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1 Introduction

Principal series representations play an important and well-developed role in repre-

sentation theory of reductive algebraic groups. Perhaps much of this importance,

certainly much of this development, stems from the relationship between these rep-

resentations and representations of simpler, better understood classes of groups. The

underlying spaces for principal series representations depend only on the restrictions

of these representations to compact groups, and the structures of these representations

as modules for reductive groups depend on the structures of modules for parabolic

subgroups of these reductive groups. In the absence of theory necessary to speak

freely of general representations of reductive groups, those categories of representa-

tions to which the current state of theory does apply rise somewhat in prominence.

Those categories rise both for lack of any more inventive mathematics and, justifiably,

in the hope studying such categories will lead to more inventive mathematics.

In order better to understand the decomposition of principal series representations

into irreducible components, we turn to the study of branching laws. Specifically,

for any real reductive group, we consider branching from K, the maximal compact

subgroup of that group, to M, the intersection of a chosen maximal torus with K.

Frobenius reciprocity relates branching to the decomposition of principal series. We

may gain significant information further narrowing our project to the consideration

of branching from the identity component Ke of K to the intersection of M with Ke.

Our results deal only with branching from Ke to M n Ke for the split real reductive

groups of classical type.

Kostant's multiplicity formula solves the problem of branching from real compact

connected reductive groups to connected closed subgroups, so this formula seems a

natural point of departure for our project. Two problems arise. In general groups

M and M n Ke tend toward disconnectedness of a nature severe enough to make

very difficult or even impossible the task of massaging the situation into compliance

with the conditions Kostant's fomula requires. On the other hand, the classical
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groups lend themselves to induction, and, making up somewhat for the subgroup's

stubborn disconnectedness, M is finite and abelian for the classical groups. We take,

for example, branching from SO(n, R) to M where M is the intersection of some

maximal torus for SL(n, R) with SO(n, R). Kostant's formula solves branching from

SO(n, R) to SO(n -2, R) x SO(2, R), and for i equal to n -2 and 2, we could hope to

understand branching from SO(i, R) to M(SO(i)) inductively where M(SO(i)) is the

intersection of some maximal torus for SL(i, R) with SO(i, R). Use of this process

would put us in good stead to solve branching from SO(n, R) to M. The restriction

map from the set of representations for SO(n, R) to the set of representations for

M(SO(n - 2)) x M(SO(2)) factors through the set of representations for M. We

would have only to investigate this factorization. The second problem with utilizing

Kostant's formula now presents itself. The combinatorics behind Kostant's formula,

involving as it does Weyl groups and partition functions, can become complicated

quite quickly. Kostant's formula provides a sure solution to a very nonspecific class of

problems. The fomula need not take advantage of simplifying assumptions pertaining

to any specific subclass of these problems. Although Kostant's formula serves as a

foundation for cited results critical to our approach, we eschew the known territory

involving direct use of the formula, favoring instead a different tack.

In section 2, we give an overview of the structure theory for split real reductive

algebraic groups and we provide definitions central to the discussion of our project.

We recall a result from the study of algebraic groups affirming the uniqueness up to

isomorphism of any split reductive algebraic group with a particular root datum. Up

to isomorphism, then, there exists only one real split reductive group of each classi-

cal type. We then discuss briefly the principal series representations and Frobenius

reciprocity, clearing the way for our focus on branching from K to M n Ke.

We determine the real split reductive group of type A in section 3. Applying
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the structure theory from section 2, we determine K and M. We go on to clas-

sify the irreducible representations of M, associating the isomorphism class of each

representation to some subset of {1,...,n}. Finally, we state and prove a lemma

equating the multiplicities in any irreducible representation for K of any two irre-

ducible representations for M corresponding to subsets of { 1,. ., n} having the same

cardinality.

Section 4 contains a thorough description of the group K = SO(n, R) for the real

split reductive group of type An. We study the Lie algebra for K, establishing notation

and conventions such as a choice for a Cartan subalgebra and a choice for a set of

positive roots. We establish a correspondence between the irreducible representations

for any real reductive Lie group and the analytically integral forms on the Cartan

subalgebra related to highest weight representations for the Lie algebra. Determining

explicitly the set of analytically integral forms for K, we then state Murnaghan's

theorem describing the branching law from SO(n, R) to SO(n- 1, R). Making use of

Murnaghan's result, we establish an inductive algorithm to solve branching from K

to M.

The algorithm from section 4 is fairly simple, moreso probably than the algorithm

a direct application of Kostant's theorem might have produced. On the other hand,

even this relatively simple recursion appears computationally costly when applied to

branching from K to M for the real split reductive group of type An when n is large.

We search for a computationally simpler algorithm, one more intimately related to

the structure of representations for K = SO(n, R), hoping the methods we encounter

might have applications to more general cases. We look in section 5 at the relation-

ship between semistandard Young tableaux and representations for K. Semistandard

Young tableaux serve as a sort of common language for the expression of results con-

cerning representations, especially for matrix groups. These tableaux appear in the
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study of combinatorics and algebraic geometry, so representation-theoretic results

making use of semistandard Young tableaux stand to benefit from and to benefit

theory related to these two fields. We define a subset of the set of semistandard

Young tableaux, referring to this subset as the set of admissible semistandard Young

tableaux. WVe categorize admissible semistandard Young tableaux according to depth

and to the length of each row, and we subdivide the set of admissible Young tableaux

into types corresponding to the highest weights of K representations. Finally, we

develop a process for altering, or decorating, these admissible Young tableaux in

such a way that the number of decorated admissible semistandard Young tableaux

of type corresponding to some highest weight for K equates to the dimension of the

representation for K of that highest weight.

The correspondence between admissible semistandard Young tableaux and rep-

resentations for K = SO(n,R) from section 5 identifies each decorated admissible

semistandard Young tableaux of type corresponding to some highest weight for K

with a line in the representation of that highest weight. In section 6, we study how

the action of M for the real split reductive group of type An on this representation

affects this set of lines. We use calculations within the universal enveloping algebra

for K and the tenets of highest weight theory to study this action. The lines corre-

sponding to decorated admissible semistandard Young tableaux do not, in general,

span one-dimensional representations for M, but they do span one-dimensional rep-

resentations for a large subgroup of M. The remainder of M acts on these lines in

such a way as to make possible the identification of a basis for the highest weight rep-

resentation comprising vectors each of which spans a one-dimensional representation

for all of M. By studying the action of M on these vectors, we determine to which

isomorphism class belongs the irreducible representation for M spanned by any one

of these vectors. Moreover, using the connection between these vectors and the lines
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corresponding to decorated admissible tableaux, we establish a bijection between the

decorated admissible tableaux and the isomorphism classes of irreducible represen-

tations for M such that this bijection determines the multiplicity of any irreducible

representation for M within the highest weight representation for K.

In section 7, we show how to extend our solution for branching from K to M

for the real split reductive group of type An to solutions for branching from Ke to

M n Ke for the real split reductive groups of type Bn and Dn. We do not mention the

group of type Cn, as branching from K to M for this group has a solution in terms

of classical theory.

This paper concerns results only about branching for split classical groups, but the

methods used in this paper suggest possible approaches to the pursuit of branching

theorems is other cases. For instance, an understanding of the branching law from

SP(n, ) to SP(n- 1, R) in terms of semistandard Young tableaux could help to

determine a branching law from K to M for the covering groups of type Bn and

Dn. The linear real covering group of type An coincides with the real split group, so

this paper does comment indirectly on branching for the covering groups of classical

type. Calculations within universal enveloping algebras such as those we use to study

the action of M on vectors in highest weight representations of K for the split real

reductive group of type An could help to solve branching from K to M for a broad

array of cases. Specifically, the split groups of exceptional type might benefit from

careful analysis in terms of universal enveloping algebras and the tenets of highest

weight theory.
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2 Some Structure Theory for Split Real Reductive

Algebraic Groups

The results of this paper focus entirely on the classical groups, but the motivation be-

hind these results stems from somewhat more general theory. We deal first with affine

algebraic groups as a context for introducing the notion of a split group. By restricting

our attention in the following sections to split groups, we will allow for the explo-

ration of representation theoretic results through the use of root data. Subsequent

to our discussion of affine algebraic groups, we develop notation for the discussion

of real reductive Lie groups. We show how well-worn theory applying to semisimple

Lie groups extends to the reductive case and reduces certain questions concerning

principal series representations for real reductive Lie groups to questions concerning

branching laws for compact groups.

Letting k be any field, we start with the definition of an affine algebraic k-group.

