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Abstract

The prevalence of severe to profound bilateral congenital hearing loss is estimated at 1 in
1000 births, at least half of which can be attributed to a genetic cause. To date, mutations in
at least 67 genes have been associated with hearing loss. Discovery of these genes has
revealed fundamental processes within the ear, and enabled diagnosis and implementation of
genetic counseling in affected patients. As a part of the continuing effort to study genes
important for hearing and deafness, a novel cochlear transcript with predominantly fetal
expression containing a single tetramerization domain (PFET1, HUGO-approved symbol
KCTD12) was identified from the Morton fetal cochlear cDNA library. KCTD12/Kctdl]2 is an
evolutionarily conserved intronless gene encoding a 6 kb transcript in human and three
transcripts of approximately 4, 4.5 and 6 kb in mouse. The protein, pfetin, is predicted to
contain a voltage-gated potassium channel tetramerization (T1) domain. This thesis reports
characterization of this novel human gene and its encoded protein pfetin in relation to its role
in auditory function. Experimental data from tissue and cellular expression profiling, and
genetic and functional analyses suggests KCTD12 and its orthologs playing a crucial role in
the developmental of the auditory sense organ.
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Hearing loss is the most common sensory disorder in the human population with the

incidence of congenital hearing loss estimated at 1 in 1000 births (Morton 1991). It is

estimated that 50% to 75% of all childhood deafness is due to hereditary causes (Gorlin 1995).

The remainder is due to environmental factors including acoustic trauma, ototoxic drugs (e.g.,

aminoglycosides), bacterial and viral infections. Of the hearing disorders with a genetic

contribution, roughly 70% are classified as nonsyndromic and 30% as syndromic, depending

on the presence or absence of other clinical features (http://webhost.ua.ac.be/hhh/). To date,

mutations in at least 67 genes have been associated with hearing loss. Discovery of these

genes has revealed fundamental processes within the ear, and enabled diagnosis and

implementation of more accurate genetic counseling for families and affected patients.

The auditory apparatus consists of three major compartments, the external, middle and

inner ear. The external ear consists of the auricle and the external auditory canal. It is bounded

at the external-middle ear junction by the tympanic membrane. The middle ear is an air-filled

cavity containing a chain of three ossicles (malleus, incus, stapes). The inner ear resides in the

temporal bone of the skull, and is a complex membranous labyrinth filled with endolymph

housed inside a perilymph-filled bony labyrinth. The snail-like portion of this labyrinth is

called the cochlea, the auditory sense organ. It resides in the inner ear along with the vestibule.

The human cochlea detects sound frequencies between 20 Hz and 20 kHz and the vestibule

(saccule, utricle, three semicircular canals) responds to linear and angular accelerations. The

cochlea and the vestibule both derive embryologically from the otic placode (Fekete 1996)

and share several structural and functional features.

Briefly, the mammalian hearing process functions as follows. Sound waves travel

through the external ear canal to the tympanic membrane (TM) where sound pressure sets the
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TM into vibration. The ossicular chain, attached at one end to the TM, contacts the cochlea

via the oval window. Vibration creates a traveling wave in the endolymph down the length of

the cochlea, and the traveling wave sets into motion the basilar membrane (on which rests a

cellular layer known as the organ of Corti lined with auditory hair cells), inducing movement

of these hair cells relative to the tectorial membrane. Deflection of the hair cells leads to their

depolarization, triggering neurotransmitter release, and creating an action potential traveling

along the auditory nerve to the brain which encodes different characteristics of the sound

stimulus including intensity, time course, and frequency.

Genes Involved in Hearing Disorders

Gene mutations have been found affecting almost every part of the auditory system

from the shape of the ear lobe, to the middle ear and the auditory neurons in the brain.

However, many encoded protein of genes responsible for deafness have been found to be

expressed in the cochlea. The cochlea is a most intricate and complex organ consisting of

dozens of cell types and specialized regions required for normal auditory function. Therefore,

genes underlying the molecular development, structure, function and maintenance of these

cell types and regions are crucial to the hearing process. As mentioned previously, mutations

in at least 67 genes have been identified to show association with hearing loss. These genes

encode a wide variety of proteins, including gap junctions, ion channels, extracellular matrix

components and transcription factors.
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Hair Cell Organization and Function

One of the most important structures in the cochlea is the auditory hair cells. These

hair cells are highly organized and convert mechanical vibration into nerve impulses, and

require precise structural maintenance for proper function. Mouse mutant studies have been

instrumental in identifying a number of deafness-associated genes that are required for the

proper organization and maintenance of hair cell stereocilia such as Myo7a, Myo6, Cdh23,

Pcdh15, Itga8, Espn and Tmie. Most of the human orthologs when mutated result in hearing

disorders: MY07A for DFNB2, DFNA11 and USH1B (Liu et al. 1997); MY015A for DFNB3

(Wang et al. 1998); CDH23 for both DFNB12 and USH1D (Bolz et al. 2001); PCDH15 for

USH1F (Ahmed et al. 2001); ESPN for DFNB36 (Naz et al. 2004); and TMIE for DFNB6

(Naz et al. 2002). In addition, mutation in MY06 results in the disorganization and fusion of

stereocilia and accounts for the nonsyndromic autosomal dominant hearing loss in an Italian

family (Melchionda et al. 2001). A defect in harmonin, a PDZ domain-containing protein

expressed in the inner ear sensory hair cells, underlies USH1C (Verpy et al. 2000) and defects

in whirlin a PDZ domain molecule involved in stereocilia elongation, cause deafness in the

whirler mouse and families with DFNB31 (Mburu et al. 2003).

Extracellldar Matrix

The extracellular matrix (ECM) is a complex structural entity surrounding and

supporting cells that are found within mammalian tissues. The ECM is composed of three

major classes of biomolecules: structural proteins like collagen and elastin; specialized

proteins such as fibrillin, fibronectin, and laminin; and proteoglycans.
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Collagens are crucial for the structural integrity of many organ systems including the

inner ear. Several collagens responsible for deafness include COL4A5, COL4A3 and COL4A4

for both X-linked and autosomal forms of Alport syndrome; COLIA] and COLIA2 for

osteogenesis imperfecta (OI); COL2AJ for Stickler syndrome type I (STLI1); COLIIA2 for

Stickler syndrome type II (STL2) and DFNA13; COLllAJ for Stickler syndrome type III

(STL3) (reviewed in Resendes et al. 2001 and Smith et al. 2005). Mutations in COL9A3 have

recently been identified in patients with nonsyndromic hearing impairment with moderate

progressive bilateral sensorineural hearing loss in all frequencies (Asamura et al. 2005). Other

extracellular matrix proteins like usherin that is responsible for Usher syndrome type 2A

(USH2A) (Eudy et al. 1998) contain both laminin epidermal growth factor and fibronectin

type III motifs, which are most commonly observed in proteins comprising components of the

basal lamina and extracellular matrixes and in cell adhesion molecules. The tectorial

membrane is also an extracellular matrix of the inner ear that contacts the stereocilia bundles

of specialized sensory hair cells. Mutations in TECTA causing defects in the membrane are

etiologic for hearing disorders DFNA8 and DFNA12 (Verhoeven et al. 1998) and DFNB21

(Mustapha et al. 1999). The cause of DFNA9 is mutations in COCH (Robertson et al. 1998)

which encodes a secreted protein that becomes part of the extracellular matrix. The mutant

form of the protein leads to the loss of cells in the spiral ligament and limbus and

accumulation of acidophilic deposits in the nerve channels and supporting tissues of the organ

of Corti.
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Ion Homeostasis

For proper auditory signal transduction, it is critical to maintain ion homeostasis,

especially regarding the high potassium concentration in endolymph. Potassium recycling

begins with an efflux of potassium from the outer hair cells through the potassium channel.

Ions migrate to the stria vascularis through gap junctions between supporting cells and are

finally pumped back into the endolymph.

Potassium channels KCNQ4, KCNQI, and KCNE1 have all been shown to play

fundamental roles in the potassium recycling pathway. Mutations in these genes lead to the

hearing disorders DFNA2, Jervell and Lange-Nielsen syndrome (loci and 2) (Schulze-Bahr

et al. 1997, Neyroud et al. 1997). Mutations in an anion transporter protein like pendrin,

encoded by SLC(26A4, are postulated to disrupt transport of negatively charged particles, thus

upsetting fluid balance in the inner ear, and causing Pendred syndrome and DFNB4 (Li et al.

1998).

Gap junction subunits are called connexins and four connexins have been implicated

in at least six types of both dominant and recessive nonsyndromic hearing loss, and they are

connexin 26 (JB2), connexin 31 (GJB3), connexin 30 (GJB6), and connexin 43 (GJA1).

GJB2 alone is estimated to account for 50% or more of recessive congenital nonsyndromic

hearing loss in some populations (Rabionet et al. 2000). In addition to ion recycling, ion

concentration mnust be strictly maintained within the two separate compartments of cochlea,

one containing perilymph and the other endolymph. Tight junctions in the cochlea are thought

to compartmentalize endolymph by controlling the permeability of the paracellular pathway.

Mutations in the tight junction gene CLDN14 may cause loss of endolymphatic potential
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leading to degeneration of cochlear hair cells, and is etiologic in the autosomal recessive

hearing loss DFNB20 (Wilcox et al. 2001).

Transcription Factors

Transcription factors regulate the spatio-temporal expression of thousands of genes

and the control of cellular proliferation, differentiation, and regulation of cellular function to

ensure proper development and functioning of an organism, and the inner ear is no exception.

Four transcription factor genes have been identified (POU3F4, POU4F3, EYA4, and

TFCP2L3) to be etiologic for the nonsyndromic hearing disorders DFN3, DFNA15, DFNA10

and DFNA28, respectively (de Kok et al. 1995, Vahava et al. 1998, Wayne et al. 2001, Peters

et al. 2002).

POU3F4 is a member of a larger family of genes called POU domain genes, which

play a role in determining cell types in the central nervous system during early development

and are likely to be involved in the development of the middle and inner ear. Mutations in or

near POU3F4 probably lead to insufficiency of POU3F4 protein, thus disrupting the normal

development of structures in the middle and inner ear and leading to hearing loss (de Kok et al.

1995). POU4F3, a class IV POU domain transcription factor, has a central function in the

development of all hair cells in the human and mouse inner ear sensory epithelia. Mutations in

POU4F3 affect protein stability, localization, and transcriptional activity (Hertzano et al.

2004).

Mutations in EYA4 lead to production of abnormal EYA4 protein, lacking some or all

of the Eya domain and thus impairing interactions with other proteins. Impaired protein

interactions probably disrupt control of gene activities that are important for the development
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of the inner ear and maintenance of normal hearing (Wayne et al. 2001). Transcription factor

TFCP2L3 was shown to be highly expressed in epithelial cells lining the cochlear duct. The

predicted translation product of TFCP2L3 has sequence similarity to a group of proteins

comprising the transcription factor cellular promoter 2 (TFCP2) family. However, its exact

function remains to be elucidated (Peter et al. 2002).

Often times, transcription factors work in synchrony during the development and

maintenance of mammalian inner ear (Corey and Breakefield 1994, Cantos et al. 2000), an

example being the interactions between MITF, PAX3, and SOX10. Mutations in these genes

result in the various subtypes of Waardenburg syndrome: PAX3 (Waardenburg syndrome

types I, III and craniofacial-deafness-hand syndrome), MITF (Waardenburg syndrome type

11), and SOXlO 0 (Waardenburg syndrome type IV). It has been shown that SOXlO 0 and PAX3

synergistically regulate MITF expression in transfection assays and mutant SOX10 and PAX3

proteins failed to bind to the MITF promoter region to commence induction (Bondurand et al.

2000).

Modifiers

In addition to genes that directly causing hearing loss, there also exist modifier genes

that can contribute to hearing disorders through their influence on the expression or function

of other genes. Notable examples include tub (tubby) and moth], dwf and mdfw in mice and

DFNB26 and DRNM in humans. Tub encodes a transcription factor with expression in the

outer and inner hair cells and the spiral ganglion cells. Moth], a modifier of tubby hearing,

can either worsen or prevent the hearing impairment in tubby, depending on the type of moth]

allele and on whether one or both copies of the allele are present (Ikeda et al. 1999). Dfvv
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encodes an ATPase pump that is necessary for maintenance of low cytosolic calcium ions

(Kozel et al. 1998; Street et al. 1998). Mdfw as a modifier of dfw (deaf wobbler) can protect

dw, heterozygotes from hearing loss with one allele and is permissive of hearing loss with the

other (Noben-Trauth et al. 1997). In the autosomal recessive, nonsyndromic sensorineural

hearing loss DFNB26, a dominant modifier gene (DFNM1) has been mapped to lq24 and is

thought to suppress deafness in individuals with DFNB26 (Riazuddin et al. 1999).

Approaches to Gene Discovery and Characterization in the Auditory System

The traditional method for identification of genes involved in deafness begins by

collection of DNAs from kindreds segregating a hearing impairment. It is then followed by

genetic linkage analysis to identify the region of genome in which a gene involved in hearing

is likely to reside. Once the region is discovered, positional cloning is then performed. When

successful, it can reveal the identity of the gene involved in the deafness. This process has

been very successful in identifying a number of human deafness genes such as NDP, TCOF1,

DDP, SLC26A4, USH2A and DFNA5 (Morton 2002). However due to the complex genetic

nature of deafness, linkage analysis is a less than optimum method in gene discovery efforts

for hearing disorders. Successful use of genetic linkage for mapping hearing disorders in

autosomal recessive nonsyndromic loci has been fruitful largely in consanguineous kindreds

or populations in which there has been limited admixture. Even in families in which a

heritable hearing disorder is successfully mapped, there may be insufficient numbers of

recombination events to narrow a chromosomal interval, resulting in a candidate region in the

megabase scale.
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A complementary method to the genetic linkage analysis for gene identification is one

that utilizes tissues or organ-specific cDNA libraries to provide candidate genes (Hedrick et

al. 1984, Jones et al. 1989, Gurish et al 1992). Presently, cochlear libraries are available for

human, mouse, rat and chicken. These libraries have provided valuable tools for gene

discovery in hearing and deafness. Almost 15,000 human (Morton fetal cochlear cDNA

library) and 1,600 mouse (Soares mouse NMIE cDNA library) inner ear ESTs are currently

available in the GenBank (http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi). ESTs from the

human cochlear cDNA clones have already elucidated thousands of potential positional

candidate genes for hearing disorders. Some of the human ESTs are genes already known to

be involved in deafness: COL4A5 (Alport syndrome), EDNRB (Waardenburg syndrome, type

IV), EYA1A (130R syndrome), GJB2 (DFNB1 and DFNA3), GJB6 (DFNA3), KVLQT1

(Jervelle and L.ange-Nielsen syndrome), and MY06 (DFNA22). Several genes preferentially

expressed in the cochlea, namely COCH (Robertson et al. 1997), OTOR (Roberton et al. 2000)

and KCTD12/P-FET (Resendes and Kuo, 2004) have been identified from the human fetal

cochlea cDNA library. COCH was further shown to be responsible for the sensorineural

deafness and vestibular disorder, DFNA9 (Robertson et al. 1998). Using a similar approach, a

number of genes implicated in murine auditory function have been identified from mouse

inner ear transcripts, such as Otog, Ocn95, Fdp (mouse homolog of OTOR), Strc and Ushlc,

and (Morton 2002). The human ortholog of Strc was found to be etiologic in DFNB 16 (Verpy

et al. 2001) and mutations found in the human ortholog of Ushlc underlie USHIC and

DFNB 18 (Ahnmed et al. 2002).

In addition to inner ear cDNA libraries, microarray technology offers a rapid and

efficient way of identifying new deafness genes. It is a highly sensitive assay that requires
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very little starting material. It was instrumental in the identification of CRYM (Abe et al. 2003)

and COL9A3 (Asamura et al. 2005), which were then studied as candidate genes for

nonsyndromic deafness. With the completion of the DNA sequence of the human and mouse

genomes, the sequence can be used to determine the expression pattern of thousands of genes

from the inner ear. Cross-tissue comparisons facilitate identification of genes that are

preferentially expressed in the inner ear. Microdissection and subtraction between data sets

can help identify cell-type specific and structural-specific genes important for the function of

the inner ear and expedite identification of genes that interact with deafness genes (Corey and

Chen, 2002).

Model Organisms for Hearing and Deafness

Genes discussed in the previous section constitute just a fraction of what is involved in

the process of hearing. Animal models have been invaluable in understanding how mutations

or changes in these genes affect the function and development of the ear. Model organisms,

genetically altered or pharmacologically treated, have been employed in the study of human

diseases for many years. Animal models have made available a wide variety of studies

including gene expression during development, anatomical and physiological experimentation,

and various kinds of genetic manipulation that are not possible or ethical with human subjects.

These have helped elucidate important questions such as whether candidate genes actually

cause disease and by what mechanisms a gene mutation underlies a disorder.

Many considerations are taken into account when choosing an animal model, such as a

researcher's familiarity with and accessibility to the animal. In addition, the time required to

produce an animal model is critical, which is determined partly by the animal's generation
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time, and in part by the ease of disease gene modification (lower eukaryotes being faster than

higher eukaryotes). The potential resemblance of the phenotype observed in the animal model

compared to that in human is an important criterion; this choice is dependent upon the disease

gene under study and the affected organ. In general, the lowest eukaryote containing an

ortholog of the human disease gene and the organ system is the preferred model organism.

Mouse Models

The mouse is a great model for studying human genetic deafness and genes essential

for the auditory system because the anatomy, function, and hereditary abnormalities of the

mouse ear have been shown to be highly similar to that of humans (Probst and Camper 1997).

There are two general approaches to the utilization of mouse models in the analysis of human

disease, one being the disease-driven directed genetic approach and the other mutagenesis-

driven non-directed approach. In the direct approach, the disease-causing genes are already

identified and the mutation characterized in the human population. Then, the mouse ortholog

is identified and manipulation performed for functional gene alteration. Specifically, genetic

modification may be introduced via transgenic animals where multiple copies of a foreign

mutant gene were are inserted into its genome, or gene targeting where one or both normal

alleles of the animal's ortholog are mutated typically via homologous recombination. In the

non-directed approach, the process begins with the genetic modification and phenotype

characterization in the mice followed by genetic and molecular studies of the disease. This is

exemplified by chemically induced mutations via N-ethyl-N-nitrosourea (ENU) where mice

are treated with ENU and screened for hearing and balance phenotypes. There are multiple

centers performing mouse ENU mutagenesis including Harwell in the UK; Neuherberg in

12



Germany; Ricken in Japan; and Brigham and Women's Hospital, The Jackson Laboratory,

Baylor College of Medicine, McLaughlin Research Institute and Oak Ridge National

Laboratory in the United States. Both spontaneous and chemically induced mutations provide

an array of naturally occurring and randomly induced mouse mutations to study. Advantages

and limitations are associated with each approach and technique (reviewed in Chapter 15 of

Current Protocols in Human Genetics, and Brown and Hardisty, 2003).

