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Abstract
Recently, it has been suggested that an array of small quantum information processors
sharing classical information can be used to solve selected computational problems,
referred to as a type-II quantum computer. The first concrete implementation demon-
strated here solves the diffusion equation, and it provides a test example from which
to probe the strengths and limitations of this new computation paradigm. The NMR
experiment consists of encoding a mass density onto an array of 16 two-qubit quan-
tum information processors and then following the computation through 7 time steps
of the algorithm. The results show a good agreement with the analytic solution for
diffusive dynamics.

From the numerical simulations of the NMR implementations, we explore two
major error sources (1) the systematic error in the collision operator and (2) the linear
approximation in the initialization. Since the mass density evolving under the Burgers
equation develops sharp features over time, this is a stronger test of liquid state NMR
implementations of type-II quantum computers than the previous example using the
diffusion equation. Small systematic errors in the collision operator accumulate and
swamp all other errors. We propose, and demonstrate, that the accumulation of
this error can be avoided to a large extent by replacing the single collision operator
with a set of operators, that have random errors and similar fidelities. Experiments
have been implemented on 16 two-qubit sites for eight successive time steps for the
Burgers equation. The improvement in the experimental results suggests that more
complicated modulation of error terms may offer further improvement.

An alternative approach has been suggested to encode in the Fourier space (k-
space) to remove the usage of this linear approximation. This new method also
provides us a simple means to implement the streaming operation quantum mechan-
ically by controlling magnetic field gradients sandwiched with RF pulses. Therefore,
this method might serve as a new tool to probe the implementations of quantum
lattice gas (QLG) algorithms. Experimental demonstration of the diffusion equation
has been performed on 16 two-qubit sites for four successive time steps.

Recently, much attention has been focused on constructing many identical simple
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processing elements arranged in a cellular automata architecture recently. It is likely
that the early quantum hardware will be built in a similar manner. Quantum lattice
gas algorithms therefore provide a bridge between such hardware and potential early
algorithms. We propose a quantum lattice gas model similar to the one proposed by
Margolus for the classical setting. This quantum algorithm simulates the one-particle
quantum random walk. The preliminary experimental design associated with the
lattice gas model on a ring molecule is presented. The searches for the suitable pulses
to construct the unitary operators, used in the implementations of the lattice gas
model, are done and the results are encouraging.

Thesis Supervisor: David G. Cory
Title: Professor
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two-qubit system. The streaming is executed by classical communica-
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third line shows the application of magnetic field gradients. In the
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of the desired magnetization. The shaped pulses are applied in the

presence of gradients so that each site can be addressed. A carbon

decoupling sequence prevents the scalar coupling from interfering with

the low power shaped pulses. The at the end of the encoding move
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algorithm. The collision operator follows the encoding, and it is imple-

mented without gradients to ensure that all of the sites in the sample
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3-8 QLG algorithm experimental results. The experimental mass
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steps of the algorithm were implemented on 16 two-qubit sites. The

simulations were performed using the actual RF nutation rates and

times of the experimental setup. The calculations closely match the

data, suggesting that the deviation between the analytical results and

the data can be attributed imperfections in the methodology. As a

result, the simulations promise to be useful in exploring the errors
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4-1 QLG algorithm for the Burgers equation implemented in four
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carbon channel to prevent interfering of scalar coupling. The collision
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4-2 Experiment results comparing with simulation and analytical

solutions. The experimental data (dots) are plotted together with the
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mainly due to the accumulative errors in the collision operator. We also

observed the deviation between the experimental data and simulation

results, possibly introduced by inhomogeneity, self-diffusion. ..... 62
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4-3 Experimental data The experimental data (dots) are plotted, to-
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steps (numbers) of the algorithm have been carried out on 16 two-qubit
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are plotted together with the analytical solutions for 8 time steps on a
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Chapter 1

Introduction

In 1965 Intel co-founder Gordan Moore noted that the processing power (number of

transistors and speed) of computer chips was almost doubling every 18 months. This

trend has continued roughly since the first computer in 1946. Such an exponential

and rapid acceleration in computing ability is impressive. However, the basic tech-

nologies that have enabled Moore's Law are reaching fundamental physical limits.

The miniaturization of processor components, which has taken transistor sizes from

one centimeter in 1965 to 0.1 microns today. If Moore's law continues unabated, then

each transistor is predicted to be as small as a hydrogen atom by about 2030. At

that size, the quantum nature of electrons in the atoms becomes significant. Current

technologies cannot possibly continue miniaturization beyond the scale of atoms, and

errors will be generated in the computation. However, it is possible to exploit the

quantum physics as a new way to do computation. This new way opens up fantastic

new computational power based on the superpositions of quantum states.

The field of quantum information processing (QIP) has made steady progress in

the past decade, driven in part by the realization that some quantum algorithms offer

a computational advantage over the best-known classical counterparts [1]. Integer

factorization of large numbers is believed to be practically impossible with an ordinary

computer. By comparison, a quantum computer could solve this problem very quickly

[2]. This ability would allow a quantum computer to break many of the cryptographic

systems in use today. It comes with no surprise that quantum computers could also
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be useful for running simulations of many-body quantum systems [3, 4, 5, 6, 7]. In

theory, these problems can be easily emulated with a well controlled quantum system.

To reach a practical improvement, quantum algorithms require precise control in a

large Hilbert space, making physical implementations difficult.

Recently, much attention has been focused on lattice gas algorithms as candi-

date quantum algorithms. Quantum lattice gas algorithms are the generalizations

of classical lattice gas algorithms, which are implemented on a lattice of many iden-

tical simple units associated with homogeneous update rules to all the lattice sites.

Such an architecture offers the experimental simplification that the early quantum

hardware is likely to build in a similar manner.

Two types of quantum lattice gas algorithms are defined according to the quan-

tum computing architectures: type-I and type-II quantum information processors. In

a type-I design [8, 9, 10], the lattice points are presented by either the states of the

quantum system or quantum qubits. The system wave function must remain coher-

ent for the duration of the quantum gate sequence needed to implement a particular

algorithm. An algorithm of type-I quantum lattice gas models unfolds the quantum

operator into an ordered sequence of basic two-qubit quantum operations. Type-II

[11] is essentially an array of small quantum information processors interconnected by

classical communication channels. Quantum coherence only exist inside each proces-

sor for a short period. This particular architecture significantly simplifies the quantum

controls by using magnetic resonance imaging (MRI) techniques. It may also increase

the range of problems that small quantum processors can tackle and thus serve as an

intermediate architecture between few-qubit and large scale quantum computers.

In the present thesis, I aim to provide a reader who is unfamiliar with the field of

lattice gases and quantum lattice gases with an introduction to the lattice Boltzmann

methods and recently progress in the quantum lattice gas algorithms. This thesis is

divided into a comprehensive introduction which gives a detailed overview of lattice

Boltzmann methods, followed by sections on the methodologies used to implement

type-II quantum lattice gas algorithms using NMR. The approaches for improving

the control and reducing errors during the experiments will be discussed in depth
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in Chapter 4 and 5. In the last chapter, a brief introduction of type-I lattice gas

algorithms is given and a preliminary experimental design using nuclear magnetic

resonance (NMR) is presented.
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Chapter 2

Type-II Quantum Lattice Gas

Algorithm

2.1 Lattice Gas Method

The lattice gas method is a tool of computational physics used to model complex

hydro-dynamical flows that are too large for a standard low-level molecular dynamics

treatment. This method contains discontinuous inter-facial boundaries that prevent

a high-level partial differential equation description [12, 13, 14, 15]. The basic idea

underlying the lattice gas method is to statistically represent a macroscopic scale

time-dependent field quantities by "averaging" repeated artificial microscopic parti-

cles scattering and propagating throughout a lattice of interconnected sites. Many

particles are distributed over the lattice sites. These particles may coexist at each site

at a given time, and each particle carries a unit mass and a unit momentum of energy.

They interact on site by an artificial collision rule which is locally invariant under the

point-group symmetries of the lattice, and, furthermore, which exactly conserves the

total mass, momentum, and energy at that site. The movement of particles along

the lattice is prescribed by a streaming operation that shifts particles to the nearest

neighboring sites, thus endowing the particles with the property of momentum. In a

1 This section was extracted from M. A. Pravia, Z. Chen, J. Yepez, D. G. Cory, "Experimental
Demonstration of Quantum Lattice Gas Computation," QIP, 2002.
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maximally discrete way, the algorithm encapsulates the microscopic scale kinematics

of the particles scattering on site and moving along the lattice. The mean-free path

length between collisions is about one lattice cell size, and the mean-free time between

collision elapses after a single update. This is computationally simple in comparison

to molecular dynamics where many thousands of updates are required to capture such

particle interactions.

The mesoscopic evolution is obtained by taking the ensemble average over many

steps in microscopic realization. At the mesoscopic scale, the average presence of

each particle type is defined by a real-valued occupation probability. In addition, the

microscopic collision and streaming rules translate into the language of kinetic theory.

The behavior of the system is described by a transport equation for the occupation

probabilities, and this equation is a discrete Boltzmann equation called the lattice

Boltzmann equation.

The lattice Boltzmann equation further translates into a macroscopic, continuous,

effective field theory by letting the cell size approach zero (the limit of infinite lattice

resolution called the continuum limit). At the macroscopic scale, partial differential

equations describe the evolution of the field, admitting solutions such as propagating

sound wave modes and diffusive modes. The passage of the Boltzmann equation

to the effective field theory begins by expanding the occupation probabilities, which

have a well-defined statistical functional form in terms of the continuous macroscopic

variables, such as the mass density p (and the velocity or energy field if they are

defined in the model). This expansion usually is carried out perturbatively in a

small parameter such as the Knudsen number (ratio of mean-free path to the largest

characteristic length scale) or the Mach number (ratio of the sound speed to the largest

characteristic flow speed) in a fashion analogous to the Chapman-Enskog expansion

of kinetic theory. Conversely, the macroscopic field quantities can also be expressed as

a function of the mesoscopic occupation probabilities-for example, the mass density

at some point is a sum over the occupation probabilities in that vicinity.
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2.2 The 1-D Diffusion Automaton

2.2.1 Microscopic Regime

We here consider a one-dimensional system [16, 17] in which particles may travel

upwards or downwards to the nearest sites with some probabilities. Usually, a random

walk is simulated by selecting one particle in the system and transporting it at random

upwards or downwards, provided that the destination site is empty. At each site z of

the lattice, we define two Boolean variables nl (z, t) and n2 (z, t). These quantities are

occupation numbers indicating whether or not a particle is entering site z at time t

in direction el (up) and e2 (down), respectively.

In the microscopic regime, random motion is obtained by shuffling the two direc-

tions of motion indecently at each lattice site and at each time step. In other words,

what is traveling in direction e will be exchanged with what is traveling in direction

e2 with a probability 1 - /t(z, t). The micro-dynamics has two phases: collision and

propagation to the nearest neighbor. A particle entering site z + Az at time t + At

with velocity pointing upwards must have been at site z at t. With a probability

li(z, t), this particle was the one with a velocity pointing upwards and with proba-

bility I - uI(z, t) the one which had a velocity pointing downwards. Therefore, the

random walk rule obeys

nl(z + Az, t + At) = (z, t)nl(z, t) + (1 - (z, t))n2(z, t)

n2 (z - Az, t + At) = (1 - (z, t))nl(z, t) + t(z, t)n2(z, t). (2.1)

The time step is denoted by At, while the lattice spacing is given by Az.

