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Abstract 
Microfabricated transducers enable the label-free detection of biological molecules in nano- 
liter sized samples. Integrating microfluidic detect ion and sample-preparat ion can greatly 
leverage experimental efforts in systems biology and pharmaceutical research by increasing 
analysis throughput while dramatically reducing reagent cost. 

Microfabricated resonant mass sensors are among the most sensitive devices for chemical 
detection, but degradation of the sensitivity in liquid has so far hindered their successful 
application in biology. This thesis introduces a type of resonant transducer that overcomes 
this limitation by a new device design: Adsorption of molecules to the inside walls of a 
suspended microfluidic channel is detected by measuring the change in mechanical resonance 
frequency of the channel. In contrast to resonant mass sensors submersed in water, the 
sensitivity and frequency resolution of the suspended microchannel resonator is not degraded 
by the presence of the fluid. Our device differs from a vibrating tube densitometer in that 
the channel is very thin, and only molecules that bind to the walls can build up enough mass 
to be detected; this provides a path to specificity via molecular recognition by immobilized 
receptors. 

Suspended silicon nitride channels have been fabricated through a sacrificial polysilicon 
process and bulk micromachining, and the packaging and microfluidic interfacing of the 
resonant sensors has been addressed. Device characterization at 30 mTorr ambient pressure 
reveals a quality factor of more than 10,000 for water filled resonators; this is two orders 
of magnitude higher than previously demonstrated Q-values of resonant mass sensors for 
biological measurements. 

Calculation of the noise and the sensitivity of suspended microchannel resonators indi- 
cate a physical limit for mass resolution of approximately 0.01 ng/cm2 (1 Hz bandwidth). A 
resolution of -0.1 ng/cm2 has been experimentally demonstrated in this work. This resolu- 
tion constitutes a tenfold improvement over commercial quartz crystal microbalance based 
instruments. The ability to detect adsorbing biomolecules by resonance frequency has been 
validated through binding experiments with avidin and various biotinylated proteins. 

Thesis Supervisor: Scott R. Manalis 
Title: Associate Professor of Biological Engineering 
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Chapter 1 

Introduction 

1.1 Background 

Microfabricated transducers enable the detection of biomolecules in microfluidic sys- 

tems with nanoliter size sample volumes. Their integration with microfluidic Sam- 

ple preparation into lab-on-a-chip devices can greatly leverage experimental efforts 

in systems biology and pharmaceutical research by increasing analysis throughput 

while dramatically reducing reagent cost. Microdevices can also lead to robust and 

miniaturized detection systems with real-time monitoring capabilities for point-of- 

use applications. Sensors that convert biochemical information into electronic signals 

typically measure changes in a physical property of a solid-liquid interface, such as 

surface charge, refractive index, surface stress, or mass. To provide specificity, im- 

mobilized receptors preferentially bind the target molecules of interest, altering the 

properties of the surface and generating a signal. Unlike conventional protein microar- 

rays, this scheme does not require a secondary antibody or fluorescent labeling of the 

target molecules. Despite reducing the cost and labor associated with biomolecular 

interaction analysis, label-free detection technologies enable experiments in which la- 

beling would interfere with the binding reaction, or in which real-time measurements 

of the binding kinetics are of interest. Surface plasmon resonance (SPR) [3, 22, 651 

and quartz crystal microbalance (QCM) [45, 58, 72, 491 based instruments are cur- 

rently the two most widely employed methods for label-free protein interaction exper- 



iments, with applications ranging from fundamental research in systems biology to 

drug discovery and quality control. Laboratory instruments based on SPR and QCM 

are commercially available, however these two principles are not easily amenable 

to miniaturization and batch fabrication. The three main types of microfabricated 

sensors for biochemistry can be classified as electronic, optical and mechanical trans- 

ducers, all of which have specific advantages and limit at ions. Electronic field effect 

devices can be highly sensitive to binding of charged molecules regardless of molecu- 

lar weight. However due to charge screening these sensors require low ionic strength 

solutions and tight binding of ligands to the surface to operate effectively. [9, 18, 111 

Integrated optical sensors rely on the measurement of refractive index in the evanes- 

cent field of planar waveguides, which generally limits the thickness of the sensitive 

layer to less than lOOnm and requires intricate alignment of external optical compo- 

nents. [71, 411 Micromechanical surface stress sensors have recently been the subject 

of many research efforts, in part because of their simplicity and high sensitivity in 

certain assays. [37, 55, 81, 77, 541 However, the relationship between surface stress 

and the density of bound targets depends on a combination of physical properties, 

such as steric hindrance, electronic charge, and hydrophobicity of the molecules, so 

that the quantitative power of the method is limited. In addition, the need for differ- 

ent surface functionality on the top and bottom side of the device complicates assay 

development. Another class of micromechanical transducers is formed by microme- 

chanical resonators whose natural frequency provides a direct quantitative measure of 

mass adsorbed to their surface. Resonant mass sensors have been highly successful for 

chemical sensing in gaseous environments. [25, 28, 20, 36, 21, 42, 671 In liquids, how- 

ever, the mass sensitivity and frequency resolution of resonant sensors is degraded by 

the low quality factor and large effective mass that is induced by viscous drag. While 

certain designs have the potential to greatly alleviate these limitations, [75, 19, 391 

their sensitivity is still inferior to air or vacuum based resonators [73]. To overcome 

this problem, various groups have employed the 'dip and dry' method, by which the 

resonance frequency is measured in air before and after the device has been exposed 

to the sample. [27, 45, 34, 261 To ensure reliability, great care must be taken to avoid 



contamination of the resonating element. Furthermore, the technique does not allow 

real-time measurements for studying binding kinetics. For some assays, mass enhanc- 

ing labels can be used to increase the signal to noise ratio in liquid [72] at the expense 

of additional sample preparation and experimental complexity. 

1.2 Device concept 

Signal transduction in resonant mass sensors relies on the dependence of the mechan- 

ical resonance frequency fo on the effective device mass m*: 

When a resonant transducer is submersed in fluid, the effective mass is increased and 

the quality factor is reduced, thereby leading to a degradation of mass sensitivity. 

Vibrating tube designs avoid this problem by confining the fluid to the inside of the 

resonator. To date, there are several examples of commercially available laboratory 

instruments that employ this concept for the measurement of fluid density. Enoks- 

son et al. first recognized the potential of suspended microchannels configured as 

micromechanical resonators for measuring fluid density and flow in a microfluidic for- 

mat. [13, 14, 15, 161 Since then, various implementations of micromachined vibrating 

tube densitometers and flow sensors have been reported. [74, 63, 62, 611. 

The primary feature that sets our work apart from research in the area of vibrat- 

ing tube densitometers is that molecules that bind to the channel walls are detected, 

thereby providing a path to specificity via molecular recognition by immobilized re- 

ceptors such as antibodies. We have therefore optimized the design for sensitivity to 

surface mass; this requires the fluid channel and the walls of the hollow resonator to 

be very thin. 

To detect specific biomolecules, the channel walls are first functionalized with a 

layer of capture molecules, as illustrated in Figure 1- 1. Subsequent accumulation 

of target molecules on the functionalized walls decreases the resonance frequency. 



Figure 1-1: Sample molecules (red) flow through a hollow cantilever and are captured 
by immobilized receptors (yellow). The mass increase is detected by the change in 
resonance frequency. 

Molecules that adsorb onto the walls of the fluid filled resonator are perpetually 

replenished by the flow of fresh sample through the device and, if the ratio of surface 

area to volume is very large, the adsorbing molecules eventually build up enough mass 

to cause a detectable frequency shift. 

Since the mass density of biological molecules is greater than the mass density of 

water (e.g. proteins typically range from 1.3-1.4 g/cm3) [17, 70,23,57], the resonance 

frequency of a suspended microchannel is decreased by the adsorption of molecules 

to the channel walls. 



Chapter 2 

Sensitivity and Noise 

2. Mass sensitivity of hollow resonators 

~ s d u m i n ~  uniform surface coverage, the mass sensitivity of a long and thin suspended 

microchannel resonator with constant cross section is to first order independent of the 

exact geometry and vibrational mode of the channel. To illustrate the nomenclature 

for t h e  following calculations we will refer to a double clamped beam, as illustrated 

in pig. 2-1, however the results are independent of this particular geometry. L is the 

total length of the suspended section of the fluid path, the wall thickness is denoted 

by t ,  and H is the inner channel height. The resonance frequency wo of a mode of 

vibration is found by the principle of Rayleigh-Ritz. Equating the maximum kinetic 

and potential energy (U) of the displacement field u ( t )  gives 

We define rna(z) as the mass per unit length 

where p(x, y, t )  denotes the local density of mass. If molecules with a greater den- 

sity than water accumulate on the channel walls, this results in an additional term 



Ap(x, y, z), which is greater than zero only in the thin layer of adsorbed molecules. 

ma then increases like 

and the resulting change in eigenfrequency, Awo, is given to the first order by 

If the relative mass increase of each cross section is independent of position, i.e. 

Ama (z) 
= const. 

mA (4 

equation 2.1 can be written as 

or, since AmA is usually small relative to ma 

Equation 2.6 shows that the ratio is only a function of $ and does not depend 

on the mode shape u(z) or the exact cross-section geometry. Mass sensitivity can 

therefore be optimized by minimizing the mass and by maximizing the number of 

available binding sites for each cross section. The shape and the mode of vibration 

can be chosen to optimize fluid delivery, resonator quality factor, and readout signal- 

to-noise ratio. A useful figure of merit to assess the utility of the sensor for biochemical 

detection is mass sensitivity per surface area. Rewriting Equation 2.7 as 

where s is the length of the solid-liquid boundary shows that s/mA is the device 

parameter that most critically influences the sensitivity. 



For example, ma of a rectangular cross section of wall thickness t and fluid layer 

thickness d changes by 
Am, 0 -- 

N 

mA P S ~ N ~  + PHZO 

when molecules adsorb to the surface at a density of 0 ng/cm2. The approximation 

assumes that the channel width is significantly greater than the depth of the fluid 

layer as well as the thickness of the channel walls. The thermomechanical limit for 

frequency resolution using a high quality resonator is ~ 0 . 0 1  ppm in a 1 Hz bandwidth. 

Assuming 1 pm wall and fluid layer thickness with silicon nitride as the structural 

material, Equations 2.7 and 2.9 predict a minimum detectable mass A0=7 pg/cm2, 

or -1 protein of 100 kDa per square micron. 

Equation 2.4 only takes into account the frequency shift due to added mass, i.e. 

the change in maximum kinetic energy. The assumption that molecular adsorption 

does not change the maximum potential energy is valid if the channel cross-section is 

symmetric about the neutral axis. Changes in surface tension at the top and bottom 

of the channel will then cancel, resulting in no net modulation of the spring constant. 

This is the case for all cantilever resonators that were designed and tested in this 

work. The resonance frequency depends on surface stress if the strain at the top and 

bottom channel surface during vibration is not equal and of opposite sign. 

2.2 Effective mass of biomolecules in solution 

Detecting the adsorption of biological molecules in solution by mass relies on the 

difference in specific gravity between the adsorbed layer and the water molecules it 

displaces. Kautzmann et al. [57] and, more recently, Voros [70] have determined the 

mass density of proteins in aqueous solution to be on the order of 1.3-1.4 g/cm3. 

Furthermore, the work by Voros has shown that this value not only applies when the 

proteins are free in solution, but also when they are adsorbed to a solid, hydrated 

surface. The value of 1.3-1.4 g/cm3 represents an effective density whose meaning is 

most easily understood by comparing the mass of a fixed volume of solution before 



Fluid in 
1 

Resonator 
1 

I 

Fluid out 
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Figure 2-1: A double clamped beam is used to illustrate that the mass sensitivity of 
a suspended microchannel resonator depends only on the cross section mass. 

Figure 2-2: Most proteins have an effective density of 1.3-1.4 g/cm3 in aqueous 
solution. When dry proteins are added to a fixed volume V that is initially filled with 
water, the mass of the volume increases by -25% of the dry protein mass. 



and after adding mp grams of dry protein. The total volume V can be divided into 

the pure water volume VH20 and the volume contributed by the concentrated and 

solvated biomolecules, Vp, as illustrated in Fig. 2-2. The total mass in the volume V 

is then 

m = PH~O(VH~O - b) + ~pb 

or, rearranging terms and replacing I$ by mp/pp 

so that the increase in solution density resulting from a protein concentration cp is 

given by 

A p  = cp PP - PHZO (2.12) 
PP 

Equation 2.12 shows that when solvated proteins are added to a closed water reservoir, 

displacing the necessary volume of pure water, the net mass of the reservoir will 

increase by only approximately one quarter of the mass of dry protein added. This is 

analogous to a hollow resonator, which comprises a constant fluid volume and contains 

varying amounts of protein. When molecules bind to the surfaces surrounding the 

volume rather than being freely dispersed in solution, the above picture still gives a 

good estimate of the net mass; although water is known to be more densely packed at 

solid-liquid interfaces, its physical properties closely match those of the bulk only a 

few monolayers from the surface. [48] Since proteins are generally several nanometer 

in size, surface induced ordering of water molecules will be considered negligible. 

2.3 Frequency resolution and sources of error 

The ability to detect the adsorption of minute amounts of mass with micromechanical 

resonators is determined by the ratio of sensitivity to frequency resolution. Sensitiv- 

ity, measured as the relative frequency shift per added mass, is solely a function of 

the cross section mass of the microchannel resonator. Frequency resolution depends 



on factors that can be broadly classified as statistical measurement errors and as 

systematic errors. Statistical errors result from random noise in the resonator and 

in the deflection readout, and they can always be reduced by narrowing the mea- 

surement bandwidth. [12] Systematic errors, on the other hand, are fluctuations in 

resonance frequency that are often unrelated to the adsorbed mass and instead arise 

from cross-sensitivity to, for example, temperature, pressure, or flow. Systematic 

errors can often be reduced to acceptable levels by environmental control and by 

minimizing the transducers sensitivity to the operating conditions. However, tech- 

nological refinements are not always sufficient when the duration of an experiment 

exceeds several tens of minutes, which is common for biochemical binding reactions. 

In this case, satisfactory resolution may be achieved through differential sensing, 

whereby the signal of a mechanically identical, yet distinctly functionalized sensor is 

used as a control. [54, 561 

2.3.1 Phase and frequency noise 

The resonance frequency of a mechanical structure, unlike position or velocity, is not 

itself subject to intrinsic noise at non-zero temperatures. The precision of any esti- 

mate of resonance frequency, however, is limited by the thermal fluctuations in the 

observable degrees of freedom of the system. [69] Although the signal-to-noise ratio 

can, in theory, be improved by increasing the magnitude of the drive, the vibration 

amplitude is limited by the mechanical properties of the resonator and by the maxi- 

mum actuator force. The dynamics of the micromechanical resonators considered in 

this work can be modeled by a one-dimensional harmonic oscillator 

with the natural frequency wo, spring constant k ,  and quality factor Q. When the 

resonator is in thermal equilibrium with the environment and no external drive signal 

is applied, the force F ( t )  has zero mean and a non-zero white noise power that is 



responsible for the Brownian motion of the resonator. According to the equipartition 

theorem, the fluctuations of x due to Brownian motion are given by 

The power spectral density Sff of F is 

which yields 

In order to understand the uncertainty in wo introduced by a certain noise level, ( x 2 ) ,  

we consider the case where the system is driven at a fixed frequency w so that wo 

can be obtained from the phase lag between the drive signal and the response. With 

Fw(t) = FoejWt the measured response is 

x ( t )  = FO 1 H (w) 1 e'("'+' H ( w ) )  + (6x1 ( t )  + j6x2 ( t  )) . 