In addition to these genetically engineered and chemically induced mutations, there

are also mutations that spontaneously arise in the mice (Johnson 2001). Spontaneous

mutations have occurred naturally in large inbred populations of mice and they constitute a

large portion of the mouse mutations now being used as models for human deafness. These

mutations are identified often through behavioral abnormalities. Mice displaying

hyperactivity, head bobbing, and circling behavior typical of vestibular dysfunction are

frequently found to be deaf or hearing impaired. Other abnormalities in pigmentation and

development can be associated with a hearing deficit as well. Certain inbred strains of mice

exhibit a late-onset, progressive hearing loss, providing valuable models for the study of

human age-related hearing loss (AHL), or presbycusis. In both humans and mice, AHL occurs

earliest at high frequencies with loss of sensory hair cells from the base to the apex of the

cochlea. Thus far, three AHL loci have been mapped, Ahl3(AHL-resistant) (Nemoto et al.

2004), Ahl and Ahl2 (AHL-sensitive) (Johnson and Zheng 2002).

Deaf mouse mutants are posted on the Sanger Institute website

(http://www.sanger.ac.uk/PostGenomics/mousemutants/deaf/). This site contains a current

listing of genes or loci identified thus far known to be involved in deafness and/or balance

defects in mice with a wide array of abnormalities from the periphery to the central auditory

13



system. Numerous human hearing disorders with mouse models can be found at The Jackson

Laboratory website (http://wwwjax.org/hmr/models.html). There are currently at least 22

nonsyndromic and 30 syndromic human deafness genes with corresponding mouse mutations.

Zebrafish Models

Zebrafish (Danio rerio) has become an important model system for the study of

development and function of the vertebrate inner ear. The vertebrate inner ear is a complex

system involving many sensory organs. It can be divided into two major compartments, dorsal

and ventral. The dorsal part containing the utricle macula and three cristae for the semicircular

canals is highly conserved structurally and functionally amongst all vertebrates. The ventral

part becomes more specific to each vertebrate class and contains the macular organs of the

saccule and lagena, which function in balance, audition or both. In the case of zebrafish, the

primary auditory organ is the saccule. Sound is detected through the fish's air-filled swim

bladder and transmitted via a series of bones called the Weberian ossicles connecting the

swim bladder to the sensory patch in the saccule. There are also additional auditory inputs

from the lagena and macula neglecta that are developed later during the juvenile stage (Fekete

and Wu 2002). In addition to the inner ear, zebrafish also possess another sensory organ

called the lateral line that allows for the detection of low-frequency stimuli such as water

movements.

There are several advantages to using zebrafish as a model for studying hearing.

Embryogenesis is rapid, and monitoring and manipulation of auditory organs in vivo during

development are possible. Although zebrafish do not possess the equivalent of the mammalian

cochlea, the organization and morphology of the zebrafish inner ear sensory epithelium cristae
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and maculae are highly similar to that of higher vertebrates, including human. Genetic

mechanisms governing the development and function of the zebrafish ear also appear well

conserved (Whitfield et al. 2002). Nonetheless, there are exceptions including the formation

of the otocyst by cavitation in zebrafish rather than by invagination as in chicks and mice.

Utilizing the classical forward genetic approach, many random mutations have been

generated in zebrafish through ENU mutagenesis. Mutants can be screened initially for

defects in morphology. Behavioral assays are also employed to search for mutants with

aberrant swimming patterns that are indicative of vestibular defects. Functional assays such as

generation of microphonic potentials and apical endocytosis, which is highly active in normal

hair cells, are also effective screening tools. One may also measure the startle response of

adult mutants to an auditory stimulus. This is a high throughput and automated screening that

can elicit a rapid tail-flip from zebrafish with "normal" hearing in response to a tone burst. It

can detect subtle behavioral defects that might have been missed by human observation. In

situ hybridization may also be used as a high-throughput method to identify genes with

specific or restricted temporal and spatial expression patterns, which is ideal for studying

organ specific processes.

Reverse genetic approaches have also been useful in determining the importance of

individual genes or a combination of genes' involvement in development and function of the

inner ear via suppression of expression for targeted genes (morpholino knockdown),

overexpression of a targeted gene (ectopic expression), and fluorescent reporting of targeted

genes (transgenesis). At least 22 genes have been identified so far to be necessary for inner

ear development and function in zebrafish (Nicolson 2005). Mutations in these genes can

cause defects affecting many aspects of normal hair cell specification, survival and function,
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development of otic induction and formation of the otic vesicle. At least five forms of

syndromic or nonsyndromic human hearing disorders are known to have zebrafish models

(Whitfield 2002).

In the past decade, tremendous progress has been made in auditory research. With the

sequence completion of both human and mouse genomes and the zebrafish genome over

three-fifths complete, gene discovery and functional analysis shall proceed at an ever rapid

pace facilitated by advances in new genomic and proteomics technologies. To this end, we are

ever closer to an enhanced understanding of the hearing process that will assist in better

treatment, prevention and diagnosis of this complex disease.
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ABSTRACT

We have cloned a novel human gene, designated PFET] (predominantly fetal

expressed T domain) (HUGO approved symbol KCTD12 or Cl3orf2), by subtractive

hybridization and differential screening of human fetal cochlear cDNA clones. Also, we have

identified the mouse homolog, designated Pfetl. PFETI/PJ/tl encode a single transcript of

approximately 6 kb in human, and three transcripts of approximately 4, 4.5 and 6 kb in mouse

with a 70% GC(-rich open reading frame (ORF) consisting of 978 bp in human and 984 bp in

mouse. Both genes have unusually long 3' untranslated (3' UTR) regions (4996 bp in human

PFET1, 3700 bp in mouse Pfetl) containing 12 and five putative polyadenylation consensus

sequences, respectively. Pfetin, the protein encoded by PFETJ/Pfetl, is predicted to have 325

amino acids in human and 327 amino acids in mouse and to contain a voltage-gated potassium

(K+) channel tetramerization (Tl) domain. Otherwise, to date these genes have no

significant homology to any known gene. PFET1 maps to the long arm of human

chromosome 13, in band q2l1 as shown by FISH analysis and STS mapping. Pt] maps to

mouse chromosome 14 near the markers D 14Mit8, D 1 4Mit93 and D 14Mit 145.1. The human

6 kb transcript is present in a variety of fetal organs, with highest expression levels in the

cochlea and brain and in stark contrast, is detected only at extremely low levels in adult

organs, such as brain and lung. Immunohistochemistry with a polyclonal antibody raised

against a synthetic peptide to PFETI sequence (pfetin) reveals immunostaining in a variety of

cell types in human, monkey, mouse, and guinea pig cochleas and the vestibular system,

including type I vestibular hair cells.

KEYWORDS: novel gene, intronless, GC-rich, cochlea, predominant fetal expression,
tetramerization domain, unusually long 3' UTR, hair cells
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INTRODUCTION

The prevalence of severe to profound bilateral congenital hearing loss is estimated at 1

in 1000 births (Gorlin et al. 1995). About 50% of congenital deafness is thought to be due to

environmental factors, such as acoustic trauma, ototoxicity (e.g., aminoglycoside antibiotics),

and viral or bacterial infections (e.g., rubella, bacterial meningitis). The remaining 50% are

attributed to genetic causes and are categorized as syndromic or nonsyndromic hearing loss.

Approximately 77% of hereditary deafness is estimated to show autosomal recessive

inheritance, 22%/o is autosomal dominant, 1% is X-linked, and less than 1% segregates through

the maternal lineage via mitochondria mutations (Morton 1991). Hundreds of syndromes are

recognized in which hearing loss is among the clinical findings (Gorlin et al. 1995); over 90

loci have been mapped for nonsyndromic hearing loss (51 autosomal dominant, 39 autosomal

recessive, 1 modifier, and 6 X-linked), and to date (Van Camp and Smith, 2003) mutations in

at least 53 genes that cause deafness have been identified (Resendes et al. 2001).

We undertook an organ-specific cDNA library approach to identify genes important

for hearing, a method that has been used successfully to identify various genes including

auditory genes (Hedrick et al. 1984; Jones and Reed 1989; Gurish et al. 1992; Cohen-Salmon

et al. 1997; Soto-Prior et al. 1997; Heller et al. 1998; Jacob et al. 1998; Robertson et al. 1998).

To this end, we made a human fetal cochlear cDNA library (Robertson et al. 1994) and have

used two complementary methods to identify genes within the cochlear library. The first

strategy, sequencing of the cDNA library, resulted in over 14,000 ESTs, revealed the presence

of over greater than 1,200 known genes, over 2,200 EST clusters also expressed in other

libraries, and 700 EST clusters unique to the cochlear library (Skvorak et al. 1999; Resendes

et al. 2002). Analysis of the cochlear ESTs revealed 788 genetic loci some of which fall
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within intervals of mapped deafness loci and represent positional candidates for deafness

disorders (http://hearing.bwh.harvard.edu). This comparative sequence analysis led to the

identification of the novel gene OTOR (Robertson et al, 2000). The alternative strategy

combined the approaches of subtractive hybridization and differential screening of the

cochlear library and led to identification of genes preferentially expressed in the cochlea

(Robertson et al. 1994). As a result of the latter strategy several auditory genes, namely

ATQ1 and COCH, of which the latter is novel, have been identified from the cochlear cDNA

library (Skvorak et al. 1997; Robertson et al. 2000). COCH was further shown to be

responsible for a sensorineural deafness and vestibular disorder, DFNA9 (Robertson et al.

1998).

Herein we present characterization of a novel human gene, PFET1, identified from the

human fetal cochlear cDNA library by subtractive hybridization and differential screening,

and the characterization of its mouse homolog, Pfetl. We describe expression analyses,

chromosomal mapping and immunohistochemical analyses of the human and mouse genes.

MATERIALS AND METHODS

Differential screening of a subtracted cochlear cDNA library

Human PFET] was initially identified from a human fetal cochlear cDNA library by

subtractive hybridization and differential screening techniques utilized to identify genes

important for hearing (Robertson et al. 1994). The original partial cochlear cDNA was

designated 2E9. Briefly, a human fetal cochlear cDNA library was subtracted with human

fetal brain mRNAs by an avidin-biotin based procedure to enrich for cochlear-expressed
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transcripts. Poly (A)+ RNAs from second trimester cochlea and brain cortex were isolated

and reverse transcribed to generate 32 P-labeled cDNA probes used for differential screening of

the subtracted clones to identify those clones expressed at higher levels in the cochlea.

Isolation of cDNA clones

The human PFET1 partial cDNA, which represents the 3'-most 848 bp of the full-

length cDNA, was identified initially from the human fetal cochlear cDNA library. The full-

length human PFET1 cDNA was obtained in two phases. During the first phase, 4.4 kb of the

cDNA was obtained by using the insert from the original cochlear cDNA clone as a probe to

screen 106 recombinant phage from a human fetal brain cDNA library cloned into Lambda

ZAP II (Stratagene, La Jolla, CA). Filters were prehybridized and then hybridized at 42°C

with a 32P-labeled random-primed (Feinberg and Vogelstein 1984) probe in 10% dextran

sulfate, 4X SSC, 7 mM Tris-HCl (pH 7.6), 0.8X Denhardt's solution, and 20 ug/ml sonicated

and denatured herring sperm DNA in 40% formamide and 0.5% SDS. Filters were washed in

0.1 X SSC in 0.10) SDS at 50°C prior to autoradiography using XAR-5 film (Eastman Kodak

Co., Rochester NY) and intensifying screens at -80°C. During the second phase, the

remaining 1.7 kb of the 5' end was cloned through a computer search of the accumulated

terminal sequence data of human long cDNA libraries of the Kazusa DNA Research Institute

(http://www.kazusa.or.jp/huge) (Ohara et al. 1997). The longest clone, which was 6.2 kb in

size, was isolated from an adult hippocampus library and is denoted as pg00707.

The mouse Pfetl sequence was isolated by using the open reading frame from the

human PFET1 to search the GenBank EST database (http://www.ncbi.nlm.nih.gov/BLAST/,

EST database). One EST (GenBank accession number AW230625) was identified with 95%
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identity at the nucleotide level and contained 160 bp of the 3' end of the open reading frame

and 300 bp of the beginning of the 3' UTR. The AW230625 EST was derived from the 5'

end of a mouse IMAGE clone (accession number IMAGE: 2647463) that was obtained from

Research Genetics (now Invitrogen Life Technologies, Carlsbad, CA). Together with an

overlapping mouse clone (accession number IMAGE: 5012249), the complete sequence of 3'

UTR of mouse Pftl was determined. The remainder of the 70% GC-rich open reading frame

was cloned from total adult mouse brain RNA using 5' rapid amplification of cDNA ends

(RACE; Invitrogen Life Technologies, Carlsbad, CA). Because the ORF is 70% GC-rich,

reverse transcription was performed at 50°C in the presence of PCRX Enhancer Solution

(Invitrogen Life Technologies). For amplification of cDNA, the following PCR protocol was

performed in the presence of PCRX Enhancer Solution: initial denaturation at 97°C for 3

minutes; 35 cycles of 96°C for 30 seconds, 62°C for 30 seconds, and 72°C for 2 minutes; and

final extension at 72°C for 7 minutes. PCR fragments were TA-cloned (Invitrogen Life

Technologies) and sequenced.

Genomic clone

BLAST analysis of the PFET1 nucleotide sequence identified a 109 kb genomic clone

(GenBank accession no. AC000403) corresponding to RPCI-1 PAC clone 264J2, and this

PAC was obtained from Research Genetics. PAC 264J2 contains the entire PFET gene.

Sequence analysis

Nucleotide sequence of partial cDNA clones was determined using an ABI PRISM

dye-terminator cycle-sequencing system (PE Applied Biosystems, Foster City, CA).
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Sequence analysis was performed using the University of Wisconsin Genetics Computer

Group software (Devereux et al. 1984) and the Open Reading Frame (ORF) Finder program at

the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/).

The cDNA insert of pg00707 was sequenced using the shotgun strategy according to

procedures previously described (Ohara et al. 1997). For DNA sequencing, dye-primer or

dye-terminator cycle sequencing reactions were performed using ABI PRISM cycle

sequencing kits (PE Applied Biosystems) and the products were analyzed with ABI 373 or

377 DNA sequencers.

Northern blot analysis

Total cellular RNAs were extracted (Chirgwin et al. 1979) from second trimester

human fetal organs, adult surgical specimens, and adult mouse tissues. All human organs and

specimens were obtained in accordance with guidelines established by the Human Research

Committee at Brigham and Women's Hospital. Ten g of each sample of RNA were

electrophoresed in denaturing 1% agarose-formaldehyde gels and capillary-transferred

overnight in O10X SSC to GeneScreen Plus membranes (NEN Life Science Products, Inc.,

Boston, MA; Thomas 1980). Mouse aging brain and mouse embryonic Northern panels were

obtained from Seegene, Inc. (Seoul, Korea); each lane contains 20 ug of total RNA isolated

from either ICR strain whole mouse embryos at different stages or whole brain at different

ages.

Filters were prehybridized for 2 hours and hybridized overnight at 42°C as described

above with either 32 P-labeled random-primed probe or PCR-generated 32 P-labeled probe.

Filters were washed in 0.1 X SSC in 0.1% SDS at 42-55°C prior to autoradiography using
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XAR-5 film with intensifying screens at -80°C. A human 3' UTR probe was prepared via

random labeling from the original 2E9 cochlear clone; a human 3' UTR internal region probe

was amplified using the following primers and conditions: upper (5'

TGCAAACATGCCAAGTATTTT 3') and lower (5' AGGCAACCAGGTCTCCTTCT 3');

initial denaturation at 97°C for 3 minutes; 35 cycles of 96°C for 30 seconds, 60°C for 30

seconds, and 72°C for 30 seconds; and final extension at 72°C for 7 minutes. To generate

radiolabeled PCR fragments representing the beginning (507 bp) and end (462 bp) of the

human ORF, the following primers and the same conditions as above were used: upper (5'

CCTCTCTGTCATGGCTCTGG 3') and lower (5'TGTTCGGGCTCCGAGTAG 3'), and

upper (5' TCCTCTTCCGCTACATCCTG 3') and lower (5'

TTGAGGTAATAGCGCGAGGT 3'), respectively.

For generation of a mouse Pf/tl ORF 460 bp probe (contains 160 bp of the 3' region

of the Pf/tl ORF and 300 bp of the beginning of the 3' UTR) from mouse clone AW230625,

the following primers and PCR conditions were used: upper (5'

CAGGCCTTCG(ATAAGCTGTC 3') and lower (5' CGACATCCTGACTCTTGCAT 3');

initial denaturation at 97°C for 3 minutes, 35 cycles of 96°C for 30 seconds, 58°C for 30

seconds, and 72°C for 30 seconds; and final extension at 72°C for 7 minutes. For generation

of the mouse Pf'etl 3' UTR probe 1 (400 bp), the following primers and PCR conditions were

used: upper (5' GGCTCATAGGACAGCACCTC 3') and lower (5'

GCATGGCTGCACATCAGATA 3'); initial denaturation at 97°C for 3 minutes, 35 cycles of

96°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds; and final extension at

72°C for 7 minutes. For generation of the mouse Pfetl 3' UTR probe 2 (394 bp), the

following primers and PCR conditions were used: upper (5'
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GAGGGAATCGTTTTGATGTGA 3') and lower (5' CCCAGCAATTTATGGAGTTGA 3');

initial denaturation at 97°C for 2 minutes, 35 cycles of 96°C for 30 seconds, 60°C for 30

seconds, and 72°C for 30 seconds; and final extension at 72°C for 7 minutes.

Gene mapping

A human PAC (246J2, GenBank accession number AC000403) containing the entire

PFETI gene was obtained from Research Genetics and used to generate a biotin-labeled

probe for fluorescence in situ hybridization (FISH). About 3 pg of PAC DNA were labeled

with dNTPs conjugated with biotin (Boehringer Mannheim, Indianapolis, IN) according to the

manufacturer's protocol, precipitated with 6 ~tg of Cot-1 DNA (Gibco-BRL, Rockville, MD)

and resuspended in 30 tl hybridization buffer (50% formamide, 2X SSC). Hybridization of

metaphase chromosomes from peripheral blood lymphocytes obtained from a normal male

was performed using 0.5 - 1 pg of labeled probe. The biotin-labeled probe was detected using

Cy3 avidin (Amersham, Little Chalfont, Buckinghamshire, UK) and chromosomes were

counterstained with 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) (Vysis, Downers

Grove, IL). The map position of the PFET1 gene was determined by visual inspection of the

signal on the DAPI counterstained metaphase chromosomes. Chromosomes and signals were

observed with an Olympus AX70 photomicroscope and photographs were captured using a

Photonics CCD camera and Genus software (Applied Imaging, Santa Clara, CA). Mapping of

the mouse Pfetl gene was performed by using the 3 kb mouse sequence to search for identical

sequences in the Celera mouse genome database (Celera, Rockville, MD).
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Tissue preparation for immunohistochemistry

Three mice (6-8 weeks), two guinea pigs (less than 3 months), one monkey (unknown

age), one adult human (68 years) and one fetal human (20 weeks) cochleas were used in this

study. Human fetal tissues were fixed in 4% paraformaldehyde in PBS at 4°C for 2-3 weeks

and then decalcified in 0.1 M EDTA in PBS at 4°C for approximately 2 weeks. The human

adult temporal bone was retrieved during autopsy; postmortem time is unknown. All tissues

were prepared for paraffin sections in the following manner. Animals were anesthetized via

intraperitoneal injection of urethane (1.5 g/kg), and exsanguinated through transcardial

perfusion of saline with 0.01% sodium nitrite, followed by fixative. Fixatives used were

formalin acetic (FA: 10% formalin and 1% acetic acid in PBS) and formalin glutaraldehyde

(FG: 10% formnalin and 0.1% glutaraldehyde in PBS). The bulla cavity of each animal was

quickly exposed and 0.2-0.5 ml of fixative was injected slowly into the scala tympani through

the perforated round window. Specimens were kept overnight at 4C in their respective

fixative followed by one week in 120 mM EDTA pH 7 for decalcification. For human

specimens, decalcification was performed up to a month. The decalcified specimens were

dehydrated in a series of ethanol solutions and xylene baths before embedding in paraffin

(Imamura and Adams 1996). Serial 8 ptm sections were cut and mounted on glass slides.

