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ABSTRACT

With the advent of new and innovative Generation-IV reactor designs, new regulations must be
developed to assure the safety of these plants. In the past a purely deterministic way of
developing design basis accidents was prevalent, however this is felt to not be satisfactory, since
this leaves insufficient safety restrictions in certain areas, while being overly restrictive in others,
not being able to optimize where the safety constraints are truly needed. Currently the USNRC
is investigating how one might go about this approach, but no method is finalized. In this paper,
a methodology for creating risk-informed design basis accidents is developed. This not only
incorporates the Surrogate Risk Guidelines developed by the USNRC for each overall accident
initiator the plant may experience, but helps to select which sequences are the most important to
that initiator, and from that develop a set of risk-informed assumptions that form the basis of the
design basis accident. This method was applied to the test case of the Massachusetts Institute of
Technology’s Gas-Fast Reactor (GFR) design, as considerable risk-informed design work has
been carried out on various initiators for this design (including Turbine Trip, Loss-of-Coolant
Accident, and Loss-of-Offsite Power). The turbine trip was chosen for extensive investigation.
It was found that the CDF of this event for the GFR (7.098E-6 / RY) did not pass the overall
NRC Surrogate Risk Guideline (1E-6 / RY). The method identified the dominating sequence,
which was dominated itself by the failure of the passive shutdown cooling system for the GFR
design. It was determined that the designers could in fact develop a risk-informed DBA by
developing a set of assumptions to ensure success in the Passive SCS. This process showed how
risk-informed DBAs could be developed for various new reactor designs.

Thesis Supervisor: George E. Apostolakis
Title: Professor of Nuclear Engineering
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I Introduction

In recent years, the nuclear industry has moved forward with new reactor designs. This
has a been an effort seen throughout the world, and more recently the United States Department
of Energy (US DOE) has taken it upon itself to push for these innovative designs, in what are
called Generation-IV reactors. According to the DOE: “concerns over energy resource
availability, climate change, air quality, and energy security suggest an important role for nuclear
power in future energy supplies”. The DOE suggests that “while the current Generation II and
III nuclear power plant designs provide an economically, technically, and publicly acceptable
electricity supply in many markets, further advances in nuclear energy system design can
broaden the opportunities for the use of nuclear energy” (US Department of Energy, 2002b).

Much of the industry has begun focusing on risk-informed design processes. This is a
process that allows the designer to evaluate the design as it is being built. This usually occurs
through the use of surrogate risk guidelines (such as core damage frequency (CDF) and large
release frequency (LRF)) for safety criteria, as well as consideration for other concerns, such as
sustainability and economics. Through probabilistic risk assessment (PRA), the designer can
assure higher levels of safety for the plant, while still making the plant cost effective. One no
longer needs to wait for a design’s completion to find out that it is not an acceptable one and
must be modified.

With a move of the designers to a risk-guided system of design, the regulators have also
taken the same approach. This is expressed by the NRC when they say: “a risk-informed
regulatory structure that can be applied to license and regulate advanced (future) reactors,

regardless of their technology, could enhance the effectiveness, efficiency, and predictability



(i.e., stability) of new plant licensing” (USNRC, 2004). The need for the new form of regulation
also deals with the lack of knowledge about these new designs. In the past, design-basis
accidents were developed deterministically. At the time, there was no experience with light-
water reactors to draw insights from. Over the last 30 years, due to experience gained from
dealing with light water reactors and insights gained from risk-assessments done on the reactors,
the set of DBASs has been modified. However, due to the limited applicability of historic light-
water DBAs to future reactors, new methodologies must be used to form DBAs. As we have
seen with light-water reactors, risk-analysis of reactors has shown us insights into where safety
constraints are needed. This would help better determine where regulations should be placed
and why as suggested here, a risk-informed method for developing DBAs for Generation-IV
reactors would be beneficial to the industry.

Probabilistic risk analyses done on current LWR regulations have given the industry
insights into how safety constraints should be reorganized. Certain areas were too conservative
and rules needed to be relaxed (as currently evident in changes in the ECCS rule 50.46), while
for other aspects certain needed safety constraints were missing (as shown in the development of
the interfacing system LOCA, anticipated transient without SCRAM, and station blackout rules).
This is why it has been felt that a risk-informed approach will be the key to having an acceptable
level of safety for all Generation-IV reactors.

It is suggested that if a “technology-neutral framework” is developed for all generation-
IV reactors it would lead to a more straight-forward way to develop a complete set of regulations
for each reactor design, ensuring safety of the plant, workers and the public. It is recommended
that a method for the development of a set of risk-informed regulations would help both the

designers in knowing what expectations are required and not placing undue burden on them, the



regulators in giving them an easy and straight-forward framework to deal with, and the public,
by ensuring an envelope of safety that will account for all possible damaging accidents that could

affect their health.
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I Current Methodologies
ITA Methods for DBAs

The foundation of current regulations is a set of Design Basis Accidents. A Design Basis
Accident is a postulated accident that a nuclear facility “must withstand without loss of
components, systems, and structures” (U.S. Code of Federal Regulations, 2004). They are a set
of stylized accidents that are used as a bounding envelope for all other plant accidents. The
boundary is set by the consequences of these accidents (i.e., the damage that they can do to the
plant). They are more formally explained as “the postulated failure of one or more important
systems and an analysis based on conservative assumptions” (Okrent, 1981). They are based on
the General Design Criteria (GDC) as described in Appendix A of 10 CFR 50. The GDCs are
defined by the NRC to “establish minimum requirements for the principal design criteria for
water-cooled nuclear power plants similar in design and location to plants for which construction
permits have been issued by the Commission” (U.S. Code of Federal Regulations, 2004).

The design basis accidents are all consistent with the structuralist defense-in-depth
approach, which “asserts that defense in depth is embodied in the structure of the regulations and
in the design of the facilities built to comply with those regulations” (Sorensen et al, 1999). The
structuralist approach is a deterministic method of looking to see how one can place precautions
into a system, just in case a current barrier or safety feature fails. In current DBA regulation
(from Title 10 of the federal code of regulations), these precautions are in the form of conditions
that meet the high level goals of “preventing accident initiators, terminating accident sequences
quickly, and mitigating accidents that are not successfully terminated” (Sorenson et al, 1999).

Certain requirements must be in place for the safety of all reactors, such as “reactor containment



and emergency planning”. This structuralist model is how current nuclear plants are regulated
(Sorensen et al, 1999).

The DBAs only deal with “credible” accidents and do not deal with more severe
accidents that are considered “beyond-design-basis” (U.S. Code of Federal Regulations, 2004).
The accidents were originally determined by a panel of knowledgeable experts, who used ASME
codes along with their own knowledge in the field (Okrent, 1981).

Currently, DBAs are separated into 9 categories: overcooling, undercooling, overfilling,
loss of flow, loss of coolant, reactivity, anticipated transient without scram (ATWS), spent-fuel
and waste system, and all remaining external events (ones which do not fall into any of the first 8
categories) fall into the final category (Okrent, 1981). For each DBA, given a set of
assumptions, the plant must be able to stop/mitigate these accidents (i.e., bring the plant to cold
shutdown). This is the deterministic basis upon which regulations for all nuclear reactors in the
United States are currently determined by the NRC.

Design Basis Accidents provide a confidence level to the user, because they use a
structuralist form of defense-in-depth (placing barriers to provide extra protection for the plant)
to account for areas with non-quantified uncertainties in the plant’s safety. This is an easy way
for the regulatory staff to determine if a plant has met the regulatory requirements, because it is
a list of requirements that one can check off if they have been met or not. However, problems
may occur because, at times, DBAs can be overly conservative in some areas, and yet do not
have enough safety constraints in other areas. Since there is a large amount of non-quantified
uncertainty, the DBAs may overlook some needed safety requirement and overcompensate by

adding unnecessary ones.



As stressed early, using a purely structuralist methodology, where safety barriers are
added to account for a lack of confidence, does not seem to be a rational way to approach
devising regulations for nuclear plants. It may not only introduce over-conservatism in areas
where certain rules may not apply (such as the single-failure criterion not being needed for all
accidents), but may also fall short when safety constraints are missed. The shortcomings of a
purely deterministic methodology were shown in “Reactor Safety Study: An Assessment of
Accident Risks in U.S. Commercial Nuclear Power Plants” (WASH-1400). This report showed
that small LOCAs and transients were dominant risk contributors to plant systems, as opposed to
previous deterministic thought of only looking at very large pipe breaks in the reactor coolant
system. The importance of support systems and the significance of operator errors were also
shown in WASH-1400 (Beckjord et al, 1993). The findings of the study and subsequent risk-
analysis have helped the industry to change its view on the dominant accidents in a plant and
allowed the industry to see what may have been missed in a purely deterministic setting. These
were DBAs that were added due to findings in probabilistic risk assessment (PRA) research that
showed these were areas where more safety constraints were required. By looking at the
regulations from a purely structuralist point of view, one may not be able to encapsulate the real
reason that the DBAs were originally created. By examining the similarities and differences
between a purely deterministic methodology and a risk-informed regulations discussed in the
next section, the advantages and disadvantages of the two can be clarified and proposals made on

how to construct a more effective set of regulations.



Il B Risk-Informed Regulations

PRA is used to identify the various accidents that may occur in a system, their
consequences, and their likelihood of occurring. Uncertainty is quantified and placed into the
overall scheme of the design project. Risk-informed regulation attempts to encompass the
original intentions of the DBAs, to create a standard set of guidelines that will shows a reactor
system can be safely built and operated. By using risk-information, the methodology creates a
set of regulations that are used as an envelope to account for the worst possible, “reasonable”
accidents. Through various tools, one tries to model a system to find what safety constraints are
needed so that the system falls under the acceptable level of risk as defined by the stakeholders.
PRA is one of these tools that will be used in the end by the stakeholders. The Stakeholders are
those who have an interest in a particular decision, either as individuals or representatives of a
group. This includes people who influence a decision, or can influence it, as well as those
affected by it. A final deliberative process (which is a “back and forth” discussion between all
stakeholders to help the decision maker determine the best course of action to take), is used to
help the NRC staff decide what regulations are truly needed. The stakeholders will prioritize the
risk factors to their own needs (where in regulation this usually involves putting safety of the
workers and public as the number one priority).

The risk information taken from probabilistic risk assessment is able to provide a way of
seeing, in a rationalist light (applying safety constraints where needed based on probabilistic
data), where design basis accidents may need to have safety constraints focused (i.e., where these
constraints need to be applied or lifted). A rationalist model for risk assessment is one where
“defense in depth is the aggregate of provisions made to compensate for uncertainty and

incompleteness in our knowledge of accident initiation and progression” (Sorensen et al, 1999).



