]. Since, compiling for ILP has proved a popular research topic,
spawning several architectures and compilers. The majority of compilation related
work involves compiler/architecture techniques for increasing the number of instruc-
tions seen when scheduling. In practice, the more instructions in a block, the more
ILP in a block. Trace scheduling [1] looks at traces of commonly occurring basic
block patterns, scheduling code across basic block boundaries to increase the num-
ber of instructions "seen" when scheduling. Because a trace corresponds to a fre-
quently occurring pattern of blocks, trace scheduling optimizes for the common case.
Non-trace paths require patch-up code to undo incorrect speculative operations. A
technique similar to traces, Superblocks [8], uses code-duplication to ensure that the
"trace/superblock" contains a single entry point and multiple exit points, greatly
simplifying the scheduling process. Extending the methods behind Superblock and
Trace Scheduling to predicated machines, Hyperblock [13] scheduling creates large
predicated regions out of commonly occurring sections of code.

2.2 Distributed Architectures

To maintain the trend of increased single threaded performance, most modern com-
puter architecture research utilizes the increasing transistor surplus to focus on elabo-
rate mechanisms designed specifically for increasing performance of highly sequential,
single threaded applications. Examples of such mechanisms include branch prediction,
speculation, out of order execution, larger caches and memory prefetching. Because
of this one sided approach, existing microprocessors fail to exploit the large amounts
of parallelism that exist within scientific, signal processing, and multi-threaded ap-
plications.

The reason existing microprocessors cannot support large amounts of parallelism
stems from the centralized design of current architectures. Adding additional func-
tional units to a centralized design negatively impacts clock frequency. Because mod-
ern superscalars and VLIWs rely on a centralized architecture with a unified register
file, adding additional ALUs greatly increases the complexity of the register bypass
paths. The diagram on the left in Figure 2-2 shows the bypass paths for a 16-way
superscalar. Because the bypass paths scale quadratically with the number of ALUs,
adding additional functional units will have a quadratic effect on the area of the
bypass paths.

The diagram on the right in Figure 2-2 shows the traditional bypass paths replaced
with a routed, point to point network. The routed network allows the addition of
more functional units without affecting frequency. Physical distance between ALUs
determines the number of cycles required for an operand to travel from the output
of one ALU to the input of another. By designing architectures in such a fashion,

18



Figure 2-2: Logical diagram of the bypass paths for a traditional, centralized archi-
tecture (Left). The diagram on the right depicts a distributed architecture using a
point-to-point interconnect for register operands. (Diagrams courtesy of Michael B.
Taylor)

adding additional functional units will not negatively effect the clock frequency. The
MIT Raw architecture [22] embodies this principle by organizing resources in tiles,
where each tile contains memory and a simple processor. To add additional compute
power to the Raw design, simply add more tiles.

Both academia [17] [20] [21], and industry [18], have proposed similar distributed
architecture designs. Clustered VLIWs (for example, the TI-C6000), often found in
commercial DSPs, are an example of a distributed architecture. By using two or more
simple VLIWs sharing a unified register file, Clustered VLIWs cut down the bypass
path complexity by only having bypass paths for a particular cluster. Values move
between clusters via explicit move instructions that access a unified register file.

2.3 Distributed Instruction Level Parallelism (DILP)

Motivated jointly by the advent of Distributed Architectures and the quest for greater
amounts of ILP, Distributed Instruction Level Parallelism (DILP) involves exploiting
ILP on a distributed architecture. In the case of ILP, independent instructions execute
in parallel on a single, multi-issue processor core. DILP, however, involves executing
independent machine instructions on physically distinct processor cores. Figure 2-3
illustrates a simple DILP example where one ALU executes the loop overhead while
the other ALU does the actual vector copy. Values transfer between ALUs via an
abstract network. Duplication of the branch instruction allows both processor cores to
follow the same control flow. The network allows propagation of the branch condition
between cores.

Compiling for DILP involves not only determining instruction independence, but
also assigning a physical placement for each instruction as well as orchestrating the
communication between instructions on physically disparate cores. Many methods for

19



LOOP:

addu $8,P$8 4 bnez $9, LOOP

bnez $9, LOOP

Figure 2-3: Example of Distributed Instruction Level Parallelism.

compiling for DILP exist, with most approaching the problem in terms of partitioning
and placement. Partitioning attempts to cut a dataflow graph into chunks (partitions)
to minimize the schedule length through the graph. Placement, following partitioning,
involves assigning each partition to a physical processor core.

A small number of research groups have studied DILP compilation. Leupers et
al. view the compilation phase for clustered VLIWs in terms of partitioning and
placement [12]. However, clustered VLIW compilation does not involve routing over
an interconnect. Instead, values are transfered between clusters via intercluster move
operations. The most related work done in the field, "Space-Time Scheduling", done
by Lee et al. [11], proposes and addresses the basic issues compiling for DILP. The
first to view the problem in terms of partitioning, placement, and routing, Lee pio-
neered the area of DILP compilation. In many ways, the work presented in this thesis
extends the work done by Lee. While Lee's original work focused on computation
heavy kernels, this work will extend his ideas to arbitrary programs. Other research
groups have proposed architectures for DILP, yet few have investigated the issues
surrounding DILP compilation.

2.4 Architectural Issues Regarding DILP

Obviously, not all distributed architectures efficiently support DILP. Three main ar-
chitectural features determine the feasibility of DILP: Memory model, interconnect
latency, and processor issue width.

2.4.1 Memory

Virtually all programming languages assume a unified memory model with sequential
consistency. This means that the state of memory must always reflect the state which
would have occurred had all memory operations executed in program order. Out of
order superscalars provide sequential consistency by executing memory instructions
out of order and storing the addresses in case two instructions went out of order that
shouldn't have (e.g., A load is promoted above a store and both instructions access
the same address). Successful exploitation of DILP will require parallel execution of

20
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memory operations on physically distinct cores. Therefore, support for maintaining
sequential consistency as well as memory coherence across cores must exist.

2.4.2 Interconnect

To effectively schedule multiple instructions from the same block across different cores,
a DILP processor must possess a low latency network for inter-core communication.
If such a network exists, it can facilitate the communication of instruction operands
between physically distinct cores. The latency of the network plays a key role in
determining the amount of exploitable DILP. For example, if instruction A on core1

uses a result generated by instruction B on core2 , the number of cycles before A can
execute equals the latency of B plus the latency of the network (assuming zero cost
to send and receive the operand). Because basic blocks in integer code often contain
fewer than 10 instructions, a latency greater than 10 cycles would prove impractical.
Otherwise, scheduling instructions on multiple-cores would yield a slower schedule
than scheduling all instructions to just one core.

2.4.3 Processor Issue Width

In the context of a multi-core architecture, the number of independent instructions
issued in parallel on a single core determines the processor issue width. For example,
if a core issues at most three instructions in parallel, the issue width is three. The
wider the core, the lower the benefit of distributing instructions from the same block
across cores. This stems from the fact that only a finite amount of ILP exists within
a segment of code. If a processor core contains architectural support for exploiting
more ILP than exists within a block of code, few (if any) gains will result from
distributing the instructions across multiple cores. Because of this, application type
plays a significant role in which processor issue widths can effectively exploit DILP. For
example, limit studies [25] have shown that most integer programs contain on average
a realizable ILP of at most five parallel instructions per cycle. If an architecture
contains two five-way cores, integer applications gain little by distributing ILP across
both cores. Because this thesis attempts to exploit DILP for arbitrary applications,
an ideal target architecture would have a very small processor issue width.

2.5 Why ILP?

Three main categories of parallelism exist within programs (Figure 2-4). Thread
Level Parallelism (TLP) pertains to the parallelism obtained when executing two dif-
ferent sequential threads in parallel. This includes executing multiple threads of a
multi-threaded application in parallel, as well as executing two completely indepen-
dent threads in parallel. Loop Level Parallelism (LLP) consists of parallelism found
across loop iterations. For example, if any portion of loop iteration i may execute in
parallel with any portion of loop iteration i + 1, the loop contains LLP. LLP consists
of two sub-classes, Full Iteration Parallelism and Partial Iteration Parallelism. Full
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Coarse

>- Thread Level Parallelism

L(
.- Loop Level Parallelism

Instruction Level Parallelism

Fine

Figure 2-4: The different types of parallelism.

Iteration Parallelism occurs when two different iterations of a loop are completely
independent and can execute in parallel. Often called Data Level Parallelism (DLP),
Full Iteration Parallelism has historically been the target of vector machines. Partial
Iteration Parallelism occurs when only a portion of one loop iteration may execute
in parallel with a different portion of another iteration. This is commonly called
Streaming parallelism, and corresponds to the type of parallelism exploited via Soft-
ware Pipelining and by streaming machines [9, 4. At the lowest level of granularity,
Instruction Level Parallelism (ILP) consists of the parallelism found natively, within
a basic block at the instruction level. Branch overhead, address calculation, etc. are
examples of instructions that can often execute in parallel with the critical path of
computation.