Human fetal tissues were obtained following guidelines established by the Human

Research Committees at Brigham and Women's Hospital and the Massachusetts Eye and Ear

Infirmary. The care and use of animals were in accordance with NIH's "Principles of

Laboratory Animal Care" and was approved by the institutional committee on animal care at

both institutions.
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Immunohistochemical staining

Polyclonal antibody was raised in rabbits against a synthetic peptide corresponding to

amino acid residues 256-280 of PFET1 human sequence, coupled to KLH (keyhole limpet

hemocyanin) (Research Genetics). This region of PFET1 is highly conserved in mouse.

Antisera were affinity purified using the pfetin peptide. In order to obtain pfetin as a positive

control for Western analysis, the open reading frame of PFET1 was cloned into vector

pET28a to express the protein (Novagen, Madison, WI). Pfetin was also extracted from

various adult mouse organ tissues that were shown to contain PFET1 mRNA through

Northern analysis. For a negative control, the pET28a vector only and the pET28a vector with

another unrelated ORF were used. All protein was expressed in bacterial cell line BL21 (DES)

(Stratagene, La Jolla, CA). Immunostaining of paraffin sections was performed with the

biotinylated tyramine (BT) enhancement method (Adams 1992). Paraffin sections containing

the cochlear regions were deparaffinzed, hydrated, and rinsed in deionized water and PBS.

Sections were blocked with 5% normal horse serum (NHS) in PBS for 30 minutes and then

incubated overnight with primary anti-PFET 1 antibody diluted between 1:1000 and 1:4000 in

1% NHS-PBS at room temperature in a humid chamber. Sections were rinsed with PBS and

incubated for an hour in a 1:1000 dilution of biotinylated goat anti-rabbit IgG (Vector

Laboratories, Inc., Burlingame, CA) in 1% NHS-PBS. Sections were rinsed in PBS and

incubated with Vectastain ABC reagent (Vector Laboratories). After an hour, sections were

rinsed in PBS and incubated with BT diluted 1:100 in 0.01% H20 2 for 10 minutes, rinsed in

PBS, and incubated with ABC reagent for another 30 minutes. The primary antibody was

visualized using 0.05% DAB (3,3' diaminobenzidine) in 0.01% H20 2 and 0.1 M phosphate
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buffer. Controls for the immunostaining procedures were done with serial dilution of the

affinity-purified primary antibody and with 1% NHS-PBS containing no primary antibody.

RESULTS

Identification of human PFET1 by subtractive hybridization and differential screening

To identify genes preferentially expressed in the cochlea, subtractive hybridization and

differential screening techniques were performed using a human fetal cochlear cDNA library.

Subtracted cochlear clones were differentially screened with 32 P-labeled total fetal cochlear

and total fetal brain cDNA probes identifying those clones that were highly or preferentially

expressed in the cochlea (Robertson et al. 1994). Slot blot analysis revealed that PFET1 had

an increased level of expression in cochlea as compared to brain (data not shown), and led to

its selection for further analysis.

Nucleotide and amino acid sequence analysis

To identify the full-length sequence of PFET1, human fetal brain and adult

hippocampus libraries were screened and yielded several overlapping cDNA clones. The

longest clone (6.2 kb) was isolated from the adult hippocampus library and represented the

full-length sequence of PFET1, containing a predicted full-length open reading frame (ORF)

of 325 amino acids encoded by one exon and a 3' UTR of 4996 bases containing twelve

polyadenylation consensus sequences (Figs. 1 and 2). The detailed information of the isolated

clone is available on a Gene/Protein characteristic table for KIAA1778 of the HUGE database

(URL, http://www.kazusa.or.jp/huge). Analysis of the upstream sequence revealed a Kozak
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sequence (GCCCGGCCACCN 8ATGG) (Fig. 1). The 240 bases 5' to the ORF and the entire

ORF are very GC-rich (78% and 70%, respectively) (Figs. 1 and 2). BLAST analysis (dbNR)

revealed homology to no known genes in GenBank, identified one partial human fetal brain

mRNA clone designated 24475 (GenBank accession number AF052169), and one

chromosome 13 PAC clone designated 246J2 (GenBank accession number AC000403).

BLAST analysis (dbEST) revealed homology to 279 ESTs from various human libraries,

including fetal cochlea (n=31), adult and fetal brain (n=29), adult heart (n=14), adult kidney

(n=16), adult lung (n=17), adult ovary (n=17) and adult muscle (n=5). The findings of a

consensus Kozak sequence, and that longer transcripts containing additional 5' sequence were

not revealed by RT-PCR (data not shown), library screening or computer searching of public

databases, suggest that the 6.2 kb clone contains the entire gene.

One mouse EST (AW230625) with 95% identity at the nucleotide level and containing

part of the ORF (170 nucleotides of the 3' end of the ORF) was identified from GenBank

(mouse dbEST). The remainder of the mouse Pfrtl ORF was cloned from mouse brain total

RNA by performing 5' RACE. The remaining 3.4 kb of the mouse Pfttl 3' UTR was

obtained by sequencing IMAGE clone 5012249 that overlapped with mouse AW230625 EST

(see Materials and Methods). Like its human homolog, the mouse Pfetl gene has an

unusually long 3' UTR (3700 bp) and contains five putative polyadenylation consensus

sequences (Fig. 4).

The protein domain database, Pfam (Bateman et al. 2000), was used to identify protein

motifs or domains in the predicted amino acid sequence. A voltage-gated potassium channel

tetramerization (T1) domain of 95 amino acids, spanning amino acids 34-129, was identified

(E = 7.3e-17) in the amino terminal region (Figs. and 3). No other complete domains were
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predicted. A hydropathic profile utilizing the Kyte-Doolittle method revealed four weakly

hydrophobic regions of at least 10-15 amino acids (data not shown). The deduced amino acid

sequence does not appear to contain any transmembrane spanning domains, as determined by

the transmembrane prediction programs TMpred (Hofmann and Stoffel 1993), TMHMM

(Sonnhammer et al. 1998), and HMMTOP (Tusnady and Simon 1998).

The human PFET1 and mouse Pftlgenes are 91% identical at the nucleotide level

within the ORF and share little sequence similarity outside of the ORF (Fig. 2). The mouse

ORF is longer by two amino acids (insertion of proline and histidine at positions 142 and 143,

respectively) and the predicted protein differs by eight amino acids (Fig. 2). The human and

mouse pfetin are predicted to have 325 amino acids in human and 327 amino acids in mouse

and to contain a voltage-gated potassium channel tetramerization domain. The entire human

and mouse ORFs are very GC-rich (70%). The tetramerization domain in the mouse PJtl is

identical to that of the human PFET1 except for a phenylalanine to leucine change at position

88 (Fig. 2).

Northern blot analysis

To determine the relative level of expression of human PFETi mRNA in various

tissues, Northern blot analysis was performed using the original 3' cochlear cDNA clone (0.9

kb of 3' UTR) to probe a panel of human fetal RNA samples (Fig. 5). One transcript (-6 kb)

was revealed at high levels in human fetal cochlea and brain, at moderate levels in skeletal

muscle, lung, ovary and eye, and at lower levels in thymus, tongue, heart and adrenal gland

(Fig. 5A). A Northern blot panel of adult and fetal human organs was hybridized with

different PFETI probes (Fig. 5 B and D). In contrast to the abundant fetal expression pattern,
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the -6 kb PFET1 transcript was present at barely detectable levels in adult tissues studied,

such as spinal cord, cerebrum, cerebellum, skeletal muscle, lung and lymph node (Fig. 5B).

Low expression levels of the PFETI transcript were also detected in adult liver, heart and

kidney (data not shown). The transcript was also detected in various regions of the fetal brain

(Fig. 5C). Other smaller-sized bands, in particular a -4.7 kb band, were identified by probes

made from the PFET ORF (Fig. SB, ORF probe) and are thought to be due to nonspecific

binding since the ORF region is 70% GC-rich and because the 3' internal UTR probe, which

would be expected to be present in a transcript of this length, does not identify these bands

(see Fig. 5B, 3' UTR internal).

For Northern blot analysis of total RNA from adult mouse tissues, we initially used

the "ORF probe" containing part of the 3' ORF region and part of the 3' UTR. A single -6 kb

transcript was revealed at low levels in most adult mouse tissues tested (Fig. 6 A and D).

Then, using a probe to a downstream 3' UTR region ("3' UTR probe ," which overlaps with

the "ORF probe"), three transcripts (approximately 4, 4.5 and 6 kb) were identified in samples

containing aging mouse brain and whole mouse embryos at different embryonic stages (Figs.

6 B, C and D). The intensity level of the largest Pfetl mouse transcript identified during

embryogenesis appears to increase between days 11.5 and 15.5, while the intensity level of

the smaller mouse transcripts seems to peak earlier, from days 6 to 15.5 (Fig. 6C). In addition,

there appears to be a noticeable decrease in expression level of the largest mouse transcript

between weeks 2 and 4 of development in mouse brain (Fig. 6B). The smaller transcripts are

not as apparent in the adult tissue panel, and most likely reflect the lower concentration of

RNA used to prepare that Northern blot. Interestingly, the smallest mouse transcript (- 4 kb)
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was not identified by a probe derived from the 3'-most mouse region (3' UTR probe 2) (data

not shown) suggesting the use of an internal polyadenylation sequence.

Northern blot analysis utilizing probes derived from different regions of the human

gene gave the same results as obtained with a 3'-most probe, and revealed the presence of no

additional transcripts for both the human and mouse genes (data not shown).

Chromosomal mapping in human

Physical mapping of PFET1 was done to determine its chromosomal position and to

access whether it is located within a region of any known deafness loci, making it a positional

candidate gene for that deafness disorder. Initially PFETI was localized to chromosome 13

by virtue of its sequence homology to a genomic chromosome 13 PAC (GenBank accession

no. AC000403. PAC 246J2) and to several chromosome 13 STSs (SHGC-15652, WI-17550

and TIGR-A002N08). PAC 246J2, which contains the entire PFETI gene, was FISH-mapped

and localized to band q21 on chromosome 13 (Fig. 7). Currently, PFETI is not a candidate

gene for any known deafness disorder as none have yet been mapped within this

chromosomal band (Van Camp and Smith 2003). The mouse Pfetl gene was mapped to

chromosome 14 near the markers D14Mit8, D14Mit93 and D14Mitl45.1 as determined by

sequence identity with the Celera sequence GA_xSJ8B7W5YOC. Human 13q21 is contained

within a region of homologus synteny in mouse chromosome 14 and thus far, no mouse

deafness mutant has been identified near Pfetl gene region
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Immunohistochemical analysis

Before immunostaining was attempted, the antibody was tested for purity and

specificity using Western blot analyses. The analyses of purified pfetin antibody on both

bacterially-expressed proteins and tissues extracted from various mouse organs (6 months old

brain, heart and skeletal muscle) showed one distinct band between 35 kDa and 47 kDa, the

expected size of pfetin, for the positive control but not for either of the negative controls (data

not shown).

The mammalian cochlear and vestibular systems consist of various cell types. In the

cochlea, the greatest number of immunostained cells were type I fibrocytes in the spiral

ligament (Fig. 9). This finding was observed in all species, including human, monkey, mouse,

and guinea pig (Fig. 9 and lOB). Immunostaining was also localized in the following cochlear

cell classes: types IV and V fibrocytes, Deiters cells, inner and outer pillar cells, inner sulcus

cells, interdental cells, supralimbal and limbal fibrocytes (Figs. 9 and 10). Type V fibrocytes,

also called suprastrial cells, were positive for immunostaining near the Reissner's membrane

in human (Fig. lOD), monkey (Fig. 9C), guinea pig (Fig. 1I C) and most of the mouse

cochlear sections (Fig. 9B). While immunostaining of limbal fibrocytes and supralimbal cells

was observed in mouse, guinea pig, monkey and human cochleas (Fig. 9 and 10),

immunostaining in Deiters cells, inner and outer pillar cells and interdental cells was observed

only in mouse and guinea pig (Fig. 1 A-C). Immunostained neurons included spiral ganglion

cells (Fig. 9B), Scarpa's ganglion cells and Purkinje cells in mouse sections containing brain

tissues (not shown).

In the vestibular system there was apical immuno-staining of the type I hair cells at the

cuticular plate and in the hair cell cytoplasm (Fig. 12G and H). Beneath the sensory
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epithelium, connective tissue cells were also immunostained in formalin plus glutaraldehyde-

fixed mouse (Fig. 12H) and guinea pig ampulla (Fig. 12 E, F and H). Positively stained

fibrocytes extended from beneath the sensory epithelium to the area beneath the vestibular

dark cells. Adjacent to the sensory epithelium, transitional cells and cells beneath the

vestibular dark cells in human fetal and guinea pig (Figs. 12A, B, E, and F) were positive. In

addition, positive cells were present facing the lumen of the semicircular canals in human

fetal tissue (Figs. 12C and D) and along with the lumenal and ablumenal surface of formalin

plus glutaraldehyde-fixed mouse and guinea pig semicircular canal (Fig. 12E, F and H).

These immunohistochemcial analyses were performed mostly on adult tissues, since fetal

tissues were not available at the time of this study. Although Pfetin has a low expression in

adult tissues, nonetheless it is expressed in a variety of adult organs and therefore the

immunohistochemical analyses on adult organs remains a reasonable initial study to carry out.

Immunohistochemical analyses on fetal organs are pertinent and such future analyses will be

performed.

DISCUSSION

We have cloned and characterized a novel intronless human gene designated PFET1

and its mouse homolog, Pfrtl. The open reading frames of PFETI and Pftl are unusually

GC-rich (70%); the potential significance of this is not known. The encoded proteins of both

genes contain a tetramerization domain characteristic of voltage-gated potassium channel

subunits. The 3' untranslated region from the human gene is long (4996 bp) as the average 3'

UTR length for human mRNAs deposited in public databases is between 740-755 base pairs
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(Pesole et al. 1997; Pesole et al. 2000). The role of the unusually long 3' UTR in this gene is

presently unknown. Although 12 putative polyadenylation consensus sequences are predicted

in the human sequence, the finding that 5' and 3' probes identified only the largest transcript

suggests that the other 11 putative polyadenylation consensus sequences may not be utilized

to produce alternatively-sized transcripts. It remains possible that other PFET1 transcripts of

different sizes exist and are at levels below the limits detectable by Northern blot analysis or

are expressed in a different temporal or spatial fashion not tested.

PFET1 encodes a single 6 kb transcript and its mouse homolog encodes three

transcripts (4, 4.5 and 6 kb). In humans, a 6 kb PFETI transcript is expressed abundantly in

a variety of tissues in the fetus and at strikingly lower levels in the adult. The observation that

PFT1 is expressed at much higher levels in fetal organs than in adult organs is intriguing.

This expression difference in adult and fetal tissue samples appears also to occur with the

mouse Pfrtl transcripts in brain (compare Fig. 6A, 6B). The disparate expression levels of

the PFET1 6 kb transcript cannot be explained by the expression of tissue-specific or age-

specific alternative transcripts as both 5' (containing part of the ORF) and 3' UTR probes

identified only a single transcript, the -6 kb transcript, in all fetal and adult human tissues

tested (see Fig. 5D for position of probes). PFET1 is the first example to our knowledge of a

human cochlear gene with such disparate expression patterns in adult and fetal human organs

as late as second trimester developmental age in humans. Similar type of expression has been

seem before in other species like mouse, zebrafish, xenopus and chick with genes like

GATA3, Pax2, Bmp4, and Bmp7 etc. This type of expression pattern suggests that PFET1

has a developmental role and thus is required at high levels during embryogenesis and at

much lower levels in adulthood. Of note, the human fetal cochlear library from which PFET1
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was identified represents largely developmental ages of 16-22 weeks, consistent with cochlea

that are morphologically adult-like in structure. There is also evidence that the human fetus

responds to sound at about this age. In light of these observations, it is interesting that there is

a marked difference in expression levels of PFETI in the fetus versus the adult, suggesting a

potential important role of PFET1 in further development of the cochlea during later stages of

fetal life.

Tetramerization domain

Voltage-gated potassium channels, of which there are multiple families, each

consisting of numerous members, are assembled as homomeric and heteromeric tetramers

from membrane-integrated c subunits; the Shaker-related potassium channel also

coassembles with cytosolic f3 subunits (Jan and Jan 1997; Pongs et al. 1999). The assembly

of different subunits to form functional heteromeric tetramers is thought to be determined by

the amino acid composition of the tetramerization (T1) domain, and thus contributes to the

diversity of electrical responses that a cell can generate in response to changes in membrane

potential (Bixby et al. 1999). Therefore, it is not surprising to observe some sequence

variations in the conserved regions within K+ channel tetramerization domains amongst

family members given the existence of a K+ channel tetramerization domain consensus

sequence (Fig. 3). The exact role of the T1 domain remains controversial. Previously, it was

shown that the T domain is not necessary for K+ channel assembly or function (Kobertz and

Miller 1999). Rather, the T1 domain of voltage-gated potassium channel subunits may act

more as a segregation domain in that it ensures that tetramerization occurs only among

subunits belonging to the same family and that cross-family subunit assembly does not occur
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(Li et al. 1992; Shen and Pfaffinger 1995). The T1 domain may also function as a docking

station for the subunit of voltage activated potassium (Kv) channels such that the removal of

the T1 domain (lisrupts 3 subunit association (Sewing et al. 1996; Gulbis et al. 2000).

Because the predicted ORF of PFET1 contains a tetramerization domain, it is tempting

to speculate that pfetin may be a novel voltage-gated K+ channel subunit that could contribute

to tetramer diversity and thus could participate in a variety of electrical responses of the cell.

Furthermore, the deduced amino acid sequence of pfetin is predicted to contain four

hydrophobic regions of at least 10-15 amino acids in length. However, since PFET is

predicted to contain no transmembrane domains, and six are characteristic of voltage-gated

potassium channel subunits, it is unlikely that PFETJ encodes another member of the voltage-

gated potassium channel subunits.