The phase of 6x1 ( t )  + j6x2(t) is uniformly distributed on the interval [O,27r), and the 

mean amplitude (bxT+6xi) is equal to the mean square noise level in the measurement 

bandwidth. The uniform distribution of the phase implies that (62:) = (62:). When 

x ( t )  is measured by lock-in detection with a time-constant T ,  only the narrow band 

of frequencies w k $ contributes to the noise, and 6x1 restricted to this frequency 

band appears as amplitude noise, while 6x2/ I F ~ H ( W )  1 appears as phase noise. In the 

given bandwidth the phase can therefore be measured only to within 

where the last approximation is reached by neglecting the frequency dependence of 

H (w') in the narrow band w f $. Equation 2.18 shows that when thermal fluctuations 



are the limiting factor, phase noise is independent of frequency. The measurement of 

L H(w) enables estimation of wo via the relationship 

If the phase measured at wo is used to estimate small deviations of the natural fre- 

quency from wo, the error A$ translates into an estimation uncertainty 

Combining equations 2.16, 2.18 and 2.20 then yields 

Equation 2.21 shows the importance of a high quality factor and large drive amplitude 

for obtaining high accuracy in resonant sensors. Ultimately, the amplitude is limited 

by the maximum force of the actuator, as well as the mechanical and geometrical 

characteristics of the resonator. The inverse relationship between resolution and the 

first derivative of the phase in equation 2.20 illustrates that it is advantageous to 

conduct the measurement at or close to the actual resonance frequency, because this 

is where the measurement is least susceptible to phase noise. The phase measurement 

and conversion to frequency may be implemented in different ways, which will be dis- 

cussed in more detail in chapter 5, yet the fundamental limit for frequency resolution 

given by equation 2.21 is independent of the method. 

2.3.2 Pressure sensitivity 

Cross-sensitivity to hydrodstatic pressure is an important aspect for the operation 

of resonant mass sensors in fluids. When the device is used in continuous flow, the 

pressure can fluctuate due to flow instabilities, changes in flow resistance or varia- 

tions in backpressure. Controlling all these parameters to high precision incurs high 

equipment expenses and is generally not an option in portable instruments. Pres- 



Figure 2-3: The walls of a suspended microchannel deflect under hydrostatic pressure. 
For thin channels, the deflection is similar to that of a doubly-clamped beam. 

sure fluctuations are commonly the result of events like sample injection, deliberate 

changes in pump rate, or the formation of bubbles in the fluidic system, and as such 

they cause systematic errors that may not be reduced by statistical means. 

The pressure effect on resonance frequency of a long and thin hollow beam in 

transverse vibration can be calculated from the equation of motion 

where E is Young's modulus, I is the area moment of inertia with respect to the 

neutral plane, and mA is the cross-section mass defined by equation 2.2. f (2, I!) on 

the right hand side represents the driving force per unit length. The frequency of the 

n-th eigenrnode has the general form 

where A, is a numeric constant that depends on the boundary conditions and L is a 

characteristic length, e.g. the beam length for a cantilever device. The influence of 

small deformations of the cross-section may be written as 

For the rectangular channel geometry shown in Figure 2-3 it is possible to derive 

simple expressions for AI and AmA as a function of pressure. If the width of the 



channel is much greater than its height, the sidewalls are very stiff and experience 

negligible deformat ion, while the top and bottom diaphragms deflect under internal 

pressure as indicated by the dashed line in Figure 2-3. The top and bottom may 

be approximated as fully clamped beams subject to a uniform pressure load P. The 

deflection as a function of position and pressure is 

and the area moment of inertia at P = 0 is 

t ( d + 2 q 3  W - 2 t  
I. = 

6 + 12 
[ (d  + 2t)3 - d3] 

where the first term accounts for the contribution of the sidewalls, and the second 

term represents the central region of the channel. When the top and bottom walls 

deflect by u ( x ) ,  the new moment of inertia is to first order in u 

and evaluation of the integral after inserting equation 2.25 yields 

Similarly, we find for the increase in mass for a channel that is filled with water: 

Real devices will have larger I. and m~ than those of the plain rectangular channel 

in Figure 2-3, but provided that the fluid conduit can be approximated as shown, the 

expressions for the increments A I  and Ama are valid. 



2.3.3 Bias volt age dependence 

The resonators that are the basis of this work are actuated by electrostatics. The 

bias voltage that is applied between the resonator and the actuation electrode can 

have a significant effect on the resonance frequency. Although the electrostatic force 

is small and the static deflection of the resonators is on the order of a few nanometers, 

the presence of a force gradient lowers the effective spring constant, which, in turn, 

is observed as a change in frequency. Sensitivity to electrostatics is an important 

consideration in resonant transducers even if the actuator bias itself is stable, because 

insufficient shielding may allow external fields to influence the measurement. 

The dependence of the effective spring constant k* on bias voltage is obtained 

from the definition 

C(x) is the capacitance of the electrostatic actuator, V is the bias voltage, and k de- 

notes the mechanical spring constant. The associated change in resonance frequency 

In most cases the actuator capacitance may be approximated by a parallel plate 

capacitor with a gap do and capacitance C(x = 0) = Co, which inserted into 2.31 

gives 

For small fluctuations AV superimposed on a constant voltage Vo, i.e. V = Vo + AV, 

the last equation reads 



2.3.4 Temperature coefficient 

Temperature affects the sensor signal by altering the stiffness and stress of the res- 

onator structure and, in the case of fluid filled resonators, through changes in bulk den- 

sity of the liquid. The density of water has a temperature coefficient of -0.256 (mg/cm3)/"C 

at room temperature, [40] and, as will be shown later, this means that for our devices 

temperature needs to be stable to within -O.Ol°C to avoid density related measure- 

ment errors. Radenovic et al. measured the temperature dependence of the spring 

constant of commercial silicon nitride cantilevers for atomic force microscopy. [47] 

They found that the resonance frequency decreased with an increase in temperature, 

consistent with a decrease in Young's modulus. The temperature effect on resonators 

that are clamped on more than one side is further determined by stress induced upon 

heating or cooling. Examples of such devices include bridges, membranes, or tor- 

sional resonators. The silicon nitride film used in the resonators discussed here has 

a coefficient of thermal expansion that is slightly lower than that of the silicon sub- 

strate, [30, 31, 681 so that heating induces a tensile stress in the film, which in turn 

yields an increase in resonance frequency for double-clamped structures. 

A reliable way to reduce temperature related errors is to conduct a differential 

measurement of two mechanically identical resonators. Only one of the devices is ex- 

posed to the sample while the other device provides a reference measurement. If both 

transducers are closely spaced on the same chip, the mechanical characteristics and 

their respective temperature are generally matched well enough to enable cancellation 

of thermal drift. 



Chapter 3 

Device Design 

3.1 Resonator design and modeling 

The design of resonators for this work was motivated primarily by the capabilities 

of the fabrication process and the requirements for optical readout and electrostatic 

actuation. The widest channels that could be fabricated with high yield at  1 pm 

depth were 20 pm wide. Figure 3-1 summarizes the four design variations that were 

fabricated and characterized, and important characteristics of the cantilever and tor- 

sional resonators will be discussed in the following sections. The first design shown 

in Figure 3-1 was used in conjunction with PDMS microfluidics to conduct the ini- 

tial proof-of-principle experiments [5 ] ,  while the remaining three device types were 

built in collaboration with Innovative Micro Technology1 and packaged using glass frit 

bonding. Given the great similarity between all three cantilever resonators, detailed 

analysis is provided here only for design 111, and it will be pointed out when there 

are significant differences to the multi-channel designs with smaller cross-section per 

channel. Most of the calculations in chapter 2 are specific to thin structures whose 

modes of vibration can be modeled well by pure bending. The results are not directly 

applicable to the case of torsional resonators, however certain qualitative predict ions 

can still be made. The mechanical characteristics of torsional resonators with non- 

trivial flexure cross-section are difficult to model analytically; finite-element modeling 

'Innovative Micro Technology, Santa Barbara (CA) 



Figure 3-1: Cantilever beams and torsional resonators with different fluid channel 
layouts were fabricated and tested. The microfluidic channels in all devices were lpm 
tall. 
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has therefore been used to calculate the resonance frequencies, and mode shapes of 

these devices. 

3.1. I Cantilever resonators 

The main advantages of the cantilever design are the simplicity of the readout by 

means of the optical lever method, and the well understood theory thanks to a 

wealth of studies in the field of atomic force microscopy. In addition, the geome- 

try of cantilevers and bridges is uniquely suited to being filled with one continuous 

fluidic channel. We found that filling is not reliable in geometries containing chan- 

nel junctions, since t he high surface area-to-volume ratio of these channels facilitates 

trapping of air in places where channels split or converge. 

The design of the lead channels that connect the resonator to the fluid inlets 

was dictated by the design rules of the package. Soft lithography in PDMS enables 

the fabrication of narrow microfluidic channels with near vertical sidewalls which 

can be aligned to a substrate with a narrow tolerance. The channel length and 

inlet separation (dimensions C & D in Figure 3-1) can therefore be made short; in 

particular the length C could, in principle, be reduced to approximately 100 pm, 

which would enable not only higher flow rates but also reduce the concern about 

sample depletion in kinetic measurements. The inherent width of the glass frit used 

to package the devices with glass microfluidics required long inlet and outlet channels 

for cantilever designs I1 and I11 and for the torsional resonators. After compression, 

the frit is between 300 and 400 pm wide, and additional alignment tolerances need 

to be taken into account because of the limited accuracy of the silk-screening process 

and the potential of misalignment during the glass frit bonding (c.f. chapter 4). 

The expected sensitivity for all types of resonators may be estimated using equa- 

tion 2.8, and the result S = 2 mA/s in units of mg/cm2 is listed in Figure 3- l .  S has 

the convenient interpretation that adsorption of S ng/cm2 yields a frequency shift of 

one part per million (1 ppm). The quoted figures are based on a simplified geome- 

try that neglects deviations from the const ant cross-section at the corners near the 

cantilever tip, which, in addition to fabrication tolerances, may cause the real device 
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Figure 3-2: The sensitivity of cantilever design I11 is most critically influenced by the 
wall thickness t. The channel depth d has less impact on sensitivity due to the lower 
density of the fluid compared to the wall material (1 g/cm3 vs. 3.2 g/cm3) and the 
smaller cross-section area occupied by the fluid. 

sensitivity to differ from the estimate. Nonetheless, the ratio ma/s indicates general 

trends that are helpful for the design. An important observation is that varying the 

planar resonator geometry generally has little impact on the sensitivity for a given 

set of design rules. The width of the border around the cantilever, Wl, is limited by 

the lithographic alignment accuracy, and the space between individual channels, Wa, 

is determined by the minimum line width allowed between etched features. Because 

of the low height of the channels, adding additional vertical features can not substan- 

tially increase the surface area. As far as the planar sensor geometry is concerned, 

sensitivity can be judged best by the fill-factor of the channel area divided by the 

area of non-wetted parts. Figure 3-2 illustrates the dependence of sensitivity on the 

channel depth, d, and the wall thickness, t. All other dimensions are based on the 

cantilever I11 design in Figure 3-1. The calculation assumes a density of 1 g/cm3 

for the liquid and 3.2 g/cm3 for the walls, which corresponds to the values of our 

fabricated devices when filled with aqueous solution. Due to the higher density and 

larger cross-section area of the wall material, the sensitivity is dominated by t while 



an increase in d from 0.5 pm to 5 pm only reduces sensitivity by -50%. 

The spring constant of the hollow cantilevers is of similar magnitude as that of a 

solid beam of the same total thickness. Finite element simulation yields k ~1 N/m 

for a force applied to the tip of the 300 pm long type I11 cantilever. Devices with 

subdivided channels are approximately twice as stiff, with k -2 N/m for the type 

I and type I1 desigm2 E=180 GPa and v=0.24 were used for the Young's modulus 

and Poisson's ratio of silicon nitride [35]. Figure 3.1.1 shows the design of a hollow 

cantilever with an L-shaped gold trace on the glass lid 70 pm above the resonator for 

electrostatic excitation. The white areas are coated with chrome and connected to a 

common ground. To minimize bending due to the stressed chrome layer, the metal 

has been removed near the base of the cantilever and only covers the tip; a thin trace 

along the center of the beam connects the chrome pad on the tip to the rest of the 

chip. 

The force developed by the electrostatic actuator depends on the gradient of the 

capacitance and on the applied voltage: 

The capacitance between two crossed lines of width wl and w2 separated by a gap x 

may be calculated using a semi-empirical model developed by Wong et al. [76]: 

This equation is valid if the two conductors are much thinner than wide, as in this 

case the effect of the fringe field can be described by a numeric gauge factor. The 

overlap area between the cantilever and the electrode is 30 x 63 pm and xo = 70 pm, 

so that C(xo) = 0.79 fF. The driving voltage V has the form V( t )  = VB + vac sin(&), 

which yields 

2Finite element calculations were performed with the ANSYS 5.7 software package. The geometry 
was meshed with 20 node 3D structural elements (solid186). 



Figure 3-3: A 300 pm long and 63 pm wide cantilever containing a 20 x 1 pm fluid 
channel. The L-shaped electrode for electrostatic excitation is located on the glass 
lid -70 pm above the resonator surface. All white areas are coated with a 50 nm 
thin layer of Chromium. 

for the force component at frequency w acting on the cantilever. VB is a static bias 

voltage that is applied in addition to the AC drive signal in order to increase the 

efficiency of the drive. Given the capacitance C(xo) and assuming a bias of 100 V, 

a force of -1 nN can be obtained. Since in reality the force is not concentrated at 

the cantilever tip the real amplitude is smaller than what would be predicted by F 

divided by the spring constant and multiplied by Q. 

Flow inside a vibrating fluidic channel gives rise to a Coriolis force as indicated in 

Figure 3-4. If the mass flow is sufficiently large and if the resonator is appropriately 

designed, the Coriolis force can be exploited to excite a torsional mode whose ampli- 

tude may then be used to measure the flow rate. [16] The 300 pm long cantilevers 



Figure 3-4: Flow inside a vibrating cantilever beam causes twisting due to the Coriolis 
force. 