The quantification of risk and the estimation of uncertainty through PRA is how this rationalist
methodology has been developed. The rationalist method establish acceptance criteria
(quantitatively), analyzes the plant using PRA to make sure the acceptance criteria are met, looks
.at the uncertainties in the analysis (including those dealing with model (incompleteness), and
finally decides how to balance the uncertainties (Sorensen et al, 1999). The rationalist defense-
in-depth model seeks to enhance the confidence one has in their risk-assessment model and other
analysis. This model tries to decrease the probability of plant accidents and the provisions to do
such become the rationalist methods defense-in-depth (Sorensen et al, 1999). This defense-in-
depth can be found in the acceptance criteria. The quantification of acceptance criteria and
formal analysis of the system (including uncertainty analysis) is where the rationalist model
differs from the structuralist model. Unlike the structuralist method, the rationalist way of
thinking only uses engineering judgment after all other “capabilities of the analyses have been
exhausted” (Sorensen et al, 1999).

As discussed earlier, through the use of risk-assessment, one can see where safety
constraints should be added. Historically, we have seen this applied with the creation of the
station blackout and ATWS rules which were made to ensure plant safety (Apostolakis et al,
2001). Currently, the focus seems to be on lifting unnecessary constraints in areas where certain
requirements are overly conservative or unneeded. Opponents of risk-informed regulations focus
primarily on the removal of requirements. These opponents think that risk-informed regulations
are only a way for the industry to ease the burden of regulations. This viewpoint is due in part
because of the large gap in time between the point at which extra constraints were added (i.e., the
examples of the ATWS and station blackout rules) and the current focus on removing

unnecessary constraints. Both initiatives are used to focus the regulations around the safety



significant areas of the plant, yet one may not see the big picture if they do not step back and
look at the whole history of risk-informed regulations and PRA.

However, due to the lack of defined terminology, along with other mechanistic
(deterministic) requirements such as clad temperature, oxidation, etc..., it is not possible to have
a fully risk-based regulatory system. It also seems that the regulators, at this point in time and
with the current mindset, may be scared to have a fully risk-based system. This is due to the fact
that they do not know how to operate confidently in risk-space (which may again come from the
fact that there are poorly defined standards and definitions). It may take some time, but
hopefully if the need for a risk-informed system grows, we may, as an industry, be comfortable

enough with risk-information to develop a set of fully risk-based regulations.

Il C Insights from Current Methods

The difference between the two methodologies seems to be the inclusion of uncertainty
measures (PRA methodology) versus a structuralist defense in depth methodology of adding
margins/barriers to account for the lack of quantified uncertainty (DBA methodology). In a
purely structuralist design basis accident approach, when one perceives a lack of safety, one is
tempted to use a structuralist methodology to introduce multiple barriers and constraints “just in
case”. Ideally, one should instead, logically find where safety is needed and apply extra
precautions to only those safety significant areas. Using the DBA methodology solely in a
structuralist light, one can become overly conservative and apply extra, unneeded constraints,
which can hinder the project both by adding barriers where they are not needed and also not
addressing areas which may require more safety constraints. This has been shown, as discussed

earlier, throughout the history of PRA.
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From what has been discussed, along with current risk-informed activities on both the
regulatory and industry sides, risk-informed regulations will be shown not only to be needed, and
also how they can be feasibly developed. Probabilistic risk assessment, in the right hands can be
a very powerful tool. If this tool is used to re-sculpt the design basis accidents into a more
effective form, yet still keep the overall foundations that were their original basis, the industry
will be able to move forward with greater confidence. PRA methods are a way to determine if a
failure (and its subsequent failures) is a “reasonable” occurrence. Using this tool, we can build
the envelope envisioned in the original intent of the DBAs. These accidents still remain the
bounding cases, yet now the reason they were chosen is more justifiable and the uncertainty for
these scenarios can now be quantified and measured against. However, structuralist Defense-in-
Depth concepts can also be integrated into a risk-informed structure. This acts as conservatism
built directly into the DBA to protect against unknowns (that may not even be accounted for
when analyzing uncertainty). This level of structuralist conservatism that is applied accounts for
the unknowns not covered in the purely risk-based methodology. Thus, by using a risk-informed
methodology that combines a purely risk-based and a purely structuralist approach, would give
the industry a more complete amalgam to use in regulations. This added level of completeness
in the industry’s main concern in creating a regulatory structure. Using risk-information in the
regulatory process, one would be able to focus the regulations more effectively on the areas

where safety constraints are truly needed.
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IIl Current Activities
IITA NRC Work

The NRC is developing a technology neutral framework for new plant licensing. The
NRC plans to first propose a set of guidelines and criteria for all reactors. The framework will
be technology-neutral with the hope of then creating and implementing technology specific
guidelines for new reactors. Thus a set of regulatory requirements will be developed from these
first two tasks. The NRC is combining protective strategies developed from safety fundamentals
to produce regulations that provide more confidence in a plant’s safe operation. This new
framework will employ defense-in-depth principles to develop the new regulatory requirements.
Once technology neutral regulations have been finalized, the NRC will propose a technology-
specific framework to use along with the technology-neutral regulations, to form these

technology-specific regulations, as shown in figure III-1 (USNRC, 2004).
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Figure III-2 NRC Technology-Neutral Framework (USNRC, 2004)

The overall protection requirements, intended to protect the public/worker health and
safety are in the form of dose limits. From ALARA, the public’s dose limit is proposed to be
100 mrem/year. Risk limits for accidental exposure are also given and ranges of dose are based
on the frequency of occurrence. Based on these ranges, the NRC has created a “Frequency-

Consequence Curve” (in rem per reactor-year as shown in figure III-3).
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2004)

The NRC thinks that the current regulatory methods can be improved and ones that
employed both engineering judgment and Probabilistic Risk Assessment (PRA) would give the
regulators more confidence in a reactors safety. As a safety net to what might still be unknown
after PRA would be accounted for in the defense-in-depth (DID) approach (using deterministic
analysis). They intend to use four protective strategies: barrier integrity, limiting the frequency
of initiating event, employing safety systems for accident prevention and mitigation, and
accident management programs. These all contribute to defense-in-depth. After employing
these strategies, a top-down methodology would be used to develop the requirements for new

reactor design, construction and operation (USNRC, 2004). This framework structure is shown

in figure III-2.
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sum of all sequences which have the same initiator) for the large early release frequency. For
both given SROs, mean values are used (USNRC, 2004). Table III-1 lists these SROs.

Table III-1 Surrogate Risk Objectives (USNRC, 2004)

(1) Prevention-Mitigation Assessment: Consider the Strategies in Pairs
Prevent Mitigate
Core Damage Frequency Conditional Probability of Early
Containment Failure**
<10“/year <10
(2) Initiator-Defense Assessment: Consider the Strategies Individually (Preferred)
Limit the Limit the Limit Limit Public
Frequency of Probability of Radionuclide Health Effects
Accident Core Damage Release During Due to Core
Initiating Events Given Accident Core Damage Damage
(Initiators) Initiation Accidents Accidents
Initiator Conditional Core | Conditional Early | Conditional
Frequency Damage Containment Individual Fatality
Probability Failure Probability
Probability**
Anticipated <l/year <10* <10 *
Initiators
Infrequent <10“/year <10* <10 *
Initiators
Rare Initiators <10"/year <1 =1 *
Notes:
The product across each row gives LERF < 10”/year. Responding systems and procedures are not
designed for rare events. When applying the quantitative guidelines in this figure, in general, no
individual sequence should contribute more than 10% of the value listed.
* No quantitative guideline propose, using LERF as a surrogate.
** This strategy does not imply that risks associated with late containment failure can or will be
ignored. Potential causes of late containment failure and associated mechanisms for radionuclide
removal prior to containment failure will be considered. A quantitative guideline of <0.1 is proposed for
the probability of a late large release given a core damage accident

Design objectives were investigated by looking at event selection. To have an adequate
safety envelope for accidents, initiating events were broken into 3 categories: Anticipated
initiators (< 1/ry), Infrequent initiators (< 10%/ry but >10°/ry), and Rare initiators (< 10/ry).
These are all mean values. Any events occurring less frequently than 10'6/ry are not considered.

These categories are used to ensure that for frequent events, criteria for lower consequences are
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Figure III-3 Frequency Consequence Curve (USNRC, 2004)

The frequency-consequence space is divided into an acceptable and unacceptable region.
This allows the regulators to apply comparable dose limits to accidents based on the frequency of
an accident or initiator of that type occurring (USNRC, 2004).

To implement the frequency-consequence curve, surrogate risk objectives (SRO) are
being created. These SROs are based on the previously developed Quantitative Health
Objectives (QHOs), which were used as a basis for risk-informed accident criteria. These are
used as both accident protection and accident mitigation criteria. The latent fatality QHO had
been 2E-6 per year, which led to a proposed SRO of 1E-5 per reactor year for the sum of all
sequences which have the same initiator (which is 10% of the total CDF value for the entire
plant, which is 1E-4, as shown in table III-1). Even though these are what the NRC is proposing,
they claim that the applicant can propose an alternate criterion, if they can take advantage of
other plant specific characteristics. The mitigation criterion is based on the early fatality QHO of

5E-7 per reactor year. The NRC used this to propose a SRO of 1E-5 per reactor year (for the
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Figure I11-4 Defense-in-Depth Model (USNRC, 2004)

NRC’s proposed framework gives a way for criteria and objectives to be established for
the set of new reactors, by using a risk-informed methodology. The NRC is now working on
how it can define the scope and develop the actual technology-neutral requirements for new
reactors. The framework will be used as a guide to find out what needs to be done for a plant to

meet the four protective strategies and adhere to the defense-in-depth criteria.

III B NEI Work

The Nuclear Energy Institute (NEI), is also currently developing a “Risk-informed,
performance-based regulatory framework for power reactors”. This framework was developed
for both design and operational requirements of power reactors. This includes how these new
requirements can fit into current regulatory channels including all current documentation

methods. This is all detailed in the White Paper that was put out by NEI in 2002. This White
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established. Various criteria and dose levels will be established for each class of events. A
proposed 95% confidence level would be used along with best estimate analysis being employed
for treatment of uncertainties (USNRC, 2004).

The NRC tries to use the defense-in-depth approach in the treatment of uncertainties. It
takes principles from Regulatory Guide 1.174 along with various ACRS papers on defense-in-
depth. The NRC team dealt with the various types of uncertainties (including random, state of
knowledge and completeness uncertainties). Human errors are also included. Defense in depth
will be used in a structuralist way on the high level, where deterministic requirements will be put
in place to address completeness uncertainties, while at the lower levels, the rationalist defense-
in-depth method will be employed, using probabilistic methods to assure that certain protective
goals are met. The model the NRC uses tries to integrate both approaches into a coherent model

for new reactor licensing (USNRC, 2004). This integrated model is shown in figure ITI-4.
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Paper set out to make “NRC activities and decisions more effective, efficient and realistic”.
Resources of the power reactor would now be used for systems which would be more safety
significant according to the risk-based performance measures used. The White paper intends to
establish an alternative to the current regulatory guide 10CFRS50 (Nuclear Energy Institute,
2002). This optional part would be called 10CFR53. Part 53 would now implement risk-
informed methods. NEI thinks that with this new set of requirements they can not only keep the
protection that the industry benefited from with 10CFRS50, but will now also be able to draw
more out of their available resources while making their system more safety oriented (Nuclear
Energy Institute, 2002).

