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Abstract. We introduce a family of first-order multi-dimensional ordinary differential equa-
tions (ODEs) with discontinuous right-hand sides and demonstrate their applicability in image
processing. An equation belonging to this family is an inverse diffusion everywhere except at
local extrema, where some stabilization is introduced. For this reason, we call these equations
"stabilized inverse diffusion equations" ("SIDEs"). A SIDE in one spatial dimension may be
interpreted as a limiting case of a semi-discretized Perona-Malik equation [3, 4]. In an experi-
mental section, SIDEs are shown to suppress noise while sharpening edges present in the input
signal. Their application to image segmentation is demonstrated.

1 Introduction

In this paper we introduce, analyze, and apply a new class of nonlinear image processing
algorithms. These algorithms are motivated by the great recent interest in using evolutions
specified by partial differential equations (PDE's) as image processing procedures for tasks such
as edge enhancement and segmentation, among others (see [1, 2, 6] and references therein).
While the analysis of these techniques is most often performed in the continuous setting, where
an image is identified with a function of two continuous spatial variables, the implementation
of such equations generally involves their discrete approximation. As a consequence, as We-
ickert pointed out in [8], "a scale-space representation cannot perform better than its discrete
realization". Following this suggestion, we concentrate in this paper on semi-discrete scale
spaces (i.e., continuous in scale (or time) and discrete in space). More specifically, the main
contribution of this paper is a new family of semi-discrete evolution equations which stably
sharpen edges and suppress noise. The starting point for the development of these equations
is a discrete interpretation of anisotropic diffusions such as that used by Perona-Malik [3, 4].
One motivation for such equations is precisely that of achieving both noise removal and edge
enhancement through the use of a diffusion-like equation which in essence acts as an unstable
inverse diffusion near edges and as a stable linear-heat-equation-like diffusion in homogeneous
regions without edges. In a sense that we will make both conceptually clear and precise, the
evolutions that we introduce may be viewed as a conceptually limiting case of such diffusions.
These evolutions have discontinuous right-hand sides and act as inverse diffusions "almost
everywhere" with stabilization resulting from the presence of the discontinuities in the vector
field defined by the evolution. As we will see, the scale space of such an equation is a family
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Figure 1: A spring-mass model.

of segmentations of the original image, with larger values of the scale parameter t correspond-
ing to segmentations at coarser resolutions. Moreover, in contrast to continuous evolutions,
those introduced here naturally define a sequence of logical "stopping times", i.e. points along
the evolution fraught with useful information one may wish to extract, and corresponding to
times at which the evolution hits a discontinuity surface of its solution field. These times are
data-adaptive, i.e., they depend on the initial image, and result in a sequence of images at
increasingly coarser resolutions, where the resolutions are adapted to the image being analyzed.

In the next section, we begin by describing a convenient mechanical analog for the
visualization of many spatially-discrete evolution equations, including discretized linear or
nonlinear diffusions such as that of Perona-Malik, as well as the discontinuous equations that
we introduce in Section 3. Because of the discontinuous right-hand side, some care must be
taken in defining solutions, but as we show in [5], once this is done, the resulting evolutions
have a number of important properties. Moreover, as we have indicated, they lead to very
effective algorithms for edge enhancement and segmentation, something that we demonstrate
in Section 4. In particular, as we will see, they can produce sharp enhancement of edges in
high noise as well as accurate segmentations of very noisy imagery such as synthetic aperture
radar (SAR) imagery subject to severe speckle.

2 A Spring-Mass Model for Certain Evolution Equations

As we indicated in the introduction, the focus of this paper is on discrete-space, temporally-
continuous evolutions of the following general form:

f,(t) = F(u)(t), (1)
u(0) = uO,

where u is either a discretized signal, i.e., an N-point discrete sequence (u = (ul, ..., uN)T E RN),

or an N-by-N image whose j-th entry in the i-th row is uij (u E ERN 2). The initial condition
u0 corresponds to the original signal or image to be processed, and u(t) then represents the
evolution of this signal/image at time (scale) t, resulting in a scale-space family for 0 < t < oo.