Definition 2.1 An affine algebraic k-group is a functor G' from the category of k-

algebras to the category of groups such that there exists a finitely generated k algebra

k[G'] with the property G'(R) Homkalg(k[G'], R) for any k-algebra R.

We call k[G'I the coordinate ring for G'.

We may take k[G'] = k[X ... Xn]/I(G') where I(G') is some radical ideal in

k[X1 ... Xn] and n is some natural number. In this case, the group G'(k[G']) has the

structure of a variety, and we can identify G' with G'(k[G']) in order to bridge the

gap between the definition for an affine algebraic group given above with the perhaps

more familiar definition given in such texts as [2].

We will consider reductive algebraic groups in the entirety of the sequel.

Definition 2.2 An algebraic group is reductive if it has a trivial unipotent radical.
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We now turn to the notion of a split algebraic group. A split torus for G is

an algebraic subgroup isomorphic to a direct product of copies of Gm where GCm is

the usual multiplicative algebraic group defined over k. Considering G' as an affine

variety, we may extend scalars for G' to an algebraically closed field as follows. If

k is the algebraic closure of k, then we define G to be the affine algebraic k-group

with coordinate ring k k k[G']. Since any k-algebra is a k algebra via the inclusion

k -* k, we see

G'(R) = Homkalg(k 0 k k[G'], R)

is well-defined for any k-algebra R. (In fact, as outlined on [7] p.15, we can extend

scalars in this manner to any separable extension of k.) Using this extension of

scalars, we can define a torus for G' to be an algebraic subgroup T of G' such that

the extension Tk is a split torus for G'. By [7] 11.31, an algebraic group is reductive

if and only any connected normal abelian subgroup is also a torus. Thus, G' is a

reductive group if and only if G is a reductive group. A maximal torus for G' is a

torus T such that Tk is properly contained in no torus for G'.

Definition 2.3 A reductive algebraic group is split if it contains a split maximal

torus.

We restrict our attention to split reductive algebraic groups primarily because the

study of representations over such groups reduces to the study of root data. The

following definition is [7] 17.1.

Definition 2.4 A root datum is a quadruple T = (A, Av, X, XV) where X and Xv

are free Z-modules of finite rank in duality via a pairing (,): X x X' - Z, A and

Av are in bijection via a map sending a in A to aV in Av and (A x Av) is a finite

subset of X x XV. In addition, the following properties must hold.

1. We have (,a ev) = 2.
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2. If s,: X X is the homomorphism given by

s0 (x) = x - (, V)a

for x in X and a in A, we have s,(A) = A.

3. The group of automorphisms of X generated by {s I a C A} is finite.

To each split, reductive, affine algebraic group G' together with a choice T of a split

torus for G', we associate a root datum (G', T). We define IF(G', T) through these

four identifications:

/A = (9', T),

AV = coroots for A\},

X = Hom(T, Gi), and

Xv = Hom(Gm, T),

where g' is the Lie algebra for G' and A(Q', T) are the roots of ' with respect to T. [7]

17.20 shows the root datum I(G', T) actually determines (G', T) up to isomorphism.

If A = k[X] is any affine k-algebra, we follow [8] 1.3.7 to define a k-structure on

X as a k-subalgebra A0 of A of finite type over k such that the map

k® k A- A

given by multiplication of the left and right coordinates is an isomorphism. If G' is

any affine algebraic k- group with coordinate ring k[X], and if k[X] is a k-structure for

k[X], we define the affine algebraic k-group GO of k-rational points for our k-structure

to be the affine algebraic k group with coordinate ring k[X]. In the sequel, we

consider the groups of real points for complex matrix groups, meaning the subgroups
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of matrices with entries in R. Such subgroups are, in fact, R-groups of R-rational

points for complex affinge algebraic C-groups defined with respect to an obvious R

structure.

If G' is a reductive affine algebraic k-group, we wish to comment on the unipotent

radical of Gr. From the definition given above, we know there exists an injective map

q: k[G'] - k k k[G],

thus, we get a surjective homomorphism

· : (G)k - '.

By [8] 12.4.3, we know the kernel of contains no non-trivial, closed, normal sub-

groups of (Gk)k. As a result, if () has a non-toral, normal, abelian subgroup N,

the image of N under I> is also a non-toral, normal, abelian subgroup. Hence, if is

reductive, GC is also reductive.

We now confine our focus from general affine algebraic groups to real affine alge-

braic groups and encounter the Lie structure serving as a basic framework for this

paper. Suppose G' is a connected, complex, reductive affine algebraic group. Then

the group G of R-rational points for G' is a real, reductive affine algebraic group.

This group has additional structure. The following definition comes from [5] p.4 4 6 .

Definition 2.5 A real reductive Lie group is a 4-tuple (G, K, 6, B) consisting of a

real Lie group,G, a compact subgroup K of G, a Lie algebra involution for the Lie

algebra go of G, and an Ad(G)-invariant, 0- invariant, bilinear form B on 0go such

that

(i) g0o is a reductive Lie algebra,
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(ii) the decomposition of go into +1 and-1 eigenspaces under 0 is go = to po,

where to is the Lie algebra for K,

(iii) to and po are orthonormal under B, and B is positive definite on po and negative

definite on to,

(iv) multiplication, as a map from K x exp po into G, is a diffeomorphism onto, and

(v) every automorphism Ad(g) of g = (go)c is given by some x in Int g.

According to [6] p. 245, the group Gi is a real, reductive Lie group. Henceforth, we

shall refer to Gi as G.

For k in K and X in o, we can define E: - G as

13(kexpX) = kexp(-X).

By [5] 7.21, we know e is an automorphism of G with differential . We refer to e

as the global Cartan involution for G. From Definition 2.5, iv, we conclude K is the

subgroup G' of G fixed by E). Again by Definition 2.5, iv, K is a maximal compact

subgroup of G.

From Definition 2.5, i, we know go = Zg [go, go] where Zg denotes the center

of go and [go, 0go] is the derived subalgebra of go. In particular, [go, go] is semisimple.

We consider the complexified Lie algebra g = 0 OR C. If V is the underlying space

:For some representation 7r of g, then, for any a in g*, we let V, be

{v E V I for every X C g there exists an n C N with ((r(X)v - a(X). 1)n = O}.

If V, ~ 0, we call c a weight, and we refer to V, as the generalized weight space of

weight a. We define a subalgebra jo of go to be a Cartan subalgebra if the complex-
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ification of o is precisely the generalized weight space of weight 0 for the adjoint

action adg, b of b on g. Using the theory of semisimple Lie algebras defined over alge-

braically closed fields, we can form a set of roots A([g, g], b n [g, g]). We extend these

roots to all of by defining a(H) = 0 for any a in A([, g], nF [, g]) and any H in Zg.

This extended set of roots, A\(g, b), allows for a decomposition of g into root spaces

g = (1)
aEA(g,)

where g, = {X E g I ad(H)X = a(H)X}. If 30 is any Cartan subalgebra for go0,

there exists an element of X of Int(go) such that g([o) is a 0-stable Cartan subalgebra.

([5] p. 4 5 7 )

The Cartan subgroup corresponding to a Cartan subalgebra o of go is CentG([o),

the centralizer in G of o via the adjoint action. We choose o to be O-stable, so the

Cartan subgroup H of 0 is e-stable. ([5] p.487)

Theorem 2.6 If G is the group of R-rational points of a connected, affine algebraic

C-group, let H be a subgroup. The following are equivalent.

(i) The subgroup H is a Cartan subgroup.

(ii) The subgroup H is a maximal torus.

Proof omitted A

We choose H, a -stable Cartan subgroup of G. There exists natural action

Adc(H) on g realized as an extension of Adc(h)(X 0 z) = Ad(h)(X) 0 z for h in H

and (X 0 z) a simple tensor in g. Since H centralizes 0, and since the root system

A(g, ) depends only on the action of , we deduce Adc(H) preserves each weight

space g,. Since each weight space has dimension one over C, the adjoint action of H
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on any given weight space must correspond to a homomorphism from H to C. As a

result, to each a in A\(g, ) we may assign a character

a: H--+ Cx.

(We note Az(go,H) = (g,)) We next define Oa for any a in A(g, ) to be the

character for H given by

oa(h) = a(E(h))

for every h in H.

Lemma 2.7 The character Oa is among the characters in A(g, ~). In other words,

e permutes the set A(g, b).

Proof For any X in g, we know

Ad(h)(X) = a(h)X, and

Ad(Oh)(OX) = a(h)OX.

Letting h' in H be such that h = O(h'), we have

Ad(h')(OX) = a(Oh')OX, so

Ad(h')(OX) = Oa(h')(OX).