Like the NRC, NET’s main focus was a defense-in-depth approach based on their
cornerstones. Defense-in-depth becomes a main part of their discussions and is used in their
iterative process to increase plant safety. Figure III-5, shows how the NEI defense-in-depth

process would be implemented (Nuclear Energy Institute, 2002).
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The designer and the PRA team would work together to develop a risk-informed design
during which one would identify any of the “key uncertainties™ in the design. During this time,
the design team would also work to meet the acceptance criteria defined in NEI’s proposed
10CFRS53 (these criteria have yet to be quantified or developed). Then any unacceptable
uncertainties found would be dealt with by any combination of the four defense-in-depth
strategies. These are: defining risk management activities, increasing performance monitoring,
adding safety margin, and/or add redundancy or diversity. This would be an iterative process
between the PRA/Design teams and the regulators, until satisfactory levels of acceptable
uncertainties were reached and a final acceptable design is developed (Nuclear Energy Institute,

2002).

111 C TAEA Work

The International Atomic Energy Agency (IAEA) is currently developing safety
standards for “evolutionary and innovative reactors”. These standards will also be based on the
Defense-in-Depth approach. Based on knowledge gained from current reactors in operation and
the current safety standards, the IAEA will develop standards which encapsulate current
approaches yet are also improved through the use of “probabilistic insights”. The IAEA would
create a set of global requirements that are consistent for reactors in all countries. These would
include: “large LWRs, innovative LWRs, MHTGRs and small liquid metal cooled LMRs”. As
an international organization, the IAEA would create a set of requirements that would satisfy not
only the safety needs of the various reactors, but also the current standards of the various

countries these reactors are located in (Saito et al, 2004).
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The IAEA breaks up their safety goals (based on defense-in-depth) into five levels.
These are: prevention of abnormal operation and failure, control of abnormal operation and
detection of failures, control of accidents within the design basis, control of severe plant
conditions, and mitigation of radiological consequences (Saito et al, 2004). This is shown in

figure I11-6.
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Depth (Saito et al, 2004)
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If defense-in-depth for this methodology is implemented correctly, a failure at one level
of defense will not endanger the defense of other levels. The different levels of defense are
thusly independent. The IAEA hopes to uses these defense-in-depth levels, along with French-
German safety standards, Gen-IV goals, and the direction of the International Project on
Innovative Nuclear Reactors and Fuel Cycles (INPRO), to develop their safety standards (Saito
et al, 2004). The overall safety standards will be placed into three levels: safety fundamentals
(objectives), safety requirements, and safety guides (recommendations and guidance) (Saito et al,
2004).

The current IAEA push is for technology neutral requirements and a top-down approach.
There is also a push to help place less constraints on designers, by using a risk-informed
approach. Using these technology neutral requirements (also with a top-down approach) IAEA
will develop requirements for technology specific designs (based on control of reactivity,
removal of heat from the core, and confinement of radioactive materials) (Saito et al, 2004).
These are all examined by looking first at the level of defense (starting with an objective), then
using what “basic safety system” can protect the public, finding *“challenges to the function”,
“mechanisms to posing the challenges” and finally “provisions” to guard against those
mechanisms causing the challenges (Saito et al, 2004). This is the basic plan in which IAEA
hopes to use both its defense-in-depth knowledge, along with risk-assessment insights, to

develop their safety standards. An example of this is shown in figure III-7.
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Figure III-7 Example of IAEA Defense-in-Depth Approach (for MHTGR) (Saito et al,

2004)
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III D NERAC Work

The Nuclear Energy Research Advisory Committee (NERAC) has developed a
“Technology Roadmap for Generation IV Nuclear Energy Systems”. This project is trying to
define the steps needed to be taken to support innovative Generation IV plant designs. The
NERAC goals, which are dissimilar to those of the NRC, which only focus on safety, are shown

in figure 1II-8.
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Figure II1I-8 NERAC Goals (U.S. Department of Energy, 2002a)
NERAC focuses on four factors: sustainable nuclear energy, competitive nuclear energy
(Economics), safe and reliable systems, and proliferation resistance and physical protection (U.S.

Department of Energy, 2002a). Many experts in the nuclear field have come together to develop
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this roadmap, so that the industry as a whole, along with the public, and all other stakeholders
will benefit from the research being done.

NERAC will use the four goal areas (split up into 8 goals), along with 15 criteria for
those goals, to develop metrics for which for which a design can be judged for each of these

criteria, and thus for each equally important goal areas. This process is shown in Figure III-9.
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Figure II1-9 NERAC Goal Areas, Goals, Criteria and Metrics (U.S. Department of Energy,

2002a)
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IIIE ACRS Work

HIE New Reactor Certification Impediments

In the paper “Impediments to the Certification of New Technology Reactor Designs”
(Kress, 2002), Kress discusses the challenges he felt would arise as new reactor designs began to
become certified under the proposed new requirements of the USNRC. These included not only
the current design basis accidents (DBA) but also applying the concepts of defense-in-depth and
risk-informed acceptance criteria. Kress suggests that these three areas will be where the new
reactor designers run into trouble with certification (Kress, 2002).

Current standards and DBAs were made for light water reactors (LWR). So, for new
concepts, such as the GFR, a new set of requirements must be constructed or current
requirements amended. This is more important for designs which are greatly dissimilar from
current reactors (and thus cannot be certified using current regulations) (Kress, 2002). Kress
gives two options for regulating these new designs, which are either using current DBA
methodology along with “exemptions and design-specific requirements” or using the newly
proposed risk-informed technology-neutral methodology for regulation (Kress, 2002).

In discussing risk-informed criteria, Kress thinks there is a lack of risk-acceptance
criteria, only quoting Regulatory Guide 1.174 as having metrics of CDF and LERF for proposed
changes to plant licensing. He suggests these have a limited use and a more defined, “full range”
(including uncertainties) set of risk-acceptance criteria need to be developed. The author stresses
that a more fully developed metric should be used (using a frequency/consequence (cost)
methodology) (Kress, 2002).

Kress proposes that the current DBA methodology also impedes new reactor designs

from certification. The proposed DBAs are ones which have frequencies consistent with that of
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frequency values for LWRs. He worries, though, about the overall frequency cutoff (including
previously excluded events) for the reactor design and suggests that the value may vary with
design. The question is how to set this value. Kress advises that instead of the current way of
doing things, there should be an iterative process between a design team and its PRA team. A
cut-off frequency value would be proposed and a process would occur between both teams until
both the cut-off frequency requirement and the DBA requirements were met. It is believed this
process could set the overall value for a new design (Kress, 2002). This is similar to how the
PRA group for the MIT-GFR has been operating. The PRA group uses the MIT Framework
which has used a similar way of developing criteria and using a deliberative design process
between the PRA and design teams till those criteria are met for the best design (Apostolakis et
al, 2004).

Lastly, Kress discusses how the concept of defense-in-depth poses impediments to the
process. Defense-in-depth seems to be most prevalent when applied to the containment. Many
of these regulations, however do not seem to apply to gas-cooled reactors as they did to LWRs
(such as large break LOCA specifications, pressure specifications, and source term
specifications). Kress thinks there needs to be a way to identify what is a safe containment based
on DID principles. Currently, the ACRS uses the “structuralist” and “rationalist” principles
explained earlier. He advises that the structuralist view meeting the DBAs is not fully related to
the overall risk of the design (Kress, 2002). There needs to be a quantifiable metric to find if
defense-in-depth features are acceptable. He suggests that the rationalist approach puts too much
“faith” in PRA technologies (Kress, 2002). Since there is not a lot of experience with these new
designs, this faith may be unwarranted (Kress, 2002). Overall, the three impediments listed all

center around developing a risk-informed regulatory framework. They show that there is a need

31



for risk-informing design basis accidents, leading to a smoother certification process for new

technology reactor designs.

HIEii Risk-Informing Appendices A & B to 10 CFR Part 50

Sorensen’s work for the ACRS is on risk-informing the general design criteria (GDC) for
appendix A of 10 CFR 50. This involves changing the GDC from “important to safety” to
“important to risk”. It also involves making the individual criteria risk-informed. Lastly it
involves replacing the current GDCs to offer instead, risk-informed goals and criteria (Sorensen,
2002). The key parts of Appendix A that were identified in Sorensen’s work are: single failures
of passive components, redundancy and diversity requirements, type, size and orientation of pipe
breaks (this is our main concern when informing the 50-46 ECCS rule), and the possibility of
“non-random, concurrent failures of redundant elements in control systems” (Sorensen, 2002).

The GDC are meant to reduce the overall consequences of an accident (i.e., the risk to the
public). The GDCs require redundancy and diversity (including items such as the single failure
criteria (SFC)), assuming the system will then be more reliable. It seems disconcerting that these
would be required rather than the quantitative value for the overall system reliability as is now
being proposed by the NRC’s new framework (Sorensen, 2002).

In 1993, the Regulatory Review Group (RRG) found that Appendix A was “performance-
based, contributed to safety and did not go beyond what was required for safety (Sorensen,
2002). They also found that the burden being faced by many plants was when the staff went
beyond these safety requirements and also in the enforcing of these “over-commitments”
(Sorensen, 2002). This is why it is felt that quantitative safety goals should be used to develop
these GDCs and why many screening criteria (such as the SFC) are being replaced by risk-

informed regulations.
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What is being proposed by Sorensen are three possible methods. The first is changing the
GDC:s so they only apply to components which are “risk-significant”. The second is to look at
the individual criteria and change requirements to reflect the risk of each (as it compares with the
overall safety of the system). Lastly, he proposes that the GDCs could be replaced with risk-
acceptance criteria (Sorensen, 2002).

Sorensen gives various examples of ways in which the rules such as the SFC is not
needed when parts of the GDC (or the whole GDC itself) is replaced with risk-based safety
goals. He brings up the point, when dealing with criterion 33, that PRA could be used to find if
safety significant features are truly risk-significant (Sorensen, 2002). However, the most
significant portion of his work, as dealing with the current NRC work, is with criterion 35 (which
deals with the ECCS). Here, as with discussions by the NRC and ACRS, Sorensen brings up the
point of changing the rule that “treats the double-ended break of the largest pipe in the reactor
coolant system in addition to offsite power being unavailable and a single failure in the most
critical place as the DBA for the ECCS” (Sorensen, 2002). However, the largest pipe may not be
“reasonable” as it may not be the most frequent pipe to have the highest consequences. PRA
methodology could be used to determine which is the most risk significant pipe break size for
LOCAs to use in criterion 35. This would likely be based on the frequency consequence curve
discussed earlier, where this would be the pipe-break LOCA to cause a great amount of damage,
and also the frequency of it occurring would still be “reasonable” under risk-standards.

Overall, the individual criteria’s contribution to the systems risk would be used in
determining a new risk-informed appendix A to 10CFRS50 (Sorensen, 2002). It might be hard to
test with current reactor facilities the proposed changes to see if they met the newly developed

risk-informed GDC, yet it is felt that for new reactor designs this is something that can be tested.
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By establishing quantitative reliability requirements, one could truly have a system with criteria
that are not only safety-significant, but also risk-significant. For one to risk-inform the DBAs,

one must first be able to find a quantitative basis for risk in the GDCs.