The nonlinear operators F of interest in this paper can be conveniently visualized
through the following simple mechanical model. For the sake of simplicity in visualiza-
tion, let us first suppose that u E ?RN is a one-dimensional (i-D) sequence, and interpret

2



u(t) = (ul(t), ... , uN(t))T in (1) as the vector of vertical positions of the N particles of masses
M1,..., MN, depicted in Figure 1. The particles are forced to move along N vertical lines.
Each particle is connected by springs to its two neighbors (except the first and last particles,
which are only connected to one neighbor.) Every spring whose vertical extent is v has energy
E(v), i.e., the energy of the spring between the n-th and (n + 1)-st particles is E(un+l - un).
We impose the usual requirements for an energy function:

E(v) > 0, E(O) = 0,

E'(v) > O for v > 0, (2)

E(v) = E(-v).

Then the derivative of E(v), which we refer to as "the force function" and denote by F(v),
satisfies

F(0) = 0, F(v) > O for v > 0, (3)

F(v) = -F(-v).

We also call F(v) a "force function" and E(v) an "energy" if -E(v) satisfies (2) and -F(v)
satisfies (3). We make the movement of the particles non-conservative by stopping it after a
small period of time At and re-starting with zero velocity. We assume that during one such
step, the total force Fn = -F(u, - un+l) - F(u~ - un_), acting on the n-th particle, stays
approximately constant. The displacement during one iteration is equal to the product of
acceleration and the square of the time interval, divided by two:

(At) 2 F
un(t + At)-un(t)= 2 n

2 Mr~

Letting At -4 0, while fixing 2Mn = m~, where mn is a positive constant, leads to

1
Un= -- (F(i+l -un)- F(un - u1-)), n= 1,2,...,N, (4)

with the conventions uo = ul and UN+l = UN imposed by the absence of springs to the left of
the first particle and to the right, of the last particle. We will refer to mn as "the mass of the
n-th particle" in the remainder of the paper. In the three examples below, we set mn = 1.

We call F(v) a "diffusion force" if, in addition to (3), it is monotonously increasing:

vl < v 2 > F(vl) < F( 2). (5)

We call the corresponding energy E(v) a "diffusion energy" and the corresponding evolution
(4) a "diffusion". We call F(v) an "inverse diffusion force" if -F(v) satisfies Equations (3)
and (5). The corresponding evolution (4) is called an "inverse diffusion". Inverse diffusions
have the characteristic of enhancing abrupt differences in u corresponding to "edges" in the 1-
D sequence. Such pure inverse diffusions, however, lead to unstable evolutions. The following
example, which is prototypical of the examples considered by Perona and Malik, defines a
stable evolution that captures at least some of the edge enhancing characteristics of inverse
diffusions.

Example. Taking F(v) = v exp (-(k) 2 ), as illustrated in Figure 2, yields a 1-D semi-
discrete (continuous in scale and discrete in space) version of the Perona-Malik equation (see
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Figure 2: Force function for Perona-Malik evolution.

Figure 3: Spring-mass model in 2-D (view from above).

equations (3.3), (3.4), and (3.12) in [4]). In general, given a positive constant K, we call a
force F(v) a "Perona-Malik force of thickness K" if, in addition to (3), it satisfies the following
conditions:

F(v) has a unique maximum at v = K, (6)

F(vl) = F(V2) = ([1v - K)(IV21 - K) < O.

We call the corresponding energy a "Perona-Malik energy" and the corresponding evolution a
"Perona-Malik evolution of thickness K". As Perona and Malik demonstrate (and as can also
be inferred from our results), evolutions with such a force function act like inverse diffusions in
the regions of high gradient and like usual diffusions elsewhere. They are stable and capable
of achieving some level of edge enhancement depending on the exact form of F(v). ·

Finally, to extend our mechanical model of Figure 1 to images, we simply replace the
sequence of vertical lines along which the particles move with an N-by-N square grid of such
lines. The particle at location (i, j) is connected by springs to its four neighbors: (i - 1, j),
(i,j + 1), (i + 1,j), (i,j - 1), except for the particles in the four corners of the square (which
only have two neighbors each), and the rest of the particles on the boundary of the square
(which have three neighbors). The view from above of this arrangement is depicted in Figure
3. It is reminiscent of (and, in fact, was suggested by) the resistive network of Figure 8 in [3].
The analog of the equation (4) for images is then:

iij = -(F(ui+,j - uij) - F(ij - i-,j) + F(ui,j+l - ij) - F(uij - ui,j-1)), (7)
7ij

with i = 1, 2, ..., N, j = 1, 2, ..., N, and the conventions uo,j = ulj, UN+l,j = UN,j, Ui,o U= i,

and Ui,N+l = Ui,N imposed by the absence of springs outside of 1 < i < N, 1 < j < N.