2.2.2 Mesoscopic Regime

At a mesoscopic scale, the variables ni no longer appear as Boolean quantities but

rather as an ensemble average of all the Boolean quantities (varying continuously

between 0 and 1). Indeed, a mesoscopic point of coordinate z designates a microscopic

volume comprising many particles. Formally, this averaging fi(z, t) =< ni(z, t > is
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treated as an ensemble average in the sense of statistical mechanics. Since /l(z, t) is

statistically independent of i(z, t), the average of < 1uni > yields

< (z, t)ni(z, t) >=< j(z, t) >< ni(z, t) >= pfi(z, t). (2.2)

The variables fi(z, t) and f2(z, t) are the occupation probabilities for finding upward-

and downward-moving particles, respectively, at the site location z and time t. There-

fore, relations in Eq. 2.1 can be averaged and yield

fl (z + Az, t + t) = pf(z, t) + (1 - P)f2(z, t)

f 2(z- Az, t + At) = (1 - p)fi(z, t) + Pf2 (z, t). (2.3)

In this case, the interesting quantity of the lattice gas is the mass density field, p,

defines as the sum of upward- and downward-moving particles

2

p(z, t) = fi(z, t). (2.4)
i=l

We can arrange Eq. 2.3 as following:

fi(z + Az, t + t) - fl(z, t) = (p - 1) [f(z, t) - f 2(, t)]

f 2(z - Az, t + At) - f 2 (z, t) = (p - 1) [f2(z, t) - f(z, t)] (2.5)

By summing these two equations, we obtain

fl(z + A\, t + At) + f2 (z - Az, t + t) - p(z, t) = 0. (2.6)

This equation reflects the conservation of mass: the number of particles entering site

z at time t are exiting at time t + At. For this reason, Eq. 2.6 is called the continuity

equation.
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The lattice gas described above is summarized by the Boltzmann equation

f1 ,2(Z ± AZ, t + At) = fl, 2(z, t) + Q 1,2(Z, t), (2.7)

where the left-hand side denotes the occupation of the lattice as a function of the

previous lattice configuration and where the collision terms are

Q1,2 = (p - 1) [fl - f2] (2.8)

The collision terms define different numerical problem that we desired to solve. It

changes the direction of some particles, thus it is responsible for the diffusive behavior.

2.2.3 Macroscopic Regime

The Chapman-Enskog expansion technique is commonly used in statistical mechanics

to derive the macroscopic laws governing the relevant physical quantities. The idea

of the Chapman-Enskog expansion is the following: it is assumed that the actual

occupation numbers fi are close to the equilibrium population f(O). The occupation

number can be expanded in terms of a small parameter c:

fi = fio) + efi) + e2 f() + O(e3), (2.9)

where the f(lI)s are functions of z and t to be determined.

The next step is to take a Taylor expansion of the left-hand side of Eq. 2.5. One

has

fi(z + Azci, t + At) - fi(z, t) = (2.10)

[ At, + 2 at+ ZC + 2 Ca + AtAZciatar] f(z, t),
2 2

where we have defined cl = -c 2 = 1 and neglected third-order terms in the expansion.

The infinitely short time step At and small lattice spacing Az are not in the same

order of magnitude when they approach the continuous limit. The propagation speed
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v of the particles appears as the ratio between the lattice spacing and time step

Az/zt, which remains finite. It turns out that the time step goes faster to zero than

the lattice spacing because of an interesting case (z)2/At -+ constant. As a result,

we express Az eAz and At e2t.

By comparing both sides of Eq. 2.5 and Eq. 2.10, order by order,

A/tat 2 + 9 F Azciaz + 2 c20 + AtZCiArtOr fi(z, t) (2.11)2 2

= (1 - ) [fi(z, t) - fj(z, t)],

we can obtain the solutions for f(o) and higher order terms as well. For the order

O(e°) we have f(0)(z, t) = f?)(z, t) because the left-hand term is zero. This results in

(0) fo) (2.12)

and the condition that
2

Ef)= 0,if > 1. (2.13)
i=l

The next order O(e) of the Boltzmann equation is given by taking the term Azciazfi 0(

of the Taylor expansion and the term f(1l) in the right-hand side of the equation. Since

fO) - p/2, we obtain

Az (p 1)( f(1))
-_-Zzp = (p - 1)(f1) -f(l)). (2.14)

2

The solution of Eq. 2.14 is then straightforward

Az
f ) = A CajzP. (2.15)4 (p - 1)

The equation governing the evolution of p is given by the continuity Eq. 2.6. The

order O(el ) reads

azcia(f 0 ) = 0, (2.16)
i=l
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which is obviously satisfied by our solution. The next order is O(e2)

A aAtofi(° ) + Azc9fi1 + 2 C2zfi() = ° (2.17)2 [Atutf~ ' +n,~r!l+2 - 0.(2.17)

Using the solution for fO) and f), we obtain the equation

Az 2p1 -a + 2 p1= 0 (2.18)

and, finally

azp = DO2p (2.19)

which is the expected diffusion equation with the diffusion constant

Az2 p
D = 2((2.20)At 2(1 - p).

Finally, in this implementation we consider an initial mass density p(z, t = 0)

whose evolution obeys the periodic boundary condition p(z, t) = p(z + L, t), where

L is the length of the lattice. As a result, the initial mass density diffuses until the

total mass is evenly dispersed throughout the lattice.

2.2.4 Transition Matrix

We introduce a transition matrix A(i, i'), which gives the probability for an input state

i transformed into an output state i' in a collision process. Clearly the whole collision

process can be defined by giving the full transition matrix A. A(i, i') obviously has

ZA(i, i') = 1 (2.21)
i'

for any i (This is the normalization constraint.). In some models, the transition

matrix is symmetric:

A(i, i') = A(i', i) (2.22)
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and one says that detailed balance holds. However, in general, this is not true. A

weaker property is the so-called semi-detailed balance which only requires

a A(i, i') = 1 (2.23)
it

for any i'. Semi-detailed balance is obeyed by most lattice gas models. The ma-

trix that satisfies the normalization but does not hold detailed balance constraint is

Markov or stochastic matrix. Satisfying both the normalization and semi-detailed

balance, the matrix is referred as a doubly stochastic matrix.

2.3 Type-II Quantum Lattice Gas Algorithm

Quantum lattice gas (QLG) algorithms are generalizations of the classical lattice gas

algorithms described above, where quantum bits are used to encode the occupation

probabilities and where the principle of quantum mechanical superposition is added

to the artificial microscopic world. In this quantum case, the mesoscopic occupa-

tion probabilities are mapped onto the wave functions of quantum mechanical sites.

In the case where the quantum lattice gas describes a hydrodynamic system when

the time evolution of the flow field is required, we must periodically measure these

occupation probabilities, making the quantum lattice gas algorithm suitable to a

type-II implementation. Such type-II algorithms have been shown to solve dynamical

equations such as the diffusion equation [18], the Burgers equation [19], and magneto-

hydrodynamic Burgers turbulence equation[20]. In this chapter, I will discuss about

the QLG algorithm for the diffusion equation.

The quantum lattice gas algorithm that solves the 1-D diffusion equation derives

from a classical lattice gas of particles moving up and down a 1-D lattice[18]. The

corresponding quantum lattice gas algorithm description begins by encoding the oc-

cupation probabilities, and thus the mass density, in the states of a lattice of quantum

objects. The streaming and collision operations are then a combination of classical

and quantum operations, including measurements. The aim of the algorithm is to
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take an initial mass density field and to evolve its underlying occupation probabili-

ties according to the Boltzmann equation (2.7). A schematic of the entire quantum

algorithm is shown in Fig. 3-3. A single time step of the algorithm is decomposed

into four sequential operations:

1. encoding of the mass density

2. applying the collision operator C at all sites

3. measuring the occupation numbers

4. streaming to neighboring sites.

These operations are repeated until the mass density field has evolved for the desired

number of time steps. In the first time step, the encoding operation specifies the

initial mass density profile, while in all the subsequent steps the encoding writes the

results of the previous streaming operation. The final time step ends with the readout

of the desired result, so operation 4 is not performed.

Each occupation probability is represented as the quantum mechanical expectation

value of finding a two-level system, or qubit, in its excited state 1). As a result, the

state of the qubit encoding the value fi(z, t) is

Ifi(z, t)) = fi(zt)I1)+ 1- fi(z,t)O) (2.24)

It follows that a single value of the mass density is recorded in two qubits, one for

each occupation number. The combined two-qubit wave function for a single node

becomes

i(Z, t)) = /ff11) + f(1 - f2)110) + (2.25)

(1 - f)f2101) + (1 - fi)(1 - f2)o00).

The kets 100), 101), 110), and 11) span the joint Hilbert space of the two qubits, and

this is the largest dimension space over which quantum superpositions are allowed.

As with the classical algorithm, the constraint for local equilibrium (2.12) forces the
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initial occupation probabilities at a node to be half of the corresponding mass density

value.

The occupation numbers encoded in the two-qubit wave function I(z, t)) can be

recovered by measuring the expectation value of the number operator i, as given in

fi(z, t) = (V(z, t)Ii l)(z, t)), (2.26)

where ftl = n 0 1, 2 = 1 f, where 1 is the 2 x 2 identity matrix, and where the

action of the single-qubit number operator ii returns 1 if the qubit is in its excited

state and 0 for the ground state.

The encoded occupation probabilities evolve as specified in the Boltzmann equa-

tion by the combined action of the collision operator, the measurement, and stream-

ing. The collision operator contributes by taking the local average of the two occu-

pation probabilities. This averaging (not to be confused with statistical coarse-grain

averaging, time averaging, or ensemble averaging) is done by choosing the the collision

operator C to be the "square-root-of-swap" gate, written as

1 0 0 0

O l+i 1-_ 0
C=O O 2 2 (2.27)

0 1-2i l+i 0

0 0 0 1

in the standard basis. The propagator C induces local quantum entanglement. The

same collision is applied simultaneously at every site, resulting in

I'(z, t)) = Cl(z, t)) (2.28)

Using (2.26), the intermediate occupation probabilities of the wave function Ik'(z, t))

are

fi(z, t) = (fi + f2) (2.29)

as required for i = 1, 2. The third operation physically measures these intermediate
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occupation probabilities f[(z, t) at all the sites. A single time step is completed with

the streaming of the occupation probabilities to the nearest neighbors, according to

the rule

fl (z - Az, t + At) = fj (z, t) (2.30)

f 2(z + Az, t + At) = f2(z, t). (2.31)

The information of each qubit is shifted to the neighboring sites in opposite directions.

The streaming operation is a classical step causing global data shifting, and it is

carried out in a classical computer interfaced to the quantum processors. Together,

the last three operations result in

f1,2(z ± Az, t + At) = [fi (Z, t) + f2(Z, t)], (2.32)

which is the exact dynamics described by the Boltzmann equation (2.7).
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Chapter 3

NMR Demonstration

Here, we explore the experimental aspects of building a type-II quantum computer

using NMR techniques [21]. QIP experiments utilizing NMR typically employ a

liquid sample of molecules containing spin-2 nuclei. The sample is subjected to a

strong magnetic field B0 of order - 10 T creating an energy difference AE between

the aligned and anti-aligned spin states that results in an equilibrium state with

net magnetization. At room temperature, AE/kBT is about 10-5, so that the net

magnetization is relatively small, but, given the large number of molecules in the

sample (- 1018), it is still easily detectable. The entire spin ensemble is accurately

described by a reduced density matrix of only the intramolecular spin degrees of

freedom. The ensemble nature of the NMR sample thus makes it inherently applicable

to parallel computation. A type-II architecture can be mapped onto an NMR sample

by creating a correspondence between the sites of the lattice and spatially distinct

spin ensembles. Using magnetic field gradients and radio frequency (RF) pulses,

information in the lattice can be encoded, manipulated, and read out.

1This section was extracted from M. A. Pravia, Z. Chen, J. Yepez, D. G. Cory, "Experimental
Demonstration of Quantum Lattice Gas Computation," QIP, 2002.
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3.1 Methodology for NMR Implementations

3.1.1 Spin System and Control

For this two-qubit problem, we chose a room-temperature solution of isotropically-

labeled chloroform (13CHC13), where the hydrogen nucleus and the labeled carbon

nucleus served as qubits 1 and 2 Fig. 3-1, respectively. The chloroform sample was

divided into 16 classically-connected sites of two qubits each, creating an accessible

Hilbert space larger than would be available with 32 non-interacting qubits.

Qubit /I11) /s
I1 /11°)

WI

Inn\
13 C-Chloroform IVV/

Figure 3-1: Labeled chloroform Labeled chloroform consists of two qubits, the
hydrogen nucleus and labeled carbon served as qubits 1 and 2. States 10) and II) are
the ground state and excited state, respectively, induced by the Zeeman interaction
with the applied magnetic field. Frequencies wl and w2, defined as multiplication of
the gyro-magnetic ratio -y and the magnetic field Bo, are the resonant frequencies to
flip the spins.

