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Abstract

Random porous solids such as bone and geomaterials exhibit a multiphase composite nature,
characterized by water-filled pores of nm- to um-scale diameter. The natural synthesis and
operating environments of such materials significantly alters phase composition and multi-
scale structural heterogeneities throughout the material lifetime, defining significant changes
in macroscopic mechanical performance for applications ranging from multispan bridges to
calcium-phosphate bone replacement cements. However, the nanoscale phases formed within
the unique chemical environment of pores cannot be recapitulated ex situ in bulk form, and
imaging of the composite microstructure is obfuscated by the size, environmental fragility, and
nonconductive nature of such geomaterials and natural composites. Thus, there is an increas-
ing drive to develop new approaches to image, quantify the mechanical contributions of, and
understand the chemomechanical coupling of distinct phases in such composites.

In this thesis, we utilize recent advances in experimentation namely instrumented inden-
tation, and micromechanical modeling namely homogenization techniques, in an attempt to
quantify the mutli-phase, multi-scale heterogeneity observed in all cement-based materials. We
report a systematic framework for mechanically enabled imaging, measuring and modeling of
structural evolution for cement based materials (CBM), porous geocomposites, at length scales
on the order of constituent phase diameters (1078 — 1076 m), and thus identify two structurally
distinct but compositionally similar phases heretofore hypothesized to exist. The presented
experimental and modeling results culminated in micromechanical models for elasticity and
strength that can predict the macroscopic mechanical behavior for a range of CBM systems.
The models directly correlate the changes in chemical and mechanical state to predict the ex-
perimentally observed range of macroscopic mechanical properties. This general framework is
equally applicable to other man-made and natural composites, and enables accurate prediction
of natural composite microstructure and mechanical performance-directly from knowledge of
material composition.

Thesis Supervisor: Franz-Josef Ulm
Title: Associate Professor of Civil and Environmental Englneermg
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Chapter 1

Introduction

Natural solids such as bones, geomaterials, woods, and cement-based materials exhibit a multi-
scale multi-phase composite nature!. The most prominent heterogeneity of these systems is
the pore space which varies from a few Angstroms in diameter to micrometric dimensions. It
is this multi-scale, environmentally coupled heterogeneity that ultimately defines the macro-
scopic mechanical performance of these materials. For example, consistent with trends in other
natural composites (see Tab. 1.1), the elastic modulus (E) and uniaxial compressive strength
(X.) of a cementitious composite can range from E = 10 to 60 GPa and X, = 10 to 200 MPa,
respectively, depending on material composition and degree of hydration. From a structural
design point of view this uncertainty in strength and elasticity constitutes a threat to pos-
sible damage and catastrophic failures of safety-critical applications ranging from multi-span
bridges to calcium-phosphate cements currently being considered as bone replacement materi-
als [231]. While most codes of practice in design account for this heterogeneity through safety
factors to achieve macroscopic material properties with some certainty, current trends in ma-
terials science and engineering aim at a better representation of the microstructure at multiple
length scales. Advances in experimental approaches such as instrumented nanoindentation and
analytical approaches such as micromechanical homogenization present an opportunity to quan-

tify structurally heterogeneous materials at length scales corresponding to individual chemical

1Virtually all natural solids are multiphase multiscale material systems, i.e., they are composed of several
chemical constituents (multiphase) that manifest themselves in different length-scales (multiscale) creating in
the process complicated hierarchical composites to deal with.
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Material | Elastic Modulus, [GPa] | Compressive Strength, [MPa] | References
Bone 1-40 1-100 163]
Cement-Based Material 10-60 10-200 180
Geomaterial 5-40 1-30 142
Wood 0.5-20 520 [99]

Table 1.1: Approximate mechanical properties ranges for selected natural composites.

phases, and then to upscale their mechanical response at the level of engineering applications.
The development of such a framework would enable one to model and predict the mechanical
performance of a multi-phase, multi-scale composite directly from knowledge of the material
composition and a modest number of mechanical experiments. Here, in this thesis, we demon-
strate this approach through the correlation of nanomechanical testing and micromechanical
modeling of cementitious composites as a function of environmental exposure, and predict with
high accuracy the macroscopic mechanical behavior of this multi-scale composite. The tech-
niques and methodology proposed are quite general, and apply equally well to other man-made,

geological, and biological composites.

1.1 Problem Statement

Is it possible to break down cement-based materials (or more generally, natural porous material
systems) to a scale where solids no longer change from one material to another, and upscale
(‘nanoengineer’) the behavior from the nanoscale to the macroscale of engineering applications?
— This is the challenging question we want to address in this thesis through the use of some
tools and methods of experimental and theo.reti‘cal microporomechanics.