Since 0 stabilizes 0, we know 0 maps g to some other root space g3.

conclude 3 = Oa.

We may

U

Supposing G is split, we choose a O-stable, split Cartan subgroup H for G. In

this case, H is a product of copies of Rx , and 0 is a product of copies of the additive

group R. With H thus chosen, the root space decomposition from Equation 1 for g
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over C restricts to a root space decomposition

go= bo S (a)o
aEA(g,4)

over R. For each root a in /A(g, [), we see the corresponding character for H takes

the form

a: H --+ x CCx

Theorem 2.8 If G is a split real reductive Lie group with global Cartan involution

13 and H is a split 0) stable Cartan subgroup for G, then any root a in A(g, ) has

the property Oca = -a.

Proof By Lemma 2.7, it suffices to show ad(Y)(OX) = -(Y)(X) for any X in 0

and any Y in . Considering the case H = RIX , we notice 0(h) = h - ' for each h

in H. Indeed, with E) thus defined, 3 is a Cartan involution for the real reductive

group (H, KH, OH, BH): here KH = {1,-1}, and BH is ordinary multiplication. We

see o n to = 0 where

Do = o n to o0 n p(H)o

is a decomposition of the Lie algebra D0 for H taking the form of the decomposition

in Definition 2.5, ii. Indeed, o n to is the Lie algebra for a finite group. Hence, H is

multiplication by -1. We notice Do = Z 0o(bo). By [5] 7.25, H is the restriction of 0

to Zgo(Do). For any X in g9, and any Y in , we have

[Y, ox] = O[OY, X] = (-a(Y)X)

-a(Y)(OX).

Since H is a product of copies of RX, the result follows. .
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We define a to be o n po0. Additionally, we assign a notion of positivity to the

root system A\(g, b), and we define no to be ® (g0 )o.
aEA+

Theorem 2.9 (Iwasawa Decomposition) The Lie algebra go has a decomposition

into the direct sum toEa0oEDn0.o We let A and N be the analytic subgroups of G with Lie

algebras ao and no respectively. Then the map K x A x N --+ G given by (k, a, n) '- kan

is a diffeomorphism. The groups A and N are simply connected.

Proof [5]6.4:3 proves the first remark when go is semisimple. If we replace [5]6.40(c)

with Theorem 2.8, the arguments translate directly to the split real reductive case.

The second statement amounts to [5]7.31. We need only note the first statement

implies our definition for no matches the one used in [5]7.31 precisely. Since A is

simply connected, exponentiation

exp: a -+ A

is a diffeomorphism. For any a in A, we refer to the preimage of a as log a.

Remark 2.10 5]7.31 proves Theorem 2.9 for the more general real reductive case.

This proof relies on the notion of restricted roots, and that notion proves unnecessary

to our discourse.

We define the closed subgroup M of K to be ZK(ao). Being closed in K, the

subgroup M is compact, and, since AN is closed in G, the Borel subgroup MAN is

closed in G. (Setting B = MAN, we refer to MAN as the Langlands decomposition

for B with respect to 0. We refer to M as the Langlands subgroup of K.) By Theorem

2.9, we know G = KMAN. For any real reductive Lie group L, we denote by L the

set of representations for L. Since M is compact abelian, any representation in M

is a character

: M >CX.
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As exponentiation gives a diffeomorphism between A and a0 , any representation in

A differentiates to a representation v' for a0 . The Lie algebra a0 is a maximal abelian

subalgebra for po, so any representation v in A is one dimensional and corresponds

to a character

V: A --+ RX.

We denote by p the half-sum of positive roots

1

Aa.2 E °A(Ob)+

From [4] chapter 7, section 1, we develop a notion of induced representations. [4]

handles induced representations for semisimple groups, and we extend the notion to

real reductive groups consisting of the real points for semisimple complex groups. To

each pair (, v), if V3 is the underlying space for the irreducible representation in

M and v is in A, we associate an induced representation for G

IndAN(6 0 V 1)

defined as follows. If

W: = {F: G -* Vcontinuous I F(xman) = e-(v'+P)I°ga6(m)-lF(x)},

we provide W with the L2 norm over K:

F112
= IF(k) 12.

The underlying space for Indi AN(6 0 V' 0 1) is the completion W of W under the

L2 norm, so W is dense in W. We may define an action of G on W via continuous
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extension of the action

gF(x) = F(g-1 x)

on W. We refer to

{IndGAN(6 ® V'0 1) a CfM, v E A}

as the principal series representations for G. (In the expression Ind AN(60V '0 1), 1

refers to the trivial representation of N.) Clearly, for any F in W, the restriction FIK

completely (letermines F. Also, since G = KMAN, the representations Ind AN(6 0

v' 0 1) correspond one-to-one with the representations IndGAN( ( 0/' 0 1)IK This

observation allows us to study principal series representations using theory concerning

representations of compact groups. For the real split reductive group of type A, the

maximal compact subgroup K is connected. For types Bn and Dn, the subgroup K is

not connected. According to [5] 7.33, M meets every component of K. We denote the

identity component of K by Ke and we consider the closed subgroup M n Ke of Ke.

Since Ml meets every component of K, we can write any element of K as kern for some

ke in Ke and some m in M. As such, the restriction FIKe completely determines F for

any F in W. Furthermore, G = KeMAN, so the representations IndiAN(6 0 i ® 1)

correspond one-to-one with the representations IndGAN(S6v' 1)/Ke. Our attentions

restrict further to the study of representations over compact connected groups.

The theory of representations over compact groups allows for its own notion of

induced representations. We use the description provided in [1] chapter 3, section 6.

If M n Ke in K, is any closed subgroup of the compact connected group K~, and if

(5 is a representation for M n Ke with underlying space V 6, we define Ind/4Ke (a) as

follows. We set

W: 

{F: K - Vcontinuous I F(km) = (m)-'F(k) for k C K, and m M n K},
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and we endow W with an action of Ke via

kF(x) = F(k-'x) for k E Ke.

Evidently,

IndGAN(6 0 v' 1)IKe = Ind'Ke (6).

Theorem 2.11 (Frobenius Reciprocity) If 6 is an M 9 Ke module and At is a Ke

module, there is a canonical isomorphism

HomKe (, IndS Ke 6) - HmMnKe( MnKo, 6)

Proof [1] 6.2 proves this theorem for general compact groups K, with closed subgroups

M n Ke. * If we consider an irreducible Ke module and an irreducible

M n Ke module 6, then 2.11 tells us the multiplicity of A in Ind -K 6 is exactly the

multiplicity of 6 in AIMnKe

With this structure theory in mind, studying the branching law over M n Ke for

irreducible representations of Ke becomes a meaningful project. Any information

shedding light on this branching law sheds light on the decomposing restrictions of

principal series representations for real reductive groups into irreducible representa-

tions.

3 The Split Real Group of Type An

Eventually, we will comment on principal series representations for every split real

classical group through studying these representations for the split real group of type

A,. As usual, we define GL(n, R) to be the set of n by n matrices with nonzero
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determinant, and with entries in R while we define the group SL(n, R) to be

SL(n, R) = {g E M(n, R) detg 1}.

As the differential of the determinant morphism det: GL(n, R) -- GL(n, R) is trace,

we see SL(nr, R) has Lie algebra s[(n, R) where

s[(n,R) = {X E M(n,R) I trX = O}.

The algebra s(n, R) has as a spanning set

(2)

where the entries for the basis vectors in the ith and jth rows and columns take the

form

i j
Xij i ,

j 

i i j
Yij= , and Hij= i 1 0 ,

I .1 o i 0 -14

and all other entries take the value 0.

We know s[(n, R) is semisimple, hence this algebra has a nondegenerate Killing

form

B(X, Y) = tr(adX ad Y).

Considering the involution 0 on s(n, R) given by taking the negative transpose of

each element, we wish to see this involution is a Cartan involution for B. We know

B is symmetric because tr(xy) = tr(yx) for any endomorphisms x and y of a finite-

f Xjj, Yjj, Hij I i < J < n I
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dimensional vector space. Certainly, 0 respects multiplication, as

0[X, Y] = - t I[x, ] = -[y, tX] = [-x,-] = [x y] [OX, Y].

For any automorphism 0 of an arbitrary semisimple, finite-dimensional Lie algebra g

over C or R, we note

[qX,Y] = [X, 0-1Y] = (adX)0-Y

for any X and Y in g ([5] 1.118) As a result, the arbitrary automorphism holds the

Killing form Bg for g invariant:

Bg(OX, OY) = tr(ad(OX) ad(OY))

= tr(O(adX)0-10(adY)0-1 )

= tr(ad X ad Y)

= B(X, Y).