Figure 3-5: First torsional mode of a hollow cantilever beam (design 111), f =322 kHz. 



with a single 20 pm wide fluid channel whose first mode is at -30 kHz possess the 

torsional mode shown in Figure 3-5 at 322 kHz.3 Due to the large difference in fre- 

quencies no resonant amplification occurs. This is also true for the wider devices with 

four parallel channels, whose first torsional mode is at -175 kHz. Since the fluid layer 

is very thin, the Coriolis force is weak even at high flow rates: The magnitude of the 

force per unit area, P, may be calculated from 

where w = W - 2t is the channel width, p the density of the fluid, and q is the 

volumetric flow rate given by 

d denotes the channel height, 17 is the dynamic fluid viscosity, and Lchannel is the total 

channel length; Pin and Pmt is the pressure at the inlet and outlet. Equation 3.5 

is based on the simplifying assumption that the channel can be modeled by parallel 

plates, which is justified since wld -10-20 for all of our devices. The Coriolis force 

acting on a device oscillating at 30 kHz with a maximum tip deflection of 1 pm and 

a flow rate of 1 nL/s is approximately 0.8 N/m.4 Integrated over a length 

of 300 pm this gives a total distributed force of 250 pN which, without resonant 

amplification, yields a maximum corner deflection of less than 1 pm. In conclusion, 

it can be said that the effect of the Coriolis force may safely be neglected in our 

resonat or design. 

3.1.2 Torsional resonators 

The torsional resonators shown in the last column of figure 3-1 are significantly stiffer 

and have a higher resonance frequency than the cantilever resonators. They consist 

Calculated by finite element method 
41 nL/s is considered a high flow rate under typical experimental conditions, since it requires a 

pressure drop of ~ 1 0 0  psi between inlet and outlet of the resonator. 



(a) First torsional mode, f =347 kHz. The 
two paddles vibrate in phase. 

(b) Second torsional mode, f =5 19 kHz. The 
two paddles vibrate with opposite phase. 
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(c) First transverse vibration mode, 
f =291 kHz. 

Figure 3-6: The first three modes of the two-paddle resonator are two torsional modes 
and one transverse vibration mode. The frequencies of all modes are sensitive to pre- 
stress, which has been assumed zero for the shown simulations. At 100 MPa tensile 
stress the simulated frequencies increase to 414 kHz for the transverse vibration (c), 
and 364 kHz and 558 kHz for the torsional resonances (a) and (b), respectively. 



Figure 3-7: Torsional resonator with three pads for electrostatic actuation. The device 
contains two 10 pm wide and 1 pm deep microfluidic channels. 

of two paddles that can resonate in phase, as shown in Figure 3-6(a), or out of phase, 

as shown in Figure 3-6(b). When operated in the out-of-phase mode, the resonator 

is balanced, meaning that little energy is lost through radiation into the substrate. 

When other damping mechanisms, most notably air damping, are small, optimizing 

the geometry can help to increase the quality factor and improve frequency resolution. 

In the presence of air damping, the quality factor generally improves with increasing 

resonance frequency (241. Due to the small dimensions and the high stiffness, the 

torsional resonators have much higher resonance frequencies than the 300 pm long 

cantilever beams. Typically, the mode in which the paddles oscillate out of phase has 

a natural frequency of ~ 6 0 0  kHz. 

Figure 3-7 shows an optical micrograph of the torsional resonator. Three elec- 

trodes suspended 20 pm above the chrome coated device surface enable electrostatic 

excitation of the different modes. The first torsion mode is favored if the two adjacent 

electrodes at the bottom of the image are driven in phase, and the second mode is 

excited most effectively by driving two diagonally opposing pads with the same signal. 



Besides the torsional vibration, the resonator can, in principle, also be operated a .  a 

doubly-clamped beam in transverse vibration. Driving the top and bottom pads on 

the left side while leaving the one on the bottom right unconnected would generate 

the vibration illustrated in Figure 3-6(c) at ~ 2 9 1  kHz. This mode is less preferred 

for practical purposes, since the detection with the optical lever method is more chal- 

lenging. For small torsional resonators, the simplified theory derived in section 2.1 

can only provide an estimate of the order of magnitude of the mass sensitivity. 

3.2 Mass transport 

A prerequisite for achieving high surface sensitivity with the suspended microchan- 

nel resonator is that the fluid layer is thin; this entails a small inner volume and a 

large aspect ratio of channel length to height. Consequently, sample molecules that 

have a high binding affinity to receptors on the channel wall can get rapidly depleted. 

Analyte depletion is a general concern for the detection of biomolecules in small vol- 

umes. Especially for t he accurate determination of kinetic rate constants under non- 

equilibrium conditions it is crucial to ensure that reaction rates are not dominated by 

mass transport limitations. Although a detailed analysis of the transport phenomena 

in thin fluid channels is not the main subject of this thesis, enough insight is given to 

underst and limit ations of the current design and to identify import ant design criteria 

for future iterations. 

The influence of flow rate, diffusivity, and sensor geometry on kinetic measure- 

ments has been studied extensively for commercial surface plasmon resonance based 

instruments whose flow chamber is a microfluidic channel of 50 x 500 x 2400 pm 

(h x w x I )  cross section.[43] Although fluid flow and binding in microchannels is al- 

ways governed by the same equations and boundary conditions, the mass transport in 

one micrometer tall channels is limited by a different mechanism than the transport 

in the SPR flow cell. The difference arises from the dramatically shorter diffusion 

time for biomolecules from the channel center to the wall: While transport of target 

molecules to a point on the surface of a 50 pm tall SPR channel is diffusion limited, 
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Figure 3-8: (a) The pressure drop Pin - Pat drives the parabolic flow profile. The 
channel is approximated as two parallel plates. (b) Illustration of a possible imple- 
mentation with the corresponding inlet/outlet and sensing regions. 

the limitation in a 1 pm channel is due to convection. These regimes are charac- 

terized quantitatively by the Peclet number, Pe = (vc $)ID, and the aspect ratio, 

1 / ( $ ) ,  where vc is the flow velocity at the center of the channel, D is the diffusion 

coefficient, and h and 1 is the channel height and length.5 In SPR, Pe>>l/($) for all 

large proteins, while for our device Pe=l/($). 

Fast diffusion compared to convection in the thin channel does not by itself im- 

ply that binding will be flow rate limited. Analyte depletion is also a function of 

the binding rate constant and the density of receptors on the walls. Figure 3-8(a) 

introduces the not at ion for the following anslysis. A possible implementation with 

the corresponding sections along the x-coordinate is shown in Figure 3-8(b). The 

pressure difference P,n - Pat generates a parabolic flow profile with the maximum 

velocity 

In Equation 3.6, 7 denotes the dynamic viscosity of the fluid. An analyte of 

interest, A, is present in the flow stream at concentration C(x,  y, t), which decreases 

continuously along the channel due to loss of analyte to the immobilized receptors. 

The reaction is modeled as 

'Typical numerical values are: D = ~ o - ~  cm2/s, vc=5 cm/s (both, SPR and our sensor). SPR: 
h=5 - cm, 1=0.24 cm, our sensor: h=l - cm, 1=0.03 crn 



with forward and reverse rate constants ka and kd. R is the free receptor concentration 

on the walls, which decreases over time from its initial value Ro while satisfying the 

rate equation 

The concentration profile evolves according to the diffusion/convection equation 

where D is the diffusion coefficient, and axial diffusion is considered negligible com- 

pared to the convective transport. The boundary conditions to Equation 3.9 are: 

C(O,Y, t) = Co, D E ~  y=k$ = =Fx, BR lim C(x, y, t) = 0 (3.10) 
x+00 

The equilibration time for most biochemical reactions is significantly longer than the 

convection time v,/ Ltot. Therefore, a quasi-stationary solution C(x, y ) can be found 

for any given time. Although the equation is non-linear due to the coupling of C and 

R at the channel walls, a worst case estimate of the sample depletion at t=O can be 

obtained analytically. Through appropriate scaling the result becomes independent 

of the particular sensor geometry: 

Equation 3.9 with the assumption of stationarity becomes 



Figure 3-9: Relative sample concentration in a channel cross section shortly after 
injection for three different reaction rates K. ~ = 1  represents a fast interaction. The 
axial position is measured by the number of times a target molecule entering at Z=0 
could diffuse from the channel center to the wall, with 100 2 1 rnm for a typical 
geometry and diffusivity. 

with boundary conditions 

lim c(5, @) = 0 
i+oo 

The dimensionless coordinate 5 corresponds to the number of times a probe molecule 

injected at the channel center could diffuse to the channel wall before reaching the 

axial position x. 

Equation 3.13 with the boundary conditions 3.14 has been solved analogous to 

Brown's method, [4] and the solution for three different values of the normalized 

reaction rate constant n is plotted in Figure 3-9. The illustrated length scales are 



typical for devices with a channel height of -1 pm and realistic values for flow rate, 

diffusivity and detector length (assuming 10- 100 kDa proteins and 1- 10 atmospheres 

pressure drop). The values of K. shown cover most biological systems of interest, with 

~ = l  representing a fast reaction, and ~ = 0 . 0 1  representing a slow reaction. The main 

difference between the three scenarios is their respective suitability for measurements 

of kinetic rate constants. Pure detection is always possible, since, even in the case 

of strong depletion, the walls will eventually saturate. In the case where ~ 2 1 ,  the 

sample is almost fully depleted after less than one characteristic length, which makes 

determining kinetic parameters difficult. If the channel height is increased to h 2 3  pm, 

the quadratic dependence of flow rate and diffusion time on h rapidly lead into a 

fully reaction limited regime in which the concentration distribution between inlet 

and outlet resembles that depicted in the inset in Figure 3-9. For slow reactions 

(~.=0.01), the mass transport limitation is much less significant even at h=l pm: 

After ten characteristic lengths, the sample concentration is still -90% of the injection 

concentration. 

3.3 Chip layout 

The sensor chips for the cantilever devices 11 and I11 as well as the torsional resonators 

described in Figure 3-1 were fabricated on the same wafer and packaged with the 

glass frit process described in section 4. Each chip contains two resonant sensors 

that share a common ground connection and are individually addressable through 

separate excitation electrodes. The fluidic connections for the two devices are also 

separate, with one large volume (-20 nL) microfluidic bypass connecting to the inlet, 

and another similar bypass connecting to the outlet of each of the two thin silicon 

nitride channels. One chip therefore requires a total of eight fluid inlets, which are 

made via through-holes that connect to tubes on the backside of the chip. 

Figure 3-10 illustrates the global layout of the sensor chip. The through holes 

are spaced on a 4 x 3 mm grid that enables sealing by standard size (-001) O-rings. 

Microfluidic channels in the glass lid are etched 50 pm deep and connect the inlets to 



the resonator; these channels are sealed by lines of glass frit. The frit has the ability 

to bond over metal traces as well as to seal over the thin silicon nitride channel whose 

surface is depressed by approximately 150 nm as a result of dishing of the CMP (see 

section 4). All electrical contacts except for the ground connection to the resonator 

surface are located on the glass lid where they are routed to bond pads on the edge of 

the chip without crossing the fluid channels. Since the glass frit that joins the silicon 

chip and the glass lid is a line pattern that covers a relatively small area, there is a 

narrow gap separating the two surfaces. This gap is filled on one side of the chip with 

colloidal silver particles. The particles aggregate after evaporation of the solvent and 

make an electrical connection between the chrome on the silicon chip (not shown) and 

a large gold pad on the glass lid. The resonator surface can now be tied to ground 

via a wirebond to the glass. The layout of the area to which the conductive silver 

paint is applied is indicated in Figure 3-10. 
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Figure 3- 10: Chip layout: Each die contains two independently addressable suspended 
microchannel resonators. Fluids are injected via through-holes in the silicon and flow 
to the resonator inlet (electron micrograph) through microfluidic channels that are 
sealed by glass frit. 





Chapter 4 

Fabricat ion and Packaging 

High sensitivity to surface bound mass in vibrating tube resonant mass sensors re- 

quires a large ratio of surface area to channel volume and wall thickness. The fabri- 

cation of the suspended microchannel resonators in this thesis is based on a sacrificial 

polysilicon process with low-stress low-pressure chemical vapor deposited (LPCVD) 

silicon nitride as the structural material. Channels with a total length up to 2 mm 

and a height of -1 pm were fabricated without noticeable slowing of the etch rate 

due to mass transport effects, which is often limiting in sacrificial silicon dioxide pro- 

cesses. The ability to complete the sacrificial release without the need for access holes 

along the channel not only simplified the process, but also avoids degradation of the 

sensitivity by the mass of an additional layer that would otherwise be required to re- 

seal the release holes. While the fabrication of micron- and sub-micron channels with 

sacrificial etching of polysilicon has been reported before, [2, 661 we are not aware of 

any prior demonstration of a process that can yield hollow resonators with the thin 

walls, long channels, and an interface to conventional microfluidics required for our 

work. 

Microfluidic packaging, in particular the use of micromolded poly(dimethylsiloxane) 

(PDMS) microfluidics, is facilitated by the use of a Damascene process which yields 

thin silicon nitride channels buried under a planarized wafer surface. In a conven- 

tional process, the silicon nitride channels would protrude out of the wafer surface 

by -2 pm. The channels would then be impossible to seal with packaging technolo- 



gies that can not conform to this topography, and released devices would be more 

susceptible to damage during contact lithography and backside processing. 

Suspended microchannel resonators were fabricated on standard six inch (100) 

silicon wafers and then packaged on the chip level with PDMS microfluidics or on the 

wafer scale by bonding the device wafer to a pyrex capping wafer. The fabrication of 

suspended silicon nitride channels is described in the following section, and modifica- 

tions to this process that pertain to a particular packaging method are pointed out 

in sections 4.2.1 and 4.2.2. [6, 71 

The two main functions of the first-level package are to enable efficient fluid de- 

livery and to provide contacts for electrostatic actuation of the resonators. Since 

the suspended microchannels are bulk micromachined, the electrodes can not be fab- 

ricated underneath the channels. Furthermore, the package has to be transparent 

in order to enable optical readout of the cantilever vibration; optics is the preferred 

method for this application since its low noise allows for the most precise measurement 

of resonance frequency without sophisticated on-chip electronics. 

4.1 Silicon process 

The process flow for the fabrication of suspended silicon nitride channels is illustrated 

in Figure 4-1. First, the channels were etched to a depth of 1 pm using reactive ion 

etching (RIE) in sulfur hexafluoride (Figure 4-l(a)). This etch was done in a South 

Bay Technologies RIE 2000 system at 35 mTorr, 50 W forward power, and 60 V DC 

bias. The wafers were then coated with 800 nm low-stress LPCVD silicon nitride 

(Figure 4- 1 (b)) followed by 1.5 pm LPCVD polysilicon. Low-stress silicon nitride 

was deposited from a 10:l ratio of dichlorosilane and ammonia in an SVG/Thermco 

7000 vertical thermal reactor at 775°C and 250 mTorr. A refractive index n=2.278 

was measured by multiple-angle ellipsometry1 at 632.8 nm; n - 2.2 is a characteristic 

value for low-stress silicon rich SizN,. Although the residual stress was not charac- 

terized in this process, literature values for films obtained under similar conditions 

Sentech SE400 ellipsometer 



Figure 41 :  Basic process for the fabrication of low-stress silicon nitride suspended 
microchannel resonators. 
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(a) After the CMP only the 1 pm deep chan- 
nels are filled with polysilicon, and the first 
silicon nitride layer is exposed on the wafer 
surface. 

(b) Surface topography after CMP. 

Figure 42: Channel pattern and surface topography after polysilicon CMP. 