Relationship between TI and POZ domains

The voltage-gated potassium channel tetramerization domain is thought to have a

structural and evolutionary relationship to the BTB/POZ (for bric-a-brac, tramtrack, broad

complex pxvirus and zinc finger) domain, which is found in a variety of proteins involved in

transcriptional regulation, cytoskeletal organization, and development (Aravind and Koonin

1999). The POZ domains of the mammalian transcriptional repressor proteins BCL6 and

PLZF (promyelocytic leukemia zinc finger) interact with the transcriptional corepressor

proteins mSIN3A and SMRT (silencing mediator of retinoid and thyroid hormone receptor),

via a paired amphipathic helix 1 (PAH1) domain (David et al. 1998), and multiple SMRT

contacts (Hong et al. 1997), respectively. Chromosomal translocations involved in human

leukemias generate fusion proteins, such as RARA-PLZF, containing POZ domains that play
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an important role in the pathology of the disease (Hong et al. 1997; Grignani et al. 1998; Lin

et al. 1998). The BTB/POZ domain, like the voltage-gated potassium channel T1 domain, is

important for protein-protein interactions and allows for dimerization of BTB/POZ domain-

containing proteins. However, unlike the voltage-gated potassium channel TI1 domain, POZ

domains mediate interaction between proteins containing other domains as well. Future

studies are necessary to determine if the T1 domain present in PFET1/Pfetl is functional and

possibly acts like a BTB/POZ domain, allowing for the interaction of PFET1/Pfetl with

proteins containing various types of domains.

Immunohistochemistry of pfetin antibody

Perhaps the most numerous cochlear cells that were positive for pfetin were type I

fibrocytes of the spiral ligament in the cochlea. Fibrocytes of the ligament are thought to be

part of the connective tissue cell gap junction system (Kikuchi et al. 2000) and may play a

role in K+ recycling by transporting K+ to the stria vascularis (Spicer and Schulte 1997). The

loss of type I fibrocytes of the spiral ligament is the predominant histopathology of DFNA9

(Merchant et al. 2000), a known autosomal dominant, nonsyndromic, progressive

sensorineural hearing loss (Robertson et al. 1998) . These are also the cells that are most

severely disrupted in the hydropic guinea pig (Ichimiya et al. 1994). The type I fibrocytes,

containing enzymes such as intracellular Ca++-ATPase, carbonic anhydrase, aldehyde

dehydrogenase and calcium-binding proteins, are thought to be involved in the regulation of

cochlear fluid and ion balance (Ichimiya et al. 1994; Spicer et al. 1997). Although the exact

function of type I fibrocytes in cochlea has not been clearly defined, it is quite obvious that

their loss in DFNA9 show that they play an essential role in normal auditory functions.

45



Besides type I fibrocytes, pfetin antibody also stains type IV and type V fibrocytes cells in the

cochlea across different species tested. Pfetin antibody immunostaining in limbal fibrocytes,

supralimbal, Deiter, interdental and pillar cells were less consistent. One possible explanation

is species-specific expression of pfetin function in the cochlea. The amount of antigen

available for pfetin antibody binding might vary somewhat as well depending on the plane of

the section giving certain cellular structure a better exposure. However, the quality of tissue

fixation might also have contributed to some of the staining variation. Initial attempts at

immunostaining formalin fixed mouse cochlea were negative. Experimentation with other

fixatives revealed consistent staining patterns with tissues fixed in formalin plus

glutaraldehyde. Although human material that was promptly fixed with formalin plus

glutaraldehyde was not available, it seems likely that the immunostaining results from the

human sections is credible because of its similarity to the patterns of immunostaining seen in

animal tissue where control of fixation was possible. It remains to be confirmed that

vestibular hair cells and fibrocytes are pfetin positive in human material.

It is striking that most of the cell classes stained by pfetin antibody in the cochlea have

been implicated in the potassium recycling pathway through putative lateral uptake by Deiters

cells, forwarding through supporting cells, outer sulcus cells and spiral ligament fibrocytes

and on to strial marginal cells. Given the cell types stained by pfetin antibody and their

associated function in the cochlea, it is possible that pfetin plays a role in ion transport or

ionic content regulation in the cochlea. This hypothesis is especially intriguing given the

presence of the T domain in pfetin, since this domain is characteristic of K+ channel

subunits.
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An exciting discovery came from the vestibular sensory epithelium where the cuticular

plate and the cytoplasm of the type I hair cells were immunostained. Although the function of

this gene product is not yet clear, loss of gene function would likely result in a vestibular

phenotype if pfetin plays a key role in hair cell function. Similar to the type I fibrocytes

stained in the cochlea, connective tissue cells in the vestibular system show pfetin

immunostaining as well. Specifically, immunostaining for pfetin in the human fetal, mouse

and some guinea pig vestibular sections reveals a positive signal in a layer of cells underlying

the transitional cells and vestibular dark cells. In mouse sections, the connective fibrocytes

underneath the vestibular sensory epithelium are prominently stained by pfetin antibody. The

functions of these cells are not known. In addition, little is known about the pfetin positive

cell layer that lines the lumen of semicircular canals. They form the barrier that faces the

endolymphatic space. It is possible that they play some role in ionic content regulation in the

vestibule. Because T1 domains are members of the POZ domain superfamily, and some

proteins containing these domains are involved in cytoskeletal organization, pfetin may also

function, by protein-protein interaction via the T1 domain, in the structural organization of the

cochlea and vestibule. Given the presence of pfetin in a variety of cell classes such as sensory

cells, nerve cells, epithelial cells and connective tissue cells in the cochlea and vestibular

system, it is likely that pfetin could have broad functional roles in inner ear and vestibular

system. Additional studies are needed to further elucidate the function of this intriguing novel

gene.
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TCATGCAGTTTGTTTGl~GTTAAGTGGAP.TCCTTTCAAl,TGACGAGCTGC
AGAG~~CTCAGCACCAAGGGCTGCCTATCTGTAGATAGCTGThAAATGGA
ATATTTTTAAATGAAGGCAAATAAGTACTTAAAAGTGAGCTGAGCIIIII
I~TGGTCCAATAATAGGTAAATGCAACAGAAACAGAAGGAGACCTGGTTG
CCTTATGCCTTTACTCTTACATGGIIIIIITTCCCPATGCATATCCTATG
TAAACCATAAGTGAAGGGAIIIIIICCTCGTCATGCTCCATGCTGTGAGG
TGTCCTTTGGATATTCTGTGATGACAGAGAAGCCTATTTTGTTTTGTTTT
CAGCATCTTTCTCTGATGTACGTTTTTAAGGATTTTGTAAGAGCTGTTTT
CAGTGTTTN~TTAGTGCTATTTTTCCTTGTTTTTN~TGAATCTCGT
ACTGTATCTTACTATGTCCATACAGATGTTACAAATCGACAGTTTTATTC
TTAGACTCATGTGATCCAAGCTGTATATACCATATATAAACATTTTACAT
GAATCATTTAGTTTTTTAATTCATTTACTAATGCTATAAAATTTCCTATA
TTACCCCAGTAATTTGCATCAGCTGGTTTATATACTAAAGCAACATGTTT
TGATGAGTTTCTTACATCCTTATCGAGGAATTGGGTTAGGAAAAAATACA
TAATTGTAN~CTGAGTTTGCTGTATTATACTTTTTTTCTTGAGTATTAG
TTGTATTACTAATCATATGTTGATTAACTGTCTACTTAAAGTCAAGGTAC
CTGTATTTTTAATCCACTAATTTTTTTTTAGTTGGGAAATAGATTTCAAG
TCTTTTATTAGACTAACATTTTTTGAGAAGTAAAATTGACTTTATATACA
AAGCCTGTAATTTTAGGCGAAATGGAAGCAGAAATCTAGGAAGTTGTGCT
TGCTTGTATGGTCTCAGACTAAGTAATGCATCAGAATTCATCTGTTTGAA
GCCTGAAATAATTTAGGACTCTGATTCACTGACCAAAAGTCAGTGTTGCA
GAGATTTCTCTACCCCGTATGGTATTTTGTTAGATTGTTCAACAGGAAGC
ACATGATTGAGhACATCTTGGGACAGACCAAAACCACTGACAGATGGCAA
GGCTCGGCGATTCTGATTTCCCTTCTCAAATCTGCTCAACTCCAAGAGTC
TTGAGAAACTGCT~.TTTTGCCTCTGTCACTCAAGTCTTACAAATGTT
ATCTTGTAAACCTTTGAGGTGAACTATTCCACTGTCTTGTACATAGGCAT
CTTATTCACTGCACCCTGTCACACCCAGCACCCCCCGCCCCGCACATTAT
TTGAAAGACTGGGAATTTAATGGTTAGGGACAGTAAATCTACTTCTTTTT
CCAGGGACGACTGTCCCCTCTAAAGTTAAAGTCAATACAAGAAAACTGTC
TATTTTTAGCCTAAAGTAhAGGCTGTGAAGAAAATTCATTTTACATTGGG
TAGACAGTAAAAAACAAGTAAAATAACTTGACATGAGCACCTTTAGATCC
CTTCCCCTCCATGGGCTTTGGGCCACAGAATGAACCTTTGAGGCCTGTAA
AGTGGATTGTAATTTCCTATAAGCTGTAATAGTGGAGGTATTGTGGGTTC
ATTTGAGTAAGCCCTCCAAAGATACCATTCk~ATAACCTGGGAGAATGTC
ATAAATTATTCAGATAATTATCACTGCATGAATCTGATTCAGAGGCATGC
ATTTACATATGTTGCCCTAATTACCATTTGATGATCATAAATACAAGTGA
ATGACATTGGACTTTTAGThACAAACTTAATTTTTAAAAAAGTGTAGACA
ATGGTGGTTAAAAAAAAAAAAAACAGGTGCCAGGTTCTGTGTGTTTGCAC
CAAGTPATTGACATGTTTTTTGTTTAATACATGTGGACCATGAACAGTAT
TCATTCTACTTTTTCA~~TGATATGCTGTAGAAAATATTCCTTGAAGATG
TGAGATTTAAAAATTTTTCCCTTTCAATGTTGTTTTAATTGTATTTCTTA
CTTGGTTTTTTTGATTGATAGCACAGTGATAAATCATAATACTAGACAAA
ATTGTCTTCTCTTTCAAACCAGAGCCATATATATGTCTGTATATATGGGA
CCTACTGCTTCTCTGAGGAAATGCATAATCTGTTAATATCAGACAAAATG
AGC~~TTGGCAGTGCTCATAATATATTCCAATTTTTATTGGAATTTTCGA
TGGAATGTTATTTCIIIIIIGCCATGTAAGGTGAAACTTTGATAACTTTT
TACTCTTCAAGTTAGGGTAAATTCTGATCCAATATTCAATTCATTTGTGT
ACTCCCACATGCAAAATGCTAAATTACAATGCAGACATTAAGAAAAAGTA
TTGACTGGAGGGGTTGAATTCCTTGAGAATTTATTTTATAGTCTAAATCA
CAAATACTTTACTCAATTTAGTTTTTAAAATAGTAAACTGAATATTTTTG
TTGTAAGCCTATCAGAGTCAATCCTTCGTTTGGAATTGTTTTCCTGTTTT
TCCTTACTATAAATCATTTAAAAACTGAATTCATTTTCTTAGATGGCATA
AGTCTGTCTCTTGAGAAATAAGTAAAATACTCCTATTTTCAGTATCTGTA
GCACCTGAAATAGGTCTTTGTATAGCCAGAAACAAGTTATGTTGAAGTTA
GCTTTTCTTTGTCAACAGTTTTGGACIlllllAATCTGAAAGTATTAACA
CTTGATTTTCTACTGGGGCCCTTCAAACTTGGTTGGAAGAAATTCAACCA
GAATATCTACATTAGAGTATAATCATGTGTGGTAGGAAGATGGACTAGTT
AATCAAGATTTGTTGTCACTTAAATTTTTTGTGATTTTTTTCCAAGCCAG
TTTTTTTAAATTCTAAATGTGTTTTGAGGTATGGGTACATTfu\TTGTAAT
GTAAACTATTATACAACTGTTTTTGCGACTTTATAGGCAGGTAAATTTTG
CTATTACTATTGAATACAAATGACAATTCATTTATGACCACTCAAACAGC
GTTAGTAACCATTTAGTGACAAAGGIlllllACATCCATCTGGATGTTAA
TTTTGAAGATGTAAATTATATGTTGTTTAAATTTTTCCAGGCATCTGAAA
ACCTTATCTGCTAGACAATGTAAGATTCACACAGAGTTATCTGGGATTCT
GATTTTTTAAATAGTACATATCllllllccATTTTCTCTAAATGTAAGAA
GAGCAGAAAAAATCTTATAAGATTATCAGATTTTTCTAATGACACAGAAA
TGTAAGAAAAAAATCCCTTTATATTG~~AGATGCAGTCAAAGTCTTT
TCAGACATGCCCAAACTTTGAGAATTCCTTCAACCATCTAATGCTATAAA
GATTTTTGTTCTTCCTGTTCACAACCAGTTGTATAACAGAAATACTAGCT
ACTGTTTTCCTTCCTGTGTGTGAAGTAATGAATCATTGATTATGTGACTT-GTTATGTATTC CACTAAAG CATTCACTCCTTT

Figure 1. Nucleotide sequence of human PFETl cDNA and its deduced amino acid
sequence. Nucleotide numbcrs arc shown on the left and amino acid sequence
numbers are shown in parentheses on the right. The Kozak consensus sequence is
outlined in red. The tetramerization domain is underlined. An asterisk deIlotes the
stop codoIl. Putative polyadenylation consensus sequences are shaded. The boxed
sequence represents the original clone obtained from the cochlear eDNA library.
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gagctgccagagctcgtgcgccgcctcggggcgccccagcagccc
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Y L K F NFL E Q A ~ 0 K L S (285)
gagtcgggcttccacatggtggcg~gcagctccacgggcacctgc
E S G F H M V A C S S T G T C (300)
gcctttgccagcagcaccgaccagagcgaggacaagatctggacc
A F ASS T D Q SED K I W T (315)
agctacaccgagtacgtcttctgcagggagtga 1220
S Y T E Y V • C R E (325)
GCTCCCCAGACCCCCTCGCCACTCCAGCGCCCAGTCCTTCTCCTGCCCGA
GAGATGATTACAGAGCCTCTTGTCCCACCTTTGTCCCCTGGCTGCTGCCC
TCCCATTCTCCCCCTCCAGTAGTAGCTGGGTGAGACCTGTCCGCCCACCT
TCCCTCCACTACAGAACCTGCAGCCGCAAATCCTCTGGGCTGCTTCGTCT
TCTTTGGACCTCCTGAACCGAGAGAnCCCAGAGGAnCCCCCACCCCACCC
CCACCTACCACTCCATGCTTTCTCTACTCCCTGCCTCAAACCACCCCTCC
CCCAGATGGTACTTCAGTTTGGATCTATTGGGGGAGTGTGGCCACAGACC
GGGGGATGATTGAATTGTTCAG~~CCTGATTGGACCGTGTCCAATGTGCG
GAAGATTTCCTTGAAATCTTCTCAAGCTCTTATGACTCACTGGGGGTTTA
AGAGATCAGGATTGGTTCCACTGTCTGGGGTTAGTGTTTTACAAGGTCAT
TACACAGTCTTTTTGACCTCTTTTGAAGGTAGAGTTTTAGAAGGCTGGAT
GGAAGATTCTGAGCCTGGAATTAGGACCCCATGGAGGCAGTTCAGTAACT
AAACTIIIIIIGTTTTGAAAAGTTACACGTAAAGTAGAAGAATCTAGTGC
GTGGGACAGTAAAGGATCCTTTCTCGTACAGIlllllAGGTCTCAGCCTG
TAGCTTAAACTTATAGAAAGTGATCCGCCTGCCTGCAGAGGCGCCCTTTT
CAGCTGCTGCTCGCCAGAAGCCCTTGATTCCACTGGTTGACATGGCAGCA
GTTACTGGCAAGAGGGAGAAAGGACGCTGCCGCCTAAGAGTGCAAGGCTG
CTCAGGTCTCCAAGCGCCGTAGGAGGTCACCTGGCAGTGACTGTAGGGAG
CTGGGTCATAGTGCACGTCGTGGGTATTAGGAAAGCCTGTATTCTTTCAA
TGAATGTCAGTAGGACCTTCCTTTAGCTGTAAGACTTGGTGGGCGGGGTG
GGGTGGGGAGGGAGGAAAGGGTAGGAAGGGTGGGAAGGGAGAAGCAGACA
TAGTCATTTATGATTTGAAAGTTGGAAGTTTGTACCATCTGTTTGAGTAT
ATGCACATTTAAAAAATATCATATAGTAAATGCAAACATGCChAGTATTT
TATAAAGATTAATAACAGACCTACTCTTACCTGGCAGTTTACTTAACTTA
CTGTTTTGAGTCCTAAACTTAGAGTTGTTAATGCTTATATATAATCTAAC
CAAAGAGTTACCCAGTAGGGTTTTAGTTTTTGAACTTTTATTTTCTTGTT
GATTATAAATCCTGATTTTGGAATCTATTGCGCAAAAGAAGTTTCATTTT
GGTTACTTAGACCTAAGATCACTTIlllllAATCCTTATTTTCTCChAGC
CCAGCAAACGTTGACTTCTGGGCAAACCTGAAAACCTGAAAATGCCACTT
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Figure 2. Alignment of the complete deduced sequence of
the open reading frames of the human and mouse Pfetl
genes. The deduced amino acid sequences of the ORFs share
91% similarity and differ by eight amino acids, one of which
is within the tetramerization domain (position 88). A high
degree of sequence similarity indicates cross-species
conservation of the PFET1 gene. Nucleotide sequence is
capitalized for the human PFET1 gene and in lower case for
the mouse PFET1 gene. Amino acid sequence is capitalized
and numbered in parentheses. Dots represent sequence
identity between human and mouse genes. Dashes represent
gaps introduced to align the sequences. An asterisk denotes
the stop codon. The tetramerization domain is underlined.
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Figure 3. Nucleotide sequence of mouse PfeIl cDNA and
its deduced amino acid sequence. Nucleotide numbers are
shown on the left and amino acid sequence numbers are
shown in parentheses on the right. The Kozak consensus
sequence is outlined in red. The tetramerization domain is
underlined. An asterisk denotes the stop codon. Putative
polyadenylation consensus sequences are shaded.