The internal Hamiltonian of this system in a strong and homogeneous magnetic

field Bo is
Hneai211 1 i Hinternal =-2 (YHBo) o - (-ycBo) o + - a2 2 (3.1)

where the first two terms represent the Zeeman couplings of the spins with Bo and the

last term is the scalar coupling between the two spins. The operators of the form ao are

Pauli spin operators for the spin i and the Cartesian direction k. In the rotating frame,

the internal Hamiltonian can be reformulated as: Hinternal = 2 1 The choice of

chloroform is particularly convenient because the different gyro-magnetic ratios, fHy
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and Yc, generate widely spaced resonant frequencies. As a result, a RF pulse applied

on resonance with one of the spins does not affect, to a good approximation, the

other spin. In the 7 T magnet utilized for the implementation, the hydrogen and

carbon frequencies were about 300 MHz and 75 MHz, respectively. The widely spaced

frequencies allow us to write the two RF control Hamiltonians as acting on the two

spins independently. More concretely, the externally-controlled RF Hamiltonians are

written as

HiF(t) = 2 [(t)> + w (t)4] (3.2)

The RF Hamiltonians generate arbitrary single-spin rotations with high fidelity when

the total nutation frequencies

VF = 2 /W] 2 + [WY]2 (3.3)

are much stronger than J, the scalar coupling constant. The scalar coupling Hamil-

tonian and the single-spin rotations permit the implementation of a universal set of

gates, and they are the building blocks for constructing more involved gates such as

the collision operator C.

The lattice of quantum information processors shown in Fig. 3-2 is realized by

superimposing a linear magnetic field gradient on the main field Bo0, adding a position

dependent term to the Hamiltonian having the form

1 B 1 2 (3.4)
Hgradient(Z) 2 'YH aZ) Z 2Yc az Z ()

The variable z denotes the spatial location along the direction of the main field,

while the constant a-B specifies the strength of the gradient. The usefulness of this

Hamiltonian can be appreciated by noticing that the offset frequencies AQH,C =

'YH,C (BZ) z of the spins vary with position when the gradient field is applied. Spins at

distinct locations can thus be addressed with RF fields oscillating at the corresponding

frequencies. In this way, the magnetic field gradient allows the entire spin ensemble

to be sliced into a lattice of smaller, individually addressable sub-ensembles.
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Gradient Coil

-- RF Coil

Liquid Sample Separated
into Spatial Nodes

Figure 3-2: Liquid sample in the coils The lattice initialization is demonstrated.
The liquid sample is placed in the middle with the gradient coils on both ends and
surrounded by the RF coils. Once the gradient field is turned on, the resonant
frequencies across the sample will vary corresponding to the strength and duration of
the gradient. Thus, the spin ensemble can be sliced into a lattice of small blocks.
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Using the coupling, RF, and gradient Hamiltonians described above, together with

the appropriate measurement and processing tools, we can now describe in detail

how the four steps of the diffusion QLG algorithm translate to experimental tasks.

The lattice initialization step (1) uses the magnetic field gradients to establish sub-

ensembles of varying resonant frequency addressable with the RF Hamiltonians as

described in Fig. 3-3. The collision step (2) makes use of both the RF and the

internal coupling Hamiltonians to generate the desired unitary operation C. The

readout (3) is accomplished by measuring the spins in the presence of a magnetic

field gradient. And finally, the streaming operation (4) is performed as a processing

step in a classical computer in conjunction with the next initialization step.

3.1.2 Lattice Initialization

The initialization of the lattice begins by transforming the equilibrium state of the

ensemble into a starting state amenable for quantum computation. At thermal equi-

librium, the density matrix is

1 Hinternal +1 YH 2
Uthermal = exp kBT ] -++ (3.5

Z kBT 22 LYe

where has a value on the order of 10- 5 and Z is the partition function. The

equilibrium state is highly mixed and the two spins have unequal magnetizations. To

perform quantum computations, it is convenient to transform the equilibrium state

into a pseudo-pure state [22, 23], a mixed state whose deviation part transforms

identically to the corresponding pure state and, when measured, returns expectation

values proportional to those that would be obtained by measuring the underlying

pure state. Two transformations create the starting pseudo-pure state 100) from the

thermal state. First, the magnetizations of the two spins are equalized 2, illustrated

2This is achieved by applying the pulse sequence: [J]H -C (4-) -4 []HC - ( ) +

[_ ]iC -+ gradient(z).
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1-D Diffusion QLGA Circuit Diagram
Step 1 Step 2 Step 3 Step M

Site 1

a)

E Site 2

o S

CC Site 3
Z

Site N

Encoding of mass Application of diffusion Measurement of Streaming of measured
density [2 collision operator occupation numbers occupation numbers to

/ neighboring lattice sites

Figure 3-3: Quantum lattice gas algorithm for solving the 1-D diffusion
equation. The algorithm employs N two-qubit sites to encode the discretized mass
density. Each site codes for a single value of the mass density using the quantum
state of the two qubits. The encoded information is subjected to a series of local
transformations that evolve the system. The collision operator C is the only en-
tangling operation in the algorithm, and it creates quantum coherences limited to
each two-qubit system. The streaming is executed by classical communication, and
it moves the occupation numbers up and down the lattice as denoted by the arrows.
The sectioned cylinder depicts the position of the sites in the NMR sample. Each
site is physically realized as an addressable slice of isotropically-labeled chloroform
solution.
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in Fig. 3.1.2,

themal z Iqual = ) + 1 + [YH (3.6)

followed by a pseudo-pure state creation sequence that results in

Pseudo-pure 1 e I ) H 11 (37)2 21 2

The equalization and pseudo-pure state creation sequences are described in detail

in reference [24]. For clarity, we define the constant in front of the brackets to be e',

allowing us to write the pseudo-pure state rpp in terms of the desired spinor 100) as

app = (- 6') l+ e'00)(00. (3.8)

Expressed in this manner, it is now more easily seen how a unitary transformation

applied to app acts trivially on the term proportional to the identity, but it evolves

the term 00)(00I as it would a pure state as shown in Fig. 3-5.

Individually addressing the sites of the lattice, as depicted in Fig. 3-3, is accom-

plished by selectively addressing slices of the cylindrical sample. The procedure is

related to slice-selection in magnetic resonance imaging (MRI) [25], and it works

by applying the gradient Hamiltonian in the presence of suitably shaped RF pulses.

First, consider the Hamiltonian for a one-spin system subjected to a linear magnetic

field gradient in the z-direction and to a time-dependent RF pulse applied in the

y-direction. In this case, the Hamiltonian is

HRF,G(Z,t) = - 1 7a)o- w (t)O, (3.9)

where the ao term is the linearly-varying static field and the Oa term is the time-

dependent RF. The Hamiltonian HRF,G(Z, t) does not commute with itself at all times,

so a closed-form and exact solution cannot be easily given without specifying the

31t is accomplished by the application of []mHC () [L]HC -+ gradient(z).4 x 2J 6 yien~z)
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Carbon Channel Hydrogen Channel

(a)

li l
A A I

(b)

I I , I .1 

200 100 0 -100-200
Frequency [HzJ

I I I I 1

200 100 0 -100-200
Frequency [HzJ

Figure 3-4: Equalizing magnetization Since the ratio of yH to yc is a factor of
four, the spectra of H and C following a pulse should reflect 4 : 1 ratio in the
peak heights, shown in (a). In order to compensate the different magnetization, the
equalization pulse sequence is applied and results in the spectrum (b).
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Carbon Channel Hydrogen Channel

(ax

r T

(b)

Figure 3-5: Pseudo-pure states The results of pseudo-pure states of hydrogen and
carbon are shown in (a) and (b), respectively.

function wy(t). (The two terms in the Hamiltonian doesn't commute with each other

at all times.) A valuable approach, however, is to consider the approximate evolution

generated by HRF,G(Z, t) during infinitesimal periods of the RF pulse. To first order,

the evolution during the initial period At becomes

URF, G(Z,t =At) exp [i1 ( zBAt)z oz exp [iwy(At)At a] (3.10)

By defining the term in the parenthesis as Akz _- At, the evolution of an initial

density matrix oa through a single period becomes

[.kzZ .Ak,
URF,GURUFG exp iaz exp z] wy(At)At + oz (3.11)

where small angle approximations have been made. The first term is a spatial helix
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of the x and y magnetizations having a wavenumber Akz. The second term is the

first order approximation to the magnetization remaining in the state az. Another

period of evolution will affect the oz term as described, creating a new magnetization

helix with wavenumber Akz. In addition, the initial helix will have its wavenumber

increased by an amount Ak,. The final result over many periods is the formation a

shaped magnetization profile having many components

N [nAkzz ] [nkz1
0z -+ 2 exp 2- z axexp - z Wy(nAt)At + z. (3.12)

n=1 2 2

Each term in summation can be interpreted as a cylindrical Fourier component of

the x-y magnetization weighted by the RF nutation rate wy(nAt). The RF waveform

specifies the magnitude of each spatial Fourier component, and the resulting spatial

profile is the Fourier transform of the RF waveform[30]. An equivalent description

is to say that, for weak RF pulses, the excited magnetization of the spins at a given

resonance frequency is, to first order, proportional to the Fourier component of the

RF waveform at that frequency. As a result, control of the appropriate RF Fourier

component essentially translates to selective addressing of spatial frequencies, which

in turn allows the excitation of particular spatial locations.

The Fourier transform approximation allows encoding of arbitrary shapes on the

various spatial locations of one uncoupled nuclear species. For QIP, however, coupled

spins are required to implement entangling operations. In particular, the chloroform

carbons and protons are coupled together via the scalar coupling. Given that the

required RF waveforms should be weak, the coupling interferes with the desired evo-

lution. The effect of the coupling present while encoding on spin 1 is removed by

applying a strong RF decoupling sequence on the second spin 4. The decoupling

modulates the ao2 operator in the interaction Hamiltonian, making its average over

4 The decoupling was accomplished by applying the pulse cycle QQQQ during the pos-
itive and negative gradients. The element Q is a composite r pulse implemented with
four sequential pulses having nutation angles 80.40,362.0° , 181.6° , 180.8° and respective phases
271.3°, 132.4°,292.3°,200.4 ° . This composite pulse was chosen over more commonly used pulse
sequences for its relatively short total nutation angle and good decoupling, allowing the cycle to fit
within a gradient period.
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a cycle period equal to zero. As a result, the second spin feels an identity operation

during the decoupling. Fig. 3-6 shows the complete RF and gradient pulse sequence.

As can be seen from the diagram, the first encoding on qubit 1 was subsequently

swapped to qubit 2, followed by a re-encoding of qubit 1. We chose this method be-

cause the smaller gyro-magnetic ratio of 13C causes a narrower frequency dispersion

in the presence of the gradients, making the carbon decoupling simpler.

As described above, the encoding process writes the desired shapes in the spatial

dependence of each spin's x-magnetization. The occupation numbers, however, are

proportional to the z-magnetization, as can be seen when the number operator in the

equation

fi(nAz, mAt) = ((nAz, mAt) Ihii I4(nAz, mat)), (3.13)

is replaced with hi = 1 (I + ') resulting in

fi (nz, mat) = 2 [ + ((n z, mat)l V(nz, mAt))] . (3.14)

where second term in the brackets represents the z-magnetization. The encoding

process is followed by a r/2 pulse that rotates the excited x-magnetization to the z

direction.

3.1.3 Collision and Swap Gates

After initialization, the next step is to apply the collision operator. For the QLG

algorithm solution to the diffusion equation, the collision operator C is the square-

root-of-swap gate. Expressed in terms of the Pauli operators, it is

C = exp [-i8 ( + + (3.15)

where an irrelevant global phase has been ignored. Written in this form, the operation

C can be decomposed into a sequence of implementable RF pulses and scalar coupling

evolutions[33, 35] by noticing that the product operators in the exponent commute
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NMR Implementation

H 10),

C 10)2

Gradient

Encoding Measurement Streaming

Figure 3-6: NMR methodology for QLG algorithm. The NMR implementation
consists of four main sections, each corresponding to the prescribed QLG algorithm
step. The top two lines in the diagram correspond to RF pulses applied to the proton
and carbon qubits, respectively. The third line shows the application of magnetic
field gradients. In the encoding section, the initial carbon magnetization is recorded
on the protons before being transferred to the carbons. The starting magnetization is
specified by using a RF pulse shaped as the Fourier transform of the desired magne-
tization. The shaped pulses are applied in the presence of gradients so that each site
can be addressed. A carbon decoupling sequence prevents the scalar coupling from
interfering with the low power shaped pulses. The at the end of the encoding move
the information form the x-axis to the z-axis, as required by the QLG algorithm. The
collision operator follows the encoding, and it is implemented without gradients to
ensure that all of the sites in the sample feel the same transformation. The results are
observed in two experiments, each time using the more sensitive proton channel. A
swap gate is added when measuring the carbon magnetization. Finally, the streaming
operation is applied by shifting the frequencies of the carbon and proton shapes in
opposite directions.
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with each other, resulting in

(~-ex[-i 7r 1 2 [- i C =exp exp [-ii7izr0>] exp [-icrx] (3.16)

Expanding the first and last exponentials as scalar couplings sandwiched by the ap-

propriate single-spin rotations results in

| exp [i 4ro] exp x exp [-exp exp
exp 8 4 [4-iaz] ·

exp [-iI 8 ] (3.17)

[exp exp exp ep [[x Z. exp exp 

The exponents of terms proportional to Oa<z2 represent internal Hamiltonian evo-

lutions lasting for a time t = 1/(4J). The exponents of terms with single-spin

operators are implemented by 7r/2 rotations as in Fig. 3-7. They were generated by

RF pulses whose nutation rate was about 50 times greater than J. All of the pulses

and delays were applied without a magnetic field gradient in order to transform all

of the sites identically.

