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Abstract 

The network of detectors comprising the Laser Interferometer Gravitational-wave 
Observatory (LIGO) are among a new generation of detectors that seek to make 
the first direct observation of gravitational waves. While providing strong support 
for the General Theory of Relativity, such observations will also permit new tests 
of physical theory in regions of strong space-time curvature and high matter-energy 
density. However, the observed signals are expected to occur near the limit of detector 
sensitivity. The problem of identifying such small signals is the primary focus of this 
work. 

This work presents a novel method for the identification of astrophysically unmodeled 
bursts of gravitational radiation in data from networks of interferometric detectors. 
The method is based on the Q transform, a multiresolution time-frequency transform 
that efficiently targets waveforms within a finite region of time, frequency, and Q 
space. The ]:nethod is also based on a modification of linear prediction that greatly 
simplifies the resulting statistical analysis by whitening interferometric detector data 
prior t o  Q transform analysis. Together, these techniques form the basis of a complete 
analysis pipeline that is equivalent to a template-based matched filter search for 
minimum uncertainty waveforms in the whitened data stream. 

This method is then applied to search for gravitational-wave bursts with duration 
less than 1 second and frequency content between 64 and 1024 Hz in coincident data 
from two detectors during second LIGO science run. Although no gravitational- 
wave bursts are identified, upper bounds are reported for the rate of gravitational- 
wave bursts as a function of signal strength for isotropic and galactic populations 
of sources with both abstract and astrophysically motivated waveform. The results 



indicate a maximum of 0.09 events per day at the 90% confidence level for bursts with 
characteristic strain amplitude in excess of to lo-'' strain HZ- ' /~  depending on 
waveform. A comparison with previous searches demonstrates that this search is one 
of the most sensitive to date for gravitational-wave bursts of unknown waveform, and 
is inconsistent with recent indications for an statistical excess of events by the ROG 
collaboration at  above the 99% confidence level. 

Thesis Supervisor: Erotokritos Katsavounidis 
Title: Assistant Professor of Physics 
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Chapter 1 

Introduction 

Gravita,tiona,l waves are linear perturbations of space and time, caused by the mo- 

tion of matter, that travel outward through the universe at the speed of light. The 

existence of gravitational waves follows as a direct consequence of Einstein's General 

Theory of Relativity. As a result, the direct detection of their interaction with matter 

would constitute an important confirmation of theory. 

There is alrefady strong indirect evidence in support of the existence of gravitational 

waves. Pulsatr timing observations of the relativistic binary system PSR 1913+16 by 

Hulse, Taylor, and colleagues indicate that the orbit of the system is decaying at  a rate 

that is in very good agreement with the expected energy loss due to gravitational-wave 

emission[l, 21. Since then, the discovery of the similar binary pulsar systems PSR 

B1534+12[3, 41, PSR 2127+llC[5, 61, and PSR J0737-3039[7] have provided further 

compelling evidence for the existence of gravitational radiation, and also permit an 

estimate of the population of such systems [8]. 

Nevertheless, direct observation of the interact ion of gravitational waves and matter 

has not yet been achieved. Such an observation would not only lend strong support 

to the General Theory of Relativity, but would also usher in a new field of astro- 

physics that falls outside of the electromagnetic spectrum and is for the first time 



directly sensitive to  the dynamical mot ion of matter . Such observations will provide 

new tests of our understanding of physics in regions of strong space-time curvature 

and very high matter-energy density. In particular, in contrast to  electromagnetic 

radiation, gravitational waves are not easily absorbed or scattered by matter. As a 

result, gravitational waves permit observation of the bulk motion of matter inside 

catastrophic events such as core collapse supernovae or the coalescence of binary 

compact objects such as neutron stars and black holes - regions that are currently 

inaccessible due to photon and neutrino scattering. In addition, the observation of 

a stochastic background of gravitational radiation from density fluctuations in the 

very early universe would provide important tests for theories of inflation or cosmic 

strings. Finally, there exists the possibility of discovering previously unknown phe- 

nomena, and the profound impact such a discovery would have on physical theory, as 

has typically been the case whenever the universe has been observed in a new region 

of the electromagnetic spectrum. 

Starting with the pioneering work of Weber[9] on the first generation of resonant- 

mass detectors in the early 1960s, gravit at  ional-wave detectors have now developed 

into a global network of detectors, with a number of new detectors currently nearing 

completion. The newest generation of these detectors, kilometer scale interferometers 

that were first studied in detail by Weiss[lO] in the early 1970s, now promise greatly 

increased sensitivity over a much larger bandwidth than the existing generation of 

narrowband resonant-mass detectors. In particular, this work focuses on data form 

the Laser Interferometer Gravitational-wave Observatory (LIGO), which operates a 

network of three interferometric detectors at  two separate locations in the United 

States[ll ,  121. The LIGO detectors are now in the final stages of commissioning and 

have entered alternating periods of scientific observation and commissioning work as 

they approach their respective design sensitivities. Currently, the LIGO detectors 

have completed four coincident science runs with successively improving sensitivity, 

constituting the most sensitive searches for gravitational waves to date. 

Despite many orders of magnitude improvement in detector sensitivity over the last 



40 years, thc detection of gravitational waves has so far remained an elusive goal. 

Due to  the extremely weak interaction of gravitation waves with matter, the signals 

from potentiitlly detectable sources are anticipated to be so small that they will occur 

near the sensitivity limit of existing detectors. Even as detectors improve, the set 

of' potentially detectable sources will continue t o  be dominated by signals at  the 

sensitivity limit of future detectors. Significant effort must therefore go into the task 

of robustly identifying such small signals in the presence of the numerous detector 

noise sources that constrain detector sensitivity. This last effort is the primary focus 

of the present work. 

In the following chapters we propose a complete method for analyzing the data from 

networks of interferometric gravitational-wave observatories in order to identify and 

characterize astrophysically unmodeled bursts of gravitational radiation. We then 

apply this method to  the search for gravitational-wave bursts in data from the second 

LIGO science run. Although we find no events of likely gravitational-wave origin, 

we also determine upper bounds on the possible rate of gravitational-wave bursts of 

various waveform. A comparison with the results of previous searches then indicates 

that this sea.rch is one of the most sensitive to  date and excludes previous evidence 

for detection. with a high degree of confidence. 

The remainder of this work is organized as follows. 

In chapter 2, we lay the foundations for this work by giving an overview of the current 

st'ate of gravitational-wave physics. We begin by presenting gravitational waves as 

a consequence of Einstein's General Theory of Relativity and briefly describe the 

properties of such waves, including their generation and their interaction with matter. 

In the process, we also motivate our effort by highlighting the potential benefits that 

the detection of gravitational waves would bring to  our understanding of nature. We 

then consider the detection of gravitational waves and give a brief overview of current 

efforts. Finally, we conclude with a survey of potentially detectable astrophysical 

sources of gravitational waves and review current predictions of the populations of 



such sources. 

In chapter 3, we first introduce a parameterization of gravitational-wave bursts that 

provides us with the language to describe both their measurement and detection. We 

then motivate the use of a multiresolution basis of waveforms with minimum time- 

frequency uncertainty as the ideal measurement basis for the detection of unmodeled 

bursts. Finally, we present a method for constructing such a basis in a way that 

optimally covers a targeted space of signals. 

In chapter 4, we present a method, based on autoregressive modeling of stochastic 

processes, for whitening the data from interferometric gravitational-wave detectors 

prior to  further analysis. We will find that by doing so we greatly simplify the 

resulting st at  ist ical analysis. 

In chapter 5, we present the Q transform, a multiresolution time-frequency transform 

which forms the basis of the proposed search method. In the process, we consider 

the statistical properties of the Q transform applied to stationary white noise and 

demonstrate that it is the optimal detector for bursts with minimum time-frequency 

uncertainty in the presence of stationary white noise data. We then combine the Q 

transform with the techniques proposed in the previous chapters in order to form 

a comprehensive end-to-end analysis pipeline for the detect ion of gravitat ional-wave 

bursts. In addition, we present a method of coherently combining Q transform mea- 

surements from multiple detectors in a way that maximizes the combined signal to 

noise ratio of gravit ational-wave bursts while taking into account potential differences 

in sensitivity between detectors and excluding inconsistent events. 

In chapter 6, we present the performance of the proposed analysis pipeline for the 

special case of waveforms with minimum time-frequency uncertainty in the presence 

simulated detector noise. This controlled study permits a validation of the analysis 

pipeline by comparing the observed performance against the theoretically predicted 

performance. In doing so, we demonstrate that the proposed pipeline is equivalent to 



the optimal search strategy for the special case of minimum uncertainty waveforms 

in the whitened data stream. 

In chapter 7, we present the results of the proposed analysis pipeline applied to an all- 

sky search for gravitational-wave bursts in coincident data from the two collocated 

LIGO detectors during the second LIGO science run. We also perform a system- 

atic study of' the expected background event rate using non-physical time shifts and 

demonstrate that an observed excess of foreground events is not of likely gravitational- 

wave origin. The amplitude of the most significant foreground event is then used to 

determine upper bounds on the rate of gravitational-wave bursts arising from an 

isotropic distribution of sources of both abstract and astrophysically motivated wave- 

form. Finally, we compare the resulting upper bounds with the those of previous 

searches and demonstrate that the resulting search is one of the most sensitive to date 

for unmodeled bursts of gravitational radiation. In addition, we find that the resulting 

bounds are highly inconsistent with the galactic population of sources necessary to 

explain recent claims of a statistical excess of events by the ROG collaboration[l3, 141. 

Finally, in chapter 8, we briefly summarize the significance of the work presented here 

and outline possible extensions of the proposed method for future investigation. 





Chapter 2 

Gravitational radiation 

In this chapter, we present an overview of the current state of gravitational wave 

physics. In doing so, our goal is to provide the necessary background to  motivate 

the search for gravitational waves and to  understand the remainder of this work. As 

such, we do not aspire t o  a rigorous treatment of the subject. Instead, we follow the 

treatment of' Saulson[l5] and other recent review articles[l6, 17, 18, 191 in providing 

an introduct ion to the field and in highlighting the potential contributions that the 

detection of gravitational waves could bring to  physics. For a more detailed treatment 

of gravitational-wave theory, the reader is instead referred to the many comprehensive 

texts on the subject[20, 21, 221. 

In what follows, we begin with an overview of the theory of gravitational waves. 

Specifically, we establish gravitational waves as a prediction of Einstein's General 

Theory of Relativity, briefly describing the properties of such waves, as well as their 

generat ion and their interact ion with matter . F'rom simple dimensional analysis and 

order of magnitude arguments we also identify the expected amplitude scale and 

frequency band of gravitational waves and are immediately led to  conclude that the 

problem of gravitational wave detection is necessarily one of astrophysics. 



Next, we present an overview of existing efforts to directly observe the interaction 

of gravitational waves with matter. In particular, we focus on the nascent field of 

interferometric gravit ational-wave detection with an emphasis on the three detec- 

tors operated by the Laser Interferometric Gravitational-wave Observatory (LIGO) 

project, which are currently in the final stages of commissioning. In addition, we also 

briefly describe other efforts to  observe gravitational waves, including the existing 

network of resonant mass detectors and future plans for space based interferometry. 

Finally we consider a variety of potential astrophysical sources of gravitational radia- 

tion that may be detected by the first generation of interferometric gravitational wave 

observatories. We give emphasis, however, to potential sources of transient bursts of 

gravitational radiation, which is the primary focus of this work. In the process, we 

also motivate our effort by highlighting the potential benefits that the detection, or 

lack of detection, of gravitational waves will bring to our understanding to  nature. 

2.1 Gravitational waves 

Motivated by the empirically observed equivalence between gravitational and inertial 

mass, Einstein's General Theory of Relativity postulates that,  in sufficiently small 

regions of space-time and in the absence of any other force, it is impossible for an 

observer to  detect the effect of gravitation. As a result, it is possible to  construct 

a locally Lorentzian coordinate system at  every point in space-time. The General 

Theory of Relativity then goes on to provide the mathematical framework necessary 

to describe the properties of space-time and the equations of classical physics in a 

way that is independent of the particular choice of coordinates used to identify events. 

In this approach, all of the necessary local properties of space-time are encoded by 

the metric g,,, a symmetric matrix that provides a formalism for determining the 

invariant space-time interval between pairs of events. Specifically, given a particular 



coordinate system x', the proper distance between events is given by the expression 

where we haxe assumed the usual Einstein convention of implicit summation over 

repeated indices; in this case p and v, which run over the four coordinates of space 

and time in units where the speed of light c is unity. In what follows, we make use of 

these conventions to  simplify our discussion. However, we reintroduce the appropriate 

factors of c in the more important results. 

From this approach, we can then determine the proper distance between arbitrary 

events by performing the integral 

dx, dx" 

where X parameterizes the integration path between events X1 and X2 and the matrix 

elements g,, are in general a function of position. The motion of free particles is then 

that path X that makes s an extremum. Such paths are referred to as geodesics in 

reference to  their geometric interpretation as the shortest path between two points 

on a curved surface. By parameterizing the resulting path in terms of the proper 

distance s, we obtain the geodesic equation of motion for massive particles, 

where I?;, is the so-called affine connection and may be defined in terms of first 

derivatives of the space-time metric by the relation 

Although we are free to describe space-time using an arbitrary choice of coordinate 

system, there are still constraints imposed on the form of the space-time metric by the 



General Theory of Relativity. In particular, there is a unique coordinate independent 

quantity R that describes the geometric curvature of space-time. This quantity can 

be computed from second derivatives of the metric by 

where the Rpu is the Ricci tensor and given by the contraction 

of the Riemann curvature tensor, 

In addition, it is also possible to express the effect of gravitation as a relationship 

between the space-time metric and the local density of energy and momentum in a way 

that is independent of our choice of coordinate system. This relationship is provided 

by the General Theory of Relativity in the form of the Einstein field equation, 

where Tpu describes local density of energy and momentum and G is Newton's con- 

st ant. 

2.1.1 The wave equation 

In general, the Einstein field equation is such that gravity by itself can effect the local 

curvature of space-time. As a result, we note that the resulting field equation com- 

prises of a set of 10 coupled non-linear differential equations. Consequently, finding 

exact analytical solutions to  the Einstein field equation is a formidable task. Fortu- 

nately, there are a few simple cases for which an analytical solution is possible. In 



particular, in what follows we present the solution to  the Einstein field equation in 

the absence of matter and in the limit of weak gravitational fields. That is we suppose 

that the space-time metric may be written as 

where 71,, is the familiar Minkowksi flat space metric from the Special Theory of 

Relativity, 

T,,, = 

and h,,, represents a small perturbation such that its matrix elements obey the con- 

dition 

In this limit, we may solve the Einstein field equation by neglecting all terms that 

are higher than first order in h,,. In addition, we are permitted a certain amount of 

freedom in our choice of coordinate system. While we don't develop the details here, 

we note that there exists a particular choice of coordinates, the so-called transverse- 

traceless gauge, for which h,, takes the simple form 

and the Einstein field equation takes the simple form 

v - - h,, = 0 ,  ( ;t:) 



This is easily recognized as the familiar wave equation with solutions of the form 

h,, = ho f (t  - 2 ) .  (2.14) 

Far from the source of gravitational radiation, these solutions are conveniently repre- 

sented as a superposition of complex valued plane waves of the form 

h(x,  t )  = ho exp [2(27r f t  - k . x)] , (2.15) 

where the wave vector k defines the direction of wave propagation and, in more 

conventional units where c is not unity, has a magnitude given by 

We thus see that,  in the far field limit, gravitational waves are plane waves that 

propagate at the speed of light. Of course, this is not an entirely unexpected re- 

sult. Einstein's Special Theory of Relativity already prohibits action at  a distance 

and postulates that the speed of light represents a fundamental limit on the rate at 

which information can propagate. Therefore, based solely on the Special Theory of 

Relativity, we could have anticipated, at  least qualit at ively, the need for gravitational 

waves as a mediator for changes in the gravitational field due to  the motion of matter, 

much as electromagnetic waves mediate changes in the electromagnetic field due to 

the motion of charge. I11 fact, Schutz has shown that the most important effects of 

gravitational radiation can be predicted with reasonably good accuracy using only 

Newtonian gravity and special relativity[23]. The fact that gravitational waves prop- 

agate at  the speed of light also indicates that the graviton, the fundamental particle 

which mediates the gravitational force, like the photon, has zero rest mass. 

From Equation 2.12, we also note that there are only two independent components 

of the metric perturbation h,,. This is a property that is independent of our choice 

of coordinate system and represents the fact that gravitational waves come in two or- 



thogonal polarizations, which independently obey the wave equation of Equation 2.13. 

Despite the similarity with electromagnetism, these two polarizations are not entirely 

analogous to  the polarization of electromagnetic waves. In particular, we will find 

that the two polarization represent a spin two field and are mapped into each other 

by a 45 degree rotation of our coordinate system in the plane normal to  the direction 

of propngat ion. 

We also note two other unique properties of gravitational waves that are not shared 

by their electromagnetic counterparts. As we will see, gravitational waves interact 

very weakly wit,h matter. While this property is what makes their detection so chal- 

lenging, it is also what makes it rewarding. Gravitational waves will be unaffected by 

intervening matter, allowing a direct probe of the motion of matter in regions, such 

as the core of supernovae or the very early universe, which are otherwise inaccessible 

by electromagnetic observation. In addition, the length scale of gravitational wave 

sources and detectors are typically much smaller than the wavelength of the wave 

itself. As a :result, gravitational waves provide a measure of the coherent bulk mo- 

tion of matter within the source. Moreover, gravitational wave detectors are direct ly 

sensitive to gravitational wave strain, which varies inversely with the distance to a 

source, rather than the corresponding energy flux, which varies inversely with the 

square of the distance to  a source. 

2.1.2 Interaction with matter 

We now consider the effect of gravitational waves on the motion of free masses. There 

are two equivalent approaches to this problem, and as they are directly related to  the 

detection of gravitational waves, we will find it instructive to consider both. 

The first approach takes advantage of our use of the transverse-traceless gauge. Specif- 

ically, it turns out that with this choice of gauge, the spatial components of our 

coordinate system are fixed to  the geodesics of freely falling masses. That is, the 



coordinate position of free masses is a constant. However, this does not imply that a 

passing gravitational wave has no observable effects. This fact is evident if we instead 

consider the round trip travel T time of a photon traveling between two freely falling 

test masses as measured by an observer fixed to  one of the masses. In this case, the 

proper interval s between reflections is necessarily zero for a photon. As a result, we 

find the relation 

dt2 = (1 + h+)dx2, 

where for simplicity we are only considering masses separated in x. Since the end 

points of our path are fixed in the transverse-traceless gauge, we find that the round 

trip travel time of the photon is given by the integral 

where L is the x-directed separation of the two masses in the absence of any gravita- 

tional wave. Assuming that h+ is sufficiently smaller than unity and approximately 

constant over the round trip travel time of the photon, we find that 

In more conventional units where c is not unity, this corresponds to a additional round 

trip travel time of 

due to the effect of the gravitational wave. 

A similar result is obtained if we instead consider the proper interval between test 

masses evaluated at fixed coordinate time. In this case we find that the change in 

proper interval is given by the expression 



Thus h+ is ;I measure of the fractional change in proper distance between two free 

masses. For this reason, we refer to h+ as a gravitational-wave strain. 

In the above examples, we have considered only the effect of a gravitational wave 

on free masses separated in the x direction. Repeating the same analysis for free 

masses separated in y, we find the same result except for a sign change. As a result, 

the gravitational wave effects a differential motion of free masses along the two axis. 

Similarly, the h,  matrix elements are also found to  effect a differential motion of 

free masses, but in this case the motion is along an orthogonal pair of axis that are 

rotated by 45 degrees with respect to the x-y axis. In general, we see that there are 

two distinct orthogonal polarizations of gravitational plane waves, a first which acts 

in the 3; and y directions, and a second which acts a t  a 45 degree angle to the first. 

For this reason, the polarizations are termed plus and cross respectively. In Figure 2.1 

we display the effect of these two polarizations when such waves are normally incident 

on an otherwise circular ring of free masses. It is precisely this differential motion of 

free masses which motivates our development of interferometric detectors in the next 

section. 

Figure 2.1,: Effect of the two polarizations of gravitational waves on an otherwise 
circular ring of free masses. Reading from left to right, the top row depicts the effect 
of the plus polarization, while the bottom row demonstrates the effects of the cross 
polarization. 

An alternative approach to  studying the interaction of gravitational waves with matter 

is to consider the relative acceleration of two free masses due to the presence of 

a passing gravitational wave. Here, however, we do not work in the transverse- 



traceless gauge, but in a rigid coordinate system that is fixed to  the center of mass 

between the two free masses. In this coordinate system, the two masses then follow 

geodesics described by Equation 2.3. If we then consider the relative acceleration of 

the two masses, we find that their motion is equivalent to what would be observed if 

gravitational waves produce an effective tidal force of 

where again we have assumed a separation L in the x direction. If we also consider 

tidal forces in y direction, and also for both gravitational wave polarizations, we find 

the alternating differential tidal forces depicted in Figure 2.2. It is not difficult to 

show that in this case we recover the same differential changes in separation that we 

identified above by reflecting photons. However, our picture of gravitational wave 

producing an effective tidal force will be beneficial when we consider resonant mass 

detector in the next section. 

X polarization 

Figure 2.2: Tidal force lines associated to a gravitational wave propagating in the x 
direction. This figure has been reproduced from reference [16]. 

2.1.3 Generat ion 

We turn now to the generation of gravitational waves. In analogy with generation 

of electromagnetic waves from accelerating charges, we expect gravitational waves to 

be generated by the motion of matter. Continuing the analogy, we note that energy 



conservation, like charge conservation, rules out the possibility of monopolar sources 

of gravitational radiation. However, in contrast to  electromagnetic waves, we note 

that there is only one type of gravitational "charge". As a result, it is also not possible 

to  produce gravitational radiation from dipolar motions of matter, a fact which also 

follows from the conservation of linear and angular momentum. Instead, the first 

radiative term in the multipole expansion of a time varying mass distribution is due 

to  the quadrupole moment 

I,, = (x,,, - j6,,r2 p(r)d37-a ) 
When such a source is included on the right hand side of the Einstein field equation, 

we find that the resulting gravitational wave strain amplitude at  a distance d from 

the source is given in conventional units by the expression 

2G d2 I,, 
h,, = -- dc4 dt2 ' 

It is instructive at  this point to  consider rough estimates of the possible strain am- 

plitude for astrophysical sources of gravitational waves. To do so, we consider the 

optimistic case where the quadrupolar moment of the source is due to the relativistic 

motion of a 1:nass Ad, 

Even in this best case scenario, we find that expected strain amplitude is given by 

which we recognize as the ratio of the Schwarzschild radius of the source to its distance 

from an observer. However, this is a very optimistic estimate. Typical sources are 

expected to radiate a significantly smaller fraction of their rest mass energy. An 

immediate consequence of this result is that there is little hope in detecting terrestrial 

sources of gravitational radiation. As such, the detection of gravitational waves is 



necessarily an astrophysical endeavor, where it still remains a formidable challenge. 

It is also instructive to  consider a rough estimate of the maximum frequency range 

of gravitational waves. In this case, we assume that the gravitational radiation is 

generated by the periodic motion of a relativistic compact object and note that the 

maximum oscillation frequency of the source is limited by the round trip light travel 

time across its extent, and that the extent of a massive object is fundamentally limited 

by its gravitational radius, 2GM/c2. As a result, we find an approximate upper bound 

c3 
f%iz% 16 ( ) I  kHz. 

Finally, we note that the energy flux carried by gravitational waves is given by 

which, assuming isotropic emission from a source at  distance d, corresponds to  a 

gravitational wave luminosity of 

2.2 Detectors 

In this section, we provide a brief overview of current efforts to detect gravitational 

waves, which we define as the direct measurement of their interaction with matter. 

Specifically, we describe two classes of detectors: resonant mass detectors, which 

attempt to sense the tidal forces exerted by gravitational waves on semi-rigid bodies; 

and int erferometric detectors, which attempt to  measure relative fluctuations in the 

round trip travel time of photons traveling between orthogonally oriented pairs of free 

masses. 



2.2.1 Resonant mass detectors 

Historically, the first efforts to detect gravitational waves were attempts to measure 

the tidal forces exerted by gravitational waves on a single large test mass. The premise 

is that a passing gravitational wave will excite the fundament a1 resonant frequency 

of the detector, producing a detectable vibration of the mass. At the most basic 

level, the fundamental mode of such detectors can be modeled as a coupled oscillator, 

which is then excited by the tidal force described by Equation 2.22. As a result, such 

resonant mass detectors achieve astrophysically interesting sensitivity, but only in a 

relatively narrow frequency band of - 10 Hz around their resonant frequency. 

Starting wit11 the pioneering work of Weber[9] on the first gravitational-wave detec- 

tors, resonant mass detectors have greatly matured and increased in sensitivity over 

time. In contrast to  the initial room temperature detectors, the current generation 

of resonant mass detectors now consist of massive cryogenic aluminum cylinders that 

are suspended in vacuum by multi-stage pendula. Typically such detectors have an 

approximate mass of 2 x lo3 kg, an approximate length of 3 meters, fundamental 

resonant frequencies on the order of 900 Hz, and operate at  temperatures of a few 

kelvins. The oscillations of such detectors are then read out using an impedance 

matched transducer consisting of a small coupled oscillator mounted axially at one 

end of the cylindrical detector. 

Current or recently operating resonant mass detectors include the ALLEGRO de- 

tector in Bation Rouge, Louisiana[24]; the AURIGA detector in Lengaro, Italy[25]; 

the EXPLORER detector in Geneva, Switzerland[26]; the NAUTILUS detector in 

Rome, Italy[27]; and the NIOBE detector in Perth, Australia[28]. For the purpose 

of performing coincident searches for gravitational-wave bursts, these detectors have 

also entered into occasional cooperative data sharing agreements under the auspices 

of the Interni~tional Gravitational Event Collaboration (IGEC) [29]. For reference, in 

Table 2.1 we summarize the properties of these five detectors as they were configured 



during the 1997-2000 run of the IGEC collaboration[30]. A similar coincident search 

has also been carried out during 2001[13, 141 by the Ricerca Onde Gravitazionali 

(ROG) collaboration[31], which consists of only the EXPLORER and NAUTILUS 

detectors. These collaborative searches represent two of the most sensitive resonant 

mass detector searches to date, and we will return to them in section 7.9, where we 

compare their results with the results of the search performed in this work. As an 

example of the sensitivity of resonant mass detectors, including recent improvements 

in sensitivity and bandwidth, in Figure 2.3 we display the detector noise spectrum of 

the AURIGA detector taken in December of 2003 during the same time as the second 

LIGO science run[32]. 

Table 2.1: Summary of resonant mass detector properties during the 1997-2000 run 
of the International Gravitational Event Collaboration (IGEC). This information has 
been taken from Table 1 of reference [30]. 

Material Mass Length Frequencies Temperature 
Detector Alloy [kg] [ml [Hz] [Kl 

ALLEGRO A15056 2296 3.0 895, 920 4.2 
AURIGA A15056 2230 2.9 912, 930 0.2 

EXPLORER A15056 2270 3.0 905, 921 2.6 
NAUTILUS A15056 2260 3.0 908, 924 0.1 

NIOBE Nb 1500 2.8 694, 713 5.0 

The gravitational wave strain observed by a resonant mass detector is given by the 

linear combinat ion 

h(t) = F+h+(t) f F x  hx ( t) ,  (2.30) 

where the angular position and polarization dependent response of the detector are 

contained in the coefficients 

F+ = sin2 0 cos 2$ 

32 



Sensitivity of the AURIGO resonant mass detector in 2003 
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Figure 2.3: Strain spectral density for the AURIGA resonant mass detector at the 
same time as  the second LIGO science run in December of 2003. The definition of strain 
spectral density used to characterize the detector sensitivity is described in more detail 
in section 3.3.1 and is the same quantity used to identify the sensitivity of interferometric 
detectors in Figure 2.7a and Figure 2.7b. The data for this figure is taken from Figure 
1 of reference [32]. 

F, = sin2 0 sin 2$. (2.3 1 b) 

Here 0 is the inclination angle of the source from the longitudinal axis of the detector, 

while II, is angle that describes the choice of polarization convention. The resulting 

angular respclnse of resonant mass detectors is shown Figure 2.4. The fact that reso- 

nant mass detectors exhibit poor directional sensitivity is is evident from Figure 2.4. 

Although this makes it difficult to locate the position of a gravitational-wave source 

with a single detector, this wide angular acceptance is also beneficial in the sense that 

individual detectors are simultaneously sensitive to large portions of the sky. 

Finally, we note that future plans for resonant mass detectors include incremental 

improvements in existing detectors to  improve their sensitivity and slightly increase 

their bandwidth. In addition, spherical detectors have been proposed which would 

provide omni-directional sensitivity as well as being able to  resolve the polarization 



Angular response of resonant mass detectors 

Figure 2.4: The angular response of resonant-mass gravitational wave detectors to 
gravitational waves with random linear polarization. Here the symmetry axis corre- 
sponds to the longitudinal axis of the bar. The response has a maximum value of 2/7r 
for gravitational waves that are orthogonally incident on the bar and exhibits nulls for 
gravitational waves that are incident along the longitudinal axis of the bar. 

of gravitational waves. 

2.2.2 Interferometric detectors 

The newest generation of gravitational wave detectors consist of interferometers. 

The gravitational wave strain observed by an interferometric detector is given by 

where the position and polarization dependent angular response of the detector is 

given by the coefficients F+ and Fx from the expressions 

1 
F+ = - (1 + cos2 0) cos 2 4  cos 2+ + cos 0 sin 2 4  sin 2$ 

2  



Here, we have assumed standard spherical coordinates with an altitude coordinate 

13 ranging from 0 to  T ,  with 0 indicating zenith, and an azimuthal coordinate q5 

ranging from 0 to  360. The polarization coordinate $ is ranges from 0 to T ,  with 0 

corresponding tlo alignment of the plus polarization with lines of constant q5 and 0. 

Angular response of interferometric detectors 

z 

Figure 2.5: The angular response of interferometric gravitational wave detectors to 
gravitational waves with random linear polarization. Here the X and Y axes correspond 
to the orthc)gonal arms of an interferometric detector. The response has a maximum 
value of 2 / ~  for sources at  the zenith of the detector and exhibits nulls for gravita- 
tional waves that are incident in the plane of the detector at  45 degree angles to the 
interferome t;er arms. 

A number of interferometric gravitational wave observatories have now been con- 

structed around the world and are currently undergoing commissioning activities as 

they approach their design sensitivities. These include the two 4 km interferometers 

and one 2 krn interferometer operated by the Laser Interferometer Gravitational-wave 

0 bservatory (LIGO) project in Hanford, Washington and Livingst on, Louisiana[l l] ; 

the 600 meter GE0600 interferometer located near Hannover, Germany[33]; the 3 km 

Virgo interferometer located near Pisa, Italy[34], and the 300 meter TAMA detector 

located in Tokyo, Japan[35]. 

In combination with the existing resonant mass detectors, these detectors form a 

global network of gravitational-wave detectors that should allow strong verification 

tests for candidate events and permit the accurate recovery of the sky position, polar- 



izat ion, and waveform of gravitational waves detected with sufficient signal to  noise 

ratio. However, such multiple interferometer searches are only in their infancy as the 

global network of interferometric detectors comes on line. For now, we concentrate 

primarily on the network of the three LIGO interferometers. 

The LIGO detectors are located at two sites in the United States. Two interfer- 

ometers are located in Hanford, Washington. These interferometers share the same 

vacuum envelope and therefore co-aligned. However, one of the interferometers has 2 

km long arms, while the other has 4 km long arms. As a result, these two detectors 

are expected t o  response identically to the presence of a gravitational wave, except 

for an overall factor of two difference in detected strain. The third LIGO interferom- 

eter is located in Livingston, Louisiana and has 4 km long arms. The two sites are 

approximately aligned to respond to  the same gravit at ional-wave polarization, except 

for slightly different tangent planes due to  the curvature of the Earth's surface. 

A simplified schematic of the LIGO interferometers is shown in Figure 2.6. At the 

most basic level, the LIGO detectors consist of kilometer scale Michelson interferom- 

eters illuminated by 10 Watt solid state Nd:YAG lasers with a wavelength of approxi- 

mately 1 micron. However, in order to  increase the accumulated phase delay resulting 

from incident gravitational waves, the interferometer arms are in practice comprised 

of Fabry-Perot resonant cavities such that the approximate light storage time in the 

arms is on the order of 1 millisecond. In addition, in order to decrease the fractional 

measurement error due to photon counting statistics, a higher circulating light power 

is maintained in the interferometer by introducing a recycling mirror at  the inter- 

ferometer input and operating the detector such that the output is maintained at a 

minimum of the interference pattern. 

The gravitational wave strain incident on the LIGO interferometers is read out using 

a heterodyne method based on an extension of the Pound-Drever-Hall technique. In 

this method, a differential phase modulation is applied to  the light in the interferom- 

eter at  a radio frequency f, on the order of 25 MHz. Due to operation at  a minimum 



in the interference pattern, in the absence of any gravitational-wave strain, this mod- 

ulation results in fluctuations at  a frequency 2 f, in the optical power observed at  

the interferometer output. However, in the presence of non-zero gravit ational-wave 

strain, an output signal is detectable at  the resonant frequency f,. In practice, how- 

ever, the LIGO interferometers are actively maintained by a feedback control system 

at  an operating point corresponding to  minimum optical power at the interferometer 

output and the gravitational-wave strain signal is determined from the control signals 

necessary to maintain this condition. 

In order to isolate the LIGO detectors from terrestrial noise sources, the interferom- 

eters are maintained in a vacuum of between loe9 mbar. In addition, all of the 

optical tables within the vacuum envelope are isolated from ground vibrations by 3 

alternating stacks of stainless steel and dissipative bronze springs such that ground 

motion is attenuated by a factor of f -6 above the resonant frequencies of this passive 

seismic i~olat~ion, which fall in the range from 1 t o  10 Hz. The test masses are further 

isolated by pendular suspensions such that they behave like free masses for excitations 

above their resonant frequency of approximately 1 Hz. Feedback control is achieved 

by applying a magnetic force to  the test masses using a quadrupolar arrangement of 

electromagnetic coils and permanent magnets in order to cancel the effect of slowly 

varying ambient magnetic fields. 

Finally, we note the LISA, the Laser Interferometer Space Antenna is currently in the 

development stage with a tentative launch in 2013. Due to its long baseline and the 

obvious absence of terrestrial noise sources, LISA will probe gravitational-waves in the 

frequency band from to lo-' Hz. In contrast to  terrestrial detectors, however, 

the dominant low frequency noise source for LISA is expected to be a stochastic 

background clue t o  the cumulative emission to  many coalescing compact objects. 
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Figure 2.6: Simplified schematic of the LIGO detectors. The detectors consist of a 
modified Michelson interferometer with Fabry-Perot cavity arms in order to increase the 
differential phase delay due to incident gravitational waves. The detector is nominally 
operated such that the optical power at the anti-symmetric photodiode is minimized. 
At this operating point, the entire interferometer behaves like a single mirror and a 
recycling mirror allows for greater circulating light power in the detector. 

2.3 Sources 

We now turn to  potential astrophysical sources of detectable gravitational waves. As 

noted in the previous two sections, laboratory or other terrestrial sources of gravita- 

tional radiation occur at amplitudes well below those that we may hope to  detect. 

Instead, the only plausible sources of detectable gravitational radiation are those 

from the relativistic motion of extremely compact objects. As a result, the detec- 

tion of gravitational waves is necessarily an endeavor in astrophysics. As such, our 

observations are limited to only that which nature provides. However, beyond the 

fact that astrophysical sources are the only sources we can hope to detect, there is 

also a strong astrophysical motivation to search for such sources: The observation of 

gravitational waves from astrophysical sources will provide us with the opportunity 

to study the behavior of matter at extremely high densities and strong gravity that 

we are not privy to in the laboratory, or by any other means currently available to 

astrophysicists. 



Sensitivity of each detector during the 2nd science run 
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Figure 2.7a: The best sensitivity achieved by the Hanford 4km, Hanford 2km, and 
Livingston 4km detectors during the second LIGO science run are compared with the 
LIGO design sensitivity for 2 km and 4 km detectors. The definition of strain spec- 
tral density used to characterize the detector sensitivity is described in more detail 
in section 3.3.1 and is the same quantity used to characterize detector sensitivity in 
Figure 2.3. 

In this section, we present an overview of a few of the more plausible astrophysical 

sources of gravitational waves that may potentially be detected by the first generation 

of interferometric ground based detectors. We begin by considering potential sources 

of transient gravitational radiation, which is the primary focus of this work. Such 

sources include the coalescence of compact objects such as binary neutron stars and 

binary black holes, core collapse supernovae of massive stars, ring down oscillations 

of perturbed black holes, instabilities of rotating neutron stars, gamma ray bursts, 

and possibly cosmic string cusps. For completeness, however, we also review potential 

sources of continuous gravitational radiation. In particular, we consider continuous 



Best sensitivity achieved in each LIGO science run 
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Figure 2.7b: The progression of detector sensitivity for the best performing detector 
during the first four LIGO science runs are compared with the LIGO design sensitivity 
for 2 km and 4 km detectors. The definition of strain spectral density used to char- 
acterize the detector sensitivity is described in more detail in section 3.3.1 and is the 
same quantity used to characterize detector sensitivity in Figure 2.3. 

periodic emissions from pulsars, as well as a stochastic background of gravitational 

waves due to an ensemble of unresolved sources or relic gravitational waves from 

the very early universe. However, we should emphasize that our treatment is by no 

means exhaustive. Readers who are interested in a more exhaustive study of potential 

sources are referred to  one of the many review articles on the subject [l6, 17, 18, 19, 361 

and the specific references listed below. 

For each of these sources, we give a brief overview of what is known about the relevant 

physical processes that drive them and attempt to provide rough estimates of the 

expected amplitude and frequency scale of the resulting gravitational waves. When 
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Figure 2.8: The design sensitivity of existing and future interferometric detectors. 
The initial design sensitivity of the 4 km LIGO detectors is compared with that of 
the plannecl second generation of LIGO detectors as well as the planned space-based 
interferometer LISA. For reference, we also show (in gray) the design sensitivities of 
the 2 km LTGO detector as well as the GE0600 and Virgo detectors (the lower of the 
three) . 

available, we also provide example waveforms, although often these will only be rough 

guesses of the expected behavior. In addition, we briefly describe the data analysis 

methods appropriate to different sources and provide estimates of the sensitivity 

such methods can hope to  achieve. Finally, we review what is known about the 

populations of such sources, including any constraints from previous searches, as well 

as the prospects for detecting them with both current and future interferometric 

detectors. 



2.3.1 Binary compact objects 

Perhaps the most well known potential source of detectable gravitational waves is 

the coalescence of binary compact objects. Their importance results from the fact 

that detailed observations of the binary pulsar system PSR 1913+ 16 give strong 

evidence for the existence as gravitational waves as predicted by the General Theory 

of Relativity[2]. Their importance also results from the fact that the physics of 

the initial decay of the orbit is well understood and that we have accurate waveform 

predictions to guide our search. Finally, although numbering only a few, the observed 

number of binary pulsar systems and our understanding of the formation of such 

systems indicates that we have a good chance of discovering such sources with the 

first generation of interferometric detectors, and are virtually guaranteed a detection 

with more advanced detectors[l7]. 

The coalescence of binary compact objects is typically considered in three different 

phases, based primarily on the different methods used to search for each phase. 

The initial inspiral phase encompasses the gradual decay of the binary orbit as en- 

ergy is lost by gravitational radiation. This phase of binary evolution is defined 

by the fact that their evolution can be described with very good accuracy by post- 

Newtonian methods and extends up to  the inner most stable circular orbit, where 

General Relativity and the hydrodynamics of the individual objects become impor- 

tant. The predicted waveform for the inspiral phase of coalescing compact objects is 

well described by a chirp with an instantaneous frequency that varies as, 

and an amplitude that varies as 



where M is tlhe so-called chirp mass of the binary system, 

An example of a typical inspiral waveform is shown in Figure 2.9. 

lnspiral of binary 1.4 solar mass neutron stars at 1 Mpc 
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Figure 2.9: Simulated gravitational wave emission from the inspiral of 1.4 solar mass 
binary neutron stars at 1 Mpc as observed by an optimally oriented detector. 

The second phase entails the actual dynamic merger of two-body system into a single 

object, and is the least understood of the three phases. For neutron star masses, 

the gravitational-wave signal produced by the merger phase is not well known, but 

is expected to occur above the sensitive frequency band of interferometric detectors. 