Table 4.1: CMP parameters 

Machine Strasbaugh 6EC 
Slurry Cabot Semi-Spene 25 : H20 (1: 1) 
Table speed 25 rpm 
Chuck speed 40 rpm 
Down force 3.0 psi 
Rate 60 nm/min 

and with similar refractive index suggest a low tensile stress on the order of 50- 

100 MPa.[30, 681 The LPCVD polysilicon was deposited thicker than the depth of 

the etched trenches, so that subsequent removal of the layer by chemical-mechanical 

polishing (CMP) left the channels filled, as shown in Figures 4 1  (c) and 4-2(a). The 

depression of the channel area relative to the wafer surface, which is seen in the pro- 

filometer scan in Figure 42(b), is the result of a slight difference in polishing rates 

between silicon nitride and polysilicon as well as the compliance of the polishing pad. 

This phenomenon is usually termed "dishing" in the CMP literature, and various 

techniques have been developed to minimize its effect in Damascene processes. [8, 331 



Figure 4-3: Defects in the second silicon nitride layer on the wafer backside lead to 
etching of the polysilicon underneath. The circularly undercut areas later delaminate 
and cause high particle counts. This problem does not occur if the nitride is stripped 
from the backside before the sacrificial etch. 

The degree of dishing observed in our channel structures did not cause any compli- 

cations with subsequent processing steps or with the operation of the device. 

Table 4.1 summarizes the parameters used for the polysilicon CMP. Since the pads 

and slurry were not optimized for selectivity to silicon nitride, the process needed to be 

timed to stop as soon as the polysilicon was completely removed. Excessive thinning 

of the silicon nitride due to over-polishing was not a concern since the polishing rate 

as well as the initial layer thickness was uniform to within 10% across a six inch wafer. 

The timing was optimized once at the beginning of each lot by polishing a monitor 

wafer with frequent visual inspection until no patches of polysilicon remained; even 

nanometer thin residues were easily discerned from silicon nitride due to the metallic 

appearance of the poly and the contrast in hydrophobicity, which caused water to 

peel off from the silicon and collect in areas where the hydrophilic silicon nitride had 

been exposed. After the CMP, a second layer of low-stress LPCVD silicon nitride was 

deposited to close the microchannels (Figure 4l(d)),  and holes were etched into this 

layer to provide access to the polysilicon underneath (Figure 4l(e)). The polysilicon 

was then dissolved in a six molar aqueous solution of potassium hydroxide (KOH) at 



Figure 4-4: Electron micrograph showing three 300 pm long cantilevers, each con- 
taining six parallel 8 pm wide and 1.2 pm deep fluid channels. The total volume 
inside each resonator is -30 pL. The inset reveals the narrow gap between the top 
and bottom silicon nitride diaphragms that form the cantilever. 

80°C, as illustrated in Figure 4-l(f); this etch took approximately 20 h to complete, 

which is consistent with the etch rate we observed for the (100) plane of bulk sili- 

con in KOH under similar conditions. The top nitride layer had been removed from 

the wafer backside by RIE prior to the sacrificial release, so that the polysilicon was 

stripped and the lower layer of silicon nitride was revealed. Omitting this step often 

gave rise to circularly undercut spots as shown in Figure 4-3 due to small defects 

in the top nitride that enabled the KOH to attack the polysilicon layer sandwiched 

between the first and second nitride film. Delamination of these areas later caused 

unacceptably high particle counts. 

The long polysilicon etch was followed by another patterning step on the silicon 



nitride to create the outline of the resonators and to define the locations of through- 

wafer holes for fluid injection ports. RIE was used to etch through both nitride layers 

on the front side of the wafers, and through the one remaining layer on the backside, 

as illustrated in Figure 4-l(g). Depending on the backside mask, the resonators were 

released either from the front side, or, as shown in Figure 4-l(h) , from both sides of 

the wafer. Photoresist was usually drawn into the hollow channels by capillary action, 

but the resist could easily be removed using a mixture of sulfuric acid and hydrogen 

peroxide (Piranha solution, 3:l H2SO4:H2O2). The 800 nm thin channel lids rarely 

cracked or collapsed despite the use of contact alignment and backside processing, 

during which the wafers were placed upside-down on vacuum chucks. The average 

yield after the RIE was typically better than 90%. 

Finally, the suspended channels were released by anisotropic etching of silicon 

in KOH (6 M) or in tetramethyl ammonium hydroxide (TMAH) solution (10% in 

~ a t e r ) , ~  both at 80°C. An electron micrograph of an array of three hollow cantilevers 

is shown in Figure 4-4. The sacrificial layer etch and the final release of the suspended 

structures was carried out in two separate steps in order to avoid excessive undercut 

due to the finite selectivity between (100) and (111) planes of single crystal silicon 

in alkali etchants: the total etch time in a combined release process is determined 

by the time required to dissolve the sacrificial layer, which, given our channel design, 

was approximately four times longer than that for a through-wafer etch. For channel 

designs with a total length up to -1 mm, a single release at the end of the process 

would be sufficient. 

4.2 Packaging 

4.2.1 PDMS packaging 

The packaging method described in this section is based on soft lithography in 

poly(dimethylsiloxane) (PDMS) as described by Xia and Whitesides [78]. Thin gas- 

2TMAH was used in conjunction with chromium metallization for the glass frit bonding process 
described in section 4.2.2 
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Figure 4-5: Fluid is delivered to the resonator through a -50pm thin PDMS mi- 
crofluidic layer. The small gap between the glass carrier and the chip enables efficient 
electrostatic excitation of the resonator. The PDMS is bonded to the glass in selected 
areas via an intermediate layer of SU-8. 

kets of PDMS are micromolded and then bonded in selected areas to a metallized 

and patterned carrier substrate; the substrate is glass, which enables the use of o p  

tics for the resonance frequency readout. The new method combines many of the 

advantages of conventional soft lithography and thin elastomer gaskets on rigid s u p  

ports [32, 50, 511 with the robustness and substrate independence of intermediate 

layer bonding. While the process flow was specifically developed for the resonant 

sensor that is the basis of this work, the result is a general technique which can be 

used to package other microfluidic devices. The silicon device fabrication prior to 

packaging is carried out as described in section 4.1, with the additional deposition of 

25 nm gold on a 5 nm thick chromium adhesion layer onto the finished device surface. 

The metal was deposited by electron beam evaporation after the final release etch. 

Bending of the cantilevers as a result of residual stress in the metal was minimized by 

evaporating layers of matched thickness on both sides of the device. Figure 4 5  illus- 

trates the components of the fully packaged device. Fluid enters the sensor chip from 

the backside via a through hole in the silicon substrate. On the front side, the sample 

is distributed through 50 pm tall microfluidic channels which are formed by a thin 
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Figure 4-6: Thin PDMS gaskets are fabricated by micromolding against an SU-8 mas- 
ter and then transferred to a metallized and patterned carrier substrate. The PDMS 
is transferred via a thin layer of SU-8. A permanent bond is formed in lithographi- 
cally defined areas so that excess PDMS can be easily removed in areas required for 
wire bonding. The final package is encapsulated with a 100% solids gap filling epoxy. 



Figure 4-7: A thin gasket of PDMS separates the microfluidic channels (1) from areas 
filled with a solvent-free epoxy (2). The epoxy bonds the gold coated device chip to a 
glass substrate containing electrodes (3) for electrostatic actuation of the resonator. 

PDMS gasket. The gasket is bonded to a glass substrate on which the excitation elec- 

trode has been patterned. The PDMS is attached to the glass via a thin intermediate 

layer of SU-8 photoresist. Since the wirebond pads need to stay clear, the bonding is 

carried out locally. Fabrication of the thin gasket starts by spin coating PDMS onto 

an SU-8 master and curing as illustrated in Figure 46. After curing, the elastomer is 

cut with a razor blade, generating square islands which are to be transferred to a new 

carrier. The receiving carrier in this work has been glass with patterned aluminum 

traces, and any other material to which SU-8 adheres may be used if optical clarity is 

not required. Bonding is carried out in two steps: First, a drop of SU-8 is dispensed 

onto the receiving substrate, soft-baked, and squeezed to a thin film with the PDMS 

coated master. Second, the stack is cooled to room temperature and the islands to be 

transferred are exposed to UV light. When the substrates are separated, the PDMS 

adheres strongly to the new carrier and peels of from the master. Developing in 

PM Acetate finally lifts off the PDMS in areas where the SU-8 was not cross-linked. 

On the chip side, the PDMS also can not be bonded directly since the surface is 

coated with gold. Bonding of the two substrates is achieved by bringing them into 



contact and then dispensing a small drop of solvent-free epoxy3 onto the gap. The 

PDMS gasket seals against the chip surface and prevents the epoxy from entering the 

microfluidic channels. In order to ensure good wetting and adhesion the PDMS is 

plasma activated before performing this step. Finally, the device is mounted onto a 

printed circuit board (PCB) and wirebonded. The electrical connection to the gold 

surface of the silicon chip is made through application of a conductive filler that is 

dispensed in an area not filled by the epoxy. 

Figure 4-7 illustrates the layout of the different package components: The PDMS 

gasket surrounds the microfluidic channels and a rectangular cavity for the resonator 

in a 50 pm wide racetrack pattern. The areas outside the channels are filled with 

epoxy, which has good adhesion to the substrate carrying the PDMS gasket as well as 

the gold surface of the resonator chip. The white traces in the upper right of Figure 4- 

7 are 100 nm aluminum lines located on the glass lid -50 pm above the surface of the 

silicon chip; these are used for electrostatic excitation of the resonator. The racetrack 

design has the advantage of minimizing the area occupied by PDMS and maximizing 

the area available for bonding. In addition, the package is highly tolerant to minor 

particulate contamination; particles only prevent bonding if they interfere with one of 

the PDMS features, which is rare because of the small area of the gasket. The epoxy 

easily flows around and encapsulates small particles. The quality factor of a resonator 

packaged by the above method is limited by squeeze film damping due to the narrow 

gap and the air at atmospheric pressure that surrounds the vibrating beam. Figure 4- 

8 shows the frequency response of a 300 pm long cantilever. The quality factor of 

this device was limited to 25, although other identical resonators that had not been 

packaged exhibited a Q of -90 when driven with an electrode consisting of a sharp 

tip that was positioned close to the cantilever using a micrometer stage. The gap 

size can be adjusted to yield the best trade-off between squeeze film damping and 

electrostatic drive efficiency, yet air damping will always limit the quality factor when 

a polymer package is used. 

-- 

3Epotek 377 from Epoxy Technology, Billerica (MA) 
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Figure 48: Squeeze film damping of a PDMS packaged cantilever resonator with a 
gap of <50 pm limits the quality factor to -25. As the gap size is increased, Q 
eventually rises to -90 and is then limited by viscous drag. 

Glass packaging 

A hermetic package based on inorganic materials provides a wider range of chemi- 

cal compatibility and enables better frequency resolution than a polymer package; 

systematic errors and noise due to air currents, humidity or particles are completely 

eliminated, and a significantly higher quality factor may be achieved through vac- 

uum encapsulation. The process flow described in section 4.1 has been combined 

with a wafer-scale approach to fabricate vacuum encapsulated suspended microchan- 

nel resonators with microfluidic interconnects etched into a glass cap.* The extended 

process flow chart including the fabrication of the pyrex capping wafer is depicted in 

Figure 49. The silicon process follows the same sequence as described above up to 

step (c) in Figure 49. After dissolving the sacrificial polysilicon layer in hot potas- 

sium hydroxide the wafers were rinsed and dried, and a 50 nm layer of chromium was 

deposited by ion beam deposition. The purpose of the chromium layer is to provide 

high reflectivity for the optical readout and, at the same time, to serve as an elec- 

trode for electrostatic actuation (Figure 49(d)). The chromium was then patterned 

'process development was done in collaboration with Innovative Micro Technology (Santa Bar- 
bara, CA) 
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Figure 49: Process flow for fabrication and wafer-level vacuum packaging of sus- 
pended microchannel resonators. 



in order to minimize stress on the resonator and to remove the metal from all areas 

that would later be in contact with the sample fluid. We subsequently dry etched 

through both silicon nitride layers to create the resonator outline and open areas for 

through-wafer holes for sample delivery. The backside of the wafers was also pat- 

terned and etched in the same step, thus enabling etching of the fluid vias from two 

sides (Figure 4-9(e)). Finally, the resonators were released by bulk micromachining 

in tetramethylammonium hydroxide (TMAH), which is compatible with chromium 

metallization (Figure 4-9(f)). 

The first level packaging for the suspended microchannel resonators was done on 

the wafer scale: A glass wafer providing microfluidic channels as well as electrical 

interconnects for electrostatic actuation was attached to the device wafer by glass frit 

bonding. Glass frit has the ability to bond over metal traces and, at the same time, 

maintain a good vacuum seal for extended periods of time. [60] Fabrication of the glass 

capping wafer required etching deep ( ~ 5 0  pm) recesses to form microfluidic channels 

and cavities for the resonators. Furthermore, electrodes for electrostatic actuation 

needed to be integrated, and hard spacers of ~ 2 0  pm height had to be formed to 

limit the compression of the glass frit during bonding. The mask for the deep channel 

etch in hydrofluoric acid (HF) was formed by a silicon wafer which was first anodically 

bonded to the glass, then etched back to 20 pm in potassium hydroxide and patterned 

using deep reactive ion etching (DRIE) (Figure 4-9(g)). The glass wafers were then 

immersed in 49% hydrofluoric acid for seven minutes, thereby etching the exposed 

pyrex isotropically to a depth of 50 pm. A similar method has been employed by 

Corman et al. [lo] for deep wet etching of Borosilicate glass; however, their work 

used a masking wafer of full thickness that had been etched anisotropically, resulting 

in less precise pattern definition. We preferred the silicon bonding and etch-back 

approach over the use of other alternatives for its good adhesion, low undercut, and 

low processing temperature. The use of metal masks using evaporated or sputtered 

chromium/gold has also been reported in the literature; however, the edge adhesion of 

a Cr/Au mask in HF depends on the exact pre-deposition cleaning protocol, residual 

stress in the metal film, and pin-hole density. LPCVD polysilicon on the other hand 



Figure 410: Metal traces were patterned inside of 50 pm deep isotropically etched 
recesses in the glass capping wafer. Good patterning fidelity was obtained for traces 
that were 50 pm wide and separated by at least 200 pm. The traces constitute 
electrodes for electrostatic actuation of the resonators. 

generally adheres well to pyrex substrates, but the high process temperature often 

leaves the wafers warped which would have complicated many of the subsequent 

steps.' 

After the deep glass etch (Figure 49(h)), the masking layer was further reduced 

by DRIE to leave only a sparse distribution of silicon islands; these formed the hard 

spacers required by the glass frit bonding process (Figure 49(i)) to limit the com- 

pression of the frit. Last, a tri-layer stack of chromium, molybdenum and gold was 

deposited (Figure 49(k)) by ion beam deposition. The chromium served as an adhe- 

sion layer, and the purpose of the molybdenum was to prevent diffusion of chromium 

into the gold during the glass frit bonding. The metal film was patterned (Figure 4 

9(1)) and exhibited good step coverage over the etched features in the glass, as shown 

in Figure 410. 