As shown in Fig. 3-6, swap gates were utilized both in the lattice initialization

and in the measurement of the carbon magnetization. The pulse sequence for the

swap gates was almost identical to the sequence for C. The only difference was that

the internal evolution delay was set to t ap = 1/(2J).

3.1.4 Measurement

If the algorithm is performed on individual quantum systems, then the values are

obtained by averaging over many strong quantum measurements of identical instances

of each step. However, when the algorithm is performed using a large ensemble of

quantum systems, as in the case of NMR, then a single weak measurement of the entire

ensemble can provide sufficient precision to obtain f(z, t). The occupation numbers

resulting from the collision were obtained by measuring the z-magnetizations and

using equation (3.14). Since only the u5 and ay operators are directly observable,
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H, C

[ a _ ex[- 8 (.T. exp -iX

Figure 3-7: Pulse sequence for the collision operator The collision operator for
the diffusion equation can be generated by applying pulses on both channels with
delay time 1 in between. The same sequence can be used to generate the swap gate
by increasing the delay time to 2J'

a "read out" r/2 pulse transformed the z-magnetization into x-magnetization. The

proton magnetization was measured directly after the collision, while the carbon

magnetization was first swapped to the protons before observation. Measurements of

both the 13C and 1H magnetizations were carried out separately, and in both cases via

the more sensitive proton channel. The measurements were made in the presence of

a weak linear magnetic field gradient, causing signals from different sites to resonate

with distinguishable frequencies. The observed proton signal was digitized and Fourier

transformed to record an image of the spatial variation of the spin magnetization.

The observed spectrum was then processed to correct the baseline and to obtain the

resulting magnetization at each site. Because each site is composed of a slice of the
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sample with spins resonating in a band of frequencies, the occupation number for

each site was obtained by averaging over all spins in the corresponding band.

3.1.5 Streaming

The final step involves classically streaming the results of the measurements according

to Eqs. (2.30) and (2.31). For the diffusion equation, the streaming operation is

applied in conjunction with the next lattice initialization step by adding a linearly

varying phase to the Fourier transform of the desired shape. The added phase causes

a shift in the frequency of the pulse determined by the slope of the phase. When the

frequency-shifted pulse is applied in the presence of the magnetic field gradient, the

shift results in spatial translation of the encoded shape. The streaming operation is

thus implemented as a signal processing step in the lattice initialization procedure.

3.2 Experiment Demonstration

The results of the experiment are shown in Fig. 3-8, together with plots of the an-

alytical solution and of numerical simulations of the NMR experiment. In total, 7

steps of the algorithm were completed using a parallel array of 16 two-qubit ensemble

NMR quantum processors. The observed deviations between the data points and the

analytical plots can be attributed to imperfections in the various parts of the NMR

implementation.

3.3 Conclusion

Ensemble NMR techniques have been used to study the experimental details involved

in quantum information processing. The astronomical number of individual quantum

systems (_ 1018) present in typical liquid-state spin ensembles greatly facilitates the

problem of measuring spin quantum coherences. In addition, the ensemble nature

has been successfully utilized to create the necessary pseudo-pure states[22, 23] and

to systematically generate non-unitary operations over the ensemble [26]. In this
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Figure 3-8: QLG algorithm experimental results. The experimental mass den-
sities are plotted in the figure, together with plots of the analytical solution and the
numerical simulation of the NMR experiment. Seven steps of the algorithm were
implemented on 16 two-qubit sites. The simulations were performed using the ac-
tual RF nutation rates and times of the experimental setup. The calculations closely
match the data, suggesting that the deviation between the analytical results and the
data can be attributed imperfections in the methodology. As a result, the simulations
promise to be useful in exploring the errors from alternate methods.

experiment, we again exploit the ensemble nature, but this time as a means of realizing

a parallel array of quantum information processors. The novel architecture is then

used to run a quantum lattice gas algorithm that solves the 1-D diffusion equation.

The closeness of the data to the analytical results is encouraging, and it demon-

strates the possibility of combining the advantages of quantum computation at each

node with massively parallel classical computation throughout the lattice. Currently,

commercial MRI machines routinely take images with 256 x 256 x 256 volume elements.

As a result, the large size of the NMR ensemble provides, in principle, sufficient room

to explore much larger lattices. However, in moving to implementations with more

computational power, several challenges remain. The limited control employed here

is sufficient for a few time steps of the algorithm, but refinements are necessary to

increase the number of achievable iterations. In addition, although complicated op-
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erations have been done in up to 7 NMR qubits [27, 28, 29], the problem of efficiently

initializing a large lattice of few-qubit processors still remains. Our results provide a

first advance in this direction, and they provide confirmation that NMR techniques

can be used to test these new ideas.
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Chapter 4

Systematic Error

The ensemble nature of the spin system allows us to split the sample into a spatial ar-

ray of lattice sites. As we mentioned in the previous chapter, well developed methods

from MRI [251 allow us to selectively address the spins in each of these sites. Typi-

cally the addressing is carried out in a space reciprocal to the spatial mapping, called

k-space [303, where k is the wave-number of the corresponding Fourier components.

The k-space formalism provides a recipe for writing a spatially varying spin rotation

across an ensemble of spins that have been distinguished from each other by a mag-

netic field gradient. The k-space formalism is essentially the application of shaped

RF pulses in the presence of a linear magnetic gradient field as a means of exciting

selective frequencies. For most studies the full k-space formalism is not employed and

a linear approximation is invoked. If the rotation angle of the shaped pulse is small,

then the excited magnetization may be accurately calculated only to first order in

that angle, and the excited magnetization is related to the RF waveform simply by

a Fourier transform. As a result, the required RF waveform can also be determined

by taking the inverse Fourier transform of the desired initial magnetization. This

technique allows us to encode arbitrary magnetization profiles spanning the various

spatial locations in our experiment and thereby approximating any desired initial

conditions. In the previously implemented diffusion equation, higher order Fourier

1 This section was extracted from Z. Chen, J. Yepez, D. G. Cory, "Simulation of the Burgers
equation by NMR quantum information processing," submitted, 2005.
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components of the number density are attenuated by the dynamics and the solution

is stable even in the presence of substantial accumulated errors.

To push the development of type-II implementations we have chosen to explore

the nonlinear Burgers equation to test the breakdown for the linear approximation.

Over time, a shock front forms and high spatial frequencies in the magnetization

profile become important and it is these high spatial frequencies that we expect to

be most sensitive to errors. The numerical treatment of the QLG algorithm for the

Burgers equation therefore offers a stronger proof of our NMR quantum computing

approach since the effect of the nonlinear convective term in the equation generates

a sharp edge as a shock develops in time that is not mimicked by spin relaxation,

random self-diffusion, nor RF inhomogeneities.

4.1 The Burgers Equation

4.1.1 QLG Algorithm for the Burgers Equation

The QLG algorithm is initialized, in the NMR case, by encoding the particles' occu-

pation probabilities as a spin-magnetization profile. To handle the one-dimensional

Burgers equation [19], it is sufficient to use two qubits (two spin-' nuclei) per lattice

site, where each stores a single real valued occupation probability. A lattice of QIPs

are related to the ensemble sample by creating a correspondence between lattice sites

and spatially dependent positions in the sample. The dynamical evolution is caused

by a collision operator (a quantum operation), and measurement and streaming (clas-

sical operations) according to the QLG algorithmic paradigm.

First, each occupation probability is mapped onto a lattice site as the expectation

value of a number operator at a space time site z at time t. As a result, the initial

state of the i th qubit is f(z, t)l1)+ /1 - fi(z, t)I0). The combined the wave function

for a lattice site is a tensor product over the qubits:

4) = flf21ll) + fi(1 - f2)110)+ (1 - fl)f 2101) + /(1 - f)(1- f2)00. (4.1)
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In the basis of a two-qubit system, the number operators for the occupancy of qubits

are defined in terms of the single qubit number operation i = ( ) as follows:

hi = 1 5. and 5i2 = ft 0 1. Therefore, the occupation probability is represented as

follows:

f (, t) = ((z, t) Ihi 0(z, t)). (4.2)

The macroscopic scale dynamical quantity of the quantum lattice gas is the num-

ber density, p, defined as the sum of the occupancy probability. The equilibrium

occupation probabilities that we use are

p 1 12 2
f eq = _- - 2+ I - - (a2 + 1) - 2 2p 2p2

2 2a 2a
f2q = p - + 1 + /( 2+ 1) - 2a2p + a2p 2. (4.3)

2 2a 2a

where a is denoted by cot 0 cos(C - C) for convenience. (0, , and ( are the "Euler"

angles introduced by the collision operator, which will be covered below.)

Second, the evolution of fi is governed by the combined action of the collision op-

erator, measurement and streaming. The collision operator is applied to all the lattice

sites independently, resulting in 1 (z)) = Cl+(z)), for all lattice sites. The choice

of the particular components of the unitary collision operator determines the form of

the macroscopic effective field theory (a parabolic partial differential equation) and

the value of its transport coefficients (coefficients of the dissipative terms). A general

representation of the collision operator for the Burgers equation is a block diagonal

matrix. This single quantum operator has the following matrix representation:

1 0 0 0

O ei e ig cos 0 eic eiC sin 0 O

0O -eiOe-i sin O eike - i cos O O 

0 0 0 1

where q, J, ~, and 0 are the "Euler" angles. The corresponding nonlinear Burgers
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equation reads

ap .p IZz a2 p
+ c sin 2cos(( - ) (p- 1) = 1 2p (4.5)

zt 2 2'

Here, At is the update time and a cell size is presented by Az. The propagation

speed c of particles is determined as the ratio of the lattice cell size to the time step

interval.

Third, we measure the occupation probabilities. This process erases all the su-

perpositions and quantum entanglement that was created by the unitary collision

operator in the second step.

Fourth, and last step of the QLG algorithm, we shift the fi obtained in the previous

step to its nearest neighbor. This step requires only classical communication between

neighboring sites. The time is incremented after this step. Then, we loop back to

step I and update the field of occupation probabilities over the lattice sites. In this

way, we can continue to iterate forward in time and make a time-history record of the

occupation probabilities, which in turn gives us the temporal evolution of the number

density field.

4.1.2 First Implementation using NMR

In the first implementation of the Burgers equation, we chose the "Euler" angles in

Eq. 4.4 to be = = = O, and = 4. As a result, the general collision operator

reduces to the quantum gate

1 0 0 0

0 1 1 O

C= ° 2I, (4.6)

0 0 0 1

and the equilibrium occupation probabilities for the Burgers equation are expressed:

fie=q P + e 1 - I (4.7)
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where ei is ±1 for different qubits. Then we have the Burgers equation in standard

form
du du a2u

u U- x =O 2 (4.8)

where v = iscosity term) and th transport coefficient (viscosity term) and the flow field is defined

as u = c(p-- 1).

A room-temperature solution of isotropically-labeled chloroform (13CHC1 3) has

been chosen for implementing the Burgers experiments. The hydrogen and the labeled

carbon nucleus are served as qubits 1 and 2, and the difference of the gyro-magnetic

ratio of two spins generates widely spaced resonant frequencies that allows us to

address each spin independently.