([5] 1.119) If we define the inner product (,): s[(n, II) -* R given by (X,Y) =

tr(XtY), we notice

((ad Y)X,Z) = (X, (ad(tY)) z).

Indeed, the equations

t[ty, Z] = - t[Z, t y] = _[, tZ] and

tr(X,-[Y tZ]) =tr(-[X, Y], tZ)= tr([Y,X], tZ)

hold, so we conclude

tr([Y, X], t ) = tr(X, t[ty, Z]).
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As a result, we see

ad(tY) t(ad Y)

Clearly, s[(n, R) has a decomposition

s[(n, R) = to o

where to is the +1 and po is the -1 eigenspace for 0. In fact, if X is in s[(n, R), we

can write X as a sum of unique elements from to and po in the following manner:

1 1
X = (X - tX) + (X + tX).

2 2

Now the form (,) on s(n, R) has the property

(X, X) = -B(X, OX) = B(X, tX)

= tr((adX)(ad tX)) = tr((adX)( t adX)) > 0.

([5] p.355) Since (,) is positive definite, B is positive definite on po and negative

definite on to. By [5] 6.31, the analytic subgroup K of SL(n, R) having to as its Lie

algebra is compact, and the mapping K x po - SL(n, R) given by (k, X) ~- k exp X

is a diffeomorphism. As SL(n, R) is semisimple and connected, Ad(SL(n, R)) =

Int(go) c Int(g). We have shown (SL(n, R), K, 0, B) satisfies Definition 2.5.

From our definition for 0, we know

to = {X c g[(n,IR) X + tX = 0, and trX = 0}.

Hence, to = o(n, R). The analytic subgroup of SL(n, R) having to as its Lie algebra
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is

K = SO(n,R) = {g C GL(n,R) gtg = 1, and detg = 1}.

The group K is connected, so K = Ke. We examine the maximal abelian subalgebra

[O for s[(n, R) spanned by the elements Hij 1 < i < j < n}. Clearly, [0 =

s[(n, R) n D(n, R) where D(n, R) denotes the diagonal matrices in g[(n, R). The

diagonal entries in the elements of o have only one restriction, namely, the sum of

these entries must equal 0. The Cartan subgroup H of SL(n, R) having o as its Lie

algebra has the defining property

H = {g c D(n,R) I f gi = }
I<i<n

where gi is the i t
h diagonal entry of g. The group H is an n - 1- dimensional split

torus for SL(n, R). Moreover, stabilizes H where G, the global Cartan involution

for SL(n, R) must act as Og = (t g)-1 by our definition for 0. The group M = H n K

is the group of self-inverse diagonal matrices with determinant 1. Thus, M has the

description

M= {g E D(n,R) gi,i = +1, and | iI = 1}.
1<i<n

Being a finite (hence compact) group, M has an easily manageable set of irre-

ducible representations M. Since M is abelian, any (complex) irreducible representa-

tion V has dimension 1. We suppose the representation V has character Xv: M C.

Now Xv(m) = tr(lm) where im is the endomorphism of V given by the action of m in

M. Every element of M is self inverse, so Xv(m) = +1 for any m in M. In particular,

Xv(m) is a real number for any m in M, so any real irreducible representation for

M has dimension 1. There exist only finitely many such characters for M, hence, up

to isomorphism, there exist only finitely many irreducible representations. For any
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subset S of 1, 2, .. , n}, we define an irreducible character Xs for M by

Xs(9) = 1 ii
iES

Lemma 3.1 Every homomorphism X: M ±1 is isomorphic to Xs for some subset

S of{ , 2,.. , n

Proof For n = 1, the statement is obvious. We proceed by induction. For any j

with 1 < j < n, we define mi to be the element of M with -1 in the jth and

j + 1' t diagonal entries and 1 in all other diagonal entries. Then {m I 1 < j < n}

generate M. (Clearly the set of all elements of M with exactly two entries equal to

-1 generates all of M. If m' 3 is such an element of M with ith and jth diagonal

entries equal to -1 where i < j, we see mi = mim i+l ..... m-1.) If M(n- 1) is

the subgroup of M with n, n t h entries equal to 1, then, by induction, there exists a

subset S' of {1, 2,. . . , n - 1} such that XIM(n-1) = Xs'. If X(mn-1) = -1, then let

if n-1 S',

S'U n otherwise.

If x(mn- ) = 1, then let

S'Un ifn-1 S',S= {
S' otherwise.

The character Xs agrees with X on a generating set for M, so the two homomophisms

must agree on all of M. U

In fact, we can describe completely M. We use the notation [i/j] for i and j in Z

to denote the integer closest to i/j with absolute value less than or equal to i/j. To
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indicate the cardinality of a set S, we write S. We define the set Fn as follows:

Fn' = {S C { ,2,...,n} ISI < [n- 1/2]}

U {S C {1, 2,...,n} I ISI = n/2, and 1 e S}.

Theorem 3.2 The irreducible characters

{Xs I S e Fn}.

represent each of the isomorphism classes of representations in M.

Proof By Lemma 3.1, we know every irreducible character for M is Xs for some subset

S of {1, 2,..., n}. We know M C SL(n, R), so, for each m in M and each choice for

S, we have

11 m = m
jEs iESc

where S is the complement of S in {1, 2, . ., n}. As such, we conclude Xs = Xsc

for any subset S. Taking complements, we find any irreducible character X for M is

Xs for some subset S in the set F. It remains to see Xs # X' if S h S' and each of

S and S' are elements of the set Fn. Clearly, there exists an integer j with < j < n

such that j is neither an element of S nor an element of S'. Also, the symmetric

difference S G S' of S and S' must contain an integer i with 1 < i < n. Swapping

the roles of S and S' if necessary, we suppose i is an element of S but not an element

of S'. Using notation from the previous lemma, we consider the element mi' of M.

The equations Xs(mi j ) = -1 and Xs,(m', j ) = 1 both hold, so Xs Xs'. ·

In much of the sequel, we will examine irreducible representations of SO(n, R),

attempting to decompose such representations into sums of irreducible representations

Xs for M. (Here, we see representations of SO(n, R) as representations of M via
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inclusion: M -* SO(n, R).) The following result will prove useful. If p is any

permutation on n elements, we define the n x n permutation matrix gp corresponding

to p as the result of permuting the rows of the identity matrix via p. If p is an even

permutation, the permutation matrix corresponding to p has determinant 1 whereas

the permutation matrix corresponding to an odd permutation has determinant -1.

Theorem 3.3 If S and S' are two elements of the set Fn having the same cardinality,

then the multiplicity of Xs in 6 1M is equal to the multiplicity of Xs' in 1IM for any

irreducible representation 6 of SO(n, R).

Proof We consider S S'. Choosing some bijection between S n (S e S') and

S'n(SeS'), we define the permutation ti of the set {1, 2, . . ., n} to be the transposition

of i and X(i). The permutation p given by

p= H ti
ieSn(SeS')

maps S to S'.

First we suppose p is an even permutation, so gp is an element of SO(n, R). if Vs

is the underlying space for a copy of Xs in 61M, we wish to see gp-1Vs is a copy of

Xs'. We choose some v in Vs. By the definition of gp, conjugation of any element m

of M by gp permutes the diagonal entries of m via the permutation p. We know g v

generates a copy of Xs* for some element S* of Fn. The equations

(gpTmgP ;)V- (gpm)(gP v)

-p (Xs (m)) (g; IV)

= (s*(m))P(g; v)

= (Xs*(m))v
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certainly hold. For any m in M, if Xs,(m) = , then (gpmgpl)v = v because the

permutation p maps S to S'. We conclude S* = S'.

Furthermore, if Vs, . . , VS are the underlying spaces for linearly independent

copies of Xs in 6 1M, then gp 1 VS, . . , gp1Vrs are underlying spaces for linearly inde-

pendent copies of Xs. We get an injective map A from the set of copies of Xs in M

to the set of copies of Xs' 6M. Reversing the roles of S and S' in the arguments above

yields an injective map in the reverse direction, so A is a bijection.

We now suppose p is an odd permutaton. Then gp is not an element of SO(n, R),

but
-1

1

9P= 9gp

is an element of SO(n, R). It is easy to see conjugation of any element m in M by

jp permutes the diagonal entries of m via the premutation p, so we may apply the

arguments above replacing gp with p. M

4 An Inductive Method to Determine Branching

From SO(n,I R) to M

Using highest weight theory and a thorough understanding of the branching law from

so(n, C) to so(n- 1, C), it is possible to determine theoretically the branching law

for SO(n, R) over M.