After the glass frit layer had been deposited by silk-screen printing (Figure 4 

9(m)), the device and the capping wafer were bonded under vacuum at 425°C (Fig- 

5We conducted test depositions of LPCVD polysilicon on six inch pyrex wafers and observed 
deformation by several millimeters even at a deposition temperature as low as 560°C. 
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Figure 411: The released and bonded device wafer can be die sawed without damag- 
ing the resonators. Two cuts into the silicon are made to reveal the bond pads prior 
to separating the individual chips. The silicon above the bond pads has been recessed 
by -300 pm as part of the release etch. 

ure 4-9(n)). Once bonded, the wafers could be die sawed without damaging the 

resonators. The dicing was done in two steps: First, two cuts were made along the 

streets between columns of dies; these cuts were only deep enough to go through the 

silicon wafer in order to reveal the bond pads on the glass, as shown in Figure 411. 

The loose silicon between dies was then removed and the full wafer stack was cut 

to separate the individual chips. At the end of the process, a colloidal silver paste 

was applied to the narrow gap between the pyrex and the silicon chip, as shown 

in Figure 4-12. The particles aggregate after evaporation of the solvent and make 

an electrical connection between the chrome on the silicon chip surface and a large 

gold pad on the glass lid. This connection makes it possible to contact the resonator 

surface via a wirebond pad on the glass. 

The finished devices had vacuum encapsulated resonators with quality factors up 

to 700 in the case of 30 kHz cantilever beams (Figure 413(a)), and Q - 1400 for the 

600 kHz anti-symmetric mode of the twepaddle torsional resonators (Figure 413(b)). 

Comparing the quality factor of vacuum packaged devices to that of unpackaged de- 

vices in a vacuum test chamber reveals that the pressure inside the on-chip cavity 

is -1 Torr. Therefore, damping is still limited by viscous drag due to residual gas. 

Although the wafer bonding was carried out under high vacuum (P < 1 mTorr), the 

large surface area-tevolume ratio of the on-chip cavity causes significant pressure 

build-up as a result of outgassing. Sub-millitorr vacuum encapsulation in rnicroma- 

chined devices has been achieved by various groups through the use of integrated 

getters to trap residual gas [59, 641. 



Figure 4 12: At the end of the process, a colloidal silver paste is applied to the narrow 
gap between the pyrex and the silicon chip. The silver particles make an electrical 
connection between the chrome on the silicon chip surface and a large gold pad on 
the glass lid. 
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(a) Frequency response of a vacuum pack- 
aged cantilever. 
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(b) Frequency response of a vacuum pack- 
aged torsional resonator. 

Figure 413: Cantilevers packaged by glass frit bonding under vacuum show a quality 
factor up to -700 (a), and torsional resonators with higher resonance frequency have 
a Q of -1400 (b). 





Chapter 5 

Measurement instrument at ion 

5.1 Frequency measurement 

5.1.1 Comparison of measurement techniques 

The natural frequency of micromechanical resonators may be obtained from obser- 

vation of the amplitude or phase of the resonator response to an external driving 

force. When high accuracy or speed are not a concern, it is often convenient to drive 

the system over a range of frequencies and to determine the centroid of the resulting 

amplitude spectrum from a non-linear fit. This measurement can be easily performed 

with an off-the-shelf network analyzer, however the frequency resolution of such in- 

struments is typically limited to a few Hertz at scan times of several seconds, which 

is not sufficient for most resonant sensor applications. A more precise technique is to 

measure the phase lag between drive and response at  a fixed frequency, as illustrated 

in Figure 5-la. The driving frequency may be tuned to be close to the resonance in 

order to obtain the best sensitivity. Only one frequency reference with high stability 

is required, and measurement errors are entirely due to phase noise at the output of 

the resonator. Any function generator with a temperature controlled crystal oscil- 

lator as time base is usually sufficient to not introduce additional errors. The main 

drawback of the fixed-frequency method is its limited dynamic range, which is on the 

order of the bandwidth of the resonator. 



Figure 51: Three phase-based methods for measuring the natural frequency (wo) of 
a micromechanical resonator: (I) uses an open-loop measurement of the phase shift 
between a fixed drive signal and the response to determine wo. (11) and (111) are 
closed-loop tracking circuits. In (11) , a voltage controlled oscillator (VCO) maintains 
a set phase relationship between input and output of the resonator. (111) uses positive 
feedback to create a freerunning oscillator whose frequency matches wo. 

The dynamic frequency range may be extended by using feedback, as shown in 

Figure 5 l b .  A controller compares the measured phase to a setpoint and adjusts 

a voltage controlled oscillator (VCO) to maintain a fixed phase difference between 

input and output of the resonator. If the setpoint is zero and the output signal is 

phase shifted by ninety degree, as shown in Figure 51, the VCO will always track the 

natural frequency of the resonator. The frequency noise is governed by phase noise due 

to thermal fluctuations as well as the performance of the voltage controlled oscillator. 

Analog implementations of the phase-locked-loop approach are often limited by the 

need for a tunable and highly stable frequency source. 

An alternative method to obtain wide dynamic range without the need for a high- 

stability function generator is depicted in Figure 51c. Here the resonator is the 

frequency determining element of an oscillator circuit that is formed by connecting 

the phaseshifted and amplified output signal back to the actuator, so that the overall 

loop gain is greater than one and has zero phase at wo. After start-up the loop gain 

is reduced and a stable oscillation amplitude is maintained by an automatic gain 

control circuit. The physical limit on resolution with the free-running oscillator is 



the same as for the other two measurement techniques, since frequency jitter at the 

output is caused by phase noise blurring the frequency at which the criterion for self- 

oscillation is met. The next section will give a more detailed explanation of the noise 

characteristics as well as the influence of the loop parameters on the stability of the 

feedback oscillator. 

5.1.2 Phase and frequency noise in harmonic oscillators 

All oscillator systems generally contain a non-linear element to limit the amplitude of 

oscillation; nonetheless, an analysis based on linear systems theory can provide some 

important insights. If the amplitude is limited by active control of the feedback gain, 

as shown in Figure 5-lc, the influence of the gain controller may be neglected for 

short times, so that the system is effectively linear and is represented by the diagram 

in Figure 5-2. [69] The resonator has the complex frequency response 

and the closed loop system is described by 

where the gain parameter K has units of N/m. The feedback phase 4 is tuned 

manually to make the total loop phase NO', and K is adjusted by the gain controller 

to minimize the term j w ,  which represents the damping. When 4 z n/2 and with K 

well adjusted, the closed-loop system behaves like a very high quality resonator whose 

resonance frequency is equal to wo. For q5 # n/2, the term - cos 4 in Equation 5.2 

gives rise to a dependence of the center frequency on the gain K. The term N j w  in 

Equation 5.2 represents the damping, and the effective quality factor can be identified 



which holds for frequencies w = wo and q5 = 7r/2. The only external input to the 

system is a random force that causes Brownian motion of the mechanical resonator. 

Due to the high effective quality factor - Q' is typically on the order of lo6 to lo8 

- the output is a very pure sine wave of angular frequency wo. The output referred 

noise may be expressed in terms of amplitude and phase modulation: 

where 6A and 64 represent amplitude and phase noise, respectively. The instanta- 

neous oscillation frequency is defined as 

and its power spectral density (PSD), SGG(w),  is related to the PSD of the phase by 

Analogous to section 2.3.1 it can be shown that amplitude and phase noise contribute 

equally to the distortion of the signal. The total noise power is equal to the power 

of x itself, since the 'signal' that is generated by the oscillator is nothing but narrow 

band noise. The power spectral density of Sxx (w)  is therefore 

where S f f  is the white noise force given by Equation 2.16. The phase noise PSD is 

given by 
;sxx(w)  - - -- 1 Sxx(w) 

S4"w) = 2n 1" -m s,,(w)~w 2 



Figure 5-2: Noise in the free-running oscillator is caused by Brownian motion (Sff) 
and noise in the displacement sensor (Sdd). 

where (x:,~) is the mean square amplitude of oscillation. Combining equations 5.8 

and 5.6 and integrating over the measurement bandwidth yields 

A simple analytical expression for the noise results if the measurement bandwidth 

is restricted to an interval [wl, w2] such that wl  >> wo/Q' and w2 << wo. The first 

condition requires that the measurement interval is shorter than the inverse of the 

oscillator linewidth, which is usually in the range of a few millihertz. To fulfill the 

second condition frequency measurements need to be taken at a rate much slower 

than the oscillation frequency itself. The approximation IT(jw) l 2  R 8 (wo - u ) - ~  

then leads to the result 

Thermal noise: (g ) th = / (w2 - wl)  ~ B T  
2nw0kQ (xzsc) 

where Sf = (4kBTk)/(Qwo) (equation 2.16) has been inserted. Equation 5.10 is an 

upper bound on the noise level, over-estimating the true value by more the closer 

the measurement band extends toward low frequencies. Equation 5.10 confirms that 

the physical noise limit for the oscillator is the same as that in equation 2.21 with 

($2,) = Q Folk and (w2 - wl) = 27~17. 

Brownian motion accounts only for part of the frequency noise in resonant trans- 

ducers. Depending on the implementation, the displacement sensor also contributes 



significantly to the error. Displacement sensor noise may be described in terms of 

the corresponding output referred phase noise density, which can then be converted 

to frequency noise using equation 5.6. To calculate the phase noise at the output we 

assume that the gain K has been adjusted so that the effective quality factor Q' is 

very high, and the oscillation amplitude ($2,) remains constant over a large number 

of cycles. The power spectrum of the output signal x( t )  is then given by the spectra 

of the two white noise sources S f f  and Sdd filtered by their respective closed-loop 

transfer functions. S f  represents the force noise responsible for Brownian motion, 

and Sdd is the PSD of the displacement sensor noise. The frequency response for Sdd 

The frequency noise due to the displacement sensor is now given by 

Detector noise: (:), = 1 " [ 1 ~ ;  - W ;  w2 - WI 
27T(x:,,) 3 w,2 

+ 
4Q2 

In most cases the first term in the sum will be negligible so that the detector noise is 

attenuated linearly with Q. 

5.1.3 Implement at ion 

The measurement of resonance frequency is based on measuring the resonator vi- 

bration in an oscillator circuit. Figure 5-3 illustrates the measurement setup. The 

frequency is derived from the displacement signal by means of a digital counter. 

The same signal is also phase shifted, amplified, and connected back to the biased 

drive electrode; this completes the oscillator configuration described in section 5.1.1. 

The phase shifter was implemented by a first-order all-pass filter adjusted to provide 

4 = n/2 at the resonance frequency. The amplifier gain was set by the output of a 

PID-controller operating on the difference between the rms oscillation amplitude and 

a manually adjusted setpoint signal. 

In order to obtain the most accurate measurement of the resonance frequency, it 
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Figure 5-3: The vibration of the resonator is measured by the optical lever method. 
The optical deflection signal is applied to the drive electrode to form an oscillator 
circuit, and a digital counter measures the oscillation frequency. 

is important for the displacement sensor to have very low noise. One of the simplest 

techniques to measure the out-of-plane deflection of micromechanical devices with 

high precision is the optical lever method, which is widely employed in atomic force 

microscopes. A laser beam is focused onto a spot on the device that experiences a 

large angular deflection. In the case of a cantilever, for example, this would be near 

the tip, while a double clamped bridge yields the highest signal to noise ratio when 

measured between the center and the support. The angle of reflection is measured by 

a split photodiode, which is used as a position sensitive detector. Note that although 

Figure 5 3  shows the laser coming from the bottom side of the silicon chip, it can be 

positioned on either side and the actual measurement configuration was implemented 

with the optics above the resonator. 

The optical lever setup for resonance frequency measurements was laid out as 

shown in Figure 5-4. The focused beam is perpendicular to surface of the device, and it 

is narrow enough to not get obstructed by the excitation electrode. Two resonators on 

a single chip can be measured simultaneously through two independently positioned 
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Figure 54:  Ray diagram of the dual-beam optical lever system. The vibration of 
two resonators is detected with two independently positioned, orthogonally polarized 
laser beams. 



and orthogonally polarized beams. The light source is a single low-noise laser diode 

module (Coherent ULN, 635 nm CW, 5 mW) whose output is split by a polarizing 

cube beamsplitter into the s- and the p-polarized components. Each of the two beams 

is deflected via an adjustable mirror before the two are re-combined to a common 

path by a polarization insensitive plate beamsplitter. Next, a neutral density (ND) 

filter attenuates the light to -100 pW for each polarization, and the intensity drops 

by another 50% after the second plate beamsplitter in Figure 5-4. The purpose 

of attenuating the laser intensity is to prevent excessive heating of the resonator; a 

300 pm cantilever with chromium metallization will warm up by w3"C when a 50 pW 

laser spot is focused onto its tip. 

The objective lens is a combination of an achromatic doublet and a positive menis- 

cus lens with a total effective focal length (EFL) of 50 mm. This lens combination 

has diffraction limited performance even for oblique rays. After reflecting off the sur- 

face of the micromechanical resonator, the beam is re-collimated by the objective at a 

different position, and the lateral shift is proportional to the effective focal length and 

the angle of reflection. While the deflection sensitivity of the system increases with 

increasing focal length, the spot size at the focal plane also increases proportionally. 

The beamsplitter now separates the path of the incident and the reflected rays, and 

the latter are directed towards the split photodetector via a cylindrical lens. Focusing 

the light in the direction perpendicular to the expected movement eliminates the need 

for detector alignment along this axis. A polarizing cube beamsplit ter transmits the 

p-polarized beam towards the detector for one resonator, while the s-polarized beam 

is reflected at 90" towards the detector for the other resonator. 

When properly aligned, the channel separation after the detection beamsplit t er 

exceeds 60 dB.' In addition, the initial resonance frequencies of the two devices on a 

chip typically differ by ~ 3 % ~  which is more than the width of the resonance peaks. 

Therefore, channel cross-talk when measuring frequency is zero for all practical pur- 

poses and the signal of one sensor does not noticeably degrade the resolution of the 

other. 

'Manufacturer specification for the polarization purity. 
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Figure 5-5: Sensitivity and noise floor of the optical lever setup are determined from 
the noise spectrum of an undriven cantilever. The dashed line represents the equiva- 
lent deflection noise of the detector. Q=700. 

The deflection sensitivity not only depends on the geometry of the optical lever 

setup, but also on the intensity of the reflection and the alignment of the detector. If 

the spring constant of the resonator is small and its value known, the Brownian motion 

may be exploited to calibrate the detector: the thermal fluctuation (x2) is given by 

the equipartition theorem (Eq. 2.14) on one hand, and it may also be calculated from 

the noise measured at the detector output. Comparing the two calculations yields the 

scaling (in units of nm/V) that relates the PSD amplifier output to the displacement. 

Figure 5-5 shows the power spectral density (PSD) of the deflection signal for a 

cantilever (Q 700) with the electrostatic drive turned off. The PSD has been fitted 

with the transfer function of a second order harmonic oscillator, and the dashed line 

represents the offset obtained from the fit. The offset represents the noise contribution 

due to the detector. The y-axis has been calibrated so that the area under the fit 

without the offset matches the magnitude of the thermal vibration predicted by the 

equipartition theorem. The noise spectrum in Figure 5-5 and equations 5.10 and 5.12 

reveal that Brownian motion is limiting the frequency resolution. When operated 

at 500 nm rms oscillation amplitude, equation 5.10 predicts a maximum frequency 

resolution of 0.08 ppm for this resonator (k-1 N/m, bandwidth=lO Hz). 
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Figure 5 6 :  The power spectral density of frequency noise is white for measurement 
time scales shorter than -10 s. The measurement error at low frequencies is domi- 
nated by drift. 