II1 F Current University Work

HIFi Risk-Informed Regulation/Design Methodologies

At the current time, a methodology to develop risk-informed regulations is underway at

MIT. This follows the four step-decision making methodology shown in figure III-10.

Step 1
Formuiate design
options

Neo

Step 2
Is sach Remove from
decision Forther
. optson censideration
N\ acceptable?

Step 3
Use MAUT to

rank decision
optione

Step &
Deliberase and

choose the best
option

Figure II1-10 Four Step Methodology (Apostolakis et al, 2004)
Here, the regulator dealing with a new reactor design (or a designer) could examine decision

options formulated by a designer for various aspects of their design. They would then go to step
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two, where they would check, using the MIT Framework developed by Apostolakis et al, if such
an option would be acceptable (Apostolakis et al, 2004). The acceptable options would then be
ranked using multi-attribute utility theory (or some other suitable metric). Finally, the
stakeholders would deliberate over the results and choose the best option for their design. This
would be an iterative process between the designer and the regulator, as will be discussed further
(Apostolakis et al, 2004).

The MIT Framework used in step two is shown in figure III-11.

Public Health & Safety
GOAL as a Result of
Civilian Reactor Operation

Evaluate Risk Against
APPROACH Safety Goals
Use PRA to Quantify
PRA STRATEGIES Risk and Uncertainty
] 1
Limit Core Mitigate Releases Mitigate
Damage Frequency of Radionuclides Consequences
(Level 1 PRA) (Level 2 PRA) (Level 3 PRA)
/ L |
Tactics
\ Identify Required Regulation
Based on

Master Logic Diagram

IMPLEMENTATION Develop Regulatory Criteria for
FOR REGULATION Design, Operation, Inspection
AND DESIGN Maintenance, and Testing

of Required Elements

Figure II1-11 MIT Framework (Apostolakis et al, 2001)
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Like the methodology of the NRC, shown earlier, the MIT Framework also uses a top-
down hierarchy to find if design options are acceptable. The top goal of overall safety and health
of the public is also the same. An approach is given of how to reach those goals, along with
PRA strategies of where to implement the approach and Tactics of how to implement this
approach. Finally, through these steps, criteria are developed for risk-informed regulation and
design. Uncertainties would be included and risk quantified to achieve proper regulations
(Apostolakis et al, 2001).

The iterative design process, which will be useful to both designer and regulator, is
currently being tested. This is the development of the implementation of PRA strategies talked
of in the MIT Framework (along with an extra preliminary check of deterministic criteria to
account for unknowns, and which also shows that this is a risk-informed rather than risk-based
methodology). In figure III-12, this process, where a bare bones reactor is developed by a

designer and a risk-informed methodology is used, is shown.
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failure modes

PRA to identify dominant failure
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Risk »
Informed Compare with Surrogate Risk
Design Guidelines
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prevention of dominant failure modes

Generic Risk Driven Design
Must satisfy acceptability criteria

Figure I11-12 Bare-Bones Design Methodology (Apostolakis et al, 2001)

The designer begins with a bare-bones plant and first uses the current methodology of
deterministic analysis to find any possible failure modes. Then the new PRA methodologies are
used to find failure modes. These are checked against surrogate risk guidelines (as discussed
earlier in the NRC’s current work) and if the guidelines are not met, safety features are added in
an iterative process until they do. Once this occurs, the result is an acceptable “generic risk-

driven design” (Apostolakis et al, 2001).
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Due to the fact that the regulatory process for Generation IV reactors seems to be a
constant negotiation between designer and regulator, deterministic analysis will not be able to
develop a set of regulations that are complete and provide the regulatory agency with a level of
confidence needed to assure safe plant operation. This is why a methodology as shown above,
with an iterative risk-informed step, is needed to account for lapses in completeness in the
deterministic methodology. The traditional deterministic approach uses only defense-in-depth to
assure safety, however when developing new reactor designs this may not be enough
(Apostolakis et al, 2001). The addition of safety margins is the key to determining what failure
modes can occur in this new design that are unaccounted for previously, as well as using rational
thought to not be overly conservative. This helps the industry to find out where safety could be

better placed, rather than blindly placing more barriers to get protection.

HIFii MIT-GFR Work

The above methodologies are currently being applied to the test case of the MIT-Gas-
Cooled Fast Reactor (GFR). The CO; cooling system for this bare-bones reactor design 1s
currently being developed using risk-informed techniques, as this is one of the more safety-

critical systems. The bare-bones cooling system is shown in figure III-13.
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Figure I11-13 Bare-Bones Design for GFR Cooling System

The negotiating process talked of earlier between the designer and regulator is currently
being used, with a “mock-regulator” in place. This process will help drive the design team to a
safer reactor design, more aligned with the concerns of the regulatory agency. The overall four-
step methodology will be used, along with the MIT Framework to not only make sure the safety
requirements are met (from a regulatory standpoint), but these methodologies will also help with
the cost effectiveness and the efficiency of the overall design.

The PRA team currently employing these methodologies is working with the design team

to try to form a set of risk-informed design basis accidents that can be used for Generation IV
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reactors. If this can be accomplished for this technology-specific test case, it is hoped that a
similar technology-neutral methodology can be applied. This methodology could then create
risk-informed DBAs for all next generation reactor designs. This is the basis for the current
thesis work, and will be exemplified through work done on the GFR: specifically in the accident
initiators of the Turbine Trip, Loss of Offsite Power (LOOP) and Loss-of-Coolant Accidents,

discussed later in greater detail.

II1 G Current Activities Conclusions

It was seen that the NRC, IAEA, NEI, and NERAC had similar views that regulations for
future reactors should move to a more risk-informed system to improve the safety of generation-
IV reactors. Defense-in-depth was something that all groups currently working on regulations
for generation-IV reactors determined was necessary. Both the NRC and the IAEA have said
they would develop a technology-neutral framework for all reactor types. This it is thought
would be an easier way to then develop more technology specific methods at a later time.

It was found that unlike the NRC and IAEA, NEI would like to develop a set of
requirements that not only helped protect the plant, but also had some focus on benefiting the
industry (by drawing more out of the available resources). NERAC’s framework for risk-
informed regulation also had differences from the NRC and IAEA methodologies. While the
NRC and IAEA methodologies focused solely on safety, NERAC focused on 4 goals:
Sustainability, Economics, Safety/Reliability, and Protection. This shift in focus, no matter how
much weight is given to safety over the other three, seems to go against what is said in the four-

step methodology (Apostolakis et al, 2004). I feel one should place focus solely on safety before
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dealing with any other aspect of the design. Once safety criteria are met, then and only then
should one start to see how to better other aspects of the design.

The work done by the ACRS also brought insights. The impediments to new reactor
certification given current regulations are discussed. Current LWR reactors were shown not to
fully apply to new reactor concepts, thus limiting the innovativeness of these new designs (Kress
2002). It is also shown that the defense-in-depth currently used in the containment for LWRs
may not apply to future gas-cooled reactor concepts. The ACRS work also expressed interest in
a quantitative value for system reliability, being disconcerted by the lack thereof in current
regulations.

Overall, most of the methodologies discussed were quite similar (with minor variations).
The only methodologies which differed were ones from an industry standpoint, because they
were also looking out for their best interests. In these cases, the groups proposing them do not
view them from a safety-first standpoint. I feel that these are methods that should not be used
because for innovative concepts which have never been tested, regulations need to prove the
reactor designs are safe before any other goals should be taken into consideration, to provide

adequate confidence to the plant, its workers, and the public.
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IV Turbine Trip Initiator Work for GFR

While investigating the development of design-basis-accidents, the turbine trip initiating
event was looked at for the GFR plant design. The DBA for this accident scenario is defined for
a LWR plant in its UFSAR as “the reactor would be tripped directly from a signal derived from
the turbine emergency trip fluid pressure and turbine stop valves. The turbine stop valves close
rapidly (typically in 0.1 seconds) on loss of trip fluid pressure actuated by one of a number of
possible turbine trip signals” (U.S. Code of Federal Regulations, 2004). The design basis
accident assumes the turbine is tripped abruptly, reactor SCRAM, a loss of either onsite power
(assuming offsite power is working) or offsite power (assuming onsite power is working), and
finally the Single Failure Criteria (SFC) is applied. The SFC is defined as: “A single failure
means an occurrence which results in the loss of capability of a component to perform its
intended safety functions. Multiple failures resulting from a single occurrence are considered to
be a single failure. Fluid and electric systems are considered to be designed against an assumed
single failure if neither (1) a single failure of any active component (assuming passive
components function properly) nor (2) a single failure of a passive component (assuming active
components function properly), results in a loss of the capability of the system to perform its
safety functions” (USNRC, 2003).

For the GFR, an event tree was developed. This is shown in figure IV-1. First the
turbine is tripped. Then, it is checked whether or not the reactor can be SCRAMed. If the
SCRAM fails, then the reactor would be attempted to be shutdown via the reactor feedback
(which the design team postulates can be safely achieved). If the SCRAM does occur, then it is
checked whether we have offsite and subsequently onsite (both AC and DC) power. If either the

onsite or offsite systems give power to the plant, then the active shutdown cooling system (SCS)
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is checked to see whether it is available. In either case (plant having or not having power), there
is always the ability of the passive SCS system to help cool the plant. Finally, it is checked to
see if the ultimate heat sink is functional. This ultimate heat sink has yet to be determined (and
will likely be modeled as the large cooling ponds of current LWR reactors for the time being).

For the GFR plant test cases that are being run, the design team has currently settled on a
set-up to use for the bare-bones reactor. So, for these cases, the onsite AC Power has loops set-
up in a 2x100% system. Also the offsite DC Power uses batteries in a 2x100% set-up. Both the
active and passive SCS systems for these test cases have 3x50% loop set-ups. For each of these
systems, fault trees were developed (as well as the overall event tree) in the Systems Analysis
Program for Hands-on Integrated Reliability Evaluations (SAPHIRE), a computer code
developed for the USNRC, by Idaho National Engineering and Environmental Laboratories
(INEEL). These trees are shown graphically in figures IV-2 through IV-81, while the reactivity
feedback system, offsite power, and ultimate heat sink were each taken as basic events (due to
lack of knowledge on specific design at the present time). The component failure data for each
of these fault trees are listed in Appendix A, Table A-1. The sources for the data are also
included in this table.

The reason the GFR group investigated accidents such as this were two-fold. The first is
the designer’s standpoint. The investigation of various initiators and their impact on plant safety
(in the form of CDF and LERF) helps the designer to know where safety constraints (such as
adjusting systems and components to decrease risk factors). Knowledge of where to add
redundancy and diversity to prevent the plant from exceeding surrogate risk guidelines will help
the designer re-organize their design to meet the goals of the regulatory agency. They can see

deficiencies in their design and make changes to fix them. The insights used from a risk analysis



of the plant and its systems, based on current regulatory requirements (such as DBAs), will help
the designer to make the design more effective and safer for all stakeholders. The designer will
not have to do a large overhaul that may come from a completed design that had failed to meet
regulatory requirements if they had been using risk-informed methodologies to verify the design
during the various earlier stages of the design process.