The question of what granularity of parallelism to efficiently exploit on a dis-
tributed architecture is currently a controversial topic in the research community.
Many researchers advocate that distributed architectures should exploit coarser types
of parallelism, leaving the single processor core to exploit ILP. However, these advo-
cates overlook the fact that ALL forms of coarse parallelism can be converted into ILP.
LLP can be converted into ILP via loop unrolling and software pipelining. Therefore,
if a distributed architecture can support ILP, it can support all types of parallelism,
facilitating a more general purpose architecture. Because of this, DILP is a promising
type of parallelism and a good target for a parallelizing compiler.
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Chapter 3

The Raw Microprocessor

3.1 Overview of Raw

Traditional single chip processors strictly adhere to what is known as the Von Neu-
mann architecture. The Von Neumann architecture consists of centralized instruction
and data memory, execution units and register files. Additionally, the Von Neumann
architecture assumes a single flow of control (one program counter), providing a clear
notion of sequential ordering and time. The elements of a Von Neumann machine
communicate off chip through a single bus. As technology continues to scale and the
number of functional units on a chip increases, large, centralized memory systems
and register files will negatively impact clock frequency.

The Raw microprocessor [21] (Figure 3-2), developed at MIT, attempts to address
this problem by spatially distributing the architectural resources of the processor. The
Raw architecture consists of 16 identical tiles, each tile containing a simple compute
processor, register file, and instruction and data memory. Raw tiles communicate
via a register mapped point-to-point network optimized for word-sized operands. A
programmable switch routes operands between tiles.

3.2 The Raw SoftNetwork

The register mapped ports allow an instruction to place a value on the network with
no overhead. Similarly, instructions using values from the network simply read from
the register mapped ports. The programmable switches bear the responsibility of
routing operands through the network.

Figure 3-1 shows an example of a 2-tile raw program where the two tiles are located
next to each other in a horizontal row. The code contains processor code and switch
code for each tile. Both tiles and switches have the same control flow, with one tile
calculating the branch condition and using the switches to propagate the condition to
both switches and the other tile. Solid edges represent data dependences between a
processor and the local switch. The dashed edges represent data dependences between
the two switches. In the figure, instruction opcodes containing a ! symbol write to
the register mapped network port (called $csto). Physically, $csto is implemented
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Proc 1 Switch 1
countbb_5:
IwM $9, 0($8) s_count -bb _5:
Iw! $10, 4($8)- ... ,*$csto->$cEo .......... s-count bb_5: Proc 2
1w $8, 8($8) $csto->$cEo -....... -*$cWi->$csti count bb 5:
situ! $23, $0, $8 _'"-$cWi->$csti mul.s $12, $csti, $9
bne $0, $23, counL $csto->$2, $csto->$cEo'--.A mul.s $9, $12, $csti

bnez $2, s_count-bb_5 $cWi->$2, $cWi->$CstK. add.s $8, $8, $9
bnez $2 , scount-bb_5 bne $0, $csti, count-bb_5

Figure 3-1: Example of a 2-tile Raw program. Dashed edges represent dependences
between switch instructions, and solid edges represent dependences between a pro-
cessor and switch.

256 wires

Figure 3-2: The Raw Microprocessor.
compute tile (switch and processor).

Die photo (left) and abstract view of one

via a queue. The processor inserts words into the queue and the switch reads words
from the queue. The switch may place values read from the $csto queue onto the
network or into a local switch register. The queue contains eight words of storage
space allowing the processor to write up to eight words to the register mapped port
before the switch reads any values.

The switch instructions may route operands already on the network (for example,
reading from the north and sending south), inject operands from the processor into
the network or drain operands from the network and send them to the processor or to
a local register. The switch contains a 4-way crossbar, with each way corresponding
to one of the cardinal directions. If the switch wants to pull the incoming value from
the north and send it west, the instruction looks like $cNi-+$cWo, where the i and o
represent input and output, and the N and W represent North and West, respectively
(Note that in practice, the above instruction is prefixed with a route opcode. For
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brevity and space, the route opcode was excluded from the example). The input
ports ($cNi, $c Wi, $cEi, $cSi), allow for four words of storage. To send a value from
the network to the processor, the switch must read from one of the input ports or a
local register and write to $csti. The $csti queue allows for the switch to write four
words of data before the processor reads any values from $csti. To read a value from
the switch, the processor simply reads from $csti.

3.3 Physical Implementation

The Raw microprocessor prototype was implemented in IBM's 180 nm, 6-layer standard-
cell ASIC process. The Raw group developed a Raw prototype motherboard for the
Raw chip. Programs are run on the Raw board via a host machine. More details of
the Raw microprocessor may be found in [22].
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Chapter 4

The Reptile Compiler

4.1 Infrastructure

To successfully generate parallelized code at the instruction level and exploit DILP,
Reptile leverages the OpenImpact [19] and Trimaran [23] compiler infrastructures.
Both compilers target VLIW-like machines, therefore, they contain optimizations that
increase the amount of ILP within a basic block of code (loop unrolling, speculation,
etc.). Leveraging these two compilers, the Reptile compiler can take an arbitrary
C-program and create multiple programs communicating at the operand level and
map those programs to the Raw architecture. Reptile uses newlib for library calls
and generates Raw assembly code compatible with the default Raw toolchain.

The Reptile compiler is composed of three main phases, as shown in Figure 4-1.

The Reptile Compiler

* Phase 1 Phase 2 Phase 3

C program Openimpact Trimaran stac-end Raw Assembly

Figure 4-1: High level view of the Reptile compiler.

4.1.1 OpenImpact

Developed in Wen-mei Hwu's Impact research group at the University of Illinois, the
OpenImpact compiler helped to pave the way for ILP compilation research. Many of
the techniques and mechanisms developed by the Impact group ended up in the Intel
IA-64 architecture [1 .1. Currently, the OpenImpact compiler generates IA-64 code of
higher quality than that generated by gcc.

The OpenImpact front-end supports ANSI-C C-programs. The first phase of com-
pilation parses the C-code and performs inter-procedural alias analysis. For profiling,
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OpenImpact generates an instrumented binary. Running the binary produces exe-
cution weights for all of the basic blocks in the program. Optimizations targeting
traces/regions of code use the profile-generated weights to determine which basic
blocks to merge into regions. Similarly, profile information helps identify the most
frequently executed portions of code. OpenImpact converts the program into an In-
termediate Representation (IR), called lcode. The lcode IR has may similarities to a
RISC, 3-operand ISA. All classical optimizations operate on lcode. The lcode has a
textual representation containing all of the information required to reconstruct the
original lcode IR. Several code generator backends for OpenImpact exist which read
in the lcode text files, perform register allocation, scheduling and peep-hole optimiza-
tions.

4.1.2 Trimaran

Developed jointly by HP labs, the University of Illinois and New York University,
the Trimaran compiler extends the Impact compiler infrastructure to target the HP
Playdoh architecture. Created for VLIW/EPIC architecture exploration, the Playdoh
architecture supports software pipelining and rotating register files. Unfortunately,
the Playdoh architecture never made it to silicon. However, many of the ideas explored
with Playdoh made their way into the Itanium processor.

The version of Trimaran used for the Reptile research project originated from
Scott Mahlke's CCCP research group at the University of Michigan. Mahlke's group
modified Trimaran to target clustered VLIWs, making it quite useful for the Reptile
project. The CCCP version of Trimaran contains support for distributed register
files, limited bypass paths and arbitrary numbers of clusters.

4.2 Reptile Overview

The goals of developing the Reptile compiler include automatic parallelization of
arbitrary C-programs as well as creation of a stable framework for DILP compilation
research. The Reptile compiler currently targets the Raw architecture, generating
code for up to 16 Raw tiles. The Reptile compiler contains three main phases.

OpenImpact

Convert to Classical
C program Front End --* code Optimizations /code text files

Figure 4-2: Phase 1 of the Reptile compiler.
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1. The first phase of Reptile compilation involves use of the OpenImpact compiler.
This phase of compilation supports input in the form of an arbitrary C-program.
After parsing the C-program with the front-end, the compiler performs a suite of
classical optimizations. The final output of the OpenImpact compiler, a slightly
modified textual representation of the lcode IR, conveys all the information
needed to begin phase two of the compilation. Figure 4-2 displays phase 1 of
the Reptile compiler, where the front end parses the C-program, optimizes the
code, and prints out a textual representation of the OpenImpact IR.