To begin this section, we establish some conventions regarding the root system

for so(n, C). These conventions come verbatim from [5] chapter II, section 1. For

n = 2k + 1, we choose a maximal abelian subalgebra b to be the algebra of matrices
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H such that;

/ ih,

0J

0

-ih2

ih2

0J

ihk)

0J

0

-ihk
0
vI

(3)

For n = 2k, we choose to be the algebra of matrices H such that

/
0Oih
-ih1

ih,

O0

ih2)

0J

0

-ih2

0

-ihk

ihk

0 I

(4)

In both cases, hj takes an arbitrary value in C for each j such that 1 < j < k. Taking

either maximal torus H described above, we make the following definitions:

o0: ={HE bhj E Rfor1 <j <k},and

ej: = the element of H* such that ej(H) = hj for 1 < j < k.

[

\

r
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Furthermore, for n = 2k + 1, we define

A: = ±ej ± ej I < i < j k} U el 1 k,

whereas for n = 2k, we define

A: = {±ei ± ej l i < j < k}.

We let a in b* be ±ej i ej for i and j such that 1 < i < j < k, and we define each

entry of E, to be 0 except for the entries with indices among the ith and jth pairs of

indicies. (Those entries in either of the 2i- 1 th, 2 ith, 2j - 1th, or 2 jth columns and in

either of the 2i - 1 th, 2 ith, 2j- th, or 2 jth rows.) The remaining sixteen entries take

values according to the following equation:

i j

E= i t X,)
j V_ txak 0 

where

Xei-ej = ( i ) Xei+ej--- (i i1)
i) a(i -)

X-ei+ej = , and X__e =.
i z -~~~~1

(5)

If n = 2k + 1, we also consider = e1 for 1 such that 1 < < k. With a as

described, we let each entry of Es, equal 0 with the exception of the two entries in

the nth row and the 21- s t or 2 1 th column and the two entries in the nt h column and

the 21 - Is t or 21th row. These four entries take values as described by the following
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equations:

21- 1

21-1 0
Eel =

21 0

2k+ 1 -1

21- 1

21-1 ( 
21- I -

2 k-1 0

2k+1 I1

21 2k + 1

0 1
, and

0 -i

i 0

21 2k + 1

0 1

- i

-i 0

For each choice of a in A, the matrix E, spans a space of weight ca for the adjoint

action of j on so(n, C). In particular, each a in A is a root. Moreover,

so(n, C) = [ fECE CE~,

so A describes the full set of roots for n = 2k + 1 and for n = 2k. In accordance with

the theory of abstract root systems, we choose sets of positive roots within the sets

of roots. For n = 2k + 1, we define

A+: = {ei ± ej 1 < i < j < k} U {e 1 < <k}, (7)

and for n = 2k, we define

A + : = {ei ± ej I < < j < k}. (8)

We briefly discuss integral forms for a compact connected Lie group G with max-

(6)
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imal torus H. Writing C go for the Lie algebras of H C G, we refer to the

complexifications of these lie algebras as C g. We write A to denote the root

system A(g, b), and we refer to one particular choice of positive roots as A+ . For

complex Cartan subalgebra of a reductive Lie algebra , we suppose g has root

system A with respect to , and we select a set A+ of positive roots. If the compact

connected Lie group G has go as its Lie algebra, and if the complexification of go is

9, we formulate the subsequent definitions. An element A of b* in the subspace of b*

spanned by A is dominant if (A, a) > 0 for each a in A+ . Here, the pairing (,) takes

its definition from the identity

(a,) 2 (a,f)
(/3,/3)

for any and 3 in A where (,) is the given positive definite symmetric bilinear

form on the space spanned by A. The form A is algebraically integral if (A, a) is an

integer for each a in A. If there exists a multiplicative character x of H such that

&X(expX) = e(X) for each X in %0, the form A is analytically integral. According to

[5] 4.58, a form is analytically integral if and only if whenever exp(X) = for some

X in , we have A(X) = 27ria for some a in Z. Any analytically integral form is, in

particular, algebraically integral by [5] 4.59.

The following points come from [5] p.254. Being compact, G is a reductive group,

and we get a root decomposition for g of the form given by Equation 1. Now Ad(H)

acts by orthogonal transformations on g0 with respect to the symmetric bilinear form

B in Definition 2.5. Extending B to a Hermitian inner product on g, and extending

Ad(H) complex linearly to , we see Ad H is a commuting family of unitary oper-

ators, hence simultaneously diagonalizable. Since Ad: H Aut([o) has differential

ad: 0o - End(bo), we see the weight space decomposition for g agrees with the diag-

onalization of Ad H. Thus, each root space for is also a root space for H, and for
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each root c, we get a multiplicative character S of H such that

Ad(X)(Y) = (exp X)(Y) = ea(X)(Y)

for each X in b0 and each Y in g,.

Algebraically integral, dominant forms in * are in one-to-one correspondence with

irreducible, finite dimensional representations of g, where we associate to any alge-

braically integral form A the unique irreducible representation of highest weight A.

([3] section 21) If we start with a finite-dimensional irreducible representation for

G, we get a finite-dimensional irreducible representation for g0 by differentiating .

We can extend 0 to g complex linearly. The result is a finite-dimensional irreducible

representation of a reductive complex Lie algebra corresponding to some dominant

algebraically integral form A in b*. Since this representation comes from a representa-

tion <D of G, we know the weight A is actually analytically integral. On the other hand,

if we start with any finite-dimensional irreducible representation for g corresponding

to an algebraically integral form, we can restrict to a representation for g0 . As long

as this algebraically integral form is analytically integral for G, [5] 5.110 proves there

exists a finite-dimensional, irreducible representation of G with differential q90.

These processes establish a one-to-one correspondence between analytically integral

dominant forms in and finite-dimensional irreducible representations for G.

Returning to the language we have established to describe SO(n, R), we wish to

identify all possible analytically integral forms in . The matrix-( ih)Y =
-Z'h 
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exponentiates to

cos(ih) sin(ih)

- sin(ih) cos(ih)

so exp Y = 1 if and only if h = 2il for some in Z. We see X in b exponentiates

to if and only if for each j such that 1 < j < k, we have hj = 2wil for some in Z

where the complex numbers hi,..., hk define X as described in Equations 3 and 4.

Choosing some arbitrary form ael + ... + akek in * where aj is complex for each j

with 1 < j < k, we see

A(X) = alhl + 'akhk.

If X in exponentiates to 1, we see A(X) = 27ril for some in Z if and only if a is

in Z for each j with 1 < j < k. Hence, the set of analytically integral weights for

SO(n, R) is

{ale +. + akek ai E Z for I < i < k}.

Determining which of these analytically integral forms satisfies the definition of

dominance proves easier still. We need only test whether a form A satisfies (A, o) > 0

for each a in A +, hence it suffices to test whether (A, a) > 0 for each a in A+ using

the positive definite, symmetric form (, ). Referring to Equations 7 and 8, we see an

analytically integral form A = a1 el + + akek is dominant if

a > > ak > 0 for n = 2k + 1, or if (9)

al >.. > akl > akj for n= 2k. (10)
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We realize the embedding Ln1 SO(n- 1, R) -) SO(n, IR) via the mapping

0

A
A~

0

0 .. 0 1

When no confusion will result, we drop the subscript and write for Ln-1 For any

irreducible representation 4D of SO(n, R), we can ask for an understanding of the

decomposition of bI so(n,R into irreducible representations for SO(n- 1, R). This

branching law has a relatively simple and complete description.

Theorem 4.1 (Murnaghan) For n = 2k + 1, the irreducible, finite-dimensional rep-

resentation of SO(n, R) with highest weight a1el + .* +akek decomposes under restric-

tion to SO(n-1, R) into a sum of of representations with highest weight clel+- +ckek

such that

al > C1 > a2 > C2 > ... > ak-1 > Ck-1 > ak > kl, (11)

each such representation having multiplicity one in the decomposition.

For n = 2k, the representation with highest weight ale1 + ... + akek decomposes

into a sum of representations with hightest weight ce 1 + · + Ck-lek-l such that

al > cl > a2 > 2 >_ ..-- > ak- > Ck- > ak, (12)

each such representation having multiplicity one in the decomposition.