As a result, the search for the coalescence of binary neutron stars primarily targets 

the inspiral phase of the coalescence. However, for the merger of - 10 solar mass 

black holes, the signal from the merger and subsequent ringdown phase, although 

still poorly known, is expected to produce significant signal content in the frequency 

band of interferometric detectors. [37]. At the same time, the observation time for the 

inspiral phase is dramatically reduced due to  the lower merger frequency and more 

rapid progression of the coalescence. As a result, a search for unmodeled bursts will 

form an important component in the detection of coalescing binary black holes than 

a search for the initial inspiral phase. Rough estimates of this expected gravitational 



wave signal from the later stages of the merger and early ring-down of binary black 

holes has been simulated by Baker and collaborators[38, 391, an example of which 

is shown inFigure 2.10. However, the estimated waveforms are not predicted with 

nearly the same accuracy as for the inspiral phase. As a result, they do not comprise 

an appropriate set of template waveforms for a matched filter search. Nevertheless, 

they provide a rough idea of the signal space in which to search. 

50 solar mass binary black hole merger at 100 Mpc 
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Figure 2.10: Example gravitational wave emission from the merger of binary black 
holes as simulated by Baker and collaborators [38, 391. This waveform corresponds to 
an optimally oriented merger of two equal mass black holes with a combined mass of 
50 solar masses at a distance of 100 Mpc. 

The final phase occurs if the merger of two compact objects results in the formation 

of a new black hole. In this case, the initially perturbed black hole will undergo 

quasi-normal mode oscillations, relaxing back to a a stationary rotating state via the 

emission of gravitational waves. However, since these black hole ring downs may also 

be produced by the formation of a new black hole in core collapse supernovae or other 

pert urbat ive effects, we consider them separately in sect ion 2.3.3. 

Given the estimated galactic coalescence rates for both binary neutron stars and bi- 

nary black holes, Cutler and Thorne[l7] have estimated the potential detection rate 

for such events for both initial and advanced ground based interferometers. They es- 



timate t,hat the coalescence of binary neutron stars should be detectable at  a distance 

of 20 Mpc for initial LIGO and 300 Mpc for advance LIGO, while the coalescence of 

binary black holes should be detectable at  a distances of 100 Mpc for initial LIGO 

and cosmological redshifts z of 0.4 (- 2 Gpc) for advanced LIGO. As a result, they 

report that a galactic binary neutron star coalescence rate of 1 x to 5 x per 

year corresponds to a detection rate of 3 x to  0.3 per year for initial LIGO and 

1 to 800 per year for advanced LIGO. In addition, they find that a galactic binary 

black hole coalescence rate of 1 x to 1 x per year corresponds to  a detection 

rate of 4 x l ( :~-~ to 0.6 per year for initial LIGO and 30 to 4000 per year for advanced 

LIGO. 
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Figure 2.1.1: The expected signal amplitudes from the coalescence of binary compact 
objects of viuious masses are compared with the design sensitivities of current and future 
interferometric gravitational wave observatories. This figure has been reproduced from 
reference [1!3]. 

However, these rate estimates are based only on a known population of two binary 

systems occurring outside of globular clusters. As a result, there is a large uncertainty 



due to the small statistical sample. In fact, with the recent discovery of the binary 

pulsar system PSR 50737-3039, Burgay and collaborators now predict a potential 

order of magnitude increase in the predicted merger rate. For the most favorable 

pulsar luminosity distribution model, the predicted detection rate of coalescing binary 

neutron stars by first generation interferometric detectors could be as high as 1 event 

per year at  a 95 percent confidence level[7]. 

2.3.2 Core collapse supernovae 

Aside from the coalescence of binary compact objects, one of the more plausible 

sources of detectable gravitational wave bursts is the rapid aspherical collapse and 

subsequent ejection of stellar matter associated with type I1 supernovae. This cata- 

clysmic event is the typical fate of main sequence stars with initial masses in excess 

of roughly 9 solar masses[40]. When exhausted of their nuclear fuel, such massive 

stars contain a dense iron core that is initially supported against gravita,tional col- 

lapse by electron degeneracy pressure. However, as the core mass increases beyond 

the Chandrasekhar stability limit of 1.44 solar masses, photons in the core obtain 

sufficient energy to destroy heavy nuclei, a highly endothermic process resulting in 

loss of support and the production of free protons and neutrons. The free electrons 

supporting the core are then captured by these protons in a nuclear reaction releasing 

large amounts of energy in the form of neutrinos. As a result of this photodisinte- 

gration and electron capture, the electron degeneracy pressure supporting the core 

is lost and the core undergoes an extremely rapid collapse, reaching near relativistic 

velocities, and separating from the outer layers of the star. 

There are two end scenarios for such a collapse. For stars with an initial mass in 

excess of approximately 40 solar masses, there is no known effect which can halt this 

process and the core completely collapses to form a black hole. For less massive stars, 

however, the collapse proceeds until the core reaches the density of nuclear matter, at  

which point neutron degeneracy pressure becomes sufficient to support the star. When 



this occurs, the large kinetic energy of the collapsing core results in a bounce effect 

in which the infalling material is rapidly ejected. In the process, an immense amount 

of energy, approximately ergs, is released in the form of neutrinos. Optically, 

such supernovae are then observed when the ejected matter forms a shock front with 

infalling material from the outer layers of the star. Depending upon the mass of the 

initial star, t'he core remnant either stabilizes into a neutron star, or, for stars with 

initial mass in excess of 25 solar masses, collapses to  form a black hole. 

This model of core collapse supernovae has been largely confirmed by the fortuitous 

occurrence olf supernova SN1987A in the nearby Large Magellanic Cloud and, in 

particular, the observation of neutrinos from SN1987A three hours prior to  the onset 

of optical brj ght ening [4 11. 

The importa:t~ce of core collapse supernovae to gravitational wave astrophysics results 

from the that such events provide a mechanism for a very large quantity of 

matter, on the order of one solar mass, to  move a t  nearly relativistic velocities, up 

to  a quarter of the speed of light. Such events, if even slightly aspherical, may then 

have a sufficient quadrupolar component to  radiate a substantial amount of energy in 

the form of gravitational radiation. Furthermore, the observation of nearly coincident 

gravitational wave and neutrino bursts just prior to  the telltale optical brightening of 

a supernova would provide an extremely strong confirmation of theory and an ideal 

laboratory to test our understanding of the hydrodynamics of rotational core collapse 

in the presen-ce of very strong space-time curvature and nuclear densities. 

Due to  the importance of such a detection, a number of studies have been per- 

formed to try to  predict the gravitational wave emission expected from core col- 

lapse supern(~ae[42,  43, 441. Unfortunately, a full three dimensional treatment of 

the problem is not currently possible. Instead, such studies typically estimate the 

resulting waveform on the simplifying assumption of axisymmetric collapse of the 

rotating stellar core. In such models, the aspherical collapse required for gravita- 

tional wave emission results primarily from the effects of rotation a t  the time of 



core bounce, but also due to convection and anisotropic neutrino emission. In order 

to study the variability of the predicted waveforms, the gravitational wave emission 

is typically simulated for families of progenitor stars, all of which differ slightly in 

their assumptions and initial conditions. In particular, Zwerger and collaborators[42] 

have performed axisymmetric Newtonian hydrodynamic simulations of 18 different 

rotating stellar models that differ by their amount of initial rotational kinetic energy, 

initial radial distribution of angular momentum, and adiabatic equation of state at  

sub-nuclear densities. In addition, Dimmelmeier and collaborators[43] have extended 

the work of Zwerger and collaborators to  consider relativistic hydrodynamic simula- 

tions. Finally, Ott and collaborators[44] have considered the effect of a more realistic 

finite temperature nuclear equation of state, as well as more realistic massive star 

progenitor models. An example of two of the many waveforms predicted by such 

models is shown in Figure 2.12 
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Figure 2.12: Example gravitational wave emission from core collapse supernovae sim- 
ulated by Dimmelmeier and collaborators[43]. The two distinct waveforms are rep- 
resentative of two classes of waveforms observed in simulations and result from dif- 
ferent assumptions regarding the length scale for differential rotation of the core, ini- 
tial rotational kinetic energy, and the adiabatic index at sub-nuclear densities. Other 
simulations[42, 441 have produced a similar variety of waveforms with slightly different 
methods. 

Collectively, these studies predict gravitational wave bursts with typical frequencies 

in the range from 50 to 3000 Hz, total emitted energy ranging from 1 x lo-" to 

4 x Mac2, and peak strain amplitudes in the range from 2 x to  4 x 



for bursts that  are at a distance of 10 kpc. If such events occur within our own Galaxy, 

it is therefore likely that many of them would be detected by the initial generation 

of Earth based interferometric detectors. Even so, since the expected rate of core 

collapse supernovae within our galaxy is well known to  be about 1 per 50 years, the 

likelihood that such an event will occur during the order 1 year observation times of 

the first generation of detectors is small. 

It is also important to note that these studies are far from conclusive. While much 

progress has been made on individual fronts, an accurate treatment of the entire 

problem has not yet been feasible. Among the many outstanding issues are the 

need for a fully general relativistic treatment of the problem in three dimensions, the 

inclusion of magnetic fields, a more accurate treatment of the relevant microphysics 

and neutrino transport, and a more accurate accounting of progenitor stars. Indeed, 

the observation of gravitational waves from core collapse supernovae would shed much 

needed light on the physics of rotational core collapse and provide strong constraints 

on any future models. 

A consequence of this uncertainty is that the gravitational waveforms of core collapse 

supernovae are not known to  sufficient accuracy to permit the optimal linear search 

strategy of matched filtering, which we describe in more detail in section 3.2. Instead, 

any search for core collapse supernovae is necessarily a search for statistically signifi- 

cant events which exhibit consistency among multiple detectors. Although applicable 

to any transient source, such a search is the primary focus of this work. Nevertheless, 

the wavefornls presented here are useful mainly in that they provide a very rough es- 

timate of the behavior that may be expected from core collapse supernovae. In fact, 

in section 7.6, we characterize the performance of our search algorithm by evaluating 

its ability to  detect such waveforms. 



2.3.3 Black hole ring down 

Besides the inspiral of binary compact objects, the only other potential source that 

is sufficiently well understood to permit a matched filter search is the relaxation of 

perturbed black holes. These are expected to produce oscillations at  well defined 

quasi-normal mode frequencies that rapidly decay by the emission of gravitational 

radiation as the black hole returns to  a stationary rotating state. 

Such ring downs are expected as a result of the merger of binary compact objects 

when at least one member of the binary is a black hole, or when the merger results 

in a newly formed black hole. As a result, the detection of a ring down signal is an 

integral component of searches for binary compact objects of sufficiently large mass. 

In addition, detectable black hole ring downs may also be produced by core collapse 

supernovae of stars with an initial mass greater than 25 solar masses that result in 

the formation of a black hole. 

In general, the expected gravitational waveform emitted by perturbed black holes can 

been obtained by solving the Einstein field equations for a perturbative expansion of 

the exact Kerr solution for spinning black holes[45, 461. However, it has also be 

shown that the resulting waveforms are well approximated by a simple exponentially 

decaying sinusoidal signal [47], 

Here, the frequency of the dominant quadrupolar quasi-normal mode is found to be 

well described by 

-1 

f [1 - 0.63(1 - a)3110] kHz, 



and the quality factor Q by 

Q -- 2(1 - 

Both of these parameters are expressed in terms of a dimensionless spin parameter 

a ,  which vaxies between 0 for non-spinning (Schwarzschild) black holes and 1 for 

maximally spinning (Kerr) black holes, and is related to the angular momentum J of 

the black hole by the expression 

Finally? assuming that a fraction E of the total mass energy of the black hole is 

radiation in the form of gravitational waves, the strain amplitude at  a distance d is 

estimated to1 be 

FYom these expressions, we first note that the frequency range of Earth based gravita- 

tional wave observatories corresponds to  the quasi-normal mode frequencies of black 

holes with masses between 10 and 600 solar masses. In addition, the expected peak 

strain amplitude is on the order of 2 x for the ring down of 10 solar mass black 

holes at  a distance of 20 Mpc, the approximate distance of the Virgo cluster. 

It is intriguing to  note that  predictions by Flanagan and Hughes suggest that such 

events may actually be detectable at  distances as far as 200 Mpc with the first genera- 

tion of interferometric observatories and perhaps a z of 1 with advanced detectors[37]. 

Unfortunately, the expected rate of such events is poorly known. However, a rough 

estimate of the rate may be obtained by considering the population of binary black 

hole mergers., a primary candidate for detectable ring down events. While this pop- 

ulation is estimated to  be somewhat smaller than that of binary neutron stars, given 

the much greater distances at  which black hole mergers and ring downs may be ob- 

served, the expected event rate may actually be as high as 0.5 per year for initial 



LIGO and ranging between 10 and 2000 per year for advanced detectors[l7]. 

It should be pointed out, however, that the search for ring downs is complicated by 

the expectation that exponentially decaying sinusoids are a common instrumental 

artifact. As a result, the detection of black hole ring downs requires careful consid- 

eration of instrument behavior, as well as corroborative evidence of a detection from 

multiple detectors. To date, efforts a t  identifying black hole ring downs have primar- 

ily consisted of the preliminary work by Creighton[48], Adhikari[49], and Tsunesada 

and collaborators[50] to develop the necessary methods for such a search. However, 

more comprehensive searches are anticipated as the first generation of interferometric 

detectors approach their design sensitivity. 

Finally, it is interesting to  note that the simple analytical form of the gravitational 

waveform expected from a ringing black holes permits us to  readily determine both 

the black hole's mass and its angular momentum in the event of a detection. This is 

a particularly profound result, since such an observation would provide strong confir- 

mation of some of the fundamental predictions of the General Theory of Relativity. 

In addition, the precursor waveform leading up to  the observed ring down will pro- 

vide insight into the causative perturbation and the interaction of the black hole with 

its surrounding environment, permitting the study of physics in a region of strongly 

curved space-time. 

2.3.4 Gamma ray bursts 

Gamma ray bursts are extremely energetic bursts of 1 keV to 100 MeV photons that 

last between 0.01 and 100 seconds[51]. Since their discovery in the late 1960s, these 

bursts have been observed by a series of satellites to  be randomly distributed on the 

sky, consistent with an isotropic distribution. Such bursts are detected on average 

about once per day, and have been classified into two populations, those that are 

shorter than 2 seconds in duration, and those that last longer. 



Based on the cumulative red shift measurements and absorption line studies of opti- 

cal afterglow counterparts to long duration gamma ray bursts, such events are now 

thought to occur at cosmological distances with a z of approximately unity (- 5 

Gpc), although they have also been observed as close as 35 Mpc. Moreover, opti- 

cal afterglow observations of the particularly bright long duration gamma ray burst 

GRB030329 revealed the characteristic spectrum of a type Ic core collapse supernova 

at a cosmological redshift z of 0.17 (- 2 Gpc). As a result, the current consensus 

among astrc~physicists is that such long duration gamma bursts are most likely due 

to the collapse of massive stars and the formation of a black hole. If this consensus 

is indeed true, then given their distance and our discussion in section 2.3.2 of grav- 

itational waves from similar type I1 core collapse supernovae, the prospects for the 

detection of gravitational waves from such events seems remote. 

However, evidence also exists the indicates that such events are likely strongly beamed, 

suggesting a much larger population of events that we do not observe in gamma rays, 

but may observe gravitationally. In addition, given their distance, such bursts must 

also emit an extraordinary amount of energy, on the order of lo5' ergs, in the form 

of gamma rays. Although it is speculated that this emission consists of highly rela- 

tivistic jets along the rotational axis of the collapsing star, the exact mechanism for 

such enlissio~~ remains to  be understood. As a result, our search for a gravitational 

wave counterpart to gamma ray bursts is primarily motivated by the possibility that 

this unknown mechanism of gamma ray emission may also be capable of producing 

detect able gravitational radiation. In addit ion, accurate knowledge of the time and 

sky position of a gamma ray burst should reduce the signal to noise ratio required to 

detect a corresponding gravitational wave burst with a high level of confidence[l7]. 

Much less observational evidence is available for short duration gamma ray bursts. 

Although it is postulated that these bursts my be due to the merger of binary neutron 

stars, their mechanism is far from understood. To date, accurate redshift or absorp- 

tion line stuclies of optical afterglow have not been possible for these short duration 

bursts, althoi-igh the recent launch of the SWIFT satellite may soon provide a wealth 



of information in this respect. All that is currently known about these bursts is that 

they, like long duration bursts, are also distributed isotropically on the sky. Again, we 

are motivated by this uncertainty to search for a gravitational wave burst counterpart 

to  short duration bursts, which may help shed much needed light on the mechanisms 

responsible for such events. 

Since the expected gravitational waveform associated with a gamma ray burst is 

unknown, the search for such events is necessarily one of identifying coincident statis- 

t ically significant deviations from t he baseline detector noise in multiple gravitational 

wave detectors. In this case, however, we also have the advantage of a well defined 

time around which to  search. In addition, for many gamma ray bursts, we are also 

provided a well defined position on the sky, permitting advanced knowledge of the 

expected time of flight delay and relative response of between gravitational wave de- 

tectors. Although this information does not permit an accounting of the effect of 

polarization, to first order this can be ignored due to the similar alignment of the 

LIGO detectors in Hanford and Livingston. The typical search method is then to 

search for a common signal in pairs of detectors by applying a cross-correlation based 

search[52, 53, 541. Typically, such searches are performed over a time interval extend- 

ing from two minutes prior to  the onset of a gamma ray burst to one minute after, 

which encompasses all of the plausible models for gravitational wave emission from 

such objects. In addition, the relatively short duration of this window permits a much 

more thorough investigation of the search space than is comput ationally feasible in 

other searches for astrophysically unmodeled bursts. 

Since it fortuitously occurred during the second LIGO science run, such a search has 

in fact been performed for GRB030329[55]. Although no gravitational wave burst was 

observed, efforts are currently underway to extend this search to a much larger set of 

gamma ray bursts. We also note that two previous searches have also been carried 

out by the ROG collaboration using data from the EXPLORER and NAUTILUS 

resonant mass detectors to search for possible gravitational wave counterparts to 434 

gamma ray bursts observed by the BATSE and BeppoSAX missions between 1991 



and 2001[56, 571. The results of these two searches yield a 95 percent confidence level 

upper limit of h, 5 2.5 x lo-'' for the amplitude of such events within the sensitive 

frequency band of the two detectors. 

2.3.5 Cosmic string cusps 

Another conjectured source of detectable gravitational radiation results from the for- 

mation of cusps in cosmic strings or cosmic superstrings. These strings are linear 

topological defects that are hypothesized to have formed in the early universe as a 

result of symmetry breaking phase transitions[58]. Such strings are also conjectured 

to have extremely high densities and move at relativistic speeds. They are therefore 

an interesting candidate for gravitational wave emission. In particular, the cumula- 

tive gravitational wave emissions from networks of cosmic strings are expected to give 

rise to a stochastic background of gravitational radiation that may be detect able by 

the first generation of interferometric gravitational wave detectors, and which we will 

briefly consider in section 2.3.7. 

More recently, however, studies by Damour and Vilenkin[59, 601 have shown that 

the expected distribution of gravitational wave strain amplitude from networks of 

cosmic strings will exhibit strongly non-Gaussian behavior as a function of time . In 

particular, the occasional formation of cosmic string cusps will produce sharp bursts 

of gravitational radiation that stand out from the stochastic background and may also 

be detectable by the first generation of interferometric gravitational wave detectors. 

In addition, Damour and Vilenkin have shown that similar predictions may apply to 

cosmic superstring theories as we11[61]. 

A particularly attractive aspect of the search for gravitational wave bursts from cosmic 

string cusps is that their waveforms have been shown to  have the surprisingly simple 

analytical form[59, 621, 

h( t )  N It - t0l1I3, 
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Figure 2.13: Example gravitational wave burst produced by a cosmic string cusp. 

an example of which is show in Figure 2.13. As a result, the detection of such bursts 

is most naturally suited to  a matched filter search. Such a search is cllrrently under 

development for the fourth LIGO science run and may soon make it possible to place 

constraints on more optimistic cosmic string and cosmic superstring theories. 

2.3.6 Periodic sources 

Rapidly rotating neutron stars, if they are not perfectly symmetric about their spin 

axis, may also be a potentially detectable source of gravitational waves. 

There are a number of possible mechanisms by which these objects may develop suf- 

ficient asymmetry to  radiate a detect able gravitational radiation. These mechanisms 

include small distortions of the shape of the neutron star away from axisymmetry, ex- 

citation of unstable neutron star oscillation modes, and neutron star spin precession. 

The deviation of a neutron star from axisymmetry is typically measured by its ellip- 

ticity, 

6 = ( I x x  - Iyy)/Izz, 



where I is the quadrupole moment defined in Equation 2.23 and the component I,, is 

the principal moment of inertia about the rotation axis. The detected gravitational 

wave strain amplitude due to a distorted neutron star at a distance d is directly 

proportional this ellipticity, 

where *f, is twice the spin frequency of the neutron star. 

The frequency scale of these sources is known by observations of pulsars to extend 

up to a maximum spin frequency of at least 641 Hz, corresponding to a gravitational 

wave frequency of 1282 Hz. As a result, a many rapidly rotating pulsars fall into the 

sensitive frequency band of interferometric gravitational wave detectors. 

The best evidence that some spinning neutron stars are emitting gravitational radia- 

tion is due to Chakrabarty and collaborators[63, 641, who observe that the maximum 

spin frequency of neutron stars obtained by accretion in a low mass x-ray binary sys- 

tems -- 650 Hz is substantially smaller than the 1.5 kHz limit imposed by neutron 

star breakup. This observation is in agreement with the suggestion of Bildsten[65, 661, 

who proposed that such systems reach an equilibrium with the spin-up due to accre- 

tion balanced by a spin down due to gravitational wave emission associated with 

accretion induced inst abilities. Although not detect able by the initial generation of 

interferometric detectors, these systems are intriguing source for advanced detectors, 

which may be able to detect them if tuned for optimum sensitivity in the region 

around 600 IIz [l7]. 

Similar to the ring down of black holes, neutron stars may also exhibit gravitational 

wave emission as a result of modal perturbations, which are typically associated with 

rotational instabilities of neutron stars. Dynamical instabilities are associated with 

non-axisymmetric perturbations with angular dependence eimo and grow on time 

scales associa.ted with the sound crossing time of the neutron star, typically on the 

order of a rot.ation period, and may last many rotation periods depending upon the 



differential rotation properties of the neutron star. The most well known of these 

instabilities is the m = 2 bar-mode instability, which may be excited newly formed 

neutron stars just after core bounce. Another class of inst ability, secular instabilities, 

are driven by fluid viscosity and gravitational wave emission. Of these, the f and r 

mode instabilities are considered the most likely to  produce a detectable amount of 

gravitational radiation. In Figure 2.14, the potential gravitational wave emission from 

various rot at  ional instabilities are compared with the design sensitivity of current and 

future interferometric detectors. 

Figure 2.14: The gravitational wave signal amplitudes associated with neutron star 
instabilities are compared with the design sensitivities of current and future interfero- 
metric gravitational wave observatories. This figure has been reproduced from reference 

(191. 



Contrary to searches for transient sources, searches for periodic sources may also 

benefit fron-1 the ability to coherently observe the signal over long periods of time. 

This approach results in an decrease in the signal to noise ratio necessary for detection 

that is inversely proportional to the square root of the integration time. In particular, 

searches for periodic signals are sensitive to gravitational wave strain on the order of 

where T is t!he observation time and S(f,) is the one-sided power spectral density of 

detector noise as defined by Equation 3.30 at twice the neutron star spin frequency. 

For sufficiently long observation times, searches for periodic signals can therefore 

detect signals with strain amplitudes well below that of transient signals. 

While it is generally believed that the observed spin down of pulsars is due to mag- 

netic dipole radiation, it is also possible to constrain the potential gravitational wave 

emission of pulsars by assuming that the observed spin down is entirely due to energy 

loss by gravj tational radiation. 

To date, searches for periodic emission of gravitational waves have fallen into two 

categories. 

The first is a search for known pulsars. In this case, the expected gravitational wave 

frequency is well known from radio observations, as is the expected Doppler shift 

and detector response due to the time varying relative motion of the pulsar and its 

position and orientation on the sky. This knowledge therefore permits a heterodyne 

search for known pulsars in which the interferometric detector output is projected 

onto a compensated time varying sinusoid with a nominal frequency that is twice the 

known spin frequency of the pulsar. 

Currently, using data from the second LIGO science run to search for 28 rapidly 

rotating isolated pulsars, the tightest bound obtained by this type of search is an 

upper limit of 4.5 x for the ellipticity of PSR 52124-3358[67]. While this limit is 



in excess of the maximum allowable ellipticity predicted by models of the neutron star 

crust, future LIGO science runs should produce substantially improved upper limits 

as the detectors approach their design sensitivity and observation times approach one 

year. 

The second class of search is for unknown sources. However, such searches must still 

take into account the expected variability in the frequency and amplitude of periodic 

sources due to  Doppler shifts and detector response. As a result, the parameter space 

for such a search is extremely large and presents a rather formidable computational 

challenge. An effort has recently been launched to perform this type of search using a 

global network of personal computers [68]. However, previous bandlimi t ed searches for 

gravitational waves from unknown periodic sources have also been performed using 

resonant mass detectors[69, 70, 711. These searches report upper bounds on the order 

of h, 5 1 x for narrow frequency bands around 920 Hz. 

2.3.7 Stochastic background 

Another potential class of gravitational waves consist of an ensemble of random space- 

time fluctuations that collectively give rise to a stochastic background of gravita- 

tional radiation. Such a stochastic background can be produced by two possible 

mechanisms. One is due to  the cumulative effect of an ensemble of relatively recent 

semi-transient sources, such as the coalescence of binary compact objects or core col- 

lapse supernovae. Indeed, a stochastic background from the early inspiral phase of 

binary compact objects is expected to be the limiting low frequency noise source for 

the LISA mission. The other possible source of a stochastic background is due to 

relic gravitational waves from the very early universe. Such a background would be 

analogous to  the well known cosmic microwave background, which carries with it a 

wealth of information about the state of the universe at  the time when electromag- 

netic radiation and matter decoupled. Similarly, since relic gravitational waves will 

experience negligible scattering by any intervening matter , we expect the observation 



of a cosmolugical background of gravitational waves to provide important information 

about the UI-liverse at  the time when gravitational radiation decoupled. Moreover, due 

to the extremely weak interaction of gravitation, the time scale for the decoupling 

of gravitational waves within the LIGO frequency band is estimated to be roughly 

secontls after the formation of the universe[72, 731. In contrast, the age of the 

universe at  the time when electromagnetic radiation decoupled has been measured to  

be 3.8 x lo5 years[74]. The observation of a cosmological background of gravitational 

radiat,ion would therefore provide us with a direct view of the very early universe that 

is not cxtrrerltlg accessible by any other means. 

By convention, the spectrum of a stochastic background is specified in terms of the 

the dimensionless quantity 

where pgw is the cumulative energy density spectrum of the stochastic background of 

gravitational waves and pc is the current critical density required for a closed universe, 

Here we take Ho, the present day value of the Hubble constant, t o  be 71 km s-' 

The quantity a,, therefore describes the energy density of gravitational waves per 

unit logarithmic frequency interval relative to the critical density necessary for a 

closed universe. Given this definition, an energy density spectrum that falls as f -' 
would have a equal energy per logarithmic frequency interval and therefore a constant 

value of RgW( f )  = Ro. Such a spectrum is predicted by both inflationary and cosmic 

string models in the frequency range of the LIGO detectors[72, 731. 

Assuming a stochastic background that is isotropic, unpolarized, and stationary, it 

can be shown[75] that the corresponding one-sided power spectral density observed 



by a gravitational-wave detector is given by 

As a result, assuming a constant value of RgW (f) = 520, we expect that gravitational 

wave detectors will observe a strain spectral density that varies as f -3/2, although we 

do not exclude the possibility of a frequency dependent Q, (f ) . 

A straightforward limit on the sensitivity of gravitational wave detectors to a stochas- 

tic background may then be obtained by comparing this predicted spectrum with the 

strain spectral density of detector noise. However, such constraints are naive in that 

they neglect the possible use of multiple detectors in order to differentiate between 

correlated and uncorrelated stochastic noise. Instead, a more sensitive measure of the 

stochastic background is obtained from the cross correlation of data from multiple 

detectors after taking into account their relatlive location and orientation, as well as 

any difference in their sensitivity[76, 75, 771. Relative to a single detector measure- 

ment, such an approach offers an improvement in sensitivity by a factor of (Af T)"~,  

where Af is the characteristic bandwidth of the search and T is the integration time 

of the measurement. As a result, assuming one year of integration, initial LIGO is 

expected to be sensitive to a stochastic background of Ro - while advanced 

LIGO is anticipated to  test Ro at  the level of 10-~[78]. 

Although the first LIGO science run only achieved the value of R0 5 41 at  the 90 

percent confidence level, the second science run has achieved a preliminary constraint 

of Ro 5 0.03, while the third science run is expected to  achieve an approximate 

value of O0 5 5 x 10-~[78]. For comparison, it is interesting to note that,  within the 

LIGO frequency band, the standard model of big bang nucleosynthesis conservatively 

constrains cosmological backgrounds to  R0 5 [75, 791. As a result, the sensitivity 

of initial LIGO should be sufficient to contribute to  experimental bounds on the 

possible values of no for cosmological backgrounds. It should also be noted that a 

stochastic background arising from more recent sources is not constrained by big bang 
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Figure 2.15: The stochastic background predicted by various cosmological models of 
the very early universe are compared with the constraints expected from interferometric 
gravitationa,l wave observatories, as well as those from other methods. The vertical axis 
is presented in units that assume a present day Hubble constant of 100 km s-' Mpc. 
This figure has been reproduced from reference [73]. 

nucleosynthesis. Other constraints on stochastic gravitational wave backgrounds are 

derived by spacecraft ranging[80], pulsar timing measurement s[8 1, 821, and large scale 

fluctuations in the cosmic microwave background known as the Sachs-Wolf effect[83, 

841. Even so, such constraints occur at  very low frequency scales, and are well outside 

the frequency band of Earth based gravitational wave detectors. Finally, we note that 

neither initia"1 nor advanced LIGO will likely test current models of inflation, which 

predict values of Ro ranging from 10-l5 to  10-13. However, both detectors should 

begin to constrain some of the more optimistic predictions for stochastic gravitational 

wave backgrcmnds due to  cosmic strings [72, 731. In Figure 2.15, the approximate 

constraints expected from interferometric detectors are compared with those of other 



measurements as well as with the expected stochastic background due to  different 

cosmological models of the very early universe. 

2.3.8 Expecting the unexpected 

Finally, we note that there is of course the possibility of detecting the unexpected. 

This has been the case whenever the sky is observed with a novel or improved instru- 

ment. A few examples of such serendipitous discoveries include the discovery of the 

cosmic microwave background by Penzias and Wilson in 1964, the discovery of pulsars 

by Bell and Hewish in 1967, and the discovery of gamma ray bursts in the late 1960s 

by satellites tasked with monitoring the global ban on nuclear weapons testing. We 

expect that interferometric gravitational wave detectors will be no exception to this 

trend. They represent a significant advancement in a field that now appears poised 

to  make the first direct detection of gravitational waves. Compared t o  the previous 

generation of resonant mass detectors, they offer nearly a factor of lo3 increase in 

detector bandwidth, while at the same time providing almost a factor of lo2 increase 

in sensitivity. Partly for this reason, the search methods presented in the remainder of 

this work attempt to make minimal assumptions about the waveform to  be detected. 

While our approach has mainly been guided by our inability to accurately predict the 

waveform expected from many of the sources described above, we are also motivated 

by the desire to be sensitive to the unexpected. 



Chapter 3 

Burst detection 

I11 this chapter, we present a parameterization for astrophysically unmodeled bursts 

of gravitational radiation that provides us with the language necessary to describe 

both their rrieasurement and their detection. 

In general, we define a gravitational-wave burst as time-varying strain in space that is 

sufficiently well localized in time that its t ime-domain amplitude is square integrable. 

Although this definition imposes no upper limit on the duration of gravitational-wave 

bursts, we also make the additional assumption that such bursts are shorter than 

one second. This choice conveniently constrains the space of possible signals, while 

still encompassing the majority of the potentially detect able transient astrophysical 

sources that fall within the sensitive frequency band of ground based interferometric 

detectors. 

In what follt)ws, we first define a characteristic gravit ational-wave amplitude that 

plays a central role in predicting the detectability of gravitational-wave bursts. We 

also find it convenient to  characterize bursts by their energy distribution in both 

time and frequency. In particular, our primary method of searching for bursts will 

be to create two-dimensional t ime-frequency maps that identify the t ime-varying fre- 



quency content of potential bursts. We therefore define a number of parameters, such 

as central time, central frequency, duration, and bandwidth, which characterize the 

structure of bursts that are well localized in this time-frequency plane. These defini- 

tions then form a basis for characterizing bursts with more complex time-frequency 

structure, as well as allowing tests for consistency between multiple detectors. 

Next, we describe the measurement of bursts by their projection onto a basis of 

functions that cover a specified region of signal space. In the process, we identify 

a multiresolution basis of complex-valued waveforms with minimum time-frequency 

uncertainty as most suited to the detection of astrophysically unmodeled bursts of 

gravitational radiation using one or more detectors. We then demonstrate a method 

of constructing such a basis that covers a targeted region of signal space with the 

minimum number of basis functions necessary t o  ensure a specified accuracy. 

Finally, we consider the problem of measurement in the presence of detector noise and 

identify those parameters which are useful predictors of detectability and measures 

of detection confidence. In the process, we introduce a simple method for evaluating 

the approximate detectability of proposed astrophysical sources. 

3.1 Parameterization of bursts 

In what follows, we first present a representation independent measure of gravitational- 

wave burst amplitude. This then permits the definition of normalized time-domain 

and frequency-domain waveforms for arbitrary bursts, which in turn leads to  a simple 

set of parameters that are ideally suited to  describe bursts that are well localized in 

the time-frequency plane. We then briefly consider the applicability of this parame- 

terization to bursts with more complicated time-frequency structure. 



3.1.1 Characteristic strain amplitude 

An arbitrary gravitational-wave burst has a time-domain and frequency-domain rep- 

resent at ion that form a Fourier transform pair1, 

+00 

h ( t )  e-i2'f d t  . 

(3.la) 

(3. lb )  

Since we define gravitational-wave bursts to be square integrable in time, we may also 

define tlhe characteristic strain amplitude, 1 1  h 1 1  ) which, due to Parseval's theorem, may 

be computed in either the time-domain or the frequency-domain by 

The quantity (Ihl( is particularly convenient since it has units of dimensionless strain 

per square root Hz and is directly comparable to the amplitude spectral density of 

detector noise, which we will describe in more detail section 3.3.2. Consequently, the 

quantity ( 1  h1I2 has units of power spectral density and is conventionally referred to 

as the signal energy. However, this is not the same as the physical energy carried by 

the gravitational-wave, which we instead describe in section 3.3.3. As a result, care 

should be taken not to confuse the two. 

3.1.2 Normalized wave-function 

An arbitrary gravitational-wave burst may then be written in terms of its character- 

istic strain a.mplitude and a normalized time-domain or frequency-domain represen- 

' ~ o t e  that in physics, one commonly encounters a different Fourier transform convention in which 
the expo~ients have the opposite sign. However, throughout this work we have chosen to use the 
convention that is more commonly found in the signal processing literature. 



tation defined by the relations 

Like the unnormalized representations, the normalized time-domain and frequency- 

domain represent at ions also form a Fourier transform pair, 

+m 

) = ~ ( t ) e - " " ~ ~  d t .  

Moreover, the normalized representations are also defined to have unity characteristic 

strain amplitude, 

The resulting normalized waveforms therefore provide an amplitude independent 

means to describe the time-frequency structure of arbitrary gravitational-wave bursts 

and will prove convenient for the further parameterization of such bursts, as well as 

for evaluating the det ectability of candidate waveforms in sect ion 3.3. 

3.1.3 Time-frequency parameterization 

By interpreting the squared magnitude of the normalized time-domain and frequency- 

domain waveforms as probability density functions, we may also define the charac- 

teristic center time r and characteristic center frequency 4 of an arbitrary burst by 

the relations 



Here, since we are primarily concerned with the distribution of signal energy, we 

integrate over only positive frequencies. As a result, we must be careful when applying 

this parameterization to bursts that have appreciable signal content at zero frequency, 

since such bursts will be subject to aliasing about zero frequency. 

Similarly, we may define the characteristic duration and bandwidth of an arbitrary 

burst in terrns of the second central moments in time and frequency. 

Finally, we may also define a dimensionless quality factor Q for bursts, which is just 

the ratio of center frequency to bandwidth, 

3.1.4 Localized bursts 

It can be shown[85] that, for bursts with no zero frequency content, the characteristic 

duration ant1 bandwidth as defined in Equation 3.7a and Equation 3.7b obey the 

uncertainty relation 
1 
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Therefore, a gravitational-wave burst cannot exhibit structure in the time-frequency 

plane with an effective time-frequency area less than this limiting value. We thus 

define bursts whose time-frequency area is on the order of this limiting value to be 

well localizecl. 

Although computable for any square-integrable burst, the time-frequency parameters 

defined in the previous section are most appropriate to well localized bursts. In 



particular, we note that for bursts that are well localized in time and frequency, the 

dimensionless quality factor Q is essentially a measure of the signal's aspect ratio in 

the time-frequency plane and is roughly equal to  the number of oscillations of the 

time-domain waveform over the duration of the burst. 

Furthermore, it can be shown(85j that the minimum time-frequency area given by 

Equation 3.9 is achieved by bursts whose time-domain and frequency-domain repre- 

sentations take the form of Gaussian windowed sinusoids, 

Here, in order to allow for arbitrary phase, we have conveniently defined a complex 

valued waveform. This representation will also prove useful in section 3.2.2, in which a 

basis of such waveforms will be used to cover a finite region of the possible signal space. 

Real valued waveforms, which also achieve the minimum permissible time-frequency 

area, can be obtained by taking a linear combination of the real and imaginary parts 

of Equation 3.10a or a corresponding linear combination of the complex conjugate 

symmetric and anti-symmetric components of Equation 3.10b. Due to their mini- 

mum uncertainty nature and their relatively simple analytical form, these sinusoidal 

Gaussian bursts will prove to be a useful test case in chapter 6 and chapter 7, where 

they will be used to characterize the performance of our proposed search algorithm 

for gravitational-wave bursts. In the next section, we will also find that sinusoidal 

Gaussian bursts comprise a particularly useful measurement basis for the detection 

of unmodeled bursts gravitational radiation. As a result, such bursts play a central 

role in our proposed search algorithm. For reference, examples of such waveforms are 

shown in Figure 3.1 for a central frequency of 1 Hz and a quality factor of 10. 

Note that our explicit use of the parameters 4 and of in our definition of sinu- 

soidal Gaussian bursts implicitly assumes a two-sided frequency-domain interpreta- 
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Figure 3.1: Example time-domain waveforms of a sinusoidal Gaussian burst with a 
central frequency of 1 Hz and quality factor Q of 10. Both even (solid) and odd (dashed) 
symmetric time-domain waveforms are shown, corresponding to the real and imaginary 
part of the complex valued waveforms given by Equation 3.11a and Equation 3.11b. 
Both waveforms are normalized to unity 1 1  hll. 

tion, while the parameterization defined in Equation 3.6b and Equation 3.7b is one- 

sided in nature. These two parameterizations agree in the limit of large Q, where 

the resulting waveform has negligible signal content at  zero frequency. However, 

for Q 5 3, the two interpretations diverge due to aliasing effects at  zero frequency. 

A1t)hough a Q dependent correction factor can be introduced to  account for this dis- 

crepancy, in practice we will avoid this difficulty by only considering the measurement 

of bursts with Q 2 3. As a result, the detectability of bursts with Q 5 3 will depend 

on their projection onto the space of signals with Q 2 3. 

In order to  evaluate the effect of this restriction, we therefore consider the limiting 

case of small Q: which results in simple Gaussian bursts of the form 

" f )  = 1hll(2an:) 'I4 exp [-a20:f2] exp [-i2aT/].  

(3.1 l a )  



As was the case for sinusoidal Gaussian bursts, simple Gaussian bursts also exhibit 

the minimum time-frequency uncertainty of Equation 3.9, but do so when viewed in 

the two-sided frequency-domain interpretation. Here we have avoided the difficul- 

ties of a one-sided vs. two-sided frequency-domain interpret at ion by expressing the 

frequency-domain waveform only in terms of the duration ot of the burst. For refer- 

ence, application of the one-sided parameterization of sect ion 3.1.3 yields the values 

Since such bursts fall outside of the targeted signal space of Q 2 3, they therefore 

provide an interesting test of detectability. As a result, we will also include such 

bursts in the set of waveforms used to characterize the performance of our search 

algorithm in chapter 7. 