Trimaran

RegisterIcode text files Partitioning Alloctin Scheduling e/cor text files

Figure 4-3: Phase 2 of the Reptile compiler.

2. The second phase of compilation uses the CCCP version of the Trimaran com-
piler. This phase reads in the lcode text files and converts them to the Tri-
maran IR (Rebel). Once converted, partitioning assigns each instruction to a
virtual "partition" with the intent of later assigning each partition to a physical
Raw tile. After partitioning, register allocation takes place for each partition,
assuming one register file per partition. Insertion of inter-partition moves al-
lows instructions on differing partitions to access the same values. Instruction
scheduling occurs after register allocation. The output of the second phase of
compilation, a textual representation of the Trimaran IR, conveys instruction-
to-partition assignments as well as register allocation information and basic
block execution frequency. Figure 4-3 illustrates phase 2 of the Reptile compi-
lation. Section 5.2 describes phase 2 in greater detail.

3. Phase three of the compilation, Figure 4-4, reads in the files representing the
Trimaran IR and outputs assembly compatible with the Raw toolchain. A
mapping between the Trimaran IR and the Reptile IR allows for generation of
Raw assembly files. A placement phase assigns each virtual "partition" to a
physical Raw tile. After placement, a routing phase generates dead-lock free
switch code orchestrating operand communication between tiles. After routing,
a peep-hole optimization pass performs Raw specific optimizations as well as
post codegen scheduling. Section 6 discusses the specific modules of phase 3.

4.2.1 Memory

Because the Raw architecture does not contain any form of memory coherence, the
compiler must statically place memory objects on different tiles and ensure that all
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elcor text files

Back End

Peep-holePlacement Routing optimization - -Raw Assembly

Figure 4-4: Phase 3 of the Reptile compiler.

instructions accessing those objects are scheduled to the appropriate tile. Currently,
the Reptile compiler memory alias analysis is not sophisticated enough to provide
sufficient memory parallelism on the Raw architecture. Therefore, all memory oper-
ations generated by the Reptile compiler are scheduled to the same tile.
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Chapter 5

Reptile: Phase 1 and 2

5.1 Reptile Phase 1

As seen in Figure 4-2, Phase 1 of the Reptile compilation process consists of three

modules. This section will only briefly discuss Phase 1 of Reptile due to the fact that
the OpenImpact compiler is well documented and prevalent in academia.

Front-End The Front end parses arbitrary C-programs turning them into a high
level representation called pcode.

Lcode Conversion The pcode produced is later turned into the main impact IR,
lcode, which corresponds loosely to a RISC ISA, supporting the standard load-
store architecture and three operand instructions.

Classical Optimizations The standard suite of classical optimizations are per-
formed, guided by profile data.

5.2 Reptile Phase 2

Figure 4-3 shows the three modules of the second phase of Reptile compilation; par-
titioning, register allocation and scheduling.

5.2.1 Partitioning

The partitioning module takes the assembly corresponding to an entire program
and breaks it up into p partitions, where partitions communicate at the instruction
operand level. At the lowest level, the partitioning phase consists of taking a basic
block of code and assigning each machine instruction within the block to a partition.
Therefore, one may view partitioning as taking a basic block of code and turning it
into p basic blocks, one for each partition, with the control flow replicated across all

new blocks (see Figure 5-1). Partitions communicate via an abstract, ideal network

capable of routing operands (register values) back and forth between the partitions.

In later phases of compilation, the "abstract network" in Figure 5-1 is replaced by
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BB BB
partition(1) partition(2)

Partitioning
Basic Block P i

BB BB
partition(3) partition(4)

Figure 5-1: High level view of partitioning. A single basic block is turned into 4
basic blocks, working together to execute the code of the original block. The blocks
communicate instruction operands via an operand network.

the Raw Scalar Operand Network. The placement module, described in Section 6.1,
maps each partition to a physical processor.

Exploitation of DILP occurs by partitioning the code at the instruction level. The
tradeoff, however, comes in the form of communication between partitions. If the code
contains no ILP, then no gains will arise from partitioning. A good partitioning algo-
rithm attempts to exploit parallelism and minimize communication. Not all programs
contain enough parallelism to justify partitioning of instructions. Therefore, a good
partitioning algorithm must not attempt to partition code when no parallelism ex-
ists and when a partitioned schedule would result in a longer schedule than had all
instructions been scheduled to a single core.

In addition to binding instructions to partitions, the partitioning module binds
operands to partitions as well. If an instruction accesses an operand on a different
partition, the network communicates the operand value between partitions.

The complete Reptile partitioning module consists of the following steps:

1. For each function in the program, sort all basic blocks according to execution
frequency.

2. Starting with the most frequently occurring block:

(a) Partition the block via simulated annealing, adding inter partition moves
for pre-bound operands. See Appendix A for a background on simulated
annealing.

(b) Bind all instructions to their corresponding partition.

(c) Bind all unbound operands used in the block to a partition based upon
which instructions in the partition access the operand.

(d) Repeat the above for all remaining basic blocks.
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for (i=O; i<stop-outer; i++){
for(j=0;J<stop-inner;j++){

/Randomly assign an instruction to a different partition
perturb(T);

//Schedule the Code and determine the schedule length
cost=getCosto;
deltaC = cost-oldcost;

//if the cost increased
if(deltaC > 0){

lreject if rand( > eA(-(cost-oldcost)/T)
if((1.0/exp((deltaC)/T)) < ((double)rando/RANDMAX)){

/Reject the most recent perturbation
rejecto; cost=oldcost;

}
}
oldcost=cost;

}

lDecrease the temperature one step
T=nextT(T);

lBreak out if the Temp is really low
if(T < .0000000001) break;

}

Figure 5-2: C-code from Partitioning module in the Reptile compiler.

Partitioning blocks in order of most frequently occurring allows binding of operands
to those partitions which access the operands most frequently. The OpenImpact com-
piler provides the execution frequency for each basic block via profiling.

The majority of execution time takes place in the simulated annealing partition-
ing module. Figure 5-2 shows the main loop for performing the simulated annealing
algorithm to partition a basic block. The first step of the partitioning creates a ran-
dom assignment from instructions to partitions. The code consists of two loops, with
the inner loop repeatedly perturbing the system and updating the state accordingly,
while the outer loop decreases the "temperature".

The following subsections explain the simulated annealing parameters in terms of
the partitioning problem.

Temperature

An initial heuristically determined temperature, To, provides the starting tempera-
ture for the algorithm. After completion of the inner loop in Figure 5-2, update of
the temperature occurs according to T[i + 1] = &T[i], where a < 1 and chosen heuris-
tically. Trial and error was used to determine values for a and To. To was chosen to
provide a large enough initial temperature for sufficient randomness to occur, while
still maintaining a reasonable running time. Similarly, a was chosen to decrease the
temperature at a slow enough rate to avoid quenching, yet still provide a manageable
execution time.
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Inner Loop Count (stop-inner)

The inner loop count, stop-inner, determines how many different perturbations occur
at a given temperature. The choice of stop-inner greatly affects execution time.
Increasing stop-inner will yield better results at the cost of execution time. Similarly,
decreasing stop-inner will decrease execution time, however, it will also decrease the
probability of the algorithm finding the global minimum. The Reptile compiler sets
stop-inner = i * p, where i represents the number of instructions in the block and p
represents the number of partitions. This was shown to work well in practice.

Perturbation (perturb()

Within the inner loop, the perturbation of the existing partition occurs by randomly
choosing an instruction and mapping that instruction to a randomly chosen partition
(excluding the partition the instruction was previously assigned to).

Cost (getCost()

The cost of a particular partitioning may correspond to several different metrics.
For example, one approach schedules the partitioned code and reports the schedule
length as the cost. Other approaches include defining a cost associated with inter-
cluster moves, load balancing, and an estimate of register pressure. Many different
approaches were tried with the Reptile compiler, and no approach proved a clear
winner.

Figure 5-3 displays an instruction dataflow graph after partitioning. Each node
in the graph corresponds to a single machine instruction. The graph represents the
inner loop of a 2-tap complex fir filter. The different colored nodes correspond to
different partitions. Edges between nodes represent data dependences. Notice that
some edges travel between nodes on the same cluster while other edges connect nodes
on different clusters. The cross cluster edges correspond to the dataflow that must
utilize the network to send data between tiles.

5.2.2 Register Allocation

After partitioning, the Reptile compiler register allocates each virtual partition, as-
suming that each partition has access to a certain number of registers. One could
argue that register allocation should take place at the same time as partitioning.
However, adding a register pressure cost to the partitioning algorithm to drive the
simulated annealing has a similar effect. This is something that could easily be added
to Reptile. Reptile uses a graph coloring based register allocator developed by the
CCCP research group at the University of Michigan.
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Figure 5-3: Dataflow graph for a 2-tap complex fir filter partitioned for two partitions.
Each node represents one machine instruction. Nodes of similar color belong to the
same partition.