The second part of the two-fold reason for looking at GFR accident initiators, and their
impact on plant safety, was from a regulatory standpoint. To a regulator, the investigation of
these initiators (and their impact on plant safety) is an effective way to evaluate a plant design. It
shows to the regulator (as it did to the designer) weaknesses in the plant and leaves smaller room
for argument than a purely deterministic system might. Regulators could more easily pinpoint
what systems (or components) in the design were unsafe (based on surrogate risk guidelines) and
could tell the designers what systems (or components) in the design would need to be modified
or improved to comply with current regulatory guidelines. It allows regulators (who have
knowledge of probabilistic risk assessment) to review the system and to judge how well it holds
up to regulatory standards. Risk assessment can also show a regulator what could be missed by
adapting a purely deterministic standpoint (which may leave a plant’s safety lacking in certain

areas and overly stringent in others).
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Figure IV-8 Fault Tree for Onsite AC Power in GFR: Zoom 1
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Figure IV-11 Fault Tree for Onsite AC Power in GFR: Zoom 4
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Figure 1V-12 Fault Tree for Onsite AC Power in GFR: Zoom 5

57




i
Fip
| Tk
.
}
e e
b ]D
P
- [F
F Fh
g2 DD 3
H
F it :

Figure IV-13 Fault Tree for Onsite DC Power in GFR: Following “Zoomed In” Figures for
enlarged, readable sections of the Fault Tree
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Figure IV-14 Fault Tree for Onsite DC Power in GFR: Zoom 1
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Figure IV-15 Fault Tree for Onsite DC Power in GFR: Zoom 2
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Figure 1V-16 Fault Tree for Onsite DC Power in GFR: Zoom 3
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Figure IV-17 Fault Tree for Onsite DC Power in GFR: Zoom 4
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Figure I'V-18 Fault Tree for Active SCS System in GFR: Following “Zoomed In” Figures
for enlarged, readable sections of the Fault Tree
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Figure IV-19 Fault Tree for Active SCS System in GFR: Zoom 1
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Figure IV-20 Fault Tree for Active SCS System in GFR: Zoom 2
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Figure IV-21 Fault Tree for Active SCS System in GFR: Zoom 3
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Figure 1V-22 Fault Tree for Active SCS System in GFR: Zoom 4
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Figure IV-23 Fault Tree for Active SCS System in GFR: Zoom 5
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Figure I1V-24 Fault Tree for Active SCS System in GFR: Zoom 6
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Figure IV-25 Fault Tree for Active SCS System in GFR: Zoom 7
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Figure IV-26 Fault Tree for Active SCS System in GFR: Zoom 8
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Figure IV-27 Fault Tree for Active SCS System in GFR: Zoom 9
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Figure IV-28 Fault Tree for Active SCS System in GFR: Zoom 10
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Figure IV-29 Fault Tree for Active SCS System in GFR: Zoom 11
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Figure IV-30 Fault Tree for Active SCS System in GFR: Zoom 12
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Figure I'V-31 Fault Tree for Active SCS System in GFR: Zoom 13
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Figure IV-32 Fault Tree for Active SCS System in GFR: Zoom 14
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Figure I1V-34 Fault Tree for Active SCS System in GFR: Zoom 16
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Figure 1V-35 Fault Tree for Active SCS System in GFR: Zoom 17
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Figure IV-36 Fault Tree for Active SCS System in GFR: Zoom 18
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Figure IV-37 Fault Tree for Active SCS System in GFR: Zoom 19
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Figure IV-38 Fault Tree for Active SCS System in GFR: Zoom 20
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Figure I1V-39 Fault Tree for Active SCS System in GFR: Zoom 21
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Figure 1V-40 Fault Tree for Active SCS System in GFR: Zoom 22
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Figure IV-41 Fault Tree for Active SCS System in GFR: Zoom 23
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87



1

Flow Blockage
inLoop2
FLOW-BLOCK-LOOP2
I [
Rtion
Pp
2 C | 3 4
FAL CV-SET2-FAIL-OPEN
I + T ] I I
CV22-FAIL-OPEN CV23-FAIL-OPEN CV24-FAIL-OPEN
3
O O O O y
CV22-FAIL-OPEN CV23-FAIL-OPEN CV24-FAIL-OPEN

CV21-FAIL-STAY-OPEN v 22-FAIL-SF

SCS-ACTIVE - Loss of Active SCS System

200407120 Page 10

Figure 1V-43 Fault Tree for Active SCS System in GFR: Zoom 25
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Figure IV-45 Fault Tree for Active SCS System in GFR: Zoom 27
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Figure IV-47 Fault Tree for Active SCS System in GFR: Zoom 29
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Figure IV-50 Fault Tree for Active SCS System in GFR: Zoom 32
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Figure IV-51 Fault Tree for Active SCS System in GFR: Zoom 33
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Figure 1V-54 Fault Tree for Passive SCS System in GFR: Zoom 2
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Figure IV-55 Fault Tree for Passive SCS System in GFR: Zoom 3
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Figure IV-56 Fault Tree for Passive SCS System in GFR: Zoom 4
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Figure IV-57 Fault Tree for Passive SCS System in GFR: Zoom 5
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Figure 1V-58 Fault Tree for Passive SCS System in GFR: Zoom 6
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Figure IV-59 Fault Tree for Passive SCS System in GFR: Zoom 7
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Figure IV-60 Fault Tree for Passive SCS System in GFR: Zoom 8
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Figure IV-61 Fault Tree for Passive SCS System in GFR: Zoom 9
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Figure 1V-62 Fault Tree for Passive SCS System in GFR: Zoom 10
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Figure IV-65 Fault Tree for Passive SCS System in GFR: Zoom 13
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Figure IV-66 Fault Tree for Passive SCS System in GFR: Zoom 14
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Figure IV-67 Fault Tree for Passive SCS System in GFR: Zoom 15
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Figure I'V-68 Fault Tree for Passive SCS System in GFR: Zoom 16
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Figure IV-69 Fault Tree for Passive SCS System in GFR: Zoom 17
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Figure IV-70 Fault Tree for Passive SCS System in GFR: Zoom 18
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Figure IV-71 Fault Tree for Passive SCS System in GFR: Zoom 19
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Figure IV-72 Fault Tree for Passive SCS System in GFR: Zoom 20
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Figure IV-73 Fault Tree for Passive SCS System in GFR: Zoom 21
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Figure IV-74 Fault Tree for Passive SCS System in GFR: Zoom 22
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Figure IV-76 Fault Tree for Passive SCS System in GFR: Zoom 24
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Figure IV-77 Fault Tree for Passive SCS System in GFR: Zoom 25
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Figure IV-78 Fault Tree for Passive SCS System in GFR: Zoom 26

123



v

inLoop3 Tesgoea o OF PESSIVE Sysiem
Loop3 for Loop 3
COOL-UNAVAIL-LOOP3 NO-PASSIVE-DESIGN-LOOP3 RANDOM-FAIL-PASSIVE3
T
Insufficient
Flow for Passive
System in Loop3
INSUFF-FLOW-PASSIVE3
- . ]
14w Blockage Passive Convection i
ive System Faifure in Loop
n Loop3 3
¥ OCK-PASSIVE3 PASSIVE3-CONV-LOOP-FAIL | {
—- ] [ — ]
Passive Convection Locain
Fails to Start 3 Loop
inLoop3
2 4 O O
CV-SET3-FAIL-STAY-OPEN FAIL-PASSIVE3-CONV-START LOCA3
3 I : T ]

J-OPEN
[J-OPEN CV31-FAIL-STAY-OPEN CV32-FAIL-STAY-OPEN CV33-FAIL-STAY-OPEN CV34-FAIL-STAY-OPEN

SCS-PASSIVE - Loss of SCS Passive System

200407720 Page 12

Figure IV-79 Fault Tree for Passive SCS System in GFR: Zoom 27
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Figure IV-80 Fault Tree for Passive SCS System in GFR: Zoom 28

125



I3

T —1

Insufficient
Water Flow in

Loop3

INSUFF-WATER-PASSIVE3

]

|

Natural Convection
Unavailable for

Loop3

NAT-UNAVAIL-PASSIVE3

|

1

Active Convection
Fails CO2 Loop
3

Failure of Passive
(02 Natural Convection|
to Start

0

ACTIVE-CO2-CONV-LOOP3

iﬁm
ater

b3

Tank/Pipe Break
inLoop3

)

0

FP-LOOP3 TANK-PIPE-BREAK-LOOP3

0

PASSIVE-C02-CONV-LOOP3

SCS-PASSIVE - Loss of SCS Passive System

200400700 Page 12

Figure IV-81 Fault Tree for Passive SCS System in GFR: Zoom 29
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After analyzing this system for the DBA based on the turbine trip initiating event, it
was found that the Conditional Core Damage Probability (CCDP) for the system had a mean
value of 2.3E-5 per reactor-year. Given the frequency of a turbine trip of 3E-1 per year, the CDF
would be 7.0E-6. The turbine trip case was used to analyze the impact of the current turbine trip
DBA for LWRs on the CDF of the plant. From a regulatory standpoint, when analyzing a plant
one wishes to form an envelope of safety with its DBAs. This envelope deals with the
consequences of the accidents, where the thinking is that if a plant can handle the accidents that
can cause the greatest harm to the plant and still cool the plant safely, then the plant and its
systems will be able to handle any accident that arises (in that accident class). This is why when
one creates the DBAs as a set of assumptions for a postulated accident, the plant owners must
show that they can safely cool the plant due to these given conditions (usually ones that involve
multiple points of damage to plant systems). The conditions given are ones that are rather
infrequent, so it is thought that if the plant systems are able to effectively deal with the more
damaging and infrequent failures, then they should then be able to deal with the more frequent
and less damaging plant accidents. These less damaging accidents would fall within the
envelope of the more damaging and infrequent accidents. In the analysis to follow we see the
impact that the DBAs truly have on the CDF for a given initiator (i.e. the impact to the initiator’s
CDF if failures given by the DBAs assumptions could never occur and the systems in which
these failures would occur would always function properly).

Given the assumptions listed in the turbine trip DBA were always held true (i.e., there is
a reactor SCRAM along with onsite power given a loss of offsite power (or vice-versa)), the new
mean value CCDP is lowered to 2.2E-5 per reactor-year (with CDF of 6.6E-6). So we see there

is little change in the sequence’s overall CDF given current LWR DBA regulations. The small
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amount of change from the current DBAs again shows that these assumptions that are given in
the DBAs occur fairly infrequently. The purpose is to build the safety envelope, talked of
earlier, with these infrequent initiators. The current DBAs seem to capture this well, yet only
have a low impact on the CDF, which may suggest that more risk-informed DBA regulations
could be used to have a higher impact on reactor safety goals and surrogate risk guidelines. If
DBAs were chosen based on their impact on the overall CDF for an initiator, rather than the
current deterministic method, a better safety envelope could be built. This could ensure that all
lesser accidents can be protected against (or mitigated) properly, because they would fall under
the envelope of the more damaging (impact on CDF) accidents.