Proof A proof based on Kostant's multiplicity formula exists in [5] pp.5 81 -5 8 4 . K

We now consider the irreducible character Xn,S of M(SO(n)), the Langlands sub-

group of SO(n, R), corresponding to the subset S of {1, 2,... , n}. By our choice for
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the embedding : SO(n- 1, R) -* SO(n, R), we see

Xn,SlM(SO(n-1)) =-- Xn-l,S\{n } (13)

If F is any reductive algebraic group and E is any closed subgroup of F, we refer

to the multiplicity of an irreducible representation N, of E in the restriction of an

irreducible representation /i of F to the subgroup E by m(r,, ). We consider the

closed subgroup tL(SO(n- 1, R)) C SO(n, IR). For any analytically integral dominant

form A corresponding to an irreducible representation /x of SO(n, R), we define Ax

to be the set of analytically integral dominant forms ?y such that m(/A, /A) - 0

where /py is the irreducible representation of SO(n- 1, R) corresponding to the form

7y. Theorem 4.1 describes Ax entirely for any analytically integral dominant form A,

and, for any in Ax, we know m(p/,,/x) = 1.

If /t(n)x is the irreducible representation for SO(n, R) with highest weight A, the

ruminations in section 2 motivate our attempting to ascertain the value m(Xn,s, AA)

for each character Xn,S of M(SO(n)). To finish this section, we give an inductive

process to ascertain these very multiplicities. The base case for such an inductive

process arising from the case n = 1 is trivial since the group SO(1, R) is trivial. For

any algebraic group G, we refer to the category of representations for G as Rep(G).

Lemma 4.2 The equation

E m(Xn- 1 ,S,' A) = m(X,, PA) + m(Xn,(SU{n})) A) (14)
7yAL

holds for any subset S of {1,2,..., n-1}.
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Proof If each map in the diagram

Rep SO(n, R) > Rep SO(n - 1, R)

1 1
RepM(SO(n)) ) Rep M(SO(n -1))

represents restriction, then the diagram commutes by the definition of the restriction

morphism. As such, we may calculate m(Xn_ ,,,/x) either to be

*E m(p, [1A) m(X 1,- /t)
-yEAA\

or to be

XnS with SC{1,2,...,n}X,,s with SC{ 1,2,.n}

**

Yet m(t,,, A) = 1 for each -y in AA, so the quantity * is

Em(Xn-,~,) ).
YEAx

By Equation 13, we know

Xn, [M(SO(n-1)) = Xn-i,S = Xn,(SU{n})IM(SO(n-1))

Using Equation 13 together with Theorem 3.2, we conclude Xn, and Xn,(gU{n}) are

the only characters of M(SO(n)) up to isomorphism with restriction to M(SO(n- 1)

equal to X-l, Hence m(X:_l,, Xn,S) is nonzero if and only if Xn,S = n or

Xn,S = Xn,(Ufn}), in which case, m(Xnl,, Xn,S) = 1. The quantity ** is

M(Xn Sr H PA) + m(X,(,U{nf}), [LA)

rn(X.,S, A - M(X,-I,,�7 XnS)-
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U

For the following lemma, we suppose k = n/2 and A = alel +... + akek is the

highest weight for some irreducible representation of SO(n, IR).

Lemma 4.3 If n is even and if m(Xs, 1) is nonzero, then ISI has the same parity as

al + * + ak.

Proof Since n is even, the scalar matrix m- 1 with all diagonal entries equal to -1 is an

element of M(SO(n)). Moreover, m-1 is a central element. We choose some highest

weight vector v in V' for the representation 4. Then v generates in the sense that

any vector for the representation 1 takes the form c(gv) for some scalar c and some

element g in SO(n, R). We consider the action of m_1 on v. The dominant weight A

is an analytic integral form, so there exists a character x of the maximal torus H in

SO(n, R) such that ,x(exp X) = e(X) for any X in Do. We define M_1 in bo by letting

hj = 7r for each I < j < k. Then exp(M_1) ml. We see A(M_1) = al + + ak.

Hence, according to the discussion preceeding this proof,

m_1 v = (A(mr-1))v = (_1)(a1+'+ak)v.

If we let = (-1 )(al+ ' "+ak), we see

m1-(c(gv)) = c(g(m-lv)) = c(c(gv))

for any scalar c and any element g in SO(n, IR). Hence, viewing 4)(m_1 ) as an element

of GL(V'), we interpret 41(ml) as the diagonal matrix with each diagonal entry

equal to e. By Theorem 3.2, each irreducible subrepresentation of 41IM has character

Xs for some subset S of {1, 2,.. ., k}. Choosing S such that Xs is the character for

some such subrepresentation with underlying space Vs c V', we denote the trace of
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(mi) restricted to Vs by trs(m_1 ). Then

Xs(m-i) = trs(m-l) = ,e.

As Xs(m-1) is exactly (-1)lsl, we see SI has the same parity as al +.. + ak. ·

We have broached all the information necessary to prove the existence of an in-

ductive method for the branching law from SO(n, R) to M.

Proposition 4.4 For any n in N and any analytically integral dominant form A

corresponding to an irreducible representation /A for SO(n, R), Equation 14 allows

us to determine m(Xn,s, A,) for any subset S of {1,2,..., n} provided we already

know m(Xn_: L, w/) for any subset S of {1, 2,.. , n- 1} and any analytically integral

dominant form y corresponding to an irreducible representation ,u for SO(n- 1, R).

Proof By Theorem 3.2, it suffices to show Equation 14 determines m(Xn,s, lx) for

each S in Fn, where we recall

Fn: = {S c {1, 2,..., n} IS < n - 1 / 2 ]}

U {S c {1, 2,...,n} IS = n/2, and 1 e S}.

Furthermore, by Theorem 3.3, we need only determine m(Xn,s, A) when S = Si for

Si = {1,2,...,i} and for i such that 0 < i < n/2]. Using Theorem 4.1, we may

determine completely the set AA, so, by our inductive hypothesis, we may assume we

know the value of the left-hand side of Equation 14 for any subset S of { 1, 2, . ., n-1}.

We split the proof into two cases. First, we suppose n = 2k. We write A =



42

ale1 + ... + akek. For any i such that 1 < i < k, Lemma 4.3 allows us to see

m(xnSi_, 1x) = 0, and

m(Xn,(silU{n)), )) = E m(Xn-l,Si-1, A'Y)

if the parity of i - 1 does not match the parity of al + . + ak. If the parity of i - 1

matches the parity of al + -- ak,

In(Xn,sil, x)= S m(Xn-lSil, tY), and
'YEA,\

m(xn,(s,_ 1u{n}), HA) = 0.

Using Theorem 3.3 again, we see

m(Xn,(si-U{n}) [ xA) = m(Xn'ssi [H)-

Hence, we can determine m(Xn,s, p,\) for any i such that 0 < i < k.

Now, we suppose n = 2k + 1. Theorem 3.2 tells us

Xn,SkU{n} = Xn,(skU{n})C,

and (Sk U {n}) C has cardinality k, as does Sk. By Theorem 3.3, we surmise

mT(Xn,sk, IlX) = m(Xn,(sku{fn}, x)

As a result
Z-eAA m(Xn-l,sk, V)

2
= m(Xn,Sk, PA)

We induct on the quantity k- i. For k- i = 0, we have determined m(Xn,s, x). For
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i such that 0 < i < k, Equation 14 tells us

mT(Xn-lSi,S, P) = m(Xn,Si, A) + m(Xn,(Siu{n}), A). *
-yGA\

Turning once again to Theorem 3.3, we see

m(Xn,(siu.{n}), A) = m(Xn,Si+, A))

and our inductive hypothesis allows us to assume we have determined the value

m(X,s,+,, [,L). As such, Equation * allows us to determine m(Xn,si, A). X

Practically speaking, this inductive understanding of the branching law from

SO(n, R) to M makes actually calculating multiplicities a daunting task. Relying on

this algorithm means computing multiplicities for the branching law from SO(j, R)

to M for each j such that 1 < j < n. We would like to establish a more manageable

algorithm for computing these multiplicities. Tableaux will serve as a tool to help us

meet that objective.

5 Young Tableaux and SO(n, R)

Supposing 3 is some subset of Z2, we will refer to a tableau with shape d as a map

Q:/3 - Z. Young tableaux have visual representations gotten by considering as

a lattice in the plane R2 and dividing the plane into unit boxes. To each (i, j) in

the subset 3, we associate the unit box in R2 having (i, j) in the lower right-hand

corner. We then fill the unit box corresponding to each point (i, j) in with the
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integer Q(i, j). For instance, if

/= {(i, -1) C Z2 < i < 4}

U{(i,-2) EZ2 1 i < 3}

U {(i,-3) E 22 1 < i < 1},

we may define a tableau with shape by allowing the following diagram to illustrate

the value of Q(i, j) for any point (i, j) in /3:

1 23
2 33 (15)

3

We assign to each n-tuple of natural numbers, a = (al, .. , an), a subset /a of 2

by letting /3a be the set of pairs (i,-j) with 1 < j < n and with 0 < i < aj. To

simplify notation, we will say a tableau with shape /3a has shape a.