The power spectral density of frequency noise plotted in figure 5-6 reveals that 

there are two domains with distinct noise characteristics: At frequencies that are 

0.1 Hz or more from the carrier, i.e. the measurement time scale is no longer than 

10 s, the noise spectrum is white and conforms with equations 5.12 and 5.10, although 

the absolute magnitude is approximately five times larger than the theory. Error 

sources that were not taken into account in the estimation are the measurement and 

triggering error of the frequency counter, noise introduced by the amplifier and phase 

shifter , and performance degradation due to the limited accuracy of phase adjustment 

in the feedback network. 

At frequencies below 0.1 Hz, the measurement accuracy is limited by drift, which is 

best characterized in the time domain. The systematic nature of long-term instability 

prevents its reduction by narrowing the measurement bandwidth. At the same time, 

drift of non-random origin such as, for example, temperature fluctuations, may be 

suppressed by conducting a differential measurement, as shown in Figure 5-7. To 

attain the best common mode rejection, the reference signal fWf(t) is offset and 



scaled to most closely approximate the sense signal, f sense (t) : 

The coefficients a and b are determined by linear least squares regression, and ~ ( t )  

is the residual error. If systematic errors are cancelled completely, the histogram of 7 

has a Gaussian distribution. Figure 5-7 represents a typical differential measurement 

in which one resonator was filled with liquid. The frequency over time was referenced 

to and scaled by the first datapoint in each trace. A small offset was artificially added 

in order to separate overlapping traces on the plot. The difference signal represents 

the residual noise, ~ ( t ) ,  in Equation 5.13. The residual noise after subtraction of the 

reference from the sense signal has a Gaussian distribution, indicating that systematic 

errors have been significantly reduced. The standard deviation of the residual noise 

represents the long term frequency stability. Values on the order of 0.1 ppm over 

one hour have been measured with dry resonators, and -0.5 ppm was observed in 

continuous flow. The noise with flow is higher in part because of numerous small 

frequency jumps which were not observed with the same device when it was dry. 

Understanding the origin of these jumps requires further investigation. 

5.1.4 Cantilever heating 

Heating is a potential concern with displacement sensing by the optical lever method. 

The high aspect ratio of the suspended channel results in good thermal insulation 

from the substrate, and even low levels of heat generation can give rise to excessive 

temperatures. The approximate temperature rise due to illumination by the readout 

laser may be calculated from the laser power and the thermal conductivity of the 

cantilever. The beam is modeled as a one dimensional slab that is heated on the 

free end and held at constant temperature where it is attached to the substrate. At 

steady state, the temperature profile is linear and the temperature rise at  the free 

end is given by 
7 
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Figure 5-7: Drift may be suppressed by conducting a differential measurement. The 
residual noise after subtraction of the reference from the sense signal has a Gaussian 
distribution, indicating that systematic errors are significantly reduced. 

where L is the length of the beam and P is the heating power applied to the tip. K-' 

denotes the thermal resistance per unit length. For the hollow cantilevers considered 

here, K is dominated by heat conduction through the channel wall, and for the 

cantilevers of type I11 in Figure 3-1 with nNitid,=15-30 K takes a value of 1.6- 

3.1 . Therefore, the temperature rise at L=300 pm is -190.10~ K/W. This 

is a worst-case estimate that neglects cooling due to fluid flow inside the cantilever. 

Convective heat transport alters the temperature profile along the suspended channel, 

however the temperature distribution throughout the cross-section is approximately 

uniform even at a high flow rate. Temperature spreads through the thickness of the 

fluid layer with the time constant 

where n, p, and C .  are the heat conduction coefficient, the density, and the heat 

capacity of water. For a channel thickness d=l pm, Equation 5.15 yields rd =7 p, 

corresponding to a distance of -350 nm at a flow of 1 nL/s. Since this distance is 



short compared with the extents of the device, the fluid can be regarded as being in 

thermal equilibrium with the device walls. 

The heating power depends on the intensity of the readout laser as well as the 

optical properties of the reflective layer. Devices that were fabricated using the glass 

frit process are coated with 50 nm chromium. The film is almost completely opaque 

as the thickness is much greater than the skin depth, however the reflection coeffi- 

cient of chromium at X=635 nm is only ~ 5 0 %  [40]. In order to minimize the effect 

of laser heating, the beam has been attenuated to 50 pW in all measurements, yield- 

ing a worst-case temperature rise of ~3 -5°C  while still enabling adequate deflection 

sensitivity. It is interesting to note that if gold or aluminum is used as the reflec- 

tive material, the absorption coefficient is only 4% and an approximately six times 

higher light intensity can be used, thereby increasing the signal-to-noise ratio of the 

detector. 

5.2 Fluid delivery and interconnects 

The wafer-level packaged chips already contain a microfluidic network that enables 

the quick exchange of samples inside the thin resonator channel. Fluids are injected 

into the chip from the backside via anisotropically etched through holes. The fluidic 

connections need to satisfy several stringent requirements: they need to be compatible 

with acids and bases required for cleaning, as well as a range of organic solvents 

that are used to functionalize the sensor. Furthermore, the connections have to be 

leak tight up to -100 psi, and they should be suitable for high density integration. 

Figure 5-9(a) illustrates our package design. The devices are attached to an adhesive 

backed, gold plated printed circuit board (PCB) and wirebonded directly to the 

board, as shown in Figure 5-8. The assembly is clamped onto a Teflon (PTFE) 

manifold holding an array of standard 1/32" (0.794 mm) outer diameter Teflon FEP 

tubes. The holes in the manifold were initially drilled at a smaller nominal diameter 

(0.711 mm), and the manifold was heated for insertion of the tubes. After cooling to 

room temperature a leak tight seal was obtained between the through holes in the hard 



Figure 5 8 :  Sensor chips are attached to an adhesive backed, gold plated thin core 
PCB and wirebonded directly to the board. The assembly is seen from the backside, 
revealing the eight fluid inlets and the wirebonds from the glass lid to the PCB. 

PTFE block and the relatively flexible FEP tubing. Finally, the manifold is sealed 

against the chip surface with commercially available perfluoroelastomer ( S I M R I Z ~ ~ )  

O-rings, the size of which limits the practical interconnect density to a 3x3 mm 

grid. Our design enables the reversible connection to multiple fluid inlets on a tight 

space with chemically inert materials. The fluidic seal is reliable and leakage free for 

pressures up to 150 psi.2 

Since the flow resistance of 1 pm tall microfluidic channels is extremely high, a 

low resistance bypass is required to quickly exchange samples inside the resonator. 

Without the bypass, any fluid contained in the tubes and connections before the 

sensor chip would need to be displaced through the resonator at flow rates of less 

than 1 nL/s every time a new sample is loaded. 

The microfluidic network shown in Figure 510 illustrates the distribution of fluid 

on the sensor chip. The inlet and outlet of the resonator connect to channels that 

are etched 50 pm deep into the cover glass; these channels themselves each possess 

2Leak tests were performed by mounting a test chip with no holes on the chuck and submersing 
the assembly in a water bath. Leaking connections could be identified by bubble formation upon 
application of pressure to the tubes. 
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(a) Exploded view of the sensor mount. (b) Cross-section of the mount showing the 
electronic and fluidic interface. 

Figure 5-9: The sensor chip is clamped onto a Teflon manifold holding an array of 
standard 1/32" OD Teflon tubes. Perfluoroelastomer O-rings form a seal between 
the manifold and the chip, and an array of spring loaded contacts provides electrical 
connections to the PCB. 

one inlet and one outlet formed by through-holes in the silicon chip. Therefore each 

device has four fluid connections per resonator. 

An Agilent 1100 HPLC system delivered a continuous flow of buffer at a rate of 

5 ~ L / m i n . ~  The HPLC pump contains an active flow splitter that maintains the 

desired flow rate independent of the applied backpressure. Flow inside the resonator 

was controlled by regulating the pressure difference between the inlet and the out- 

let bypass. The inlet pressure was elevated either by increasing the flow resistance 

between the chip and the waste reservoir, or by pressurizing the waste bottle with 

compressed nitrogen. 

3Typical value. Flow rates in the range of 1-10 pL/rnin were used in some experiments. 



Figure 510: Microfluidic bypasses enable the quick exchange of samples inside the 
suspended microchannel. The flow rate through the resonator is controlled by the 
pressure difference between the inlet and the outlet bypass. 





Chapter 6 

Device characterization 

6.1 Quality factor 

A high quality factor enables high frequency resolution and is therefore a prerequisite 

for sensing small mass changes with a resonant transducer. In addition to reducing 

thermal noise (cc Q-'/~), a high Q-value also helps to reject electronic noise (cc Q-l), 

thereby simplifying the design of the readout circuit. 

The quality factor of a second order system is defined via the ratio of stored energy 

to energy that is dissipated during one cycle at resonance. Most of the following 

discussion relates directly to the quality factor, however sometimes it will be helpful 

to consider the relationship between Q and the linear damping coefficient c in the 

lumped parameter model 

All parameters pertain to a particular mode of vibration and are obtained by modal 

decomposition of the three-dimensional solution to the vibration equation. u(t ) is 

the amplitude of the mode being considered, m* is the effective mass, k is the spring 

constant, and F is the driving force. The quality factor is related to the damping 

coefficient by 

The quality factor of micromechanical resonators is limited by several mechanisms: 



Energy loss to the surrounding medium is usually most significant, followed by internal 

friction and clamping loss at the support [79]. The total damping coefficient and Q- 

factor may be written as 

= Cinternal + Csupport + Csqueeze film + Cair + Cfluid . . . 
1 - - - 

1 1 1 1 1 + + +-+- . . . 
(6.3) 

Q Qinternal Qsupport Qsqueeze film Qair Qfluid 

Hosaka et al. [24] have shown that the quality factor associated with clamping losses 

of cantilever beams is given by Qsuwort = 2. 17L3/ w 3 .  For all cantilever resonators 

considered here, this value exceeds 4 lo5, which is much larger than any of the 

measured Q values. Support losses are therefore insignificant in our silicon nitride 

devices. 

Resonators made out of amorphous materials suffer from large internal friction 

compared to single-crystal silicon devices, and very thin (sub-micron) beams experi- 

ence additional damping due to surface loss mechanisms. The predominant internal 

loss mechanism in thick (several micrometer) cantilevers oscillating at several hundred 

kilohertz is thermoelastic dissipation caused by irreversible heat flux between the side 

of the beam that undergoes compression and the side that undergoes tension. [79] 

Given the geometry and low resonance frequency of our cantilever sensors, bulk fric- 

tion is likely to place the ultimate limit on the internal quality factor at low ambient 

pressure. Oscillation of a fluid filled cantilever is subject to additional damping due 

to the fluid viscosity and irreversible mass transport. Depending on the properties 

of the fluid, the corresponding quality factor may limit the device performance, and 

this limitation will be discussed in more detail later in this section. 

Operation of the resonator in vacuum is required if internal damping effects are 

to be measured. Damping due to the medium surrounding an oscillating cantilever 

depends strongly on the geometry of the device as well as on the arrangement of 

surfaces around it. When the resonator is in close proximity to a surface, the dominant 

damping term is due to squeeze film damping. The magnitude of this effect at high 

(-1 atm) pressure and for beams that are much longer than wide (L >> W) can be 



determined by solving the governing Reynolds equation, leading to the formula [24]: 

Qsqueeze film = 

The parameter ma is the cross section mass of the beam, g is the gap size, and q 

is the viscosity of air (1.~6.10-~ Pa s). At atmospheric pressure, the glass packaged 

cantilevers that were fabricated in this work have values Qsqweze film of 1500 (design 

11) and 5300 (design 111). In addition to squeeze film damping, airflow induced drag 

lowers the quality factor of micromechanical resonators. Viscous damping in air and 

fluids has been modeled analytically by Sader [53], who found that the quality factor 

of rectangular cantilevers in viscous media can be approximated by 

The cantilever parameters that enter the equation are the spring constant k, the width 

and length, W and L, and the natural frequency wo; the fluid density is p, and ri(Re) is 

the imaginary part of the hydrodynamic function, whose explicit form is given in [52]. 

ri is a function of the Reynolds number Re = pwoW2/(417). Equation 6.5 may also be 

inverted to obtain the spring constant if the quality factor and resonance frequency has 

been measured, which is a convenient method to calibrate the stiffness of rectangular 

micro-cantilevers if the thickness and material parameters are unknown [53] .' 

For 63 pm wide hollow cantilever (type I11 in Figure 3-1) with k=l N/m obtained 

by finite element analysis and wo=35 kHz (measured), equation 6.5 predicts Q=88.6, 

which is in excellent agreement with the measured value of 89. 

The Sader model is only applicable to viscous media, such as liquids or gases 

at atmospheric pressure. In vacuum, the mean free path length of gas molecules is 

generally greater than the dimensions of the device, and treatment of the gas as a 

continuum is inaccurate. The deviation from the continuum model can be accounted 

'For quick estimations, the hydrodynamic function can be approximated in the range 0.01< 
Re <I00 by ri(Re) ~ i :  ( ~ e / 1 0 ) - ~ / ~  with a maximum deviation of 30% from the exact value (15% for 
0.1< Re <lo). 



for by replacing the absolute viscosity by an effective viscosity which depends on 

pressure as 
1 

where pl12 is an empirically determined parameter that depends on the geometry. [46, 

381 A physical interpretation of pl12 is that this is the pressure at  which the mean 

free path length is comparable to the relevant length scale for air damping of the 

resonator. Using equation 6.6 and assuming a linear dependence of squeeze film and 

air flow damping on viscosity, the quality factor at low pressure may be modeled by 

1 - -- 
1 1 1 1 +-+- 

Q(P) Qinternal Qfluid Qair 1 + pT ' 

Qsuid characterizes damping due to fluid contained inside the hollow resonator and 

can be disregarded when the device is empty. Indeed, the effect of low viscosity fluids 

like water or organic solvents is not detectable at atmospheric pressure, as can be 

seen from the frequency response curves and measured Q factors shown in Figure 6- 

1. When the resonator is filled with isopropanol or water, the resonance frequency 

decreases as expected while the quality factor exhibits a slight increase from 88 to 94. 

The increase in Q of ~ 6 %  is consistent with the reduction in resonance frequency, 

since the quality factor of a damped harmonic oscillator with fixed spring constant 

and fixed damping coefficient is inversely proportional to the resonance frequency 

(c.f. Equation 6.2). 