As it was elegantly stated by Scrivener and Van Damme in a recent special issue of Materi-
als Research Society Bulletin [208] “...the application of concrete is largely based on empirical
knowledge acquired through macroscopic testing, and the depth of our understanding of the
chemical and physical processes that deliver the performance of concrete on a macroscopic scale
is quite limited.” The lack of knowledge can be attributed to the high complexity possessed by
these materials. Understanding cement-based materials (CBM) requires knowledge from chem-
istry, geological sciences, materials science, ‘granular media, porous media, colloidal physics,

etc. In addition, the inability of certain experimental methods to be applied quantitatively
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to CBM, have added further confusion. One can therefore reach the unfortunate conclusion
that a conceptual framework for modeling the mechanical behavior of cement-based materi-
als as elegant as that of metals, polymers, and ceramics does not currently exist [208]. It is
therefore the intention of this thesis to provide such a framework by utilizing recent progress
in experimental and theoretical nanomechanics. Figure 1-1 shows a schematic of the materials
science approach adopted in this thesis. While significant progress has been made over the last
50 years on the link between synthesis, processiﬁg and microstructural evolution, very little is
known on the link between structure-property relations. It is the intention of this thesis to
bridge this gap and provide a direct link between physical chemistry and mechanics. Once such
a coupling is established, predictions of the macrosopic.mechanical behavior can be made based

on knowledge of the material synthesis.

1.2 Research Objectives

A comprehensive approach is presented in this thesis to address the scientific challenge. It is
composed of experimental investigation, theory and modeling, and finally experimental valida-
tion (see details in Section 1.3). This approach studies the effects of microstructural details on
the multi-scale mechanical behavior of CBM materials ranging from the nanometer scale where
a porous material exists, to the macroscopic scale where concrete is applied in engineering ap-
plications. To tackle this problem, we pose a series of objectives which, once met can lead to a
solution to our problem. The four research objectives are now summarized:

Objective 1: Develop a theoretical framework that allows application of indentation tech-
niques to multi-phase, cohesive-frictional materials. The nanoscale phases formed within the
unique chemical environment of CBM pores, the Calcium Silicate Hydrates (C-S-H), cannot
be recapitulated ez-situ in bulk form, and as a consequence their mechanical properties are
essentially unknown. Nanoindentation provides a possibility for overcoming this problem. The
knowledge of indentation analysis is currently restricted to homogeneous metallic materials,
i.e., materials that follow a cohesive yield behavior irdependent of the hydrostatic pressure.
As a prerequisite to the experimental investigation, a comprehensive framework that allows

extracting mechanical properties from indentation on such complicated systems is developed.
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Objective 2: Validate the tools of indentation analysis on model materials. The developed
schemes for cohesive-frictional materials and multi-phase composites are validated on a series
of tests performed on a bulk metallic glass (BMG) and a titanium-titanium boride.

Objective 3: Study the multi-scale mechanical behavior of CBM materials and reconstruct
quantitatively its microstructure. The mechanical behawior of the individual constituents com-
posing cement pastes microstructure are essentially unknown. In fact the exact nature of the
main constituent, the C-S-H, is still under debate. We aim to decode the microstructural details
and provide intrinsic mechanical properties for-all CBM constituents.

Objective 4: Develop a multi-scale micromechanics model that can predict the macroscopic
mechanical behavior of any CBM material, independently of initial mix proportions, degree of
hydration or applied environmental conditions. Macroscopic mechanical behavior of CBM shows
significant variability. We aim to incorporate this diversity in our micromechanical model and
provide a direct link between synthesis and mechanics.

These four objectives provide an elegant framework for modeling a multi-scale, multi-phase
mechanical system as CBM. It is hoped that the development of such a framework can therefore

serve as a model for quantitative analysis of other complicated hierarchical composites.

1.3 Methodology

2Modeling the micromechanical behavior of concrete can be approached from several directions
and at various degrees. Many of the formulas used in design rely on empirical expressions that
seem to fit the extensive experimental data. Even though such approaches have been extensively
used in cement-based modeling and proved to be useful and convenient, the results are limited
to the conditions under which the data were obtained. The methods provide no physical
understanding and restrict our predictive capabilities to the range on which the laboratory
experiments were performed. In this thesis, we seek a more general approach, one that will give
us the ability to predict and a refined understanding. In pursuing such a fundamental approach,

we place a premium on this goal of predictive power. However, a goal of this magnitude requires

2The introduction of this section is motivated by the introduction given by R.M. Christensen in his book
‘Mechanics of composite materials’, Ref. [53].
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significant effort and time. We aim here to lay the foundation and stimulate interest for further

research.