5.2.3 Scheduling

In the Reptile compiler, scheduling occurs after partitioning and register allocation.
Scheduling takes place at the basic block level, assuming that all partitions enter a
basic block at the same time. The scheduler assumes unified control flow in the sense
that if one partition executes a branch, all partitions branch. The unified control
flow model differs from the Raw model and is accounted for in the final phase of
Reptile compilation, where a post-codegen scheduling pass cleans up the code and
compensates for the fact that the original scheduling assumes a VLIW like model and
global control flow.
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Chapter 6

Reptile: Phase 3

As seen in Figure 4-3, Phase 3 of the Reptile compilation process consists of three main
modules; placement, routing and peep-hole optimizations. The input to Phase 3 of the
Reptile compiler, a textual representation of the Trimaran IR, conveys instruction-to-
partition mappings. Additionally, register allocation for each partition has occurred.
The register allocation assumes all instructions within a partition access the same
register file. The instructions communicate between partitions via explicit register to
register move instructions. These move instructions read from the local register file
and write to any other register file.

6.1 Placement

The placement phase of compilation maps virtual partitions to physical processor
cores (tiles) (see Figure 6-1). The complexity of the placement problem can be grasped
by noticing that if there are 16 partitions and 16 tiles, there exists 16! possible map-
pings of partitions to tiles. In the figure, each node represents a partition. An edge
between two nodes indicates communication between two partitions. The label on
the edge, cij represents a metric for the communication between partitions i and j
for the entire program. For example, if two nodes, i and j, communicate often and
would benefit from being placed physically close to each other, then cij is large. If
the two nodes rarely communicate, cij is small. Several different methods could be
used to construct cij, but for this thesis, we construct cij as defined in Equation 6.5.
Reptile sets cij equal to the number of words sent from partition i to j. Another
possible definition sets cij equal to the number of words sent from partition i to j
that are on the critical path of computation.

The placement problem may be formalized as follows: Let P be the set of partitions
and T the set of tiles. For simplicity, we will let ITI = JPJ = n (there are an equal
number of tiles and partitions). The goal of the placement problem is to find a
correspondence (a one-to-one, onto function), x, mapping P to T:
We define the function x as:

x : P -- + T (6.1)
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Partitions

C23 2x2 Raw
C 2,4  Placement

C. -11,

Figure 6-1: The placement module takes a group of n virtual partitions (left) and
maps them to n Raw tiles (right).

And x has the following properties:

x(i) # x(j) V i 4 j (6.2)

V i E P 3 k c T s.t. x(i) = k (6.3)

We define the latency 1, between two tiles, k and q as:

lk,q = the number of cycles to transfer a word between tile k and q (k, q E T) (6.4)

And the communication metric between two partitions, i and j as:

cij = Number of words sent between partition i and partition j (i, j E P) (6.5)

A useful placement is one that minimizes communication. Therefore, we attempt

to find the function x that minimizes the total number of cycles in which words are
present on the network. This is equivalent to determining the x that minimizes the
following function:

min cijlx(i),x(j) (6.6)
iEP jEP

6.1.1 Placement: Simulated Annealing

The Reptile compiler uses simulated annealing to determine the above function, x, for
placement. While the simulated annealing approach does not guarantee an optimal
result to Equation 6.6 , in practice the optimal is not needed. Additionally, it is not
always the case that a placement minimizing the number of cycles in which data is
sent on the network(Equation 6.6) yields the smallest execution time. For example,
consider the case where partition i sends a large number of operands to partition j,
but partition j does not send any values to partition i. Because the communication is

one-sided, the communication may be pipelined, and the partitions placed physically
far apart. To remedy this, future versions of Reptile will explore different definitions

of the communication metric (ci,j). The placement phase consists of the following
two steps.
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1. Examine the entire program and construct the communication parameters, c,
where cj is defined in Equation 6.5.

2. Use simulated annealing to determine the function x as described in Equa-
tion 6.1.

The first step of the placement chooses a random assignment for the x variables, sub-
ject to the constraints described in equation 6.3. The following subsections describe
the simulated annealing variables used for the placement module.

Temperature

The temperature is handled the same as for the partitioning. An initial heuristically
determined temp provides the starting temperature. Temperature update occurs
according to T[i + 1] = aT[ij, where a < 1 and chosen heuristically. Again, the
starting temperature and a were chosen to provide a high enough starting temperature
and slow enough cooling schedule to generate respectable results, without significantly
impacting running time.

Inner Loop Count (inner-loop)

The inner loop count, L, determines how many different perturbations occur at a
given temperature. Different values of L were tried, and it was found that setting
L = ITI * P = n2 , where n is the number of tiles/partitions.

Perturbation (perturb()

The perturbation switches the assignment of two different partitions. For example,
if current partitioning maps partition i to tile k and partition j to tile q, a valid
perturbation maps i to q and j to k, where i and j were chosen randomly.

Cost (getCost()

The cost corresponds to the function described in Equation 6.6.

6.1.2 Placement: Integer Quadratic Programming

Another solution to the minimization in Equation 6.6 is Integer Quadratic Program-
ming. Unlike Simulated Annealing, a quadratic programming approach is guaranteed
to yield the optimal solution to Equation 6.6. Unfortunately, no reasonable bounds
exist on the running time of current Integer Quadratic Programming algorithms.

A Quick formulation of the Integer Quadratic Programming solution follows: For
simplicity, we will assume an equal number of processors and partitions (n), and
that the processors and partitions are numbered consecutively from 0 to n - 1. One
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may represent the function x, as an nxn permutation matrix, X E {0, 1}(nxn), with
elements xij defined below:

= f 1 If partition i E P is mapped to tile k E T (67)
0 , otherwise

In order to ensure that X represents a one-to-one, onto, mapping, X is subject to the
following constraints:

ZXi,k= 1ViEP and xi,k = 1 V k E T (6.8)
kET iEP

One may construct the vector k such that the first n elements are (XO,O, Xo, 1, - XO n_1)
and the last n elements are (xn-1,o,xn1,1,- x_1,n_1). Obviously, : k {0, 1}( ).

Similarly, one may construct the matrix, A C N"2 2,, such that

Aij =C(i (L)l(i mod n),(j mod n) (6.9)

Where c and I are the constants defined in Equations 6.4 and 6.5 and the division
in the subscript of c is integer division. We can then rewrite Equation 6.5 in the
following form:

min ci,lk,qXi,kXj,q = min kT Ak (6.10)
iEP jEP kET qET

Minimizing the above quadratic form subject to the constraints in Equation 6.8 will
yield the optimal values of X (optimal placement) according to our cost function.
Matlab code implementing the above quadratic program was implemented, unfortu-
nately, the excessive running time made it impractical for use in Reptile.

6.2 Routing and Switch Code Generation

After partitioning and placement, Reptile generates switch code to orchestrate com-
munication between physical processors. Refer to Section 3.1 for a brief overview of
the Raw architecture. On input to phase 3 of the Reptile compiler, the code con-
tains no notion of network topology. The code assumes a perfect, all-to-all network,
allowing code in any partition to send values to any other partition. Explicit send
and receive instructions move operands from the network to the local register file.
The Reptile compiler must not only generate switch code for the send/recv begin and
end points of communication, but must also choose a route for the operand to travel
between tiles as well as generate switch code for the route.

6.2.1 Deadlock

Before explaining the switch code generation step, the following section will first
discuss how deadlock might occur in the Raw static network. To facilitate discussion
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of deadlocks issues, this thesis will adopt the terminology first developed by Holt [7].
We will frame the deadlock problem in terms of an abstract graph composed of nodes
(agents and resources) joined via waits and holds edges. In the context of the Raw
static network, the switch instructions serve as agents and the switch input buffers
represent the resources. Let waits(A,R) represent a waits edge between agent A and
resource R. This edge implies that before agent A can perform its specified action,
it must first obtain resource R. The waits edge is also defined from agent to agent.
For example, waits(A1,A2) means that agent Al must wait for agent A2 to complete
before it may complete. In the context of the Raw static network where agents are
instructions, waits(I1, 12) implies that instruction I cannot execute until instruction
12 is complete. Similarly, let holds(A,R) represent a holds edge between agent A and
resource R. The holds edge implies that agent A is using resource R and preventing
other agents from using the resource.