Finally, we note that it is occasionally convenient to refer to an alternative duration 

and bandwidth defined by 

such that the product, At A f is unity for minimum uncertainty bursts according 

to uncertainty relation of Equation 3.9. This definition will be particularly useful 

when quickly estimating the time-frequency overlap between minimum uncertainty 

bursts, where the number of possible non-overlapping minimum uncertainty bursts 

in a time T and bandwidth F cannot exceed the maximum number of independent 

measurements given by the product TF. 



3.1.5 Non-localized bursts 

While the simple time-frequency parameterization defined above adequately describes 

bursts that are well localized in time and frequency, it does not adequately parame- 

terize the structure of more complicated bursts. However, even for more complicated 

bursts, thei:r small scale time-frequency structure must obey the uncertainty rela- 

tion of Equation 3.9. As a result, an appropriately selected basis of well localized 

waveforms is sufficient to resolve the structure of arbitrary bursts. In general, more 

complicated bursts can be decomposed into a linear combination of localized sim- 

ple bursts, and a basis of such localized waveforms can be selected which adequately 

covers a specified region of parameter space. As a result, we do not attempt to param- 

eterize the space of more general bursts and the detection of bursts with complicated 

time-frequency structure then depends upon the ability of our search algorithm to 

combine resl-llts from multiple time-frequency measurements. 

Measurement of bursts 

A number of search algorithms currently exist in order to identify transient sources 

of gravitational radiation. In general, all of these algorithms operate by linearly pro- 

jecting the data under test onto a suitably chosen measurement basis. The resulting 

projections a,re then examined for statistically significant deviations from the base- 

line results expected in the absence of any gravitational-wave bursts. Based on our 

knowledge of potential astrophysical sources and the details of our data set, we may 

identify three types of searches that dictate the appropriate choice of measurement 

basis: those where the targeted sources are sufficiently well modeled that accurate 

waveforms exist, those where coincident data are available from multiple correlated 

detectors, and those where the waveform is poorly or completely unknown. 



Matched filtering. In the first case, where the waveform is well modeled, the opti- 

mal measurement basis is well known[86]. In this case, the data under test are first 

whitened by a filter whose magnitude response is the inverse of the detector noise 

spectrum. The whitened data stream is then projected onto the set of targeted astro- 

physical waveforms, which have also been whitened by the inverse of the detector noise 

spectrum. This technique, known as matched filtering, is the optimal linear filter in 

the sense that it maximizes the observed signal to noise ratio, which is defined as the 

ratio of the maximum observed output when the targeted waveform is present in the 

data to the root mean square output when the targeted waveform is not present[87]. 

A number of astrophysical searches are currently being pursued using matched filter- 

ing. These include the search for inspiraling binary neutron stars[88, 891, inspiraling 

binary primordial black holes[90], inspiraling binary black holes[91], the ring down of 

perturbed black holes[48, 49, 501, and cusps from cosmic strings[62]. For well behaved 

noise, the expected performance of such searches are well known and therefore pro- 

vide a benchmark for comparison with other search algorithms. We therefore return 

to  matched filtering in section 3.3, where the signal to noise ratio achieved by such a 

search is used to  characterize the detect ability of arbitrary gravitational-wave bursts. 

Cross-correlation. In the second case, where coincident data are available from mul- 

tiple correlated detectors, the typical approach is to project an interval of data from 

one detector onto corresponding data from another detector. The resulting signal to  

noise ratio is maximized when the projected interval is similar in the duration to  the 

duration of the burst. As a result, such searches typically consider a range of intervals 

in order to  be optimally sensitive to gravitational-wave bursts at  many time scales. 

Currently, due to  the resulting computational cost, cross-correlation is only used to 

perform deep searches of short data segments when other information, such as the 

coincident observation of a gamma ray burst [55, 54, 531 or the previous identification 

of a candidate gravitational-wave burst[92, 93, 941, indicate an increased chance of de- 

tection. Such searches are limited, however, to pairs of detectors that are sufficiently 

aligned to be sensitive t o  the same gravitational-wave polarization. Extensions of 



this approach to multiple non-aligned detectors are currently being developed[95, 961 

based on initial work by Gursel and Tinto[97] and Flanagan and Hughes[98] on the 

inverse problem for gravitational-wave bursts. 

Abstract bases. In the third case, where the waveform is poorly or completely un- 

known, the data under test are typically projected onto a convenient basis of abstract 

waveforms tihat are chosen t o  cover a targeted region of signal space. In this case, 

the detection of arbitrary gravitational-wave bursts depends upon their projection 

onto the particular basis under investigation. However, in searching for st atistically 

significant events, such searches also typically employ methods for clustering the mea- 

surements from neighboring or overlapping basis functions in order to more optimally 

detect signals that are not well represented by the particular choice of basis. A num- 

ber of different waveform basis have been proposed t o  search for unmodeled bursts 

of gravitational radiation, and such searches may be broadly classified into two cate- 

gories: time-domain searches[99, 100, 101, 1021, in which the primary basis consists of 

delta functions in time, and time-frequency searches[l03, 104, 105, 1061, in which the 

typical basis consists of windowed complex exponentials or wavelets. Such searches 

can easily btt extended to multiple detectors by requiring coincident detection of st a- 

t ist ically significant events, as well as consistency between t he projections observed 

in each detector. In the special case of correlated detectors, such projections can 

additionally act as intermediaries to a direct cross-correlation comparison between 

the data from each detector. In this case, the use of an intermediate basis can also 

provide an efficient means of performing the comparison over a range of time and 

frequency scales. 

3.2.1 Multiresolution analysis 

In this work., we seek an algorithm for the detection of astrophysically unmodeled 

bursts of gravitational radiation that fall within the sensitive frequency band of 

ground-based interferometric detectors. We also desire a sufficiently general search 



strategy that can be applied to one or more detectors regardless of their relative 

alignment. We therefore seek an abstract basis that efficiently covers a finite region 

of the time-frequency plane. 

A number of well known time-frequency bases are already available from which to 

choose. These include the traditional short-time Fourier transform[85] as well as a 

large variety of more recently developed wavelet decompositions(107, 1081. Typically, 

in order to simplify the process of signal reconstruction, such bases are constructed 

to be both orthogonal and complete: the projection of any basis function onto any 

other basis function is zero, and the number of basis functions is exactly equal to  

the dimension of the signal space. Here, however, we are primarily interested in the 

detection of signals, not their reconstruction. The performance of our search is then 

determined by the maximum projection achieved by a single basis function. As a 

result, we will instead find it useful to  implement an overcomplete basis in order to 

improve our prospects for identifying such a projection. In particular, we choose to  

implement an overcomplete multiresolution basis of complex-valued waveforms with 

minimum time-frequency uncertainty. That is, we take as our basis functions the 

complex-valued sinusoidal Gaussian bursts of Equation 3.10a and Equation 3. lob. 

This choice is motivated by a number of considerations. 

Recall that the time-frequency structure of gravit at ional-wave bursts is constrained 

by the minimum uncertainty relation of Equation 3.9. As a result, by selecting a 

basis of minimum uncertainty waveforms, we are able to maximally resolve the time- 

frequency structure of arbitrary bursts of gravitational radiation. At the same time, 

the requirement of minimum uncertainty does not separately constrain the time and 

frequency scale of such structure; only their product is constrained. As a result, our 

measurement basis must also incorporate multiple time scales in order to maximally 

resolve time- frequency structure over the time scales of potential gravit at  ional-wave 

bursts. In the signal processing literature, such bases are commonly referred to  as 

multiresolution bases. In our case, we simply allow the Q of our basis functions to be 



specified independently their bandwidth. 

Measurement with such a basis then provides the tightest possible time-frequency 

bounds on candidate events. This has two significant benefits. First, we may identify 

the best match set of non-overlapping minimum uncertainty waveforms that concen- 

trate the total energy of candidate events into the fewest number of basis functions. 

As a result, we are able to  maximize the observable signal to noise ratio for the 

minimum uncertainty structure of arbitrary gravitational-wave bursts. Second, we 

are able to ,apply the strictest possible tests of time-frequency coincidence between 

rrlultiple detecttors. As a result, we are able to minimize the rate of false detections 

resulting from the accident a1 coincidence of unrelated events. 

A mult iresol.ut ion time- frequency basis naturally includes the basis of t ime-domain 

delta functions in the limit of short duration and low Q. Although our targeted signal 

space does not extend below Q - 3 due to aliasing concerns, in practice such low Q 

bursts are nearly indistinguishable from Q - 3 bursts due to the masking effect of the 

low frequency seismic noise present in ground-based interferometric detector data. 

Since the selected basis is overcomplete, the resulting basis functions are in general 

not orthogonal. As a result, we must be careful to account for their statistical inter- 

dependence when interpreting our results. However, we also note that the expected 

false detection rate is not affected by our adoption of an overcomplete basis, but is 

instead determined by the volume of the targeted signal space. 

The choice of a complex-valued basis is a convenience that eliminates the need to 

separately include phase as an  additional parameter of the search. Moreover, in 

chapter 5, we will take advantage of Fourier transform theory in order to implement 

such a complex-valued multiresolution basis in a computationally efficient way. 

Finally, we note that the relatively simple analytical form of complex-valued sinusoidal 

Gaussians makes possible the optimal tiling of the targeted signal space considered 

in the next stiztion. 



3.2.2 Basis selection 

Given the choice of a complex-valued multiresolution basis of minimum uncertainty 

waveforms, we now consider the required number and placement of basis functions 

in order to  adequately cover a specified region of parameter space. There are two 

competing goals. On the one hand, for high detection efficiency, we wish to  ensure 

that any well localized burst that falls within the targeted parameter space is closely 

matched to a basis function. On the other hand, for computational efficiency, we 

desire to minimize the number of required basis functions. 

To accomplish these goals, we follow a procedure similar to that used in optimal 

matched filtering searches to select a set of template functions[l09, 110, 11 1, 112, 481. 

In particular, we tile the targeted signal space such that the mismatch between an 

arbitrary well localized burst and the closest measurement tile results in no more than 

a predefined fractional loss in the measured signal energy. 

Fortunately, in contrast to the typical matched filtering case, we do not need to  con- 

sider the effect of detector noise when selecting our basis. Instead, since our basis 

functions do not correspond to a specific astrophysical source, we are free t o  apply 

them to data that has first been whitened by the techniques described in chapter 4. 

As a result, we effectively perform a search of the whitened data stream rather than 

the gravitational-wave data stream. In practice, however, the difference is minor. For 

typical interferometric detector noise, the effective gravitational-wave basis functions 

are very similar to  sinusoidal Gaussian bursts. In section 6.3, we demonstrate the neg- 

ligible effect this difference by evaluating our proposed search algorithm on simulated 

detector noise, and find that the resulting performance is in very good agreement 

with the predicted performance based on the assumption of ideal white noise. 

In order to construct our basis, we first rewrite the complex-valued sinusoidal Gaus- 



sians bursts of Equation 3.10a and Equation 3. lob in their normalized form, 

In doing so: we have also taken into account the minimum uncertainty property of 

sinusoidal Gaussian bursts, which requires that their duration and bandwidth cannot 

be independently specified. As a result, only three parameters are needed to describe 

our basis functions. Here, we take these parameters to be the center time r, center 

frequency 4 .  and quality factor Q. Implicit in this choice is the assumption that 

the gravitat ional-wave bursts that are detectable by ground-based interferometric 

observatories primarily fall within a particular range of frequency and Q. 

We begin by considering the inner product of two sinusoidal Gaussian bursts that 

differ in time, frequency, and Q by the amounts dr ,  64, and 6Q respectively. The 

resulting inner product, whose magnitude is a measure of the recovered signal am- 

plitude? is a function of the mismatch between the two functions and is given by the 

expression, 

Fortunately, for the case of complex-valued sinusoidal Gaussian bursts, an exact closed 

form analytical expression exists for the recovered signal amplitude. Even so, the 

derivation of this result is too extensive to include here. Instead, we simply note that 

the recoverecl signal energy is found to be 



where we have also introduced the additional parameters 

in order to  simplify our notation. 

Next, we define the fractional energy loss due to  mismatch by the expression 

However, instead of substituting the exact expression of Equation 3.16 for the recov- 

ered signal energy, we will find it more convenient to use its second order expansion, 

Following the approach of Owen[109], this then suggests the definition of a metric, 

to measure the space of sinusoidal Gaussian bursts in terms of the fractional energy 

loss due to  mismatch. The components of this metric are then given by 

Given this metric, we then seek a finite set of projections such that the worst case 

energy loss due to mismatch never exceeds a prescribed threshold p,, within the 

signal space of interest. At the same time, for computational efficiency, we wish to  



minimize the necessary number of basis functions. 

To do so, we choose to distribute our basis functions on a cubic lattice in the space 

defined by the metric of Equation 3.20. This situation is sketched in Figure 3.2. While 

it is known that this is not the optimal solution to the three dimensional close packing 

problem, it nevertheless provides a nearly optimal solution to the problem that is also 

particularly simple to  implement. However, we have also neglected the effect of the 

off-diagonal term g 4 ~ ,  which would otherwise suggest a shear in the placement of our 

basis functions. Although it is possible to  select an alternative parameterization of 

our basis which diagonalizes the resulting metric, we choose not to do so in order 

to  preserve the physical significance and intuitive nature of our parameters. Instead, 

since it always acts to reduce the fractional energy loss incurred by an arbitrary burst, 

w-e ignore this off-diagonal term at  the cost of a slightly less optimal tiling of our signal 

space. 

Figure 3.2: The proposed cubic distribution of basis functions in the space of frac- 
tional energy loss described by the metric of Equation 3.20. Basis functions (black) are 
represented by the vertices in the cubic lattice, while the signal (white) corresponding 
to worst case mismatch occurs at the center of each cube. In order to ensure that the 
fractional energy loss encountered by this signal does not exceed pmax, the maximum 
mismatch allowed along any edge of the cube is given by Equation 3.22. 

Given the choice of a cubic lattice sketched in Figure 3.2, we may then determine 

the maximum allowable distance between basis functions in order to ensure that the 

specified worst case energy loss of pmaX is never exceeded. Here, the greatest energy 

loss occurs for a signal at  the center of the cube. Ignoring the effect of the off-diagonal 



metric component, this worst case signal is then equidistant from the eight vertices 

of the cube, representing the eight nearest basis functions. We thus seek the distance 

along each edge of the cube such that the distance from this worst case signal to  any 

of the eight nearest basis functions is equal to the maximum allowable value of p,,. 

In this case, we find that the maximum allowable distance along each edge of the 

cube is given by 

To tile the targeted signal space, we then integrate separately over each metric com- 

ponent in order to  obtain a measure of the cumulative mismatch distance over the 

signal space of interest: 

Dividing this cumulative distance by the required distance between basis functions 

and rounding up then yields the necessary number of basis functions to cover the 

targeted signal space in each of the three parameters: 

Finally, we tile the space of time, frequency, and Q by first selecting the discrete set 

of Qs given by 

Qn = Qmin exp [ Ji ( n - - :>$I 1 5 n 5 N Q -  



For each value of Q, we then identify the discrete set of frequencies given by 

Finally, for each value of q5 and Q,  we select the discrete set of times given by 

Figure 3.3: An illustration of the optimal tiling of the space of time, frequency and 
Q. The tiling of the targeted signal space with the minimum number of basis functions 
required to ensure a specified worst case energy loss due to mismatch naturally leads 
to a multiresolution basis that is logarithmically distributed in Q, logarithmically dis- 
tributed in frequency, and linearly distributed in time. For constant Q, the tiling of 
individual time-frequency planes is a generalization of the dyadic wavelet decomposition 
in which tiles are not restricted to frequencies that are related by powers of two. 

We therefore find that the resulting basis functions are spaced logarithmically in Q, 

logarithmically in frequency, and linearly in time. That is, the optimal tiling of the 

targeted signal space naturally leads to a mult iresolution basis! The resulting basis 

is sketched in Figure 3.3 and shows a strong resemblance to wavelet like tilings of 

the time-frequency plane. In particular, for planes of constant Q, the tiling of the 

time-frequency plane is similar to  the more commonly encountered dyadic wavelet 

decomposition, except that tiles are not restricted to frequencies that are related by 

powers of two. 



3.3 Detection of bursts 

In this last section, we introduce the language necessary to describe the effects of de- 

tector noise on the measurement of gravitational-wave bursts. We first introduce the 

one-sided amplitude and power spectral densities of detector noise, which are the stan- 

dard means for characterizing the sensitivity of gravitational-wave detectors. Next, 

we introduce the signal to  noise ratio achieved by matched filtering on the assump- 

tion that, the waveform to  be detected is well known in advance. This ideal signal to 

noise ratio then forms our primary measure of burst detectability in a given detector. 

Finally, we consider the relationship between our detection based parameterization of 

gravitational-wave bursts and their actual astrophysical properties. Based on a few 

simplifying assumptions, we are then able to  approximately relate the total energy 

emitted in the form of gravitational radiation with a distance to the source. 

3.3.1 Detector noise 

Throughout this work, we will find it useful to  characterize stochastic processes, that 

is random time-series data such as detector noise n(t) ,  by their time-domain auto- 

correlation function 

r, ( T )  = (n(t)n(t - T ) ) .  (3.28) 

This is simply a measure of the statistical self-correlations within time-series data on 

a time scale r[113]. In general, the auto-correlation of a signal may itself vary with 

time. Here, we have implicitly assumed that this is not the case, and that n( t )  is a 

stationary stochastic process such that r,(r) is independent of t. In what follows, 

we also assume that n(t)  has units of dimensionless strain, as is the case for strain 

data from gravitational-wave detectors. As a result, rn(r), which nominally has units 

of n(t)2, has units of squared dimensionless strain. Finally, in order to gain a more 

intuitive feel for the auto-correlation, it is useful to  note that rn(0) is simply the 

variance o- i  of the process n(t).  Moreover, if every value of n(t) is a statistically 



independent; random variable, then r,(r) is zero for non-zero r.  As a result, the 

auto-~orrela~tion of such noise is simply a delta function in r with amplitude a:. 

An alternative but completely equivalent characterization of stationary stochastic 

processes is the two-sided power spectral density 

which is simply the Fourier transform of the t ime-domain aut o-correlation function. 

More commonly, however, we will describe the properties of stationary stochastic 

processes by their corresponding one-sided power spectral density, 

The primary advantage of this representation is that it identifies the frequency de- 

pendence of detector noise. In particular, it can be shown that the variance a;? of the 

time-series n(t) is given by the integral 

such that S,( f) df is the contribution to the overall variance of the resulting noise due 

to fluctuations in an infinitesimal frequency band df centered on frequency f [113]. 

Note that, in the special case where r, ( r )  is simply a delta function, then the resulting 

power spectral density is necessarily flat and has equal contributions to its variance 

from fluctuations at  all frequencies. For this reason, noise that is comprised of a 

continuous stream of statistically independent random variables, is referred to as 

white noise. 

Commonly, one also finds reference to the one-sided amplitude spectral density of 



a stationary stochastic process. This is simply the square root, sAi2(f), of the cor- 

responding one-sided power spectral density. As a result, instead of having units 

of squared dimensionless strain per Hz, as is the case for the power spectral den- 

sity, the amplitude spectral density has units of dimensionless strain per HZ- ' /~.  For 

gravitational-wave detectors, which are directly sensitive to the strain amplitude of 

gravitational-wa,ves, this choice is generally more intuitive. In fact, the one-sided am- 

plitude spectra'l density of detector noise is effectively the standard means for charac- 

t erizing the sensitivity of gravit at ional-wave detectors. In Figure 2.3, Figure 2.7a, and 

Figure 2.7b, we have already described the sensitivity of gravitational-wave detectors 

in this way. 

3.3.2 Signal to  noise ratio 

We now briefly consider the effect of detector noise on the measurement of gravitational- 

wave bursts. 

In order to simplify our approach, we take advantage of the well known theory of 

matched filtering[87]. That is, we assumes that the targeted astrophysical source is 

sufficiently well modeled that an accurate waveform is available in advance. In this 

case, we find that the maximum achievable signal to noise ratio[88] is given by 

Although it is not in general the case that  the waveform is accurately known in 

advance, Equation 3.32 nevertheless serves as a useful benchmark for comparison 

with other search methods. In particular, it represents the best case detectability 

of a gravitational-wave burst using what is effectively the optimal linear filter. As a 

result, we also take the matched filter signal to  noise ratio as our primary measure of 

signal detect ability. 



If we also a.ssume that the detector noise spectrum is approximately constant over 

the frequency band of a gravitational-wave burst, then by taking it outside of the 

integral we may further simplify our expression for the matched filter signal to noise 

ratio. In this case we find, 

where we have taken advantage of the symmetry properties of Fourier transforms to 

write the integral over all frequencies. We then recognize that this integral is simply 

our definition of characteristic strain energy 1 1  h1I2 from Equation 3.2. As a result, the 

matched filter signal to  noise ratio is approximately given by 

We therefore find that the characteristic strain amplitude 1 1  h 1 1  of a gravitational-wave 

burst can be directly compared to  a detector's amplitude spectral density ~ k ' ~ ( f )  in 

the bandwidth of the burst in order to quickly provide a rough estimate of a source's 

detect ability. 

Detectability 

We now seek: a relationship between the tot a1 gravit at ional-wave energy E emitted 

by an astrophysical source and the resulting characteristic amplitude 1 1  hll observed 

by a detector. 

We begin with the instantaneous energy flux carried by both polarizations of a 

gravitational- wave [22], 



Next, we assume that this energy flux is radiated isotropically from a source a t  dis- 

tance r. Alternatively, this is also equivalent to the mean emission from an ensemble 

of sources with random inclination relative to the line of sight. Integration over all 

time and a sphere of radius r then yields the total gravitational-wave energy emitted 

by the source, 
+CO 

E = 5'1 4G -co [lh+(t)12 + lhx (t) 1 2 ]  d t .  

Alternatively, Parseval's theorem and the differentiation property of Fourier trans- 

forms lead to  the relation 

which allows us to  express the total gravitational-wave energy emitted by the source 

as the frequency domain integral 

Of course, an interferometric gravitational-wave detector is not simultaneously sen- 

sitive to both gravitational-wave polarizations. In addition, the observed signal will 

also depend non-trivially on the relative orient at ion of the source and the detector. 

In what follows, we avoid these difficulties by assuming that the source emits only 

linearly polarization gravitational-waves and that our detector is optimally oriented 

to detect the maximum signal. As a result, our final result will reflect a best case 

measure of detectability. 

Given these assumptions, the gravitational-wave energy emitted by the sources is 

then given by 
7r2 c3 
G 

where h( f ) now represents the detected signal. 

We then subst it ut e the normalized frequency domain wavefunct ion of Equation 3.3b 



a,nd define the characteristic squared frequency 

As a result, we find the following expression for the total energy emitted by the source 

in the form of gravitational radiation. 

Not surprisingly, the total signal energy ( 1  h 1 1 2  decreases as the square of the distance 

to the source. However, for a given total physical energy E, there is also a waveform 

dependent factor (f 2, that favors the detection of low frequency signals. 

We may also consider the matched filter signal to noise ratio of such a source in the 

presence of detector noise. In this case, substitution of the normalized frequency 

domain wavefunction of Equation 3.3b into the expression for matched filter signal 

to noise ratio of Equation 3.32 leads to 

If we then define the characteristic detector noise over the band of the signal, 

the matched filter signal to noise ratio becomes 

By combining the above results, we find that the total gravitational-wave energy of 

an astrophysical source, its distance from the detector, and its matched filter signal 



to noise ratio are all related by 

Finally, we assume that the total energy E emitted in the form of gravitational 

radiation is some fraction E of the available rest mass energy Mc2 of the source. As 

a result, we find that the approximate range to detectable sources is given by 

For the typical values relevant to  ground-based interferometric detectors, this gives 

approximate detectable ranges on the order of 

where any variations in source frequency with mass and any corresponding variations 

in detector noise must still be taken into account. 



Chapter 4 

Linear Prediction 

Prior to performing the mult iresolut ion t ime-frequency analysis motivated in the pre- 

vious chapter, it is first useful to whiten the input data stream such that individual 

samples of t :he resulting discrete time sequence are st at istically independent random 

variables drawn from a common distribution. As we will see in section 5.5, such 

an approach greatly simplifies our subsequent st at istical analysis by permitting the 

assumption of stationary white noise data. In addition, although we do not make 

use of it in this work, adequate whitening of gravitational-wave data is also beneficial 

prior to performing a cross-correlation based analysis [93]. Otherwise, coherent signal 

content, such as line sources and other parasitic resonances, will dominate the result- 

ing correlation and obscure any potential transient correlated signals. For both types 

of searches, we therefore seek a method to identify and remove sample to sample 

correlations from the input data stream. This chapter presents linear predictor error 

filtering as a technique for accomplishing this task. 

Linear prediction is a well known technique from stochastic signal processing that 

attempts to predict future values of time series data using an appropriate linear com- 

bination of previous measurements[ll4]. To do so, it assumes that the signal under 

investigation is due to white noise excitation of a filter whose output depends only 



on its instantaneous input and previous values of its output. In the signal processing 

literature, such signals are commonly referred to as autoregressive processes. In order 

to recover the underlying white noise excitation, linear prediction seeks to  identify 

and remove the effects of such autoregressive filters, which in our case includes co- 

herent signal content due to both the detector and the environment. In doing so, we 

also take advantage of the fact that robust and computationally efficient solutions to 

the linear prediction problem are already well known. 

In what follows, we develop the theory of linear prediction with the goal of removing 

the predictable content of stationary stochastic processes. In the process, we deter- 

mine the necessary conditions to ensure that the resulting data stream is sample to 

sample uncorrelated on the time scale of any subsequent analysis. We then consider 

the possible side effects of whitening by linear prediction. In particular, we note 

the introduction of an arbitrary phase delay that could adversely affect coincident 

searches for bursts in data from networks of gravitational-wave detectors. To alle- 

viate this problem, we present a novel zero-phase modification of linear predictive 

whitening that avoids this difficulty. Finally, in order to gain a more intuitive appre- 

ciation for linear prediction, we conclude with an example of the effect of zero-phase 

linear predictive whitening on a simulated gravitational wave burst. 

4.1 Definition 

Linear predictor error filtering assumes that the signal to be whitened is a stationary 

stochastic process that is well modeled by an autoregressive model of order M. That 

is, that the nth sample of a discrete time sequence, x[n], is well modeled by a linear 

combination of the previous M samples. Given this assumption, we define the pre- 

dicted sequence Z[n] in terms of M undetermined coefficients c[m] by the expression 



Next, we define the prediction error sequence as the difference between the true 

sequence and t,he predicted sequence, 

e [n] = x [n] - $[n]. 

If the coefficients c[m] are chosen correctly, the resulting prediction error sequence is 

generally co:lnposed of sample to  sample uncorrelated white noise, but also contains 

any unpredictable non-st at  ionarit ies that were present in the original data sequence. 

Thus, the prediction error sequence is the whitened data sequence which will be used 

in subseque~:lt analysis. We therefore define the linear predictor error filter as the 

hfth order finite impulse response filter with coefficients b[m], which when applied to 

a data sequence, x[n], returns the corresponding prediction error sequence via 

nil 

e[n] = b[m]x[n - m]. 

The coefficients of this filter follow directly from the prediction coefficients of the 

autoregressive model and are given by 

m = 0 

l < m < M  

otherwise. 

4.2 Training 

To determine the coefficients c[m], and therefore b[m], we first determine the mean 

squared prediction error, o-z, of the filter when applied to a representative data se- 

quence of length N ,  



The coefficients c[m] are then chosen to  minimize the mean squared prediction error 

in the least squares sense by requiring 

Assuming that x[n] is a stationary stochastic process, this procedure, which is referred 

to  as training, results in the well known Yule- Walker equations [ l l4] ,  

were r[k] is the auto-correlation of the signal x[n] evaluated at  lag k, 

1 
r [ k ]  = lim - x[n]z[n- k]. 

N+oo N 

Since the auto-correlation of real sequences is even-symmetric about zero lag, the 

Yule-Walker equations take on the particularly simple form of a symmetric Toeplitz 

matrix equation: 

By taking advantage of the symmetry of this matrix equation, it is possible to solve 

for the M  coefficients, c[m], in 0 ( M 2 )  operations, instead of the O ( M 3 )  operations 

required for an arbitrary matrix. This leads to the recursion algorithm of Levinson 

and Durbin, which is widely available[ll5] and will not be reproduced in detail here. 



In practice, due t o  the finite length N of the available training data, we actually 

estimate the auto-correlation by the expression 

Note that this estimate exhibits a triangular bias towards zero lag due to  an effective 

weighting by (N - IkI)/N. Although this bias may be compensated for, it can be 

shown that this choice of estimate actually ensures that  the resulting Yule-Walker 

equations are always non-singular[ll4]. Hence, except in the pathological case of an 

all zero input signal, a solution to  the Yule-Walker equations is guaranteed to exist. 

We also note that efficient estimation of the first M auto-correlation coefficients of the 

training data is possible via the fast Fourier transform. In this case, the necessary 

auto-correlation coefficients can be computed in O ( N  log N) operations, instead of 

the O(1VM) operations required by the more straightforward time-domain approach. 

In addition, we note that the length N of the training data must exceed the order M 

of the filter in order t o  allow estimation of the auto-correlation sequence up to a lag 

k equal to Ni. Finally, we note that for sufficiently small M, the computational cost 

of training is dominated by the O ( N  log N )  operations associated with estimating 

the auto-correlation sequence. However, for sufficiently large M, the 13 (M2) opera- 

t ions required to  solve the Yule- Walker equation may quickly become the dominant 

computational cost. 

4.3 Properties 

In addition to the guaranteed existence of a solution, the Yule-Walker equations have 

a number of useful properties. 

Since the resulting linear predictor error filter has a finite impulse response, it consists 

95 



only of zeros (with poles at infinity) in the 2-plane and is by definition stable[ll6]. 

In addition, the resulting filter is also minimum phase[ll4]. That is, all of its zeros 

are inside the unit circle such that the inverse filter is also stable. 

This suggests that whitening by linear predictor error filtering can be described by 

the two step process depicted in Figure 4.1. In the first step, training, the input signal 

is modeled as white noise shaped by an all-pole filter. In the second step, application, 

the inverse all-zero filter is applied, which restores the original white noise sequence. 
I - - - - - - - - - - - - - - -  

I 
I 

All Zero White 
Noise Filter Filter Noise 

I 
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Figure 4.1: Autoregressive model for whitening by linear predictor error filtering. 

In general, however, it may not be possible to accurately model an arbitrary signal 

with an autoregressive model of order M. Instead, such cases require an autoregressive 

moving average model, where the signal is modeled as white noise shaped by an 

arbitrary infinite impulse response filter. If a stable inverse filter exists for such a 

model, in general it also has an infinite impulse response, and is therefore not exactly 

representable by the finite impulse response of linear predictor error filters. 

Fortunately, we can approach the performance of the general case, while avoiding the 

difficulties of autoregressive moving average models, by allowing the linear predictor 

filter order, M ,  to  approach infinity a t  the expense of increased computation time. 

In practice, we must truncate the filter at  some finite, but large, value of M. This 

choice of M effects how well the filter can perform on arbitrary data, and has the 

following interpret ation in terms of t ime-domain windowing. 

Consider a stationary stochastic process produced by filtering white noise through 

an arbitrary infinite impulse response filter. Assume also that this filter has a stable 



inverse, whose impulse response we desire in order to perfectly whiten the data. The 

solution of the Yule-Walker equations provides the best fit finite impulse response to 

this desired impulse response in the sense that it minimizes the mean squared pre- 

diction error. Qualitatively, this process produces a truncated version of the desired 

impulse response, which can also be interpreted as applying a rectangular window 

in the time--domain. In the frequency domain, this corresponds to convolving the 

desired transfer function with a sinc function, whose characteristic bandwidth, $p, is 

approximately 

Here f, is the sample frequency of the input data. This has the effect of blurring 

the desired transfer function at a frequency resolution equal to the characteristic 

bandwidth, 4,. As a result, the filter is not able to compensate for narrowband 

spectral features whose bandwidths are less than &. 

Fortunately, by increasing the filter order M, we can whiten to any arbitrary fre- 

quency resolution. In practice one selects the smallest order M such that the data 

are sufficientlly white at the frequency resolution of any subsequent analysis. In the 

case of a time-frequency analysis, where the data is projected onto basis functions of 

maximum duration T, or in the case of a cross-correlation based analysis, where the 

cross-correlation is performed over segments of duration T, we simply choose M such 

that 

M 2 fsT- (4.12) 

The training length, N, of a linear predictor error filter obeys a similar relationship. 

In particular: it is impossible for the filter to  learn about narrowband spectral features 

whose bandwidth are less than a characteristic bandwidth, 4, given by 

However, since N is typically much larger than M ,  the applicable frequency resolution 

of the filter is determined by q5p rather than &. Instead, the training time is usually 



chosen based on computation cost and the minimum duration over which the input 

data stream is relatively stationary. 

Finally, prior to  training and applying a linear predictor error filter, it is also necessary 

to  detrend data by high pass filtering it at  a frequency equal to  or greater than 4*. 
Otherwise, signal content below this frequency introduces a bias during training since 

the resulting predictor cannot compensate for signal content whose period exceeds 

the predictor length. In this work, we apply the well known Butterworth high pass 

filter [ l l6] ,  whose frequency domain attenuation has the form 

where f ,  is the characteristic cutoff frequency of the filter and L is the order of the 

filter. 

In practice, due to  the large low frequency signal content associated with seismic noise, 

data from Earth based gravitational-wave detectors are typically high pass filtered at  

a frequency around 50 Hz. For the typical linear predictor filter orders encountered 

in gravitational-wave data analysis, this turns out to be approximately equal to, or 

greater than, &, such that the data is also sufficiently detrended for linear predictive 

whitening . 

4.4 Application 

It is evident from the preceding discussion that the typical linear predictor order may 

be much larger than that of other filters which are commonly used in the conditioning 

of gravitational-wave data. For example, consider a multiresolution time-frequency 

analysis with a maximum tile duration of 0.25 seconds applied to  data sampled at 

16384 Hz. Such an analysis would require a linear predictor error filter of order 4096 

or greater. This would be prohibitively expensive to implement using the standard 



t ime-domain convolution of Equation 4.3. 

Fortunately, exact techniques exist to apply FIR filters in the frequency domain. 

These techniques, known as overlap-add or overlap-save, rely on piecing together 

the results of many cyclic convolutions performed in the frequency domain via fast 

Fourier transforms. This allows the filtering of arbitrarily long data streams, broken 

into blocks of length N, in O(N log N) operations per block, instead of the O ( N M )  

operations per block required by standard time-domain techniques. These techniques 

are well known and documented[ll6] and will not be reproduced here in detail. 

4.5 Frequency response 

In order to characterize the effects of linear predictive whitening, we now consider its 

performance on the simulated interferometric detector noise described in section 6.3. 

The ability of linear predictor error filtering to whiten this data is demonstrated in 

Figure 4.2. In this example, 64 seconds of data was first high pass filtered at 64 Hz us- 

ing a 6th order Butterworth filter. Next, a 0.25 second linear predictor error filter was 

trained on the first 32 seconds of data and then applied to the subsequent 32 seconds 

of data. Figure 4.2 shows the amplitude spectra of the data before and after applica- 

tion of the linear predictor error filter. Both amplitude spectra were measured at a 

frequency resolution of 8 Hz, in agreement with the condition in Equation 4.12. The 

effectiveness of the linear predictor error filter to whiten the data at this frequency 

resolution is readily apparent from the resulting frequency spectrum. In particular, 

above the cutoff frequency of the high pass filter, the resulting spectrum is indepen- 

dent of frequency, as expected for stationary white noise. 

In order to further characterize the linear predictor error filter, it is useful to define 
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Figure 4.2: Amplitude spectra of simulated gravit at ional-wave data before and after 
whitening by a linear predictor error filter with a 4 Hz resolution. The amplitude 
spectra are shown at a frequency resolution of 8 Hz, consistent with the requirement of 
Equation 4.12. The simulated data is described in more detail in section 6.3. In both 
cases, the simulated data was first filtered by a 6th order Butterworth high pass filter 
with a cutoff frequency of 64 Hz. Aside from the lack of low frequency energy below 
the cutoff frequency of the high pass filter, the effectiveness of the linear predictive 
whitening is readily apparent. 

its frequency response by its discrete time Fourier transform[ll6], 

B ( f )  = f j [m~e - '~ "~  "Ifs. 

The frequency response of the example linear predictor error filter is then shown is 

Figure 4.3. As expected, the magnitude response of the filter is simply the inverse of 

the unwhitened amplitude spectrum seen in Figure 4.2, except for an arbitrary gain 

factor. However, the phase response of the filter is more problematic. Large phase 

changes are evident in the spectrum in conjunction with narrowband spectral features 
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Figure 4.3: Frequency response of linear predictor error filter trained on simulated 
gravit ational-wave data with a 4 Hz resolution. The resulting magnitude response 
(top) is the inverse of the unwhitened spectrum observed in Figure 4.2. The associate 
phase response (middle) exhibits large fluctuations in proximity to narrow band spec- 
tral features in the unwhitened spectrum, which results in a group delay (bottom) for 
narrowband. wavepackets that clearly exceed the light travel time between gravitational- 
wave detectors. Note that the group delay extends well off the bottom of the plot at 
the frequencies of narrow band spectral features. 



in the original unwhit ened spectrum. Unfortunately, as indicated below, such features 

will likely lead to  unwanted dispersion. 

A useful measure of the dispersion introduced by a filter is its group delay[ll6], which 

is also shown in Figure 4.3 for the example case under consideration. The concept 

of group delay is closely related to the more well known concept of group velocity 

and represents the time delay incurred by a narrowband wavepacket propagating 

through a communication channel. Since a uniform delay of r d  seconds in the time- 

domain is equivalent to a linear phase shift in the frequency domain with a phase 

factor of e x p ( - i 2 ~  f rd), the group delay, rd( f )  at a particular frequency, f ,  is simply 

proportional to the local slope of the phase at  that frequency, 

Here the phase is determined by the complex argument of the filter's frequency domain 

response B ( f ) ,  and f, is the sample frequency of the discrete time data. 

As evidenced in Figure 4.3, the group delay near narrowband spectral features can 

be quite significant, leading to dispersion on the order of or greater than the speed of 

light travel time between gravitational-wave observatories on the Earth. This effect 

becomes more problematic at  higher filter orders, where the linear predictor filter 

attempts to  compensate for ever narrower spectral features, leading to  ever more 

rapid fluctuations in the phase response. In the next section we consider the possible 

impact of this effect on multidetector analysis and propose a method for avoiding 

these difficulties. 

4.6 Zero-phase filtering 

The dispersion introduced by standard linear predictor error filtering poses a potential 

problem when conditioning data from multiple detectors in order to perform a coinci- 



dent search for bursts. Differences in the predictable signal content of the individual 

detectors will invariably result in filters with varying amounts of dispersion. This 

difference in dispersion then results in a relative timing error between the whitened 

time series. If this timing error approaches or exceeds the speed of light travel time 

between gravit at ional-wave observatories, the time scale used to test for coincidence 

must be increased in order to avoid the false dismissal of true gravitational-wave 

events. This either results in an increase in the number of accidental coincidences or 

requires an increase in detection threshold and corresponding decrease in detection 

efficiency in order to maintain a fixed probability of false detection. In addition, the 

effects of dispersion make it impossible to  perform a coherent search for bursts as 

described in section 5.8. 

Fortunately, the problem of filter dispersion can be eliminated by the technique of 

zero-phase filtering. In this approach, a filter is first applied causally, then anti- 

causally in order to cancel the effects of any phase dispersion introduced on the 

forward pass. That is, we first convolve the input time series with the impulse response 

of the desired filter, 
+oo 

then convolve the resulting time series with the time reversed impulse response of the 

same filter, 

~ [ n ]  = b[k ]y [n  + k ] .  

Alternatively, this is equivalent to applying a single filter, 

where the coefficients rb [l]  are simply the unnormalized auto-correlation of the original 

filter coefficients, 



The fact that the resulting filter has zero phase is directly related to  the even sym- 

metric property of the auto-correlation of a real sequence [ l l6] .  