2084 AGTTTGACCAGTGTGGCCTGGAATCCAGATGGGAAACGCTTTGTGACGGG
2134 AGG:CAGCGTGG:CAGTTCTACCAGTGTGAAAAGGACGGAN\TCTTCTGG
2184 ACTCCTGGGAAGGAGTGCGAGTACAGTGCCTGTGGTGCTTGAGTGACGGG
2234 AAGACTGTGCTGGCTTCCGACACGCACCAGAGAGTCCGGGGCTACAACTT
2284 TGAGGACCTGACAGATAGAAACATAGTACAGGAAGATCATCCTATTATGT
2334 CATTTACTATTTCCAAAAATGGCCGATTAGCTTTGTTAAATGTAGCAACT
2384 CAGGGAGTTCATTTATGGGACTTGCAAGACAGAGTTTTAGTAAGGAAATA
2434 TCAAGGTGTTACCC&~GGGTTTTATACAATCCACTCGTGTTTTGGAGGCC
2484 ATAATGAAGACTTCATTGCTAGTGGCAGCGAAGATCACAAGGTTTACATC
2534 TGGCACAAACGTAGTGAACTGCCAATTGCGGAGCTCACAGGGCACACGCG
2584 CACAGTAAATTGTGTTAGCTGGAACCCACAGATTCCATCCATGATGGCCA
2634 GTGCCTCAGACGATGGCACTGTTAGAATATGGGGACCAGCACCTTTCATA
2684 GACCACCAGAATATTGAAGAGGAATGCAGTAGCATGGATAG~TGATGGCA
2734 AATTTGGAGCAGACGACTTCTGTTTAACTTAAAATTAGTCGTATTTTAAT
2784 GGCTTGGGATTTGGTGCAAACAAACATGATTGATAGCTGGACAGACATGC
2834 TCGTCATGAAAAAAAAAAAAAAAGAACCATTTTGAAGCCCGATTGGGGCC
2884 AAACATTTACACCTTGCTTCCTAGTAACCAGTTGATGAAGCGCGTCTAGA
2934 ACGTTGTTGGACACCATGTTGAATTATTCCCCATCGGTTGTGAAGAACTG
2984 TGCTACATTCAGGCTTACCCATTGAACTCAGTATATATATTTTTTCCCTC
3034 CTGCCTTTTGTCTGGTGGGACACCATTCTTGTTGCTCTTCTGTGTAATGA
3084 AGTTCAATGCTTGTTTGGAAACTTTATTTAACANTTTAAAAGGCTTGATA
3134 GGAAGAGGTCATTAATCTTGAAGAGTTNCATTTGGAAGG.~AAAATTTCC
3184 TTTCGTTTCTCCAATCTTTCCCCNTTTTTANCGTGAGATCTTTGCAGCCT
3234 TGGTNCTGGATTCTAGCCTTGCCCGTTGCGCAGTATATGCNTGATCAGAT
3284 GATAAACCAGTGAACTATGTCAAAAGCACTCTCAATATTACATTTGACAA
3334 AAAGTTTTGTACTTTTCACATAGTTGTTGCCCCGTAAAAGGGTTAACAGC
3384 ACAATTTTTTAAAIIIIIITTAAGAAGTATTTATAGGIIIIIIGTGACTT
3434 CATTTGTATACATTTGGAATCTAAP.CCAGCTTAAAAACAGTGTCCTCTGT
3484 GACTGAGATATGCAGTGTAACTGATGCTCTTCTGGAGTGCCACGTGAGAC
3534 ATGGCATGGTCAGAAACAGTGTTCAGAAGGACACGGCACAGGAAAGCCAG
3584 AGAGATACTTTCCCCTTTTTATTTTATTCCTGAAGGGACATCAGTACCTG
3634 ATACTGAAGAAATTCAAGATTCAAAAGGAAAATTTTATA CCAGT
3684 ACAGAAGATCAGCATCAGTCTAGGTTTTCAAGAAAGCTTGTTCCAAGTTC
3734 TCTGAACTTGAGGGAATCGTTTTGATGTGATCTANCANAAGTAGACATCA
3784 NAAGATAGACCTACTTTGGGAATTTATAGTGTAGTTAAATCTTAGAGGAA
3834 GTCAGCAGGCTACAAACATTTATGTAAACTGGAIIIIIIGCCTGAGTCAT
3884 TTCTCCTAATTGCCCTTAATGTCCAACATATAGGGACACTCATTTAAAGA
3934 AGATTCCTTCTCAGCTTCTCAGATGTTGCCATAATGAACCTCATTCAAAC
3984 TGGTGCTGTGGACAGTCTTTCCCTCTCCCTCCCCTTTTAGTTTACGGGAA
4034 TGTTTCCTTTATGGAAAAAAAGTGACTTGTCATTTTGAAGACCCTATATC
4084 TAACATAAGCCTGATTGATGTTCATGGTGTTTTCAACTCCATAAATTGCT
4134 GGGTCTAACCAGTCTCCCTTGAAATCCATGTTTTCCAATAGGAGATAACC
4184 AGGGTGACCACAGCTCTTGGAAGGAAAAGTGGAATTAACTCCAATGTATC
4234 CTGATGAACAACAACAACAAAAATNTGGTACAACTTGCCCTTGAGGCCAA
4284 GCCAAGTCCATAGCATTCACCATGATCATATGCCCCTCGGGATCCTGANA
4334 NAANANANAGGCTTGTACTGAGGGGTNTTCCCATTGTGGGGGTCGCAGGG
4384 AGGGAAAAGCCAGGAAGGCAGTGGTCATTNTCCCAAAGTCCACCCATCGT
4434 AAGGAGGTGACAGATCGGAGTCAGCAGATTAGTAATTCAAATGGGTAATG
4484 GAAAAGATTCCTTTAAGCTTCATTTTTCAGAGACCATCACTTTAGAAAAT
4534 CAGAGAAATCCTGTTTTGATACTTNTTAGTTAAAATAATATGTTACCGTT
4584 TATCTGGTACTTCATTTTNTTGACTAAAATTACTTTTCACTTTAAGCTTG
4634 IlllllAATTTTCATTCATAACTGTAAAAAAAAAAAAAAAAAAAAAAAAA

(45)

(30)

(75)

(15)

(60)

(90)

ACTCGCCTGGAGCGCGCGGGCGAGGCAGGCGCAGCGCACCGGGGC
:CTCGTGGGCGCACTGCTGCGCGCTCGCACCGCGCGGCTCTCAG:
GGCCGGCCGCCGCCTGAGCGCAGGGC:CCCCGATAP.GAGCCGCTG
GGGCTTCCGATCGCGACCCCGCTCCC:GCCAC:TGGCCCATCCGG
GCCACCTCTTTTTGGCC

1 atggctctggcggacagcgcccgaggattacccaacgggggcgga
MAL ADS A R G LPN G G G

45 ggcggaggtggcagcggctcgtcgtcgtcctcggcggagccgccg
G G G G S G S S S S S A E P P

90 ctcttcccggacatcgtagagctgaacgtgggagggcaggtgtat
L F P D I VEL N V G G Q v Y
gtgacccggcgctgcaccgtggtgtCCgtgcccgactcgctgctc
V T R R C T V V S V P 0 S L L
tggcgtatgttcacgcagcagcagccgcaggagCtggcccgggac
W R M F T Q Q Q P Q E L A R 0
agcaaaggccgcttctttctggaccgggacggcttcctcttCcgc
S K G R F F L D R 0 G F F F R
tacatcctggattacctgcgggacttgcagctcgtgctgcccgac
Y I L 0 Y L R 0 L Q L V L P 0 (105)
tacttcccggagcgcagccggctgcagcgcgaggccgagtacttc
Y F PER S R L Q REA E Y F (120)
gagctgccggagctcgcgcgtcgcCtcggggcgccccagcaaccc
E L PEL V R R L GAP Q Q P (135)
ggtccggggccaccgccgccgcactcgcgccgcggggtgcacaag
G P G P P P PHS R R G V H K (150)
gagggctctctgggcgatgagctgctgccgctgggctacgcagag
E G S L G 0 ELL P L G Y A E (165)
cccgagccgcaggagggcgcctcggccggggcgccttcgcccacg
PEP Q E GAS A GAP S P T (180)
ctggagctggctagccgcagcccgtccgggggcgcggcggggccc
L E LAS R S PSG G A A G P (195)
ctgctcacgccgtcccagtctttggacggcagccggcgCtCcggc
L L T P S Q S LOG S R R S G (210)
tacatcaccatcggctaccgcggcccctacaccatcgggcgcgac
Y I T I G Y R G S Y T I G R 0 (225)
gctcaggcggacgccaagttccggcgggtggcgcgcatcaccgtg
A Q A D A K F R R V A R I T V (240)
tgcggcaagacgtcgctggccaaggaggtgtttggggacaccctg
C G K T S L A K E V F GOT L (255)
aatgagagccgggaccccgaccggcccccggagcgctacacctcc
N E S R 0 P 0 R P PER Y T S (270)
cgctattacctcaagttcaacttcctagagcaggccttcgataag
R Y Y L K F NFL E Q A F 0 K (285)
ctgtccgagtcgggcttccacatggtggcgtgcaggtgcacgggc
L S E S G F H M V A C R C T G (300)
acccgcgcttttgctagcagcaccgaccagagcgaggacaagatc
T C A F ASS T 0 Q SED K (315)
tggaccagctacaccgagtacgtcttctgcagggagtga 983
W T S Y T E Y V F C R E * (327)
GCTCCCCACGCCCGCCCCTCGCCACTCCGCCGCTGGCAACAATAGCAACA
GCCTGAGTGTCAATAACGGGGTTCCCGGCGGGGCCGCCGCGGCCTCCGCC
ACCGCCGCCGCCGCCCAGGCCACCCCCGAGCTGGGCAGCAGCCTCAAGAA
GAAGAAGCGGCTCTCGCAGTCCGATGAGGATGTCATTAGGCTCATAGGAC
AGCACCTCAATGGCCTAGGGCTCAACCAGACTGTTGATCTCCTCATGCAA
GAGTCAGGATGTCGTTTAGAGCATCCTTCTGCTACCAAATTCCGAAATCA
TGTCATGGAAGGAGACTGGGATAAGGCAGAGAATGACCTG.~TGAGCTAA
AGCCTTTAGTGCATTCTCCTCACGCTATTGTGGTAAGAGGCGCACTTGAA
ATCTCTCAAACGTTGTTGGGAATAATTGTGAGGATGAAGTTTCTGCTGCT
GCAGCAGAAGTACCTGGAATACCTGGAGGACGGCAAGGTCCTGGAGGCAC
TTCAAGTTC:ACGCTGCGAACTGACGCCGTTGAAA:ACAACACCGAGCGC
ATCCATGTCCTTAGTGGGTATCTGATGTGCAGCCATGCCGAAGACCTACG
GGCAAAAGCTGAATGGGAAGGCAAGGGCACAGCGTCCCGGTCCAAACTGC
TGGACAAGCTTCAGAACTCTCCTGCGGCAGGCGGTGGAACTACAAAGGGA
TCGGTGCCTATATCACAATACCAAACTTGACAATAATCTAGATTCTGTGT
CTCTACTTATAGATCATGTTTGTAGTAGGAGGCAGTTTCCCTGTTACACT
CAACAGATACTTACAGAGCATTGTAATGAAGTGTGGTTCTGTAAATTTTC
TAATGATGGCACTAAACTAGCAACAGGATCAAAGGATACCACAGTTATCA
TATGGCAAGTTGATCCGGATACGCACCTGTTAAAACTGCTTAAAACGTTA
GAAGGACATGCGTATGGTGTCTCTTATATAGCATGGAGTCCAGATGACAG
CTATCTTGTTGCTTGTGGTCCAGATGACTGCTCTGAGCTTTGGCTTTGGA
ATGTACAGACGGGAGAATTAAGAACAAAAATGAGCCAATCTCATGfu~GAC
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Figure SA-C. Autoradiographs of Northern blots
containing 10 ug per lane of totalhuman RNAs
hybridized with radiolabeled PFETI fragments.
(A) A panel of human fetaltissues probed with
the 3'-most UTR PFETI probe (MT fragment)
demonstrates expression of a single transcriptof
-6 kb in most tissues,with highest expression in
cochlea and brain. (B) A panel of adult ("A")
and fetal ("F") RNAs probed with various
PFETI probes demonstrates high levels of
expression of a single -6 kb transcript in fetal
tissues and barely detectable levels in adult
tissues, including spinal cord, cerebrum,
cerebellum, skeletal muscle, lung and lymph
node. Similar low level expression was observed
in the other adult tissues that are not shown,
including lung, heart, kidney and liver. (C) A
panel of total RNA isolated from different
regions of the fetalbrain probed with PFETl; a
single -6 kb transcriptis detected in allsamples.
A lane of fetalcochlear RNA was included as a
positive control. For each Northern blot, a
photograph of the EtBr-stained RNA gel IS

shown. F, fetal;A, adult;Y, years; W, weeks.
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Figure 6A
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Figure 6A-C. Northern blot analysis of mouse
RNA samples hybridized with mouse Pfetl
radiolabeled fragments. (A) An adult mouse
tissue panel containing 10 ug of each sample
hybridized with a probe to the 3' end of the
ORF reveals low expression levels of a single
~6 kb transcript in adult mouse tissues. A lane
containing 10 ug of human fetal brain total
RNA is present for comparison. A, adult; M,
mouse. (B) A mouse aging brain panel
containing 20 ug of each sample hybridized
with the 3' UTR probe 1 reveals the presence
of a predominate ~6 kb transcript and two
smaller and less intense transcripts (~4 and 4.5
kb) in the embryonic and newborn stages. (C)
A mouse developmental panel containing 20 ug
of each sample hybridized with a probe to the
3' end of the ORF reveals two transcripts. The
upper transcript (~6 kb) has a higher level of
intensity between days 11.5 and 15.5 while the
lower transcripts (~4 and 4.5 kb) have a higher
level of intensity between days 6.5 and 15.5.
For each Northern blot, a photograph of the
EtBr-stained RNA gel is shown.
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Figure 7. Chromosomal localization by fluorescence in situ hybridization
(FISH) of a human PAC containing the entire PFETl gene. Human
metaphase chromosomes are counterstained with OAPI following FISH
with PAC 246J2. Arrows indicate the positions of the signals that localize
to band q21 on both chromosome 13s.
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Figure 8
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Figure 8. Immunohistochemical staining using pfetin antibody on (A) formalin glutaraldehyde
(FG)-fixed guinea pig, (B) FG-fixed mouse, and (C) FA-fixed monkey cochleas. Arrows point
to individual cells positive for immunostaining with pfetin antibody. Positive immunostaining
is seen as the dark DAB reaction product. Dominant staining is seen in type I fibrocytes of the
cochlea. TI, 4,5 = types I, IV, and V fibrocytes; PC = pillar cell; IDC = interdental cell; ISC =
inner sulcus cell; SL = supralimbal cell; LF = limbal fibrocytes; RC = root cells; SG = spiral
ganglion cells. Each scale bar represents 100 microns.
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Figure 9. Immunohistochemical staining using pfetin antibody on formalin-fixed adult human
cochlea (A). Higher magnification views of the boxed areas are shown in correspondingly
lettered images below (B-E). Arrows point to immunostained cells. Immunostaining is present
in type I (Tl), IV (T4), and V (T5) fibrocytes. LF = limbal fibrocytes; * = extracellular matrix.
Each scale bar represents 100 microns. The images in B-E are all the same magnification.
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Figure 10
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Figure 10. Immunostained formalin plus glutaraldehyde fixed mouse (A and B) and formalin
acetic fixed guinea pig (C) cochlea. Panel (A) shows the organ of corti, (B) the spiral limbus
and (C) areas contacting Reissner's membrane. IPC, OPC :::::inner and outer pillar cells; DT:::::
Deiters cells; ISC :::::inner sulcus cells; roc::::: interdental cells; LF :::::Iimbral fibrocytes; HC :::::
Hensen cells; SG = spiral ganglion; T5 :::::Type V fibrocytes (suprastrial cells); SL :::::
supralimbal cells. Each scale bar represents 50 microns.
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Figure 11
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Figure 11. Pfetin immunostaining of vestibular tissue of 20-week human fetus (formalin-
fixedXA-O), guinea pig (formalin plus glutaraldehyde-fixed)(E, F), and mouse (formalin plus
glutaraldehyde-fixed)(G, 1-1). The semicircular canal shows (A) a continuous layer of staining
(arrow) in the lateral ampulla underlying the transitional cells and vestibular dark cells. (B)
Higher magnification of boxed region in (A). Arrows point to individual positive cells. (C)
Arrows indicate immunostained cells lining the lumen of the semicircular canal. (0) Higher
magnification of boxed region in (C). (E) Guinea pig posterior ampulla with arrows pointing
to immunostained cells. (F) Higher magnification of boxed region in (E). (G) Sensory
epithelium of the macula of the saccule showing the immunostained type I hair cells. Arrow
points to the unstained ciliary bundle extending from the darkly stained cuticular plate. This
and adjacent type I hair cells also show granular reaction product within their cytosol. (H)
Mouse lateral ampulla with arrows pointing to immunostained lumenal and ablumenal cells.
Arrowheads point to cuticular plate staining of type I hair cells. Asterisk indicates staining in
the connective fibrocytes underneath the sensory epithelium. Scale bars in Figures 12A, C and
E represent 100 microns; in Figures 12B, 0, F, and G 10 microns; in Figure 12 H 20 microns.
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ABSTRACT

KCTD1 2 (originally described as PFET1) was initially isolated from the Morton

human fetal cochlear cDNA library with a predominant expression in the fetal cochlea and

brain. It is a 6 kb intronless transcript and a member of the newly classified and enlarging

potassium channel tetramerization domain containing (KCTD) family containing a single

tetramerization domain (T1). Functional characterization of KCTD12 and its gene product

pfetin have been studied in zebrafish with in situt hybridization, immunohistochemsitry and

morpholino knock-down of the KCTD12 zebrafish ortholog right on (ron). In sitlu

hybridization revealed expression of ron and its encoded protein Ron in the developing

zebrafish otic vesicle (OV) and vestibular-cochlear ganglion (VCG). Immunochemical

analysis showed co-localization of Ron and an early inner ear marker Isletl (Isll) within the

VCG. Morpholino knock-down experiments showed correlation between Ron knock-down

and Isl 1 down-regulation in the VCG during early zebrafish development. Given these

observations, we postulate Ron's role as a regulator of neuronal differentiation and identity in

the developing inner ear.

KEYWORDS: PFET1, Isletl, Ron, KCTD, Vestibular-Cochlear Ganglion, TNF-alpha,
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INTRODUCTION

Previously, we reported the identification of a novel 6kb cochlear transcript, KCTD12

(gene aliases: KCTD12; Cl3orf2), using a combinatorial approach of subtractive

hybridization and differential screening of a human fetal cochlear cDNA library. KCTD12

was determined to be a predominantly fetal expressed gene with a single tetramerization (TI)

domain, encoded by a single highly GC-rich (70%) exon, and predicted to contain a full-

length ORF o 325 amino acids. Genomic location for KCTD12 was confirmed by FISH

analysis to band q21 on human chromosome 13. Immunohistochemistry with a polyclonal

antibody raised against a synthetic peptide to the KCTD12 sequence reveals expression in a

variety of cell types in human, monkey, mouse, and guinea pig cochleas and the vestibular

system, including type I vestibular hair cells (Resendes and Kuo 2004). Given its unique

preferential expression in fetal cochlea (as late as second trimester developmental age in

humans) and the presence of a voltage-gated potassium channel associated T1 tetramerization

domain in its ORF, KCTD12 was chosen for further characterization. Currently, KCTD12

maps within the vicinity of the AUNA1 locus (13q14-21), responsible for progressive

autosomal dominant auditory neuropathy in a large kindred from the United States (Kim et al.