Figure 6-2 shows an example of Raw switch code with added waits and holds edges.
In the figure, the initial send instructions on both switches (I and 15) have already

$cWi $cEi

P1 P5

Switch 0 Switch 1
(11) route $csto->$cEo (15) route $csto->$cWo

(12) route $csto->$cEo (16) route $csto->$cWo

A~L .+*44 **.. t
(I3) route $cEi->$csti * *(17) route $cWi->$csti

Waits: -0 t
(14) route $cEi->$csti Holds: -. (18) route $cWi->$csti

Figure 6-2: Switch Code and Switch input buffers with the corresponding waits and
holds edges. The edges were drawn assuming the input buffers ($cWi and $cEi) each
have one word of storage and that I and 15 have already executed.

executed, placing a word in each of the input buffers (P1 in $cWi and P5 in $cEi). The
waits and holds edges were drawn assuming one word of storage for each input buffer.
Because the Raw switch is an in order issue machine, each instruction must wait
on the preceding instruction before issuing. Therefore, a waits edge connects each
instruction to its preceding instruction (for example, waits(13,I2)). The agents 12
and 16 are both waiting to place a word in the resources ($cWi and $cEi) respectively
(the resources are currently holding the operands from instructions I and I5). The
resources will not be released until instructions 13 and 17 have read the values from

the input buffer. This is represented by the holds edges in Figure 6-2. The operand
currently in resource $cWi will not be removed (and the resource freed) until agent
17 executes (holds(17,$cWi)).
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A property of the holds and waits edges is that if agent Al is waiting on a re-
source R, and agent A2 is holding resource R, then agent Al is waiting on agent A2.
Formally:

waits(Al, R) and holds(A2, R) => waits(Al, A2) (6.11)

For example, in Figure 6-2, the edges waits(12,$cWi) and holds(17,$cWi) implies
that instruction 12 is waiting on instruction 17 (waits(12,17)). Similarly, the edges
waits(16,$cEi) and holds(13,$cEi) implies that instruction 16 is waiting on instruction
13 (waits(I6,13)). We can now add the additional waits edges to the graph (shown in
Figure 6-3).

$cWi $cEi

P1 P5

Switch 0 Switch 1
(11) route Scsto->$cEo (15) route $csto->$cWo

(12) route $csto->$cEo * ** (16) route $csto->$cWo

t t
(13) route $cEi->$csti +(17) route $cWi->$csti

Waits: -

(14) route $cEi->$csti Holds: -. (18) route $cWi->$csti

Figure 6-3: Code from Figure 6-2 with additional waits edges.

Inspection of Figure 6-3 reveals a cycle in the graph constructed from the waits
edges (13,12,17,16,13). Because a cycle exists in the waits graph, the schedule will
result in deadlock. This can be grasped intuitively by inspecting the schedule. In the
schedule, 13 is waiting on 12 to execute. 12 is waiting for the resource $cWi to be
freed, while $cWi is waiting on 17 to execute before it can be freed. 17 must wait on
16 before it can execute, and 16 is waiting on the resource $cEi which is waiting on 13
to free it. The deadlock could be avoided by breaking the cycle in the waits graph.
This is done by scheduling 13 above 12 or 17 above 16, removing either waits(13,I2)
or waits(17,16). Adding more storage to the network buffers also breaks the cycle,
removing both waits(I2,I7) and waits(16,13) by removing the holds edges.

6.2.2 Switch Code Generation

To prevent the deadlock shown in Figure 6-3, phase 3 of the Reptile compiler generates
switch code assuming only a single word of storage exists in the network. This can
be done because Reptile starts with code containing no crossover patterns (i.e., no
communication routes that require more than a single word of network storage for
proper execution). A crossover pattern is defined as the following: Let partition i and
partition j both send and receive a word from each other. If the send occurs in both
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PROC1 PROC2 PROC3
or $csto, $0, $4 #(To P3) or $csto, $0, $8 #(To P1) addu $6, $5, $csti #(From P1)1

addu $5, $4, Usti #(From P21d 1w $6, 0($csti) #(From P3) or $csto, $0, $8 #(To P2)

(A)

SWITCH1
route $csto->P3

route P2->$csti

_SWITCH2 SWITCH3
route $csto->P1 route P1->$csti

route P3->$csti route $csto->P2

(B)

Figure 6-4: (A)
ing an all-to-all
operands rather

3-Tile processor code. (B) The corresponding switch code assum-
network. Note that the switch instructions have Partitions IDs as
than routing directions

SWITCH1
route Scsto->cEo

[route P2->$csti

SWITCH2 SWITCH3
route ScWi->ScEo route $cWi->Scsti
route $csto->P1
route P3->$csti route $csto->P2

Figure 6-5: Switch code after routing the first send/receive pair.

partitions i and j before the receive, a crossover pattern occurs. The send/receive
pairs in Figure 6-3 are all crossover routes.

Starting with code containing no crossover patterns, switch code generation oc-
curs by first creating correct switch code for an all-to-all network. Figure 6-4 shows
an example of processor code, (A), and corresponding switch code, (B), assuming an
all to all network. Taking into account physical placement, the switch code generation
portion of Reptile routes values by routing an entire send/receive pair at once (gen-
erating switch code for the end points as well as the code for the route the operand
takes). The Reptile compiler uses dimension ordered routing to determine operands
routes. Routing considers send/receive pairs for scheduling only if all preceding switch
instructions for the send and receive have been scheduled. The constraint that the
communication exhibit no crossover guarantees the existence of such a send/receive
pair.

Figure 6-5 shows the switch code in Figure 6-4 after scheduling one send/receive
pair (the first send on switch 1 and the first receive on switch 3). Note the addition
of the added through route instruction on switch 2. Figure 6-6 shows the switch code
after scheduling the second send/receive pair, and Figure 6-7 shows the switch code
after scheduling all send/receive pairs.
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SWITCH1 SWITCH2 SWITCH3
route $csto->cEo route $cWi->$cEo route $cWi->$csti

route $csto->ScWo
route $cEi->$ciiroute P3->$csti route $csto->P2

Figure 6-6: Switch code after routing the second send/receive pair.

SWITCH1 SWITCH2 SWITCH3
route $csto->cEo "10 route $cWi->$cEo route $cWi->$csti

route $csto->$cWo
route $cEi->$cstl route Sc $cst rou W0

Figure 6-7: Switch code after routing the final send/receive pair.

The switch code schedule obtained in Figure 6-7 does not contain any crossover
routes, and only requires a single word of network storage for proper execution. In-
spection of the original processor code in Figure 6-4 reveals that the scheduler could
move the second instruction on switch 3 above the first. Similarly, the scheduler could
reorder the first two instructions on switch 2. Both of the above schedule modifica-
tions would yield a better schedule, hiding the latency of the network by buffering
values between switches. However, both suggested modifications to the schedule
result in crossover routes, possibly creating deadlock. The following section will ex-
plain Queue Allocation, a scheduling technique allowing the reordering of instructions
reading and writing from the same queue/buffer (creating crossover routes) without
creating the deadlock seen in Figure 6-3.

6.3 Back End Optimizations

The Reptile compiler contains three simple post codegen peep-hole optimizations:
Bang opti, Use opti, and Queue Allocation (QA).

6.3.1 Bang Opti

The Bang optimization simply sets the bang bits on instructions. The bang bit allows
the instruction to effectively write to multiple locations, writing the result to a local
register as well as to the network mapped registers. Figure 6-8 illustrates a sequence of
code before and after Bang optimization. Notice that two instructions were removed,
setting the bang bit on the first two instructions. Bang optimization occurs at the
basic block level.
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addu
Id
or
or

$4, $4, 8
$5, 4($6)
$csto, $0, $4
$csto, $0, $5

Bang Opti addu!

Id!
$4, $4, 8
$5, 4($6)

Figure 6-8: Example of code before the Bang opti (left), and after Bang opti (right).

6.3.2 Use Opti

The Use optimization modifies instructions to read directly from the network rather
than first moving the value from the network into a register, then using the register.
Figure 6-9 shows code before and after Use optimization.

or $4, $csti, $0 Use Opti
addu $4, $4, 8 addu $4, $csti, 8

Figure 6-9: Example of code before the Use opti (left), and after Use opti (right).

6.3.3 Queue Allocation

Queue allocation reschedules the processor and switch code for all tiles. The queues
are modeled by the algorithm, allowing simultaneous scheduling of instructions that
communicate via queues along with regular instructions. This allows the reordering of
send and receive instructions on the switch and processor, allowing crossover routes
and better schedules by utilizing the storage present in the network. An example of
the code in Figure 6-7 after QA may be seen in Figure 6-10 (the Queue Allocation
was performed assuming two words of storage in the input queues).

6.4 Reptile ABI

The Reptile compiler designates one tile as the critical tile. The critical tile is respon-
sible for managing the stack as well as parameter passing.

SWITCH1 SWITCH2 SWITCH3
route $csto->cEo route $csto->$cWo route $csto->$cWo

route $cWI->$cEo
0$cEi->$sti [ route $cEi->$csti b route $CWi->$cstirout e c!$ctroe!