The damping induced by the liquid inside a hollow cantilever beam was investi- 

gated experimentally. Measurements at low ambient pressure were conducted using 

a single-beam version of the optical system described in section 5.1.3 placed inside a 

vacuum chamber. Figure 6-2 shows the design of the setup. The laser is coupled to 

a single mode fiber which enters the chamber through one of the vacuum ports. The 

tubes were inserted through holes that had been drilled with a 0.029" (0.737 mm) 

drill bit in a 114" teflon cylinder, which was subsequently connected to the vacuum 

chamber with a 114" Swagelok adapter. For the optical fiber, a 150 pm drill bit was 

used to make the hole in the teflon. When the teflon cylinder was compressed by 
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Figure 6-1: When measured in air, the quality factor of a fluid filled cantilever shows 
no degradation compared to an empty device (green trace). Measurements were 
taken with a device of type I (c.f. Figure 3-1) driven by an external electrode to 
avoid excessive squeeze film damping. The quality factors and center frequencies 
obtained by fitting the frequency response of a harmonic oscillator are (from right to 
left): Q=88, 94, 94, and fo=42.'7, 40.1, 39.5 kHz. 

the Swagelok ferrule, the fluidic and optical feedthroughs formed an air tight seal. 

The performance of the mechanical pump limited the attainable vacuum level to 

-30 mTorr (-4 Pa). The vacuum level was measured using an HPS 325 Moducell 

Pirani transducer from MKS Instruments Inc. (Boulder, CO) . 

The quality factor of a 63 pm wide and 300 pm long cantilever containing a 1 pm 

thin fluid channel (design I11 in Figure 3-1) was measured at low pressure while the 

device was filled with air, water, and silicone fluid viscosity standards of 10 mPa s and 

50 mPa s. Viscosity standards were purchased from Brookfield (Middleboro, MA). 

In all experiments, the cantilever was first rinsed with acetone followed by ethanol 

in order to remove any residues. The microfluidic channels were then purged with 

nitrogen (grade 5.0) at 100 psi for at least ten minutes to evaporate the solvent while 

the channel exterior was pumped to the base pressure of 30 mTorr. Connecting or 

disconnecting the pressurized gas had no detectable effect on the measured vacuum 

level, which indicates that all O-ring connections to the chip were well sealed. Each 
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Figure 6-2: A vacuum chamber with fluidic feedthroughs was used to measure the 
quality factor of fluid filled cantilevers at a pressure of 30 mTorr. 
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Figure 6-3: The frequency response of a water filled cantilever at 30 mTorr is almost 
indistinguishable from that of a dry device. For a fluid viscosity of 10 and 50 mPa s, 
damping visibly lowers the quality factor. Requency response plots are shown nor- 
malized to the center frequency and peak amplitude. The corresponding resonance 
frequencies and Q-factors are listed in table 6.1 

time the device was dried, resonance frequency and quality factor returned to the 

values for an air filled cantilever surrounded by vacuum. Once dried, the resonator 

was filled with the sample fluid, and complete wetting of the suspended channel was 

verified by monitoring the shift in resonance frequency. The frequency response was 

recorded with an HP4395A network analyzer at a pressure of -30 mTorr. Finally, 

the quality factor was monitored continuously while the chamber was slowly vented; 

Q was calculated as the -3 dB bandwidth divided by the center frequency. 

Resonance frequencies and measured Q values obtained by fitting the amplitude 

response at 30 mTorr are listed in Table 6.1 along with the relevant properties of the 

different media at room temperature and at atmospheric pres~ure.~ Although the 

quality factor degrades when the channel is filled with water, the value of 11,580 is 

still close to that of the empty device (Q(dry)=12,520). In all cases, the resonance 

2Data for air and water was taken from the CRC Handbook of Chemistry and Physics, 85th 
Ed. [40], and the specifications for the viscosity standards were provided by the manufacturer. The 
dues are valid at 25OC. 



Table 6.1: Measured resonance frequency and quality factor of a cantilever filled with 
different media and operated at 28f 2 mTorr (4 Pa) ambient pressure. 

Filling medium Density Viscosity Resonance frequency Q Q fluid 

[g/cm3] [rn~a-s]  [kHz] 
air 1.18-10-~ 0.019 35.179 12,520 oo 
water 0.997 0.888 33.666 11,580 100,820 
10 cP standard 0.940 9.8 33.752 9,781 39,050 
50 cP standard 0.960 46 33.717 7,855 19,700 

spectrum could be described well by the frequency response of a harmonic oscillator, 

as illustrated by the fits in Figure 6.1 that were used to extract wo and Q. 

By comparing the quality factors for different media it is possible to isolate the 

contribution of the fluid to the damping of the beam. Filling the resonator with fluid 

increases the damping coefficient to 

where co includes the effects of internal damping and air damping. Starting from the 

measured quality factor of a dry device, Q(dry), the quality factor associated with 

fluid damping for water (and other media) may be deduced: 

The values of Qfluid for the different media are listed in Table 6.1. In the case of 

water we find Q=11,580 at 30 mTorr, and the calculated fluid limited quality factor 

Qfluid is greater than 100,000. This is an important result, since it shows that the 

ultimate frequency resolution is not significantly degraded by the presence of the fluid. 

Sparks et al. have previously reported that the Q-factor of a fluid filled resonator of 

-- 100 x 100pm cross section can exceed 20,000 in high vacuum. (631. Our measurement 

proves for the first time that very thin vibrating tube resonators with a large ratio of 

surface area to mass can have a similar quality factor, thereby uniting high surface 

mass sensitivity and good frequency resolution in liquid. 



Cantilever resonators that were packaged by glass frit bonding had a quality factor 

of 300-700, and the Q for torsional resonators was -1400. Our measurements in a 

vacuum chamber indicate that the intrinsic quality factor exceeds 10,000 even for a 

fluid filled device. Since frequency stability depends directly on the quality factor, 

we conclude that an improved vacuum package would enable more than a tenfold 

gain in mass resolution. The pressure of residual gas in the glass frit package may 

be estimated by comparing the quality factor of packaged devices to a measurement 

of Q vs. pressure in the external vacuum; this result is shown in Figure 6-4. For 

comparison, the plot shows Q of a device filled with a 50 mPa s viscosity standard 

in addition to the measurement of a dry resonator. In both cases, the pressure 

dependence agrees with the model for air damping given by Equation 6.7. A quality 

factor of 700 corresponds to --I Torr ambient pressure. Air molecules at this pressure 

have a mean free path of 49 pm,3 which is comparable to the width of the cantilever 

as well as to the gap between the cantilever surface and the cover glass. The quality 

factor in this regime is inversely proportional to pressure down to a few milli-Torr, at 

which point intrinsic damping starts to limit the Q. In conclusion, an ideal package 

would be hermetically sealed with an intra cavity pressure of approximately 1 mTorr. 

Application of getters inside the cavity can reduce the pressure to this level. [59] 

6.2 Sensitivity 

The sensitivity of suspended microchannel resonators was calibrated by measuring 

the shift in resonance frequency while the device was filled with fluids of different 

density. For small mass changes a linear approximation for the relationship between 

density and resonance frequency is sufficient, and we define the density sensitivity Sp 

through 

Sp has units of (g*~m-~) - '  and is related to the slope of w i 2 ( ~ )  that is sometimes 

used to characterize fluid density sensors by awo2/dp = 2Sp/w$ [74] The linear 

3The mean free path in air at 20 OC and at atmospheric pressure is 64 nm [I]. 
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Figure 6-4: The quality factor of a cantilever resonator (type 111, Figure 3-1) was 
measured inside a vacuum chamber. Q for the same type of resonator with on-chip 
vacuum was 300-700 (dry). Comparison with the plot reveals a value of 1-5 Torr for 
the sealed devices. 

approximation is generally sufficient for the small changes that are typically measured 

in biomolecular binding experiments. 

Samples of well defined density were prepared by dissolving different amounts 

of sodium chloride in distilled water. Sodium chloride was purchased from Sigrna- 

Aldrich Inc. (St. Louis, MO), and pure water (resistivity 18.2 Mfhcm) was prepared 

using a Millipore filtration unit. All measurements were done under continuous flow 

conditions at a rate of 5 pL/min delivered by an Agilent 1100 HPLC system. The inlet 

pressure on the resonator was controlled by the length and diameter of the waste line, 

as described in more detail in section 5.2. The resonance frequency was monitored 

continuously using the feedback configuration described in chapter 5, and linear drift 

was subtracted off line. 

Figure 6-5 shows the response of a cantilever and a torsional resonator to a se- 

quence of sample injections. Every time a sample plug reached the resonator, the 

frequency dropped rapidly, equilibrated for a short time, and then returned to the 

initial value. Although the equilibrium phases in Figure 6-5(a) are too short to be 
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(a) Cantilever (type 111, Figure 51) ,  0 ppm 
A 32.269 kHz. 
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Figure 6-5: Response of a cantilever (a) and a torsional resonator (b) to various 
concentrations of sodium chloride in water. Concentrations in mol/L are indicated 
above each injection peak. 

visible on the time scale shown, higher resolution plots of the individual peaks clearly 

reveal that the peak frequencies represent steady levels and not just transient max- 

ima. The slow tailing at the end of each injection is a common artifact in liquid 

chromatography caused by mixing in the tubes through which the sample is deliv- 

ered. 

The measured peak frequency shifts were plotted as a function of density using 

tabulated values of the density of aqueous sodium chloride solutions [40], as shown 

in Figure 6.2. The slope of the linear fit to the cantilever data (circles & red solid 

line) represents the density sensitivity Sp=39,700 ppm/ (g -~m-~) ,  and the same value 

applies to the sensitivity of the torsional resonator (squares & black dashed line) 

to within the experimental error. Since both resonators were designed with very 

similar channel cross-section their sensitivities are expected to match closely. The 

mearmred value of Sp is -20% lower than the design value of 49,800 ppm/(g*cm-3) 

(c.f. Equation 2.7), which is most likely a result of fabrication tolerances, and, in 

particular, the uncertainty in the height of the fluid channel introduced by dishing of 

the CMP. 



Figure 6-6: Measuring the resonance frequency shift as a function of fluid density 
provides a calibration for mass sensitivity. A linear function has been fitted to the 
peak frequency shifts of the cantilever (circles & red solid line) and torsional resonator 
(squares & black dashed line) measurements shown in Figure 6-5. Both devices exhibit 
an almost identical density sensitivity of -40,000 ppm/(g/cm3). 

More important than the density sensitivity itself is the derived sensitivity to 

surface adsorbed mass. Biomolecule concentrations in real samples are generally too 

low to be detectable by bulk density. Furthermore, molecular specificity relies on the 

presence of immobilized receptors on the interior channel surface, and the receptor 

density together with the ligand concentration and binding affinity determine how 

much mass builds up on the surface. By using the surface mass sensitivity as a 

performance metric, it is possible to separate the problem of surface preparation and 

assay development from that of device design. The frequency shift per adsorbed 

m k  is related to the density sensitivity through SSwface = Sp (All)-', A/1 is the 

ratio of the channel cross-section area to the cross-sectional length of the solid-liquid 

interface. For a channel that is much wider than tall the aspect ratio is approximately 

(All) = 2d, where d denotes the height of the channel. With d =1 pm, the measured 

density sensitivity translates into 0.8 ppm/(ng-cm-2); combined with the frequency 

resolution of -0. 1 ppm,* this yields a mass resolution of 0.13 ngo~m-~. 

*Short term noise in a 1 Hz bandwidth. This noise level has also been maintained over a period 
of 1 h when the signal from a reference resonator was subtracted. 



6.3 Crosstalk 

6.3.1 Pressure 

Micromechanical structures with thin diaphragms are frequently employed as highly 

sensitive pressure transducers. Pressure induced strain in a membrane can be mea- 

sured with high precision by a variety of methods, such as integrated piezoresistors or 

capacitive or optical displacement sensors. Static deflection and resonance frequency 

both change under the influence of pressure, and the effect on resonance frequency 

is of concern when the same signal is to provide information about the adsorption 

of minute amounts of mass. Controlling pressure to high accuracy in a flow through 

system requires sophisticated instrumentation and is only an option if the sensor is 

to be part of a high-end laboratory instrument. 

The sensitivity of hollow cantilever and torsional resonators to variations in in- 

ternal channel pressure was determined experimentally. Depending on the design, 

the pressure fluctuation equivalent to a frequency noise of 0.1 ppm was found to be 

1.3*10-~ psi (9 Pa) or 39*10-~ psi (265 Pa). This means that in order for the resolu- 

tion not to be degraded, the pressure inside the microfluidic inlet and outlet bypasses 

must be controlled to approximately psi. 

Measurements were performed on dry channels filled with nitrogen (grade 5.0). 

To prevent uncontrolled gas flow inside the device, the two microfluidic bypasses 

were connected together in series and the output of the second bypass was plugged. 

The pressure applied to the inlet of the first bypass was adjusted using a mechanical 

regulator while the resonance frequency of the sensor was monitored continuously 

with the oscillator method. 

Figure 6-7 shows that the resonance frequency increases linearly with pressure in 

the range of 0-80 psi. The positive sign of the slope is consistent with an increasing 

spring constant as expected for a channel whose cross section is expanded by the 

deflection of the walls under pressure. Inserting the design values for the cantilever 

geometry into equation 2.28 and 2.24 yields a value of 115 ppmlpsi, which is in 

reasonable agreement with the experiment considering the simplifying assumptions 
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Figure 6-7: The resonance frequency of hollow cantilever (type 111, Figure 3-1) and 
torsional resonators depends on the internal channel pressure. The channel width of 
the torsional resonator is 10 pm and that of the cantilever is 20 pm. Measurements 
were performed in the lowest transverse vibrational mode of the cantilever and in the 
antisymmetric torsional mode of the torsional resonator. 

made by the model. Specifically, assuming that the top and bottom diaphragm can 

both deflect equally at the base of the cantilever may lead to over-estimation of the 

pressure coefficient. 

Although no explicit calculation was performed for the torsional resonator, the 

almost thirty times lower sensitivity to pressure is generally expected since the channel 

is only ten instead of twenty micron wide. Therefore, the top and bottom of the 

channel will bulge sixteen times less and result in less stiffening of the support flexures. 

6.3.2 Bias voltage 

The resonance frequency of electrostatically driven micromechanical resonators de- 

pends on the square of the applied bias voltage as shown in section 2.3.3. Small 

voltage fluctuations cause frequency shifts that are in direct proportion to the prod- 

uct of bias voltage and voltage noise and inversely proportional to the spring constant 

(c. f. Equation 2.33). The voltage dependence of resonance frequency for cantilever 



Figure 6-8: The resonance frequency of electrostatically actuated resonators decreases 
as the square of the bias voltage. The torsional resonators are less sensitive to bias 
variations than the relatively compliant cantilever devices (type 111, Figure 3-1). Mea- 
surements were performed in the lowest transverse vibrational mode of the cantilever 
and in the antisymmetric torsional mode of the torsional resonator. 

and torsional resonators was characterized experimentally by operating the resonator 

in feedback at varying bias voltages and monitoring the resonance frequency. Active 

control of the feedback gain enabled the change in resonance frequency to be separated 

from the dependence of the oscillator frequency on bias voltage. Increasing the bias 

effectively amplifies the force exerted by the electrostatic actuator, thereby increasing 

the overall feedback gain and altering the oscillation frequency. Although the oscilla- 

tion frequency is independent of gain when the feedback phase is adjusted to precisely 

ninety degree, the required phase accuracy can not be achieved in practice because 

of component tolerances and drift. By actively controlling the gain of the feedback 

amplifier to maintain a constant vibration amplitude, the increased efficiency of the 

electrostatic actuator at higher biases was compensated by a concomitant reduction 

in electronic gain. 