What we have seen from examining this system is that, based on the current Surrogate
Risk Guidelines (SRG) for the sum of all individual event sequences which have the same
initiator (CDF of 1E-5 per reactor year) (USNRC, 2004), currently this turbine trip initiated
accident and its set of sequences would fall below the required value. This, from the designer’s
standpoint would show that the system’s safety was adequate. The design team could now move
on to the third stage of the MIT framework and use a metric (like MAUT) to determine what
decision options are best for the plant. It was also learned that by doing analysis such as this, a
designer could see where safety can be improved even further if so desired by seeing how
changing various systems or components could impact the CDF (or other risk guideline) of not
only an individual initiator, but also the overall plant.

This exercise was also used to show a regulators point of view. Through the
development of fault and event trees, the PRA group learned that when PRA is done correctly, a
regulator or designer, even one not as familiar with the design, could easily follow through the

logic of a reactor system. This shows the straightforwardness of risk-informed regulation, where

128



a regulator would more easily check a risk-informed plants design against surrogate risk
guidelines set forth by the NRC and determine, at least from a preliminary safety standpoint, if
the plant met the safety guidelines set forth by the regulator. By using the turbine trip test case,

the PRA group saw how a process like this would work and how easily it could be checked.

129



(This page intentionally left blank)

130



V  Other Initiators for the GFR

Along with the Turbine Trip initiator, the GFR group examined two other initiators. As
we said earlier, to develop a set of regulatory requirements one will need to look at the current
DBAs in a risk-informed mind-set. Thus members of the GFR group look at, for both design and
regulatory purposes, for reasons discussed earlier, these other GFR initiators.

The first was the Loss-of-Coolant Accident (LOCA) initiator as looked at by Delaney,
Apostolakis and Driscoll, in “Risk-Informed Design Guidance for a Generation-IV Gas-Cooled
Fast Reactor Emergency Core Cooling System” (Delaney et al, 2004). The second was the Loss
of Offsite Power initiator as examined by Grégoire Jourdan in his thesis “Using Risk-Based
Regulations for Licensing Nuclear Power Plants: Case Study of the Gas-Cooled Fast Reactor”
(Jourdan, 2004). Both of these will be examined in detail in the following section as was done in

chapter 4 for the Turbine Trip Initiator.
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V A Loss-of-Coolant Accident (LOCA)

Delaney et al examined the LOCA initiator for the emergency core cooling system
(ECCS) in the GFR as shown in figure III-13. Delaney quotes Criterion 35 of 10CFR50,
Appendix A. This says:

“A system to provide abundant emergency core cooling shall be provided. The system
safety function shall be to transfer heat from the reactor core following any loss of reactor
coolant at a rate such that (1) fuel and clad damage that could interfere with continued effective
core cooling is prevented and (2) clad metal-water reaction is limited to negligible amounts.

Suitable redundancy in components and features, and suitable interconnections, leak
detection, isolation, and containment capabilities shall be provided to assure that for onsite
electric power system operation (assuming offsite power is not available) and for offsite electric
power system operation (assuming onsite power is not available) the system safety function can
be accomplished, assuming a single failure” (Delaney et al, 2004).

This becomes the basic definition for design basis accident for the LOCA initiator
which, as said in Delaney et al’s paper “treats the double-ended break of the largest pipe in the
reactor coolant system in addition to offsite power being unavailable and a single failure in the
most critical place as the DBA for the ECCS” (Delaney et al, 2004).

The overall system is viewed, and Delaney et al develop an event tree for the LOCA as

was done for the Turbine Trip initiator. This is shown in figure 5-1, for the bare bones reactor.
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Figure V-1 Bare-Bones ECCS Event Tree from Delaney et al’s LOCA initiator for
the GFR (Delaney et al, 2004)

As was done with the Turbine Trip initiator, Delaney et al model the system in SAPHIRE
building fault trees for each of the GFR systems. The component failure data was the same that
was used in the turbine trip case as shown in appendix A, Table A-1. These models were then
used to find the CCDP.

Since Delaney et al’s work investigated many variations in the GFR design, the design
that was settled on at the time of the Turbine Trip initiator investigation will be the one shown
here (as to be consistent with what was done in chapter IV). When looking at this design of the
GFR system systems (with 3x50% active and passive SCS loops along with 2x100% Diesels and
2x100% batteries), we found from Delaney et al’s work that the CCDP was 7.7E-4 per reactor
year. Also knowing that the probability of a LOCA is approximately 5.5E-4, we get an overall
CDF for a LOCA in this case to be 4.2E-7 per reactor year. This would fall into the acceptable

region for the Surrogate Risk Guidelines (SRG) for individual event sequences (CDF of 1E-5 per
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reactor year) as defined by the NRC; currently this loss of coolant initiated accident sequence
would fall below the required value (Delaney et al, 2004).

As was done with the turbine trip case, this case was used to analyze the impact of
the current LOCA DBA for LWRs on the CDF of the plant. Again, an analysis of a plant from a
regulatory standpoint seeks to develop an envelope of safety with DBAs. The consequences of
the accidents are bounded by this envelope (with the thinking being that if one can protect
against the more damaging accidents, then the less damaging accidents will be covered as well).
As said previously, the conditions given for each DBA are ones that are rather infrequent; it is
thought that if the plant can deal with infrequent failures, they should be able to deal with the
frequent accidents. The DBA assumptions for LOCA were again examined to see their impact
on the plant’s CDF due to a given initiator. Given the assumptions listed in the LOCA DBA
were always held true (i.e., having onsite power function properly given a loss of offsite power
(or vice-versa) along with the adhering to the single failure criterion), the new resulting CCDF
would be 1.4E-4. With these assumptions held true, a new CDF of 7.6E-8 is found (Delaney et
al, 2004). This is a larger change than in the turbine trip case. It suggests the importance of this
DBA to the regulator, and would be an area that the design team might want to focus some of
their efforts, to make sure that these DBA assumptions do hold true for this reactor. However, as
expressed in the turbine trip initiator section, it is felt that a DBA framework that is more risk-
informed and develops a safety envelope based on the contribution of each accident sequence to

the overall CDF for a particular initiator may be a more effective methodology.
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V B Loss of Offsite Power (LOOP)

Jourdan examined another initiator for the GFR. This initiator was the LOOP initiator for
the reactor system of the GFR, again shown in figure 5-2. The Loss of Offsite Power DBA is
currently defined in LWR plants as:

“A major plant load loss can result from the loss of external electrical load due to some electrical
system disturbance. Offsite alternating current power remains available to operate plant
components such as the reactor coolant pumps; as a result, the onsite emergency diesel
generators are not required to function for this event. Following the loss of generator load, an
immediate fast closure of the turbine control valves will occur. This will cause a sudden
reduction in steam flow, resulting in an increase in pressure and temperature in the
steam generator shell. As a result, the heat transfer rate in the steam generator is reduced,
causing the reactor coolant temperature to rise, which in turn causes coolant expansion,
pressurizer insurge, and RCS pressure rise.

For a loss of external electrical load without subsequent turbine trip, no direct reactor trip
signal would be generated. The plant would be expected to trip from the Reactor Protection
System if a safety limit were approached. A continued steam load of approximately 5 percent
would exist after total loss of external electrical load because of the steam demand of plant
auxiliaries” (U.S. Code of Federal Regulations, 2004).

Essentially, if we assume a loss of offsite power, we also assume that onsite power is
functioning for this DBA. We also assume immediate closure of the Turbine Control Valves

(TCV) and a Reactor SCRAM. Finally there is again the Single Failure Criteria (SFC).
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In Jourdan’s work he again looks at the overall system. He is also able to develop an
event tree for LOOP as was done with the other two initiators. This is shown in figure 5-2, for

the bare bones reactor.
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Figure V-2 Event Tree from Jourdan’s LOOP initiator for GFR (2004)
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We again look at the same GFR system set-up that had been used for the LOCA and
turbine trip cases (3x50% active and passive SCS loops, along with 2x100% Diesels and
2x100% batteries), and find from Jourdan’s work that the CCDP for LOOP was 4.3E-6 per
reactor year. Also knowing that the probability of a LOCA is approximately 2.1E-2 (Office of
Nuclear Regulatory Research, 2001), we get an overall CDF for a LOOP in this case to be 8.9E-8
per reactor year (Jourdan, 2004). This would fall into the acceptable region for the Surrogate
Risk Guidelines (SRG) for individual event sequences (CDF of 1E-5 per reactor year) as defined
by the NRC; currently this loss of offsite power initiated accident sequence would fall below the
required value. Again this is something that we saw with LOCA but we did not see with the
turbine trip initiator.

Again, as with the two other cases, the current LWR DBA assumptions for LOOP were
all put in place (i.e., we also assume that onsite power is functioning, immediate closure of the
Turbine Control Valves (TCV) and a Reactor SCRAM along with adhering to the Single Failure
Criteria (SFC)). The new resulting CCDP would be 4.1E-6 (Jourdan, 2004). This gives a new
CDF of 8.7E-8. This is not a large change for adding the DBA assumptions, yet still passes the
SRG per sequence requirement. This again shows designers and regulators, that due to the
current LWR DBAs only decreasing the initiators CDF by a small amount, there may need to be
a change in DBAs for next generation reactors, that would help to reduce the core damage
frequency of the plant by a greater amount, thus focusing the DBAs in more safety significant

arcas.
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VI Proposed Risk-Informed Methodology
VIA Methodology

After reviewing the system and various LWR DBAs, the next step was to draw some
insights from the current regulations and the GFR design to propose a method for constructing
risk-informed design basis accidents. Based on the knowledge we obtain through risk-analysis
of the plants, we should then be able to find out where protective measures are needed and tailor
the design basis accidents for each plant design to protect against any lapses in safety culture.
DBAs are needed as a protective safety-net against these lapses. DBAs provide a barrier against
unknowns that could jeopardize the safety of the plant, workers, public, and environment. In this
section, a methodology is proposed for developing risk-informed DBAs for new and innovative
reactors.

The first step in this methodology is that success criteria must be selected for the new
plant design. This deals with thermal-hydraulic and other calculations that ensure no damage to
the plant, environment or the public. One would look at failure data for similar systems and then
through risk-informed analysis be able to propose a failure limit through a deliberated policy
decision.

An example of how criteria can be developed is found in the paper “A methodology for
Developing a Probability Distribution for the Failure Enthalpy of High-Burnup Fuels via
Simulation” written by Pagani and Apostolakis (2004). In this paper, the authors are able to

develop success criteria through the probabilistic analysis of failure data for nuclear plants.
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The authors state that to find the failure probability, we must find the probability that the
capacity exceeds the load. In this case the probability density functions (pdf) of the capacity and

load are fc(c) and (L), respectively. So, to develop the failure probability, equation 5-1 is used:

oo ©o

PIL>C)= [ [fL(y)dylfc(x)dx (5-1)

—0o0 X

The authors were able to use data from the plants along with various computer codes and
conceptual models to simulate accidents in the plant that may occur. Through these simulations,
the full failure probability for the system was developed. This gave a distribution of failure
limits for the enthalpy at a given burnup level (Pagani et al, 2004). This work is an excellent
example of how one can use plant data and simulations, along with probabilistic analysis, to
select success criteria for a given reactor type. A method such as this one would need to be
repeated for various plant factors to ensure a comprehensive set of risk-informed success criteria
for the plant.