3 Stabilized Inverse Diffusion Equations (SIDEs)

In this section, we introduce a discontinuous force functig-n, resulting in a system (4) that
has discontinuous right-hand side (RHS). Such equations received much attention in control
theory because of the wide usage of relay switches in automatic control systems. More recently,
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Figure 4: Force function for a stabilized inverse diffusion.

deliberate introduction of discontinuities has been used in control applications to drive the state
vector onto lower-dimensional surfaces in the state space [7]. As we will see, this objective
of driving a trajectory onto a lower-dimensional surface also has value in image analysis and
in particular in image segmentation. Segmenting a signal or image, represented as a high-
dimensional vector u, consists of evolving it so that it is driven onto a comparatively low-
dimensional subspace which corresponds to a segmentation of the signal or image domain into
a small number of regions.

The type of force function of interest to us here is illustrated in Figure 4. More pre-
cisely, we wish to consider force functions F(v) which, in addition to (3), satisfy the following
properties:

F'(v) < O for v A O0,

F(O+) > 0, (8)
F(vi) = F(v 2 ) X V1 = v2.

Contrasting this form of a force function to the Perona-Malik function in Figure 2, we see that
in a sense one can view the discontinuous force function as a limiting form of the continuous
force function in Figure 2. In essence, this new force function acts as' an inverse diffusion
operator as long as its argument is not zero. This would appear, at first, to lead to potential
problems, since the way in which Perona-Malik-type equations achieve stability is through
the positive diffusion effects resulting from the behavior of F(v) for v E [-K,K]. More
fundamentally, because of the discontinuity at the origin of the force function in Figure 4,
there is a question of how one defines solutions of the equation (4) for such a force function.
Indeed, if the equation (4) evolves toward a point of discontinuity of its RHS, the value of
the RHS of (4) apparently depends on the direction from which this point is approached
(because F(O+) : F(O-)), making further evolution non-unique. We therefore need a special
definition of how the trajectory of our evolution proceeds at these discontinuity points.3 For
this definition to be useful, the resulting evolution must satisfy well-posedness properties: the
existence and uniqueness of solutions, as well as stability of solutions with respect to the
initial data. In the rest of this section, we describe how we define solutions to (4) for force
functions (8). Assuming the resulting evolutions to be well-posed, we demonstrate that they
have the qualitative properties we desire, namely that they both are stable and also act as
inverse diffusions and hence enhance edges. We address the issue of well-posedness and other
properties in [5].

Consider the evolution (4) with F(v) as in Figure 4 and Eq. (8) and with all of the
masses mn equal to 1. Notice that the RHS of (4) has a discontinuity at a point u if and only
if ui = ui+l for some i between 1 and .f - 1. It is when a trajectory reaches such a point u

3Having such a definition is crucial because, as we show in [5], equation (4) will reach a discontinuity point
of its RHS in finite time, starting with any initial condition.
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Figure 5: A horizontal spring is replaced by a rigid link.

that we need the following definition. In terms of our spring-mass model of Figure 1, once the
vertical positions ui and ui+1 of two neighboring particles become equal, the spring connecting
them is replaced by a rigid link. In other words, the two particles are simply merged into a
single particle which is twice as heavy (see Figure 5), yielding the following modification of (4)
for n = i and n = i + 1:

ui ='ui+l = -((F(ui+2 - Ui+l) - F(ui - Ui-1)).

(The differential equations for n : i, i + 1 do not change.) Similarly, if m consecutive particles
reach equal vertical position, they are merged into one particle of mass m (1 < m < N):

itn = . = in+m-l = -(F(Un+m - Un+m-1) - F(un - n-1)) (9)m
if n-1 Un -Un+l = Un+m-2 = Un+m-1 7 un+m.