The initial magnetization is specified by using a RF pulse shaped by the Fourier

transform of the desired magnetization (transform of the initial number density pro-

file). While applying the shaped pulse, a carbon decoupling sequence is performed

to prevent the scalar coupling from interfering with the low power shaped pulses. In

addition, the 2 pulse, which rotates the information from the x-axis to the z-axis,

is applied separately just after each initialization. This is done to keep the valuable

information along the longitudinal direction where it will not be affected by the gradi-

ent and chemical shift. The encoding of initial states on both spins is accomplished in

two steps: The initial carbon magnetization is recorded on the protons before being

transferred to the carbons and followed by the initialization of proton magnetization.

Furthermore, a short pulse sequence, called the clean sequence, is executed after the

first swap gate to erase the phase distortion that may be caused by the decoupling

sequence.

The unitary operator C can be decomposed of a sequence of RF pulses and scalar

coupling. The product operators in the exponent commute with each other, resulting

in C = exp [-i 8 o C] exp [i r H C] 2. Both terms can be expanded as natural scalar

2 The collision operator is achieved by the pulse sequence: [ -]HC [], [H, C -y

[ X ]H [T]C i [= ]H,C
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Hamiltonian couplings sandwiched with the appropriate single rotations, resulting in

.7r H C) C 7rH CC
-- = ex + exp -y + y )] exp [-i -i (- o (4.9)

[ i H .7 H ]exp [i (aU + ay )] exp [-i (a H+ C)] exp [-i a z exp [ ( + a)

The exponential terms of single spin rotations are implemented by 7r/2 and 7r/4

pulses. The exponents of terms with HaCC represent the natural internal Hamiltonian

evolutions with time period 1/2J.

The occupation numbers of each spin are obtained following the collision step by

measuring the z-magnetization according to the following equation

fi (z, t) = [1 + (z, t) Lai (z,t))] . (4.10)fi(, t)= .02 )

Since only ax and ay are observable in our NMR spectrometer, a r/2 pulse has

been used to bring the z-magnetization into the transverse plane. The measurements

are done in two separate experiments, where a SWAP gate is applied to bring the

magnetization from carbon channel to the proton channel. This SWAP operation

is done because the higher signal-to-noise ratio in the proton channel allows us to

improve the accuracy of our implementation. During the "readout" process (Step

3), a week magnetic field gradient is applied to distinguish different sites. The ob-

served proton signals are digitized and Fourier transformed, allowing us to record the

spatially-dependent spin magnetization profile. The four main sections of the NMR

implementation of QLG algorithm are graphically depicted in Figure 4-1.

The experiments have been performed on a lattice of 16 cells for 15 time steps,

shown in Fig. 4-2. After ten iterations, the deviation between the experimental data

and simulation results becomes significant. This indicates that our numerical simula-

tions do not include all the potential error sources. However, some of them are small

enough to be ignored for now. As described before, the "Euler" angles of the collision

matrix are tunable and determines the viscosity term in the Burgers equation. We

aims to choose another collision matrix for the Burgers equation, which contains a
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Figure 4-1: QLG algorithm for the Burgers equation implemented in four
steps. Three horizontal lines represent proton spin, carbon spin and field gradients.
Both starting magnetizations are encoded in proton channel first due to the high
signal to noise ratio while decoupled in carbon channel to prevent interfering of scalar
coupling. The collision operator is applied after the initialization. Measurement are
also taken in two steps in the proton channel followed by data processing in a personal
computer.

higher viscosity parameter, thus it takes less time steps to form the sharp front.

4.1.3 The Collision Matrix with Higher Viscosity Term

This time, , (, and are still set to be zero, but cos0 is selected to be 0.8 for

convenience. In this particular case, the equilibrium occupation probabilities for the

Burgers equation are determined by

fieq = + ei [- 1-(2p)(- 2)] (4.11)

The collision quantum operator is written to be C exp [-I48 (a'H -u o)].

[I C ~ [7H C o [ IHC
3 The corresponding pulse sequence is the following: []_HC 1 []HC - [] HC -y

[2:.44 1 [2.,]1" -] - [r] H,C244 x [.--~] [~--] - 2 --- ,y, 
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Figure 4-2: Experiment results comparing with simulation and analytical
solutions. The experimental data (dots) are plotted together with the simulations
(grey dash lines) and the analytical solutions (black solid lines) for 15 time steps on a

lattice of 16 cells. The horizontal axis for each plot indicates the number of the lattice
cells and vertical axis is the flow velocity. The numbers associated with each plot are
the time steps. The deviation between the simulation and analytical solutions is
mainly due to the accumulative errors in the collision operator. We also observed the
deviation between the experimental data and simulation results, possibly introduced
by inhomogeneity, self-diffusion.
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The corresponding matrix representation is written as

1 0 0 0

0 0.8 0.6 0
C= 0 (4.12)

0 -0.6 0.8 0

0 0 0 1

The viscosity term associated with this unitary operator is 2A, which doubles the

value in the previous one.

Nine successive time steps of the quantum algorithm have been implemented on

16 two-qubit sites, decipted in Fig. 4-3. Using the new collision matrix, the deviation

between experimental data and simulation results has been reduced as we expected.

Here, we have demonstrated shock-formation driven by a tunable viscosity parame-

ter to show that the width of the shock front is not determined by implementation

imperfections.

4.1.4 Numerical Simulations

The NMR numerical simulation has provided an alternative way to study the spectro-

scopic implementations. We have observed the deviation between the experimental

data and analytical solutions due to the errors in the implementation. To explore the

source and relative size of these errors, we simulated perfect experiments, each time

adding controlled errors in four sections of the implementation:

* The linear approximation in the initialization

* Inefficiency of the decoupling sequence

* Swap gate errors

* Collision operator errors

The errors originating from the imperfect decoupling sequence caused least impact

to the mass density, followed by the errors in the SWAP gates. The Fourier transform

approximation executes a correct writing of the desired magnetization only to first
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Figure 4-3: Experimental data The experimental data (dots) are plotted, together
with plots of the analytical solutions (solid lines) and the numerical simulations (dash
lines) of the NMR experiment. Nine time steps (numbers) of the algorithm have been
carried out on 16 two-qubit sites. The vertical axis is associated with flow speed
and the horizontal axis presents the lattice sites. The simulations closely match the
data, suggesting that the deviation between the analytical results and the data can
be attributed to four imperfection controls, discussed below, in the implementations.
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Figure 4-4: Relative strength of four types of errors We present the relative
strength of each source here. Horizontal axis is denoted by time steps and vertical
axis shows the difference between the simulation results with the analytical solutions.
We notice that the deviation is mainly caused by the linear approximation at the
beginning and the accumulated errors in the collision operators take over after a few
time steps.

order in the overall flip angle. The largest deviations originated from realistic simula-

tions of the collision gate. It is important to note that the simulated gate fidelities for

the swap and collision gates, although imperfect, are still about 0.995. This suggests

that the observed deviations are caused by the coherent buildup of errors through a

few iterations, and not just by the individual errors from a single gate. The complete

simulation result, showing the relative size of each error, is plotted in Fig. 4-4.

In the NMR implementations to date there are two important sources of sys-

tematic errors: (1) a linear approximation relating the excited magnetization to the
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Fourier components of the shaped RF pulse; and (2) errors from the repeated collision

operators. Here we explore the impact of these errors on a simple computation and

illustrate a simple means of reducing the accumulated errors. In summary, one of the

most important challenges to implement a useful type-II quantum architecture is to

avoid the accumulation of systematic errors. In the next section, our discussion aims

to an alternative method to mitigate the growth of systematic errors.

4.1.5 The Collision Operator with Modulated Phases

The first-order accurate Fourier approximation was expected to be the dominant

error source in the NMR implementation. However, NMR simulations with controlled

errors shows that the systematic error induced by the experimental implementation

of the unitary collision operator associated with the QLG algorithm is the major

challenge. Replacing the single collision operator with a set of operators to randomize

errors allows us to improve the robustness of the implementation.

In the implementation of the Burgers equation, we also observed deviations be-

tween the numerically predicted data points and analytically predicted solutions. The

major error sources in the NMR implementation are known, so to explore the source

and relative strength of these errors, we have simulated the NMR experiments. The

major error source in this implementation is the collision operator, and it is intro-

duced by ignoring the scalar coupling between proton and carbon during the RF

pulses. When applying a RF pulse on the proton qubit, the Hamiltonian in the ro-

tating form is H = 2rJaH C + yHBl1rH, where B1 is the strength of the RF pulse.

With the presence of the scalar coupling, a small portion of the proton magnetization

has been transfered to the carbon qubit. Therefore, the applied propagator can be

recast as U = UdesiredUerror,

The error in the collision operator is a systematic error that builds up throughout

the successive time steps. Although this is not the significant error at the beginning

of the implementation, it eventually dominates the first-order error due to the Fourier

approximation and becomes the dominant issue after just several time step interac-

tions. Notice that while the reduction of the initial magnetization from the Fourier
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Figure 4-5: Systematic errors The growth of the systematic errors due to the
collision operator in two NMR implementation. The single collision operator data
(dots) is fit (solid line) with a line of slope 1, which shows linear growth of the error.
The collision operator data with modulated phases (pluses) is the fit with a line of

slope 3/4 (dashed line). The buildup of the systematic errors has been slowed down
by proposed method. However, the systematic errors have not been totally converted
into random errors.

transform is systematic, since the magnetization profile is changing the errors are not

precisely repeated. In the collision operator, however, the errors are exactly the same

from step to step. In addition we expect that the radio frequency inhomogeneity

leads to strongly correlated errors in the lattice encoding. Hence, we have proposed

replacing a single collision operator with a set of collision operators that have similar

fidelity but randomized error terms.

Since the collision operator for the Burgers equation is a zero-order coherence

term, the collision operator commutes with the rotation operator. Therefore, we
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apply a 90° rotation operator to the collision operator at each step to mitigate error

growth. Consequently, a dramatic improvement is observed as shown in Fig. 4-5.

On a logarithmic plot, the simulation results fit a line with a slope of 3/4. If the

error terms in the collision operators were totally randomized and hence followed a

Gaussian distribution, the best-fit regression line should have had a slope of 1/2. The

deviation between our simulation data and the ideal Gaussian case indicates residual

systematic error in the collision operator. In a future study, we may use strongly

modulated pulses to randomize the error terms [31].

The experimental number densities are over-plotted in Fig. 4-6 with the exact an-

alytical solutions. Eight successive time steps of the quantum algorithm were imple-

mented on 16 two-qubit sites. An improvement of our present experimental approach

using collision operators with modulated phases is observed. The agreement of the

data to the analytical solutions is encouraging and suggests that totally randomizing

error terms in the collision operator may offer further improvement.

4.2 Conclusion

From the simulation, we find the major error sources are due to imperfect control

of the quantum spin system and the Fourier approximation associated with setting

its magnetization profile. Our proposed method for converting the systematic errors

into random errors is effective. The improvement we achieve relative to the previous

experiment is encouraging, and it demonstrates the possibility of using the same tech-

nique in future studies. The closeness of the numerical data to the exact analytical

results for the nonlinear Burgers equation further proves the practicality of imple-

menting the QLG algorithm using a spatial NMR technique. In addition, although

the limitation of the Fourier approximation is not dominant, the problem of precisely

initializing a lattice of QIPs still remains an open issue.
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Figure 4-6: Experiment data versus analytical results The experimental data
are plotted together with the analytical solutions for 8 time steps on a lattice of 16
parallel two-qubit QIPs. Viscosity: .Ax

2 Experimental NMR data (dots) versus
analytical solution (curves). Randomizing the error terms in the collision operator
has improved the experimental results dramatically.
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4.3 Other Error Sources

Other potential sources of errors include signal to noise, the state fidelity of the

starting pseudo pure state, and gradient switching time. In addition, the random

self-diffusion of the liquid molecules in the presence of a strong gradient can result

in a substantial loss of signal. Although these errors were not significant in our

implementation, they are likely to become important as more complicated algorithms

are executed on larger lattices.

In particular, molecular diffusion over the time of an operation places a lower

bound on the physical size of the volume element corresponding to each site in the

computation. In the 1-D case discussed here, the root-mean-squared displacement

(Az = Avf27) for chloroform (D = 2.35 x 10-5cm2/s) is about 10.8/m over the 25ms

needed for encoding and the collision operator. Since the actual volume element

were about 6251/m across, this resulted in a negligible mixing of the information in

adjacent sites. However, it is clear that for this approach to type-II quantum computer

to remain viable for large matrixes and more complex collision operators the physical

size of the sample must grow with the size of the problem.