In the frequency domain, the proposed zero-phase filter has the much simpler form 

where B ( f )  is the frequency domain response of the original filter as defined by 

Equation 4.15. Here, the zero-phase property of the resulting filter is immediately 

evident. However, we also note a side effect of zero-phase filtering: the magnitude 

response of the original filter is applied twice. While this is not a concern when high 

pass filtering the input time series, it is undesirable for whitening since it will result 

in the inverse, rather than white, spectrum. 

Instead, we desire to  apply the filter 

Unfortunately, this filter cannot in general be implemented by a finite length im- 

pulse response of order M.  However, we may approach the ideal frequency response 

by effectively increasing the filter order. This is accomplished by zero padding the 

impulse response of the original filter to  a length L greater than M, computing the 

discrete Fourier transform of the zero padded time series, taking the absolute value 

of the resulting frequency series, and computing the inverse discrete Fourier trans- 

form to  return to the time-domain. The resulting even symmetric filter coefficients 

then achieve the desired magnitude response in the limit as L goes to  infinity. In 

Figure 4.4, we present an example of the accuracy with which the desired magni- 

tude response is achieved as a function of the multiplicative increase in filter order. 

Again, we train the linear predictor error filter on the simulated detector noise from 

section 6.3. However, for clarity we have trained the filter for much coarser frequency 

resolution of 256 Hz. 



In Figure 4.4, we first note the poor agreement between the magnitude response of 

the zero-phase filter and the desired filter with the same filter order. However, by 

increasing the order of the zero-phase filter by a factor 4, the magnitude response of 

the resulting zero-phase filter shows good agreement with the desired response. In 

practice, mi.iltiplicative factors on the order of 64 have been applied in this work, 

ensuring excellent agreement with the desired magnitude response. 

Frequency [Hz] 

Figure 4.4: The accuracy with which the magnitude response of zero-phase linear 
predictor error filters achieve the desired magnitude response of the standard linear 
predictor as a function of the multiplicative increase in filter order. The desired mag- 
nitude response is similar to that of Figure 4.3, except that, for reasons of clarity, here 
the wl1iteni:tlg filter has been designed for a much coarser frequency resolution of 256 
Hz. Although noticeable disagreement is observed if the filter order is unchanged, an 
increase in filter order by a factor of 4 shows good agreement with the desired response. 



4.7 Example 

Finally, in order to  gain a better understanding of the effects of zero-phase linear 

prediction, we conclude this chapter by considering a simple example of zero phase 

whitening applied to a simulated burst of gravitational radiation. In particular, we 

consider a sinusoidal Gaussian burst of the form 

h ( t ;  7 ,4 ,  Q )  = ho exp [ - 4 ~ ~ + ~ ( t  - T ) ~ / Q ~ ]  sin [ 2 ~ 4 ( t  - 7)) , 

with a central frequency of 256 Hz and a Q of 8. 

This signal is then added to  32 seconds of simulated LIGO detector noise as described 

in section 6.3. Moreover, for clarity, this signal is injected with the reasonably large 

matched filter signal to noise ratio of 30. The resulting data are then zero-phase high 

pass filtered by a 6th order Butterworth filter with a cutoff frequency of 64 Hz and 

whitened by zero-phase linear prediction with a frequency resolution of 1 Hz. The 

resulting high pass filtered and whitened time series is shown in Figure 4.5 along 

with the high passed filtered time series prior to  whitening and the true injected 

gravitational-wave burst. The benefit of zero-phase linear predictive whitening to 

remove predictable signal content is readily apparent. In addition, we also note the 

absence of any apparent time delay between the whitened sinusoidal Gaussian and 

the true signal. After developing the underlying theory of the Q transform, we will 

return to this example in section 5.9, where we will apply the Q transform to  resulting 

whitened data stream in order to recover the time-frequency properties on the injected 

waveform. 
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Figure 4.5: Example zero-phase whitening of a sinusoidal Gaussian burst in the pres- 
ence of simulated LIGO detector noise. In this case, the signal is a 256 Hz Gaussian 
wave packet, with a Q of 8 injected into simulated LIGO detector noise with an optimal 
matched filter signal to noise ratio of 30. The time-domain waveform of the combined 
signal and noise are shown after zero-phase high pass filtering by an effective 12th 
order Butterworth filter with a cutoff frequency of 64 Hz (top), and whitening by a 
zero-phase linear prediction with a 1 Hz frequency resolution (middle). The original 
sinusoidal Ciaussian burst is also shown for reference (bottom). Note the order of mag- 
nitude difference in the scale of the top plot relative to the other two. This is due to 
the large root mean square noise associated with coherent signal content in the input 
data stream. 





Chapter 5 

The Q Transform 

In chapter 3 we motivated the use of a multiresolution basis of well localized functions 

to search for gravitational-wave bursts. In this chapter, we introduce the Q transform 

as a tool for performing such an analysis. 

The Q transform is a modification of the standard short time Fourier transform[85] 

in which the analysis window duration varies inversely with frequency such that the 

time-frequency plane is covered by tiles of constant Q[117, 1181. In this sense, it 

similar in construction to the continuous wavelet transform [l08]. However, since 

reconstruction of the data sequence is not a concern, we permit violation of the zero 

mean admissibility requirement for wavelets. In addition, in contrast to the more 

commonly encountered dyadic wavelet decomposition, the discrete Q transform is 

not restricted to frequencies that are related by powers of two. 

In what follows, to gain an understanding of the Q transform, we first introduce the 

more intuitive continuous form. Following that, we develop the corresponding version 

for the case of discrete data. In particular, we develop a frequency-domain form of 

the discrete Q transform which takes advantage of the computational efficiency of 

the fast Fourier transform. We also present a choice of analysis window that achieves 



near minimum time-frequency uncertainty, and determine the necessary window nor- 

malization to ensure a complete and accurate accounting of signal energy. 

We then focus on the interpretation of the resulting Q transform coefficients in or- 

der to identify st atistically significant events. First, the st atistical distribution of Q 

transform magnitude is determined assuming the data has been sufficiently whitened 

using the techniques presented in chapter 4. Next, an outlier rejection technique is 

presented which reduces the susceptibility of the estimated st at istical parameters to 

non-stationarities in the input data. We then define the significance of Q transform 

coefficients as the probability of observing a coefficient of greater magnitude, given 

stationary white noise data. This permits the identification of statistically significant 

events using a detection threshold that is selected for a target event rate, again as- 

suming st at ionary white noise. Finally, we present a simple exclusion algorithm that 

enables significant events from multiple overlapping Q transforms to be combined in 

a way that best determines the parameters of well localized bursts. 

Next, we combine the methods proposed in this and the previous chapters in order to 

form a comprehensive end-to-end analysis pipeline for the detection of gravitational- 

wave bursts. In addition, we present a method of coherently combining Q transform 

measurements from multiple detectors in a way that maximizes the combined signal to  

noise ratio of gravitational-wave bursts while taking into account potential differences 

in sensitivity between the detectors. 

Finally, in order to gain a more intuitive understanding of the Q transform, we con- 

clude with a simple example of the Q transform applied to a simulated gravitational- 

wave burst in the presence of simulated detector noise that has been whitened using 

zero-phase linear prediction. 



5.1 The continuous Q transform 

In this section, we develop two forms of the continuous Q transform. The first is 

a straightforward time-domain projection of the input time series onto a basis of 

windowed sinusoids. The second is an alternative frequency-domain form, which will 

prove useful in developing the fast form of the discrete Q transform in section 5.2.2. 

5.1.1 Direct form 

In its most basic form, the continuous Q transform is simply the projection of the 

continuous time series x ( t )  onto windowed complex exponentials of center frequency 

q5 and quality factor Q. Mathematically, this is given by the expression 

where u) ( t  - 7 ,  4, Q) is a time-domain window centered on time r with a duration that 

is proportional to  Q and inversely proportional to the frequency q5 under consideration. 

Due to  its simplicity, we will refer to Equation 5.1 as the direct form of the continuous 

Q transform. The resulting complex valued transform coefficients are a measure of the 

average signal amplitude and phase within a time-frequency region centered on time 

r and frequency 4, whose shape and area are determined by the requested quality 

factor Q and the particular choice of analysis window. However, since our initial 

development of the Q transform does not depend upon the details of the analysis 

window, we defer discussion of the specific choice of window until section 5.3. 



5.1.2 Alternative form 

To develop an alternative frequency-domain form of continuous Q transform, we begin 

by defining the modulated input time series 

The transform of Equation 5.1 then becomes 

which we recognize as cross-correlation in time at  a constant transform frequency 

4 and qua,lity factor Q. This suggests an alternative Fourier space representation 

defined by 

in which the Q transform is simply the product 

with the superscript asterisk denoting complex conjugation. Here, in order to  avoid 

confusion, we reiterate the fact that 4 is the target Q transform frequency, while f is 

the frequency variable associated with the Fourier decomposition. 

Based on Equation 5.2 and the frequency shift property of Fourier transforms, the 

Fourier transform in Equation 5.4a is simply 



where 

is the standard Fourier transform of the original time series. 

'Ikansforming back to the time-domain then yields the desired alternative frequency- 

domain representation of the original time-frequency transform: 

Thus, the Q transform at  a specific frequency and quality factor is obtained by a 

simple Fourier transform of the original time series, a shift in frequency, multiplica- 

tion by the appropriate frequency-domain window function, and an inverse Fourier 

transform. The benefit of Equation 5.8 is that the Fourier transform of the origi- 

nal time series need only be computed once. We then perform the inverse Fourier 

transform only for the logarithmically spaced frequencies and quality factors that we 

are interested in. From this point of view, the Q transform operates as a heterodyne 

detector for a band centered on the frequency q5 with a bandwidth determined by 

the quality factor Q. That is, the input data stream is mixed down to near zero 

frequency by multiplication with a complex valued reference oscillator at  frequency 

4, then low pass filtered with cutoff frequency of approximately &/2Q. The resulting 

complex valued time series is therefore a measure of the signal amplitude and phase 

in a frequency band of width q5/Q centered on the frequency 4. 

5.2 The discrete Q transform 

Although the continuous Q transform can be evaluated for arbitrary time, frequency 

and Q ;  in practice this is not necessary. As demonstrated in chapter 3, basis functions 

that are closely spaced in time, frequency, and Q will produce highly correlated 



projections. As a result, we need only evaluate the Q transform at a discrete set of 

parameters in order to accurately detect st at istically significant events. This fact, 

coupled with the practical requirement of a finite length data sequence, motivates 

our development of the discrete Q transform. 

Here we develop two forms of the discrete Q transform. The first is a discretization 

of the direct continuous Q transform and implements a straightforward project ion of 

the input time series onto a basis of windowed complex exponentials. The second is a 

discretization of the frequency-domain form of the continuous Q transform that takes 

advantage of the computational efficiency of the fast Fourier transform. 

Our development of the discrete case primarily proceeds in parallel to the continuous 

case. However, care must be taken to avoid the difficulties which are specific to 

discrete data. In particular, it is convenient to assume that all data sequences are 

infinite periodic sequences of period N. We may then apply the well developed theory 

of discrete Fourier transforms to the discrete Q transform. However, this assumption 

also introduces a number of complications, which will be pointed out in the course of 

the discussion. 

5.2.1 Direct form 

We first develop the direct form of the discrete Q transform, which is analogous to 

the transform of Equation 5.1. This is simply the projection of the discrete time 

series under test, x[n], onto windowed complex exponentials of frequency index 1 and 

quality factor Q, 

Here w [n, 1, Q] is taken to  be a periodic train of time-domain windows centered on time 

indices that are integer multiples of N with a uniform duration that is proportional 



to Q and inversely proportional to  the frequency index 1 under consideration. 

The resulting complex valued transform coefficients are a measure of the average signal 

amplitude and phase within a time-frequency region centered on time index m and 

frequency index 1, whose shape and area are determined by the requested Q and the 

particular choice of window. Again, since the initial development of the Q transform 

does not depend upon the details of the analysis window, we defer discussion of the 

specific choice of window until section 5.3. 

Note that the assumption of periodic data sequences has also been applied to the 

window sequence. As a result, depending upon the particular choice of window, 

some number of discrete Q transform coefficients for time indices near the beginning 

and end of the data segment will be adversely effected by time-domain aliasing. In 

practice, when analyzing long data sequences using multiple Q transforms, such edge 

effects are avoided by evaluating the Q transform for overlapping blocks of data and 

discarding values near the edges of each block. 

5.2.2 Fast form 

We now develop an alternative frequency-domain form of the discrete Q transform 

that is analogous to the continuous transform of Equation 5.8. We begin by defining 

the modulated input time series 

The transform of Equation 5.9 then becomes 



Assuming v[n, l] and w [n, 1, Q] are periodic with period N ,  we recognize this as cyclic 

cross-correlation in time at  a constant frequency index 1 and quality factor Q. This 

then suggests an alternative discrete Fourier space representation defined by 

n=O 

N-I 

in which the discrete Q transform is simply the product 

Note that we have chosen the convention where the factor of 1 / N ,  which necessarily 

appears in discrete Fourier transform pairs, is associated with the inverse transform 

rather than the forward transform. 

Based on Equation 5.10 and the periodic frequency shift property of discrete Fourier 

transforms, the discrete Fourier transform in Equation 5.12a is simply 

where 

is the standard discrete Fourier transform of the original time series. 

Transforming back to the time-domain then yields the desired frequency-domain rep- 

resent at  ion of the original t ime-frequency transform: 



As was the case with the alternative form of the continuous Q transform, this repre- 

sentation ha,s the benefit that the Fourier transform of the original data need only be 

computed once. Moreover, for the discrete case, we may also take advantage of the 

computational efficiency of the fast Fourier transform to compute this initial trans- 

form, as well as the subsequent inverse Fourier transforms required for each desired 

value of 1 and Q. In addition, if we also choose a window that has finite non-zero 

extent in the frequency-domain, the length of these inverse transforms need only be 

equal to the number of non-zero frequency-domain window coefficients. As a re- 

sult, depending upon the particular choice of window and the number of frequencies 

evaluated, the total computational cost of this form of the discrete Q transform is 

typically little more than order N log N. For this reason, we refer to  the transform 

of Equation 5.16 as the fast discrete & transform. 

Note that the frequency shift of Equation 5.14 is cyclic due to the assumed periodicity 

of the frequency-domain signal. As a result, depending upon the particular choice 

of window, some number of discrete Q transform coefficients for frequency indices 

near zero frequency or the Nyquist frequency will be adversely effected by frequency- 

domain aliasing. In practice, we avoid this effect by choosing a window with finite 

non-zero extent in the frequency-domain and then excluding Q transform coefficients 

for those frequency indices for which aliasing will occur. 

5.3 Analysis window 

Although our development of the continuous and discrete Q transforms did not con- 

sider a specific choice of analysis window, our discussion in chapter 3 motivated the 

use of a basis of functions that are well localized in the time-frequency plane. In 

theory, this suggests the use of Gaussian windows in time and frequency. However, in 

practice, this choice of window results in a number difficulties due to  the Gaussian's 

infinite extent. In particular, the use of a Gaussian window is incompatible with the 



assumption of a periodic window sequence as required by the discrete Q transform. 

As a result, there is no choice of analysis window that will achieve the theoretical 

minimum possible time-frequency uncertainty in the discrete case. Instead, we seek a 

realizable window with a time-frequency localization that comes close to the minimum 

possible uncertainty, while also basing our decision on a number of other desirable 

properties such as simplicity, computational efficiency, and minimal spectral leakage. 

The topic of time-frequency windows is well studied and a large variety of windows 

exist that provide relatively good time-frequency localization[ll6, 1191. However, for 

our purposes, we will find it convenient to  choose a frequency-domain implementation 

of the so-called bisquare or Connes window, which has the simple form 

otherwise. 

Here Af is the half bandwidth of the window at  zero magnitude, while A is an overall 

normalization factor to  be determined in section 5.4. For simplicity, we have assumed 

that the window is centered on time zero and frequency zero. 

This choice of window has a number of useful properties. 

First, it has a particularly simple analytical form in the frequency-domain. Such a 

choice is desirable due to  the frequency-domain representation of the fast discrete Q 

transform. In addition, this choice will prove convenient when deriving the appropri- 

ate normalization factors in sect ion 5.4. 

Second, it has finite non-zero extent in the frequency-domain. As pointed out at  

the end of section 5.2.2, such a choice allows for shorter inverse Fourier transforms 

when calculating the fast discrete Q transform, and is therefore advantageous from 

the point of view of computational efficiency. In addition, in section 5.4.4 we will 

find that a window with finite non-zero frequency-domain extent also makes possible 

a normalization that ensures an accurate accounting of total signal energy. 



Third, it provides near minimum time-frequency uncertainty. In particular, if we 

a,pply the parameterization of section 3.1 to the bisquare window, we find that it 

aschieves a t ime-frequency localization that is only 4.5 percent greater than the min- 

imum possi1:)le time-frequency uncertainty associated with the ideal but unrealizable 

Gaussian window. We also find a simple relationship between Af and our standard 

definition of bandwidth as given by Equation 3.7b. In particular, for a Q transform 

analysis at  a frequency and a quality factor Q ,  we find the relationship 

Finally, the bisquare window incurs relatively little energy leakage into time-domain 

side lobes. 111 particular, as seen in Figure 5.1, the squared magnitude of the first time- 

domain side lobe is less than the peak response of the bisquare window by a factor of - 
600. In addition, the squared magnitudes of subsequent side lobes drops off at a rate of 

1/6t3, where 6t is the relative time from the center of the window. In this respect, the 

bisquare window has a strong resemblance to  the more commonly encountered Hann 

window. In fact, the bisquare window is simply a fourth order series expansion of the 

Hann window, adjusted to  ensure a zero first derivative at  the window edge. Here we 

have selected the bisquare window primarily because it simplifies calculation of the 

normalizatio~i in section 5.4.4. For comparison, in Figure 5.1 we present the time- 

domain and frequency-domain envelopes of the bisquare and Hann windows, as well 

as those of the ideal but unrealizable Gaussian window and the more straightforward 

rectangular window. In contrast t o  the bisquare window, the rectangular window 

exhibits an attenuation factor of only - 20 for the squared magnitude of the first time- 

domain side lobe and drops of a t  a rate of only l lb t .  As a result, the bisquare window 

exhibits significantly reduced spectral leakage relative to  the rectangular window. 

This dramatically improves the detection of relatively weak signals in the presence of 

nearby stronger signals. The similarity of the bi-square window to  the ideal Gaussian 

window is also evident in Figure 5.2, where we compare example time-domain basis 

functions for each window assuming a typical Q value of 10. 



Figure 5.1: The one-sided frequency-domain (top) and one-sided time-domain (bot- 
tom) envelopes of the bisquare (solid) window are compared with those of the Gaussian 
(dotted), Hann (dashed) and rectangular (dashed-dotted) windows. For comparison, 
all of the windows have an identical bandwidth of 1 Hz as defined by Equation 3.7b and 
are normalized such that the integral of their squared magnitude is unity in both the 
time and frequency domains. Note that while the optimal Gaussian window is plotted 
for reference, it is not achievable in the discrete case due to its infinite extent. Also 
note the strong similarity between the bisquare and Hann windows and the fact that 
they have significantly less energy leakage into time-domain side lobes compared with 
the more straightforward choice of a rectangular window. 
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Example time domain basis function 
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Figure 5.2: Example time-domain basis functions for both a Gaussian window (solid) 
and bisquare window (dashed). For comparison, both basis functions correspond to a 
time-frequency tile with a central frequency of 10 Hz and a bandwidth of 1 Hz, resulting 
in a Q of 10 as defined by Equation 3.6b, Equation 3.7b, and Equation 3.8. In addition, 
both are nclrmalized such that the integral of their squared magnitude is unity. 

For the case of the discrete Q transform, we simply choose a discretized form of 

the bisquare window consisting of periodic samples of Equation 5.17. At the end 

of the next section, our goal will be to find an appropriate normalization of this 

discretized form such that  the resulting discrete Q transform coefficients effectively 

emulate samples of an ideal underlying continuous distribution. In doing so, we will 

find it simpler to first analytically normalize the continuous form of the bisquare 

window, and then apply the appropriate conversion factors for the discrete case. 

We also note that,  in the discrete case, the finite non-zero frequency-domain extent 

of the bisquaxe window enables us to  strictly avoid frequency-domain aliasing. This 

is accomplished by identifying a minimum permissible Q and maximum permissible 

frequency index I such that the full zero to zero bandwidth of the frequency shifted 

window never extends beyond zero frequency or the Nyquist frequency. For the 



bisquare window and a discrete time series of length N, we find the limits 

At this point, the reader may be concerned that a different window has been selected 

for our analysis than was assumed in section 3.2.2 when determining the optimal tiling 

for a specified worst case fractional energy loss. However, since the time-frequency 

area of the bisquare window is only 4.5 percent greater than that of the Gaussian 

window, this discrepancy is of little practical import. To quantify this, in section 6.1 

we will present a validation of our proposed tiling using the Q transform applied to 

Gaussian signals injected into stationary white noise. In doing so, we will find that 

the use of a bisquare window in conjunction with the proposed tiling of section 3.2.2 

is still consistent with the specified worst case fractional energy loss. 

Normalization 

There are two different criteria we may use to determine the normalization of the 

analysis window. In what follows, we first determine the normalization necessary to  

exactly recover, in a single time-frequency tile, the energy of bursts which are well 

localized in the time-frequency plane. We also find that,  when the Q transform is 

applied to a stationary stochastic process, this same normalization permits a useful 

interpretation of mean tile energy in terms of power spectral density. By combining 

these results, we then consider the recovery of well localized bursts in the presence of 

stationary detector noise. 

Next, we take into account the energy overlap between time-frequency tiles. This 

allows us to develop an alternative normalization that ensures an accurate accounting 



of totajl signal energy when integrated over all tiles. As a result, we exactly recover 

the energy c)f bursts that are poorly localized in the time-frequency plane. 

Finally, we consider the appropriate normalization of the discretized analysis window 

such that the resulting discrete Q transform coefficients approximate samples of a 

hypothetical. continuous Q transform. 

5.4.1 Localized bursts 

We first consider the appropriate normalization of the bisquare window such that 

when applied to the analysis of a well localized burst, the magnitude of the best 

match Q triimsform coefficient is an accurate measure of the burst's characteristic 

strain amplitude ((hl( as defined in section 3.1.1. That is, we desire that 

where we have assumed that the signal and the modulated analysis window have the 

same center time, center frequency, and Q, and that there is an arbitrary phase 0 

between t hern. 

To accomplish this, we consider a real valued test signal which is also bisquare in form 

and has the same center time, center frequency, and Q as the modulated analysis win- 

dow under test. In addition, we may simplify our notation without loss of generality 

by dropping the constant 4 and Q from the list of window parameters and by taking 

T to be zero. In this case, our test signal has a time-domain and a frequency-domain 

represent at io n given by 



Here B is a constant normalization factor that is chosen in accordance with the 

definition of characteristic strain amplitude in Equation 3.2. If we also select Q in 

accordance with the condition of Equation 5.19a, then the two terms in the frequency- 

domain representation of our test signal are guaranteed not to overlap. As a result, 

we find that our test signal must obey the normalization condition 

If we now apply the frequency-domain form of the continuous Q transform to  our test 

signal, we find the expression 

Again, assuming that Q is selected in accordance with Equation 5.19a, the second 

term in this integral vanishes due to  the non-overlap of the multiplicands. As a 

result, in order to  meet the requirement of Equation 5.20, we find the normalization 

condition 

It is easy to  see that the simultaneous normalization conditions of Equation 5.22 and 

Equation 5.24 are then satisfied, and the signal's characteristic strain amplitude is 

exactly recovered, if B is unity and the window obeys the normalization condition 

We thus seek the coefficient A in Equation 5.17 such that the one-sided frequency- 

domain integral of the window's squared magnitude is unity. Straightforward inte- 

gration then yields a normalization factor of 

where we have substituted the expression of Equation 5.18 for Af. 



Here, for convenience, we provide the final form of the normalized window for use in 

the alternative frequency-domain form of the continuous Q transform of Equation 5.8: 

l o  otherwise. 

5.4.2 Stationary stochastic processes 

With this clloice of normalization, the magnitudes of the resulting coefficients also 

have a usefill interpretation when the Q transform is applied to  the analysis of a 

stationary st,ochastic process. To develop this result, we begin with the direct form 

of the continuous Q transform applied to the stationary stochastic process n(t)  , 

The squared. magnitude of the resulting Q transform coefficients are then given by 

the double integral 

+a +oo 

1 N (7, (p, &) l2 = [ n(t) n(t f )  w (t  - r )  w (t' - T )  r-""@(t-t') d t  dt' . (5.29) 

Again, we have taken 4 and Q to  be constant and dropped them from the list of 

window para,meters in order to  simplify our notation. 

Due to the random nature of the data under test, the resulting squared magnitude 

of individual Q transform coefficients is necessarily a random variable. In section 5.5 

we will determine the distribution of this random variable for the special case of 

stationary white noise. Here, however, we are only interested in its expectation value 

over an ensemble of many measurements. In the process, due to  the stationarity 

of n(t) ,  we may also take r to  be zero without loss of generality. The resulting 



expectation value is then given by the expression 

Next, we again make use of the stationarity of n(t) ,  which permits us to substitute 

the relative time lag T for the time difference t - t', such that 

We then recognize the expectation value on the right hand side as the stationary 

auto-correlation of n(t)  evaluated at  time lag T, 

r,(T) = (n(t) n( t  - T ) ) .  (5.32) 

By substituting this relation and rearranging the resulting integral, we obtain the 

expression 

Finally, we recognize this as the Fourier transform of a product of two time-domain 

functions, which is simply the frequency-domain convolution 

Here G,( f )  is the two-sided power spectral density of the stationary stochastic process 

n(t)  as defined by Equation 3.29 and we have used the Fourier transform relation 

for the auto-correlation of the time-domain window function. 

To understand this result, we first choose Q in accordance with Equation 5.19a such 



that the frequency shifted analysis window does not extend below zero frequency. 

This then allows us to  rewrite Equation 5.34 in terms of the one-sided power spectral 

density Sn(j") as defined by Equation 3.30, which gives the desired result 

We may then interpret the squared window function as a one-sided frequency-domain 

probability density function that is normalized according to  Equation 5.25 such that 

the total energy of the signal is accounted for. Thus, when the Q transform is applied 

to  the analysis of a stationary stochastic process, the expected value of the squared 

magnitude of the resulting transform coefficients is simply a measure of the signal's 

average one-sided power spectral density over the bandwidth of the frequency shifted 

analysis wintlow. Note that in deriving this result, we have made no assumption other 

than that of a stationary stochastic process. If, however, the power spectral density 

of the stochastic process is approximately constant over the bandwidth of the analysis 

window, then the Q transform provides a direct measure of the local power spectral 

density, 

5.4.3 Localized bursts in noise 

It is instructive at  this point t o  consider the case of well localized bursts in the 

presence of a,dditive detector noise. That is, we consider the input time series 

where n,(t)  is a stationary stochastic process with one-sided power spectral density 

S,, ( f  ) , while iz(t - r, 4, Q )  is a well localized burst with center time T ,  center frequency 

4, and quality factor Q. 



Due to the linearity of the Q transform, the resulting complex valued Q transform 

coefficients are simply vector sums of the coefficients produced when the Q transform 

is applied separately to the burst and to  the detector noise. As a result, the squared 

Q transform magnitude for the best match time-frequency tile is given by 

where llhll is the characteristic strain amplitude of the well localized burst, N(T, 4, Q) 

is the Q transform applied only to the detector noise, and 8 is a uniformly distributed 

random phase between the two complex valued transforms. 

Here, however, we are not concerned with the value of a single measurement, but 

rather with the ensemble average of many such measurements. In this case the phase 

dependent term vanishes due to symmetry, leaving only the quadrature sum 

If, in addition, the power spectral density of the detector noise is approxinlately 

constant over the bandwidth of the burst, then we obtain the simple result 

This motivates the definition of squared signal to noise ratio, 

which for a locally flat detector noise spectrum, yields the intuitive result 

Thus we see that the signal to noise ratio of a well localized burst is directory pro- 

portional to its characteristic strain amplitude 1 1  hJI, as long as the detector noise 



spectrum is approximately constant over the bandwidth of the burst. As we will see 

in section 5.5, the squared signal to  noise ratio of a well localized burst is also directly 

proportional to  its significance, which in turn determines its detect ability. In such 

cases: 1 1  hjI2 can be readily calculated for a postulated astrophysical source and then 

directly compared with noise power spectra S,(f) of a existing detectors in order to 

quickly evaluate a source's detect ability. 

We also not,e that the squared signal to noise ratio of Equation 5.43 is half of the 

optimal squared signal to  noise ratio found from Equation 3.32 under similar condi- 

tions. However, this latter result is only achieved by matched filtering if the signal 

to  be detected is completely known in advance. If instead, the waveform of the well 

localized burst is only known to  within an arbitrary phase, then the signal to  noise 

ratio achieved by matched filtering is in fact equal to  the result of Equation 5.43[120]. 

As a result, for well localized bursts of unknown phase in the presence of a locally 

flat detector noise spectrum, the performance of the Q transform approaches that of 

the matched filter. 

We should point out, however, that for poorly localized bursts, or for detector noise 

spectra that vary significantly over the bandwidth of a burst, the optimal signal to 

noise ratio will not be achieved by the Q transform. As a result, the detection of such 

bursts will be somewhat less than optimal, unless the Q transform is supplemented 

by other techniques. For poorly localized bursts, one option is to consider the joint 

st at  ist ical significance of multiple time-frequency tiles [l03]. However, while such a 

clustering is briefly considered in section 5.4.4 to  reconstruct the energy of poorly 

localized bursts, its application to  their detection is beyond the intended scope of this 

work. 

It is possible. however, t o  avoid the difficulties associated with the frequency depen- 

dence of detector noise by first whitening the data. However, in doing so we are actu- 

ally performing a search of the whitened data stream rather than the gravitational- 

wave data stream. In fact, if the Q transform is applied to  data that has been suffi- 



ciently whitened using the techniques of chapter 4, then the resulting search is equiv- 

alent to an optimal matched filter search for well localized bursts within the whitened 

data stream. This is very similar to the well developed search for gravitational-waves 

from inspiraling binary neutron stars, for which the expected waveforms are well 

known in advance[88]. The only difference is the choice of signal space. In the first 

case, the whitened data stream is searched for well localized bursts of unknown phase 

that fall within a targeted region of time, frequency, and Q space. In the latter case, 

the gravitational-wave data stream is searched for inspiral waveforms of unknown 

phase corresponding t o  a targeted range of binary neutron star masses. Note that,  

since our measurement basis was not selected on astrophysical grounds, there is noth- 

ing problematic about searching for bursts in the whitened data stream rather than 

the gravitational-wave data stream. 

Of course, in practice we are not provided with an ensemble of identically prepared 

bursts. Nor are we provided with separate signal and noise data. As a result, we can- 

not determine the theoretical signal to noise ratio defined by Equation 5.42. Instead, 

assuming stationary detector noise, we estimate the total energy of a single candidate 

burst by 

I I ~ I I ~  = lx(r7 4, Q ) 1 2  - ( I x ( t ,  6, Q ) I ~ )  , (5.44) 

and its corresponding signal to noise ratio by 

Here (X(r, @, Q) l2 is given by Equation 5.39 and ( I x ( ~ ,  4, Q) 1 2 )  is the average energy 

of a representative set of time-frequency tiles, all of which have the same frequency 

and Q as the candidate burst, but occur at  times t other than T .  Unfortunately, with 

only one observation of the burst, the estimated energy and signal to noise ratio of 

the burst depend upon the instantaneous magnitude and phase of the detector noise, 

both of which are random variables. This results in an estimation error that depends 

upon the specific statistical properties of the detector noise and will be revisited in 



section 5.5 for the special case of stationary white noise. For now, we note that the 

error in recovering the signal to noise ratio typically becomes important only for low 

signal to noise ratio bursts, where it is on the order of unity. 

5.4.4 Non-localized bursts 

Whereas the previous sections have all focused on the window normalization neces- 

sary to recover the total energy of a well localized burst within a single Q transform 

coefficient, this section presents an alternative window normalization which is also 

appropriate for bursts that are poorly localized in the time-frequency plane. In par- 

ticular, we seek a generalization of Parseval's theorem to the Q transform such that we 

may exactly recover the total energy of an arbitrary burst by integrating its squared Q 

transform magnitude over the entire time-frequency plane. In doing so, we must take 

into account the Q dependent frequency-domain overlap between time-frequency tiles. 

This approach is particularly important for the case of non-localized bursts, which 

are by definition not well represented by a single time-frequency tile. 

We first consider the integral over time of the squared Q transform magnitude. In 

doing so, we take advantage of the standard form of Parseva17s theorem and the 

Fourier transform relationship of Equation 5 . 4 ~  to express this integral in the Fourier 

domain as 

Next, by substituting the Fourier domain form of the continuous Q transform from 

Equation 5.5 and Equation 5.6, we find the expression 

We then perform the change of variables, $J = f + 4, in order to isolate the 4 



dependency of the right hand side to within the window function, such that 

One-sided integration over positive analysis frequency qh then yields, 

If we now assume that Q has been selected in accordance with Equation 5.19a such 

that the frequency shifted analysis window does not extend below zero frequency, 

then we find that the right hand side of the previous equation is non-zero only for 

positive @. If in addition we require the window normalization condition 

then this previous equation becomes 

Finally, if the original time series x(t) is real-valued, then its Fourier transform Z($) 

is complex conjugate symmetric about zero $. As a result, the right hand side of the 

previous equation is simply the total signal energy as defined by Equation 3.2, 

Thus, if the normalization condition of Equation 5.50 is satisfied, then the integral of 

the squared Q transform magnitude over all time and positive frequencies is simply 

the squared char act eristic amplitude or tot a1 signal energy 



1% therefore seek the coefficient A in Equation 5.17 such that bisquare window obeys 

the normalization condition of Equation 5.50. As a starting point, however, we take 

the previously determined window normalization of Equation 5.26 and seek a correc- 

tion factor 141 such that a normalization coefficient of the form 

satisfies the condition of Equation 5.50. 

Note, however, that the integral of Equation 5.50 is over the analysis frequency 4 and 

not the Fourier domain variable f ,  as was the case for the previous normalization 

condition of Equation 5.25. In addition, we also assume that Al is a function only of 

Q and not of 4. That is, we only take into account the Q dependent frequency-domain 

overlap between tiles, while preserving as much as possible the previously determined 

normalization. As a result, the same value of Al applies uniformly to all tiles within 

a t ime-frequency plane of const ant Q . 

The integral of Equation 5.50 for the specific case of the bisquare window is laborious 

and will not be considered here in detail. However, it should be noted that a solution 

is not guaranteed for all choices of analysis window. In particular, the necessary 

integral only converges for windows that have finite non-zero extent in the frequency 

domain. In ;ilddition, our primary reason for selecting the bisquare window, instead 

of the more commonly encountered Hann window, is due to its analytical simplicity, 

which in this case permits a closed form solution for the normalization correction 

factor Al: 



Here, for notational convenience, we have introduced the alternative quality factor, 

which is simply the ratio of the canonical quality factor Q defined in Equation 3.8 to 

the nlini~num permissible Q from Equation 5.19a. 

Normalization correction factor 

Figure 5.3: The necessary Q dependent normalization correction factor to allow for a 
complete accounting of the energy of non-localized bursts. Note that the correction is 
only marginally important at the minimum permissible Q, where the greatest frequency- 
domain overlap between tiles occurs. For larger values of Q, the correction factor quickly 
becomes negligible. 

The behavior of this normalization correction factor is plotted in Figure 5.3 as a 

function of Q. Note that it has its greatest impact at the minimum permissible Q, 

where the frequency-domain overlap between tiles is at its maximum. In contrast, 

for larger values of Q this correction factor approaches unity and quickly becomes 

negligible as the frequency-domain overlap between tiles decreases. Even for the 

minimum permissible Q, however, the correction is only on the order of five percent. 

We also note that the calculation of Al as given by Equation 5.55 becomes numerically 

unstable for large values of Q. In this case, however, one can safely take Al to be 

unity without significant loss of accuracy. 



Finally, we briefly consider the case of a non-localized burst in the presence of additive 

detector noise. Unfortunately, in this case the total signal energy of the noise has 

little meaning since it becomes infinite as the integral of Equation 5.53 is extended 

over all time and positive frequency. Instead, we only integrate over a finite region 

of the time- frequency plane, but one that is sufficiently large to encompass the entire 

burst. It is then possible to  accurately recover the total signal energy of the burst. 

However, to do so, one must also know the integrated energy of the detector noise 

when no burst is present. In practice, this can be estimated by determining the mean 

integrated energy of similar time-frequency regions, assuming they themselves do not 

contain bursts. The total signal energy of the burst is then recovered by simply taking 

the difference between these foreground and background measurements. Note that 

this procedure is similar to the recovery of well localized bursts in the presence of 

additive detector noise as described at the end of section 5.4.3. As a result, we expect 

to encounter errors in the recovery of poorly localized bursts related to fluctuations 

in the instantaneous magnitude and phase of the detector noise. However, a detailed 

treatment of the issues involved in the detection of poorly localized bursts is beyond 

the scope of this work and is left to future investigation. 

5.4.5 The discrete Q transform 

Up to this point, we have only considered the window normalization appropriate to 

the continuous Q transform. In this sect ion, however, we develop the normalization 

appropriate to the discrete case such that the resulting discrete Q transform coef- 

ficients approximate samples of an ideal underlying continuous distribution. To do 

so, we simply discretize the continuous frequency-domain window by periodic sam- 

pling, and then determine the necessary normalization correction factors such that 

the summat ions which occur in the fast discrete Q transform approximate continuous 

integrals. Tlie resulting correction factors are equally applicable to the normaliza- 

tion developed in section 5.4.1 for the case of well localized bursts as they are to 



the alternative normalization developed in section 5.4.4 for the case of non-localized 

bursts. 

We begin by assuming that x[n], the discrete time series under test, is produced by 

periodic sampling of an ideal continuous time series x ( t )  such that 

x[n] = x(n d t ) .  (5.57) 

Here d t  = l/ f s  is the time-domain sample interval, while f s  is the corresponding 

sample frequency. In what follows, we assume that the sample frequency is sufficient 

to adequately resolve the original continuous time-domain signal. 

Next, by considering both the continuous and the discrete Fourier transforms, 

we find that the resulting continuous and discrete frequency series are approximately 

related by the expression 

where d f  = N/ f ,  is the frequency-domain sample interval. 

If we then compare the frequency domain forms of the continuous and discrete Q 

transforms, 

X [ m ,  1, QI = $ ?[k + 11 G* [k, 1, Q] e-i22"mk1N, (5.60b) 
k=O 

we find that the resulting discrete transform coefficients will approximate samples of 



the cont inuc)us transform if 

G[k, 1, Q] N 6(kdf ,  1 df, q) Ndtdf.  (5.6 1) 

This is a surprisingly simple result since the factors N dt df completely cancel each 

other out. Thus, we find that no correction factor is necessary for the discrete case, 

and we may discretize the continuous frequency-domain window simply by periodic 

sampling with a frequency-domain sample interval of df = N/ f,. 

However, there is another correction factor which must be taken into account if we are 

to take full advantage of the computational efficiency of the fast discrete Q transform. 

As pointed out at the end of section 5.2.2, an analysis window with finite non-zero 

frequency-domain extent allows for increased computational efficiency by permitting 

shorter inverse Fourier transforms in the evaluation of the fast discrete Q transform. 

In particular, if the analysis window for a given value of 1 and Q contains only M 

non-zero values, then we may compute the discrete Q transform using an inverse 

Fourier transform of length M rather than the full length N by noting that 

Here the sun:lmation is only over the M values of k in the set 

Note that, in this case, the resulting discrete Q transform will only have M time Sam- 

ples over the duration of the input time series instead of N. As a result, the discrete 

Q transform is effectively downsampled in time by a factor of N / M .  In practice, 

both N and M are typically integer powers of two in order to take advantage of the 

computational efficiency of the fast Fourier transform. As a result, the downsampling 

ratio is also t.ypically an integer power of two. 



Note also that the definition of the downsampled transform of Equation 5.62 follows 

directly from the original definition of the fast discrete Q transform and the assump- 

tion of only M non-zero coefficients. In the process, we have been careful to  ensure 

that,  for those original time indices m that correspond to integer valued downsampled 

time indices rnMIN, the values of the corresponding discrete Q transform coefficients 

remain the same. Thus, by inspection, we find that the appropriately normalized dis- 

crete frequency-domain window is given in terms of the continuous frequency-domain 

window of Equation 5.27 by the relation 

Finally, we note that M need not be exactly equal the number of non-zero window 

coefficients. Instead, we may also select larger values of M up to and including the 

length N of the input time series. This freedom to  specify M then provides some 

measure of control over the temporal overlap of the resulting discrete Q transform 

tiles. As a result, it is possible to select combinations of 1, Q, and M such that the 

targeted space of time, frequency, and Q is optimally tiled according to  the procedure 

of section 3.2.2. That is, with the minimum number of tiles necessary to ensure that 

the mismatch between an arbitrarily well localized burst and the closest measurement 

tile results in no more than a pre-specified fractional loss in the measured signal 

energy. 