Notice that this system is the same as (4), but with possibly unequal masses. It is convenient
to re-write this equation so as to explicitly indicate the reduction in the number of state
variables:

Un = m (F(ni+L -Uni) - F(uni - Uni-)), (10)

Uni = Uni+l = ...-- Uni+mni-,

where i = 1, ..., p,

1 = nl < n2 < ... < np_-1 < np < N,

ni+l = ni + mni.

The compound particle described by the vertical position uni and mass mni consists of mni
unit-mass particles Uni, uni+l, ... , Uni+mni_1 that have been merged, as shown in Figure 5.
The evolution can then naturally be thought of as a sequence of stages: during each stage,
the right-hand side of (10) is continuous. Once the solution hits a discontinuity surface of
the right-hand side, the state reduction and re-assignment of mni's, described above, takes
place. The solution then proceeds according to the modified equation until it hits the next
discontinuity surface, etc. The definition of SIDEs in 2-D is similar; it is given in [5].

We close this section by describing one of the basic and most important properties of
these evolutions, namely that the evolution is stable but nevertheless behaves like an inverse
diffusion. Notice that a force function F(v) satisfying (8) can be represented as the sum of an
inverse diffusion force Fid(v) and a positive multiple of sign(v):

F(v) = Fid(v) + C sign(v),
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where C = F(0+) and -Fid(v) satisfies (3) and (5). Therefore, if uni+l -Un and urni-uni _l are
of the same sign (which means that uni is not a local extremum of the sequence (unl, ..., up)),
then (10) can be written as

Un i = - (Fid(Uni+l - Uni) - Fid(Uni - uni- 1 )). (11)
gn i

If Uni > Uni+l and ui > uni x (i.e., ui is a local maximum), then (10) is

Uni = m (Fiid(Uni - -Fid(Unj - Uni-1) - 2C). (12)

If Uni < Umn+ 1 and uni < uni2 _ (i.e., uni is a local minimum), then (10) is

Uni 1 (Fid('Uni+l - Ui) - Fid(Uni - uni-l) + 2C). (13)
mn i

Equation (11) says that the evolution is a pure inverse diffusion at the points which are
not local extrema. It is not, however, a global inverse diffusion, since pure inverse diffusions
drive local maxima to +oo and local minima to -oo and thus are unstable. In contrast,
equations (12) and (13) show that at local extrema, our evolution is an inverse diffusion plus a
stabilizing term which guarantees that the local maxima do not increase and the local minima
do not decrease. For this reason, we call the new evolution (10) a "stabilized inverse diffusion
equation" ("SIDE"), a force function satisfying (8) a "SIDE force", and the corresponding
energy a "SIDE energy".

4 Experiments

The examples below are generated with the following SIDE force function:

F(v) = 1 - if O<v<L,

F(v) = -1- if -L < v < 0,

where L/2 is greater than the maximum of the absolute value of the initial condition4 .

4.1 Experiment 1: SIDE evolutions in 1-D

We first test this SIDE on a unit step function corrupted by additive white Gaussian noise
whose standard deviation is equal to the amplitude of the step. The noise-free unit step is
shown in Figure 6(a), while the noise-corrupted measurement of the step is depicted in Figure
6(b). The remaining parts of this figure display snapshots of the SIDE evolution starting with
the noisy data in Figure 6(b). The particular members of the scale space which are illustrated
are labeled according to the number of remaining regions (i.e., what we called "compound
particles" in the preceding section). Note that the last remaining edge, i.e., the edge in Figure
6(f) for the time at which there are only two regions left, is located between samples 96 and
97, which is quite close to the position of the original edge (between the 100-th and 101-st

4Thanks to the maximum principle proved in [5], the absolute value of the argument of F is never larger
than L during the evolution. Consequently, it does not matter what F(v) is for v 0 [-L; L].
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(a) Unit step (b) Initial signal: noisy unit step
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Figure 6: Scale space of a SIDE for a noisy step: (a) unit step; (b) its noisy realization; (c)-(f)
representatives of the resulting SIDE scale space.

samples). In this example, the step in Figure 6(f) also has amplitude that is close to that of
the original unit step. In general, thanks to the stability of SIDEs, the sizes of discontinuities
will be diminished through such an evolution, much as they are in other evolution equations.
However, from the perspective of segmentation this is irrelevant-i.e., the focus of attention is
on detecting and locating the edge, not on estimating its amplitude-and that is the aspect on
which we wish to focus here.