4.4 Discussion

It has been suggested by Peter Love in [32] that the transition matrix A in the type-II

lattice gas algorithms for the Burgers equation may not be a doubly stochastic ma-

trix. It should be clear here that the transition matrix defining the lattice Boltzmann

equation is not the collision operator defined in the algorithms. We begin the discus-

sion by deriving the transition matrix A from the unitary collision operator C. The

occupation numbers in the classical Boltzmann model are encoded as the diagonal

terms in the density matrix n = [(1 - f)(1 - f2), (1 - f2)fl, f2(1 - fil), flf2]. The
collision step of the Boltzmann model is given by the multiplication of the vector n

by the transition matrix that satisfies normalization and semi-detailed balance. In

our type-II simulation, the result of the collision step is reproduced by conjugating
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the density matrix by the collision operator. The transition matrix is denoted by the

effect of this conjugation on the diagonal elements in the density matrix.

As mentioned earlier in this chapter, the collision transformation can be expressed

by a general block-diagonal unitary matrix with complex coefficient:

0

eiOei cos 0

-e'Oe - i¢ sin 0

0

0

eiei( sin 0

eiOe-i~ Cos 0

0

Therefore, quantum transition map on the diagonal elements in the density matrix

can be written as:

P11 := P11

Pi2
P22 = COS2 0P22 + sin2 Op33 + e-i ( c-) os 0 sin 0 P32 + ei( - ) cos 0 sin 0P23

p33 = sin 2 22 + cos 2 p33 - e- i( - ) cos sin 32-i() cos sin P23

P44 := P44 (4.14)

The transition matrix then contains two components: classical diffusive part and

quantum mechanical part as described:

0o

+1 cos 20
0 2

1

0

0

0

0

0

e-i(~-¢ P32
P22

_e-i(-() P32
P22

0

0

ei(~-() P23
P33

_ei(t-() P23
P33

0

0

0 , (4.15)

00

where the quantum mechanical part gives rise non-diffusive behavior, the nonlinear

shock formation characteristic of the Burgers equation. Furthermore, the quantum

mechanical part brings the off-diagonal information to the diagonal elements, intro-

ducing local quantum superposition and entanglement. Thus, the new values of the

occupation probabilities in the lattice Boltzmann model is not, exclusively, deter-

mined by the occupation numbers in the previous step.
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The unitarity of C implies that the classical part of the transition matrix A

obeys normalization and semi-detailed balance. It is trivia to realize that the sum

of each column in the second term is zero. Thus, any arbitrary collision operator

for the Burgers equation obeys the semi-detailed balance. To formulate a sufficient

normalization constraint, we simplify the constraint to be

e-i(-C_) P32 + ei(-) P23 = 0. (4.16)
P22 P33

Only when Eq. 4.16 is satisfied, the collision transformation is a doubly stochas-

tic matrix. Therefore, it leaves us an open issue about the algorithms and further

discussion should be invoked.

The systematic error that we discussed in this chapter is not caused by this open

problem, but introduced by the imperfect implementations. Details about the quan-

tum control of the NMR system are accessible in [36, 37, 38, 39].
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Chapter 5

Linear Approximation

We utilize the magnetic image technique to slice NMR spin ensemble into a lattice of

cells and address all the spatial locations simultaneously. This technique is essentially

the application of shaped RF pulses in the presence of a gradient field as a means

of exciting selective frequencies. If the flip angle of the shaped pulse is small and

the excited magnetizations, to a good approximation, are proportional to the Fourier

transform of the RF waveform. As a result, the RF waveform can also be determined

by the inverse Fourier transform of the desired transverse magnetization. The above

technique allows the encoding of arbitrary shapes at the various spatial locations

in our experiment. However, this Fourier approach for determining the frequency

selectivity of a pulse sequence is only accurate to the first order and generates potential

error sources.

We aims to remove the linear approximation by mapping lattice cells to a set

of Fourier components in the k-space, a space reciprocal to the spatial locations.

This new approach gives us the freedom to perform the streaming step quantum

mechanically by controlling the linear magnetic field gradients. It may arise new

applications using this particular architecture for quantum lattice gas algorithms.

We have chosen to the diffusion equation to explore the NMR implementation

using the k-space mapping. Diffusion equation provides a neat and robust test since

low frequencies Fourier components in the magnetization profile are less sensitive to

errors.
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5.1 Mapping to k-space

In a type-II quantum lattice gas algorithm, the occupation probabilities are encoded

to the wave function of lattice sites. Each occupation probability fi(z, t) is repre-

sented as the quantum mechanical expectation value of finding a two-level system in

its excited state. The combined two-qubit wave function for a single node becomes

[b(z,t)) = f 111) + /fi(1 - f2)[10) + X/(1- fl)f2101) + (1 - fi)(1 - f2)100).

The collision operator is a unitary evolution matrix applied homogeneously across all

the lattice sites causing local quantum superposition and entanglement, [I'(z,t)) =

C[l~(z,t)). Measurement process is a non-unitary action that destroys all the su-

perpositions and entanglements caused by the previous step, resulting in fi(z, t) =

(1(z,t + At)l lAl(z, t + At)), where i are the number operators. In practice, the

occupation numbers must be determined by repeated measurement of a single real-

ization or by a single measurement over a statistical ensemble. The NMR ensemble

nature make this measurement particular simple.

The wave function method outlined above is adequate for simple problems that

consists of few spins, but becomes tedious to describe more complicated cases involv-

ing more spins. The magnetic state of the NMR ensemble, therefore, is conveniently

defined using the density matrix formalism. The density matrix corresponded to the

wave functions is

p(, t) = I(z, t))(>(z, t)l. (5.1)

and the collision step can be reformulated as

p'(z, t) = Cp(z, t)t. (5.2)

The measurement process consists in taking the trace of the measurement operator

acting on the density matrix of the system being measured:

< ni >= tr [p(z, t)ri] . (5.3)

A similar presentation of the lattice can be formulated in the k-space by creating
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the correspondence between a lattice node with a Fourier component, generated by

magnetic field gradients. Once a static field gradient is applied, the spin procession

frequency varies linearly with the position along the z direction. It induces the trans-

verse phase to accumulate linearly with position as well. The gradient field, therefore,

modulate the transverse magnetization into a spatial helix, referred as a Fourier com-

ponent characterized with it wave number k. A RF pulse can modulate the phase

and amplitude of each Fourier helix and also produce amplitude modulated magne-

tization gratings along z direction by transforming the transverse magnetizations to

longitudinal direction. However, a RF pulse does not change the pitch of the grating

and only the gradients can change the k value of each component to another in the

k-space. Due to the linear nature of the k-space, each separate Fourier component

may be treated independently. The corresponding formalism of the density matrix

5.1 results in

p(k, t) = (k, t))(0 (k, t)], (5.4)

where k indicates a lattice cell. The evolution of the collision step is described by the

following equation

p'(k, t) = Cp(k, t)Ct. (5.5)

Then, the measurement is given by

< ni >= tr [p(k, t)ii]. (5.6)

5.2 NMR Implementation

The same room-temperature solution of labeled chloroform used in the previous ex-

periments has been selected. The resonant frequencies of the two spins, hydrogen

and labeled carbon, in this heteronuclear molecule is about 225MHz apart in 10 T

magnet. Therefore, a single pulse on resonance with one spin will not affect the other.

The interaction term between the spins can be characterized by the scalar coupling

constant J := 214Hz. More details about the sample can be found in Chapter 3.
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5.2.1 Encoding

Individual addressing the sites of the lattice is established by a sequence of RF pulses

followed by the gradient Hamiltonians. We begin by studying the evolution of a

one-spin system and the small angle approximation is invoked here to simplify the

calculation. Then the discussion moves to a weakly coupled two-spin system. In

this system, there are two important challenges to implement a type-II quantum

architecture: (1) lattice initialization to an identical Fourier component; and (2) the

internal Hamiltonian interfering information between spins. We demonstrate that the

usage of 7r pulses on one spin in conjunction with two static gradients for the same

duration can give the desired results. Wisely selecting the gradient strengths, the

Fourier helices associated with both spins can have same wave number even though

they have different gyro-magnetic ratios. The 7r pulses modulate the interaction

Hamiltonian and refocus scalar term after one period of the sequence: the system,

thus, can be treated independently as two one-spin systems.

First, consider the Hamiltonian for a one-spin system subjected to a RF pulse

applied in the y-direction followed by a linear field gradient in the z-direction. The

RF Hamiltonian is
1

HRF = - (5.7)

and the gradient Hamiltonian is

HG =-2 - ( z) Z Z .= . 2 (5.8)

where wy is a constant value during the pulse time T and the gradient term is a linearly

varying static field. The static gradient strength is denoted by G. The evolution of

the period T + At becomes

U(t = r + At) = exp [ Akzz,] exp [ y] (5.9)

where Akz is the wavenumber, parametered as Akz = y-BAt. The evolution of an
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initial density matrix po = a, through a single period yields

p(T + At) = UoaUt = sin (wyr) exp [2 Akzzaz] a exp [-Akzzu] + cos (wyT)aZ.

(5.10)

If the small angle approximation applies, the density matrix becomes

p(T + At) wyr exp [Ak za] a, exp [-Akzza + . (5.11)

Another period evolution will affect the a, term as described above, creating the new

magnetization helix and incrementing wavenumber by Akz. The final result is the

formation of many Akz components

N 

az - E (n)T exp [-nAkzz x z]ex p [-,lekzZxzJ+ UZ. (5.12)
n=1 2n2

Each term is summation can be interpreted as a cylindrical Fourier component of the

transverse magnetization weighted by the RF nutation rate wy(n).

Next step, we will consider the evolution of two weakly coupled spins with gyro-

magnetic ratio H and -yc,respectively. The RF Hamiltonian is expressed as the

sum of two single RF terms because of the realization that both spins are addressed

independently through two channels.

1 1
HRF = -W 1 y 22 (5.13)

2 y 2 yY

and the gradient Hamiltonian gives

HG = -I (YH + YC) aZz = -2 (yH + yc) Gzaz, (5.14)
2 a z 2

Consequently, the evolution operator of a single period consists of two exponential

terms: a single spin rotation and gradient evolution term. Since the internal Hamilto-

nian commute with the gradient Hamiltonian, the gradient evolution can be expressed
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by tvo separate terms as well,

U(t = r + At) = exp [(Akzr z + k z + At exp [2 (kw1 u + Wcy)T]
22, , 2 2 j 2 YY yoj

- exp [ (kla1 + Ak )z] exp [iJat] (5.15)

i 2

where the exponential terms of cl 2 are attributed to the internal Hamiltonian. One

may realize that the scalar coupling evolution has not been considered during the RF

pulse. It has been neglected because the total nutation frequencies induced by the

RF Hamiltonians are much stronger then the interaction constant.

An initial density matrix 1I + 2 through a single period becomes

p = U(cr + z2)Ut 1= + + exp[ + kzz)] (5.16)

exp [ 2 U((2at] (WTUz + wy2) exp [J 2 Ufft z]exp |(2 (Ak wy + AkUa5)z].

A string of ir pulses on the first spin is applied to modulate the Fourier components,

remove the chemical shift, and refocus the scalar interactions. The ir pulse along x

modulates Uz, ay terms with minus signs and leaves a operator unchanged: a -+

a, ry + -ay, a + --cr. After a single 7r pulse along x on qubit 1, the density

matrix picks up a minus sign for all the terms which contain z and ty

U 2 [-i 1 1 Ak 22)z] exp -- ] (5.17)

(rzaz1 + w2) exp k exp [[(-k-a + 

The operator, given by the application of a static gradient for another period At with

a variant strength, causes the internal Hamiltonian average over at the end of the
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period,

1 2+i 2A121' 2p -- z + + exp [(k -kz)azl + (k + ) (5.18)u z 2-exp L~'z - ~z)z + ~z ~~z) J Zf

(wTy7a + WTy2) exp{ [(kz - Ak)l + (Ik ' + Ak 2)o] z},

where wave numbers of corresponding Fourier components on both spins are increased

by Ak"z and Akz2' respectively. Another r pulse, following the magnetic gradient, is

performed to reverse the minus signs on all the az terms,

P = O + az + exp [(Ak - Ak') + (Ak + Ak 2 2 (5.19)W 2 2 \f z 1 A ( I

(U) + a2TUx2) exp - (Z-k) + )z z 1.

We can rewrite Eq. 5.19 as Eq. 5.20 if the actions of the gradient Hamiltonians on

both qubits are identical, Ak 1 - Akz = Ak 2 + Ak 2' = Akz.