Statistics 

We now turn to the statistical interpretation of Q transform coefficients in order to 

quantify their significance in the presence of additive noise. Here we focus only on the 

discrete case, since in practice this is the transform that is applied. In doing so7 our 

task is greatly simplified if the data has first been whitened using the techniques of 



chapter 4. I:n this case, we will find that the distribution of the squared Q transform 

magnitudes takes on a particularly simple form. We then estimate the parameters 

of this distribution using a method that is insensitive to  transient non-stationarities 

in the input data. The resulting distribution allows us to  define the significance 

of Q transform coefficients as the probability of observing a coefficient with greater 

magnitude. 

Next, we apply these concepts to  the detection of well localized bursts. First, we 

quantify the error in recovering the signal to noise ratio of a burst due the presence 

of stationary white noise. Next, we consider the fraction of Q transform coefficients 

which exceed a specified white noise significance. Together, these results allow us 

to  produce so-called receiver operating characteristics, which display the theoreti- 

cal detection efficiency of localized bursts as a function of signal t o  noise ratio and 

white noise event rate. These predicted detection efficiencies then form a basis for 

comparison that will be useful in chapter 6 when validating our analysis pipeline. 

5.5.1 Stationary white noise 

In what follows, we assume that the input time series consists of ideal stationary 

white noise as described in chapter 4. That is, we assume that each sample is an 

independent random variable drawn from a common distribution. For simplicity, we 

also assume that the input data has been detrended and normalized such that this 

underlying distribution has zero mean and unity standard deviation. We do not, 

however, make any other assumption about the particular distribution from which 

the samples are drawn. 

The Q transform then projects this input data onto a basis of complex windowed 

exponentials. To develop the statistics of the resulting coefficients, it is useful t o  

consider their real and imaginary components separately. That is, we write the Q 



transform as 

where the real and imaginary components are given by the projections 

It is also useful to explicitly define the corresponding basis functions, 

If these basis functions are of sufficient duration, then the well known central limit 

theorem provides us with the distributions of XR[m,  1, Q] and X I [ m ,  1, Q]. In partic- 

ular, both projections are Gaussian distributed with zero mean and with standard 

deviations of 

This is a particularly powerful result: the resulting distributions do not depend upon 

the specific distribution of the input noise. However, it is important to  note that this 

result is only approximate, and that this approximat ion is poor for basis functions 

of very short duration. Fortunately, for non-pathological noise, the minimum Q of 

Equation 5.19a and the maximum analysis frequency of Equation 5.19b are typically 

sufficient to  ensure reasonable agreement with a Gaussian distribution. 

We also note that,  for the above results to hold, the input data need only be uncorre- 

lated on time scales equal to or shorter than the duration of the longest basis function 



under consideration. For this reason, according to the discussion of section 4.3, the 

order M of the linear predictor error filter used to  whiten the data is typically set 

equal to the effective length of this longest basis function. 

For notatiorlal clarity, we now omit the indices m, 1, and Q whenever their presence 

is understood from context. According to the central limit theorem, the distributions 

of the real and imaginary Q transform coefficients are then 

We now seek the corresponding distribution of Q transform magnitudes. This is 

greatly simplified if the basis functions bR[n] and bI[n] are orthogonal. Fortunately, 

for the bisquare window, this is yet another property that is guaranteed by con- 

straints of Equation 5.19a and Equation 5.19b. As a result, the random variables X R  

and XI are guaranteed to be independent and their joint probability distribution is 

simply the product of their individual distributions. In addition, the constraints of 

Equation 5.19a and Equation 5.19b are also sufficient to ensure the equality of OR 

and 01, both of which we will denote by OX. Combining these results allows us to 

write the joint probability distribution as 

Finally, if we perform a change of variables to the polar coordinate system, 

2 112 1x1 = (xi + XI) , 

LX = tan-' (XI/&),  



we find that the Q transform magnitude IX I is distributed as 

which is the well known Rayleigh distribution. 

Alternatively, the distribution of the squared Q transform magnitude, 

is simply an exponential distribution. 

Not surprisingly, these are the same distributions that are found for the magnitude 

and squared magnitude of discrete Fourier transform coefficients for the case of sta- 

tionary white noise[l21]. Although we make no use of it here, it is interesting to 

note that this similaritv with the discrete Fourier transform also extends to coherent 

signal content. In this case, we find that the resulting Q transform coefficients obey 

the Rician distribution 

where I. is a modified Bessel function of the first kind and Xo is the effective ampli- 

tude of any coherent signal content. For the case of no coherent signal content, this 

expression simplifies to the Rayleigh distribution of Equation 5.72. 

We may also consider the phase of Q transform coefficients. IJnfortunately, due to 

the independence of XR and X I  for stationary white noise, the phase of Q transform 

coefficients is distributed uniformly over all angles. As a result, Q transform phase 

provides no useful information for the detection of bursts within a single detector. 

However, for multiple detectors, the relative Q transform phase between detectors 

may potentially be applied to both the detection and validation of coincident bursts. 

Such an approach will be developed in section 5.8, where we consider the coherent 



detection of bursts in data from networks of detectors. 

5.5.2 Significance 

We now define a number of quantities that are useful measures of a burst's detectabil- 

ity in the presence of stationary white noise. Starting with the exponential distri- 

bution of Equation 5.73, we find that the mean squared Q transform magnitude is 

(1x1" = 20;. (5.75) 

This suggests the definition of the normalized energy for Q transform coefficients, 

for which the exponential distribution of Equation 5.73 takes the particularly simple 

form, 

f (2) dZ = exp(-Z) dZ. (5.77) 

It is then straightforward to define the significance of a Q transform coefficient as the 

probability of observing a coefficient of greater normalized energy, 

We also note that the normalized energy of a Q transform coefficient is closely related 

to its squared signal to  noise ratio as estimated by Equation 5.45, 

We therefore find that the normalized energy, significance, and signal to noise ratio 

of a single Q transform coefficient are all monotonically related. As a result, we may 

apply a threshold on any of these three quantities in order to identify candidate bursts. 



In practice, however, the estimated signal to noise ratio is somewhat problematic since 

its squared value can be negative in the absence of a strong signal. In addition, since 

the significance of a candidate burst is typically a very small number, it is conventional 

to instead report the negative logarithm of a burst's significance. Conveniently, this 

is given by the normalized energy, 

In what follows, we will therefore take the normalized energy of a time-frequency tile 

as the primary measure of the tile's significance. 

Up to this point, we have focused only on the detection of bursts that are well local- 

ized in the time-frequency plane. As a result, the detectability of a poorly localized 

burst is limited by the statistical significance of its well localized substructure. To 

improve the detectability of such bursts, we may also consider the combined white 

noise significance of clusters of multiple time-frequency tiles. This task is greatly sim- 

plified if we assume that the tiles comprising the cluster are st at istically independent 

of one another. In section 5.6 we will describe an exclusion algorithm which justifies 

this assumption by identifying the set of non-overlapping time-frequency tiles that 

best matches the well localized substructure of arbitrary bursts. Assuming statistical 

independence, the joint white noise probability distribution for a cluster of M tiles is 

simply the product 
M 

We then define the joint normalized energy of such a cluster as the sum of single tile 

normalized energies, 

The resulting probability distribution is then given by the well known chi-squared 



distribution with 2M degrees of freedom, 

We may then define the joint white noise significance of such a cluster as the proba- 

bility of observing a cluster with greater joint normalized energy, 

where r ( M ,  Zc) is the upper incomplete Gamma function defined by 

Note that for the case of a single tile, this result reduces to the significance of 

Equation 5.78. However, while the normalized energy Z of single cluster is mono- 

tonically related to significance, the same is not true for clusters of tiles. In general, 

we must also consider the number of tiles M in the cluster and evaluate the full 

significance of Equation 5.85. 

While the application of a joint significance detection threshold is rather straightfor- 

ward, the necessary clustering of time-frequency tiles is beyond the scope of the search 

as implemented in this work. We therefore include it in chapter 8 as a possibility for 

future analysis. However, it is worth noting that the above result is also applicable to 

the joint white noise significance of tiles in coincidence between multiple detectors. 

5.5.3 Detection 

We now consider the effect of stationary white noise on the recovery and detectability 

of well localized bursts. To do so, we begin with the estimated signal to noise ratio 

of Equation 5.45 and substitute the expansion of Equation 5.39. As a result, we find 

that the estimated signal to noise ratio of a single well localized burst in the presence 



of additive detector noise is given by the expression 

Here 1 1  h1I2 and IN (7, 4, Q) l 2  are the true but unknown energies of the signal and 

noise in the time-frequency tile which best matches the well localized burst, while 

( I  ~ ( t ,  4, Q) 1 2 )  is the average noise energy observed in time-frequency tiles with the 

same 4 and Q, but with times t not equal to the time r of the burst. In addition, an 

unknown relative phase 8 between the signal and noise gives rise to  an interference 

term in the resulting expression. 

We may also define the true signal to noise ratio, 

where   IN(^, 4, Q ) I ~ )  is the true but unknown mean energy of the detector noise in 

the best match time-frequency tile. 

From these two expressions, we can identify two unavoidable sources of error that 

impact our ability to accurately recover the true signal t o  noise ratio of a well localized 

burst. The first is due to  random fluctuations of the instantaneous detector noise 

energy I N(T, 4,  Q) j 2  relative to  the true mean detector noise energy ( I  N ( T ,  4, Q )  1 2 ) .  
The second is due to the random phase 8 between the well localized burst and the 

instantaneous detector noise within the same time-frequency tile. 

Fortunately, the statistical distributions associated with both of these sources of error 

are readily available. In section 5.5.1, assuming stationary white noise, we demon- 

strated that the distribution of IN(r, @, Q)I2 is simply an exponential distribution 

with mean ( J N ( ~ ,  4, & ) 1 2 ) .  In addition, assuming the detector noise is independent 

of any signal, the distribution of 0 is simply a uniform distribution over all angles. 



We may also identify two secondary sources of error in estimating the true signal 

t o  noise ratiio of a well localized burst. The first is due to random fluctuations 

of the empirical average (IN(t,  4, Q ) I ~ )  about the true mean detector noise energy 

(I N ( r ,  4, Q) 1 2 ) .  The second is due to the loss in measured signal energy resulting from 

a mismatch between an arbitrary well localized burst and the nearest measurement 

tile, which results in a bias towards underestimating the true signal to noise ratio. 

Theoretically, however, both of these secondary errors can be made arbitrarily small. 

In the first case, the central limit theorem predicts that ( 1  N (t, 4, Q) 1 2 )  is Gaussian 

distributed about the true mean energy ( I  N(T,$, Q) 1 2 )  with a standard deviation 

that is inversely proportional to the square root of the number of independent time- 

frequency tiles contributing to the average. Thus, this error can be made negligible by 

increasing the duration of data used to  estimate the mean detector noise energy. In the 

second case, the distribution depends upon the tiling of the search space as described 

in section 3.2.2 and can be made negligible by increasing the overlap between time- 

frequency tiles. Of course, in practice, the maximum data duration used to estimate 

the mean detector noise energy is limited by stationarity concerns, while the allowable 

overlap between t ime-frequency tiles is limited by computational cost. However, even 

with these constraints, both of these errors can be made sufficiently small that their 

effect is typically negligible at the signal levels of interest in comparison with the 

unavoidable errors identified above. 

In aggregate, the statistical fluctuations due to  these four sources of error then give 

rise to a distribution of observed signal to  noise ratios. Unfortunately, a closed form 

analytical expression for this distribution is not readily determined. Instead, we must 

turn to Monte Carlo methods to empirically determine the expected distribution. 

In doing so, we make the following assumptions. We assume that 100 independent 

t ime-frequency tiles are used to  compute the estimated average detect or noise energy 

( ( t ,  , Q) 1 ) .  We also assume that the energy loss due to measurement mismatch 

is uniformly distributed between 0 and 10 percent, which roughly corresponds to the 

empirically observed distribution of Figure 6.1 for the case of a 20 percent worst case 



energy loss. 

For each value of the true signal to  noise ratio, we therefore simulate an ensemble 

of measurements drawn from an exponential distribution of instantaneous detector 

noise energies I N(r, 4, Q) 1 2 ,  a uniform distribution of relative detector noise phase 0, 

a Gaussian distribution of the estimated mean detector noise energy   IN(^, 4, Q ) I ~ ) ,  

and a uniform distribution of worst case energy loss due to  mismatch. Substitution 

of these simulated values into Equation 5.86 then leads to  an empirical distribution 

for the observed signal to noise ratio l j2  as a function of true signal t o  noise ratio. 

Signal to noise ratio recovery 

Figure 5.4: The accuracy with which the signal to noise ratio of a single well localized 
burst can be recovered in the presence of stationary white noise using the prescription 
of Equation 5.45. The range of observed signal to noise ratios is shown as a function of 
the theoretical signal to noise ratio given by Equation 5.42. The solid curve corresponds 
to the median observed value, while the dashed curves correspond to the 10th and 90th 
percentile values. 

The resulting error in recovering the true signal to noise ratio of a well localized burst 

is then shown in Figure 5.4 in terms of the loth, 50th and 90th percentile contours of 

the observed signal to noise ratio distribution. As expected, the contribution of detec- 

tor noise dominates the resulting distribution at signal to noise ratios on the order of 

unity or smaller, making it virtually impossible to accurately recover the true signal 



t o  noise ratio of such bursts. At high signal to noise ratios, however, the accuracy 

in recovering the true signal t o  noise ratio is limited by the two secondary sources 

of error identified above. That is, the use of only 100 independent time-frequency 

tiles to  estimat,e the average detector noise energy and the allowed 20 percent worst 

case energy loss due to  mismatch. In addition, this latter error a.lso results in an ap- 

proximate 2.5 percent bias towards under-measurement of the injected signal to  noise 

ratio, although such a bias is too small to be observed in Figure 5.4. Finally, we note 

that the apparent departure of the median and 10th percentile contours towards an 

observed signal to  noise ratio of zero occurs because the instantaneous total energy in 

a time-frequency tile can occasionally be smaller than the estimated average energy in 

similar time- frequency tiles. In such cases, the observed signal to noise ratios become 

imaginary, which we take to  indicate an observed signal to  noise ratio of zero. 

Given the results of our Monte Carlo simulation, we may also determine the effect 

of stationary white noise on the detectability of well localized bursts. Here we define 

a detected event as one for which the observed signal to noise ratio of the event 

exceeds a predetermined threshold. We may then define the detection efficiency 

of a particular search algorithm as the fraction of events that are detected from a 

theoretical population of events, all of which have the same true signal to noise ratio. 

As a result, given a predefined threshold on the observed signal to noise ratio, we may 

determine the corresponding white noise detection efficiencies directly from contours 

such as those in Figure 5.4. To do so, we simply draw a horizontal line a t  the selected 

threshold and, for each true signal to  noise ratio of interest, we identify the fraction of 

events that exceed the identified threshold. By following this procedure, we may then 

construct families of detection efficiency curves for different choices of observed signal 

to  noise ratio threshold. Here, we do so for observed signal to  noise ratio thresholds 

of 3 ,  4, 5, and 6, and present the resulting white noise detection efficiency curves in 

Figure 5.5. 

Note that,  even in the absence of a signal, our definition of detection still results in a 
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Figure 5.5: Theoretically predicted detection efficiency curves for well localized bursts 
in the presence of stationary white noise. The detection efficiency at a particular in- 
jected signal to noise ratio is determined by identifying the fraction of events that exceed 
a specified threshold on the observed signal to noise ratio. Here, we have considered 
observed signal to noise ratio thresholds of 3, 4, 5, and 6. 

non-zero detection efficiency due to the false acceptance of events arising from random 

fluctuations in detector noise. For the special case of stationary white noise, the 

probability of such false events follows directly from Equation 5.78 and Equation 5.79 

and is given by 

P(pf > b) = exp(-p2 - 1). 

As we will see in section 7.5, it is the presence of such false events which limits the sen- 

sitivity of a search. Of particular interest, therefore, is not just the probability of such 

events, but the number occurring within a given observation time. However, estimat- 

ing the expected number of such events also requires knowledge of the total number 

of measurements within the given observation time. In general, this depends upon 

the specifics of a search, but for the Q transform is well approximated by the proper 

volume of the targeted signal space evaluated using the metric of Equation 3.20. Here, 

however, we make the additional assumption that our search covers of a sufficiently 

large signal space such that all of the available information content of the data is 



exercised. Assuming stationary white noise data, the total number of measurements 

in an observation time T is then simply the product f, T, where f, is the sample 

frequency of the data under test. As a result, we find that the expected number of 

false events due to  stationary white noise data is given by 

In Figure 5.6, we plot the resulting expected number of false events as a function 

of detection threshold assuming one year of stationary white noise data sampled at  

16384 Hz. 

Expected number of false events per year 
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Figure 5.6: The expected number of single detector false events in one year of obser- 
vation time are shown as a function of the observed signal to noise ratio threshold for 
detection. The expected number of false events is estimated according to Equation 5.89 
and assumes maximal use of the available data, which consists of stationary white noise 
sampled at 16384 Hz. As a result, this represents the maximum stationary white noise 
false rate for a given detection threshold. Any increase the targeted signal space would 
have no effect on the resulting number of false events. 

Finally, we combine these results to determine the expected detection efficiency for 

well localized bursts as a function of false event rate. The resulting curves, known in 

signal detection theory as a receiver operating characteristic, provide a comprehensive 

description of the performance of a search algorithm for a particular waveform. 
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Figure 5.7: The theoretically predicted receiver operating characteristic curves for 
well localized bursts in the presence of stationary white noise. Each curve displays the 
relationship between detection efficiency and false alarm rate for a particular choice 
of injected signal to noise ratio. Here, for comparison with the results of chapter 6, 
we have tested true signal to noise ratios of 3.0, 4.0, 4.5, 5.0, 5,5, 6.0, and 7.0. Note, 
however, that these are specified in terms of the matched filter signal to noise ratio 
defined by Equation 3.32 rather than that of Equation 5.45. In addition, the estimated 
false rates assume maximal use of the available data, which consists of stationary white 
noise sampled at 16384 Hz. 

Here, for comparison with the results of chapter 6, we determine the expected receiver 

operating characteristic for well-localized bursts with matched filter signal to noise 

ratios of 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 as defined by Equation 3.32. In 

doing so, we also assume that our search exercises the entire information content of 

stationary white detector noise that has been sampled at  16384 Hz. The resulting 

receiver operating characteristic is then plotted in Figure 5.7. 

Finally, in Figure 5.7 we have in effect determined the theoretical receiver operating 

characteristic of a templated matched filter search for minimum uncertainty wave- 

forms of unknown phase in stationary white noise, with the additional assumption 

that the full information content of the signal is exercised. Consequently, these pre- 

dictions then form a benchmark for comparison, which will be useful in chapter 6 



when we validate our analysis pipeline by experimentally reproducing the theoretical 

receiver operating char act erist ic presented here. 

5.5.4 Outlier rejection 

The above statistical arguments have been developed assuming stationary detector 

noise. However, typical gravitational-wave detectors are characterized by numer- 

ous non-st at,ionarities. In particular, large transients of gravit ational-wave or non- 

gravitational-wave origin could dramatically effect the estimation of mean tile energy. 

To avoid this problem, we follow the suggestion of Cadonati[l22] and apply the box- 

plot prescription of Tukey[123] in order t o  identify and remove outlying values prior 

to estirnatiorl of the mean tile energy. This is accomplished by first sorting the tiles 

in each frequency band in order of increasing energy. Next, we identify the lower and 

upper quartile energies, IX Ifower and IX (t,,, as the tile energies corresponding to the 

25t)h and 75th percentile values. The difference between these energies is designated 

the int erquart ile range, 

We then define a threshold value, the so-called whisker of the box-plot, which is a 

constant multiple of the interquartile range above the upper quartile energy, 

Tiles whose energies exceed this threshold are identified as outliers, and such tiles 

are then excluded from the subsequent calculation of the mean tile energy. Note 

that in Tukey's original formulation, a was taken to be 1.5. However, here we allow 

specification of a as a parameter of the search. In practice, this parameter determines 

the amount c)f non-stationary detector noise to  incorporate into the estimate of the 



background tile energy. 

One difficulty with this approach, however, is that it produces a bias in the resulting 

estimate of the mean tile energy. This is due to the fact that some tile energies from 

the underlying exponential distribution will also be excluded based on the outlier 

rejection formalism. Since this only occurs for large tile energies, the resulting esti- 

mate of the mean tile energy will exhibit a bias toward lower energies. Fortunately, 

it is possible to  correct for this bias for the case of stationary white noise data by 

considering its effect on an ideal exponential distribution of tile energies. To do so, 

we first express the lower and upper quartile energies as the 25th and 75th percentile 

energies of an exponential distribution with a true mean energy (IXI2), 

This leads to expressions for the lower and upper quartile energies, the interquartile 

energy range, and the threshold energy for identifying outliers of 

We then determine the expected biased measurement of the mean tile energy by 

considering the mean of the truncated exponential distribution consisting of all tiles 

with energy less than the identified threshold, such that 



As a result, we find that the required correction factor for estimating the mean tile 

energy, as a function of the outlier specification factor ct, is given by 

By excluding outliers and compensating for the resulting bias, this technique then 

affords a robust unbiased estimate of the mean of the underlying exponential dis- 

tribution of tile energies, dramatically reducing the sensitivity of our analysis to 

non-st ationarities in the input data stream. 

5.6 Identification of events 

As we noted in chapter 3, it is possible to  select a measurement basis that covers 

a finite region of time, frequency, and Q space such that the mismatch between an 

arbitrary well localized burst and the closest basis function results in no more than 

a specified worst case fractional loss in the measured signal energy. In doing so, 

we necessarily cover the targeted signal space using multiple Q planes consisting of 

overlapping highly correlated time-frequency tiles. As a result, a typical event is 

likely to produce many overlapping significant tiles using the formalism described in 

section 5.5. 

This section introduces a simple exclusion algorithm with the goal of reducing the set 

of significant tiles by identifying the most significant non-overlapping tiles among all 

Q planes. This has two benefits. First, by selecting the most significant tiles, we iden- 

tify the best match set of tiles for the time-frequency structure of candidate events. 

This then provides the tightest possible bounds on their time-frequency structure, 

maximizing the observable signal to  noise ratio and minimizing the coincident false 

rate between multiple detectors. Secondly, by dramatically reducing the number of 

significant tiles, we subst antially reduce the subsequent computational cost of testing 



for coincidence between multiple detectors. 

One obvious approach is to  simply exclude the least significant tile from all overlap- 

ping pairs of tiles. However, in order to preserve the structure of less localized bursts 

and to  enable the detection of weak bursts in the presence of stronger nearby tran- 

sients, we must be careful when encountering the situation depicted in Figure 5.8. 

Here three overlapping tiles are shown with the most significant on top and the least 

significant on the bottom. I11 such cases we wish to exclude the intermediary tile 

since it is overlapped by the most significant tile. However, we do not wish to  exclude 

the least significant tile since it is not overlapped by the most significant tile and the 

intermediate tile has already been excluded. 

Figure 5.8: Example set of overlapping significant tiles used to motivate the exclusion 
algorithm for identifying the most significant non-overlapping tiles. Here the tiles are 
sorted by significance with the most significant tile (1) shown on top. In this case, we 
seek an algorithm which excludes the intermediary tile (2) while preserving the most 
significant (1) and least significant (3) tiles. 

This then suggests the following algorithm. We first sort the tiles in order of decreas- 

ing significance. Then, starting with the most significant tile and proceeding to the 

least significant, we exclude any tile that is overlapped by a more significant tile that 

has not already been excluded. Thus, for each well localized event, only the single 

tile which best represents the event's parameters is reported. 

We conclude by noting that the approach we have described does not exclude the 

possibility of clustering tiles from poorly localized bursts. In particular, the tiles 

which pass both the initial significance threshold as well as the subsequent exclusion 

algorithm will best represent the strong localized features of such bursts. This then 

suggests the possibility of testing the joint significance of all tiles within a predefined 

time-frequency window in order to more optimally detect such poorly localized bursts. 

This approach, however, is beyond the planned scope of this work and is left for 



subsequent investigation. 

5.7 The Q pipeline 

At this point, we have developed the necessary tools in order to construct a compre- 

hensive end-to-end analysis pipeline for the detection of gravitational-wave bursts in 

data from a single interferometric detector. This analysis pipeline consists of whiten- 

ing by zero-phase linear prediction, application of the discrete Q transform, thresh- 

olding on the white noise significance of Q transform coefficients, and identification 

of the most significant set of non-overlapping time-frequency tiles. In addition, we 

also incorporate a final st age that excludes all but the most significant time-frequency 

tile within a specified time window in order to  prevent the redundant reporting of 

candidate events. The resulting pipeline is shown in Figure 5.9. 

While this single detector pipeline is designed for the detection of gravitational-wave 

bursts, it is important to note that it is also equally applicable to the detection of sta- 

t ist ically significant events in data from environment a1 monitors and auxiliary det ec- 

tor channels. This then permits a import ant test for environment a1 disturbances and 

pathological detector behavior that could otherwise be mistaken for a gravitational- 

wave burst. As an example of the utility of this approach, in section 7.1.2 we suc- 

cessfully apply it to microphone data during the second LIGO science run in order 

to  exclude events that were due to airplane overflights of the Hanford observatory. 

The cornputational cost of the single detector Q pipeline depends primarily on the 

density of tiles necessary to  ensure that the requested worst case energy loss is not 

violated, but also depends on the size of the targeted signal space as well as the sample 

frequency of the input data stream. In Figure 5.11, we display the estimated number 

of floating point operations required to analyze a typical block of interferometric 

detector data as a function of the requested worst case energy loss and the Q range of 
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Figure 5.9: The proposed end-to-end analysis pipeline for the identification of candi- 
date gravitational-wave bursts in data from a single interferometric detector. The same 
analysis pipeline is also applicable to the detection of statistically significant events 
in both environmental and auxiliary detector channels. This permits a test for envi- 
ronmental disturbances or pathological detector behavior in order to exclude events of 
non-gravit ational-wave origin. 
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Figure 5.10: The proposed end-to-end analysis pipeline for the identification of coin- 
cident candidate gravitational-wave bursts in data from multiple interferometric detec- 
tors. 



the search. In this case we have assumed that the data to be analyzed is 64 seconds 

in duration and sampled at  16384 Hz. The targeted signal space is assumed to  extend 

from 64 to 1024 Hz, but the targeted Q range is allowed to vary from a minimum 

value of 4 to a maximum value of 4, 8, 16, 32, or 64. 

As we noted in section 5.2.2, the computational cost of the fast form of the discrete 

Q transform is dominated by an initial fast Fourier transform of the entire data 

block, followed by multiple shorter length inverse fast Fourier transforms for each 

central frequency and bandwidth pair of interest. It is the number and size of these 

inverse transforms which in many cases determines the overall computational cost of 

the search. This is typically the case at high Q, where a larger number of inverse 

transforms are required to cover the time-frequency plane. This is also the case at  high 

frequency, since the length of each inverse transform is proportional t o  its bandwidth, 

which is in turn proportional to frequency for fixed Q. As a result, the computational 

cost increases notably with both the maximum frequency and Q of the analysis. This 

increase is also compounded by the need to oversample the targeted signal space in 

order to achieve a particular worst case energy loss due to mismatch. 

For relatively large values of the worst case energy loss, the resulting computational 

cost is instead dominated by the cost of zero-phase linear predictive whitening of the 

input data stream. As was the case for the fast discrete Q transform, the computa- 

tional cost of linear predictive whitening is partly due to  fast Fourier transforms of 

the entire data block. Such transforms are necessary to compute the autocorrelation 

of the input data stream in order to train the filter, as well as to  apply the result- 

ing filter in the frequency domain. In fact, some advantage is gained by reusing the 

results of intermediate transforms in the discrete Q transform. The cornputat ional 

cost of linear predictive whitening is also due to  the cost of determining the required 

filter coefficients using Levinson-Durbin recursion. Since this scales as the square of 

the filter order, this cost of training becomes important for sufficiently long filters, 

which in turn depends upon the maximum Q and minimum frequency of the search. 

The cost of whitening, as well as its dependence on the maximum Q of the search is 



evident in Figure 5.11 in the limit of larger worst case energy loss. 

Finally, we note that the estimated computational cost of Figure 5.11 is only ap- 

proximate has been computed assuming N ln N floating point operations for each 

fast Fourier transform of length N and M2 operations for Levinson-Durbin recursion 

of order M .  For reference, the operating point corresponding to the single detector 

version of the search described in section 7.2 is also noted in the figure. 

Up to this point, we have only considered the detection of gravitational-wave bursts 

in data from a single detector . However the simultaneous observation using multiple 

detectors oflers the possibility of a dramatically reduced false event rate due to envi- 

ronment a1 disturbances, pathological detect or behavior, or st at istical fluctuations in 

detector noise. A number of techniques have been proposed to search for unmodeled 

bursts using networks of interferometric detectors[93, 97, 103, 124, 125, 1261. How- 

ever, the most straightforward extension of our single detector analysis to a network 

of multiple d.etectors consists of simply testing for time-frequency coincidence between 

the candidate events identified in each of the detectors. Such an analysis pipeline is 

shown in Figure 5.10 for the case of two detectors. In this case, however, care must 

be taken to  account for the different detector response of geographically separated 

detectors. In particular, the speed of light travel time between detectors must be 

taken into considered when testing for coincidence. The computational cost of such a 

combination scales linearly with the number of detectors since the time-frequency co- 

incidence of candidate single detector events is computationally negligible for typical 

event rates. 

5.8 The coherent Q pipeline 

In this section, we consider an alternative multiple detector analysis pipeline that is 

appropriate t;o the special case of collocated interferometric detectors, such as the two 



Template cost of single detector Q pipeline 

Figure 5.11: The estimated computational and template cost of a single detector Q 
pipeline as a function of the requested worst case energy loss due to mismatch and 
the Q range of the search. The estimate includes the cost of both whitening and Q 
transform analysis for a 64 second block of data that has been sampled at 16384 Hz. 
The frequency range of the search extends from 64 to 1024 Hz and Q range extends 
from 4 to maximum values of 4, 8, 16, 32, and 64. At large fraction energy loss, the 
computation cost is dominated by the cost of whitening. At small fractional energy loss, 
the increased computational cost is due to the high oversampling of the targeted signal 
space necessary to ensure that the requested worst case energy loss is not exceeded. 
The operating point for the search described in section 7.2 is also indicated. 



LIGO Hanford detectors. Specifically, we develop a method to coherently combine 

the Q transform coefficients from collocated detectors in a way that maximizes the 

expected signal to noise ratio of well localized bursts. In addition, since collocated 

detectors necessarily have the same response to  gravitational-wave bursts, we take 

advantage of the expected signal consistency to  provide a more sensitive test for 

gra~itationa~l-wave bursts while excluding statistically significant events that exhibit 

inconsistent behavior. 

We begin by considering the Q transform of a single gravitational-wave burst as 

observed by N detectors. The Q transform coefficient in a specific time-frequency tile 

of the nth detector is then 

where h(r ,  4, Q) is the true but unknown Q transform of the signal in this tile and 

AT, ( r 7 4 ,  Q) is the true but unknown Q transform of the noise in the n th  detector. 

We then define the coherent Q transform x ( ~ )  (T,+,  Q) as the weighted average of the 

Q transform coefficients from each of the N individual detectors, 

where the real-valued coefficients Cn (T,$, Q) obey the normalization condition 

If we also assume that the noise in each detector is due t o  an independent stationary 

stochastic process, then the mean squared magnitude of the coherent Q transform is 

simply 



where true mean noise energy is given by 

We therefore define the true coherent signal to noise ratio 

and seek the coefficients Cn (T, 4, Q) that maximize this quantity subject to the con- 

straint of Equation 5.98. Straightforward maximization using the method of Lagrange 

multipliers then leads to the coefficients 

such that the coherent Q transform is given by, 

If, following Equation 5.36, we then interpret the quantity ( 1  Nn(7, @, Q) 1 2 )  as a mea- 

sure of the average power spectral density over the bandwidth of the tile, we see that 

the coherent Q transform is simply the average Q transform weighted by the power 

spectral density of the noise in each detector. As expected, this then implies that 

more sensitive detectors preferentially contribute to the resulting coherent transform. 

Furthermore, we also note that the result of Equation 5.102 allows for a unique set of 

weighting factors in each time-frequency tile. As a result, the coherent Q transform 

naturally accounts for any potential frequency dependent variation in the relative 

sensitivity between detectors. Finally, we note that for the ideal case of N identical 

detectors, the resulting coherent signal to noise ratio is a factor of 0 greater than 

the signal to  noise ratio in any single detector. 



In practice, however, we have no knowledge of the true mean noise energy in each 

detector. Instead, assuming stationary detector noise, we estimate the mean noise 

energy in each detector by 

where the average on the right hand side is the mean of a representative set of time- 

frequency tiles, all of which have the same frequency and Q as the tile under con- 

sideration, but occur a t  times t sufficiently far removed from the time T of the burst 

that they measure only detector noise. Similarly, we estimate the optimal detector 

weighting by 

such that the coherent Q transform becomes, 

Lastly, we may define a corresponding coherent normalized energy by 

where the expectation value in the denominator is again an empirical average over 

time-frequency tiles with the same frequency and Q, but at times t sufficiently far 

removed fronn the time T of the burst. 

In order to  determine the statistical significance of coherent Q transform coefficients, 

we recall that in section 5.5 we demonstrated that the real and imaginary components 

of individual Q transform coefficients are Gaussian distributed for the special case of 

s t a t i~na~ry  white noise data. According to  the central limit theorem, it then follows 
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Figure 5.12: The proposed coherent end-to-end analysis pipeline for the identification 
of candidate gravitational-wave bursts in data from multiple collocated interferometric 
detectors. The same analysis pipeline is also applicable to a directional search for 
gravitational-wave bursts using networks of non-collocated detectors. In this case, the 
data are first scaled and shifted in time such that they effect a virtual network of 
collocated detectors for gravitational-wave bursts originating from a specific position 
on the sky. 

that the real and imaginary components of any linear combination of such transforms 

are also Gaussian distributed. As a result, for independent stationary white noise, we 

find that the coherent Q transform obeys the same statistics that apply to individual Q 

transform coefficients. In particular, we note that the measured coherent normalized 



energy of Equation 5.107 is also an exponentially distributed random variable. 

Lastly, we riot,e that,  in addition to testing the statistical significance of coherent 

Q transform coefficients, the expected agreement between collocated detectors also 

permits simple tests of both amplitude and phase consistency between detectors. This 

is particularly useful since the presence of a strong signal in even a single detector will 

nevertheless appear as a statistically significant signal in the coherent Q transform. 

However, by testing for amplitude and phase consistency between the Q transform 

coefficients observed in multiple detectors, we may exclude such false events from 

our search. By combining the coherent Q transform with such amplitude and phase 

consistency tests, we can then produce a coherent end-to-end analysis pipeline for the 

identification of gravit a t  ional-wave bursts in data from multiple collocated detectors. 

The resulting coherent analysis pipeline is shown in Figure 5.12, and is also the 

pipeline that we apply in chapter 7 to the search for gravitational-wave bursts in 

data from the two collocated LIGO Hanford detectors. Finally, we point out that the 

coherent analysis pipeline is also applicable to  a directional search for gravitational- 

wave bursts using networks of non-collocated detectors. In this case, the data must 

first be scaled and shifted in time such that they emulate data from a virtual network 

of collocatecl. detectors for bursts originating from a specific position on the sky. 

However, such an approach is beyond the scope of this work and is left for future 

investigation. 

5.9 Example 

In order to gain a more intuitive understanding of the Q transform, we conclude this 

chapter by cc~nsidering a simple example of the Q transform applied to a simulated 

burst of gravitational radiation. In particular, we consider a sinusoidal Gaussian burst 



of the form 

with a central frequency of 256 Hz and a Q of 8. 

This signal is then added to 32 seconds of simulated LIGO detector noise as described 

in section 6.3. Moreover, for clarity, this signal is injected with the reasonably large 

matched filter signal to  noise ratio of 10, corresponding to a normalized energy of 51. 

Note that,  except for a smaller signal to  noise ratio, this is the same signal used to  

demonstrate the effectiveness of zero-phase linear predictive whitening in the example 

of section 4.7. Here, however, in addition to  whitening by linear prediction? we also 

apply the Q transform and the exclusion algorithm of the previous section in order to 

identify the best match set of non-overlapping time-frequency t,iles for our example 

burst. 

We first apply the Q transform to the injected signal. Moreover, in order to under- 

stand the choices involved, we do so for three different logarithmically spaced values 

of Q and for two different values of the worst case energy loss due to mismatch. 

Specifically, we test Qs of 4, 8, and 16, and worst case energy losses of 1 percent 

and 20 percent. The resulting normalized energy spectrograms are then presented in 

Figure 5.13a. 

We first note that a Q of 8 exactly corresponds to the Q of the injected signal. As a 

result, those spectrograms computed with this value of Q exhibit a greater normalized 

energy in their best match time-frequency tile than those spectrograms computed us- 

ing other values of Q. In addition, the finer sampling of the time-frequency plane 

necessary to ensure no more than 1 percent energy loss is clearly evident when com- 

pared with the coarser sampling of the time frequency plane required for a 20 percent 

worst case energy loss. It is important to  note, however, that this finer sampling 

does not correspond to an improved time-frequency resolution. Each tile still repre- 



sents a region of minimum time-frequency uncertainty. Instead, the finer sampling 

corresponds to a greater overlap between adjacent time-frequency tiles. In fact, for 

the studies conducted in this work, we typically choose to tile the time-frequency 

plane for a less computationally intensive 20 percent worst case energy loss, and only 

consider a fi.ner tiling when retrospectively examining interesting events. 

Next, we demonstrate the ability of the exclusion algorithm of the previous section to  

identify the best match set of non-overlapping time-frequency tiles for our example 

burst. In this case, we have first applied the Q transform to analyze the frequencies 

between 64 and 1024 Hz and Qs between 4 and 64 with a tiling sufficient to  ensure a 20 

percent worst case energy loss due to  mismatch. Significant tiles are then identified 

as those tiles that exhibit a normalized energy greater than 19, corresponding to 

a matched filter signal to  noise ratio threshold of 6. We then apply the exclusion 

algorithm of the previous section. The resulting significant tiles, from both before 

and after application of the proposed exclusion algorithm, are shown in Figure 5.13b. 

As expected, due to the minimum uncertainty nature of our example burst, appli- 

cation of the exclusion algorithm results in a single best match time-frequency tile. 

In general, however, a less localized burst will most likely result in multiple non- 

overlapping significant tiles. Finally, we also note that the resulting best match 

time-frequency tile shows very good agreement with the injected signal. In particu- 

lar, the central time of the example burst is recovered to within 0.4 milliseconds, the 

frequency is recovered exactly, the Q is recovered to  within a factor of fi, and the 

observed normalized energy represents a 9 percent lost -- well within the specified 

worst case loss of 20 percent. 
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Figure 5.13a: Six different constant Q time-frequency spectrograms of the same sim- 
ulated gravitational-wave burst. Each spectrogram displays the normalized energy as 
observed in tiles with Qs of 4 (top), 8 (middle), and 16 (bottom). For a typical search, 
the signal space is tiled with a worst case energy loss due to mismatch of 20 percent 
(left). However, for clarity, the same spectrograms are shown tiled at a computationally 
more intensive 1 percent worst case energy loss due to mismatch (right). In this case, 
the signal is a 256 Hz Gaussian wave packet with a Q of 8 injected into simulated LIGO 
detector noise with an optimal matched filter signal to noise ratio of 10. 
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Figure 5.13b: Significant tiles corresponding to the simulated gravitational-wave burst 
of Figure 5.13a before (left) and after (right) excluding the least significant of overlap- 
ping tiles. Significant tiles were identified at an initial normalized energy threshold of 
19. 





Chapter 6 

Simulation 

I11 this chapter, we present a validation of the proposed single detector pipeline by 

comparing its performance on simulated gravit ational-wave data with the t heoret i- 

cally predicted performance of the Q transform from section 5.5. In doing so, our 

goal is not to  evaluate the performance of the proposed analysis pipeline for arbitrary 

gravitational-wave bursts or non-ideal detector noise. Such a study is postponed un- 

til chapter 7, where the proposed pipeline is applied to  the search for astrophysically 

unmodeled bursts of gravitational radiation in data from the second LIGO science 

run. Here, we instead seek to validate the single detector implementation of the 

pipeline used in chapter 7 by applying it to  a number of simple test cases for which 

the expected performance can readily be predicted from first principles arguments. 