1.3.1 Theoretical Modeling

Homogenization techniques developed within the framework of continuum micromechanics are
arguably the most systematic methods to address the large heterogeneity observed in CBM.
The underlying idea of continuum micromechanics is that it is possible to separate a hetero-
geneous material into phases with (on-average) constant mechanical and structural properties.
Homogenization, which is based on volume averaging over the representative element volume
(R.E.V.) of the constitutive relations defined at the scale of the phases, delivers the macro-
scopic elastic/poroelastic/strength properties of the R.E.V. as a function of the microscopic
phase properties, volume fractions, and specific morphologies. Upscaling schemes for elasticity
and poro-elasticity are well developed in the literature, whereas schemes for strength are still
the subject of intense research. Application of these elements to CBM will be detailed in fol-
lowing chapters. It is instructive to note that special emphasis is placed on the representation

of the material which masks the physics of the problem.

1.3.2 Experimental Investigation

The primary purpose of our experimental effort is to provide the necessary ingredients for
the micromechanical modelling of our materials. We recall that the required information for
a micromechanical modeling aré a) the mechanical properties of each phase, b) their volume
fractions, and c) their morphologies. Morphological characterization is primarily achieved via
electron microscopy. Throughout this research Scanning Electron Microscopy (SEM), Environ-
mental Scanning Electron Microscopy (ESEM), Atomic Force Microscopy (AFM), and Optical
Microscopy have been extensively used. The morphological investigations culminate in the
development of multi-scale think model that guided both our experimental and modeling pro-
gram. It should be noted that the multi-scale model for CBM presented in Chapter 4 satisfies
the separation of scales principle. That is, each level is separated from the next one by at least
one order of magnitude, which is a prerequisite for the application of homogenization schemes.

Volume fractions have been obtained through experimental chemical methods. In the case of
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EXPERIMENTAL THEORETICAL

Figure 1-2: Proposed methodology. Microstructural break down (downscale) of natural ma-
terial systems using experimental methods. Once volume fractions (VF), intrinsic mechanical
properties (IP), and morphological characterestics (M) are obtained, upscaling is enabled via
micromechanical models.

CBM, one can go a step further and provide predictions of volume fractions using advanced
chemistry models, certain of which have been verified with the help of X-ray diffraction or in-
dentation results. Instrumented indentation provided the mechanical properties of each phase.
Its use has been the key feature that made this research possible.The proposed methodology is
summarized in Fig. 1-2. In the presence of a new material system, one needs to downscale and
reconstruct the multi-scale structure of the material using experimental methods. In particular
the use of instrumented indentation will prove to be of utmost importance. Once the structure
is understood and all necessary ingredients are in place; macroscopic properties can be predicted
with the use of advanced homogenization schemes. These two complimentary approaches will
prove to be of extreme importance. We show for the first time in this thesis that their coupling

can be an invaluable tool for modeling natural composites.

1.4 Industrial and Scientific Motivation

Cement-based-materials are characterized by low cost and high availability. These two charac-

teristics, coupled with excellent mechanical properties, are the primary reasons that concrete
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is the leading construction material in the world. The five major elements that make up most
of cements minerals, Si — O — Al — Ca — Fe, are the dominant elements in the Earth’s crust. It
is therefore reasonable to predict that no other material is expected to displace concrete from
the construction industry in the years to come. Refining our understanding of the mechanisms
responsible for the macroscopic mechanical response of the dominant construction material on
Earth is essential and indispensable. The multi-scale materials science approach developed in
this thesis has the promise to provide answers to questions concerning the mechanical origin
and durability performance of natural composites, by bridging length scales between the mi-
crostructure of construction materials (materials science), the macroscopic mechanical material
properties (mechanics of materials), and the engineering stiffness-, strength-, and deformation
behavior of structures (structural engineering). Once this link is established, the relative signif-
icance of the individual chemical constituents comprising the materials microsﬁructure can be

quantified. Such an approach can provide some industrial and scientific benefits. They include:

e Reduced macroscopic tests: Macroscopic mechanical properties prediction can be made
by the sole knowledge of the chemistry of the problem. This can significantly replace a
large fraction of macroscopic mechanical tests with a few chemical tests, with significant

economic benefits for the industrial world.

e Quantification of the strength and elasticity at various length-scales: The advent of
nanoindentation allows access to the mechanical properties of materials at length scales
where chemical constituents with intrinsic atomic structure and mechanical properties
manifest themselves. It is for the firsi time that the mechanical response of the C-S-H

component, the main constituent of all CBM systems, can be quantitatively investigated.