2004).

KCTDI.2 is the 12th member of the potassium channel tetramerization domain

containing (KCTD) gene family (Marchler-Bauer et al. 2003). Although the presence of a T1

domain suggests certain functional association with potassium channels and ion transport,

familial functional characteristics for KCTD have not been established. Therefore a closer

examination of the existing family members should provide insight into deducing certain

familial functional traits. To delineate the function of the KCTD12 encoded protein pfetin in
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development, we turned to zebrafish (Danio Rerio), a vertebrate animal model for study of the

inner ear due to its ease of generation, in vivo manipulation, and many similarities to the inner

ear of higher vertebrates including humans. Expression analysis through in situ hybridization

and immunohistochemistry were pursued to provide specific localization information on the

zebrafish ortholog of KCTD12 and morpholino knock-down experiment were performed to

facilitate determnination of gene function in vivo. Through these analyses, the role of KCTD12

in the vertebrate inner ear has been further elucidated.

MATERIALS AND METHODS

Linkage Group Mapping of KCTD12 Zebrafish Orthologs

Blast analysis through the Washington University - Zebrafish Genome Resources

(http:'ztish.wustl.edu') identified two ESTs, leftover (lov) (NP_919386, wz39483.2) and

right on (ron) (wz41247.1,) that have largely been studied to date for their asymmetric

expression patterns in the habenula (Gamse et al. 2003, 2005). To confirm duplication of the

KCTD12 ortholog in the zebrafish genome, a BAC (zK24H22) containing the entire ron

genomic sequence was used to generate a biotin-labeled probe for fluorescence in situl

hybridization (FISH). Given the 75% identity match at the nucleotide level between the two

orthologs' ORF, a single probe (zK24H22) was able to identify both lov and ron. Probe

labeling and visualization were carried out using standard protocols (Lee and Smith, 2004).
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Real Time RT-PCR

Real time RT-PCR is a sensitive and quantitative tool used for determination of

relative RNA expression levels in a gene of interest. Wild-type AB zebrafish embryos were

grown until various developmental stages (12, 24, 36, 48, 72 and 96 hours post fertilization).

Total RNA was extracted using Trizol and treated with DNAse. RT-PCR reaction was carried

out using SuperScript One-Step RT-PCR with a Platinum Taq kit (Invitrogen, Carlsbad, CA).

Primers and probes for lov (NP_919386), ron (wz41247.1) and the housekeeping gene

bactini (NM131031) were designed with PRIMEREXPRESS software (Applied Biosystem,

Foster City, CA). PCR primers used were: upper 5'AAGTCAGATTCAAGGGCCTATTTG3'

and lower: 5'TGCAGTGTTCGGAT- GAAGCA3' fotbr lov; upper:

5'GAGGCAGAATATTTCCAACTTCAAG3' and lower: 5'TCTGGCAAACCTCCTCGCT3'

for ron; and upper: 5'AGGTCATCACCATCGG-CAAT3' and lower:

5'ATGAAGTGCGACGTGGACATC 3' for bactin]. Probes used were

5'C'CCAGAT(-iTGTTTTGTACTCGTTATTCTTTATGCA3' for lov; 5'AGCGCC-

TGAAACCTGCGGTCAGTAAG3' for ron; and 5'CTTCCAGCCTTCCTTCCTGGGT-

ATGGAA3' for hactin . Primers were tested using conventional PCR and shown to amplify a

single band of approximately 100 bp without production of primer dimers. Real-time PCR,

which quantifies the amount of product after each cycle, was carried out on each cDNA

sample using an i-cycler (BioRad, Hercules, CA) with Taqman probe. Reactions were heated

to 50°C for 15 minutes followed by 95°C for 3.5 minutes. Subsequently, reactions proceeded

through 45 cycles at 95°C for 15 seconds and 60°C for 1 minute. The fluorescence level was

determined after each cycle, allowing detection of the log phase of amplification. -cycler

software was used to define the cycle in which each sample attained the threshold value of
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fluorescence. For a negative control, Taq DNA polymerase was substituted for reverse

transcriptase. All samples were assessed in duplicate. Lov and ron mRNA level are expressed

as fold increase adjusted for genomic contamination and normalized to bactini.

Developmental In Situ Hybridization

Zebrafish (Danio rerio) (strain wild-type AB) were kept on a 14/10 hour light/dark

cycle according to standard procedures (Westerfield, 1994). Embryos were collected from

pairvise timed matings and raised at 28.5°C until the appropriate stage (12, 24, 36, 48, 72,

and 96 hours) and then fixed by incubation overnight in 4% paraformaldehyde at

4°C. Embryo medium was supplemented with -phenyl-2-thiourea (PTU, 0.003%) prior to

24 hours post fertilization to prevent accumulation of pigment. After fixation, embryos were

dehydrated and stored at -20°C in 100% methanol prior to in situ hybridization. Nucleotides

spanning the ORF of zebrafish lov and ron were amplified and cloned into a vector derived

fromn pCRII-TOPO (Invitrogen). To generate digoxigenin (DIG)-labeled antisense probes, the

DNA plasmid was linearized with HindlII or Xho , followed by transcription using SP6/T7

polymerase and DIG RNA labeling mix (Roche, Indianapolis, IN). In situl hybridization was

then performed according to the high resolution whole-mount in situ hybridization protocol

(http:,1 zfin.or,'zf info,'ztbook/chapt9/9.82.htnll). The labeling reaction was monitored under

a dissecting microscope and the reaction stopped with X PBS at pH 5.5. For image recording,

embryos were mounted in methyl cellulose for whole mount or embedded in JB-4 resin

(Polysciences, Warrington, PA) and sectioned between 4 to 6 micron thicknesses. Images

were recorded using a Zeiss Axiocam digital camera (Carl Zeiss, Oberkochen, Germany) and

Photoshop software (Adobe, San Jose, CA).
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Morpholino Knockdown and Zebrafish Immunohistochemsitry

Morpholino oligonucleotide (MO) knock-downs were performed as described

previously (Malicki et al., 2002). MOs are basically synthetic DNA analogues that contain a

neutral charged backbone in which the deoxyribose sugar moieties are replaced with

morpholino (hydro-l, 4-oxaine) rings. The stability, nuclease-resistance, efficacy, long-term

activity, water-solubility, low toxicity and specificity of MOs make them a most ideal gene

knockdown reagent. It functions by specific binding to its selected target site to block access

of cell components to that target site. MOs can be used to knock down expression of many

target genes by sterically blocking the translation initiation complex or modifying and

controlling normal splicing events by blocking sites involved in splicing pre-mRNA (Gene

Tools, Philomath, OR).

For ron, two custom oligonucleotides were used with one targeting the 5' untranslated

region (ron 5'UTR morpholino) and one targeting the open reading frame region (ron ATG

morpholino): ron5'UTR, 5'-AGACCTCCAGTGCAATCACAGAACT-3' and ronATG, 5'-

GCGCGAGTCTTATCCATCTTTGCAC-3'. Specificity was confirmed by

immunofluorescence labeling of frozen tissue sections of both control and anti-ron

morpholino-injected zebrafish embryos. After the injection of morpholinos, embryos were

sacrificed at specified time points and prepared for frozen sections for immunohistochemical

analysis with antibody staining (Malicki, 1999; Pujic and Malicki, 2001). The following

primary antibodies and dilutions were used: mouse anti-acetylated alpha-tubulin (1:500,

Sigma, St. Louis, MO); mouse anti Islet-1/39.4D5 (1:500, Developmental Studies Hybridoma

Bank, Iowa City, IA); rabbit anti-Ron (1:500, gift from Dr. Gamse). For frozen section
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immunohistochemistry analysis, tissue sections were blocked in 10% goat serum, 0.5% Triton

X-100 in PBST for 1 hr and incubated overnight in primary antibody at 4°C and followed by

Alexa 488-conjugated secondary antibody at room temperature for 3 hours. Following three 5

minutes washes in PBST, sections were viewed using a Leica confocal microscope with a

Leica HCX APO L40X lens.

RESULTS

Domain Analysis

Blast analysis revealed KCTD12 to be a member of the KCTD (potassium channel

tetramerization domain containing protein) family. Presently, this family consists of 19

members (Table ) with heterogeneous chromosomal locations, coding regions (225 to 950

amino acids), numbers of exons (1 to 18), and GC content in the ORFs (40 to 70%). Thus far,

the lack of any predicted transmembrane domains and the presence of a single tetramerization

domain are the salient features shared by members of the KCTD family. Most members of

the KCTD family have been recently identified and sequenced. Besides KCTD12, only a few

other members have been studied: KCTD1O is a novel PDIPl-related protein that interacts

with proliferating cell nuclear antigen and DNA polymerase delta (Zhou et al. 2005),

KCTDll is a suppressor of Hedgehog signaling (Di Marcotullio et al. 2004), KCTD3 as an

antigen of renal cell carcinoma (Scanlan et al. 1999), and KCTD13 is a distal target of TNF-

alpha activation and a link between cytokine activation and DNA replication (He et al. 2001).

As more detailed studies on members of KCTD family become available, further potential

unifying functional speculation will be possible.
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Table 1. KCTD Family
Predicted Number of

KCTD ORF in Chromosomal predicted ORF
family amino acid Location exons GC content (%)
KCTD 257 18qg11.2 5 43
KCTD2 263 17q25.1 6 55

KCTD3 295 lq41 18 42
KCTD4 259 13q 14.12 1 40
KCTD5 234 16p 13.3 6 59
KCTD6 237 3pl4.3 3 45
KCT1)D7 289 7q11.21 4 60
KCTD)8 473 4pl3 2 59
KCTD9 389 8p21.2 11 43
KCTDIO 313 12q24.11 7 54
KCTDI 232 17pl3. 1 65
KCTD12 235 13q21 1 70
KCTD13 329 16pl1.2 6 62
KCTDI4 225 lq14.1 2 54
KCTD15 283 19q13.11 7 63
KCTD16 428 5q31.3 4 40
KCTD 7 314 22ql12.3 9 64
KCTD18 426 2q33.1 7 51
KCTD19 950 16q22.1 16 53

Analysis of KCTD12 in its Zebrafish Orthologs, Leftover and Right on

Zebrafish is a good vertebrate animal model for genetic studies because of its high

reproductive rate, easy access to embryos of all stages due to external fertilization and

transparent development. The zebrafish inner ear also has many similarities to that of

mammals with three semicircular canals and a utricle for vestibular function. The saccule and

lagena are used for sound detection. Since the embryos are optically transparent, its inner ear

and any subsequent staining from experimentation can be easily observed in early

developmental stages. As pigment develops in later stages, 1-phenyl-2-thiourea (PTU) can be

added to suppress pigment formation. Over a dozen genes have been studied in zebrafish that

are pathogenetic for specific defects in the development of the ear (Whitfield et al. 2002).
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Linkage Group Mapping of Leftover and Right on

Linkage group mapping showed BAC probe (zK24H22) localization to zebrafish linkage

group 8 and 1 only (Fig. 1).

Sequence analysis

Blast analysis has shown lov and ron to be 75% identical at the nucleotide level within

the ORF and share little sequence similarity outside of the ORF. These two KCTD12

orthologs are also 69% identical at the amino acid level with a protein prediction of the lov

ORF of 288 amino acids and the ron ORF of 271 amino acids. Unlike KCTD12, the GC

content of lov and ron ORF each at 53% is not considered to be particularly GC-rich. Similar

to KCTD12, the tetramerization domain is highly conserved and no transmembrane domains

are predicted by TMpred.

Real-Time RT-PCR

Taqmarn Real-Time RT-PCR revealed the relative RNA expression level of two

zebrafish KCTD12 orthologs (ov and ron) between developmental stages 12 to 156 hours

post fertilization (hpf) (Fig. 2). Expression of these two zebrafish orthologs followed almost

an identical expression pattern with an initial peak of expression at 19 hpf and then leveling

off after 36 hpf. Several important auditory developmental events occur in this time frame: at

13-14 hours the otic placode (precursor to otic vesicle) becomes visible, at -18.5 hours the

otic vesicles form, at 22 hours the initiation of formation of the statoacoustic ganglion occurs,

at 24 hours hair cells start to differentiate, and at 48 hours the semicircular canals first appear

(ZFIN, http:/,'/zfin.org/zf info/,'anatomy/dict/ear/ear.html). Correlations between the time and
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intensity of RNA expression could provide valuable insight into possible roles of lov and ron

in auditory development.

Zebrafish In Situ Hybridization

Whole-Mount In Situ Hybridization Studies

Based on the RNA expression level of lov and ron from real-time RT-PCR, we chose

to concentrate on establishing the otic placode and vesicle expression pattern of these two

zebrafish KCTD12 orthologs between developmental stages 12 to 96 hpf (Fig. 3). At 12 hpf

(data not shown), no significant expression pattern other than similar diffused staining along

the entire length of embryo were observed for both lov and ron riboprobes. By 24 hpf,

expression patterns between the two probes began to diverge. The majority of lov staining was

located at the branchial arches. Distinct ron staining was observed at the pectoral fin bud and

otic vesicles in addition to branchial arches while diffuse signals appeared across regions of

the midbrain and hindbrain. At 48 hpf, both riboprobes detected transcript at the pectoral fin

bud, branchial arches and yolk syncytial layer. Diffuse staining remained at the midbrain,

hindbrain, and the heart. Individually, distinct signals were observed in the left habenula for

lov, and otic vesicle and pancreas for ron. From 72 hpf on, the difference in expression

patterns of lov and ron riboprobes became more apparent. Detailed expression of lov in the

brain has been described in detailed previously (Games at al. 2003), and consistent with this

report, lov seemed to be heavily concentrated in the left habenula in the forebrain region.

Additional lov expression was observed in the heart whereas signals from ron were distributed

over the entire cephalic region with some concentration of signals at the habenular and

interpeduncular nucleus (IPN) of the midbrain. Faint staining was observed in a layer of cells

76



inside the eye. No visibly significant signal from either probe was observed near the OV

region.

Tissue In Situ Hybridization Studies

Based on the expression pattern of lov and ron riboprobes in the whole-mount in situ

hybridization studies, we decided to confirm otic vesicle expression by sectioning regions of

whole-mount embryos stages 24 and 72 hpf. Consistent with the whole-mount findings, lov

antisense probe staining was negative in the otic regions between 24 and 48 hpf (data not

shown). For the ron probe at 24 hpf, staining extended from within the ventral surface of the

otocyst epithilum medially out toward the notochord along the lateral edge of the hindbrain.

By 36 hpf, ron seemed to be concentrated at the ventral medial edge of the OV where newly

formed vestibular-cochlear ganglion (VCG) cells usually reside at this stage. At 48 hpf, ron

message had formed into a compact mass localizing at the medial edge of the otic vesicle (Fig.

4). By 72 hpf, this expression pattern had shifted more medially, further away from the otic

region and became less intense (data not shown). No signals were detected in the OV from the

ron sense probe.

Right on Morpholino Experiments

Expression pattern of Ron and Isll in the Otic Vesicle

In control morpholino-injected embryos, expression of Ron and Isll at 48 hpf and 75

hpf followed a similar pattern. Expression of both proteins preceded the anterior start of the

otic vesicle (OV) continuing through the anterior macula, followed by gradual diminution

upon entering the posterior macula and finally terminating near the posterior edge of the OV.
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From the dorsal view, signals from Ron and Isll antibody co-localized to the medial edge of

the OV (Fig. 5, s ) before the anterior start of the OV. Gradual medial expansion of Ron

followed before reaching the anterior and posterior macular junction (s5) and then retreating

more laterally and closer to the OV than Isl 1. Expression of Ron and Isl 1 was at its minimum

upon reaching the posterior edge of the OV (s7). The lateral view showed clustering of Ron

and Isll expression as well. Before entering the OV, Ron expression was slightly more dorsal

and overlapped with Isll near the region where the OV was about to emerge (Fig. 5, s ).

Upon entering the anterior region of the OV, both Ron and Isl 1 remained at the same position

centered near the ventral side of the OV until after entering the posterior macula (Fig. 5, s6)

where the range of expression decreased dramatically. Images captured from the

immunohistochemistry staining revealed the majority of Ron and Isll signals to be localized

in the vestibular-cochlear ganglion (VCG). The two protein signals consistently clustered

together in circular patterns symmetrically along the medial edge of the OV. Sparse Isll

expression was noted in a small population of neurons at the center of the myelencephalon

(see white *) for zebrafish at 48 hpf. Similar expression of Ron was observed as well at 75 hpf

alongside Isll. In addition, Isll expression was observed in a cluster of neurons located

directly medial to the dorsal arotic root and below the VCG (data not shown). For the anti-ron

morpholino, there was a complete knockdown of Ron and significant reduction of IsllI

expression in the VCG. In the central region of the myelencephalon, Isll and Ron were no

longer detectable. Isll expression was retained in neurons positioned between the dorsal aortic

root and VCG at 75 hpf (data not shown).

In summary, co-localization of Ron and Isll began before the anterior edge of the OV and

then decreased in intensity and distribution upon reaching the posterior macula. The anti-ron
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morpholino revealed a dramatic knock-down of Ron accompanied by a significant decrease in

Isl in the VCG.

DISCUSSION

The KCTD Family

KCTD12 is a member of the growing family of potassium channel tetramerization

domain-containing genes, recently classified as KCTD and consisting of 19 members.

Although all family members possess a single tetramerization domain (T1), the lack of any

transmembrane domains excludes KCTD gene products from functioning as classical

potassium channels. Phylogenetic mapping of KCTD members confirms that KCTD gene

products branch off from the classical potassium channels like the potassium voltage-gated

channel shaker-related (KCNA), Shab-related (KCNB), Shaw-related (KCNC) and Shal-

related (KCND) subfamilies (Fig. 6). Out of the 19 member family, only four other members

of KCTD family (3, 0, 11 and 13) have been characterized in addition to KCTD12. Therefore,

little is known yet about the functional significance of this KCTD family. However, based on

information currently available, there appears to be some emerging similarities between

KCTD 3 and 10-13.

KCTDI0 and KCTD13 are also members of the PDIP1 family (polymerase delta-

interacting protein 1). Although they possess different expression profiles with KCTD10

mRNA mainly expressed in the lung and KCTD13 in the kidney and liver, their expression is

inducible by TNF-alpha (Zhou et al. 2005, He et al. 2001). KCTD10 and 13 could possibly

play a role in TNF-alpha induced DNA replication/repair by interacting with PCNA and
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enzymes such as polymerase 6 that is involved in DNA replication/repair pathways (Zhou et

al. 2005). Similar to KCTD10 and KCTD13, pfetin is also involved in the TNF-alpha pathway

by interacting directly with one of TNF-alpha's primary surface receptors, TNFRSF1B

(described in Chapter 3 of this thesis). Further experimentation is necessary to determine

whether pfetin's expression is also inducible by TNF-alpha.