We first consider the simple case of well localized bursts in the absence of any back- 

ground noise. This permits us to validate the tiling of the space of time, frequency, 

and Q proposed in section 3.2.2 by demonstrating that the energy loss incurred by 

an arbitrary well localized burst within the targeted signal space never exceeds the 

specified worst case value. 

Next, we consider the case of well localized bursts in the presence of stationary white 



noise. In this case, the expected response of our pipeline is well known, permitting 

a simple test of its performance. In particular, we determine the accuracy with 

which the signal to  noise ratio of well localized bursts are recovered and demonstrate 

that the results are in good agreement with the theoretical performance predicted in 

Figure 5.4. In the process, we also determine the distribution of the error incurred 

in recovering the time, frequency, and Q of such well localized bursts in order to 

characterize the accuracy with which such properties are measured. 

We then consider the performance of the proposed analysis pipeline on stationary 

white noise data in the absence of any bursts and demonstrate that the observed false 

event rate is in reasonable agreement with prediction of Equation 5.89, confirming 

that the targeted signal space is sufficiently large that the full information content 

of the data is exercised. In addition, we also histogram the properties of such false 

events in order to verify uniform coverage of the targeted signal space. 

Finally, we extend our validation study to  also consider stationary colored noise. 

Specifically, we evaluate the performance of our analysis pipeline when applied to  

simulated detector noise with an amplitude spectrum that corresponds to the design 

sensitivity of the first generation of LIGO detectors. Such a study permits a more 

thorough validation of our analysis pipeline by also testing its ability to sufficiently 

whit en colored data prior to  Q transform analysis, justifying our subsequent assump- 

tion of st at ionary white noise when interpreting results. By measuring the detect ion 

efficiency of this search for a number of different sinusoidal Gaussian bursts, we are 

then able to construct a family of receiver operating characteristics that describe the 

sensitivity of our pipeline over the targeted signal space and that demonstrate good 

agreement with the theoretical predictions of Figure 5.7. 



6.1 Well localized bursts 

In this section, we present a validation of the proposed tiling of section 3.2.2, in 

which the space of time, frequency, Q is tiled such that an arbitrary well localized 

burst incurs no more than a specified worst case energy loss as a result of mismatch 

with the nearest measurement tile. To do so, we consider the response of the Q 

transform to sinusoidal Gaussian bursts of the form 

h(t;  T, 4, Q )  = ho exp [ - 4s2'$2 T)2]  sin [2ii+(t - T )  + 01 , 

where t'he peak amplitude ho of the Gaussian envelope is related to the characteristic 

signal energy 1 1  h 1 1  by the expression 

Here, in order to  measure the energy loss incurred by such bursts, we fix this char- 

acteristic signal energy t o  be unity. We then choose to  test many such bursts, with 

each burst occurring at  a random time T once every 64 seconds, a logarithmically dis- 

tributed random frequency q5 between 64 and 1024 Hz, a logarithmically distributed 

random Q between 4 and 64, and a uniformly distributed random phase H between 

0 and 27-r. We then apply the Q transform to  identify bursts within this same signal 

space, which we tile for the specific worst case energy loss under test. Finally, for 

each 64 second data block, we identify the Q transform coefficient with the great- 

est squared magnitude as the best match measurement of the injected signal and 

determine the corresponding energy loss due to  any mismatch. 

In Figure 6.1 we display the cumulative distributions of the fractional energy loss 

observed for three different tilings of the targeted signal space that correspond to  

requested worst case energy losses of 10, 20, and 40 percent. Here, each distribution 

represents tht: measured energies of 40 thousand different bursts covering the targeted 

signal space. 
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Figure 6.1: The cumulative distribution of the fractional energy loss incurred by 
arbitrary well localized bursts in the targeted signal space as a result of mismatch with 
the nearest measurement tile. The resulting distributions are clearly consistent with the 
requested worst case fractional energy losses of 10 (dashed), 20 (solid), and 40 (dash- 
dot) percent. In all cases, this worst case loss is never exceed in lo4 measurements. 

It is immediately clear from Figure 6.1 that the requested worst case energy loss is 

never violated, even given the large number of bursts considered here. In fact, the 

overwhelming majority of well localized bursts incur a fractional energy loss which 

is significantly smaller than the specified worst case value. In particular, for the 20 

percent worst case energy loss that we apply in the remainder of this work, over 

90 percent of well localized bursts incur an energy loss that is less than 10 percent. 

Finally, we note that while the fractional energy loss metric in section 3.2.2 was 

developed for the specific case of mismatched sinusoidal Gaussian bursts, it appears 

to be equally successful at predicting the energy loss due mismatch between sinusoidal 

Gaussian bursts and the frequency domain bisquare waveforms which comprise the 

Q transform. 



6.2 Stationary white noise 

We now consider the special case of stationary white noise data that has been sampled 

at the same 16384 Hz rate produced by the LIGO detectors. In the following tests, 

the Q transform is applied to 64 second segments of such data in order to  identify 

bursts with central frequencies between 64 to 1024 Hz and Qs between 4 to 64. In 

addition, this targeted signal space is tiled for a 20 percent worst case energy loss due 

to mismatch between an arbitrary well localized burst and the nearest measurement 

tile. For reference, we note that these are the same search parameters that are applied 

in the next section to the search for bursts in simulated detector- noise, as well as in 

chapter 7 to the search for bursts in data from the second LIGO science run. 

Into this data, we then inject our standard test signal, the sinusoidal Gaussian bursts 

described by Equation 6.1. Like before, we inject these bursts with random time, 

frequency, phase, and Q within the targeted signal space. In this case, however, we 

also choose t;o inject such bursts with a logarithmically distributed random signal to 

noise ratio between 0.1 and 100 as as defined by Equation 5.87. We then determine 

the observed signal to noise ratio for each injected burst by applying the formalism of 

Equation 5.76 and Equation 5.79 to the expected best match time-frequency tile. In 

this case, since we are not concerned with detection of such bursts, we simply deter- 

mine this best match time-frequency tile from a pnori knowledge of the parameters 

of the injected burst. Finally, we plot the resulting observed signal to noise ratios 

against the c:orresponding injected signal to noise ratios. 

The scatter plot resulting from the application of this test to 1000 well localized 

bursts is shown in Figure 6.2 and represents the accuracy with which the signal to 

noise ratio of such well localized bursts can be recovered in the presence of stationary 

white noise. Finally, we note that this is the same relationship that we derived from 

first principle arguments in section 5.5 and it is evident that the resulting scatter plot 

shows good a,greement with the theoretical predictions presented in Figure 5.4. 
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Figure 6.2: The relationship between injected and observed signal to noise ratio for 
1000 well localized bursts injected into stationary white noise. This scatter plot repre- 
sents the accuracy with which such bursts can be recovered and shows good agreement 
with the theoretically predicted distribution shown in Figure 5.4. Note that, for small 
values of injected signal to noise ratio, the energy in the best match time-frequency tile 
may occasionally be less than average energy of similar tiles. As a result, the observed 
signal to noise ratio given by Equation 5.79 can become imaginary. Here, such cases 
have been included by plotting them along the bottom axis of the figure. 

Using a similar infrastructure, we are also able to study the accuracy with which 

other parameters of well localized bursts are recovered in the presence of stationary 

white noise. To do so, we again inject such bursts with random time, frequency, 

phase, and Q. In this case, however, we only inject these signals at a single fixed 

signal to noise ratio of 10 according to the definition of Equation 5.87. The injection 

of such reasonably strong bursts then permits us to easily identify the corresponding 

best match time-frequency tile as the one with the greatest squared Q transform 

magnitude in each 64 second block of data. We then compare the time, frequency, 

duration, bandwidth, Q, and signal to noise ratio of this best match time-frequency 

tile with the true properties of the injected burst in order to determine the absolute 

and relative errors incurred in the recovery of these parameters. Note that,  here 

we define the duration and bandwidth of well localized bursts in accordance with 



Equation 3.13a and Equation 3.13b such that their product is unity. This procedure 

is then repeated for many such bursts in order to determine the average accuracy 

with which such properties are recovered and to identify any potential measurement 

bias. In this case, we have done so for 3000 different bursts, and histograms of the 

resulting absolute and relative errors are shown in Figure 6.3a and Figure 6.3b, along 

with their mean and standard deviation. 

Here mre have defined the absolute errors as simply the differences between the ob- 

served and injected values of each parameter. Such errors are particularly relevant to 

the choice of thresholds used to test for time-frequency coincidence between detec- 

tors, as well as for thresholds used for other possible consistency tests. In particular, 

it is interestling to note that the standard deviation of the observed timing error is 

approximately 3.5 milliseconds, which is sufficient to allow reasonably tight temporal 

coincidence tests between detectors in order to exclude coincident bursts of non- 

gravitational- wave origin that are not consistent with the expected 10 millisecond 

speed of light travel time between LIGO sites. On the other hand, such a timing 

resolution is only sufficient to provide very coarse sky position information, and not 

sufficient to permit more than the simplest of consistency tests. 

However, it is important to note that the absolute errors reported in Figure 6.3a 

reflect the aggregate error incurred over the entire targeted signal space, but that 

these errors may also vary considerably across this space. For example, we note that 

the timing resolution of our search is expected to  be worst for those bursts with low 

frequency an.d high Q, which exhibit the longest durations, and best for those bursts 

with high frequency and low Q, which exhibit the shortest durations. 

As a result, we also define dimensionless relative errors that take into account the 

expected spread in measurements due to the properties of the injected bursts. Specif- 

ically, we define the relative timing error as the ratio of the absolute timing error to 

the true duration of the injected burst. Similarly, we define the relative frequency 

error as the ratio of the absolute frequency error to the true frequency of the injected 
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Figure 6.3a: Histograms of the absolute accuracy with which the time, frequency, 
duration, bandwidth, Q, and signal to noise ratio are recovered for well localized bursts 
in the presence of stationary white noise. In this case 3000 bursts were injected with 
a fixed signal to noise ratio of 10 according the definition of Equation 5.87, but with 
random time, frequency, phase, and Q within the targeted signal space. The absolute 
error is simply the difference between the observed and injected values for each property. 
Here we have reported the duration and bandwidth of well localized bursts as defined 
by Equation 3.13a and Equation 3.13a such that their product is unity. 
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Figure 6.3b: Histograms of the relative accuracy with which the time, frequency, 
duration, bandwidth, Q, and signal to noise ratio are recovered for well localized bursts 
in the presence of stationary white noise. In this case 3000 bursts were injected with 
a fixed signal to noise ratio of 10 according the definition of Equation 5.87, but with 
randorn time, frequency, phase, and Q within the targeted signal space. The definition 
of relative error varies between parameters and is described in more detail in the text. 
Here we have reported the duration and bandwidth of well localized bursts as defined 
by Equation 3.13s and Equation 3.13a such that their product is unity. 



burst. For the remaining parameters, whose measurement errors are expected to  be 

proportional to  their injected values, we find it convenient to  define the relative error 

as the logarithm of the ratio of the observed value to  the injected value. These errors 

then give a better way of characterizing the accuracy of our pipeline in a way that 

does not depend upon the details of the targeted signal space. 

It is then evident from Figure 6.3b that the central time and central frequency of well 

localized bursts are recovered to within approximately 10 percent of their duration 

and frequency, respectively. In addition, the duration, bandwidth, and Q of the 

majority of well localized bursts are recovered with an approximate multiplicative 

factor of 1.5 of their t,rue value. Finally, the injected signal to  noise ratio of 10 is 

recovered to  within an approxiinat e multiplicative fact or of 1.15. 

It is also evident that,  while none of the other parameters exhibit a significant mea- 

surement bias, the observed signal to  noise ratio exhibits an apparent bias towards 

under-measurement of the true value. However, we also note that the observed nega- 

tive bias, in this case approximately 2.5 percent of the true value, is consistent with 

the average amplitude loss expected when tiling the time frequency plane for a worst 

case energy loss of 20 percent for well localized bursts. As a result, given knowledge 

of the expected distribution of energy loss due to mismatch, such a bias is easily ac- 

counted for. However, since we are only concerned with the detection of such bursts, 

and since a similar bias is expected in all detectors, we make no attempt to correct 

for it here. In addition, the method of section 5.4.4 can also be applied to accurately 

recover the total signal energy of both well-localized and non-localized bursts by inte- 

grating the squared Q transform magnitude over a finite region of the time-frequency 

plane. 

Finally, we consider the case of stationary white noise in the absence of any bursts. 

This permits us to  verify the expected false event rate as a function of detection 

threshold, as well as to characterize the distribution of false event properties and verify 

uniform coverage of our search over the targeted signal space. To do so, we simply 



apply the Q transform to stationary white noise data using the search parameters 

described above. The resulting Q transform coefficients are then thresholded at an 

observed signal to noise ratio of 2.95 in order to produce an approximate false event 

rate of 1 Hz according to the predictions of Equation 5.89. In addition, we also apply 

the exclusion algorithm of section 5.6 in order to  eliminate any redundant events and 

avoid any possible overcounting. 

An empirical estimate of the false event rate is then determined from the number of 

remaining Q transform coefficients with observed signal to  noise ratio greater than 

a specified detection threshold, divided by the total observation time. This is eas- 

ily determined as a function of detection threshold threshold from the cumulative 

distribution of the observed signal to noise ratios for the remaining events. Applica- 

tion of this procedure to  62000 seconds of stationary white noise data then results 

in the lneasured false event distribution shown in Figure 6.4. In addition, we also 

plot the theoretically expected false event rate from Equation 5.89, assuming that 

the targeted signal space is sufficiently large that the entire information content of 

data is exercised. While the resulting distributions differ slightly, they nonet heless 

show remarkably good agreement over a wide range of false event rates considering 

the simple nature of our first principle arguments and the complexity of our analysis 

pipeline. 

Finally, we consider the distributions of the other properties of false events in or- 

der to verify the uniform coverage of our search over the targeted signal space. In 

Figure 6.5, we present histograms of the observed central time, central frequency, 

duration, bandwidth, Q, and signal to noise ratio of 80084 false events observed in 

62000 seconds of stationary white noise with a signal to noise ratio threshold greater 

than 2.95. 

As expected, the observed central time of such false events is uniformly distributed 

over the duration of the each data block, consistent with uniform coverage of the 

targeted signal space. Unfortunately, the observed distributions of central frequency, 
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Figure 6.4: The observed false event rate due to stationary white noise (solid) is 
compared with the predicted false event rate of Equation 5.89 (dashed) assuming that 
the targeted signal space is sufficiently large that the entire information content of 
the data, 16384 independent measurements per second, is exercised. Considering the 
simplicity of our theoretical prediction and the cornplexity of our analysis pipeline, the 
two distributions show remarkably good agreement over five decades of false event rates. 

duration, and bandwidth are more difficult to verify due to our discrete logarithmic 

tiling of frequency and Q. However, since the distributions of observed frequency and 

bandwidth are directly determined from the distributions of duration and Q, we do not 

attempt to interpret them here. Instead, we simply note that the observed distribution 

of durations is approximately consistent with a distribution that varies inversely with 

duration, and that such a distribution is expected due to the greater number of short 

duration bursts within a given observation time and finite range of Q. In addition, 

we also note that the distribution of observed Q clearly shows the four discrete values 

of Q tested by our analysis pipeline as a result of tiling the targeted signal space 

for a 20 percent worst case energy loss due to  mismatch. Here, the slightly greater 

number of events observed a t  the extrema of the tested range of Q is presumably due 

to the detection of false events with best match time-frequency tiles outside of the 

targeted signal space. Finally, the resulting distribution of observed signal to noise 

ratio is consistent with the expected exponential distribution of normalized energies 
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Figure 6.5: The distributions of the observed properties of 80084 false events identified 
in 62000 seconds of stationary white noise. After taking into account the discrete 
tiling of the targeted signal space and the expected larger number of independent short 
duration tirne-frequency tiles within a given observation time and finite range of Q, 
the observeti distributions are consistent with uniform coverage of the targeted signal 
space. 



predicted by Equation 5.77 and the definition of observed signal to  noise ratio given 

by Equation 5.79. 

6.3 Simulated detector noise 

We now consider the performance of our single detector pipeline for the case simulated 

detector noise. Such a study extends our validation from the previous section by also 

testing the ability of linear prediction to  sufficiently whiten data in order to justify 

our later assumption of stationary white noise when interpreting results. As such, it 

offers a comprehensive end-to-end validation of our single detector pipeline. 

The simulated detector noise considered in this section has been produced by filtering 

stationary white Gaussian noise such that the resulting colored noise has an amplitude 

spectrum matching the design sensitivity of the initial LIGO detectors. In addition, to 

further test our ability t o  whiten colored noise, we also simulate a number of stationary 

narrowband signals at  frequencies corresponding to some of the expected mechanical 

resonances of the LIGO detector as well as the 60 Hz and harmonic frequencies 

associated with electrical power distribution in the United States. However, such 

resonances are only approximately simulated by applying random phase modulation 

to  sinusoidal signals in order to achieve a bandwidth of roughly 1 Hz. The resulting 

spectrum is shown in Figure 6.6, where it is compared with initial sensitivity goal of 

the 4 km LIGO detectors. 

It is important to  note, however, that this simulated detector noise does not attempt 

to model the non-stationary behavior expected from actual interferometric detectors. 

Again, our aim here is not to  predict the astrophysical sensitivity of our analysis 

pipeline. Instead, we seek to  validate the proposed single detect or analysis pipeline 

by evaluating its performance under conditions which permit a comparison with the 

performance predicted from first principle arguments in section 5.5. We therefore 
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Figure 6.6: Amplitude spectral density of the simulated LIGO detector noise used 
to characterize the performance of the single detector Q pipeline. The noise consists 
of stationary white Gaussian noise that has been shaped by a series of filters in order 
to correspond to the design strain sensitivity of the LIGO 4 km detectors. A select 
number of resonant line sources are also simulated by random phase modulation of 
pure sinusoids. However, no attempt is made to simulate the non-stationary behavior 
that is observed in currently existing interferometric gravitational-wave detectors. Here 
the amplitude spectral density of the simulated detector noise (gray) is compared with 
the design sensitivity (black, dashed) of the LIGO 4 km interferometers. Note that, to 
avoid numerical accuracy problems, the simulated detector noise spectrum flattens out 
with some ringing below 20 Hz. 

postpone the application of our analysis pipeline to  actual interferometer data until 

chapter 7, where we apply it to  the search for gravitational-wave bursts in data from 

the second LIGO science run. Nevertheless, the simulated data set described here 

provides a convenient benchmark for evaluating and comparing the performance of 

alternative search algorithms[l27, 1281. 

As was the case for our stationary white noise tests, we again evaluate the ability 

of the proposed single detector pipeline to  detect sinusoidal Gaussian bursts of the 

form described by Equation 6.1. In this case, however, we test a set of 25 such 

wavefor~ns which span the targeted space of frequency from 64 to 1024 Hz and Q 



from 4 to  64. Specifically, we inject sinusoidal Gaussian bursts with logarithmically 

spaced center frequencies of 64, 128, 256, 512, and 1024 Hz, and logarithmically 

spaced Qs of 4, 8, 16, 32, and 64. In addition, these waveforms are injected into 

the simulated detector noise with a matched filter signal to  noise ratios of 3.0, 4.0, 

4.5, 5.0, 5.5, 6.0, a,nd 7.0 according to  the definition of Equation 3.32. We then 

apply the single detector Q pipeline to search this signal space, which we tile for a 

worst case energy loss of 20 percent. The resulting list of candidate events is then 

compared with the list of injected events in order to determine the detection efficiency 

and the false event rate of our search as a function of significance threshold. Finally, 

these results are used to produce receiver operating characteristics for each waveform. 

The resulting receiver operating characteristics are shown in Figure 6.7a through 

Figure 6.7e and characterize the coverage of our search across the targeted signal 

space. From these results it is apparent that the proposed single detector pipeline 

provides similar coverage over the targeted signal space, but that some degradation 

in performance is seen for waveform on the edge of this signal space. 

Finally, we also consider the aggregate performance of our analysis pipeline for all 

of the sinusoidal Gaussian bursts considered here. The resulting receiver operating 

characteristics are shown in Figure 6.8, where they are also compared with the theo- 

retically predicted performance from Figure 5.7. We note that the results show very 

good agreement considering that the present study consisted of stationary colored 

noise rather than the stationary white noise assumed by the predictions. Finally, it is 

also interesting to  note from Figure 6.5 that the four tested values of Q corresponding 

to  a 20 percent worst case energy loss happen to  fall geometrically exactly in between 

the Qs of the injected signals. Thus, although not by choice, our validation study 

represents the case of maximum mismatch in Q, making the observed agreement with 

prediction all the more remarkable. 
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Figure 6.7a: Receiver operating characteristics of the single detector Q pipeline ap- 
plied tto 64 Hz sinusoidal Gaussian gravitational-wave bursts with Qs of 4, 8, 16, 32, 
and 64 injected into simulated detector noise at matched filter signal to noise ratios of 
3.0, 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 as defined by Equation 3.32. 
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Figure 6.7b: Receiver operating characteristics of the single detector Q pipeline ap- 
plied to 128 Hz sinusoidal Gaussian gravitational-wave bursts with Qs of 4, 8, 16, 32, 
and 64 injected into simulated detector noise at matched filter signal to noise ratios of 
3.0, 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 as defined by Equation 3.32. 
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Figure 6 . 7 ~ :  Receiver operating characteristics of the single detector Q pipeline ap- 
plied to 256 Hz sinusoidal Gaussian gravitational-wave bursts with Qs of 4, 8, 16, 32, 
and 64 injected into simulated detector noise at matched filter signal to noise ratios of 
3.0, 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 as  defined by Equation 3.32. 
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Figure 6.7d: Receiver operating characteristics of the single detector Q pipeline ap- 
plied to 512 Hz sinusoidal Gaussian gravitational-wave bursts with Qs of 4, 8, 16, 32, 
and 64 injected into simulated detector noise at matched filter signal to noise ratios of 
3.0, 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 as defined by Equation 3.32. 
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Figure 6.7e: Receiver operating characteristics of the single detector Q pipeline ap- 
plied to 1024 Hz sinusoidal Gaussian gravitational-wave bursts with Qs of 4, 8, 16, 32, 
and 64 injected into simulated detector noise at matched filter signal to noise ratios of 
3.0, 4.0, 4.5, 5.0, 5.5, 6.0, and 7.0 as defined by Equation 3.32. 
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Figure 6.8: Aggregate receiver operating characteristic for all sinusoidal Gaussian 
waveforms. Each curve represents one value of injected signal to noise ratio. The 
empirically observed receiver operating characteristic (solid) shows reasonably good 
agreement with the theoretically predicted performance from Figure 5.7, which is also 
reproduced here (dashed) for comparison. 



Chapter 7 

All sky search 

We now apply the methods of the previous chapters to  the all-sky search for unmod- 

eled bursts of gravitational radiation in data from the second LIGO science run. 

For this search, we choose to analyze only a subset of this data set that consists of 

coincident data from the two Hanford detectors. In what follows, we first describe 

the details of this data set, identifying the advantages and disadvantages of such a 

choice. In addition, we also identify a number of data quality issues that justify the 

exclusion of i3 portion of this data set from our analysis. 

We then define the details of the analysis pipeline to be applied to this data set, 

including the signal space to search and the significance and consistency thresholds 

for detection. We also identify a procedure, based on non-physical time shifts, for 

estimating the expected number of background events due to the chance coincidence 

of non-stationary detector noise. Application of this pipeline to  the data then yields 

a number of candidate events. Although the resulting distribution of these events 

indicates a st;atistically significant excess of foreground events, we show that all of 

the candidate events are inconsistent with the signal expected from a gravitational- 

wave burst. 



Next, we apply the loudest event formalism of Brady, Creighton, and Wiseman[l29] to 

the present search in order to  determine an upper bound on the rate of gravitational- 

wave bursts at  a detection threshold corresponding to the amplitude of the most 

significant foreground event. In order to interpret this result, we also determine the 

sensitivity of the present search to an isotropic distribution of simulated bursts of 

both abstract as well as astrophysically motivated waveform. For each waveform, the 

resulting detection efficiencies are then used to determine an upper bound on the rate 

of gravitational-wave bursts as a function of signal strength. By doing so, we find 

that the cumulative observation time of the present search permits a limiting upper 

bound of 0.086 events per day at a 90 percent confidence level for large amplitude 

bursts. In addition, depending upon the particular waveform under consideration, 

we demonstrate that the search achieves 50 percent detection efficiency for isotropic 

populations of bursts with characteristic strain amplitude llh(l in the range from 

to lo-'' strain H Z - ' / ~  as measured by an optimally oriented detector. 

Finally, we compare the resulting upper bounds on the rate of gravitational-wave 

bursts with the results of four previous searches: the triple coincident all-sky search 

from the first and second LIGO science runs[l30, 921, the cumulative observations 

from 1997 through 2000 by the network of resonant mass detectors comprising the 

International Gravitational Event Collaboration (IGEC) [30], and the 2001 run of the 

EXPLORER and NAUTILUS resonant mass detectors by the Ricerca Onde Gravi- 

tazionali (ROG) collaboration[l3, 141. By doing so, we demonstrate that the search 

presented here is one of the most sensitive to date for unmodeled bursts of gravita- 

tional radiation. In addition, we demonstrate a t  a confidence level in excess of 99 

percent that an anomalous excess of events observed by the ROG collaboration is 

unlikely to  be due to a population of sources in the galactic plane. 



7.1 Data selection 

The second LIGO science run consisted of 1415 hours of joint data collection by all 

three LIGO interferometers between February 14, 2003 and April 14, 2003. During 

this period, the Hanford 4 km detector was operational 74 percent of the time, the 

Hanford 2 k.m detector was operational 58 percent of the time, and the Livingston 

4 km detector was operational 38 percent of the time. In combination, at least 

one detector was operational 85 percent of the time, two or more detectors were 

operational 61 percent of the time, and all three detectors were operational 22 percent 

of the time. 

For the present search, we focus only on those times during which both of the Hanford 

detectors were operational. Due to  the smaller duty cycle of the Livingston interfer- 

ometer, this double coincident Hanford data set accounts for a large majority of the 

total double coincident observation time. In particular, the two Hanford detectors 

were in sim11.1taneous operation approximately 50 percent of the time, providing a 

tot a1 of 70 1 hours of double coincident observation. 

This choice of data set has both advantages and disadvantages. Most importantly, 

it allows for i3 significantly longer observation time, by a factor of 2.3, than does the 

corresponding triple coincident analysis. As a result, there is a corresponding increase 

in the opportunity for detection. In addition, in the absence of non-gravitational-wave 

background events, such a search is expected to yield an upper bound on the rate 

of gravitational-wave bursts that is lower, by a similar factor of 2.3, than that which 

would be produced by a triple coincident search, assuming . Such a search also 

benefits from the coincident analysis of two detectors, which dramatically reduces 

the rate of accidental events compared with a single detector search. On the other 

hand, neglect'ing the possibility of an additional detector comes at the potential cost 

of reduced sensitivity in order to maintain an event rate comparable to that of the 

triple coincidt2nce search. 



It is also important to  note that the two Hanford detectors share a common environ- 

ment, including the same geometric orientation for gravitational waves. This also has 

its advantages and disadvantages. On the one hand, there is an increased probability 

of observing coincident events due to environment a1 causes other than gravitational 

radiation. Such events may result in a statistically significant excess number of fore- 

ground events that are not of gravitational-wave origin. On the other hand, the 

fact that collocated detectors should observe identical signals due to  gravitational- 

waves allows for much stricter consistency tests than those that are possible for non- 

collocated detectors. I11 particular , coincident signals of non-gravit at  ional-wave origin 

are unlikely to produce signals with consistent amplitude and phase between the two 

detectors. Finally, we note that the choice of collocated detectors will also be bene- 

ficial to  our analysis in section 7.9.4, where it will simplify the interpretation of our 

results for the case of non-isotropic distributions of sources on the sky. 

We also note that a search of the double coincident Hanford data set does not preclude 

the ability to  search for the presence of a candidate event in other detectors that were 

operational at the time. In addition, investigation of environment a1 or auxiliary 

detector data around the time of candidate events also offers a means of testing the 

validity of such events. 

As we will show, the stricter coincidence testing permitted by the collocated dou- 

ble coincident search effectively compensates for the potential increase in coincident 

events due to a common environment and the use of only two detectors. As a result, 

the observed sensitivity to  gravit at ional-wave bursts is comparable to  that of the triple 

coincident search[92]. However, in the final analysis, the added benefit of increased 

observation time allows one to set a stricter bound on the rate of gravitational-wave 

bursts than is possible with the triple coincident search. 



7.1.1 Data quality 

In addition to  focusing only on those periods during which both Hanford detectors 

were operational, it was also necessary to further exclude some portions of this data 

set based 011. a number of data quality issues. In particular, extensive investigations 

by a number of people involved in the commissioning and operation of the LIGO 

detectors have revealed occasional periods of scientifically unreliable data during the 

second science run[l31]. These include periods of time during which the following 

problems were identified. 

Invalid or missing calibration information. The time varying response of the 

interferometer to gravit ational-waves is normally monitoretf by the continuous 

injection of sinusoidal signals at  a few select frequencies. There were times, 

however, when some of these calibration lines were either absent or significantly 

weaker than normal, leading to  periods of invalid or missing calibration infor- 

mat ion. 

Invalid timing. The acquisition of data is normally synchronized via the global 

positioning system. Short periods of time were identified, however, during which 

the data acquisition system lost timing synchronization, leading to periods with 

unreliable timing information. 

a Photodiode saturation. A mechanism was identified by which occasional large 

low frequency excitations could cause photodiode saturation at the interferom- 

eter's anti-symmetric port. The resulting non-linear response produced occa- 

sional bursts of excess noise in the detector output. 

Elevatetl acoustic noise. Acoustic noise was observed to couple into the inter- 

ferometer via the input and output optics tables located outside the vacuum 

envelope. As a result, periods of elevated acoustic noise led to increased noise 

in the detector. 



Anomalous detector noise. A marginally stable servo loop in the 4 km Hanford 

detector occasionally produced periods of increased detector noise. However, 

in order to prevent the exclusion of potential gravitational-waves, such periods 

were excluded from the analysis only if they exceeded 5 minutes in duration. 

After excluding those periods of time that were identified as unreliable, the remaining 

data set consisted of 650 hours of double coincident data. This corresponds to  a 7 

percent loss in the available observation time, but still represents an overall 46 percent 

duty cycle. It is also interesting to note that,  after all periods of questionable detector 

performance are excluded, the double coincident Hanford data set is larger than the 

triple coincident data set by a factor of 2.6. 

7.1.2 Acoustic veto 

Although the data quality concerns identified in the previous section included a test 

for elevated acoustic noise, subsequent investigation found that such tests failed to  ex- 

clude a number of transient acoustic events that were also observed to couple into the 

detector. In particular, aircraft flying in proximity to the Hanford site were observed 

to  produce a characteristic time-frequency signature in the interferometer out put. 

An example of such an event is shown in Figure 7.1, where the same characteristic 

Doppler curve is easily identified in data from both gravitational-wave detectors as 

well data from microphones located in the corner station and the x-arm end station. 

In order to  identify such events and remove them from the data stream, the single 

detector search algorithm proposed in Figure 5.9 was applied to data from a micro- 

phone that was located in the corner station. This microphone data was searched for 

transient events with central frequencies between 64 and 1024 Hz and Qs between 

4 and 64. The search was performed at  a resolution corresponding to a 20 percent 

worst case energy loss due to  mismatch. The resulting transform coefficients were 

identified as significant if their normalized energy exceeded 19, corresponding to a 
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Figure 7.1: The constant Q time-frequency spectrogram of a typical airplane overflight 
as observecl by the Hanford 4km (top left) and 2 km (top right) interferometers as 
well as microphones located in the corner station (bottom left) and x-arm end station 
(bottom right). The passing airplane produces a characteristic Doppler curve in the 
time-frequency plane, with the maximum signal amplitude and maximum frequency rate 
of change occurring at the point of closest approach. The similarity in timing between 
the signal observed in the corner station microphone and both interferometers confirms 
that the primary acoustic coupling occurs in the corner station, where the input and 
output optics are located outside of the vacuum envelope. All of the spectrograms were 
computed at a fixed Q of 128 and are shown with a colormap set to saturate at a fixed 
normalized energy of 25.5, corresponding to an matched filter signal to noise ratio of 
7.0 for minimum uncertainty waveforms. The origin in time corresponds to the time of 
the maxim~im signal observed in the corner station microphone. 

matched filter signal t o  noise ratio of 6 for minimum uncertainty waveforms. The  

resulting significant tiles were then sorted and filtered t o  identify the most signifi- 

catnt set of non-overlapping tiles according t o  the algorithm of section 5.6. Finally, 

candidate airplane events were identified as those events for which the best match 

tirne-frequency tile had a central frequency less than 128 Hz and a Q in excess of 

32. These last two conditions were applied in order t o  preferentially identify airplane 



overflights rather than the occasional broadband transient that showed little evidence 

of coupling into the interferometers. 

The resulting event list consisted of 290 candidate airplane overflights during the 

650 hours of observation time that survived the data quality considerations of the 

previous section. We then excluded all data within a 30 second interval on either side 

of each transient microphone event. The remaining data set consisted of 645 hours 

of available observation time, corresponding to  a decrease of only 0.75 percent due to 

the exclusion of the candidate airplane events. 

It is important to  note that the decision to  identify and exclude airplane events from 

the current search is based partly on the results of the triple coincident search for 

bursts during the second LIGO science run[92]. In that search, the most significant 

observed event was due to an airplane overflight of the Hanford site in coincidence with 

a weak transient of unknown origin in the Livingston detector. While the coupling of 

airplane overflights into the detector has been well known since before the first LIGO 

science run, no effort was made to  exclude such events from the triple coincident search 

due in part to the low probability of a coincident transient event in a geographically 

distant detector. Here, based partly on the experience of the triple coincident search 

and partly on the expectation of coincident events due to a common environment, we 

have chosen to exclude such events from the analysis. 

Finally, we should also note that an aggressive acoustic mitigation effort was carried 

out after the second LIGO science run. As a result, acoustic coupling has been 

dramatically reduced for future science runs. 

7.2 Analysis pipeline 

One of the primary benefits of the present search is the stricter consistency testing 

afforded by collocated detectors. To take advantage of this, we apply the coherent 



analysis pipeline of Figure 5.12 to the current search. In what follows, we briefly 

describe the specific values that were used for the various search parameters. 

The data streams from each detector were first separated into overlapping 64 second 

blocks of data. This choice reflects the constraints imposed by the available compu- 

tational resources as well as a compromise between the desire for sufficient statistics 

and concerns regarding the stationarity of the data. In addition, a minimum overlap 

of 4 seconds was required in order to  discard edge effects associated with filter startup 

transients and time-domain aliasing in the Q transform. 

In order to suppress large low frequency noise outside of the band of interest, the data 

from both d!etectors were filtered by a 6th order Butterworth high pass filter with a 

cutoff frequency of 64 Hz[116]. This filter was first applied causally and then acausally 

in order to cancel the phase delay introduced by a single pass. As a consequence, 

the low frequency noise was effectively attenuated by the squared magnitude of the 

original filter's frequency response. The resulting filter response increases as f l2 for 

frequencies less than 64 Hz, achieves 50 percent attenuation at  this cut off frequency, 

and has an asymptotically flat response for higher frequencies. 

The resulting high pass filtered data was then whitened by zero-phase linear prediction 

using the method described in chapter 4. In order to ensure sufficiently white data for 

the subsequent search, the whitening was performed using one second linear predictor 

error filters such that the resulting data were stationary and white on time-scales 

shorter than one second. In addition, to account for slowly varying changes in the 

detector noise spectra in a way that is insensitive to  the presence of transient events, 

the linear predictor error filters were retrained on the entirety of each 64 second block 

of data, with the exception of the filter transients introduced by the zero-phase high 

pass filter. The resulting linear predictor error filters were then applied to the same 

64 second blocks of data used for training. 

The Q transform was then applied to  the whitened data in order to search for transient 



events with central frequencies between 64 and 1024 Hz and Qs between 4 and 64. 

This choice of frequency range is primarily motivated by the sensitive frequency band 

of the LIGO Hanford detectors during the second LIGO science run, while the choice 

of Q ranges from just above the minimum permissible value of Equation 5.19a to 

a value that yields a maximum signal duration on the order of one second. The 

resulting signal space encompasses the expected duration and dominant frequency 

band of gravitational wave bursts from core collapse supernovae as well as the merger 

of binary compact objects and the ring down of black holes with masses in the range 

from roughly 1 to 100 solar masses. This targeted signal space was then covered with 

a sufficient number of overlapping time-frequency tiles to  guarantee no more than 

20 percent energy loss due to mismatch between an arbitrary minimum uncertainty 

burst and the nearest measurement tile. The mean and normalized energies of the 

resulting transform coefficients were then determined after applying the formalism of 

section 5.5.4 to exclude outliers at  an a/ value of 2.0. 

Coincident time frequency tiles were then identified as significant if the observed single 

detector normalized energies were in excess of 20 in both detectors and the observed 

coherent normalized energy was in excess of 30. This corresponds to  single detector 

matched filter signal to noise ratio thresholds of 6.2 and a coherent detector matched 

filter signal to noise ratio threshold of 7.6 for minimum uncertainty waveforms. 

The observed set of coincident significant tiles were then sorted and filtered in order 

to identify the most significant set of non-overlapping tiles according to the algorithm 

of section 5.6. The resulting set of coincident tiles were then identified as consistent 

if the ratio of characteristic strain amplitudes observed in both detectors was less 

than 5 and the differences in phase observed in both detectors was less than 35 

degrees. Finally, in order to avoid the redundant reporting of events, the resulting 

set of consistent tiles were filtered to  exclude all but the most significant event on one 

second time-scales. Here we take the coherent normalized energy to  be the primary 

measure of a tiles significance. 



It is worth noting that the search described here was performed in approximately 1.5 

hours using a cluster of 290 machines located at the Caltech LIGO Laboratory[l32]. 

Each machine consisted of dual 2.66 GHz Intel Xeon processors with a total shared 

memory of 2 GB running the RedHat Fedora Core 3 Linux-based operating system. 

The distribution of the search across this cluster of machines was managed by the 

Condor[l33] batch management system. We also note that, on a single 2.66 GHz 

Intel Xeon processor, the coherent double coincident search can be performed at a 

rate approximately 1.75 times faster than real time. 

7.3 Event rates 

Application of the proposed analysis pipeline and acoustic veto to the selected data 

set yields a total of 27 coincident events, 10 of which exhibit amplitude and phase 

consistency as defined in the previous section. These events were identified during a 

total observrition time of 641 hours, which corresponds to an overall duty cycle of 45 

percent and takes into account the time lost due to a minimum analyzable segment 

length of 64 seconds, as well as technical difficulties encountered when carrying out 

the search. 

This number of events is extremely unlikely given the assumption of independent 

stationary white noise data. It is less surprising, however, when the transient non- 

stationarities observed in both detectors are considered along with the fact that the 

two detectors share a common environment. In order to evaluate the significance of 

our result, we therefore require a method of estimating the expected event rate from 

such effects. Here we consider only the expected event rate due to the random coin- 

cidence of transient non-stationarities. This is accomplished by repeatedly searching 

the same data set while introducing an artificial time shift between the two detectors. 

In particular, we choose to test time shifts that are much larger than the expected 

duration of the gravitational-wave bursts we aim to detect. For the present search, 



we examine time shifts of f 1, f 5, f 10, and f 20 seconds. 

The results of this search are summarized in Table 7.1 and Table 7.2, which list the 

number of unshifted foreground and time-shifted background events observed before 

and after application of the acoustic veto. Note that the observation time is different 

for each time shift due to  the loss of some data at  the boundaries of segments as well 

as occasional technical difficulties encountered when carrying out the search. As a 

result, the numbers of events observed at  each time shift should not be compared 

directly. Instead, both tables list the corresponding estimated event rates, as well as 

an estimated range of event rates corresponding to a one standard deviation error on 

the true but unknown event rate. 

The effectiveness of the acoustic veto is immediately apparent upon comparison of 

the two tables. In particular, we note that 23 out of 50 coincident foreground events 

and 6 out of 16 consistent foreground events were excluded as a result of the acoustic 

veto. For reference, we recall that the acoustic veto represented only a 0.75 percent 

loss of data. In addition, due to the temporal extent of airplane events, which is 

typically on the order of 30 seconds, such events are also identified and excluded in 

the time shifted background searches. In total, 33 coincident events and 14 consistent 

events were excluded from the cumulative background as a result of the acoustic veto. 