Figure 6-10: Version of the switch code shown in Figure 6-7 after Queue Allocation.
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6.4.1 Function Calls

Because of the parallel nature of code produced by Reptile, care must be taken when
dealing with function calls. For example, consider the case of a 4-tile program. If
a program running on all four tiles calls a function that was compiled with Reptile
for 4-tiles, then all four tiles (and switches) must execute a function call. However,
if the function was not compiled with Reptile (i.e. it is a library call like printf), or
it was compiled for only one tile, then only one tile must execute the function call.
This causes problems with function pointers, because the compiler cannot statically
determine if a function call should be parallel or execute on just one tile. Currently,
Reptile does not allow the use of function pointers.

6.4.2 Parameter Passing

Parameter passing is handled by the critical tile. The first four arguments are passed
in registers 4-7, with the rest passed on the stack starting at address sp + 16 (see
Figure 6-11). Reptile does not support 64 bit operands (longs or doubles), so the first
four parameters are always passed in registers, regardless of type.

6.4.3 Stack Usage

The use of the stack (Figure 6-11) matches that of the MIPS ABI. Spatially, the
stack memory is placed on the critical tile and stays on the critical tile for the entire
execution of a program. This has several drawbacks, the first being the fact that no
memory parallelism may exist. Additionally, when registers on other tiles need to be
spilled, they are spilled on the critical tile. Future work will create a small stack for
each tile, allowing local register spills.

6.4.4 The Switch

Control on the switch matches that of the processor. The local switch register, $2 is
used to store the branch condition. Additionally, switch register $3 is used to store
the switch return address. Both these registers are spilled upon entry to a function
by storing them in the processors memory, and filled upon function return.
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High Address-

Low Address -

RAW Stack

Local Variables

Swap for Spill/Fill

Outgoing Parameters

16 bytes (used by Varargs)

+--Double Word Aligned

4-Stack Pointer

Figure 6-11: The Raw stack.
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Chapter 7

Case Study: bzip2

7.1 Bzip2 C-code

To illustrate the Reptile compilation process, the following section will step through
the compilation steps for a section of code taken from the benchmark 256. bzip2, found
in the SPEC [2] benchmark suite.

for(i= gs;i<= ge;i++){
UInt16 icv = szptr[i];
costO += len[O][icv];
costi += len[1][icv];
cost2 += len[2][icv];
cost3 += len[3][icv];
cost4 += len[4][icv];
cost5 += len[5][icv];

}

Figure 7-1: C-code taken from the sendMTF Values function in 256.bzip2.

The C-code in Figure 7-i was taken from the seridMTF Values function in 256. bzip2.
According to profile data, if all basic blocks in the 256.bzip2 program were ranked
by the amount of execution time spent in the blocks, the basic block represented by
the C-code in Figure 7-1 would rank highest. Profile information shows the program
enters the loop thousands of different times, each time executing approximately 50
iterations. The accumulator variables (costX) are 16 bit values. Because the 2D array
within the loop lacks structure, the loop does not parallelize well. For each iteration
of the loop, the index to the second subscript of the array is loaded from another
array, making it impossible to statically analyze. Additionally, the six consecutive
loads from the 2D array do not access memory sequentially. A distance the size of
the second dimension of the array separates each load. Any parallelism that exists
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corresponds roughly to a RISC-like 3-operand ISA. Figure 7-2 shows the Impact lcode
generated from the C-code seen in Figure 7-1. The lcode assumes an infinite number
of registers. The operations in the code are numbered, with the first operation being
op 254. There are 7 loads in the code, with the first load determining the value for
the second index in the 2D array. Inspection of the code in figure Figure 7-2 reveals
that register 670 contains the value of szptr+i. Every iteration of the loop, register
670 is increased by 2 because the array szptr is composed of half words. The other
6 loads in the code correspond to the 2D array accesses. The rest of the instructions
in the block are needed to perform address computation overhead, and clear out the
upper 16 bits of the half-word operands.

7.3 Bzip2: Reptile phase 2

Phase 2 of the Reptile compilation process reads in the lcode from the previous section,
partitions the code, register allocates, and schedules. For brevity, the actual textual
output of this phase of the compilation will not be included.

0'. ** 001 0 4

0 0 4*4

Figure 7-3: Dataflow graph before partitioning (left) and after partitioning (right).

Figure 7-3 displays the dataflow graph of the compiled code before partitioning
(left), and after partitioning (right). The different colored nodes in the graph on
the right represent different partitions. Each partition will eventually be placed on
a single Raw tile. Dataflow edges between partitions must be routed via the static
network. It is obvious from the graph that one partition contains more nodes than the
others. This is a result of the fact that all memory instructions must be scheduled
to the same partition. Because the example code contains 7 memory instructions,
the partitions containing the memory instructions ends up larger than the rest. After
partitioning, the code is scheduled assuming an all-to-all network. Register allocation
occurs assuming each partition has access to a local register file.

7.4 Bzip2: Reptile phase 3

Phase three of the Reptile compiler takes in the partitioned code from the previous
section, places the partitions to physical Raw tiles, generates switch code to route
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operands between partitions and performs peep-hole optimizations on the generated
assembly.

Figure 7-4 includes assembly code from the final output of the Reptile compiler
for a 4-tile square configuration. The figure is divided into four quadrants, one for
each tile. Each quadrant contains two assembly schedules, one for the processor

(assembly on the outside), and one for the switch (assembly on the inside). Solid
arrows denote reads and writes between the processor and the switch. Similarly,
dashed arrows represent dependences between the switches. Note that no dashed
arrows exist between tile 0 and tile 5. This is because tile 0 cannot communicate
directly with tile 5, instead, values must be routed through tile 4 or tile 1 and then
onto their final destination. Similarly, values may not travel directly from tile 4 to tile
1. Instead, they must be routed through either tile 0 or tile 5. Each tile executes its
own control flow, with one tile computing the branch condition (in this case the fourth
instruction of tile 0) and sending it to the other tiles. Additionally, the control flow
on the switches mirrors that of the processors. When a branch condition is routed
from one switch to the next, it is also stored in the local switch register ($2). At the
end of the code on the switch, the switch executes a conditional branch based on the
register containing the branch condition. Because Reptile currently does not support
memory parallelism, all loads occur on the same tile (in this case, Tile 5).
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LOOPTILEO: SLOOPTILEO: SLOOPTILE1: LOOP_TILE1:
or $csto, $0, $9 i $csto->$cEo - . . W - . . -*$cWi->$cSo and $12, $17, 65535
addu $8, $8, 1 and $9, $18, 65535
sit $23,$16,$8
xor! $23, $23, 1 -+$csto->($cEo $cSo, 2)-k- - $cWi->($csti $cSo $2) or $23, $0, $csti
and $11, $19, 65535 $cSi->$csti - addu $10, $9, $csti
addu $9, $9, 2CSi->$CStI. and $18, $10, 65535
or $10, $0, $csti + ' cSi->$sti or $11, $0, $csti
addu $12, $11, $10 Cnz $2 , SLOOP addu $8, $12, $11
and $19,$12, 65535 bnez $2$,,SLOOP and $17,$8,65535
bne $0, $23, LOOP bne $0, $23, LOOP
LOOPTILE4: SLOOPTILE4:
or $csto, $0, $30 --- $csto->$cEo *.- *
and $10, $22, 65535
or $23, $0, $csti 4- $cNi->($csti $2)

addu $11, $10, $csti4-- $cEi->. ." .

and $22, $11, 65535

$cEi->$cNo* .

or $9, $0, $csti 4-- $cEi->$csti*.."."""'
and $30, $9, 65535
bne $0, $23, LOOP bnez $2 , SLOOP

SLOOPTILE5: LOOPTILE5:
and $9, $16, 65535

- $cNi->$csti - Ihu $11, 0($csti)
$cWi->$csti ------ and $10, $csti, 65535

and $8,$11,65535
$csto->$cNo4--- I-bu! $13, len($11)

addu $14, $17, $8
$csto->$cWo 4 Ibu! $14, 0($14)

addu $15, $19, $8
$csto->$cNo 4--- Ibu! $15, 0($15)

addu $11,$20,$8
Ibu $11,0($11)
addu $13, $21, $8

.".".$csto->$cWo Ibu! $13, 0($13)
addu $14, $18, $8
Ibu $14,0($14)

I,""$csto->$cWo 4----addu! $8,$10,$11
addu $8,$9,$14

$cNi->($csti $2) 1 and $16, $8, 65535
bnez $2 , SLOOP bne $0, $csti, LOOP

Figure 7-4: Raw assembly for a 4-tile version of the example code (tiles are numbered,
starting in the upper left and proceeding clockwise, 0,1,5,4). Each quadrant corre-
sponds to a Raw tile. The two pieces of assembly in the upper left are the processor
and switch code for tile 0. Similarly, the assembly in the upper right is the processor
and switch code for tile 1. The solid edges represent data dependences between the
switch and the processor. The dashed arrows represent data dependences between
switches.
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Chapter 8

Results

8.1 Experimental Methodology

To assess the Reptile compiler, two different applications were chosen. The first
application, a complex finite impulse response filter (cfir), was chosen to see how well
Reptile exploits applications with large amounts of parallelism. The cfir was modified
for 2-tap, 4-tap, 8-tap and 16-tap filters. The second application, a kernel from the
256.bzip2 benchmark (see Section 7.1), was chosen to assess Reptile performance for
unstructured code with low amounts of parallelism.