A partition in n parts of a natural number m is an n-tuple of natural numbers

(a,.... an) such that

al +a 2 +-.. +an = m, and al >a 2 >... >_ an.

(We allow 0 to be a natural number.) We refer to ai for 1 < i < n as a part of a. If a

tableau has shape a for some partition a, we refer to the tableau as a Young tableau.

A Young tableau Q is semistandard if 1 < Q(i, j) < q for some natural number q, and

if Q(i, j) < Q(i, j-1) for each (i, j) in /a with (i, j-1) in /3a while Q(i, j) < Q(i+ 1, j)

for each (i, j) in /3a with (i + 1, j) in /3a. We refer to q as the bound for Q. Justified by

this definition, we say a semistandard Young tableau increases weakly along its rows

and increases strictly down its columns. If a tableau Q has shape a for some partition



45

a with n parts, we say the jth row of Q has length aj. We refer to m, the number of

nonzero parts of a and, hence, the number of rows in Q, as the depth of Q. Tableau

15 is semistandard. The following two tableau are not semistandard. The tableau on

the left-hand side does not increase weakly along its first row, and the tableau on the

right-hand side does not increase strictly along its second and third columns:

1 2 32 1 213 3
2 3 223
3 3

Furthermore, the length of the second row for the tableau on the left-hand side is 2

whereas the length of the second row for the tableau on the right-hand side is 3. Each

tableau has depth 3.

As a point of reference, we illustrate the use of Young-diagramatic methods in

studying irreducible, finite-dimensional representations of U(n) where

U(n) = {g E GL(n, C) I g* = 1}.

This compact (hence reductive) group has as its Lie algebra

uo(n) = {X Ce (n, C) IX + X* = O}.

The complexification,

u(n) = uo(n) E iuo(n),

is simply g[(n, C). In order to study finite-dimensional representations of U(n), the

commentary in section 4 allows for us to restrict our attention to analytically integral

dominant weights for U(n) with respect to the root system for g[(n, C) formed after
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choosing some Cartan subalgebra. For a Cartan subalgebra , we choose

= {X E g[(n, C) I X is diagonal}.

We define ei in b* for each i such that 1 < i < n by

hi

ei

hn

= hi.

Furthermore, we define the set

A: = {ei-ej i j, < i < n,,andl < j < n}.

If we choose Eij to be the matrix in gr(n, C) with 1 in the i, jth entry and 0 in all

other entries, we see Eij spans a space in g[(n, C) with weight ei - ej for the adjoint

action adg b. Furthermore,

g = b o ( CEij,
isi

so A is the set of roots for g with respect to our choice of Cartan subalgebra. We

choose a notion of positivity for our root system by setting

A+ : = {ei-ej 1 i < i < n}.

With these definitions in place, calculations similar to those in section 4 show the

analytically integral dominant weights for U(n) are exactly

{ale 1+ *-* -- + anen I (al,..., an) Zn, and a > a2 > .. > an}. (16)
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We realize the embedding tn-' U(n- 1) ~- U(n) via the mapping

0

A
A0

0

O0 --- 0 1/

When no confusion will result, we drop the subscript and write for n-1

Theorem 5.1 (Weyl) The irreducible, finite-dimensional representation for U(n)

with highest weight alel +. +anen for (al,. .. , an) in Zn decomposes under restriction

to U(n - 1) into a sum of representations with highest weight Cle + ... + Cn-len-1

such that

al > C > a2 > > an-1 > Cn-1 > an, (17)

each such representation having multiplicity one in the decomposition.

Proof A proof exists in [5] pp. 577-580. U

The structure of semistandard Young tableaux relates directly to valuable infor-

mation regarding the irreducible, finite-dimensional representations of U(n). To begin

to realize this relationship, we reproduce the following well-known result. We let a be

a partition with n parts (a,,... an) for the natural number al +-* +an (so (a,..., an)

is in Nn.

Theorem 5.2 The number of semistandard Young tableaux with shape a and bound

n is the dimension of the irreducible representation of U(n) with highest weight alel +

.. + aen.

Proof We prove this result by induction, the case n = being trivial. If Q is

a semistandard Young tableau having shape a, then we define the Young tableau
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7r(Qa) to be the tableau given by removing every occurence of the number n in the

visual representation of Qa. If Qa(i, j) = n, then, since semistandard Young tableaux

increase strictly down their columns, we know (i, j- 1) is not an element of /3a Also,

we know Qa(i, -n) = n if (i,-n) is an element of /3a. Hence, 7r(Qa) has depth at

most n- 1, and, for each j such that 1 < j < n- 1, we see the th row of 7r(Qa)

has length cj for some cj such that aj > cj > aj+. Since Qa increases weakly along

its rows and strictly down its columns, 7r(Qa) increases weakly along its rows and

strictly along its columns as well. We have shown the mapping Qa 7r(Qa) gives a

well-defined map 7r from the set of semistandard Young tableaux having shape a to

the set of semistandard Young tableaux having shape c for some partition

c = (Cl,..., cn-1) such that al > cl > a2 > .. > an-1 > Cn- > an *

We now denote 7r(Qa) by Qc The map 7r is clearly injective: if Qa and Q both map

to Qc then Qa(ij) = Qa(i,j) if Qa(ij) < n and (ij) is an element of Oa. This

equation shows Qa(i,j) = Q(i,j) for each (i,j) in Oa since both Qa and Qa have

the same shape a and map to the same tableau under r. Any semistandard Young

tableau Qc with shape c for some partition c satisfying Equation * has a completion

to a semistandard Young tableau Qa of shape a by allowing Qa(i, j) = n for each (i, j)

such that-1 > j >-(n - 1) and cj < i < aj or j =-n and 0 <i < an. Then

7(Qa) = Qc=

and we have shown 7r is surjective.

By our inductive hypothesis, the number of semistandard Young tableaux having

shape c is the dimension of the irreducible representation for U(n- 1) with highest

weight cle1 + ... + Cn-len-1. Since the map r is bijective, we know the number of
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semistandard Young tableaux having shape a is the sum of the dimensions of the

representations for U(n- 1) with highest weight cel +' + cn-len-1 such that the

n-tuple of coefficients c = (cl, . .., Cn) satisfies Equation *. Finally, by Theorem 5.1,

we see the sum of the dimensions of the representations for U(n- 1) with highest

weight clel-f- +cn-1en-1 such that the n-tuple of coefficients c = (c1, . . , cn) satisfies

Equation * is exactly the dimension of the representation for U(n) with highest weight

ale + ' - + anen. ·

The proof of Theorem 5.2 establishes a correlation between the irreducible, finite-

dimensional representations of U(n) and semistandard Young tableaux. The semis-

tandard Young tableaux make plain the relationship between the dimensions of ir-

reducible representations of U(n) and the dimensions of irreducible representations

of U(n- 1). We wish to find an analagous picture for irreducible, finite-dimensional

representations of SO(n, R), a structure encoding information about these represen-

tations in such a way as to tie this information to corresponding facts about repre-

sentations of SO(n - 1, R).

Definition 5.3 A semistandard Young tableau Q is admissible for SO(n, R) if the

following conditions hold:

(i) Q is a semistandard Young tableau having shape a for some partition a =

(al,.... an), and

(ii) Q(i,-j) 2 for each j such that 1 < j < n and each i such that 1 i < aj.

We consider two semistandard Young tableaux:

2

5

6

2

5

6

3

6

7

34
and

2

5

6

7

2

5

6

3

6

7

3l4I
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The tableau on the left-hand side is admissible with shape (5, 3, 3, 0, 0, 0, 0). The

tableau on the right-hand side is admissible for no shape as its 4 th row contains a

number smaller than 8. In fact, it is easy to see an admissible semistandard Young

tableau must have a shape a = (al, . . , an) such that aj = 0 for all j > [n/2].