Many of these events, however, are due to redundant detections of the same acoustic 

events at  multiple time shifts. We also note that,  although the acoustic veto appears 

to be extremely effective, it does not exclude the most significant event observed in 

the unshifted foreground. As a result, application of the acoustic veto increases our 

confidence that the surviving events may be gravitational-wave bursts, but does not 

affect the upper bound on the rate of gravitational-wave events set by the present 

search. 

We now focus only on those events which survive the amplitude and phase consistency 

tests as well as the acoustic veto. In Figure 7.2, we display the rate of such events as 

a function of time shift, including the unshifted foreground. Again, we also include 



Table 7.1: The observed foreground and background event rates before application of the acoustic veto. The table 
lists the unshifted foreground event rates as well as the background event rates observed at eight different nonphysical time shifts. 
For each time shift, the number of events and the corresponding event rate are listed for each of three different thresholds. Coincident 
events are those events which exceed a single detector normalized energy threshold of 20 and an initial coherent normalized energy 
threshold of 30. Consistent events are those coincident events which also exhibit amplitude consistency within a factor of 5 and 
phase consistency within 35 degrees. Finally, significant events are those consistent events which also have a coherent normalized 
energy that exceeds that of the most significant event observed in the unshifted foreground. For each entry, the table also lists an 
estimated range of event rates corresponding to one standard deviation errors on the true but unknown event rate. 

time coincident consistent significant observation 
shift coincident consistent significant event rate event rate event rate time 

[seconds] events events events [PHZI [pH4 [PHz] [seconds] 



Table 7.2: The observed foreground and background event rates after application of the acoustic veto. The table lists 
the unshifted foreground event rates as well as the background event rates observed at eight different nonphysical time shifts. For 
each time shift, the number of events and the corresponding event rate are listed for each of three different thresholds. Coincident 
events are those events which exceed a single detector normalized energy threshold of 20 and an initial coherent normalized energy 
threshold of 30. Consistent events are those coincident events which also exhibit amplitude consistency within a factor of 5 and 
phase consistency within 35 degrees. Finally, significant events are those consistent events which also have a coherent normalized 
energy that exceeds that of the most significant event observed in the unshifted foreground. For each entry, the table also lists an 
estimated range of event rates corresponding to one standard deviation errors on the true but unknown event rate. 

time coincident consistent significant observation 
shift coincident consistent significant eventrate event rate event rate time 

[seconds] events events events [PHZ] [seconds] 
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Figure 7.2: The number of candidate events observed in the foreground and back- 
ground as a function of the time-shift of the search. An estimated range of event rates 
is also shown for each time shift and corresponds to one standard deviation errors on 
the true but unknown event rate. A statistically significant excess number of events is 
evident in the unshifted foreground relative to the majority of the time-shifted back- 
ground searches. However, a similar excess of events is also observed in the background 
at time shifts of +5 and -5 seconds. Such an excess may be evidence of environmental 
correlations on a similar time scale. 

an estimated range of event rates that corresponds to  a one standard deviation error 

on the true 1:)ut unknown event rate. 

In order to  obtain a more accurate estimate of the background event rate, we also 

consider the aggregate of all non-zero time shift experiments. Such a measurement 

has an observation time that is larger, by a factor of approximately 8, than the 

unshifted foreground observation time. Normalizing the aggregate background event 

ra,te by this ratio then yields an estimate of the background event rate with an error 

that is smaller, by a factor of approximately 4, then the error from a single time 

shift experiment. In Figure 7.3, we compare the cumulative coherent normalized 

energy distribution of background events obtained in this way with the corresponding 

distribution c)f foreground events. 
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Figure 7.3: The coherent normalized energy distribution of the ten candidate fore- 
ground events listed in Table 7.3 superposed on the cumulative distribution of back- 
ground events observed at all time shifts. Here the background distribution has been 
normalized by the ratio of the cumulative background observation time to the fore- 
ground observation time. For comparison, the background distribution is also shown 
with error bars corresponding to a one standard deviation variation in the expected 
foreground rate. Although an apparent statistically significant excess number of fore- 
ground events is observed relative to  the cumulative background, such an excess may be 
due to the common environment of the two detectors and is not necessarily indicative 
of a gravitational-wave foreground. 
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From both Figure 7.2 and Figure 7.3, it is apparent that the unshifted foreground 

search exhibits a st atistically significant excess event ra,te relative to the time-shifted 

-7. 

Foreground 
r Background 

background. However, such an excess event rate is not necessarily unexpected. Our 

: 
- 

method of estimating the background event rate with time shifts only accounts for 

the accidental coincidence of transient non-stationary events. It does not account for 

the possibility of coincident events due to a common environmental disturbance. 

We note, however, that a statistically significant excess event rate is also observed in 

the background at  time shifts of +5 and -5 seconds. This latter result, coupled with 

the success of the acoustic veto at  non-zero time shifts, suggests that our background 

estimate does indeed incorporate some knowledge of environmental events. Neverthe- 

less, there remains the possibility of observing an excess foreground due to transient 



environmental disturbances with durations shorter than one second. 

Unfortunatti:ly, distinguishing between environment a1 events of gravitational-wave and 

non-gravitational-wave origin is not a simple task and requires an extensive investiga- 

tion of both environmental and auxiliary detector data around the time of an event. 

Here we postpone these considerations until the next section, where we consider the 

likelihood that the identified events are due to  gravitational-wave bursts. For now, 

due to  the apparent excess of foreground events, we will refer to the ten remaining 

events as candidate events. For reference, we list the detected properties of these 

events in Table 7.3. 

Finally, from both Table 7.2 and Figure 7.3, we note that the most significant fore- 

ground event occurred at  a coherent normalized energy of 100. We will make use of 

this result a.gain in section 7.6 and section 7.8 where the detection efficiency of our 

search a t  this coherent normalized energy threshold essentially determines our upper 

bound on the rate of gravitational-wave bursts from the present search. 



Table 7.3: The measured properties of the ten most significant consistent events observed in the unshifted foreground search. The 
events are listed in decreasing order of coherent normalized energy, with the most significant event listed first. For all but three of 
the events, the Livingston 4 km detector was not taking scientifically reliable data. For the remaining three events, no consistent 
significant event was evident upon manual inspection of the Livingston data. In addition, manual inspection of environmental and 
auxiliary data from the Hanford detectors reveals that none of the events are of likely gravitational-wave origin. Note that the listed 
properties are those of the single minimum uncertainty time-frequency tile that best matches each burst. In general, however, they 
are not representative of the properties of the entire burst. 

central coherent coherent 4 km 2 km phase 
event frequency bandwidth duration normalized amplitude normalized normalized amplitude difference 
rank [Hz] [Hz] [m sl energy [strain HZ-'/~] energy energy ratio Peg] 



7.4 Candidate events 

In the previous section we noted a statistically significant excess number of events 

in the unshifted foreground relative to the distribution of events in the time-shifted 

background. While such an excess is not unexpected due to the common environment 

of the two detectors, it is instructive to  individually investigate all of the candidate 

events listed. in Table 7.3 in an attempt to identify an underlying cause. Here we first 

seek to  identify an obvious environmental cause for each event. However, if such a 

cause cannot; be identified, we also seek evidence of instrumental anomalies a t  the time 

of the event. To do so, we perform an extensive manual search of environmental as well 

as auxiliary interferometer data in proximity to  each of the candidate events. In the 

process, we de~nonstrate that none of the candidate events is of likely gravitational- 

wave origin. In what follows, we consider each event individually, starting with the 

most significant. 



Event 1 No obvious environmental cause was found for this event. However, aux- 

iliary interferometer data from the 4 km detector shows strong evidence of 

instrumental anomalies in coincidence with the observed event. These included 

strong signals in both the Michelson and power recycling control signals. Such 

signals are typically not observed when simulated gravitational-wave bursts are 

injected into the interferometer by magnetically pushing on the end test masses. 

Similar anomalies, however, were not observed in the 2 km detector, and the 

cause of the coincident event in the 2 km detector remains unknown. In addition, 

while the feature near 100 Hz shows good agreement between both detectors, 

the 2 km detector contains additional features that are not consistent with the 

signal observed in the 4 km detector. The Livingston 4 km detector was not 

operational during this event. Constant Q spectrograms of both gravitational- 

wave signals as well as auxiliary data from the 4 km detector are presented in 

Figure 7.4. 
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Figure 7.4: Event 1. The constant Q time-frequency spectrogram of the most signif- 
icant foreground event as observed by the Hanford 4km (upper left) and 2 km (upper 
right) detectors. A strong coincident signal is also evident in the power recycling con- 
trol signal (lower left) and Michelson control signal (lower right) of the Hanford 4 km 
detector. All four spectrograms were computed at a fixed Q of 64 and are shown with 
a colormap that is set to saturate at a fixed normalized energy of 20, corresponding to 
a matched filter signal to noise ratio of 6.2 for minimum uncertainty waveforms. 



Event 2 No obvious environmental cause was found for this event. However, aux- 

iliary interferometer data from the 4 km detector shows strong evidence of 

instrumental anomalies in coincidence with the observed event. In particular, a 

strong coincident signal was observed in the power recycling control signal. Such 

signals are not typically observed when simulated gravitational-wave bursts are 

injected into the interferometer by magnetically pushing on the end test masses. 

Similar anomalies, however, were not observed in the 2 km detector, and the 

cause of the coincident event in the 2 km detector remains unknown. In addition, 

while the feature near 100 Hz shows good agreement between both detectors, 

the 2 km detector contains additional features that are not consistent with the 

signal observed in the 4 km detector. The Livingston 4 km detector was not 

operational during this event. Constant Q spectrograms of both gravitational- 

wave signals as well as auxiliary data from the 4 km detector are presented in 

Figure 7.5. 
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Figure 7.5: Event 2. The constant Q time-frequency spectrogram of the second 
most significant foreground event as observed by the Hanford 4km (upper left) and 2 
km (upper right) detectors. A strong coincident signal is also evident in the power 
recycling control signal (lower) of the Hanford 4 km detector. All three spectrograms 
were computed at a fixed Q of 64 and are shown with a colormap that is set to saturate 
at a fixed xiormalized energy of 20, corresponding to a matched filter signal to noise 
ratio of 6.2 for minimum uncertainty waveforms. 



Event 3 This event was clearly coincident with a strong transient signal that appears 

in seismometer data local to  the corner station. However, no corresponding 

signal was observed in data from seismometers located at  the mid-stations or 

end-stations, nor was any signal present in data from microphones located in 

the corner station. The event appears to be due to an impulsive seismic event 

of unknown origin in proximity to the corner station. In addition, while the 

feature near 70 Hz shows somewhat good agreement between both detectors, 

the 2 km detector contains additional strong features near 90 Hz that are not 

consistent with the signal observed in the 4 km detector. The Livingston 4 

km detector was not operational during this event. Constant Q spectrograms 

of both gravitational-wave signals as well as seismometer data from the corner 

station are presented in Figure 7.6. 
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Figure 7.6: Event 3. The constant Q time-frequency spectrogram of the third most 
significant Foreground event as observed by the Hanford 4km (upper left) and 2 km (up- 
per right) cletectors. A strong coincident signal is evident in two different seismometers 
located in the corner station (lower left and right). The gravit ational-wave spectrograms 
were compiited at a fixed Q of 64, while the seismometer spectrograms were computed 
at a fixed Q of 8. Note that the frequency scale differs between the gravitational-wave 
and seismometer spectrograms. All four spectrograms are shown with a colormap that 
is set to saturate at  a fixed normalized energy of 20, corresponding to a matched filter 
signal to noise ratio of 6.2 for minimum uncertainty waveforms. 



Event 4 This event was clearly coincident with an airplane overflight that failed 

to be detected by both the elevated acoustic noise test of section 7.1.1 and 

the transient acoustic event test of section 7.1.2. The observed event occurred 

near the peak rate of change of the Doppler curve, corresponding to  the time 

of closest approach of the airplane to the corner station. The Livingston 4 

km detector was not operational during this event. Constant Q spectrograms 

of both gravitational-wave signals as well as microphone data from the corner 

station are presented in Figure 7.7. The extended duration of the signal is 

clearly evident in both detectors. 
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Figure 7.7: Event 4. The constant Q time-frequency spectrogram of the fourth most 
significant foreground event as observed by the Hanford 4km (upper left) and 2 km 
(upper right) detectors. The signal is coincident with an airplane overflight, whose 
characterist.ic Doppler curve is evident in the spectrogram of a microphone located in 
the corner stattion (lower left) as well as an expanded view of data from the 4 km detector 
(lower right.). The gravitational-wave spectrograms were computed at a fixed Q of 64, 
while the nlicrophone spectrogram and expanded gravitational-wave spectrogram were 
computed at a fixed Q of 128. All four spectrograms are shown with a colormap that 
is set to saturate at  a fixed normalized energy of 20, corresponding to a matched filter 
signal to noise ratio of 6.2 for minimum uncertainty waveforms. 



Event 5 No obvious environmental cause was found for this event. However, aux- 

iliary interferometer data from the 4 km detector shows strong evidence of 

instrumental anomalies in coincidence with the observed event. These included 

strong signals in both the Michelson and power recycling control signals. Such 

signals are typically not observed when simulated gravitational-wave bursts are 

injected into the interferometer by magnetically pushing on the end test masses. 

Similar anomalies, however, were not observed in the 2 km detector, and the 

cause of the coincident event in the 2 km detector remains unknown. In addi- 

tion, although the Livingston detector was in operation during this event, no 

event was observed in the Livingston detector. Constant Q spectrograms of 

both gravitational-wave signals as well as auxiliary data from the 4 km detector 

are presented in Figure 7.8. 
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Figure 7.8: Event 5. The constant Q time-frequency spectrogram of the fifth most 
significant foreground event as observed by the Hanford 4km (upper left) and 2 km 
(upper right) detectors. A strong coincident signal is also evident in the power recycling 
control sig~lal (lower left) and Michelson control signal (lower right) of the Hanford 4 
km detect0.r. All four spectrograms were computed at a fixed Q of 64 and are shown 
with a colormap that is set to saturate at a fixed normalized energy of 20, corresponding 
to a matched filter signal to noise ratio of 6.2 for minimum uncertainty waveforms. 



Event 6 No obvious environmental cause was found for this event, nor was there 

any obvious sign of instrumental anomalies in auxiliary interferometer data. 

However, while the cause of this coincident event remains unknown in both 

detectors, the 2 km detector exhibits extended time-frequency structure that is 

clearly inconsistent with the signal observed in the 4 km detector. In addition, 

although the Livingston detector was in operation during this event, no event 

was observed in the Livingston detector. Constant Q spectrograms of both 

gravitational-wave signals are presented in Figure 7.9. 
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Figure 7.9: Event 6. The constant Q time-frequency spectrogram of the sixth most 
significant foreground event as observed by the Hanford 4km (upper left) and 2 km 
(upper right) detectors. Both spectrograms were computed at a fixed Q of 64 and 
are shown with a colormap that is set to saturate at a fixed normalized energy of 20, 
corresponding to a matched filter signal to noise ratio of 6.2 for minimum uncertainty 
waveforms. 



Event 7 No obvious environmental cause was found for this event. However, auxil- 

iary interferometer data from the 4 km detector shows evidence of instrumental 

anomalies in proximity to the observed event. In particular, a strong signal 

was observed in the power recycling control signal that was in coincidence with 

a portion of the observed burst. Such signals are not typically observed when 

simulated gravitational-wave bursts are injected into the interferometer by mag- 

netically pushing on the end test masses. Similar anomalies, however, were not 

observed in the 2 km detector, and the cause of the coincident event in the 2 km 

detector remains unknown. The Livingston 4 km detector was not operational 

during this event. Constant Q spectrograms of both gravitational-wave signals 

as well as auxiliary data from the 4 km detector are presented in Figure 7.10. 
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Figure 7.10: Event 7. The constant Q time-frequency spectrogram of the seventh 
most significant foreground event as observed by the Hanford 4km (upper left) and 2 
km (upper right) detectors. A strong coincident signal is also evident in the power 
recycling control signal (lower) of the Hanford 4 km detector. All three spectrograms 
were computed at a fixed Q of 16 and are shown with a colormap that is set to saturate 
at a fixed normalized energy of 20, corresponding to a matched filter signal to noise 
ratio of 6.2 for minimum uncertainty waveforms. 



Event 8 This event was clearly coincident with a strong transient signal that appears 

in seismometer data local to  the corner station. However, no corresponding 

signal was observed in data from seismometers located at  the mid-stations or 

end-stations, nor was any signal present in data from microphones located in 

the corner station. The event appears to  be due to  an impulsive seismic event 

of unknown origin in proximity to the corner station. In addition, the 2 km 

detector contains additional strong features that are not consistent with the 

signal observed in the 4 km detector. The Livingston 4 km detector was not 

operational during this event. Constant Q spectrograms of both gravitational- 

wave signals as well as seismometer data from the corner station are presented 

in Figure 7.11. 
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Figure 7.11: Event 8. The constant Q time-frequency spectrogram of the eighth 
most significant foreground event as observed by the Hanford 4km (upper left) and 
2 km (upper right) detectors. A strong coincident signal is evident in two different 
seismometers located in the corner station (lower left and right). The gravit ational-wave 
spectrogranis were computed at a fixed Q of 32, while the seismometer spectrograms 
were compl.ited at a fixed Q of 16. Note that the frequency scale differs between the 
gravitational-wave and seismometer spectrograms. All four spectrograms are shown 
with a colormap that is set to saturate at a fixed normalized energy of 20, corresponding 
to a matched filter signal to noise ratio of 6.2 for minimum uncertainty waveforms. 



Event 9 No obvious environmental cause was found for this event. However, aux- 

iliary interferometer data from the 4 km detector shows strong evidence of 

instrumental anomalies in coincidence with the observed event. In particular, a 

strong coincident signal was observed in the power recycling control signal. Such 

signals are not typically observed when simulated gravitational-wave bursts are 

injected into the interferometer by magnetically pushing on the end test masses. 

Similar anomalies, however, were not observed in the 2 km detector, and the 

cause of the coincident event in the 2 km detector remains unknown. In addi- 

tion, although the Livingston detector was in operation during this event, no 

event was observed in the Livingston detector. Constant Q spectrograms of 

both gravitational-wave signals as well as auxiliary data from the 4 km detector 

are presented in Figure 7.12. 
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Figure 7.12: Event 9. The constant Q time-frequency spectrogram of the ninth 
most significant foreground event as observed by the Hanford 4km (upper left) and 2 
km (upper right) detectors. A strong coincident signal is also evident in the power 
recycling control signal (lower) of the Hanford 4 km detector. All three spectrograms 
were computed at a fixed Q of 32 and are shown with a colormap that is set to saturate 
at a fixed normalized energy of 20, corresponding to a matched filter signal to noise 
ratio of 6.2 for minimum uncertainty waveforms. 



Event 10 No obvious environmental cause was found for this event. However, aux- 

iliary interferometer data from the 4 km detector shows strong evidence of 

instrumental anomalies in coincidence with the observed event. These included 

strong signals in both the Michelson and power recycling control signals. Such 

signals are typically not observed when simulated gravitational-wave bursts are 

injected into the interferometer by magnetically pushing on the end test masses. 

Similar anomalies, however, were not observed in the 2 km detector, and the 

cause of the coincident event in the 2 km detector remains unknown. The 

Livingston 4 km detector was not operational during this event. Constant Q 

spectrograms of both gravitational-wave signals as well as auxiliary data from 

the 4 km detector are presented in Figure 7.13. 
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Figure 7.13: Event 10. The constant Q time-frequency spectrogram of the tenth 
most significant foreground event as observed by the Hanford 4km (upper left) and 2 
km (upper right) detectors. A strong coincident signal is also evident in the power 
recycling control signal (lower left) and Michelson control signal (lower right) of the 
Hanford 4 Itm detector. All four spectrograms were computed at a fixed Q of 64 and 
are shown with a colormap that is set to saturate at  a fixed normalized energy of 20, 
corresponding to a matched filter signal to noise ratio of 6.2 for minimum uncertainty 
waveforms. 



We therefore find that all ten of the candidate events listed in Table 7.3 are not of 

likely gravitational-wave origin. For three of the events, an obvious environmental 

cause has been identified. Two of them are of seismic origin, and one is due to an 

airplane overflight. The remaining seven events are excluded for a combination of 

reasons. Three of the events occurred while the Livingston 4 km detector was in 

operation, but a search of the Livingston data failed to yield evidence of the burst. 

Six of the events are excluded on the basis of strong coincident signals in auxiliary 

interferometer data that are not typically observed when simulated gravitational- 

wave bursts are injected into the interferometer by magnetically pushing on the end 

test masses. Finally, three of the events are also excluded based on the observation 

of inconsistent time-frequency structure between the gravitational-wave signal in the 

two detectors. 

7.5 Statistical analysis 

We now apply the loudest event formalism of Brady, Creighton and Wiseman[l29] in 

order to determine an upper bound on the rate of gravitational-wave bursts. In what 

follows, we briefly review their approach, and then apply the resulting method to the 

present search. 

We first postulate a source population with the following properties. We assume that 

gravitational-wave bursts occur according to a Poisson process with a true rate r.  

The probability of n events occurring in an observation time T is then 

We further assume that such events are detected according to  a binomial process 

with a probability of success ~(2). The probability of detecting m events given an 



occurrence of n events is then 

Here E(Z)  is simply the detection efficiency of the search evaluated for the specified 

source popu.lation at a coherent normalized energy threshold of Z.  

Given these assumptions, the joint probability of n events occurring in an observation 

time T and the subsequent detection of m of these events is then 

The probability of observing zero events during an observation time T is then deter- 

mined by marginalizing this distribution over all possible n and setting m to zero: 

Finally, this result may simplified by recognizing it as a Taylor series expansion of 

the exponential function, 

We may then construct a classical frequentist upper bound on the rate of gravitational- 

wave bursts by noting that this result is also the probability P(Z' < Zlr, T, ~(2)) that 

the most significant event occurs at a coherent normalized energy Z' that is less than 

the thresholcl value of Z at which the search is performed. Setting this probability 

equal to 1 - p, where p is the desired confidence level, then yields a frequentist upper 

bound on the rate of gravitational-wave bursts, 

where the detection efficiency E(Z )  is to be evaluated at the coherent normalized 



energy Z of the most significant event. By construction, the resulting upper bound 

is chosen such that if the same procedure is repeated for a hypothetical ensemble of 

identical experiments, then the resulting upper bound is guaranteed not to exclude 

the true rate of gravitational-wave bursts in a fraction p of those experiments. We 

thus state with confidence p that the true rate of gravitational-wave bursts is less 

than r,. 

Note that in developing this result, we have assumed that the most significant event 

is due only to  the assumed source population and has zero probability of arising 

from a non-gravitational-wave background. Although an expected background can 

be incorporated into the above formalism, we have decided not to  do so for the 

present search. This choice is based primarily on the uncertainty in our estimate of 

the background event rate. However, it is also interesting to  note that this decision 

actually leads to  a more conservative statement in the sense that the resulting upper 

bound is not violated by failure to include the background. 

Application of Equation 7.6 to the current search then yields the upper bounds listed 

in Table 7.4. To simplify the comparison of these results with those of other searches, 

we list the resulting upper bounds in units of events per day for confidence levels of 

90, 95, and 99 percent. Note, however, that these are uninterpreted bounds. That 

is, we have not yet specified a particular source population. Instead, the event rate 

bounds reported in Table 7.4 correspond to  the special case of a source population for 

which the detection efficiency is unity at  the specified threshold. For now, we note 

that this is the lowest achievable upper bound on the rate of gravitational-wave bursts 

given the present search. We will revisit this result in section 7.8 after determining 

the detection efficiencies for a variety of waveforms a t  a coherent normalized energy 

threshold equal to that of the most significant foreground event. 



Table 7.4: The uninterpreted upper bound on the rate of gravitational-wave bursts 
from the present search. For comparison with previous searches, the upper bound is 
given for confidence levels of 90, 95, and 99 percent and listed in units of events per 
day. The listed event rates correspond to a source population for which the detection 
efficiency is unity at a coherent normalized energy threshold equal to that of the most 
significant foreground event. In the next two sections, we derive interpreted upper 
bounds that also incorporate the detection efficiency of the present search for a variety 
of simulated gravitational-wave bursts as a function of characteristic strain amplitude 
and distance. 

confidence upper bound upper bound 
level number of events events per day 

Detect ion efficiencies 

In the previous section, we determined an upper bound on the rate of gravitational- 

wave bursts in terms of the detection efficiency for a particular source population. In 

order to apply this result, we now determine the detection efficiency of the present 

search for a variety of simulated gravitational-wave bursts of both abstract and as- 

trophysically motivated waveform. Following the prescription of the previous section, 

these detection efficiencies are evaluated at a coherent normalized energy threshold 

equal to that; of the most significant foreground event. 

This is accomplished by coherently injecting simulated populations of each wave- 

form into the existing double coincident data set and repeating the search described 

in section 7.2. In doing so, we must make assumptions regarding the distribution of 

gravitational-wave bursts on the sky. However, since we have little a prion knowledge 

of the popula,tion of gravitational-wave bursts, we simply choose the least informative 

a~sumpt~ion. That is, we assume that the bursts originate from an isotropic distri- 



bution of sources with random linear polarization. In order to  determine an upper 

bound on the rate of such bursts as a function of amplitude, we further assume that 

all of the bursts emitted from such a population occur with the same characteristic 

strain amplitude 1 1  hll as observed by an optimally oriented detector. We then deter- 

mine the detection efficiency for many such populations, each with a different value 

of llhll 

To simulate each population, the proposed waveform is then repeatedly added to  the 

data at  randomly selected times with an amplitude determined by the characteristic 

strain amplitude of the population and an attenuation factor consistent with the an- 

gular response of the detector and a randomly selected sky position and polarization. 

We then determine the detection efficiency for each such population as the fraction 

of the injected events that are detected at  the specified threshold. 

For each waveform, the resulting detection efficiencies are then presented as a function 

of characteristic strain amplitude. 

In general, the resulting measurements comprise a monotonically increasing function 

of signal amplitude and are conveniently described by an asymmetric sigmoid function 

of the form[92] 

where the function x(11 hll) is given by 

Here hc is the approximate characteristic strain amplitude at  the center of the transi- 

tion region, w is a dimensionless parameter that describes the approximate width of 

the transition region in decades, and a is a dimensionless asymmetry parameter. In 

what follows, we fit the observed detection efficiencies for each waveform to a function 

of this form in order to obtain an accurate estimate of the detection efficiency as a 

continuous function of characteristic strain amplitude. Although there is no rigor- 



ous mat herrlat ical basis for this parameterization, it has empirically been observed to  

provide a good fit to the measured detection efficiencies for a wide range of search 

methods and simulated waveforms. 

We now consider the detection efficiencies for four families of waveforms. Two of the 

families are abstract and consist of simple Gaussian bursts and sinusoidal Gaussian 

bursts. The primary motivation for injecting such waveforms is to  provide a widely 

distributed test of the performance of the search over the targeted signal space, as 

well as to provide a basis for quickly estimating the detectability of other proposed 

waveforms. Unfortunately, due to limited computational resources, the number of 

such waveforms that were simulated is insufficient to completely cover the space of 

targeted signals. As a result, we rely both on the sparse test afforded by the these 

sinlulat ed waveforms as well as the more comprehensive validat ion study presented 

in chapter 6 in order to  provide confidence in the ability of our search to cover the 

targeted signal space. 

We first consider source populations consisting of simple Gaussian bursts of the form 

P~pulat~ions of such Gaussian bursts were injected with durations ot of 0.05, 0.25, 0.5, 

2.0, and 3.0 rnilliseconds and with twenty different values of characteristic strain am- 

plitudes 1 1  hll as measured by an optimally oriented detector. The resulting detection 

efficiencies for isotropic distributions of such sources are shown in Figure 7.14. 

We also consider source populations consisting of sinusoidal Gaussian bursts of the 

form 

Q2 
sin [27r$(t - T ) ]  . 

Populations c)f such bursts were injected with central frequencies q5 of 100, 153, 235, 

361, 554, and 849 Hz and a single Q of 12.7. As was the case for the Gaussian bursts, 



Detection efficiency for simple Gaussian bursts 

Injected amplitude [strain HZ-"'~] 

Figure 7.14: The detection efficiency as a function of characteristic strain amplitude 
1 1  h((  for isotropic populations of simple Gaussian bursts. Detection efficiencies are shown 
for bursts with duration ot ranging from 0.05 to 3.0 milliseconds at a detection threshold 
corresponding to the coherent normalized energy of the most significant foreground 
event. 

source populations were simulated for twenty different values of characteristic strain 

amplitude 1 1  h 1 1  as measured by an optimally oriented detector. The resulting detection 

efficiencies for isotropic distributions of such sources are shown in Figure 7.15. 

In addition to  these two abstract families of waveforms, we also inject two families 

of astrophysically motivated waveforms. These are binary black hole mergers and 

axisymmetric core collapse supernovae. Here we make use of the waveforms produced 

by the various simulation efforts that are described in chapter 2. We note, however, 

that such simulations remain an active topic of research and that the correspond- 

ing waveforms, although plausible, are not predicted with nearly the same degree of 

certainty as that of inspiraling binary neutron stars. As a result, their astrophysi- 

cal importance is limited. Nevertheless, such waveforms are included because they 

provide a richer set of waveforms on which to test the robustness of the search, and 

also because they provide a rough estimate of the sensitivity of the search to two of 

the most plausible sources that LIGO may detect. In addition, such waveforms also 



Figure 7.1.5: The detection efficiency as a function of characteristic strain amplitude 
Ilh(( for isotropic populations of sinusoidal Gaussian bursts. Detection efficiencies are 
shown for 1:)ursts with a Q of 12.7 and central frequency q!~ ranging from 100 to 849 Hz 
at a detection threshold corresponding to the coherent normalized energy of the most 
significant foreground event. 

provide a useful basis of comparison with other algorithms and detectors. 

We first consider source populations consisting of the simulated binary black hole 

merger waveforms from Baker, Campanelli, Lousto, and Takahashi [38, 391. In this 

case, we have injected populations of binary black hole mergers with total binary 

masses of 10, 30, 50, 70, and 90 solar masses. Again, source populations were simu- 

lated for twenty different values of characteristic strain amplitude 1 1  h 1 1 .  However, we 

also note an important difference between the injected populations of binary black 

hole mergers and the abstract waveforms considered previously. Here, we are provided 

with two waveforms, one for each gravitational-wave polarization, rather than just a 

single waveform. In general, the injected waveform will then depend non-trivially on 

both the position of the source on the sky as well as the orientation of the source 

relative to the line of sight. For simplicity, however, we inject the binary black hole 

merger waveforms with equal signal energy in both gravitational-wave polarizations. 

Although we still allow for a random polarization angle, this choice corresponds to a 



fixed 60 degree inclination of the rotation axis of the binary black hole system relative 

to the line of sight. In addition, we characterize the amplitude of each population by 

the quadrature sum of the signal amplitudes in both gravitational-wave polarizations 

incident on the Earth. Roughly speaking, we expect these choices to  yield a signal 

amplitude similar to  the average signal amplitude expected from a randomly oriented 

population of sources that are all at  the same distance. However, here we do not 

attempt to  accurately account for a truly random distribution. Instead, we simply 

present our results for populations of fixed inclination sources that are isotropically 

distributed on the sky, all at  the same characteristic strain amplitude. The resulting 

detection efficiencies for such source populations are shown in Figure 7.16. 

Detection efficiency for binary black hole mergers 
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Figure 7.16: The detection efficiency as  a function of characteristic strain amplitude 
Ilh(( for isotropic distributions of binary black hole mergers with fixed inclination. De- 
tection efficiencies are shown for simulated binary black hole merger waveforms[38] with 
a total binary masses of 10, 30, 50, 70, and 90 solar masses at a detection threshold cor- 
responding to  the coherent normalized energy of the most significant foreground event. 
Here, the rotation axis of the binary black hole systems are all fixed at a 60 degree 
inclination relative to the line of sight, and the reported signal amplitudes correspond 
to quadrature sums of the signal amplitudes in both gravitational-wave polarization 
incident on the Earth. 

We also consider source populations consisting of the simulated axisymmetric super- 

novae core collapse waveforms from Zwerger and Mueller[42], Dimmelmeier, Font, 



and Mueller[43], and Ott,  Burrows, Livne, and Walder[44]. However, due to the large 

variety of waveforms in each of the three studies, we do not consider each waveform 

separately. Instead we choose to consider each of the three sets of simulations as a 

single population. As a result, since the amplitude of the waveforms vary throughout 

the population, it is also more natural to parameterize these source populations by a 

distance rather than a characteristic strain amplitude. Here we inject them at twenty 

different distances ranging from 10 to 1000 parsecs. In addition. as was the case for 

the binary black hole merger waveforms, the supernovae are injected with a fixed in- 

clination relative to the line of sight. In this case, however, we choose an inclination 

angle corresponding to maximum gravitational-wave emission in the direction of the 

Earth. This also corresponds to the case of a single gravitational-wave polarization, 

which we taJke to  be randomly oriented on the sky. Roughly speaking, we expect 

these assumption to yield a signal amplitude on the order of 2 times larger than the 

average signal amplitude expected from a randomly oriented population. However, 

we do not attempt to accurately account for this difference here. Instead, we simply 

present our results for populations of optimally oriented sources that are isotropically 

distributed on the sky at a fixed distance. The resulting detection efficiencies for such 

source populations are shown in Figure 7.17. 

In this case, we find that the resulting asymmetric sigmoid fits are of poorer quality 

than those of' the other waveforms that we have considered. This is primarily a result 

of' the large variety of waveforms included in each family of simulated supernovae 

waveforms, and the fact that a significant number of these waveforms have appre- 

ciable spectral content outside of the sensitive frequency band of the LIGO Hanford 

detectors during the second LIGO science run. As a side effect, the necessary range 

of signal amplitudes required to fully study the detectability of such bursts was also 

somewhat underestimated, leading to greater uncertainty in the resulting fit, partic- 

ularly at high signal amplitudes. 

We also recall that the simulated binary black hole merger waveforms and simulated 

core collapse supernovae waveforms considered here are not known to nearly the same 



Detection efficiency for supernovae 
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Figure 7.17: The detection efficiency as a function of distance for isotropic distribu- 
tions of optimally oriented supernovae. Detection efficiencies are shown for three differ- 
ent families of simulated axisymmetric core collapse supernovae waveforms[42, 43, 441 
at a detection threshold corresponding to the most significant observed event. Here, 
the symmetry axis of the supernovae are all assumed to be perpendicular to the line of 
sight, such that the maximum signal energy is emitted in the direction of the Earth. 

I 

level of accuracy as that of the inspiral phase of binary neutron stars. Nevertheless, 

the resulting asymmetric sigmoid curves permit a rough order of magnitude measure 

of the detectability of such sources, as well as providing a benchmark for comparison 

between different searches and search algorithms. 

- Ott Burrows - - - Dimmelmeier Font Mueller 

Finally, we note that the set of simulated waveforms that were injected in the present 

search were initially developed for use in the triple coincident search of data from the 

second LIGO science run[92]. Although this choice was primarily one of convenience, 

it also allows for a straightforward comparison between the two searches. In addition, 

a portion of the simulated waveforms also overlap with the set of waveforms considered 

in the triple coincident search of data from the first LIGO science run. However, 

although the waveforms were the same, the parameters used to  describe them vary 

slightly from those used in present search. In particular, we note that the value of Q 

as defined by Equation 3.8 is a factor of fi larger than the value of Q as defined in 



the triple coincident searches. In addition, the value of o,, defined by Equation 3.7a 

and used here to describe the duration of Gaussian bursts, is a factor of 2 smaller 

than the duration 7 used to describe such bursts in the triple coincident searches. 

In section 7.9, however, all comparisons to the results of other searches have been 

performed by first translating such results into the notation of the present work. 

7.7 Systematic errors 

There are two primary sources of systematic error that effect our estimate of detection 

efficiency. One of these sources of error is due to our use of simulated waveforms from 

the triple coincident search. A consequence of this choice is that detection efficiencies 

have only been estimated for those periods of time during which the Livingston detec- 

tor was operational, which accounts for only 40 percent of the available observation 

time. This choice may introduce a bias into our measurement of detection efficiency 

if, due to nearby human activity, diurnal variations in the sensitivity of the Hanford 

detectors art: correlated with variations in the operational status of the Livingston 

detector. In order to estimate the bias due to this effect, we have separated the in- 

jected signals into two sets: those injected on weekdays between 6am and 6pm, and 

those injected at other times. By doing so, we find at  worst a 20 percent increase 

in the signal amplitude corresponding to 50 percent detection efficiency as a result 

of daytime a,ctivity. This discrepancy is somewhat ameliorated, however, by taking 

into account the approximate day to night duty cycle ratios of 1:2 for the present 

search and 1:5 for the injected waveforms. As a result, we anticipate a worst case 

bias of 4 percent due to this effect. The other primary source of systematic error in 

our analysis is due to our uncertainty in calibrating the response of the interferometer 

to gravitational-waves[134]. Here, the total systematic error due to this uncertainty 

has been judged to be less than 8 percent[92]. Combining both uncertainties, we 

conservatively estimate our overall systematic error to be no more than 10 percent. 



7.8 Upper limits 

In order to  determine interpreted upper bounds on the rate of gravitational-wave 

bursts, we now apply the statistical analysis of section 7.5 to the detection efficiencies 

from section 7.6. In the process, we also account for the systematic uncertainties iden- 

tified in the previous section by introducing a 10 percent increase in the reported signal 

amplitude. The resulting rate limits are displayed in Figure 7.18 through Figure 7.21 

at  the 90 percent confidence level. For large amplitude waveforms, where the mea- 

sured detection efficiencies approach unity, the resulting interpreted upper bounds are 

limited by the observation time of the search and approach a lowest possible bound of 

0.086 events per day a t  the 90 percent confidence level as listed in Table 7.4. At lower 

signal amplitudes, the resulting upper bounds increase with the decreasing detection 

efficiency of the search. In Table 7.5 through Table 7.8 we characterize the onset of 

this transition by the signal amplitude required for 50 percent detection efficiency and 

find typical transition amplitudes of to lo-'' strain H Z - ~ / ~  for the sinusoidal 

Gaussian and binary black hole merger waveforms, loe2' to 10-l8 strain HZ- ' /~  for 

the simple Gaussian waveforms, and 20 to  70 parsecs for the simulated core collapse 

supernovae waveforms. For the simple Gaussian and sinusoidal Gaussian bursts, we 

also report the corresponding total energy emitted in the form of gravitational radi- 

ation on the assumption of isotropic emission from sources at  a galactic distance of 

10 kpc according to the prescription of Equation 3.41. In this case, we find that the 

typical energies required for 50 percent detection efficiency fall in the range from lov5 

to  solar masses, depending on waveform. 



Table 7.5: Simple Gaussian bursts. The characteristic strain amplitude llhll and 
corresponcling total energy E required for 50 percent detection efficiency of an isotropic 
population of simple Gaussian bursts emitting isotropically at a galactic distance of 10 
kpc with duration ot ranging from 0.05 to 3.0 milliseconds. 

Duration Amplitude Energy at 10 kpc 
[ms] [strain [Mac2] 

Table 7.6: Sinusoidal Gaussian bursts. The characteristic strain amplitude ((hll and 
corresponding total energy E required for 50 percent detection efficiency of an isotropic 
population of sinusoidal Gaussian bursts emitting isotropically at a galactic distance of 
10 kpc with central frequencies q5 ranging from 100 to 849 Hz and a Q of 12.7. 

Frequency Amplitude Energy at 10 kpc 
[Hz] [strain [Mac2] 



Table 7.7: Binary black hole mergers. The characteristic strain amplitude llhll required 
for 50 percent detection efficiency of an isotropic population of simulated equal mass 
binary black hole mergers[38, 391 at a 60 degree inclination relative to the line of site 
and with total binary mass ranging from 10 to 90 solar masses. 

Tot a1 mass Amplitude 
[Ma] [strain HZ- ' /~ ]  

Table 7.8: Core collapse supernovae. The source distance required for 50 percent 
detection efficiency of an isotropic population of axisymmetric core collapse supernovae 
with optimal inclination angle relative to the line of site. Characteristic distances are 
listed for three different families of simulated waveforms[42, 43, 441. 