Figure 6-8 illustrates how the measured resonance frequencies of the cantilever 

and the torsional resonator follow the expected dependence on the square of the bias 



Figure 6-9: The temperature sensitivity of cantilevers and torsional resonators is sim- 
ilar in magnitude but opposite in polarity. Cantilevers become more compliant with 
increasing temperature due to a decrease in Young's modulus. Torsional resonators 
also respond to tensile stress induced by heating. Measurements were performed in 
the lowest transverse vibrational mode of the cantilever and in the antisymmetric 
torsional mode of the torsional resonator. 

200 

- 
€ 
Q . 0. 
!E 
c 
<n 
)r 
0 
C 
a, 
3 -200. 
rn 
E 
U. 

-400 

voltage. The slope of N -2.5 ppm/V at 20 V bias in the case of the cantilever is 

slightly lower than the value of 3.2 ppm/V predicted by Equation 2.33.5 
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6.3.3 Temperature 
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Temperature change [K'J 

All physical transducers are susceptible to temperature induced measurement errors. 

Resonant mass sensors are influenced by temperature primarily through changes in 

material properties and thermal stress induced by mismatch between the thermal ex- 

pansion coefficient of structural components made from different materials. A water 

filled resonator is further subject to a reduction in total mass when the device is 

heated, for the density of water has a negative temperature coefficient at room tem- 

perature. At 25"C, the density of water changes by -0.256 (mg/cm3)/"C, which in 

combination with the device sensitivity of 40,000 ppm/(g-cm3) yields a temperature 

5The value of 3.2 ppm/V was calculated using the design parameters for spring constant 
(k=l N/m), capacitance (Co=0.79 fF) and gap size (d=70 pm). 



coefficient of -10 ppm/"C. 

The temperature sensitivity of unfilled cantilevers and torsional resonators has 

been characterized experimentally. Measurements were done on dry devices in order 

to be able to separate the intrinsic temperature coefficient (TC) of the device from 

density changes of the fluid. Frequency was measured continuously by the oscillator 

method and stable feedback gain was ensured through automatic gain control. The 

temperature of the device was increased by resistively heating the metallic clamping 

plate by which the chip was held on the teflon manifold (c.f. Figure 5-9(a)). The 

temperature was measured with a thermocouple mounted in a recess between the 

resistive heater and the plate. 

Figure 6-9 plots the measured dependence of resonance frequency on temperature. 

The negative TC of the cantilever device is consistent with a reduction in Young's 

modulus as reported by Radenovic et al. [47]. While the resonance frequency of 

cantilevers is not significantly affected by thermal expansion, torsional resonators are 

sensitive to stress resulting from a mismatch in the coefficient of thermal expansion 

(CTE) of the silicon substrate and the structural thin film. Toivola et al. [68] measured 

a CTE of 2.2 ppm/"C for low-stress LPCVD silicon nitride, which is lower than the 

value of 2.6 ppm/" C for single-crystal silicon. Although the deposition conditions 

used in [68] were not identical to those of this work, we assume that the CTE of 

our silicon nitride film is also lower than that of ~ i l icon .~  A lower thermal expansion 

of the nitride film relative to the substrate results in tensile strain in the torsional 

resonator upon heating. Finite element calculation of the resonance frequency with 

and without application of pre-stress (c. f. Figure 3-6 (b) ) predicts a stress-sensitivity 

of -0.7 ppb/MPa (with compressive stress positive). A CTE mismatch of 0.4 ppm/"C 

together with E=180 GPa for silicon nitride [35] then yields a temperature coefficient 

of +50 ppm/OC for the resonance frequency, which may be combined linearly with 

the TC caused by changes in material properties. The combination of the two effects 

yields a predicted TC of 37 ppm/"C which is in good agreement with the experiment.7 
- - 

'Toivola et al. obtained almost the same value over a wide range of conditions and even lower 
CTEs have been reported for stoichiometric silicon nitride [29]. 

7The exact equality of the values is likely a coincidence. We expect a tolerance of at least f 20% 



In conclusion, temperature sensitivity may introduce significant errors in non- 

differential measurements, as even changes on the order of 0.001 "C result in signals 

that are similar to the noise floor of ~ 0 . 1  ppm. While differential sensing can ef- 

fectively suppress small disturbances caused by fluctuations in ambient temperature, 

the problem is more severe when the sensor and reference are exposed to different 

fluids whose temperature is not precisely matched. 

6.4 Binding Experiments 

The ability to detect biomolecular binding inside the suspended microchannel res- 

onator has been demonstrated by first functionalizing the sensor with avidin and 

subsequently measuring the mass increase due to binding of different biotin labeled 

proteins. Binding between biotin and avidin is the strongest non-covalent interaction 

in biology and avidin can be reliably physisorbed to solid surfaces. While biotin by 

itself is a very small molecule whose mass would be difficult to detect directly, bi- 

otin conjugated proteins may be captured by the same interaction on avidin coated 

surfaces. This section describes results for the detection of two biotinylated proteins: 

biotin bovine serum albumin (bBSA) and biotin labeled anti green fluorescent protein 

(anti-GFP). Measuring the binding of these proteins proves that thin suspended mi- 

crochannel resonators are a viable method for the mass sensitive detection of proteins 

in solution. 

Avidin was first immobilized on the channel surface by non-specific adsorption 

from a 1 mg/mL solution in phosphate buffered saline (PBS) at pH 7.4 and a salt 

concentration of 10 mM NaC1. Lyophilized avidin and bBSA were purchased from 

Sigma-Aldrich Inc. (St. Louis, MO) and diluted in the same running buffer that 

was used during the experiment. bBSA was labeled with 8-16 mol biotin per mol 

BSA, as specified by the manufacturer. Monoclonal GFP antibodies labeled with 

10-20 mol/mol biotin were purchased from Rockland Inc. (Gilbertsville, PA). The 

proteins came in a storage solution of phosphate buffered saline at  pH 7.2 containing 

for the TC predicted by finite element calculation. 
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Figure 6-10: Avidin and biotinylated BSA are detected by the resonance frequency 
shift upon binding. The transient dip during the injections is due to the greater 
density of the sample compared to the running buffer. 

150 mM Sodium Chloride, 10 mg/mL BSA as stabilizer and 0.01% (w/v) Sodium 

Aside as a preservative; this solution was used undiluted. Constant flow at a rate 

of 5 pL/rnin through the microfluidic inlet bypass was maintained during the ex- 

periments. A 15 inch long tube with 75 urn inner diameter connected between the 

outlet of the injection bypass and the waste reservoir induced a pressure of 6psi at 

the resonator inlet; this gave rise a small flow of -30 pL/s inside the suspended 

microchannel. Since the resonator comprises a volume of only 6 pL plus 14 pL of 

dead volume between the inlet and the base of the suspended channel, it takes less 

than one second to completely exchange the fluid inside the vibrating beam. The 

resonator outlet connects to a large bypass channel, which was continuously rinsed 

at a slow flow rate ( 1 pL/min) and at low pressure. The running buffer in the inlet 

was delivered by an Agilent 1100 HPLC system with inline degasser, and samples 

were injected with an autosampler as described in section 5.2. The frequency shift vs. 

time after injecting avidin into a new cantilever is plotted in Fig. 6-10 with arrows 



labeling the times at which the sample loop was connected to the device. Less than 

one minute after the injection, which corresponds to the time it took for the sample 

to flow from the injection valve to the sensor, the frequency dropped by about 90 pprn 

and settled at  an equilibrium value of -60 pprn after the sample was washed out. The 

rise of the signal during rinsing can be explained by the difference in bulk density 

between the protein solution and the running buffer, and by loosely bound molecules 

detaching from the surface. Assuming a bulk density of 1.3-1.4 g/cm3 for avidin 

a solution concentration of 1 mg/mL would give rise to a signal of only -10 ppm. 

The final frequency shift of -60 pprn corresponds to -300-400 ng/cm2 of dry protein 

mass, a value that is similar to levels of albumin adsorption on silicon dioxide surfaces 

reported by Zhang et al. [80] and by Nakanishi et al. [44].8 

After rinsing the device with PBS for more than 20 min, we injected biotin con- 

jugated Bovine Serum Albumin (bBSA) which bound to the avidin present on the 

surface. The initial signal of -40 pprn exceeds the equilibrium value by 10 ppm, con- 

sistent with the density difference between the pure buffer and the bBSA solution. 

Again rinsing with PBS revealed the true mass change due to the BSA attached to 

the surface. Since each mol of BSA was labeled with 8-16 mol of biotin it was now 

possible to build up another layer of avidin molecules as illustrated in the last panel 

of Fig. 6-10. 

Several control experiments were conducted to ensure that the observed signals 

were indeed caused by specific binding of bBSA to avidin rather than being the 

result of non-specific adsorption or measurement artifacts. First, injecting solutions 

without proteins never resulted in a permanent change of the baseline, indicating that 

the signal was robust to disturbances caused by the switching. Second, specificity was 

verified by repeating the experiment with regular BSA in place of bBSA, leading to no 

detectable mass signal. The same behavior resulted after two consecutive injections of 

avidin, as shown in the last panel in Fig. 6-10: Only the first of the two sample plugs 

8Zhang et al. used ellipsometry to measure an adsorbed mass density of 250 ng/cm2 for 1 mg/mL 
Human Serum Albumin on silicon dioxide. The review by Nakanishi et al. quotes a value of 
170 ng/cm2 for Bovine Serum Albumin on silica gel, and 140 ng/cm2 Human Serum Albumin on 
glass. 
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Figure 6-11: Binding of biotin conjugated anti-GFP to avidin. The large transient 
signals result from a difference in salt concentration between the sample and the 
running buffer. After the first injection, a residual frequency shift of 2.5 Hz indicates 
binding of anti-GFP. A frequency shift of zero corresponds to a resonance frequency 
of 33 kHz. 

showed evidence of binding, while the second passed over the surface without leaving 

any deposits, presumably owing to a lack of available binding sites. Physisorption 

of avidin is a simple and versatile method for surface functionalization. Fig. 6-11 

shows the immobilization of biotin conjugated anti-GFP to an avidin coated device. 

The sample was injected twice to ensure complete saturation of the surface. The 

periods during which the sample passed through the resonator can be recognized by 

the large transient frequency shift caused by the higher salt concentration of the anti- 

GFP solution (150 mM NaCl) . In addition, the sample also contained a background of 

10 mg/mL BSA. When rinsing out the anti-GFP solution the amount of bound protein 

could be identified by the difference in baseline before and after the experiment. 





Chapter 7 

Conclusions 

This thesis has introduced a new device concept for the label-free detection of biolog- 

ical molecules by mass: Adsorption of molecules to the inside walls of a suspended 

microfluidic channel is detected by measuring the change in mechanical resonance 

frequency of the channel. In contrast to resonant mass sensors submersed in water, 

the sensitivity and frequency resolution of our device is not degraded by the presence 

of the fluid. 

The primary feature that sets our work apart from research in the area of vibrat- 

ing tube densitometers is that molecules that bind to the channel walls are detected, 

thereby providing a path to specificity via molecular recognition by immobilized re- 

ceptors such as antibodies. We have therefore optimized the design for sensitivity to 

surface mass; this requires the fluid channel and the walls of the hollow resonator to 

be very thin. 

Calculation of the intrinsic noise and the sensitivity of suspended microchannel 

resonators indicate that the physical limit for mass resolution in a 1 Hz bandwidth 

is approximately 0.01 ng/cm2. A resolution of -0.1 ng/cm2 has been experimentally 

demonstrated in this work. This resolution constitutes a tenfold improvement over 

commercial quartz crystal microbalance based instruments. 

Sample depletion poses a potential challenge for the detection of low-abundance 

proteins in micrometer tall fluid channels. Although the time dependent mass trans- 

port in thin channels is not investigated in detail in this thesis, the important time- 



and length-scales are pointed out. Specific examples illustrate that in one microme- 

ter tall channels, sample depletion is only significant for biochemical reactions that 

are typically considered fast, and depletion in three micrometer channels is generally 

negligible. 

One limitation of the current design is the high flow resistance of the thin channels: 

At low flow rates, a dilute sample needs to flow through the resonator for a very long 

time before a detectable amount of target molecules can accumulate. Measurements 

at picomol per liter concentrations are severely limited by the convection rate. This 

limitation can be greatly alleviated by increasing the channel height to three micron. 

Mass transport is then dominated by diffusion, and a further increase in channel 

height would not significantly shorten the detection time. 

Suspended microchannel resonators made of silicon nitride with a wall and fluid 

layer thickness of less than one micron have been fabricated and tested. The channels 

were fabricated using a polysilicon Damascene process, sacrificial layer etching in hot 

potassium hydroxide, and bulk micromachining. Two packaging processes integrating 

electrostatic actuation and microfluidic sample delivery have been developed. The 

first process is a die-level approach by which individual chips are bonded to a glass 

substrate via a thin gasket of micromolded PDMS. The second process was based on 

glass frit bonding of a pyrex capping wafer to the completed device wafer. By bonding 

under vacuum, the resonators were encapsulated in a low-pressure environment. The 

main drawback of the glass frit is the incompatibility of the material with solutions of 

low pH, which precludes the use of certain cleaning and surface regeneration protocols. 

Chemical compatibility will be addressed in the future by replacing the glass frit bond 

by other met hods, e.g. by anodic or t hermocompression bonding. 

The measurement of the resonator vibration was based on the optical lever method. 

Our home-built system enabled a short-term frequency resolution of 0.1 ppm for res- 

onat ors with quality factors 2 700. A similar frequency resolution could be maintained 

over a period of at least one hour when drift was reduced by subtracting a reference 

signal. Likely causes of drift are temperature or pressure fluctuations. Characteriza- 

tion of the sensitivity of resonance frequency to operating conditions indicates that 



temperature changes on the order of 0.1 "C will cause frequency variations of several 

parts per million, which also is a typical drift amplitude on a one hour timescale. The 

tested cantilever and torsional resonators had similar temperature coefficients, how- 

ever torsional resonators with channels that were only ten instead of twenty micron 

wide were thirty times less sensitive to pressure fluctuations. 

Long-term st ability can be addressed through differential sensing, environmental 

control, and design for minimum sensitivity to operating conditions. Low short-term 

noise, on the other hand, depends on a high mechanical quality factor. Measurements 

with fluid filled cantilevers conducted under vacuum reveal that Q exceeds 10,000 at 

a pressure of ~ 3 0  mTorr. To the best of our knowledge, no micromachined resonant 

transducers with a quality factor greater than 200 in liquid and sufficient sensitivity 

for biomolecular detect ion have been previously reported. 

The theoretical limit for mass resolution predicted by the measured sensitivity and 

quality factor in a 30 mTorr vacuum is approximately 0.01 ng/cm2 (1 Hz bandwidth), 

or the equivalent of one 100 kDa protein per square micron; at this level, the device 

would present a viable alternative to fluorescent detection. Improved vacuum pack- 

aging and environment a1 control are needed to exploit this potential. F'urt hermore, 

sensitive and selective biological assays require covalent coupling of capture antibod- 

ies and surface passivation to guard against non-specific binding. More work in the 

area of surface functionalization and chemical compatibility of the current device is 

required to address these issues. 
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