Akin to KCTD12, expression of REN/KCTD1l is also developmentally regulated in

the brain. REN had been proposed to be a novel component of the neurogenic signaling

cascade. REN inhibition impairs expression of neurogenin-1 and NeuroD which are members

of the bHLH family of transcription factors important for neuronal development and survival

(Gallo et al. 2002). Coincidently, knock-out studies from mice genetically deficient in TNF

receptors (TNFRSF1A and B) showed increased neuronal vulnerability to excitotoxic and

oxidative insults, suggesting a neuroprotective function for both TNF-apha and its receptors

(Bruce et al. 1996). In addition, REN may also serve as both a marker and a regulator of

neuronal differentiation (Gallo et al. 2002). Data from our morpholino studies suggest that

suppression of Ron results in the near complete inhibition of Isll expression in the otic vesicle,

a marker for newly differentiated neurons (Korzh et al. 1993). Perhaps similar to REN, pfetin/

KCTD12/Ron could potentially serve as a regulator of neuronal differentiation in addition to

being a component in some TNF signaling pathway involving neuronal protection and

survival.

Ron and Isli's Role in the Inner Ear

Expression analysis via whole-mount in situ hybridization reveals distinct labeling of

the zebrafish OV by the anti-ron probe. In situ sections and immunohistochemical analysis
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on zebrafish frozen sections confirm the expression of both ron and its gene product in the

VCG.

Initial characterization of the anti-ron morpholino injection suggests suppression of

Ron may down-regulate expression of Isl 1 mostly in the zebrafish VCG. With Isl 1 commonly

serving as a marker for newly differentiated neurons, the implication is that Isll suppression

(regulated by Ron) could possibility lead to improper neuronal differentiation potentially

jeopardizing the survival of neurons in the VCG. To understand the effect of Ron on VCG,

the role of Isll in inner ear neuronal development warrants examination.

Isll(alias: Lim-homeodomain protein Isletl, islet-l) is a member of the LIM-HD

transcription factors that function as key regulators in developmental pathways such as

specification of neuronal cell fate in the vertebrate nervous system (Bachy et al. 2001). Isll

was initially identified as a protein binding to the rat insulin gene enhancer (Karlsson 1990). It

is expressed in a variety of tissues including thyroid, pituitary, kidney, spinal cord, heart,

brain and inner ear. Mice lacking Isll do not survive past E1 1.5. Loss of Isll perturbs the

generation of motor neurons, and differentiation of many of the cell types that normally

express the protein, including sensory neurons of dorsal root and cranial sensory ganglia and

cells of the endocrine pancreas (Pfaff et al. 1996)

The functional domains of LIM-HD transcription factors consisting of two tandem

LIM domains followed by a homeodomain (HD) are capable of forming tetrameric and

hexameric interactions with other transcriptional regulators and creating an array of

transcriptional regulating complexes. It is perhaps this flexibility that enables them to regulate

transcription in a tissue-specific manner and participate in a variety of developmental events

including establishing neuronal subtype identity (Hobert and Westphal 2000, Shirasaki and
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Pfaff 2002). In regard to this particular role, LIM-HD may partner with the basic helix-loop-

helix (bHLH) transcription factors in the determination of neural identity.

During the multistep process of neurogenesis, bHLH proteins have traditionally been

classified as proneural factors involved in activation of neurogenesis during which neuronal

precursor cells gradually adopt neuronal characteristics and become committed to neuronal

lineage; the LIM-HD proteins would act specifically on postmitotic neuronal cell subtype

identity after neuronal cells have undergone terminal differentiation and on their way to

becoming more mature neurons. And these two processes, originally thought to happen at

different stages of neurogenesis, were shown to work in a synchronous fashion as in the case

of motor neuron subtype identity where bHLH transcription factors NeuroM and E47

cooperate with LIM-HD complexes (NLI, Isll and Lhx3) to specify motor neuron subtype

identity (Lee and Pfaff 2003).

New evidence suggests that this form of cooperation might also take place in the

determination of inner ear neuronal lineages. In the developing chicken inner ear, islet-1 is

expressed in cells of the ventral part of the otic placode where auditory and vestibular neurons

originate, demonstrating islet-1 as one of the earliest markers of inner ear neural precursors

(Li et al. 2004). Similar expression was shown within the region of the mouse otocyst that

gives rise to both the auditory sensory organ (the organ of Corti) and the sensory ganglion

neurons (SG) increasing the likelihood of Isll as a common step in the early development of

both sets of cells in inner ear development (Radde-Gallwitz et al. 2004). In cells giving rise to

the neuronal lineage, Isll expression co-localized with NeuroD, an inner ear neuronal marker

expressed during early development. Subsequent expression showed maintenance of Isll
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expression in the neuronal lineage and down-regulation in the sensory lineage upon initiation

of hair cell differentiation.

NeruoD as a potent neuronal differentiation factor is vital for survival of inner ear

sensory neurons during differentiation. Mice lacking NeuroD protein exhibit no auditory

evoked potentials, reflecting a profound deafness due to failure of inner ear sensory neuron

survival during differentiation in development. (Kim at al. 2001). Mice lacking Isll do not

survive past El 1.5. However if Isll and NeuroD were truly to cooperate in the confirmation

of inner ear-specific neuronal or sensory competency/identities, then Isll would be as vital to

the survival of inner ear neurons as NeuroD making pfetin/Ron a potentially important

regulator of inner ear neurons.
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Figure 1. FISH of zebrafish metaphase chromosomes for localization of leftover (A) and right
on (B). A. Centromeric probe to linkage group 8, zCI03G04 (green), and BAC probe,
zK24H22 (red), co-localize to the same zebrafish linkage group. B. Centromeric probe to
linkage group 1, zC00206 (green), and BAC probe, zK24H22 (red/orange), co-localize
(yellow) to the same zebrafish linkage group.
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Sense Probe

Figure 4. Expression pattern of ron riboprobe in zebrafish sections.
Images are presented in two columns with the ron antisense probe on
the left and sense probe on the right. Developmental stages from top to
bottom are 24 hpf, 36 hpf and 48 hpf. Probe signal is in dark purple.
The otic vesicle region is enclosed in the area indicated by the dashed
line box
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Figure 5. Expression pattern of Ron and Isll in the otic vesicle. Two schematic diagrams are
presented detailing the expression pattern of Ron and Isll in the OV around 48 hpf, one dorsal
view and the other lateral view. Gray vertical columns represent 12-14ptm thick serial
sections from morpholino-injected embryos stained with Ron and Isll antibody, covering the
OV region. Columns are labeled as sections one through seven (sl-s7) from anterior to
posterior. Ron antibody is visualized in green and Isl l in red. The expression pattern of Ron
and Isll is represented on either side of each column denoting expression within the same
section. Corresponding immunohisto-section images are listed below for reference with
control morpholino embryo sections on the top row and ron morpholino embryos on the
bottom. All images are given at the same magnification with the scale bar denoting 50pm.
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bar.
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ABSTRACT

KCTD12, a member of KCTD gene family, was identified as a 6 kb cochlear transcript

containing a single exon with a particularly GC-rich ORF. Previous in situ hybridization and

immunohistochemical expression studies in revealed localization of KCTD12 and its gene

product pfetin in the vestibular-cochlear ganglion of zebrafish otic vesicle, and a variety of

cell types in the human, mouse and guinea pig cochlea. In this study, further characterization

of KCTD12 and its gene product pfetin is detailed through mutation screening of the GC-rich

KCTD12 in a series of DNAs from multiplex kindreds with hearing loss, gene expression

profiling using GeneChip technology, a database search for protein interaction and

immunoprecipitation for pfetin binding profile. Although, the screen of 88 individuals with an

increased likelihood of genetic etiology for hearing loss revealed no mutations within the

ORF of KCTD12, the protein interaction search defined two major pfetin binding partners,

TNFRSF1 B and RelA, both belonging to the TNF-a/NF-KB signal transduction pathway,

suggesting potential pfetin involvement in this signal cascade.

Keywords: KCTD 12, pfetin, TNF-alpha/NF- K B, TNFRSF 1 B, RelA
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INTRODUCTION

KCTD12 was previously characterized as a predominantly fetal cochlear transcript

with expression spanning the auditory systems of human, mouse, guinea pig and zebrafish.

KCTD12 belongs to a family of KCTD genes all containing a single the potassium channel

tetramerization (T 1) domain. To date, this T 1 domain, however, has provided little

information on the actual function of this gene family. In addition, the ORF of KCTD12 is

particularly GC rich (70%) which is of note as CpG dinucleotides have the highest mutation

rate in humans due to deamination (Ducan and Miller, 1980) and making it worthwhile to

pursue a mutation screen in the KCTD12 ORF in human populations susceptible to genetic

hearing loss.

Advances in both genomic and proteomic technologies have opened new means for

the study of hearing and deafness associated genes. Microarray technologies can be used to

rapidly determine the expression pattern of tens of thousands of genes from the inner ear. The

derived expression profiles may reveal genes with similar or differential expression patterns,

and analysis of such gene clusters may help infer underlying functional pathways (Corey and

Chen, 2002). In addition, technologies are available for large scale protein-protein interaction

studies involving the two-hybrid system, co-purification of affinity tagged complexes coupled

with mass spectrometry protein identification, and protein microarrays (de Hoog and Mann,

2004). One way to deduce a protein's function is to identify its interacting partners, because

proteins interacting with one another are often involved in the same cellular processes.

With advances in the automation of genomic and proteomic technologies such as

automated sequencing, microarrays, and mass spectrometry, an enormous amount of data

have been generated available in public databases. This rapid generation of data has spurred
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advancements in computational methods to keep pace with analysis of this rapid expansion of

new information and full integration with existing knowledge. Many bioinfomatic tools are

available and are under continues development to access and interpret expression patterns,

protein interactions, signaling and molecular pathways (123 Genomics website,

http:,/wvw. 123 glenomics.com/). Genomic and proteomic information already available in

public databases is combined herein with bench-top experimental data to investigate the

expression pattern, interaction partners and functional pathways of KCTD12 and its gene

product pfetin.

MATERIALS AND METHODS

Mutation Screening of Deafness Individuals from Multiplex Kindreds

Genomic DNAs from a panel of 88 multiplex kindreds were obtained from Dr. Arti

Pandya (Medical College of Virginia, Virginia Commonwealth University). Given the high

GC content (i.e., 70%) of the KCTD12 ORF, the GC-RICH PCR System from Roche Applied

Science (Indianapolis, IN) was used for amplification of the target region (-1 kb containing

the entire KCTD12 OREF). The following primers and PCR conditions were used: upper (5'-

CGGTTGCAGCTCCTGAGT-3') and lower (5'-GTAATCATCT CTCGGGCAGG-3');

initial denaturation at 95°C for 3 minutes; amplification by 15 cycles of 95°C for 30 seconds,

62°C for 30 seconds, and 72°C for 56 seconds, 24 cycles of 95°C for 30 seconds, 62°C for 30

seconds, and 72°C for 60 seconds; and final extension at 72°C for 7 minutes. PCR products

were gel purified, sequenced and compared against the wild type KCTD12 gene sequence
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using Blast 2 Sequences software from NCBI

(http //ww w.ncbi.nl m.nih.gov/blast/b 12 seq/wblast2.c ci).

Affymetrix Chip and Ingenuity System Analysis

GeneChip Microarray

Microarray technology offers a fast and efficient approach to study gene expression

and interaction. It can be used in cross-tissue comparisons for identification of genes with

unique expression patterns, and cluster analysis to identify genes of similar expression.

Coepxression can be suggestive of functional pathways, identifying interactions amongst

known or novel genes. There are different forms of microarray technology, but they are all

based on the general principle of a massively parallel analysis: immobilize multiple targets

(e.g., cDNAs, oligonucleotides, tissues) on the surface of a solid support, apply a sample (e.g.,

cDNA, DNA, antibody) to the targets and quantify all signals.

Dr. Zheng-Yi Chen's lab has done extensive expression analysis of cochlear

transcripts using both human and mouse Affymetrix GeneChip microarrays, human U95 and

mouse MOE430 (Affymetrix, Santa Clara, CA). Briefly, mouse utricles of developmental

stages El0.5 to P12 were dissected and RNA extracted, followed by cDNA and cRNA

synthesis, and then hybridization of fragmented cRNA to individual GeneChip. Subsequent

data analysis was performed using GeneChip Analysis Suite V3.0 (Chen and Corey, 2002).

One probe set, 1434881_sat matching to the 3' region of the KCTD12/KctdJ2 brain transcript

(gi 47578122 and gi26082764), was confirmed to be on mouse MOE430 GeneChip array.

Utilizing Dr. Chen's database, we sought to identify genes co-regulated with KCTD12.
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Ingenuity Software Analysis

The data output from the GeneChip analysis was further analyzed through the use of

Ingenuity Pathways Analysis (Ingenuity Systems, www.ingenuity.com) to seek out potential

mechanisms and functional pathways associated with KCTD12 expression. One

representation of the data analysis output is in the form of a network graph. A network/My

Pathways is a graphical representation of the molecular relationships between genes/gene

products. Genes or gene products are represented as nodes, and the biological relationship

between two nodes is represented as an edge (line). All edges are supported by at least one

reference from the literature, from a textbook, or from canonical information stored in the

Ingenuity Pathways Knowledge Base. Human, mouse, and rat orthologs of a gene are stored

as separate objects in the Ingenuity Pathways Knowledge Base, but are represented as a single

node in the network. Nodes are displayed using various shapes that represent different

functional classes of the gene product.

Immunoprecipitation (IP)

KCTD12 Expression Construct, Cell Culture and Cell Transfection

Human KCTD12 cDNA (GenBank Accession No. AF359381) containing its entire

protein coding region (327 amino acid residues) was cloned into a modified form of pcDNA3

(Invitrogen, Carlsbad, CA) that permits expression of polypeptides with three C-terminal

hemagglutinin (HA) tags. COS7 (African green monkey kidney) cells were cultured in

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum

(FCS), 100 units of penicillin, and 100 g of streptomycin in 60 mm dishes (for

immunoprecipitation analysis or Permanox Lab-Tek chamber slides (Nalge Nunc, Naperville,
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IL) (for immunocytochemistry). Cells were transiently transfected in the absence of

antibiotics with the KCTD12 HA-tagged construct using Lipofectamine 2000 transfection

reagent according to the manufacturer's protocols (Invitrogen). The negative control for

transfection experiment was performed without addition of the KCTD12 construct.

Immunoprecipitations and 35S]Methionine Labeling

An [35 S]methionine labeling immunoprecipitation reaction was performed prior to the

large scale non-radioactive IP reaction to estimate the size of pfetin binding aggregates. For

[35S]methionine labeling, the radioactive isotope [35S]methionine was obtained from

PerkinElmer Life Sciences (Boston, MA). Once cells reached 90% confluency, medium was

removed and cells were washed twice in phosphate-buffered saline prior to incubation in

methionine-free medium for one hour. Cells were labeled for four hours in methionine-free

medium, supplemented with 5% dialyzed fetal calf serum, 25 tCi/ml [35S]methionine

(specific activity, 1175 Ci/mmol). Proteins were extracted with lysis buffer as above and

separated in precast Tris-Bis gradient gels (Invitrogen, Carlsbad, CA). For the subsequent

non-radioactive IP reaction, transfected cells were treated with lysis buffer supplemented with

50 mM NaF and 1 mM Na3V04. Cell lysates were immunoprecipitated with anti-HA bound to

beads (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for one hour. Beads were washed

three to five times in lysis buffer, followed by solubilization of adsorbed proteins with SDS-

PAGE loading buffer with P3-mercaptoethanol (-ME) at 95-100°C for five minutes and then

separated by 10% SDS-polyacrylamide gel electrophoresis. After silver staining the gel, gel

bands present only in the positive transfection lane were excised and sent for sequencing by

the Taplin Biological Mass Spectrometry Facility (Harvard Medical School, Boston, MA).
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Human Massome Database

The Human Massome of protein interactions is a newly developed public database

(wwvw.chip.orgproteomics/massome.html) containing a network of over 134,000 protein

interactions integrated from multiple existing sources in a non-redundant manner. They are

stored in a common format, and can be presented in various forms for analysis. This database

seeks to combine the strengths of the two main approaches used in proteomics (mass-based

proteomics and interaction based proteomics) to create a better protein interaction database.

The interactions are searchable by the masses of the interaction participants (including both

cleavage products and mutant proteins). It also facilitates protein identification for many mass

spectrometry technologies such as High-Throughput Mass Spectrometric Protein Complex

Identification (HMS-PCI) and SELDI (Alterovitz et al. 2005).

RESULT

Mutation Screen

To detect potential pathogenetic sequence variants within the KCTD12 ORF (given the

70/o GC-richness of the KCTD12 ORF and the associated bias towards deamination of CpG

dinucleotides as a common molecular cause of mutations in humans), a panel of DNAs was

sequenced from individuals likely to have a genetic etiology for their hearing loss. This panel,

consisting of 88 probands from multiplex sibships, was provided by Dr. Arti Pandya and

Walter Nance at Virginia Commonwealth University, Richmond, VA. This multiplex panel
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was prepared from a repository of DNA samples obtained from over 2,000 deaf probands

prescreened for common genetic etiologies of hearing disorders such as the connexins.

Primers were designed to produce a single PCR product spanning the entire KCTD12 ORF.

The ORF of all 88 probands was cloned and sequenced. Three individuals were found to have

a synonymous base change (776C>G) which does not present any new splice site. Search of

the NCB1 SNP database (http://www.ncbi.nlm.nih.gov/SNP/) revealed a single synonymous

change (215A>G). No other sequence variations were noted. As new appropriate individuals

are collected and become available from this DNA repository, they will be sequenced for

possible mutations.

Expression Profile on Affymetrix Chip and Ingenuity System Analysis

GeneChip analysis demonstrated that KCTD12, along with 38 other genes, share

similar changes of expression during mouse utricle development (Fig. 1). In this gene cluster,

elevation in expression begins around E12.5, maximum expression is reached between E17.5

and P3, followed by a steady decrease until P12 when expression is minimal. This list of 38

genes was then evaluated through the Ingenuity System for gene interaction and pathway

analysis.

Gene interactions were mapped between all members of the cluster (Fig. 2). The

largest group of gene interactions involved eight members of the 38 cluster genes. LM02

(LIM domain only 2), PF4 (chemokine (C-X-C motif) ligand 4), KDR (kinase insert domain

receptor), TGFB111 (transforming growth factor beta 1 induced transcript 1), IGFBP2

(insulin-like growth factor binding protein 2), BGN (biglycan), COL5A2 (collagen type V

alpha 2) and CSPG4 (chondroitin sulfate proteoglycan 4). This group of genes seemed to be
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centered around ITGB1 and 3 (integrin beta subunits and 3). Integrin family members are

membrane receptors involved in cell adhesion and participate in a variety of cell-surface

mediated signaling including embryogenesis, hemostasis, tissue repair, immune response and

metatastatic diffusion of tumor cells (NCBI

wNw-.ncbi.nlm i.nih.uov/entrez/query.fcgi'?db=gene). There were several smaller gene

interaction clustered around COL4A1 (collagen type IV alpha 1), SLIT2 (slit homolog 2

(Drosophila)), ABCC9 (ATP-binding cassette, sub-family C (CFTR/MRP), member 9),

C3AR! (complement component 3a receptor 1) and F13A1 (coagulation factor XIII, Al

polypeptide). However, no interactions direct or indirect were found between KCTD12 and

any other members of the 38 gene cluster and no significant match to canonical pathways was

detected.