This example also provides us with the opportunity to contrast the behavior of a SIDE
evolution with a Perona-Malik evolution and in fact to describe the behavior that originally
motivated our work. Specifically, as we note in [5], a SIDE in 1-D can be approximated with
a Perona-Malik equation of a small thickness K. Observe that a Perona-Malik equation of
a large thickness K will diffuse the edge before removing all the noise. Consequently, if the
objective is segmentation, it is best to use as small a value of K as possible. Following the
procedure prescribed by Perona, Shiota, and Malik in [4], we computed the histogram of the
absolute values of the gradient throughout the initial signal, and fixed K at 10% of its integral.
The resulting evolution is shown in Figure 7. In addition to its good denoising performance, it
also blurs the edge, which is clearly undesirable if the objective is a sharp segmentation. The
comparison of Figures 6 and 7 strongly suggests that the smaller K the better. It was precisely
this observation that originally motivated the development of SIDEs. However, while in 1-D
a SIDE evolution can be viewed precisely as a limit of a Perona-Malik evolution as K goes to
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Figure 7: Scale space of a Perona-Malik equation with a large K for a noisy step of Figure 6.

0, there is still an advantage to using the form of the evolution that we have described, rather
than a Perona-Malik evolution with a very small value of K. Specifically, the presence of
explicit reductions in dimensionality during the evolution makes a SIDE implementation more
efficient than that described in [4]. Even for this simple example the Perona-Malik evolution
that produced the result comparable to that in Figure 6 evolved approximately 5 times more
slowly than our SIDE evolution: Although a SIDE in 2-D cannot be viewed as a limit of
Perona-Malik evolutions, the same comparison in speed of evolution is still valid, with the
difference in computation time being orders of magnitude in this case.

4.2 Experiment 2: SIDE Evolutions in 2-D

In the 2-D example, shown in Figure 8, we see that if allowed to evolve until exactly two regions
are left, the SIDE produces the most important boundary in the image. This property is used
to advantage in segmenting a SAR image in which only two textures are present (forest and
grass). The initial SAR image and the scale space are shown in Figure 8, and the resulting
boundary is superimposed onto the original image in Figure 9. SAR imagery, such as the
example shown here, are subject to the phenomenon known as speckle, which is present in any
coherent imaging system and which leads to the large amplitude variations and noise evident
in the original image. Consequently, the accurate segmentation of such imagery can be quite
challenging and in particular cannot be accomplished using standard edge detection algorithms.
In contrast, the two-region segmentation displayed in Figure 9 is extremely accurate.

Finally we note, that, as mentioned in Experiment 1, the SIDE evolutions require far
less computation time than Perona-Malik-type evolutions. Since in 2-D a SIDE evolution is not
a limiting form of a Perona-Malik evolution, the comparison is not quite as simple. However,
in experiments that we have performed in which we have devised Perona-Malik evolutions that
produce results as qualitatively similar to those in Figure 8 as possible, we have found that
the resulting computational effort is roughly 130 times slower for this (201 x 201) image than
our SIDE evolution.
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Figure 8: Scale space of a SIDE for the SAR image of trees and grass.

SAR image: final segmentation
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Figure 9: The final boundary superimposed on the initial SAR image.
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5 Conclusion

In this paper we have presented a new approach to edge enhancement and segmentation and
demonstrated its successful application to signals and images with very high levels of noise.
Our approach is based on a new class of evolution equations for the processing of imagery and
signals which we have termed stabilized inverse diffusion equations or SIDEs. These evolutions,
which have discontinuous right-hand sides, have conceptual and mathematical links to other
evolution-based methods in signal and image processing, but they also have their own unique
qualitative characteristics and properties that, together with the promising results presented
here, suggest the merit of several further lines of investigation, described in [5].
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