e Material optimization and ‘concrete & la carte’: Using advances in the materials science
and manufacturing, it will bé possible to rationally design the macroscopic mechanical
behavior of cement-based materials for specific applications by tailoring their microstruc-
ture at different scales. The development of sustainable materials, which are dimensionally
stable in space and time, becomes possible. From the knowledge thus acquired, a new

generation of these materials might well become available.
e Physical basis for understanding degradation mechanisms: The approach adapted in this
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research has its starting point at the level of ‘the individual constituents, providing a
fundamental understanding to the orifins of elasticity and strength of cement-based ma-
terials. Since all chemical constituents are incorporated in our modeling procedure the
same models can capture the effect of’chemical reactions on mechanics, provided the

chemistry is understood and mechanical testing 6f asymptotic behavior is obtained.

e Provide a link between physical chemistry and mechanics: The approach adapted in this
thesis aims at bridging the gap between cement chemistry and concrete mechanics. It
is hoped that results presented in this thesis will stimulate interest and bring the two

communities closer together.

1.5 Thesis Outline

This thesis is divided into six major parts. The first part, Chapter 1, deals with the presentation
of the topic. The second part of the thesis focuses on the experimental approach that made
this research possible: instrumented indentation. Chapter 2 presents the technique and the
theoretical tools that allow converting indentation data into meaningful mechanical properties.
While most efforts in the literature concentrate on indentation on metals, we attempt to extend
the method to non-metallic materials, in particular to materials that follow a pressure sensitive
yield/failure criterion of the Mohr-Coulomb or Drucker-Prager type. For validation purposes,
we then employ in Chapter 3 the tools developed in Chapter 2 on a model cohesive-frictional
material, bulk metallic glass, an amorphous metal.

The third part of this thesis focuses on the multi-scale experimental investigation of CBM
and comprises three chapters. Chapter 4 presents the proposed multi-scale model that guides
both the experimental and theoretical developments. Chapter 5 extends the indentation meth-
ods to account for the multi-phase nature of cement-based materials. A new method which
accounts for this complexity is presented and validated on a white cement paste. Chapter 6
then describes the experimental investigation performed on cement-based materials: materials
tested include cement pastes and mortars with different compositions (w/c—ratios and cement
composition), curing temperature (heat curing 20-60°C), and experienced environmental con-

ditions (heat treated, calcium leached).
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Parts IV and V of this thesis deal with the micromechanical modeling of CBM systems. Mo-
tivated by our experimental findings, we develop a multi-scale poroelastic model that depends
on a few material-invariant properties and volumetric proportions. The model which is pre-
sented in Chapter 7 can predict mechanical properties over length scales spanning several orders
of magnitude. The multi-scale poroelastic model is then validated in Chapter 8 for a variety of
CBM and experimental conditions. The fifth part is then devoted to the strength behavior of
CBM systems. Using the tools developed in Chapter 2 we present first order estimates of the
C-S-H strength (Chapter 9). Potential routes for upscaling the mechanical behavior of CBM
systems are then presented in Chapter 10 and compared with experimental data in Chapter 11.

Chapter 12 (Part VI) summarizes the main findings of this study, discusses current limita-
tions, and proposes future perspectives. Additional information complementing the ideas and

discussions put-forward in this thesis are presented in the Appendix.
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Part 11

INDENTATION ANALYSIS
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Chapter 2

Instrumented Indentation on

Cohesive-Frictional Materials

The use of indentation will play a prominent role in our multi-scale investigation of natural
composite materials. Here, we introduce the experimental approach and present the theoret-
ical background that will allow us to transform indentation data into meaningful mechanical
properties. The advent of instrumented indentation techniques has provided the mechanics
community with an unprecedented opportunity to explore mechanical properties of materials
at multiple length and force scales. Indeed, thanks to the self-similarity possible in indentation
tests! and the resulting mechanical response of the materials system, one single experimental
technique is able to provide access to mechanical properties of materials from the nanoscale
to the macroscale. Most of the developments in the last decade concentrated on indentation
testing of metals, which are atomically cohesive materials. In contrast, natural composites,
like cement-based materials, soils, bones, wood, etc., exhibit a pronounced cohesive-frictional
behavior that will play an important role in our investigation. Starting from a dimensional
analysis of the physical quantities involved in indentation testing, the aim of this chapter is to

review recent developments in the field of indentation analysis, and to identify the tools required

'In the case of pyramidal or conical indentation, the ratio of the area of contact to the depth of indentation is
independent of the magnitude of the applied load. This leads to a property of the indentation test called geometric
similarity. For geometrically similar indentations the stresses and strain within the material are independent of
the depth of penetration or load application. This is discussed in detail in Section 2.2 of this chapter.
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to translate indentation data of cohesive-frictional materials into mechanical properties. These
tools will be validated in Chapter 3 for a particular cohesive-frictional material: bulk metallic
glass. In this chapter, we restrict ourselves to the analysis of indentations on homogeneous ma-

terials. The heterogeneous nature of natural composite materials will be addressed in Chapter

5.