Immunoprecipitation (IP) and Human Massome Database

Given the presence of the T domain and its association with potassium channels

which are vital for both the function and maintenance of the inner ear, it is important to

determine pfetin's binding partner and begin to delineate the exact role it plays in auditory

function.

Immunoprecipitation is one of the traditional approaches to finding interaction

partners. COS7 cells were transfected with a KCTD12 construct to express HA-tagged pfetin.

Cells were harvested and protein extract passed through an HA-conjugated column to collect

tagged pfetin and its associated proteins. IP products from both positive and negative

transfection reactions were electrophoresed in a 10% Bis-Tris gel. Four bands at 200, 70, 41,

and 35 kDa (only present in the positive transfection reaction) were excised from the gel post
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silver staining. Table I represents post sequencing results of the best-matched proteins

identified at each band size.

Table 1. Putative Interactors of Pfetin
CAD protein, fatty acid synthase, polyubiquitin

heat shock or heat shock-related protein (hsp70-1/hsp70-2), stress-70
protein, mitochondrial [Precursor] , calcium-binding mitochondrial carrier
protein Aralarl and 2 (CMCl/CMC2), ATP-dependent DNA helicase II (70
kDa subunit), 78 kDa glucose-regulated protein [Precursor], CTP synthase,
UQHUB polyubiquitin 3, Probable RNA-dependent helicase p72

41 kDa

35 kDa

pfetin, ER-associated Hsp40 co-chaperone, actin, cytoplasmic 1

pfetin, B cell receptor-associated protein BAP37, guanine nucleotide-
binding protein beta subunit 2-like 1, L-lactate dehydrogenase A and B
chain, putative deoxyribose-phosphate aldolase, ELAV-like protein 1,
mitochondrial 39S ribosomal protein L39, sideroflexin 3, calponin-2

In addition to performing IP, we took advantage of the vast information already

available in the public protein interaction databases and performed a search using the newly

developed Human Massome (www.chip.or/proteomicsmassome.htniml). It revealed two

major protein to protein interaction partners for pfetin. They are tumor necrosis factor

receptor superfamily member B (TNFRSF lB) and v-rel reticuloendotheliosis viral oncogene

homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3 (RelA).

TNFRSF1B (aliases: p75, TBPII, TNFBR, TNFR2, CD120b, TNFR80, TNF-R75,

p75TNFR, TNF-R-II) is a member of the TNF-receptor superfamily whose function is closely

associated with tumor necrosis factor (TNF) superfamily member 2 (aliases: TNF-a DIF,

TNFA, TNFSF2). Information from Entrez Gene, NCBI's database for gene-specific

information (www.ncbi .nlm.nih. cov/entrez/query.fcgi?db=gene), indicates that TNF-ca

encodes a multifunctional proinflammatory cytokine that functions through its receptors
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TNFRSF1A and TNFRSF1B in a variety of processes such as cell proliferation,

differentiation, apoptosis, lipid metabolism, and coagulation. This cytokine has been

implicated in a variety of diseases, including autoimmune diseases, insulin resistance, and

cancer.

RelA (aliases: p65, NFKB3) is one of the five structurally related subunits that make

up the NF-kappa B (NF-KB) family of transcription factors. Together, these subunits form

various homodimeric and heterodimeric combinations to create NFKB complexes that

function as transcription regulators (activators and repressors) in multiple cellular processes

such as inflammation, cell cycle regulation, apoptosis and oncogenesis (Arlt and Schafer

2002). Other family members include NF-KB 1/p5 0 , NF-KB2/p52, RelB and c-Rel with

p50:p65 (RelA) being the most abundant of the NF-KB complexes (Ghosh et al. 1998)

DISCUSSION

Expression analysis using the Affymetrix mouse genome array revealed a

developmental regulation of KCTD12 in the mouse utricle with peak expression centering

between embryonic day 17.5 and postnatal day 3, along with 38 other genes in the cluster.

Unfortunately, gene cluster analysis did not reveal any interaction between KCTD12 and any

other members of the cluster. However, interactions mapped here were based on research data

published prior to June 2005 (date of gene cluster analysis). Therefore, it is possible that as

more and more data become available in the public domain and new connections determined,

it will be possible in the near future to delineate the functional significance of this cluster of

genes with similar expression regulation in the mouse developing utricle.
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A search for protein interaction using Human Massome with pfetin identified

TNFRSF1B, one of TNF-alpha's major receptor and RelA, a member of the NF-KB complex

as its binding partners. TNF-ct is a multifunctional cytokine, which participates in a wide

variety of biological activities such as cell proliferation, differentiation, apoptosis, lipid

metabolism, and coagulation. Knock-out studies in mice have suggested a neuroprotective

function for this cytokine.

Both of pfetin's binding partners are involved in cell signal transduction regulating the

cell cycle (e.g., proliferation, differentiation). They are also functionally connected in the

TNF-ct/NF-KB pathway. In fact, this pathway is initiated by the binding of TNF-c to its

receptors TNFRSF 1A and TNFRSF lB at the cell surface, requiring many protein complexes

to implement the intracellular signal cascade which eventually leads to activation of the NF-

KB complex and its targeted genes (Bouwmeester et al. 2004). Knock-out mice studies from

both TNF-a and TNFRSFlB have suggested neuroprotective function (Bruce et al. 1996).

Inappropriate activation of NF-KB has been associated with a number of inflammatory

diseases while persistent inhibition of NF-KB leads to inappropriate immune cell development

or delayed cell growth (Ghosh 2002).

Immunoprecipitation identified a number of candidate binding partners for pfetin.

Some proteins ubiquitously expressed in the cell were most likely immunoprecipitated as part

of the experimental background noise (e.g., heat shock and heat shock related proteins).

However, two of pfetin's binding candidates also showed ties to the TNF-ct/ NF-KB pathway.

PHB2 (prohibitin 2) (aliases: REA, p22, Bap37, BCAP37, PNAS-141) is a novel histone

deacetylase-associated protein that functions putatively as a mediator of transcription (Kurtev

et al. 2004). It also interacts with RelA, another pfetin interactor, and plays a part in the TNF-
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a trigged signaling cascade of activation of NF-KB (Bouwmeester et al. 2004). The other

pfetin interactor CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and

dihydroorotase) is a multifunctional protein that initiates and regulates mammalian de novo

pyrimidine biosynthesis (Sigoillot et al. 2005). CAD also interacts with TRADD

(TNFRSF 1 A-associated via death domain adaptor protein) which in turn interacts with one of

TNF-a's major receptors, TNFRSF1A, and mediates programmed cell death signaling and

NF-KB activation (Sandu et al. 2005).

The TNF-a/NF-KB pathway is an elaborate pathway that forms the basis for numerous

physiological and pathological processes involving a network of 680 non-redundant proteins

(Bouwmeester et al. 2004). Interactions of pfetin with many members of the TNF-a/NF-KB

pathway suggest possible involvement in cellular processes inducible via TNF-a. However,

the exact manner in which pfetin interacts and functions with members of this complex

signalling cascade awaits further investigation.
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complement component 3a receptor 1
gb:BF681826/Mm.19081.1
chondroitin sulfate proteoglycan 4
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transforming growth factor beta 1 induced transcript 1
SRY-box containing gene 18
gene model 457, (NCBI)
insulin-like growth factor binding protein 2
stabilin 1
N-acetylneuraminate pyruvate lyase
kinase insert domain protein receptor
Expressed sequence A1607873
procollagen, type IV, alpha 1
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complement component 1, q subcomponent, receptor 1
RIKEN cDNA 120000303 gene
slit homolog 2 (Drosophila)
polydomain protein
coagulation factor XIII, A1 subunit
mannose receptor, C type 1
membrane-spanning 4-domains, subfamily A. member 6B
AlP-binding cassette, sub-family C (CFTR/MRP), member 9
rhomboid family 1 (Drosophila)
Similar to Rho-GlPase-activating protein 7
complement component 1, q subcomponent. receptor 1
phosphodiesterase 8A
ATP-binding cassette, sub-family C (CFTR/MRP), member 9
L1Mdomain only 2
chemokine (C-X-C motif) ligand 4
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Kctd12
gb:X66603.1/Mm.56946.1
fatty acid binding protein 7, brain
gb:BB394466/Mm.69922.1
gb:BM218007/Mm.37399.1

Figure 1. Expression of Pfet]/Kctd12 in Affymetrix Mouse Genome 430 Array. The left column is
a heat map showing the hierarchical clustering of 38 probe sets that reveal a similar expression
pattern as Pfet//Ketd]2. Each probe set is presented by one row along the Y axis and the samples
(mouse developmental stages from embryonic day (E) 10.5 to post-natal day (P)12 are presented in
duplicate on the top along the X axis from left to right. The expression level of each probe set is
standardized against itself across different developmental stages and is shown in color spectrum
from red (high) to blue (low). The column on the right lists the genes associated with each probe
set.
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Figure 2. Network graph of 38 cluster genes from Affymetrix Chip analysis. Genes or gene products are
represented as nodes, and the biological relationship between two nodes is represented as an edge (line).
Filled in nodes represent members of the 38 gene cluster. GenelProtein IDs marked with an asterisk
indicate that multiple identifiers from the input list mapped to a single gene in the Global Molecular
Network.
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CHAPTER 5
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SUMMARY

The cochlea is a complex organ comprised of dozens of cell types and specialized

regions required for the normal process of hearing. Of the genes responsible for hearing and

deafness, many of the encoded proteins have been shown to be expressed in the cochlea with

a variety of functions including transcription factors, potassium ion channels, gap junctions,

and extracellular matrix components. As a part of the continuing effort in finding genes

important for hearing and deafness, a novel cochlear transcript with a predominantly fetal

expression containing a single tetramerization domain (PFET1, HUGO-approved symbol

KCTD12) was identified from the Morton fetal cochlea cDNA library. This thesis reports

characterization of this novel human gene and its encoded protein pfetin in relation to its role

in auditory function.

KCTDI2 was selected through subtractive hybridization and differential screening of

humnan fetal cochlear cDNA clones. KCTD12/Kctdl2 is an evolutionarily conserved intronless

gene encoding a 6 kb transcript in human and three transcripts of approximately 4, 4.5 and 6

kb in mouse. The protein, pfetin, is predicted to contain a voltage-gated potassium channel

tetramerization (T 1) domain. Expression of KCTD12/Kctdl2 or its encoded protein pfetin was

characterized in several species including human, monkey, mice, guinea pig, and zebrafish.

Of particular interest are the time course and regions of expression in the inner ear. Initial

findings demonstrated a striking preferential expression of the human 6 kb transcript in a

variety of second trimester human fetal tissues (including brain and cochlea) with

dramatically lower expression levels in adult tissues. GeneChip analysis also revealed

developmental upregulation of expression of Kctdl2 in the mouse utricle along with a cluster

of 38 other genes between stages E13.5 and P6. Real Time RT-PCR substantiated
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upregulation of right on and leftover (ron and ov: KCTD12 zebrafish orthologs) during the

first 24 hours post fertilization (hpf) of embryo development. Immunohistochemistry with a

polyclonal antibody raised against a synthetic peptide to the KCTD12 sequence revealed

immunostaining in a variety of cell types in human, monkey, mouse, and guinea pig cochleas

(notably types I, IV and V fibrocytes and spiral ganglion cells) and the vestibular system,

including type I vestibular hair cells (Chapter 2). Mouse developmental

immunohistochlemical analysis demonstrated a dramatic increase in the expression of pfetin in

postnatal cochlea. Both in sitt hybridization with a ron riboprobe and immunohistochemistry

with a Ron antibody revealed expression of the pfetin zebrafish ortholog in the vestibular-

cochlear ganglion (VCG) of the developing zebrafish otic vesicle (Chapter 3).

These observed expression patterns strongly suggest a developmental role for

KCTD12 and its encoded protein. Most of the upregulation in RNA expression was seen

spanning or overlapping crucial inner ear developmental milestones. The emergence of otic

placode (mouse E8.5, zebrafish 13-14 hpf), the formation of otic vesicles (mouse E9.5,

zebrafish -18.5 hpf), the initiation of auditory hair cells differentiation (mouse E14, zebrafish

24 hpf), and hair cell transduction (mouse El6, zebrafish 36 hpf) all occur during the first 36

hours post zebrafish embryo fertilization and first 16 to 17 days post observation of a vaginal

plug in the mouse. Similarly by 20-22 weeks gestational age, the human fetus developed a

functional ear to detect sound in its surroundings. Both zebrafish and mouse RNA expression

persisted after these inner ear developmental milestones had occurred. There was down-

regulation of Kctdl2 in mouse utricle after P6 and of ron expression in the zebrafish after 72

hpf. However, there was never any complete secession of expression, at least into early

adulthood. In mouse, expression persisted until 12 months (Chapter 2, Fig. 6B) and zebrafish
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until after 6 days post fertilization (dpf) (Chapter 3, Fig. 2). In humans, data are not available

for KCTD12 expression during young adulthood. By late adulthood, the 6 kb KCTD12

transcript has disappeared from various regions of adult brain (Chapter 2, Fig. 5B) perhaps as

the result of the ageing process.

Given the expression level from various Northern blot analyses and RT-QPCR

experiments, it is difficult to extrapolate from the overall expression level of the whole

embryo and whole brain to the expression near the auditory sense organ. Sections from

zebrafish in sitlu hybridization provided one of the confirmations of KCTD12/ron expression

in the developing auditory sense organ (Chapter 3, Fig. 4). Immunohistochemical analysis

provided additional evidence in support of the importance of the KCTD12-encoded protein

pfetin in the developing auditory sense organ with immunostaining signals observed from

Ron (pfetin zebrafish ortholog) labeling vestibular-cochlear ganglion (VCG), and

immunostaining signals detected from various cells within the mouse cochlea.

Immunohistochemical analysis of the human fetal cochlea was inconclusive due to technical

issues arising from the fixation of available tissue for study. The common fixative used to

preserve fetal tissue can interfere with the binding of antibody to its antigen. Therefore, it is

not clear when pfetin begins to be expressed in early human cochlear development.

The developmental protein expression from mouse and zebrafish did not follow the

exact time course as that of RNA expression. This is not unusual given the fact that the

relationship between RNA and protein expression for many genes is not necessarily well

correlated. In fact, the commencement of mouse and zebrafish protein expression lagged

behind their respective peak RNA expression and after most of the key inner ear

developmental milestones have passed. In zebrafish, protein expression in the VCG region
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commenced around 24 hpf and persisted well after 75 hpf (data not shown). In mouse,

protein expression in the cochlea commenced postnatally (Appendix to Chapter 2) and then

continued well into adulthood (Chapter 2, Fig. 8B). This protein expression time course

suggests that perhaps pfetin/Ron might be necessary for the continuing growth and health of

the inner ear.

Morpholino experiments further revealed the potential importance of the presence of

Ron in the developing VCG by demonstrating a correlation between Ron knock-down and

lsll (early inner ear neuronal marker) down-regulation in the VCG during early zebrafish

development. Isll has been postulated to cooperate with NeuroD in the confirmation of inner

ear-specific neuronal or sensory competency/identities (Radde-Gallwitz et al. 2004).

Therefore, pfetin/Ron could potentially function as an important regulator in the development

of inner ear neurons.

The genomic location for KCTD12 was confirmed by FISH analysis to band q21 on

chromosome 13 which presently maps within the vicinity of the AUNAI locus (13ql4-21)

responsible for progressive autosomal dominant auditory neuropathy (Kim et al. 2004). There

are no known deafness loci mapped in close proximity to the KCTD12 mouse ortholog,

Kctdl2, on chromosome 14 or the zebrafish ortholog right on on linkage group 1. No

pathogenetic sequence variants were detected within the 70% GC-rich KCTD12 ORF from

mutation analysis of a panel of DNAs from individuals from multiplex kindreds without a

recognized genetic etiology for their hearing loss. Although much has been learned about

KCTD12 and its encoded protein pfetin through this thesis research, much remains to be

known. The discovery and characterization of each new gene expressed in the ear takes us
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ever closer to attaining a more complete understanding of this intricate and wonderful life-

enhancing process that is human hearing.
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Appendix to Chapter 2:

Isolation from Cochlea of a Novel Human Intronless Gene with Predominant Fetal Expression

Mouse Developmental Immunohistochemistry

Materials and Methods

Tissue preparation and immunohistochemical staining procedures were performed as

previously described (Resendes et al., 2004). ICR mice were crossed to produce embryos.

The day the vaginal plug was found was identified as E.5. Cochleas from mouse

developmental ages embryonic stages 13.5 and 17.5, and postnatal day 1 and 10 were

collected for this study. Primary anti-PFET1 antibody was diluted between 1:200 and 1:500.

Reslit/Discussion

Similar to the expression pattern observed in adult mouse cochlea in postnatal days 1

and 10 mouse cochlear sections, immunostained cells included various fibrocytes

(predominately types I and IV) in the spiral ligament, limbal fibrocytes and supralimbal and

interdental cells in the limbus, and spiral ganglion cells. Unlike the adult cochlear expression,

immunostaining was observed in almost all cell types within the cochlea at postnatal day 1.

Immunostaining of individual cell types became distinguishable by postnatal day 10.

However, no pfetin immunostained cells were observed in embryonic mouse cochlea.

Although Northern blot analysis revealed early Kctdl2 expression in developing embryonic

mouse whole brain and embryo tissues, it is well known that the relationship between RNA

and protein expression for many genes is not necessarily well correlated, and appears to be the

situation observed here for Kctd]2. Immunohistochemical analysis of developing mouse
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cochlea indicated a dramatic up-regulation of the expression of pfetin during transition from

the embryonic to postnatal stage. Such tightly regulated yet widely distributed expression of

pfetin in mouse cochlea during the early postnatal stage lends further support to the

importance of Kctdl2 during cochlear development.
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Figure Caption.
Pfetin inununostaining of developmental mouse cochleas EI7.5, PI and PI0. Developing
E17.5 mouse cochlea is shown at the top. Higher magnification of the boxed region for E17.5
is shown to its right labeled as EI7.5m. Higher magnification of the boxed regions for PI are
shown in the center labeled as PIA m and PIB m (m for magnification). The arrows in PI
point to immunostained acoustic ganglions in the developing modiolus. Arrows in PI0 point
to inununostained types I and IV fibrocytes (left up and down) and limbal fibrocytes (right).
Higher magnification of the boxed region for PI OB is shown to the right labeled as PI OB m.
All scale bars represent 25J.1m,except for PIA which is 250J.1m. E = embryonic, P= postnatal
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