Performance numbers for the benchmarks compiled with Reptile were obtained
from the Raw simulator (btl). To compare performance results for the Reptile gen-
erated programs several other architectures were evaluated. Both benchmarks were
compiled and run on a Pentium 3, athlon64, and Itanium 2. However, simply com-
paring against other architectures does not only assess the Reptile compiler, but the
Raw architecture as well. Therefore, to fully evaluate the quality of the code gen-
erated by Reptile, results were gathered for the cfir benchmark implemented in the
Streamit language. The Streamit language is a language developed at MIT for target-
ing signal processing applications. Streamit explicitly expresses pipeline parallelism
at the language level, allowing the Streamit compiler to generate high quality code
targeting the Raw architecture. By comparing Reptile generated code to Streamit
generated code, we may assess the extent to which Reptile can automatically find the
parallelism that natively exists within a c-program.

A straight comparison of Raw to other architectures is complicated by the fact
that the Raw hardware only supports software based icaching. Nothing intrinsic to
the Raw design requires software based icaching, it was simply included in the Raw
prototype to explore the issues around software icaching and to facilitate research.
The Raw simulator (btl), however, does support hardware icaching. Before claiming
that the results gathered from the simulator accurately represent the Raw hardware,
the simulator must first be validated by the hardware. By experimentally showing
that the simulator (when using software icaching), generates results faithful to those
from the hardware, one can make the claim that the addition of an accurate hardware
icaching scheme to the simulator would yield cycle counts representative of a Raw
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architecture with hardware based icaching.

8.1.1 Simulator Validation

The various configurations of the cfir benchmark were compiled with Reptile and run
under software icaching on both the simulator and the hardware. Figure 8-1 displays
the results for all configurations. The four plots correspond to 2-tap, 4-tap, 8-tap
and 16-tap versions of the filter. With the 2-tap version being in the upper left, the
4-tap in the upper right, etc. The x-axis on all plots represents the number of tiles
used by the program. The bars on the left correspond to cycle counts received from
the Raw simulator with software icaching, while the bar on the right corresponds
to cycle counts taken from the actual Raw hardware. The difference between the
two numbers is fairly negligible, with the hardware on average reporting a 3% larger
execution time. Notice that as the benchmark size increases (from 1-16 taps), the error
between hardware and simulator decreases, implying that longer running benchmarks
show little performance variation between the hardware and the simulator. Because
the btl simulator accurately reflects the Raw hardware when running in software
icaching code, we will use a carefully augmented version of the simulator to generate
results for a theoretical Raw machine supporting hardware icaching.

8.2 Performance Results

The following sections report performance results for code generated via the Rep-
tile compiler. Numbers were gathered using the Raw btl simulator with hardware
icaching.

8.2.1 Complex FIR

To explore how well Reptile parallelizes applications with large amounts of parallelism,
a cfir benchmark was compiled with for tap sizes. Results were gathered from the Raw
simulator with hardware icaching. Additionally, cycle counts for the cfir benchmark
on a Pentium 3, athlon64 and Itanium 2 were included as well as results for Streamit
generated code.

To understand the parallelism within the cfir benchmark exploited by the Reptile
compiler, Figure 8-2 displays the dataflow graph for a 2-tap version of cfir. The dif-
ferent node colors correspond to different partitions. Nodes of the same color execute
on the same physical Raw tile. Additionally, Figure 8-3 displays the dataflow graph
for a 4-tap version of cfir. Note that increasing the number of taps in cfirresulted
in a wider dataflow graph without increasing graph depth. The increase in width
without lengthening the graph implies that increasing the number of taps in the filter
increases the parallelism within the program, almost linearly.

Figure 8-4 shows performance results for the various cfir filters taken from the Raw
simulator using hardware icaching. The y-axis reports speedup relative to a single tile
version while the x-axis corresponds to the Raw configuration (2, 4, 8, and 16 tiles).
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Figure 8-1: Cycle counts for the various versions of cfir compiled with the Reptile
compiler. The x-axis represents different numbers of Raw tiles. The bar on the
left corresponds to cycle count running on the btl simulator with software icaching.
The bar on the right corresponds to running on the Raw motherboard with software
icaching.

All versions were generated with the Reptile compiler. The graph in the upper left
(a 2-tap cfir) shows a max speedup for the 4-tile Raw configuration. This is due to
the fact that the 2-tap version only contains a finite amount of parallelism. Adding
additional tiles yields no performance improvement. Additionally, the 8 and 16 tile
versions of the program actually show a decrease in performance relative to the 4 tile
version. This reflects the fact that the Reptile partitioning algorithm is imperfect,
and will sometimes parallelize too aggressively, resulting in a worse schedule than had
fewer tiles been used. In the case of the 2-tap cfir version (upper right in Figure 8-4),
the 4-tile Raw configuration yields the largest speedup. Both the 8-tap and 16-tap
versions achieve the largest speedup with 16-tile Raw configurations. This implies
that the 8-tap and 16-tap cfir benchmarks have enough parallelism to utilize at least

16 Raw tiles. Notice that in the case of the 8-tap version, moving from 1-tile to 2-
tiles shows very little performance improvement. This is an artifact of the way Reptile
currently handles spill code. Because Reptile assumes only a single tile contains the
stack, register values from other tiles are spilled into the single stack. This means
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Figure 8-2: Dataflow graph of a two tap cfir.

Figure 8-3: Dataflow graph of a 4-tap cfir.

that register spill instructions generate communication on the static network. In the
case of the 8-tap version of cir, a four tile version provides enough registers that no
values need to be spilled, avoiding the communication costs of register spills. Future
versions of Reptile will have a distributed stack model, allowing each tile to spill to
their local memory space.

Figure 8-5 shows the performance results for the 2-tap, 4-tap, 8-tap and 16-tap
versions of cfir compared to other architectures. The best Raw configuration was
used to represent performance for Raw (2x2 for 2-tap and 4-tap, 4x4 for 8-tap and
16-tap). The results for the Pentium 3, Athlon 64, and Itanium 2 were obtained by
compiling the various versions of cfirfor each architecture, with the most aggressive
optimizations supported by gcc (for the Pentium and athlon) and ecc (for the itanium)
enabled. The numbers reported are processor cycle counts. The Streamit results were
obtained by compiling a Streamit version of the program for the Raw architecture.
Each cycle count was normalized to the Pentium 3 cycle count. The Reptile compiler
outperforms the Pentium 3 and athlon 64 for the 4-tap, 8-tap and 16-tap versions of
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cfir. This implies that the Reptile compiler is capable of finding and exploiting ILP if
the application contains enough parallelism. Reptile performs within a factor of 2-3x
of the Streamit compiler, implying that Reptile does not find all of the parallelism
within the benchmark, and significant work still needs to be done. The Streamit
versions continually show the largest speedup over the Pentium 3, from 2.4x for
the 2-tap case to 5.6x for the 16-tap version. Additionally, the Streamit numbers
reported were generated with the "old" Streamit backend. It is believed that the
"new" Streamit backend would have achieved significantly better results.
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Figure 8-4: Speedups relative to a single Raw tile for variously sized versions of cfir
compiled with Reptile. The x-axis corresponds to different tile configurations. The
numbers were generated via the btl simulator augmented with hardware icaching.

8.2.2 256.Bzip2 kernel

The 256. bzip2 benchmark kernel was described thoroughly in Section 7.1. Figure 8-6
contains the dataflow graph for the kernel taken from 256.bzip2. The section of code
contains significantly less parallelism than a 4-tap cfir(Figure 8-3). Results for the
256. bzip2 kernel were obtained by compiling the code with Reptile and choosing the
tile configuration yielding the best performance (in this case, a 2x2). The Reptile

generated code was run on the btl simulator with hardware icaching. The same code
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Figure 8-5: Performance of different machines/compilers for various cfir configu-
rations. The Streamit and Reptile numbers were generated using the best tile-
configuration for that particular tap size. Numbers are normalized to the Pentium
3.

was also compiled for a Pentium 3, athlon 64, and Itanium 2. Figure 8-7 shows
the performance results for the various machines normalized to the Pentium 3. The
Itanium 2 achieves nearly a 10x speedup over the Pentium 3. Inspection of the gen-
erated Itanium assembly reveals that this speedup is achieved via aggressive software
pipelining. The Reptile code obtains a speedup of 2.1x over the Pentium 3, but only
comes within a factor of 2 of the athlon 64.