2.1 Introduction

It has long been hypothesized that the localized contact response measured by an instrumented
indentation experiment can serve to characterize the mechanical properties of materials as quan-
titatively as conventional testing techniques such as uniaxial compression and tension. This ex-
perimental approach provides a continuous record of the variation of the depth of penetration,
h, as a function of the prescribed indentation load, P, into the indented specimen surface. Ad-
vances in hardware and software control currently enable maximum penetration depths on the
nanometer scale, such that nanoscale instrumented indentation provides a convenient, relatively
non-destructive means to evaluate the fundamental mechanical response (stiffness, strength,
creep, etc.) of small material volumes of a bulk, thin film, or composite material. Commer-
cially available indenters accommodate various indenter geometries, including sharp pyramidal,
conical or spherical probes, so that elastic and inelastic mechanical properties can be estimated
at any scale within the limits defined by the indenter dimensions and maximum penetration
depth, as well as by the load and depth resolution/maxima of the specific instrument. Thus,
instrumented indentation is a versatile tool for material characterization, particularly at scales

where classical mechanical tests based on volume-averaged stresses are inadequate [50, 185, 98].

2.1.1 Historical Background

The very concept of ‘hardness’ can be found as early as in the 18th century in the works of
several prominent mineralogists, Réaumur (1683-1757), Haily (1743-1822) and Mohs (1773~

1839) [245)2. These scientists, however, were not fundamentally concerned with the hardness as

2The French scientist René Réaumur (1683-1757), was named by Williams [245] as the father of hardness
measurements. The French mineralogist, René-Just Hatiy is one of the founders of the science of crystallography.
In 1812 the Mohs scale of mineral hardness was devised by the ('<rman mineralogist Frederich Mohs (1773-1839),
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a mechanical property, but introduced ‘hardness’ as a means for the classification of materials
and standardization of products. The application of indentation methods to assess material
properties is more recent and can be traced back to the work of the Swedish metallurgist
Brinell (1849-1925). Pushing a small sphere of hardened steel or tungsten carbide against the
surface of the specimen, Brinell empirically correlated the shape of the resulting permanent
impression (indentation) with the strength of metal alloys (steels). The first accessible work of
this pioneering approach of the Swedish engineer can be found in a 1900 International congress
in Paris [36]. The merits of Brinell’s proposal were quickly appreciated by contemporaries:
Meyer, O’Neill, and later Tabor [223] suggested empirical relations to transform indentation
data into meaningful mechanical properties. These early studies concentrated on the evaluation
of hardness of metals and on the link of hardness with strength properties. Hardness is defined
as the maximum applied force divided by the projected residual imprint left on the material.
Hardness measurements, therefore, do not require a continuous measurement of the indentation
depth. In contrast, as we will see later on, an estimate of the elastic properties of the material
requires information on the depth response of the material to the indentation force. More
recently, due to progress in hardware and software control, depth sensing techniques were
introduced that allow a continuous monitoring of the displacement of the indenter into the
specimen surface during both loading and unloading. Depth sensing indentation techniques
have been conceptualized by Tabor and coworkers [216,223] and its implementation down to
the nanoscale appears to have developed first in the former Soviet Union from the mid 1950s on
throughout the 1970s. This instrumented indentation approach received considerable attention
world-wide, ever since Doerner and Nix [70] and Oliver and Pharr [184] in the late 1980s and
early 1990s, also identified this technique for analysis and estimation of mechanical properties
of materials such as microelectronic thin films for which few other experimental approaches
were available. While the chronology of events of discovery may still be in debate3, there is

little doubt, at least as far as the elastic behavior is concerned, that it is the Hertz-type contact

who selected ten common minerals and attributed hardness values from 1 to 10, 1 being Talcum Powder, 10
being diamond. The scale is not a linear scale, but somewhat arbitrary, and the hardness has no dimension. For
a review of early contributions (prior to 1940) see Ref. [245] and references therein. For more recent reviews of
modern indentation techn<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>