12 t -'Akzo._.z]1120 [2 z Y 2 + 

Effects of both field gradients accumulate on the carbon nucleus, while the second

gradient attenuates, to some extent, the first one for the proton spin. Thus, the devia-

tion between the k values caused by the different gyro magnetic ratios is compensated

by applying the above pulse sequence. The condition is satisfied if the ratio of two

gradients obeys
G- - + Yc (5.21)
G 2 'YH - YC

The procedure described above is illustrated in Fig. 5-1.

After n periods application of the composition of RF pulses and gradients, it gives

rz + az2 -+ z + az2 + (5.22)

Z exp nAkz( +(n) + exp + 2)z] [(n + (n) ] exp [ k( + 2)z]
n=1 [.
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The exact solution can be achieved and it is given in [30],

N N
+ 1 cc -I + II cos(w(n)rT)2 + (5.23)

n=l n=l

Eexp [nAkz(z + z)Z] [A'(n)a' ++ AN (n)o z(n)nz ]
n=l

exp -inAkz(ao + z)z]

For a train of RF pulses of nutation angles w1(n) and w2(n) all with the same phase,

the nth transverse and longitudinal Fourier series coefficient after Nth pulses, may be

determined from the previous coefficients by the recursion relationships

A(n) = A (_i(n- 1) cos2(;(n)r/2) - A (-n - 1) sin2(w;(n)T)

ANz(n) = [A_1(n- 1) + AN1 (-n - 1)] sin(w )
En

+AN-_1,z(n) cos(w (n)r) (5.24)

where En = 1 + 6n. Initial conditions have to satisfy that A,z(n) = 6n and that all

A (n) = 0. The appropriate choice of the nutation angles enable us to construct

arbitrary density matrix.

5.2.2 Collision

The choice of the particular components of the unitary collision operator determines

the form of the macroscopic effective field theory and values of its transport coeffi-

cients. The same collision operator for the diffusion equation has been chosen:

C = exp [- (o1 + o + cao2)]. (5.25)

We already learn that a RF pulse does not shift the k value of each component, indi-

cating the information between the neighbors cannot be manipulated using RF pulses

and scalar evolution. Therefore, the local quantum collision gate can be accomplished
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Figure 5-1: One step in the initialization One period of the sequence used in
the initialization and corresponding changes of k values in the k-space are presented.
The solid line, in the k space diagram, illustrates the shift of the wave number for the
hydrogen spin while the time iterates forwards. The dash line gives the movement
of k value for the carbon. At the end of the sequence, the wave numbers of the
characteristic Fourier components of both spins are incremented by the same amount.
Below the plot, the pulse sequence is demonstrated.
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by the same pulse sequence described in Chapter 3.

5.2.3 Measurement

The occupation numbers resulting from the collision are obtained by measuring the

z-magnetization, corresponding to ni = ~(1 + ao). Since only the a and y, op-

erators are directly observable, a r/2 pulse transformed the z-magnetization into

x-magnetization.

The measurements are carried out in two separate experiments, where a SWAP

gate is applied to bring the magnetization from carbon channel to the proton channel

due to the higher signal-to-noise ratio in the proton channel.

During the process, a weak magnetic field gradient is applied to refocus the gra-

dient Hamiltonians. It is easy to realize that the signal is only observable while the

k value is around zero. Otherwise, the ensemble signal is averaged over across the

sample. Note that a spatial map of spin density in the sample weighted in some fash-

ion during the measurement. The corresponding modulation function for our finite

and uniform sample is a sinc function. Instead of observing a sharp magnetization

peak, the signal is specified by a sinc function. Hence, the readout gradient has to be

weak enough to separate the overlap between two sinc functions induced by the spin

density.

5.2.4 Streaming

The last step of the QLG algorithm, we shift the occupation numbers obtained in

the previous step to its nearest neighbors. In the k-space, the streaming step can be

easily created by the application of linear field gradients sandwiched with r pulses:

G3(z)/Xt - [r]H - G4(Z)At - []H, where G3 (z), G4 (z) are the gradient strength

and At is the duration. This sequence illustrates a single propagation where the

occupation probability on the first qubit at site nAk moves to site (n - )Ak, while

the occupation number on the second spin advances to site (n + 1)Ak. The shift of
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Figure 5-2: Readout Measurement on the hydrogen spin is illustrated here. The
magnetization peaks are related to the occupation numbers at each lattice site by
ni = (1 + t). The observed spectrum is imposed by a sinc function.2 = 
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the k values should satisfy the following equation,

- (Akl' - Ak) = Ak2 + Ak ' - Ak. (5.26)

Hence, the relation between two field gradients can be derived by

G3(Z) YH + C (5.27
G4(z) 7H - YC

Choose an identical time period At as in the lattice initialization step resulting in

G3(z) = G2(z) and G4(z) = Gl(z).

5.3 Conclusion and Discussion

The experimental mass densities are plotted in Fig. 5-3 with the exact analytical

solutions. Four successive time steps of the quantum algorithm were implemented on

16 two-qubit sites.

Here, we demonstrate a single streaming step accomplished by the linear magnetic

field gradient. Notice that contiguously applying the collision step and streaming step

doesn't lead us to the numerical solution for the diffusion equation. However, it can

be used to implement some type-I quantum lattice gas algorithms.

84



0.8

0.6
Mass
Density 0.4

0.2

n

1

0.8

Mass
Density 0.4

0.2

n

0 5 10 15

1

0.8

0.6

0.4

0.2

A

0 5 10 15 0 5 10 15

Lattice Sites Lattice Sites

Figure 5-3: k-space experimental data versus analytical solutions The experi-
mental data (dots) are plotted together with analytical solutions (solid lines) for four
time steps on 16 two-qubit sites.
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Chapter 6

Type-I Quantum Lattice Gas

Algorithms

The difficulty of constructing, controlling and maintaining coherence in a single com-

plicated quantum device makes an array of simple devices with fixed interations par-

ticularly attractive from the point of view of quantum computation. In this paradigm,

a quantum computer is a quantum cellular automata (QCA): the state of each simple

device in the array depends on the states of the cells in some local neighborhood at

the previous time-step. QCA, therefore, provide a valuable test-bed for investigating

both potential quantum computer architectures and algorithms. The study of QCA

is probably originated with the interesting work of Grossing and Zeilinger [40, 41, 42].

However, their models are approximately quantum mechanical because they are not

linear and unitary even though the probability is preserve. The first homogeneous

quantum cellular automata was introduced by Meyer [8]. He also defined one parti-

cle quantum lattice gas algorithm which simulates one-dimensional Dirac equation.

Boghosian and Taylor [43, 44, 45] and separately Succi [46, 47] have defined QLG

models for the Schroedinger equation in D dimensions.

The QLG algorithms may be simulated on a quantum computer with realizable

substantial speedup over classical hardware. Watrous [48] showed that any partitioned

1This section was extracted from an unpublished paper. This research is cooperated with Carlos
Perez, University of Waterloo, Canada.
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quantum cellular automata can be simulated by a quantum Turning machine. The

first special quantum processor designed to directly realize quantum cellular automata

is suggested by Seth Lloyd. Preliminary experimental designs have been proposed for

ion traps, optical lattices and endohedral fullerenes on silicon [49, 50, 51].

Liquid state NMR has been proved to be an ideal way to explore many aspects

of quantum computing and QIP. The success of NMR quantum computations means

that large arrays of few entangled qubit quantum computers are already available

now. We propose a QLG algorithm here and a potential design to implement the

algorithm by nuclear magnetic resonance. A simple ring model has been chosen as

the first test.

6.1 Quantum lattice gas algorithms

Usually, a random walk is simulated by selecting one particle in the system and

transporting it at random upwards and downwards, provided that the destination site

is empty. At each site z of the lattice, instead of only registrating the position of the

particle, one also tracks down the directions by associating two binary values nl (z, t)

and n2(z, t). These quantities present occupation numbers indicating whether or not

a upward- or downward-moving particle is entering site z at time t, respectively. The

random motion is obtained by shuffling the two directions of motion at each lattice site

and at each time step. A upward-moving particle, entering site z at time t + At, must

be the one with probability p moving in the same direction at the site z - Az at time

t, and with probability 1 - p, it may be the one at the same site pointing downwards

at site z + Az and time t. Therefore, the random walk rule can be expressed by a

transition matrix,

A = (6.1)
1-p P

The quantum lattice gas algorithms are the generalizations of classical lattice

gas algorithms, introducing quantum mechanical features into the lattice. One may

consider to replace a classical cell by a quantum state and the binary values associated
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with each cell are denoted by complex values then [8]. The occupation numbers nl and

n2 map to the probability amplitudes 0z, and ~Pz,, of the position z, respectively.

The single time step evolution is the composition of propagation and collision as

described:

Z 1 'Z,Qza) propagltion
collision

E Iz,lZ + a, a)

E Sa,., )z,. IZ, ' )- (6.2)

where z is the current position of the particle and a indicates the directions. Then two

In

P 10

04--

Out

cosOe 

·4oisinO

isin ·* N
·O cosO

Figure 6-1: Collision rules for 1D QLG algorithm The collisions of the simplest
one dimensional QLG algorithm. A single particle of mass tan 0 at a site has an
amplitude to be scattered i sin 0.

directions of motions are shuffled in the collision step: the amplitudes and directions

are changed by a uniform update rule $,~, for all the sites. The collision operator
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can be written as
cosO isinO 

Sa,- =( isinos cos ) (6.3)

Then the particle propagates to the neighboring cell Ix + a, a) associated with direc-

tion a or x - a', ca') pointing to a' at time t + At. The evolution of the dynamic is

given by repeating the actions of the update rules.

This algorithm described above requires a register of size log N where N is the

number of lattice points. However, the above algorithm for a random walk of one

particle does not generalize very nicely to k particles. It does not suffice to simply

randomly shift the position of each particle, since if we are to admit any exclusion

principle, then a particle cannot move to certain positions if those positions are al-

ready at maximum capacity. Say, if each position allows for only one particle, a

particle can move there only if the site is empty. This requires one to check the

current position of each other particles when updating the position of a particular

particle. This approach requires O(k log N) bits of memory, and O(k2 log N) for each

update step. We will refer to this algorithm as a register approach, since it keeps the

positions of each particle in different registers.

Here we propose a different generalization of classical lattice gas algorithm similar

to the partitioned cellular automata mentioned by Morgolus [53], in which each lattice

site is denoted by a single qubit. The dynamic of this system is easier to understand

intuitively by taking the following picture. Two qubits are associated with one lattice

site: qubits I(z, u, t) and I(z, d, t) represent the presence of a particle in the lattice

point z at time t moving up or down, respectively. The update rule then consists of

partitioning the lattice into a tiling set of contiguous pairs at each time step, such

that the even and odd time step tilling overlap, depicted in Fig. 6-2. The values of

each pair are then swapped with some probability amplitude. As long as the update

operator u for each pair is unitary, so is the evolution of the whole lattice. The
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Figure 6-2: Partitioned cellular automata Each square represents a cell, and each
oval is a unitary operator acting on two lattice cells. On odd/even steps the pairing
is exchanged.

operator is defined as
1 0 0 0

O 1- l+i 0X
2 2

0 O 0 1 

commonly called the square-root-of-swap gate. The system is evolved by repeated

application of the unitary operators u. Suppose a system of an even number N of

qubits, indicating N/2 lattice sites. Rewrite the gates in the odd and even time step

as Uodd = u®N/2 and Ueven = 1 U®N/2- 2 0 1. Under the evolution U = UevenUodd we
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have that:

I+i I-i
I(z, u, t + At) = 2 + (z - Az, d, t) + 2I(z + Az, , t)

2 2
__i 1+i

'IF(z, d, t + At) = (Z- Az, d, t) + 2 (z + Az, u, t). (6.5)2 2

Taking 4(z, t) = I(z, u, t) + J(z, d, t) we can calculate the continuous limit using the

Chapman-Enskog method [53]. We get that the evolution limits to

a i 2
T(z, t) = Iz2(zt), (6.6)

at 2 aZ2

which is exactly the Hamiltonian for a freely moving particle in one dimension.

In the automata defined above, we assume that all (randomized) swaps between

contiguous cells are done in parallel in one time step. Hence, this approach requires

O(N) bits of memory and requires 0(1) time for each update step. This is particularly

good if we take k = Q(N), i.e. the number of particles is in the order of lattice

points, which is generally expected in a lattice gas. This performance gain is, of

course, assuming that a cellular automata is a realizable architecture, i.e. it is in fact

possible to perform all the updates of a time step in parallel.