8.3 Placement Sensitivity

In the Reptile compiler, after a program is partitioned into several virtual partitions,
each partition must be mapped to a physical Raw tile. Section 6.1 described a method
for placement based upon simulated annealing, as well as a method based upon inte-
ger quadratic programming. To understand how placement affects performance, the
Reptile compiler generated two different versions of the various versions of cfir. One
version places partitions for Raw in an effort to minimize the amount of communi-
cation (good placement), while the other version places partitions on Raw with the
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Figure 8-6: Dataflow graph of the 256.bzip2 kernel

intent of maximizing communication (bad placement). For example, if two partitions

communicate quite often, the first good partitioning will place the partitions physi-

cally close to each other where as the bad partitioning will place the partitions as far

apart as possible.
Figure 8-8 shows the results of the good and bad placement algorithms. The sim-

ulated annealing algorithm was used, with the metric ci, representing the number of

words sent from virtual partition i to virtual partition j over the Raw static network.

The benchmarks were run on the Raw simulator with hardware icaching. The cycles

counts were normalized to the bad partitioning. Figure 8-8 illustrates that as the size

of the benchmark increased, the sensitivity to placement also increased. For example,
both the 8-tap and 16-tap versions of cfir use a 4x4 tile configuration. However, the

8-tap version achieves a 1.47x speedup by partitioning to minimize communication

where as the 16-tap version achieves a 1.56x speedup. An interesting observation

is that the bad placement for the 2-tap version actually does better than the good

placement. This is most likely due to the fact that the placement objective function

is imperfect. While minimizing total communication on the network does well in

most cases, it is not necessarily the best metric for all programs. For example, one

could consider the case where partition i sends a large amount of words to partition

j, but partition j does not send any words to partition i. In this case, placing the two

partitions close together achieves no performance improvement over placing them far

apart. This is because of the fact the because there are no cycles (i to j, then j to i),
the communication can be pipelined.

8.4 Peep-hole Optimizations

Section 6 described the three peep-hole optimizations implemented by Reptile. Fig-

ure 8-9 shows the effect of the different peep-hole optimizations on performance. The

2-tap, 4-tap, 8-tap and 16-tap versions of the cfir benchmark were compiled with

Reptile with different peep hole optimizations turned on. The results show the in-
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Figure 8-7: Speedup of different machines on the 256.bzip2 benchmark kernel relative
to the Pentium 3.

crease in performance as the Bang opt, Use optimizations, and Queue Allocation are
performed. The results were generated from btl using hardware icaching. According
to the results, the two larger versions of the cfir benchmark gain less from queue
allocation than the smaller versions. The most likely explanation for this behavior is
that for the larger versions of the benchmark the amount of computation relative to
communication is larger than for the smaller versions of cfir, meaning that the 8-tap
and 16-tap versions benefit less from reordering the communication.
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Chapter 9

Summary

9.1 Conclusion

The Reptile compiler parallelizes arbitrary ANSI-c programs at the instruction level
and maps the parallel computation to the Raw architecture. Simulated Annealing
is used to partition the instruction dataflow graph. After partitioning, simulated
annealing is again used to determine a mapping from partition to physical Raw tile.
Once each partition is placed to a Raw tile, switch code is generated to route operands
across the network. The switch code contains no crossover routes and assumes an
all-to-all network. Legal switch code is generated, using dimension ordered routing to
determine the operand routes. After processor and switch code generation, a suite of
peep-hole optimizations is performed to increase code quality. On applications with
sufficient amounts of parallelism, Reptile is able of achieving significant performance
increases, outperforming modern out of order superscalars. Reptile is able to come
within a factor of 2-3x of code generated by the Streamit compiler, implying that
Reptile is not capturing all of the parallelism inherent to the code. On an unstructured
integer example, the Reptile compiler is capable of achieving a performance within
2x of a modern superscalar.

9.2 Future Work

Future work for the Reptile project includes increasing the robustness of the existing
Reptile compiler as well as utilizing the Reptile infrastructure to explore new issues
in DILP compilation.

The following projects will increase the stability and performance of Reptile:

" Implement an intelligent, post codegen scheduling pass that unifies switch and
processor code scheduling.

* Implement a suite of post-codegen classical optimizations.

" Integrate the Suif equivalence class alias analysis into the Reptile compiler.

" Modify the Reptile stack model to handle multiple stacks, one for each tile.
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The Reptile compiler can be used to explore the following DILP compilation issues:

e Explore the issues surrounding an ABI supporting parallel library calls and
parallel indirect function calls.

e Use Trace scheduling to increase the performance of Reptile on integer applica-
tions.

* Investigate the issues surrounding code duplication. When can code be dupli-
cated across tiles to avoid communication?

e Explore spatial software pipelining.
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Appendix A

Simulated Annealing

This section gives a quick background on Simulated Annealing, a technique used
extensively in the Reptile compiler.

Simulated Annealing belongs to the class of stochastic optimization algorithms.
Stochastic optimization algorithms utilize randomness to obtain approximate solu-
tions to difficult optimization problems.

The name "Annealing" applies to the process of heating up a solid until the atoms
are in a sufficiently random state, then allowing the solid to cool such that the atoms
within the solid reach a state of minimum energy at the final temperature. If the
solid does not reach a high enough temperature initially, or if the cooling occurs too
quickly (a process called quenching), the final state will not have minimal energy.

Simulated Annealing, first proposed by Metropolis [1A], leverages computer sim-
ulation methods to "simulate" the annealing process. The simulation occurs in the
following steps. Let Qj represent the position of the atoms at step i. Similarly, let
Ej represent the energy of the configuration Qj. To simulate the randomness of the
atoms, random perturbation of the atoms results in a new configuration, Qj. After
perturbation, a new energy, Ej, describes the energy of the perturbed system. If the
new energy, Ej proves to be smaller than the previous energy, Ej, Qj becomes the
new state of the system. If the perturbed system has more energy than the previ-
ous system, (E > El), then the new state becomes the current state according to a
probability given by:

,(Ei-Ej
ekBT (A.1)

Where T corresponds to the simulated "temperature" and kB to Boltzmann's con-
stant. Notice that the probability of accepting a higher energy state decreases as
the temperature decreases. By accepting changes that increase energy, the simulated
annealing algorithm "escapes" from local minima. At very low temperatures, the
simulation accepts only changes in configuration that decrease system energy (analo-
gous to a hill climbing algorithm). Simulated Annealing consists of many repetitions
of the above algorithm, decreasing the simulated "temperature" after a fixed number
of repetitions. The process repeats, stopping the simulation when the temperature
reaches a value sufficiently close to zero.

The above algorithm applies not only to literally simulated "annealing", but also
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to difficult combinatorial optimizations problems [1.0]. For example, consider the
Traveling Salesman Problem (TSP), known to be NP-complete. The TSP problem
attempts to find an optimal route for a traveling salesman that must visit many
destinations. The "optimal" route minimizes travel time. To apply Simulated An-
nealing to the TSP problem, the energy becomes the travel time of the salesman,
and the route the salesman takes becomes the configuration of particles. Random
perturbations switch the ordering of visited cities, thereby changing the travel time
(energy) of the system. Of course, simulated annealing provides no guarantee of op-
timality, however, many real world problems only require an approximate solution.
The pseudo-code below implements the simulated annealing algorithm.

Q random-initial-guess()
T = startT
Begin Outer Loop over T

L = startL
Begin Inner Loop over L

Q' =perturb(Q)
oldCost = getCost(Q)
newCost = getCost(Q')

if((oldCost - newCost) > 0)

Q=Q'
else

(oldCost-newCostif(e ( T > rand[0 1])

Q = Q,
endif

endif
L = getNextL()

End Inner Loop
T = getNextT

End Outer Loop

For the case of the TSP, the state Q described in the above pseudo code corre-
sponds to a particular route visiting all cities. The cost of the route, getCost(Q),
corresponds to the traveling time required for that particular route, Q.

No "correct" values exist for the starting temperature startT and the bound on the
inner loop. The choice for these parameters varies upon the problem as well as the
desired running time. Therefore, common implementations of simulated annealing
leverage a heuristics based approach for determining the values of startT and the
inner loop bound. A good choice for the inner loop bound in the case of the TSP
might be to iterate the inner loop as many times as there are cities to visit. The
"cooling schedule", the function that determines the next temperature, is also chosen
heuristically.
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