After success criteria have been established for the plant, one must then find all the
possible sequences that could occur in the plant (not knowing yet if these sequences pass or fail
the selected criteria). Thus event and fault trees for the plant design will need to be constructed.
There would be many possible sequences for a given plant design, S; through S,. Each of these
sequences would have a frequency of occurrence, i.e., f through f, These sequences along with
the defined success criteria would be the basis for developing new design basis accidents for the
given reactor type.

For the next step we go back to the Surrogate Risk Guidelines defined in the USNRC’s

technology neutral framework. The overall sum of the frequencies for various sequences from a
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given initiating event must be 10° / RY (which comes from the statement that no single initiating
event can contribute more than 10% of the total plant CDF defined as 10 /RY) (USNRC, 2004).
This still holds true, but we must now find out how to pick the various individual sequences to
analyze for a given initiating event. This methodology proposes that the best way to do this,
after of course making sure the sum of all the frequencies is below the required SRG, is to find
which individual sequences contribute the most to the overall sum. Since a value must be set to
determine which sequences are examined, it is proposed that sequences be ranked by their
frequencies. Then to exploit the rankings of the sequences, the highest frequency sequences will
be added together until they reach a value greater than 95% of that initiator’s CDF (i.e., the sum
of CDF of all sequences with the same initiator). Once those sequences are found that add to a
value greater than the threshold of 95% of the initiator’s CDF, those are determined to be the
dominant sequences for the initiator to later be analyzed and checked against the plant’s success
criteria.

Thusly for given sequences S; through S, (with frequencies f; through f,,) first one checks

that:
> fi<10°/RY (5-2)
1

All initiators must pass this first criterion. Then, for the second criterion, the question for
those sequences associated with the initiator, S; through S, is which of these sequences, when
ranked in order of contribution to CDF, when summed together (starting at the most contributing
sequences and adding down, add to a value greater than 95% the sum of all the sequences
associated with the same initiator.

Once we do this analysis, any sequences which meet this second criterion and are

determined to be dominant must then be examined by the designer to prove that these sequences
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do in fact meet the success criteria that was defined for the given plant design in the first step of
this methodology.

The most important sequences based on risk-informed methodologies have now been
found for the given initiator. These are ones that contribute the most to the CDF of the plant and
serve, as the original DBAs, as an envelope for all other sequences to be encompassed by. The
designer would then develop through analyzing these sequences along with the plant’s success
criteria, what assumptions would need to be made to ensure the 95% confidence level, as shown
with the second criterion, that these highly contributing sequences met the success criteria of the
plant. The current DBAs, through their assumptions, require failures of certain systems. To
include these types of assumptions, this framework will use ideas. Since the important
sequences have already been found, the regulations would ask the designer to show what
system(s) are important to that sequence (i.e., contribute the most to the risk from that system).
The assumption made would be for the designer to assume that system(s) was down and make
sure the success criteria developed in the initial steps for the reactor type could be passed. This
would help to ensure that these assumptions truly gave the designer and regulator extra
confidence about the system. The assumptions that are develop through this deliberation process
between the design team and the regulators will now be the design basis accidents for this plant.
This would hold with the original purpose of the plant assessment framework, which would be a
set of stylized accidents, based on assumptions, that serve to bound all other accidents, except
now instead of using purely deterministic methods, we have used plant experience, data, models
and simulations along with our risk-informed methodology to define the design basis accidents

for the new plant design.
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However, since this method will be risk-informed rather than purely risk-based, there
must be a level of conservatism placed into the DBAs. There are always various unknowns that
the designer and regulator may not be able to catch. This is why some form of safety-net must
be put in place to protect against any threats to safety that are unaccounted for in a purely risk-
based methodology. These protective measures add structuralist elements to provide a last line
of defense which catches safety concerns which may occur, but may not be as apparent.

These conservative elements will be implemented directly into the success criteria that
are defined for the plant. As said before, plant data and simulations, along with probabilistic
analysis, to select success criteria for a given reactor type. These criteria, many of which are
mechanistic, would use various calculations to show that if met, the reactor would maintain safe
operation. Conservatism can be added into these calculations in one of two proposed ways. One
way is to use purely conservative codes, data, and calculation methods to develop the safety
criteria for the reactor design. The conservatism would be there from the start, allowing a level
of confidence to be added to the initial safety criteria. The sequences using the second criterion,
as having the greatest impact on the CDF, would eventually be checked against these more
conservative criteria adding confidence against possible unknowns.

However, there is also another option that could be used to add conservatism to the
success criteria. The second option still uses best estimate calculations when developing the
distributions for the success criteria. Yet, now the regulator picks a certain percentage (for
example 5%) of which they would allow probability for exceeding the success criteria. As with
the first option, this option places a level of conservatism directly into the success criteria.

Again, the sequences selected (using the second criterion), due to their impact on CDF, will be
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checked against these more conservative success criteria. These are two options for the regulator
to choose which would be better for generation IV reactor regulations.

In the second part of this section, an example of how the beginning part of this
methodology is used will be shown for the example of the turbine trip case, discussed earlier, for

the MIT-GFR design.
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VI B Case Study

Earlier in this paper the work done on the turbine trip initiator was examined. In this
section we will use this to show how steps two and three of the methodology (the development
of sequences and selecting of contributing sequences would occur).

For the first check from equation (1), we already found that the Conditional Core
Damage Probability (CCDP) for the system had a mean value of 2.4E-5 per Reactor-Year.
Again, with the frequency of a turbine trip being 3E-1 per year, the CDF would be 7.0E-6 /RY.
This would be an initial check that if failed the regulator would tell the designer to go back and
make sure this initiator sequence did in fact pass the surrogate risk guidelines set up in the
NRC’s technology neutral framework. For the turbine trip case for the GFR, this initial test
passed the SRG of 1E-5/RY.

Next we will continue to show how the bounding sequences are selected for the next step
of the methodology. First all the sequences are ranked by their frequencies for the turbine trip
initiator. Then the highest frequency sequences were added together until they reached a value
greater than 95% of that initiator’s CDF (i.e., the sum of CDF of all sequences with the same
initiator). The 95% CDF value was found to be 6.6E-6. Looking at the sequences in table VI-1,
it was shown that sequences 2 and 5 added up to 6.8E-6 (a value greater than the 95% threshold
value). These dominant sequences deal with the Ultimate Heatsink and Active/Passive SCS
systems, respectively, will later be analyzed and checked against the plant’s success criteria.

In analyzing the system, the frequencies of various sequences were found; the most
prominent ones are shown in table VI-1, with the highlighted sequences being the ones found to

be most dominant:
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Table VI-1 Dominating Sequences and their Frequencies for Turbine Trip Initiator in

GFR
Sequence Number Sequence Description Frequenc r RY
5 Failure of Active and Passive SCS 5.31E-06
2 Failure of Ultimate Heatsink 1.48E-06
13 Failure of Offsite Power, Active and Passive SCS 1.12E-07
10 Failure of Offsite Power and Ultimate Heatsink 3.26E-08
19 Faiture of Offsite Power, Onsite AC Power, and Passive SCS 1.47E-08
8 Failure of Onsite DC Power and Passive SCS 1.43E-08
16 Failure of Offsite Power, Onsite DC Power, and Passive SCS 9.68E-10
18 Failure of Offsite Power, Onsite AC Power, and Ultimate Heatsink 7.69E-10
7 Failure of Onsite DC Power and Ultimate Heatsink 5.60E-10
4 Failure of Active SCS and Ultimate Heatsink 5.12E-10
12 Failure of Offsite Power, Active SCS, and Ultimate Heatsink 1.06E-11
15 Failure of Offsite Power, Onsite DC Power, and Ultimate Heatsink 7.55E-12
24 Failure of Reactor Trip, Active and Passive SCS 2.48E-12
21 Failure of Reactor Trip and Ultimate Heatsink 6.00E-13
32 Failure of Reactor Trip, Offsite Power, Active and Passive SCS 4.44E-14
29 Failure of Reactor Trip, Offsite Power, and Ultimate Heatsink 1.30E-14
39 Failure of Reactor Trip and Shutdown by Reactivity Feedback 1.24E-14
27 Failure of Reactor Trip, Onsite DC Power and Passive SCS 4.13E-15
38 Failure of Reactor Trip, Offsite Power, Onsite AC Power, and Passive SCS 2.58E-15

From this table we can see that sequence 2 and 5 (Failure of the Ultimate Heatsink and Failure of
Active and Passive SCS), with frequencies of 1.48E-6 and 5.31E-6 / RY, as said earlier, add up
to a value greater than the 95% threshold value. Thus the regulator would inform the designer
that these are sequences which would need to be checked for all success criteria that were
developed in step one (through models and computer codes) and would have to be verified
through calculations by the design team to show that a sequence this important and which has
such an impact on the system, would be able to meet all success criteria for the plant. The
regulator would also ask the designer to show that given that either the ultimate heatsink or both
the active and passive SCS systems were down, the reactor can still meet its success criteria. As
said earlier these success criteria would have a structuralist element to them as a way of placing
conservatism into the proposed risk-informed DBA regulations. Conservatism can be added into

these calculations in one of two proposed ways. This would be in one of two ways: using purely
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conservative codes, data, and calculation methods to develop the safety criteria or using best
estimate calculations when developing the distributions for the success criteria along with the
regulator picking a certain percentage of which they would allow probability for exceeding the
success criteria. A suggestion for this is 5%. It would still be the regulators decision of which
of these two options to use. Either way, conservatism would be implemented directly into the
success criteria and thus be there from the beginning. Sequences selected (using the second
criterion) as having the greatest impact on the CDF would eventually be checked against these
more conservative criteria. These structuralist elements would add confidence against possible
unknowns.

In carrying out the next step in the method, it was found that sequence 5 occurs when the
passive shutdown-cooling-system does not function properly. The design team would need to
show through calculations and computer simulations what assumptions could be made to assure
that the passive SCS would function with a high frequency (shown through fault tree analysis as
well). These assumptions would take into account the failure limits obtained when developing
the success criteria in step one. Through a deliberation process with the regulator, the design
team would prove that given these assumptions, the passive SCS would function and thus the
dominating sequence 5 would be a success (and pass the prescribed success criteria developed
earlier). This would show the regulator that we have accounted for the most dominant accidents
which would serve as an envelope to account for all other possible sequences. Thus, the design
team and regulators will be creating new DBAs, in a risk-informed manner, for the newly
proposed reactor design. This is risk-informed, because it has a basis in PRA, yet still contains
deterministic elements as a safeguard against unknowns (set-up in the initial success criteria).