Waveform Distance 
family [parsecs] 

Zwerger, et al. 62 
Dimmelmeier, et al. 56 

Ot t ,  et al. 22 



Upper limits on simple Gaussian bursts (90% C.L.) 
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Figure 7.18: Upper limits on the rate of gravitational-wave bursts as a function of 
characteristic strain amplitude ((hll for isotropic populations of Gaussian bursts. The 
upper limits are shown for bursts with duration 0, ranging from 0.05 to 3.0 milliseconds 
and are reported at a 90 percent confidence level. 

Upper limits on sinusoidal Gaussian bursts (90% C.L.) 

- 
2 lo0 u 
1 

V) + 
c 
a, > 
a, 
U 

a, 
C a 
L - 
c 
a, > 
W 

10-I 

. - 
Signal amplitude [strain Hz-'"] 

Figure 7.19: Upper limits on the rate of gravitational-wave bursts as a function of 
characteristic strain amplitude J J  h 11 for isotropic populations of sinusoidal Gaussian 
bursts. The upper limits are shown for bursts with a Q of 12.7 and central frequency 

ranging from 100 to 849 Hz and are reported at a 90 percent confidence level. 



Upper limits on binary black hole mergers (90% C.L.) 
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Figure 7.20: Upper limits on the rate of gravitational-wave bursts as a function 
of characteristic strain amplitude 11 h ( 1  for isotropic distributions of binary black hole 
mergers at a 60 degree inclination relative to  the line of sight. Upper limits are shown 
for the simulated binary black hole merger waveforms[38, 391 with total binary masses 
of 10, 30, 50, 70, and 90 solar masses and are reported at a 90 percent confidence level. 

Upper limits on bursts from supernovae (90% C.L.) 
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Figure 7.21: Upper limits on the rate of gravitational-wave bursts as a function of 
distance for isotropic distributions of optimally oriented supernovae. Upper limits are 
shown for three different families of simulated axisymmetric core collapse supernovae 
waveforms[42, 43, 441 and are reported at a 90 percent confidence level. 



7.9 Comparison of results 

IVe conc1ud.e this chapter by comparing the interpreted upper bounds set by the 

present search with the results of previous searches for gravitational-wave bursts. In 

particular, we consider the all-sky triple coincident search for bursts from both the 

first and second LIGO science runs[l30, 921, the cumulative observations from 1997 

through 2000 by the network of resonant mass detectors comprising the International 

Gravitational Event Collaboration (IGEC)[30], and the 2001 run of the EXPLORER 

and NAUTILUS resonant mass detectors[l3, 141. 

7.9.1 First LIGO science run 

The search for bursts in data from the first LIGO science run consisted of 35.5 hours 

of triple coincident observation time between August 23 and September 9, 2002[130]. 

For this search, a straightforward comparison with the present search is made possible 

by a convenient overlap in the choice of waveforms and source populations used to 

characterize both searches. Here we choose to compare two waveforms, one from 

each of two families, for which the previous search was most sensitive. These are a 

simple Gaussian burst with a duration of 0.5 milliseconds and a sinusoidal Gaussian 

burst with a central frequency of 361 Hz and a Q of 12.7. However, we recall that,  

although the waveforms are the same, a slightly different notation was used in the 

triple coincident search. Specifically, a duration of 0.5 milliseconds and a Q of 12.7 

in the present search correspond to a duration of 1 millisecond and a Q of 9 in the 

triple coinciclent search. In Figure 7.22, we compare the upper bounds achieved by 

the two searches for both of the waveforms under consideration. 

A substantial improvement in both sensitivity and rate is clearly evident between the 

two searches. This improvement is due to  a combination of three factors. As evidenced 

by Figure 2.7b, the increased sensitivity provided by the present search is in large part 
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Figure 7.22: A comparison of the upper bounds achieved by the present search with 
the upper bounds set by triple coincident search of data from the first LIGO science run. 
The resulting upper bounds are given at the 90 percent confidence level as a function of 
characteristic strain amplitude 11 h 11 for isotropic populations of 0.5 millisecond simple 
Gaussian bursts and 361 Hz sinusoidal Gaussian bursts with a Q of 12.7. The stricter 
bounds provided by the present search are primarily due to improvements in detector 
sensitivity between the two science runs as well as the significantly longer observation 
time of the second science run. However, the difference in sensitivity also reflects 
improvements in the search algorithms used to identify gravitational-wave bursts. 

due to a substantial improvement, by approximately an order of magnitude, in the 

sensitivity of the instrument between the two science runs. However, a comparison of 

the characteristic strain amplitude corresponding to  50 percent detect ion efficiency for 

the two waveforms indicates an improvement by a factor of 28 for the 0.5 millisecond 

Gaussian bursts and a factor of 21 for the 361 Hz sinusoidal Gaussian bursts. As a 

result, some of the increased sensitivity, approximately a factor of 2, appears to be 

due to improvements in the search algorithm as well. Finally, the significantly lower 

rate limit set by the present search is a direct consequence of the substantial increase 

in observation time, by a factor of 18, relative to the first LIGO science run. 



7.9.2 Triple coincident search 

We also compare the upper bounds achieved by the present double coincident search 

with that of the corresponding triple coincident search of data from the second LIGO 

science run. [92]. Again, a straightforward comparison is possible due to  the common 

set of simulated waveforms used to characterize the performance of both searches, and 

atgain we choose to  compare the performance of the two searches for simple Gaussian 

bursts of duration 0.5 milliseconds and sinusoidal Gaussian bursts with a central 

frequency of 361 Hz and a Q of 12.7. The upper bounds achieved by the double and 

triple coincident searches for these two waveforms are compared in Figure 7.23. 
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Figure 7.23: A comparison of the upper bounds achieved by the present search with 
the upper bounds set by corresponding triple coincident search of data from the second 
LIGO science run. The resulting upper bounds are given at the 90 percent confidence 
level as a function of characteristic strain amplitude llhll for isotropic populations of 
0.5 millisecond simple Gaussian bursts and 361 Hz sinusoidal Gaussian bursts with a 
Q of 12.7. Despite the use of only two detectors, the present search is able to achieve 
comparable sensitivity to the triple coincident search by coherently searching for bursts 
with consistent amplitude and phase. Furthermore, the greater observation time af- 
forded by the double coincident search results in an upper bound which is stricter by 
approximately a factor of three. 

We first note that the two searches have very similar sensitivity for the two waveforms 



under consideration. This is true despite the higher false event rate expected from 

the use of only two detectors and the increased potential for coincident false events 

due to a shared environment. In this case, however, the double coincident search was 

able to achieve comparable sensitivity by taking advantage of the collocated nature 

of the Hanford detectors by performing a coherent search for bursts with consistent 

amplitude and phase. Moreover, as we noted in section 7.1, the double coincident 

search also affords a significantly greater observation time than the corresponding 

triple coincident search. As a result, the double coincident search achieves an upper 

bound on the rate of gravitational-wave bursts that is stricter, by approximately a 

factor of 3, than the upper bound set by the corresponding triple coincident search. 

7.9.3 1997-2000 IGEC observations 

We also compare the results of the present search with the cumulative results from the 

IGEC network of resonant mass detectors for the years between 1997 and 2000[30]. 

However, while the IGEC result is also presented as an upper bound on the rate 

of gravitational-wave bursts as a function of signal strength, there are a number of 

differences that must be taken into account in order to make a meaningful comparison. 

We first note that the IGEC network consists of 5 resonant mass detectors with res- 

onant frequencies ranging from 694 to 930 Hz and bandwidths on the order of a few 

Hz. Due to  the narrower bandwidth of resonant mass detectors relative to  inter- 

ferometric detectors, any comparison will then necessarily depend upon the specific 

choice of waveform used for the comparison. In what follows, we choose to  compare 

the response of the two searches to  simple Gaussian bursts with a duration ot of 0.05 

milliseconds. Although this choice of waveform has a relatively large bandwidth, it 

is also in approximate agreement with the signal model assumed by the IGEC anal- 

ysis and corresponds to approximately uniform signal energy over the full range of 

resonant mass detector frequencies. 



We also note that, by convention, the signal amplitude reported by the resonant mass 

detector community is not the characteristic strain amplitude 1 1  h 1 1 .  Instead, results 

are reporteti in terms of the frequency-domain magnitude of the signal, assuming 

its spectrum is approximately uniform across the sensitive frequency band of the 

detector. Specifically, the IGEC reports a characteristic amplitude, 

where h( fo) is the standard Fourier transform of the signal defined by Equation 3. l b  

evaluated at; the resonant frequency f o  of the detector. Given a particular choice of 

waveform, it is then straightforward to translate between the two definitions. For a 

Gaussian burst,, the relationship follows directly from its Fourier transform, 

111 particular, evaluating this expression in the frequency range of the resonant mass 

detectors and for a duration 0, of 0.05 milliseconds yields, 

In addition, the signal amplitudes reported by the IGEC collaboration correspond 

only to the portion of a gravitational-wave burst's energy that couples into the IGEC 

detectors, all of which were operated in a similar orientation. As a result, the upper 

limits presented in Figure 13 of the IGEC paper[30] can be interpreted as an upper 

bound on the rate of gravitational-wave bursts from populations of sources that are 

optimally oriented on the sky. In order to compare the IGEC result with the results 

of the present search, we must therefore determine the response of the present search 

to  such optinlally oriented source populations rather than the isotropic source distri- 

butions considered in the previous section. Fortunately, for the case of random linear 

polarization, the necessary information is provided by the amplitudes of the injected 



gravit at  ional-wave bursts after taking into account their position on the sky and the 

corresponding response of the Hanford detectors. In this case, however, the injected 

amplitudes take on a continuum of values rather than discrete populations. In order 

to  determine the detection efficiency of the present search as a function of injected 

signal amplitude, we therefore consider populations of bursts that encompass finite 

ranges of injected amplitudes. The resulting detection efficiencies for populations of 

optimally oriented Gaussian bursts with duration ot of 0.05 milliseconds are shown 

in Figure 7.24. 

Detection efficiency for optimally oriented 0.05 ms Gaussian bursts 

Injected amplitude [strain HZ-'"] 

Figure 7.24: The detection efficiency as a function of characteristic strain amplitude 
llhll for optimally oriented populations of simple Gaussian bursts with duration at of 
0.05 milliseconds. The detection efficiency is shown at a detection threshold corre- 
sponding to the coherent normalized energy of the most significant foreground event. 

Finally, we note that the upper limits reported by the IGEC are presented at  a 95 

percent confidence level. We therefore apply the statistical analysis of section 7.5 

to  the detection efficiencies presented in Figure 7.24 in order to determine an upper 

bound on the rate of optimally oriented 0.05 millisecond Gaussian bursts a t  this 

same confidence level. After accounting for the systematic uncertainties identified in 

section 7.7, the resulting upper bounds are presented in Figure 7.25 along with the 

corresponding results from the IGEC analysis. 



Comparison with 1997-2000 IGEC result (95% C.L.) 
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Figure 7.25: The upper limits on the rate of gravitational-wave bursts as a function 
of characteristic strain amplitude 11 h 11 for optimally oriented 0.05 millisecond Gaussian 
bursts at the 95 percent confidence level. The results of the present search are com- 
pared with the corresponding upper limits achieved by the 1997-2000 IGEC analysis. 
The stricter upper limit achieved by the IGEC analysis at large signal amplitudes is due 
to the muc.h longer observation time of the IGEC analysis. However, the stricter con- 
straints achieved by the present search at small signal amplitudes is due to the greater 
sensitivity of the present search. Due to the narrowband nature of resonant mass detec- 
tors, such :t comparison is necessarily waveform specific. However, the choice of a 0.05 
millisecond Gaussian burst is consistent with the signal model assumed by the IGEC 
analysis. In this case, the benefit of the wider bandwidth of interferometric detectors 
is readily apparent. 

From Figure 7.25, we first note that the significantly longer observation time of the 

IGEC analysis results in a substantially lower upper bound on the rate of large am- 

plitude gravi t ational-wave bursts. However, the significantly greater sensitivity of the 

present search t?o 0.05 millisecond Gaussian bursts becomes apparent at  characteristic 

strain amplitudes less than approximately 2 x lo-'' strain HZ-''~. In this case, the 

difference in sensitivity is primarily due to the wider bandwidth of interferometric 

detectors. While such a comparison is admittedly waveform specific, we also note 

that  similar results are expected for any non-pathological waveform with sufficient 

bandwidth to encompass the resonant frequencies of all of the IGEC detectors. In 

addition, interferometric detectors are also sensitive to  the wider class of potential 



gravitational-wave signals that fall outside the frequency band of resonant mass de- 

tectors. Finally, we note that future LIGO science runs are expected to provide 

coincident observation times of at  least one year in duration and approximately an 

order of magnitude improvement in sensitivity relative to the present search. 

Nevertheless, for narrow bands around their resonant frequencies, the sensitivities of 

the existing generation of resonant mass detectors are comparable to  the sensitivity 

of the present search. While this is expected to change as the first generation of 

int erferometric detectors approach their design sensitivities, the sensitivities of im- 

proved resonant mass detectors are still expected to  approach that of interferometric 

detectors in these narrow frequency bands. As a result, resonant mass detectors 

will continue to  be a valuable complement to interferometric detectors, providing in- 

creased detection confidence via the possibility of an independent consistency test for 

large amplitude candidate gravit ational-wave events. 

7.9.4 2001 EXPLORER/NAUTILUS observations 

Finally, we compare the results of the present search with the results reported by the 

ROG collaboration for data from the EXPLORER and NAUTILUS resonant mass 

detectors during 2001 [13, 141. Specifically, we seek to compare the upper limits from 

the present search with a potential excess of events from the galactic plane reported 

by the ROG collaboration. However, to do so, we must first consider the sensitivity 

of the present search to  a distribution of bursts in the galactic plane. 

In general, such a comparison would best be performed by directly testing the sensi- 

tivity of the present search to  a simulated distribution of events in the galactic plane. 

However, due to time and computational constraints, this approach is not considered 

here and is left for future investigation. Instead, we apply an approximate method 

proposed by Katsavounidis and developed by Rawlins to modify the results of the 

present search[l35]. In doing so, we are aided by our exclusive use of collocated de- 



tector data. This greatly simplifies the necessary modifications, since both of the 

Hanford detectors necessarily have the same response to arbitrary distributions of 

sources on the sky. 

In what follows, we consider two idealized source distributions. One is a uniformly 

distributed ring of sources, centered on the Earth, and lying in the galactic plane. 

The other is a concentration of sources in the direction of the galactic center. In both 

cases, the sources are also assumed to be distributed with random linear polarization. 

In order to estimate the sensitivity of the present search to such distributions, we first 

determine the average attenuation incurred by a such populations due to the position 

dependent response of the detectors. For non-isotropic source distributions, this is 

neces~a~rily a function of sidereal time as the source populations sweep across the sky. 

Here, we have used a Monte Carlo model in order to estimate the average attenuation 

incurred by these source distributions as seen by the LIGO Hanford detectors. The 

resulting average attenuation of both distributions are shown in Figure 7.26 as a 

function of sidereal hour and are also compared with the average attenuation incurred 

by an isotropic distribution of sources. 

In order to determine the sensitivity of the present search for non-isotropic source 

distributions, it is also necessary to account for the sidereal exposure of the analyzed 

data set. Here we simply histogram the analyzed observation time as a function of 

sidereal hour. The resulting distribution is displayed in Figure 7.27. The noticeable 

sidereal variation of the resulting histogram is due to diurnal variations in the duty 

cycle of the tlwo Hanford detectors and the limited extent of the second science run. 

Using this information, we then estimate the detection efficiency of our search for the 

proposed galactic distributions by applying the following procedure. 

1. We first consider an isotropic population of sources with random linear po- 

larization and a characteristic strain amplitude ll ho l l .  The detection efficiency 
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Figure 7.26: The mean attenuation due to the antenna response of the Hanford 
detectors incurred by three different source distributions as a function of sidereal hour: 
a uniformly distributed ring of sources in the galactic plane (black), a distribution of 
sources along the line of sight to the galactic center (gray), and an isotropic distribution 
of sources (dotted). In all three cases, the sources are also assumed to be distributed 
with random linear polarization. 
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Figure 7.27: The sidereal hour distribution of analyzed observation time for the double 
coincident search using the LIGO Hanford detectors. Since the second LIGO science 
run only lasted for two months, the diurnal variation of the double coincident duty 
cycle is apparent in the resulting sidereal hour distribution. 
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~ ( 1 1  boll) has already been determined in section 7.6 for such populations as a 

function of 1 1  ho 1 1 .  

2. From Figure 7.26, we then determine a sidereal dependent correction factor 

~ ( r ) ,  which is equal to the ratio of the average attenuation incurred by the 

desired source distribution to the average attenuation incurred by an isotropic 

source distribution. 

3. Following the table lookup procedure outlined in Figure 7.28, we then determine 

the sidereal dependent detection efficiency E' ( 1 1  hO 1 1 ,  T )  for sources with amplitude 

1 1  ho 1 1  that are distributed according to the desired distribution: 

4. Finally, we determine the sidereal averaged detection efficiency € ' ( I  1 ho 1 1 )  for a 

population of sources with the desired distribution and amplitude 1 1  ho 1 1  , weighted 

by the sidereal distribution T(T) of the analyzed observation time shown in 

Figure 7.27: 
r 

This process is then repeated for multiple choices of llholl in order to a produce an 

estimate of tihe detection efficiency ~'(llhll)  for the desired source distribution as a 

functiori of 1 1  h  1 1 .  

In order to perform a meaningful comparison of results, we must also convert the sig- 

nal amplitude reported by the ROG collaboration into the units used in the present 

search. As was the case for the comparison with the IGEC results, such a compari- 

son is necesatrily waveform dependent. Here we choose to compare the two searches 

primarily on the assumption of a simple Gaussian burst with duration ot of 0.05 

milliseconds. Again, this choice of signal has a uniform energy spectrum extending 



- Detection efficiency - - * for isotropic source - - 
V 

distribution 

ll hll 

Figure 7.28: The table lookup procedure used to estimate the approximate sidereal 
dependent efficiency of the search to a source population with characteristic strain 
amplitude 11 ho 11 that is distributed according to a non-isotropic source distribution. Here 
~ ( 1 1  ho 11) is the detection efficiency for an isotropic source distribution, while ~ ' ( 1 1  ho 1 1 , ~ )  is 
the approximate detection efficiency of the non-isotropic source distribution at sidereal 
time T. The correctiorl factor q( r )  is determined from the ratio of the attenuations of the 
non-isotropic distribution relative to the isotropic distribution as shown in Figure 7.26. 

to approximately 1 kHz, which is in approximate agreement with the signal model 

assumed by the ROG collaboration[l4]. However, in order to evaluate the effect of 

waveform choice on the resulting comparison, we also consider a sinusoidal Gaussian 

burst with a central frequency of 849 Hz and a Q of 12.7. Since this latter wave- 

form exhibits a greater concentration of signal energy in the sensitive band of the 

EXPLORER and NAUTILUS detectors, it therefore provides a more conservative 

comparison between the two searches. However, we also note that this latter choice 

of waveform is in poorer agreement with the signal model assumed by the ROG anal- 

ysis and that the existence of such relatively narrowband bursts near the resonant 

frequency of the ROG detectors would be somewhat fortuitous. 

In converting the ROG observations into the units of the present search, we choose 

to evaluate the characteristic strain amplitude corresponding to the average of the 

signal energies reported in Table 3 of reference [13]. In this case we find an average 



signal energy of 120 mK with a standard deviation of 53 mK. According to Equation 

6 in reference [14], this then corresponds to an average one-sided Fourier transform 

rnagnit ude of 

A, - 2.7 x strain HZ-'. (7.16) 

Application of Equation 7.12 for a Gaussian burst of duration 0.05 milliseconds and an 

average resonant frequency of 914 Hz for the EXPLORER and NAUTILUS detectors 

then yields a characteristic strain amplitude of 

llhll - 1.9 x lo-'' strain HZ-'I2. (7.17) 

We also note that note that a duration at of 0.05 milliseconds is close to the optimal 

duration of 0.09 milliseconds, which yields the minimum 1 1  h 1 1  for Gaussian waveforms 

of 1.2 x lo-'' strain HZ-''~. 

In order to determine the corresponding characteristic strain amplitude of 849 Hz 

sinusoitlal Gaussian bursts, we apply a similar procedure. In this case, however, we 

make use of the approximate relationship, 

which follows from the Fourier transform of sinusoidal Gaussian bursts under the 

assumption of positive frequency and Q 2 3. Evaluating this expression at the 

average resonant frequency of the ROG detectors for sinusoidal Gaussian bursts with 

a central frequency 4 of 849 Hz and a Q of 12.7 then yields a characteristic strain 

amplitude of approximately 

llhll - 6.7 x strain HZ-'I2. (7.19) 

Finally, basetl on the observed sidereal distribution and number of excess events, the 

ROG collaboration has estimated an associated event rate of 0.55 events per day for 

such events [l4]. 



We now apply the approximate method of Katsavounidis and Rawlins to  the all- 

sky detection efficiencies from section 7.6 for the two waveforms under consideration. 

The resulting modified efficiency curves are shown in Figure 7.29 for distributions of 

sources in the galactic plane and Figure 7.30 for sources in the direction of the galactic 

center. It is interesting to  note that the resulting efficiency curves are very similar 

to the corresponding all-sky efficiency curves. This similarity with the all-sky result 

is not unexpected, however, and is primarily due to  the wide angular acceptance 

of interferometric detectors. This fact is also evident in Figure 7.26, where it is 

apparent that the sidereal averaged sensitivity to  source distributions in the galaxy 

is very similar to that of an isotropic distribution. 

Finally, we apply the statistical analysis of section 7.5 to the detection efficiencies 

presented in Figure 7.29 and Figure 7.30. In this case, however, we choose to  evaluate 

the resulting upper bounds at  the 99 percent confidence level in order to  provide a 

more conservative comparison with the potential excess of events postulated by the 

RO G collaboration. After accounting for the systematic uncertainties identified in 

section 7.7, the resulting upper bounds are presented in Figure 7.31 and Figure 7.32 

along with the approximate location of the 2001 EXPLORER and NAUTILUS results 

in the units of the present search. Barring the fortuitous existence of narrowband 

bursts near the resonant frequency of the EXPLORER and NAUTILUS detectors, it 

is relatively clear that the present search did not detect a similar population of events, 

even given the approximate nature of this comparison. However, we intend to repeat 

this analysis with data from the third LIGO science run, and expect to make a more 

definitive statement on the ROG result by implementing a more accurate treatment 

of a galactic source population and by taking advantage of an expected improvement 

in detector sensitivity and a slightly longer observation time. 



Detection efficiency for bursts from the galactic plane 

Figure 7.29: The estimated detection efficiency as a function of characteristic strain 
amplitude llhll for a population of bursts in the galactic plane. Detection efficiencies 
are shown :€or simple Gaussian bursts with a duration ot of 0.05 milliseconds (black) 
and sinusoidal Gaussian bursts with a central frequency of 849 Hz and Q of 12.7 (gray) 
at a detection threshold corresponding to the most significant foreground event. 
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Figure 7.30: The estimated detection efficiency as a function of characteristic strain 
amplit,ude llhll for a population of bursts in the direction of the galactic center. De- 
tection efficiencies are shown for simple Gaussian bursts with a duration ot of 0.05 
milliseconds (black) and sinusoidal Gaussian bursts with a central frequency of 849 Hz 
and a Q of 12.7 (gray) at a detection threshold corresponding to the most significant 
foreground event. 



Upper limits for bursts from the galactic plane (99% C.L.) 
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Figure 7.31: Upper bounds on the rate gravitational-wave bursts in the galactic plane. 
Upper limits are shown at a 99 percent confidence level for simple Gaussian bursts with 
a duration ot of 0.05 milliseconds (black) and sinusoidal Gaussian bursts with a central 
frequency of 849 Hz and a Q of 12.7 (gray), and compared with the postulated excess 
of events reported by the ROG collaboration[l3, 141. 
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Figure 7.32: Upper bounds on the rate gravitational-wave bursts in the direction of 
the galactic center. Upper limits are shown at a 99 percent confidence level for simple 
Gaussian bursts with a duration ot of 0.05 milliseconds (black) and sinusoidal Gaussian 
bursts with a central frequency of 849 Hz and a Q of 12.7 (gray), and compared with 
the postulated excess of events reported by the ROG collaboration[l3, 141. 



Chapter 8 

Conclusion 

In this work, we have considered the problem of identifying gravitational-wave bursts 

of a priori unknown waveform that occur near the sensitivity limit of interferometric 

gravitational-wave detectors. To confront this problem, we have developed a complete 

analysis pipeline for the coherent identification of gravitational-wave bursts using 

coincident data from multiple interferometric detectors. Through extensive testing 

on simulated interferometer data, we have also performed a comprehensive validation 

of the proposed method and demonstrated that it is equivalent to the optimal search 

strategy for the special case of minimum uncertainty waveforms in stationary white 

noise. Finally, we have applied the proposed method to  the search for gravitational- 

wave bursts with duration less than 1 second and frequency content in the range from 

6.1 to 1024 Hz in data from the second LIGO science run. Although no bursts of likely 

gravitational-wave origin were identified, we have determined upper bounds on the 

possible rate of gravitational-wave bursts from isotropic and galactic populations of 

sources with both abstract and astrophysically motivated waveform. The resulting 

search achieves a limiting upper bound of 0.086 events per day at  the 90 percent 

confidence level for bursts with characteristic strain amplitude in excess of to 

10-l9 strain HZ-"~ ,  depending upon the particular waveform under consideration. A 

comparison with previous searches then demonstrates that the present search is one 



of the most sensitive to  date for astrophysically unmodeled bursts of gravitational 

radiation. In addition, the resulting upper bounds are shown to be inconsistent at  

above the 99 percent confidence level with a population of sources in the galactic plane 

proposed to explain an excess of events observed by the ROG collaboration in data 

from the 2001 run of the EXPLORER and NAUTILUS resonant mass detectors[l3, 

141. 

In what follows, we first summarize the importance of this work, highlighting its novel 

aspects as well as its astrophysical significance. We then identify a number of possible 

extensions to  the proposed method, including alternative astrophysical searches, and 

conclude by considering potential prospects from future LIGO science runs. 

8.1 Summary 

One of the two primary results of this work has been the development of a complete 

end-to-end data analysis pipeline for the identification of gravitational-wave bursts. 

While this pipeline has many of its origins in existing methods, it also brings a number 

of significant improvements to  the search for gravit ational-wave bursts. 

a We have motivated the use of a multiresolution basis of minimum uncertainty 

waveforms in order to best resolve the time-frequency structure of gravitational- 

wave bursts. While other multiresolut ion techniques have been applied to the 

search for unmodeled bursts[l03, 1051, the present search is the first to apply 

the template placement methods of Owen and others[l09, 481. In doing so, 

we present a method of optimally tiling a well defined signal space with the 

minimum number of basis functions to  guarantee a specified minimum overlap 

between an arbitrary minimum uncertainty burst and the nearest basis function. 

We have demonstrated the effectiveness of linear prediction to whiten interfer- 

ometric detect or data, which greatly simplifies our resulting st atistical analy- 



sis. While others have proposed the use of such autoregressive techniques for 

whitening gravitational-wave data[136, 1371, we have also introduced a novel 

zero-p hase implementation that preserves the relative timing of bursts between 

detectors. In addition, we have also determined the minimum filter order re- 

quired to ensure that the resulting data are sufficiently white on the time-scales 

of the subsequent analysis. 

We haxe introduced the Q transform, a time-frequency projection of the input 

data stream onto a multiresolution basis of minimum uncertainty waveforms. 

In addition, we have presented a discrete form of this transform that takes 

advantage of the computational efficiency of the fast Fourier transform, as well 

as a nornlalization that allows for the accurate recovery of total signal energy. 

We have implemented an outlier rejection technique, based on the box-plot 

formalism of Tukey and first suggested for gravitational-wave data analysis by 

Cadonati[l22], that dramatically reduces the susceptibility of our statistical 

analysis tto transient non-stationarities in interferometric detector data. 

We ha,ve performed an extensive validation of the proposed single detector 

pipeline by demonstrating very good agreement between its performance on 

minimum uncertainty waveforms in simulated gravitational- wave data and the 

corresponding performance predicted by a Monte Carlo model based on first 

principles arguments. In the process, we have demonstrated that the pro- 

posed single detector pipeline is equivalent to the optimal search strategy of 

a template-based matched filter search for the special case of minimum uncer- 

tainty bursts in the whitened data stream. 

We have demonstrated a method of coherently combining data from collocated 

interferometric detectors that maximizes the combined signal to noise ratio of 

minimum uncertainty bursts while taking into account the frequency depen- 

dent difference in sensitivity between detectors. At the same time, we have 

introduce<l amplitude and phase consistency tests to  reduce the false event rate 



associated with transient non-stationarities in a single detector. In combination, 

these techniques provide a t ime-frequency compliment to  existing t ime-domain 

coherence tests[93]. 

Finally, we note that the computational efficiency of our analysis pipeline is 

sufficient to  search coincident data from two collocated detectors a t  a rate ap- 

proximately 1.75 times faster than real time using a single 2.66 GHz Intel Xeon 

processor. 

The second primary result of the present work has been the application of the pro- 

posed analysis pipeline to  the search for gravitational-wave bursts in data from the 

second LIGO science run. In addition to  the proposed analysis pipeline, this search 

differs from previous ones in two unique ways. 

Whereas previous searches have typically relied on networks of geographically 

distant detectors in order to reduce the expected false alarm rate[l30,92, 30, 131, 

the present work represents the first search for gravitational-wave bursts in data 

exclusively from two collocated detectors. Despite the use of only two detectors 

and the potential for coincident false events due to a shared environment, the 

present search is able to achieve comparable sensitivity to the corresponding 

triple coincident search[92] by coherently searching for bursts with both am- 

plitude and phase consistency. In addition, due to the increased observation 

time afforded by the use of only two detectors, we are able to set a stricter 

upper bound on the possible rate of gravitational-wave bursts than that of the 

corresponding triple coincident search. 

We have also demonstrated the efficacy of applying the proposed single detec- 

tor pipeline to  environmental and auxiliary detector data in order to  identify 

significant events of non-gravit at  ional- wave origin. While similar efforts have 

been attempted in previous searches11 30, 921, the present search represents the 

first time such a veto effort has proven particularly effective. 



Although tlle resulting search identified no bursts of likely gravitational-wave origin, 

a comparison with previous searches indicates that it nonetheless represents one of 

the most sensitive searches to date. 

Both the sensitivity and observation time of the present search exhibit a sub- 

stantial improvement over the that of the triple coincident search for bursts 

in the first LIGO science run[l30]. In particular, we note a factor of 21 to 28 

improvement in sensitivity and a factor of 18 improvement in observation time, 

resulting in a substantially tighter upper bound on the rate of gravit ational-wave 

bursts a t  all amplitudes. 

Surprisingly, the sensitivity of the present search is comparable to the that of the 

corresponding triple coincident search [92]. Moreover, the greater observation 

time of the present search results in a upper bound on the rate of gravitational- 

wave bursts that is stricter, by approximately a factor of three, than the upper 

bound set by the triple coincident search. 

We have also performed a comparison of the present search with the cumu- 

lative results of the IGEC network of resonant mass detectors between 1997 

and 2001[30]. Due to the narrowband sensitivity of resonant mass detectors, 

such a conlparison is necessarily waveform specific. To perform a relatively 

conservative comparison, we have select a waveform that is consistent with the 

assumptions of the IGEC analysis. While the substantially longer observation 

time of the IGEC search results in a stricter upper bound on the rate of large 

amplitude gravit ational-wave bursts, we find that the greater sensitivity of the 

present search results in a stricter upper bound on the rate of bursts with am- 

plitude srnaller than approximately 2 x lo-'' strain H Z - ' / ~ .  This improved 

sensitivity of interferometric detectors becomes all the more apparent for less 

conservative choices of waveform. 

Lastly, we have compared the sensitivity of the present search with the observed 

statistical excess of events reported by the ROG collaboration using coincident 



data collected by the EXPLORER and NAUTILUS resonant mass detectors 

during 2001[13, 141. While our comparison is both approximate and waveform 

specific, it nonetheless appears to  contradict their assertion of gravitational- 

wave bursts from the galactic disk with a high degree of confidence. However, 

we intend to  repeat this comparison with data from the third LIGO science run, 

and expect to make a more definitive statement on the ROG collaboration result 

by performing a more accurate and comprehensive comparison and by taking 

advantage of an expected improvement in detector sensitivity and a slightly 

longer observation time. 

Finally, in order to  evaluate the astrophysical significance of the present work, we 

recall the sensitivity of our search to  the simulated supernovae core collapse and bi- 

nary black hole merger waveforms reported in section 7.8. We reiterate, however, that 

such waveforms are not predicted to  nearly the same degree of certainty as that of the 

inspiral of binary neutron stars, nor have we simulated a realistic population of such 

sources. As a result, the astrophysical import of such simulations are limited. Nev- 

ertheless, we may still obtain a rough order of magnitude estimate for the detectable 

range to  such sources. For the present search, we find a detectable range of roughly 

50 parsecs for gravitational-waves from axisymmetric core collapse supernovae and 

roughly 5 Mpc for gravitational-waves from the merger of binary black holes with a 

total binary mass on the order to  50 solar masses. As a result, we expect that the 

present search is only sensitive to  supernovae within a small fraction of our galaxy, 

while the detectable range for the merger of binary black holes likely encompasses 

the local group of galaxies. Unfortunately, given the anticipated population and 

rate of such events, these distances correspond to a very low probability of detection 

over the course of the second LIGO science run. As a result, the absence of likely 

gravit ational-wave bursts at  the sensitivity of the present search does not provide a 

test of our present understanding of potential gravitational-wave sources. However, 

as we note below, future LIGO science runs are expected to provide a significant 

improvement in both sensitivity and observation time. 



8.2 Future investigations 

Throughout. this document, in addition to  the advances summarized above, we have 

also identified a number of potential extensions to  the present work. For reference, 

we collect then1 here. 

We first note that our treatment has been somewhat limited for bursts that 

are poorly localized in the time-frequency plane. In particular, we have only 

considered the statistical significance of tiles with minimum time-frequency un- 

certainty. As a result, an improvement in the detectability of poorly localized 

bursts should be possible if we also consider the combined statistical significance 

of clusters of time-frequency tiles. However, it is interesting t o  note that the 

sensitivity of the present search to  simulated supernovae and binary black hole 

merger waveforms is comparable t o  that of the corresponding triple coincident 

search[92]. This is somewhat surprising given the fact that neither waveform 

family exhibits minimum time-frequency uncertainty, and that the triple coin- 

cident analysis pipeline already considers the statistical significance of clusters 

of time- frequency tiles. 

Similarly, when testing the consistency of coincident events, we have only re- 

quired arnplit ude and phase consistency within a single t ime-frequency tile. By 

doing so, we have ignored the possibility of inconsistent amplitude or phase in 

any nearby time-frequency tiles that  also exhibit strong normalized energy. A 

natural extension of our current approach is then to consider the overall am- 

plit ude and phase consistency of clusters of jointly significant time-frequency 

tiles. In addition, such tests should also take into account the expected increase 

in measurement accuracy with signal strength and apply stricter consistency 

tests at higher signal to noise ratios. From our discussion of  the ten most sig- 

nificant; events identified by the present search, it is evident that such tests 

would substantially reduce the number of false detections by excluding non- 



gravitational-wave events that exhibit significant but inconsistent structure in 

the time-frequency plane. 

We also note that ,  while our treatment of different interferometers took into 

account differences in their stationary noise, it did not take into account dif- 

ferences in their non-stationary behavior. In particular, detectors with simi- 

lar noise spectral density may nonetheless exhibit very different rates of non- 

gravit ational-wave events due to  the presence of transient non-stationarities. As 

a result, it may be possible to decrease the coincident false alarm rate at  a given 

detection efficiency by allowing independent specification of single detector nor- 

malized energy thresholds. A systematic method of tuning our analysis pipeline 

to account for such differences between detectors then offers the possibility of 

improved performance. 

It has also been pointed out that,  when evaluating the st at ist ical significance of 

clusters of time-frequency tiles or testing for time-frequency coincidence between 

detectors, a more accurate treatment of the overlap between time-frequency tiles 

can be obtained by applying the mismatch formalism from section 3.2.2 [I 381. 

Once a candidate gravit ational-wave event has been identified, the methods 

presented in this work can also be applied in order to retrospectively examine 

such events in greater detail. In particular, the linear prediction methods pre- 

sented in chapter 4 can be extended in a way that aids in the reconstruction of 

candidate signals, while the Q transform presented in chapter 5 can be applied 

at high resolution in order to more accurately characterize the parameters of 

such events. Such a hierarchical approach then allows for more accurate tests 

of candidate events without the computational cost of performing such tests on 

the entire data set. 

In section 5.8, we noted the possibility of searches that target a specific object 

of interest on the sky. Such a search may be accomplished by an extension of 

our coherent analysis pipeline to handle data from networks of non-collocated 



detect~ors using a formalism similar to that proposed by Gursel and Tinto for 

identifying the sky position of candidate gravitational-wave bursts[97]. Poten- 

tial targets of interest include the center of the Milky Way and Andromeda 

galaxies, large globular clusters such as 47 Tucanae, and the Virgo cluster of 

galaxies. 

We also note that, as the LIGO detectors improve in sensitivity, it will be 

necessary to implement more realistic populations of simulated gravitational- 

wave bursts in order to more accurately evaluate the astrophysical significance of 

our search. Such populations should not only include truly random distributions 

of source inclination, but should also conform to the expected mass distribution 

of nearby galaxies. 

Lastly: although this work has focused on the detection of gravitational-wave 

bursts., we note that many of the techniques developed here are also applicable 

to the more general problem of detecting transient signals in the presence of 

additive colored noise. As a result, many of these methods may also be relevant 

to problems other than that of gravitat ional-wave detection. 

Finally, we consider the prospects of applying the proposed algorithm to future LIGO 

science runs. 

A.s of the writing of this document, the LIGO project has just co~npleted data taking 

for its fourth. science run. In the interim, the LIGO detectors have also undergone two 

periods of cornrnissioning activities resulting in significant improvements in both their 

sensitivity and operational duty cycle, as well as significantly reduced environmental 

coupling to seismic noise, acoustic noise, and radio frequency interference. In addition, 

improvements in calibrating the response of the LIGO interferometers are expected 

to allow for stricter tests on both amplitude and phase consistency. As a result, both 

the third anti fourth LIGO science runs offer the prospect of significantly improved 

sensitivity over the results of the present search. In particular , preliminary studies 



indicate that the third LIGO science run may provide a factor of 2 to 5 improvement 

in sensitivity and a 20 percent increase in observation time compared to the present 

search, with the greatest improvement in sensitivity for signals around 100 Hz. For the 

fourth LIGO science run, early indications are that it may already yield sensitivities 

within a factor of a 2 to 3 from the LIGO design sensitivity, although the available 

observation time will be slightly shorter than previous science runs due its planned 

duration of only one month. Finally, we note that goal of the fifth LIGO science run, 

tentatively scheduled to commence in the Fall of 2005, is to provide at  least one year 

of coincident data at  the LIGO design sensitivity[l39]. 

Given the significant improvements in sensitivity since the second LIGO science run, 

as well as the much longer observation times that we can expect in the near future, 

we can expect future searches to  produce significantly tighter bounds on the rate of 

gravitational-wave bursts. In particular, it is interesting to note that the initial LIGO 

design sensitivity represents an improvement by a factor of roughly 20 compared to 

the sensitivity of the present search. Since this directly corresponds to a similar 

increase in the detectable range to  sources, we estimate that LIGO may soon be sen- 

sitive to binary black hole mergers beyond the Virgo cluster of galaxies. In addition, 

slightly more optimistic assumptions of the gravit ational-wave energy emitted by core 

collapse supernovae indicate that such events may soon by detectable over a signifi- 

cant fraction of our galaxy. Although the prospects for the detection of supernovae 

core collapse and binary black hole mergers are significantly improved, they are still 

not guaranteed at these sensitivity levels and observation times. Nevertheless, the 

potential benefit of a detection is compelling, and even in the absence of a detection, 

the expected sensitivities and observation times are such that it should be possible to 

begin to  constrain more optimistic models of binary compact object formation and 

evolution[l40]. 

Finally, we note that a number of other interferometric gravitational-wave observa- 

tories are currently undergoing commissioning[33, 35, 341, and offer the possibility 

of applying the algorithms presented in this work to data from even larger networks 



of detectors. In addition, beyond the initial generation of interferometric detectors, 

advanced ground based detectors offer a further order of magnitude improvement 

in sensitivity, virtually guaranteeing the detection of gravitational waves within the 

next decade, while planned space based detectors offer similar sensitivity in frequency 

bands that are not accessible to ground based detectors. 
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