6.2 Chain Architectures

It has been suggested by Seth Lloyd [4, 5] that above algorithms can be implemented

on a chain of repeated quantum spins. Consider a one dimensional chain of spin 1/2

systems, e.g. a polymer, with three different species, i.e ABCABC.... The transi-

tion between the ground state and excited state of any quantum unit can be driven

by applying a pulse at the resonant frequency. If A, B and C have distinct resonant

frequencies, then they can be addressed independently. Consider only the nearest-

neighbor interaction given by some (arbitrary) Hamiltonian HAB, HBC, HCA. The

effect of the interaction Hamiltonians is to shift the energy levels of each quantum

unit corresponding to its neighbors. Hence, the resonant frequency WA takes distin-
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In

processor processor processor

Out

Figure 6-3: Spin chain architectures One-dimensional array of quantum units
(ABCABC'...), such as nuclear spins in a polymer, is decipted here. A series of
spins ABC can be treated as a quantum information processor. Sequence of resonant
pulses allow one to load information and unload results at the end of an array. Each
processor has the same circuit and they can process information and exchange it with
the nearest neighbors.

guishable values oo, woA , W1A , Wil, depending on whether it's C and B neighbors

are in the states 0 and 0, 0 and 1, 1 and 0, or 1 and 1. If these are all different, then

transitions on species A spins can be done selectively depending on the value of its

neighbors. For example, by applying a r pulse with frequency w A0 all species A lattice

points whose both neighbors are in the state 0 will be flipped. It is also possible to

apply any two qubit gates on all pairs A, B or C, A or B, C. Though originally pro-

posed with three distinguishable qubit species, the model can easily work with more

species [52]. These single qubit operations and two qubit gates can supply the logical

operations and can be wired together to give any desired logic gate.
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Input of information and readout of the results are through the end unit of the

array which can be controlled independently because it has only one neighbor. One

can load arbitrary information onto the end of the array and exchange the information

with its neighbor. As a result, any sequence of desired information can be loaded onto

A, B and C by continuing uploading at the end unit and swapping between different

units.

X

C

B

B

C

Y

Figure 6-4: The ring model This model shows a chain of 6 quibts. Two loading
qubits are presented by X and Y respectively. All the qubits with the same labels
share the same resonant frequencies.

6.3 NMR Simulations

6.3.1 Spin System

A ring model, illustrated in Fig. 6-4, has been selected for the first study depending

on the following four assumptions. (1) The ring is composed of two pairs of three

distinguishable qubits ABC with qubits X and Y attached to A, served as loading
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qubits. (2) Qubits A, B, C have the same Zeeman interaction with the applied

magnetic field, but associated with different chemical shifts. The chemical shifts for

qubit A, B and C are set to be OHz, 4kHz and 8kHz respectively. (3) Only the

nearest neighbor interactions have been taken into account and the scalar coupling

constant is 50Hz altogether between ABC spins. The internal Hamiltonian of these

spins, therefore, is

I1 C 7rJ A B BC~ c A)
2 2 a + 2a z + a ) Z(6.7)
i=A

where wi represent the chemical shifts of the spins and J are scalar coupling constants.

(4) Loading qubits are several-hundred megahertz off-resonance and are not affected

by any pulses applied to the ABC spins.

Unlike the labeled chloroform sample, the resonant frequencies are not widely

separated, so that a RF pulse on resonance with one carbon spin will rotate all. Usu-

ally, a low-power RF pulse can be used to obtain selective operation on each qubit

here. However, the selective pulses have disadvantage that low power implies long

duration. This not only introduces errors due to relaxation, or decoherence, but also

allows significant evolution under the action of the internal Hamiltonian. In the past,

this evolution was rarely of concern because there was little importance placed on im-

plementing a particular operation. Here, we use an alternative method with strongly

modulating pulses to implement precisely the desired operations[31]. This allows us

to use high-power pulses that strongly modulate the system's dynamics. These gates,

shown in Table 6.3.1, allow arbitrary rotations of each spin, while refocusing the

internal evolution.

6.3.2 Logic Gates

Information is initially stored in X and Y and a series of unitary transformations {U}

brings the information to other qubits. This set of unitary operators is essentially a

series of two-qubit SWAP gates between adjacent qubits. A single two-qubit SWAP

95



Max. Power (kHz)

rlc
r AB

2.~sir B
r gC
7rlAC

226.24
267.35
267.35
355.12
338.19

459
302.57

5.18
4.87
4.87
5.25

11.36
4.95

13.33

0.9989
0.9985
0.9985
0.9983
0.9973
0.9977
0.9985

Table 6.1: Summary of the relevant characteristics for the set of transfor-
mations required for the implementation of QCA. The three columns list the
pulse duration (in ps), maximum power (in kHz), and the fidelity of simulated pulse.

gate for qubit A, B is

.r (0,A ]e'A rA )]exp [(' + z] exp -az exp -i + 

exp -iA 4 B]

exp [-i(y- I + y] )] p - exp [i 4 ( + A )]
Y 4 z 

(6.8)

where the exponential terms proportional to a AaB represent the internal Hamilto-

nian evolutions. Notice that the third spin C is also evolving under the internal

Hamiltonian while applying a two-qubit operator. r pulses are applied to modulate

the internal interaction terms, resulting in averaging the interaction with qubit C.

The choice of this molecule is particular convenient because the scalar coupling con-

stants are identical. Here, we demonstrate a scheme for implementing the operator

in Fig. 6-5. Hence, the interaction term aA ,B can be recast as

+ aBJC)]

+ OZB Z ]
+ Ba C)]

+ J Z )]
+ or C)

exp i (6.9)

exp [-i2 (uZ +]

exp [i{]

exp [i ( + a) ]
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Figure 6-5: The two-qubit SWAP gate Here demonstrates the pulse sequence of
the SWAP gate on two qubits and untouched the third spin. To refocus the scalar
interactions between pair AC and BC, a ir pulse has been performed on pair AB and
separate the delay period to half. Two wr pulses are performed on qubit C in the a
quarter and three quarter of the delay respectively.

In summary, the usage of strong modulating pulses in conjunction with the selec-

tive evolution in 6.9 gives us the desired unitary operations to shift the information.

The gate fidelities of these operators are listed in Table 6.3.2.

6.3.3 Methodology

One way to implement our QLG algorithm on a ABC chain is to map every 2 cells of

the QCA lattice to three spins of the chains. For instance, only using A and B spins

here results in a lattice of 4 cells. A single step of implementation of our QCA can

be performed as following:

1. performing the update rule CAB on pairs AB on odd iterations

2. exchanging the information on qubits BC
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Gates Gates Fidelity
UWaP 0.9556

UB 'ap 0.9443

CAB 0.9605

CCA 0.9582

Table 6.2: Summary of the gates fidelities. The two columns list the unitary
operators, and the gate fidelity of them .

3. applying the same update rule on CA with CA

4. then swapping BC again.

These operations are repeated until the mass density has evolved for the desired

number of time steps.

Equation 6.4 shows the unitary operator used to update in each time step. These

unitary matrix can be implemented by a similar manner described for the SWAP

gates. Table 6.3.2 gives the simulated fidelities for CAB and CCA.

Using the SWAP operators and the update unitary operators, we can translate

QCA to experimental tasks as shown in Fig. 6-6. The lattice initialization step makes

use of both the strong modulating pulses and the internal Hamiltonian to generate

the desired unitary operation and shift the information. The repeated application of

the update rules is accomplished by a similar way. The measurement is the reversed

step of the lattice initialization.
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Figure 6-6: One step QLG algorithm The NMR implementation consists of three
main section, each corresponding to the prescribed QCA step. The horizontal lines in
the diagram correspond to RF pluses applied to each qubit respectively. In the encod-
ing section, the initial magnetization is recorded on loading qubits before transferred
to the other qubits. The unitary operator on pair AB and swap gate between BC
follow the encoding. In the next step, the unitary operator on pair CA are applied,
followed by swap gate between BC again.
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Appendix A

Quantum Simulation using NMR

In 1982, Feynman recognized that a quantum system could efficiently be simulated

by a computer based on the principle of quantum mechanics rather than classical

mechanics [13]. This is perhaps one of the most important short term applications of

QIP. An efficient quantum simulator will also enable new approaches to the study

of multibody dynamics and provide a testbed for understanding decoherence. NMR

has provided a valuable experimental testbed for quantum simulations. Here, We

will briefly review some experiments other than the implementation of the quantum

lattice gas algorithms.

A general scheme of simulating one system by another is expressed in Fig. A-

1. The goal is to simulate the evolution of a quantum system S using a physical

system P. The physical system is relatedto the simulated system via an invertible

map 0, which creates the correspondence of states and the system S is mapped to

V = Uq- 1. After the evolution of the physical system from state p to PT, The

inverse map brings it back to the final state s(T) of the simulated system.

The first explicit experimental NMR realization of such a scheme was the sim-

ulation of a truncated quantum harmonic oscillator (QHO) [54]. The states of the

truncated QHO were mapped onto a two-qubit system as follows

In = o) -> 1)1> -1) 0

In= 1) X4 10>11) - 101)>
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Simulated (S)

Is)

I VT

IPT)

Figure A-i: Quantum simulation scheme Correspondence between the simulated
and physical system. The initial state s evolves to s(T) under the propagator U. This
process is related to the evolution of state p in the physical system by an invertible
map 4.

In = 2) ++ 1)1O) 10)

(A.1)

The propagator of the truncated QHO

U = exp [-i(1)(01 + l1)(1I + 12)(21 + )13)(312 2 2 1/\ 1
(A.2)

(Q is the oscillator frequency) was mapped onto the following propagator of a two-spin

system

VT = exp [i(2I2(1 - I) - 2)QT]. (A.3)
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Figure A-2: Truncated quantum harmonic oscillator NMR signals demonstrate
a quantum simulation of truncated harmonic oscillator. The solid lines are fits to
theoretical expectations. Evolution of the different initial states are shown: (a) evo-
lution of 10) with no oscillation (b) evolution of 10) + i12), showing 2Q oscillations (c)
evolution of 10) + 11) + 2) + 13), showing Q oscillation and (d) 3 oscillations.

Implementing this propagator on the 2-spin system simulates the truncated QHO as

shown in Fig. A-2.

Quantum simulatin however is not restricted to unitary dynamics. It is sometimes

possible to engineer the noise in a system to control the decoherence behavior and

simulate non-unitary dynamics of the system [55]. Simple models of decoherence

have been shown using a controlled quantum environment in order to gain further

understanding about decoherence mechanisms.

In one model [56], the environment is taken to be a large number of spins coupled

to a single system spin so that the total Hamiltonian can be expressed as

N N

X = wI + Ej Wk4I + 2 7r E JlklIIz (A.4)
k=2 k=2

corresponding to the system, the environment, and the coupling between the sys-

tem and the environment, respectively. The number of spins in a typical QIP NMR

molecule is small, which makes the decoherence arising from the few system-environment
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couplings rather ineffective, as the recurrence time due to a small environment is rela-

tively short. This can be circumvented by using a second classical environment which

interacts with a smaller quantum environment (see Fig. A-3 for an illustration of the

model) [57].

Quantum
ivironment

System

Figure A-3: Demonstration of system and environment Basic model for the
system, local quantum and classical environment.

In this model, following the evolution of the system and the small quantum envi-

ronment, a random phase kick was applied to the quantum environment. This has the

effect of scrambling the system phase information stored in the environment during

the coupling interaction and therefore emulates the loss of memory. When the kick

angles are averaged over small angles, the decay induced by the kicks is exponential

and the rate is linear in the number of the kicks. As the kick angles are completely

randomized over the interval from 0 to 27r, a Zeno type effect is observed. Fig. A-4

shows the dependence of the decay rate on the kick frequency: the decay rate initially

increases to reach a maximum and then decreases, thereby illustrating the motional

narrowing or decoupling limit. This NMR-inspired nodel thus provides implementa-

tion of controlled decoherence yielding both non-exponential and exponential decays

(with some control over the decay rates), and can be extended to investigate other
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noise processes.

500 1000 1500 2000 2500 3000
Number of Kicks/ms

3500 4000 4500 5000

Figure A-4: Decay rate Simulation showing the dependence of the decay rate on
the kick rate, and the onset of the decoupling limit. Beyond 900 kicks/ms the decay
rate decreases.
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