The assumptions developed from the calculations, models and checks against success criteria,

147



along with confirmation through the deliberation process between designer and regulator, will
serve as the basis for the DBAs for each initiator. This method will be repeated for all possible
sequences and initiators (based on plant data, simulation codes, and experience from plant
histories). In each case, as discussed earlier, a set of assumptions would be developed by finding
which sequences dominate, and then which system dominate those dominating sequences. The
assumptions would assume those dominant systems were down and make sure the sequences
could still pass the success criteria developed for the given reactor. This would ensure a safety
envelope for the plant, treating the most damaging accidents to ensure that if these accidents
could be defended against, so could less damaging ones. These would include the LOOP and

LOCA work discussed earlier (as analyzed by Jourdan and Delaney et al respectively).
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VII Conclusions

With the need for new and innovative designs, as stressed in the “Technology Roadmap
for Generation IV Nuclear Energy Systems”, there also needs to be new and innovative
regulations (U.S. Department of Energy, 2002a). Due to a lack of knowledge and industry
experience with these designs, as opposed to the breadth and depth of knowledge the industry
has on LWRs, we must now use risk-information to make up for this lack of confidence.

In this paper current LWR regulations were explored. It was shown that originally design
basis accidents were deterministically determined by a panel of experts. These were deemed
“reasonable” accidents by the panel, in that they could reasonably occur in the lifetime of a
reactor; however they were also a set of stylized accidents, based on certain assumptions, whose
consequences were the most damaging and thusly served as an envelope to encompass all other
less serious accidents. However, this deterministic methodology was shown to miss a few key
initiators and accident sequences. Through the reactor safety study done in WASH-1400, these
accidents were learned of and turned into DBAs, including system interfacing LOCAs,
Anticipated Transients without Scram, and Station Blackout (U.S. Nuclear Regulatory
Commission, 1975). This was one of the first examples of how probabilistic risk analysis could
be used in regulating reactors and adjusting where safety was either needed, or where regulators
may have been overly conservative.

Currently, with new reactor concepts being looked at in industry and university settings,
the regulatory agencies are looking to develop a new technology neutral framework for
regulations. Currently this is being done by the USNRC, which seeks to risk-inform their

regulations. This paper attempted to show this could be done and that risk-informed design basis
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accidents would be a proper direction to go in, when forming a new regulatory framework for the
next generation of nuclear reactors.

To show the feasibility of risk-informing design basis accidents, a methodology was
developed and used. First, given a new plant design, success criteria are developed. These
would be developed through various calculations by the designer to show that no damage would
come to the plant, workers or public if these success criteria held true. It was shown in the work
by Pagani et al how this would be done through plant data, uncertainty models, and computer
code simulations. The example that Pagani et al gave, was the distribution of where there are
enthalpy failures at certain burn-up stages for a reactor (Pagani et al, 2004). Again it is stressed
that this method will be risk-informed rather than purely risk-based, and so one needs to add a
level of conservatism placed into the DBAs. Due to the unknowns that the designer and
regulator may not discover, there needs to be a safety-net to protect against safety threats to the
reactor. The structuralist elements proposed, will be implemented directly into the success
criteria for the plant. Plant data and simulations, along with probabilistic analysis, will be used
to select success criteria for a given reactor type. The criteria would use various calculations to
show that if met, the reactor would maintain safe operation. Conservatism would be added into
these calculations. This would be done through two proposed options. The first would be to use
purely conservative codes, data, and calculation methods when developing the safety criteria for
the reactor design. The second option uses best estimate calculations when developing the
distributions for the success criteria. It was proposed for this option that the regulator pick 5% of
the distribution of which they would allow probability for exceeding the success criteria. For
both options conservatism would be there from the start. This allows a level of confidence to be

added to the initial safety criteria. The regulator would be able to choose which of the two
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options they think are more appropriate for adding a deterministic level of conservatism to the
design basis accidents. Once the calculations are done and models run, there would be a policy
decision made, after deliberation, what the exact success criteria would be for a new reactor
design.

Once this is done, it is shown how all sequences would be found for a plant by
developing event and fault trees for the new design. These sequences for each initiator would be
what are examined when developing the design basis accidents. For each initiator sequence, it
was shown that the Surrogate Risk Guidelines defined by the NRC would be used, where the
overall sum of the frequencies for various sequences from a given initiating event must be 10™ /
RY (which comes for the statement that no single initiating event can contribute more than 10%
of the total plant CDF defined as 10 /RY) (USNRC, 2004).

This is the first requirement that each initiator must pass as shown in equation (5-2).
When investigating the GFR test case, it was found that all three of the initiators that were
investigated, met the surrogate risk guidelines. The LOOP initiator, as shown in the work of
Jourdan, had a mean value CDF of 8.9E-8 per reactor year (Jourdan, 2004) while the LOCA
initiator, as developed by Delaney et al, had a mean value CDF of 4.2E-7 per reactor year
(Delaney et al, 2004). Both were shown to be well below the requirement of 1E-5/RY. The
Turbine Trip test case also met methodologies first requirement, with a mean value CDF of 7.1E-
6/ RY.

The Turbine Trip was the initiator that was investigated most extensively, so the later
stages of the methodology were used on it as a test case. The next methodology step was to
select the dominant sequences for the next step of the methodology. First all the sequences were

ranked by their frequencies for the turbine trip initiator. Then the highest frequency sequences
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were added together until they reached a value greater than 95% of that initiator’s CDF (i.e., the
sum of CDF of all sequences with the same initiator). It was found that sequences 2 and 5 added
up to 6.8E-6 (a value greater than the 95% threshold value of 6.6E-6). These dominant
sequences deal with the Ultimate Heatsink and Active/Passive SCS systems, respectively, will
later be analyzed and checked against the plant’s success criteria.

It was discussed how current DBAs contain assumptions which require certain systems to
fail. Including these assumptions into this framework will be done by finding the system(s)
which are most important (contribute the most to that sequences risk) to the most dominant
sequences (in earlier steps as shown). The designer would assume that system(s) was down and
make sure the success criteria developed in the initial steps for the reactor type could be passed.
This would ensure that these assumptions gave the regulator extra confidence about the system.
In this case, the design team for this reactor would be able to prove that given either the ultimate
heatsink or the active and passive SCS systems were set as failed, the sequences dominant to the
turbine trip initiator (determined to be sequences 2 and 5) passed the success criteria. This
would be the way that the DBA for this initiator would be developed after some designer and
regulator deliberation.

It is felt that a methodology like this would hold true to all the original DBA intentions.
Based on their frequency of occurrence, these stylized accidents that would be developed would
not be outlandish, but rather be “credible”. Also, due to the fact that they contribute to over 95%
of an initiators overall CDF, they would be a set of bounding cases, which serve as an envelope
to account for all other accidents. The use of success criteria, as designed for each plant would

also help to bring the technology neutral framework to technology specific designs, ensuring that
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all aspects of safety were accounted for, even taking into account original design features to that
reactor type. This would also allow for designers to be more creative in their designs.

It is recommended that this methodology be tried out on a much larger scale, where a
separate part of the design team would have the time to create success criteria from various
simulations and plant data. Once a complete set of success criteria is developed (along with
conservative codes for them), and with knowledge of the system, one would be able, through the
use of probabilistic techniques, to find the bounding sequences and develop design basis
accidents as shown in our test case. A full scale test of the deliberation process to finalize the
DBAs is another facet that must be fully explored to ensure that this method can truly work.

From what has been seen in this paper, it is felt that risk-informed regulations are feasible
and should be used for the next generation of nuclear reactors. Due to the lack of plant
knowledge for innovative designs, risk-informed methodologies may be a way for the regulators
and designers to gain a level of confidence about the safety of new technologies. Overall, it is
felt that risk-informing regulations allows designers to be more creative and effective with their
designs, while still assuring the regulatory body that all safety concerns are being met. It allows
a wide variety of plant designs to be commissioned while still protecting the health and safety
and well-being of all stakeholders, including the plant, its workers, the public and the

environment.
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APPENDIX

Table A-1

Case Study Component Failure Data (Delaney et al, 2004)

Device

Failure mode

Mean Failure
Probability*

Error Factor

Source

Accumulator

All failure mode

2.40E-06

30

(Westinghouse
Electric
Company,
2003)

Check Valve

Failure to open

1.00E-04

(Westinghouse
Electric
Company,
2003)

Diesel

Failure to Start

1.40E-02

(Westinghouse
Electric
Company,
2003)

Diesel

Failure to run

5.76E-02

10

(Westinghouse
Electric
Company,
2003)

Electric motor

Failure to Start

3.75E-04

(U.S. Nuclear
Regulatory
Commission,
1975)

Electric motor

Failure to run

3.00E-04

(U.S. Nuclear
Regulatory
Commission,
1975)

Electrical Buswork

Failure during operation

4.80E-06

(Westinghouse
Electric
Company,
2003)

Heatric Heat
Exchangers

Failure while operating

2.40E-05

10

(Westinghouse
Electric
Company,
2003)

Microturbine

Failure to run

6.00E-04

(Ingersoll
Rand Energy
Systems,
2004)

Offsite Power

Loss of Offsite Power

2.10E-02

(Office of
Nuclear
Regulatory
Research,
2001)

Turbine

Failure to Start

2.00E-02

10

(Westinghouse
Electric
Company,
2003)




Turbine

Failure while running

1.44E-02

10

(Westinghouse
Electric
Company,
2003)

Blower

Physical failure while running

1.37E-06

(Bush, 1978,
Broadhurst et
al, 1978)

Electric Valve

To denergized position

1.00E-03

(Westinghouse
Electric
Company,
2003)

Pressure Valve

To denergized position

1.00E-03

(Westinghouse
Electric
Company,
2003)

Electric Switch

Failure on demand

1.00E-03

(Westinghouse
Electric
Company,
2003)

Generator

Failure during operation

4.80E-06

(Westinghouse
Electric
Company,
2003)

Reactor Trip

Failure on demand

1.00E-07

(Delaney et al,
2004)

DC Transmission

Failure during operation

2.40E-03

(Delaney et al,
2004)

Battery Power
System

Failure during operation

4.80E-05

(Delaney et al,
2004)

Inverter

Failure during operation

4.80E-04

(Delaney et al,
2004)

Battery Charger

Failure during operation

1.68E-04

(Delaney et al,
2004)

CO2 Loop

Failure during operation

5.45E-04

10

(Westinghouse
Electric
Company,
2003)

Steam loop

Failure during operation

5.45E-04

10

(Westinghouse
Electric
Company,
2003)

WBHX

Failure while operating

2.40E-05

10

(Westinghouse
Electric
Company,
2003)

Automatic Activation

Failure on demand

1.00E-04

10

(Delaney et al,
2004)

Indication

Failure on demand

1.00E-06

10

(Delaney et al,
2004)

Manual Hardware

Activation

Failure on demand

1.00E-04

10

(Delaney et al,
2004)
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Operator Failure to
Act

Failure on demand

1.00E-03

10

(Delaney et al,
2004)

*A run time of 24 hours per demand was used to obtain failure probabilities per demand for data given in failure

rate per hour

160




— Room 14-0551
- ~ . 77 Massachusetts Avenue

. . Cambridge, MA 02139
MITleraneS Ph: 617.253.5668 Fax: 617.253.1690
. Email: docs@mit.edu
Document Services http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.