If a is a partition (a 1,..., an) such that aj = 0 for j > [n/2], we refer to the set

of admissible semistandard Young tableaux having shape a as Ta. We define

pa- (Ta X e1{, E [n/2 ei = ±1 for 1 < i < [n/2]}) / 

where

(Qa (l, * * [n/2])) (Qa (E1 7 [E2)( ,'' (4 n%21))

if and only if Qa = Q and ej = Ejfor each j such that 1 < j < [n/2] and Qa(1,-j) =

2j. In other words, ia is the set of admissible semistandard Young tableau having

shape a decorated with a choice of parity ej for each row j with 1 < j < [n/2] such

that every occurence of the number 2j on row j has parity ej. Henceforth, we identify

the pair (Qa, (l, .. . , e[n/2])) with its equivalence class in "a when context allows for

no confusion. We refer to elements of the set a as decorated admissible semistandard

Young tableaux. If Oa (Qa (l . . e[n/2])) is an element of X"a, we refer to Qa as

the admissible semistandard Young tableau associated to Qa.

If we let Q be the admissible semistandard Young tableau

2

5

6

2

5

6

3

6

7

314
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then Q is associated to four decorated tableaux, namely

--2
5

K6

2

5

6

2

5

6

-2

5

6

3

6

7

3

6

7

IL�Z

1111
, and

-2 -2 3 4 

5 5 6

-6 -6 7

2

5

-6

2

5

-6

3

6

7

3l[ l

The pair (Q, (1, -1,1)) is equivalent to the pair (Q, (1, 1,1)).

We select an irreducible, finite-dimensional representation tAx for SO(n, R) with

highest weight A = a1e1 + -.. a[n/ 2]e[n/2 ], and we let a be the partition all,. .. [anj)

such that a = 0 for each j such that j > [n/2]. We define a map rn following

exactly the steps used to define the map 7r from Theorem 5.2 such that rn(Qa) is a

semistandard Young tableau for any Qa in Ja. In fact, rn(Qa) is admissible. This

tableau has Property ii from Definition 5.3 because Qa has Property ii. Since aj = 0

for each j > [n/2], the proof of Theorem 5.2 shows 7Tn(Qa) has shape c = (c1 , ... Cn-1)

where

al > c1 > a2 > ... > C[n/2 ]-1 > a[n/2] > C[n/2], and

cj = 0 for each j > [n-1/2].

(18)

(19)

Equation 19 comes from the equality [n- 1/2] = [n/2] if n is odd and, if n is even,

from the fact Qa(i, -j) = 2j if j = n/2 and 1 < i < aj. Whenever possible, we drop

the subscript and write 7r for %.

_. .



52

We make the following definition: for even n,

=A: {(Qa, (E1,.. ,E6[n/2])) E Ia I [n/2]la[n/2] = a[n/2])

and for odd n, we have the equality "A = a. We will refer to the set 'x as the set

of decorated admissible tableaux of type A.

Theorem 5.4 The dimension of the irreducible representation A is I'A[.

Proof Just as we relied on Theorem 5.1 for giving structure to our proof of Theorem

5.2, we now rely on Theorem 4.1. We proceed by induction, the case n = 1 being

trivial. Given an equivalence class

Q = (Qa, (61, 6[n/2]))

in 'x, we define Tn(Qa) to be (n(Qa), (61,.. , e[n-1/2])). As with the map 7rn, we

drop the subscript from tn and write simply whenever doing so will not cause

confusion. According to the arguments immediately preceeding this theorem, T(Qa)

is an element of IFc for some partition c = (l,. . ., cn-l) satisfying Equationl8 with

cj = 0 for eachj such that j > n/2 when n is even. When n is odd, t(Qa) is an

element of by for some partition c = (c,...,cn-l) satisfying Equations 18 and 19.

In fact, Tr(Qa) is an element of I, where 7y is the highest weight

Clel + + C[n-1/2]e[n-1/2]

for SO(n- 1, R) when n is even and where -y is the highest weight

lel + - .+ C[n-1/2]-le[n-1/2]-1 + 6[n-1/2](C[n-1/2]e[n-1/2])
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for SO(n- 1, R) when n is odd. From Theorem 4.1, we see each such integral form

fy has the property m(,,, x) = 1. Thus, we get a well-defined map

t: 'J X U-yEA -y

where, as in section 4, Ax is the set of analytically integral forms -y for SO(n- 1, R)

such that m(,,, bx) 0. Given two elements,

(Qa, (6l..., e[n/2 ])) and ('a, (l v e[n/2]))

of x, we suppose ft maps each element to the same element of IF, for some integral

form . Then 7r(Qa) = 7r(Q'a), and, since r is injective, Qa = Q'a We know [n/2] =

6[n/2] = E where ela[n/2] = a[n/ 2]. Furthermore, for j such that 1 < j < [n/2], if

ej ~ e'j, we may assume Qa(1,-j) > 2j. Hence, ft is injective. We let Aa be the set

of partitions c = (, . . , cn_1) such that

al > Cl > a2 >'' > Cn-l > an.

From the proof of Theorem 5.2, we know

7r: a {4c c Aa}

is surjective. By Theorem 4.1, we know

{(Qc (l, , [n1/2])) I C C Aa} = {'y y E AA }

Hence, r is surjective.

By our inductive hypothesis, we know [ = Dim py for each integral form -y of



54

SO(n- 1, R). By Theorem 4.1,

Dim/A = E Dim /t.
-yEA4\

Since r is a bijection, we derive the equation

= E

The theorem follows readily. U

We make use of the map 7r from Theorem 5.4 throughout the remainder of the

paper.

6 Decorated Admissible Tableaux and Branching

Over M

In section 5, we established a connection between the irreducible representations

of SO(n, R) having finite dimension and the set of decorated admissible tableaux.

Namely, we showed the representation with highest weight A has dimension equal to

the cardinality of the set of decorated admissible tableaux of type A. In proving this

result, we saw each decorated admissible tableau of type A corresponds to a subspace

of the representation with highest weight A, itself an irreducible representation under

restriction to SO(n - 1, R) via the embedding : SO(n - 1, R) - SO(n, R) defined in

section 4. Applied recursively to Theorem 4.1, this reasoning allows us to associate to

each decorated admissible tableau of type A a unique line within the representation

of SO(n, R), itself an irreducible representation under restriction to SO(2, R) via the
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embedding
£2 ~3SO(2, R) S0(3 ,R) . SO(n, R).

We may realize these lines somewhat more explicitly as follows. As in section 4, we

denote by [tx the irreducible representation corresponding to A, and we denote by

m(/,,, / A) the multiplicity of the SO(n- 1, R)-representation A- in the restriction of

ux to SO(n - 1, R). In the interest of developing notation for this section, we select

a highest weight vn(A) for A/z. To each decorated admissible tableau 0 of type A,

we apply the map n to arrive at a decorated admissible tableau of type _n-j for

some highest weight yn-1 of SO(n- 1,R) such that m(/yTn l, [A) = 1. We select

a highest weight vector vn-l(yN-1) for the irreducible SO(n- 1, R)-representation

/tYn-1l C f. We repeat this process, applying n-1 to ifQ and replacing A with yn-1

to arrive at a highest weight Yn-2 for SO(n- 2, R) and to select a highest weight

vector Vn-2(N-1, Yn-2) of highest weight N-2 for pn- 2 . Recursively, we continue in

this manner until we have arrived at a highest weight 72 and selected a highest weight

vector V2(Yn-1,. . . 7y2) of highest weight '72 for n-2. We denote V2(n-l1,-.. 7,2) by

v2 (Q). The vector v2(Q) is unique only up to multiplication by a scalar. As in

section 4, we use the symbol Ax to refer to the set of analytically integral forms 7y for

SO(n- 1, R) such that m(py, x) # 0. According to Theorem 4.1,

PAI SO(n-1,R) = E)-yEAA Py -

Theorem 5.4 proves v2(Q) # v2(Qf') if Q 5~ Q' and

[ALsO(2,R) = (DE4A(CV2(Q) (20)

In this section, we determine exactly how the decomposition in Equation 20 allows us

to find the multiplicities of irreducible representations for M in irreducible represen-
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tations for SO(n, IR) without first having to determine the multiplicities of irreducible

representations for M in irreducible representations for SO(n- 1, R).

Ultimately, we want to provide a decomposition

/IAIM = 1<i<Dim1i:CV(i)

and to understand the action of M on v(i) for each i such that 1 < i < Dim tA. We

cannot assume Cv2 (Q) is a representation of M for every element Q in ",. Nonethe-

less, we adopt as a provisional goal our understanding the manner in which M acts

on the vectors in set

L= {v 2 (Q) I C A}

via the representation of M on Ax obtained by restriction. In order to gain a first

foothold on a path toward this understanding, we delve into the details of the recursion

defining the vectors in £.

Supposing n = 2k + 1, we recall our notation from section 4, Equations 5 and

6, for the root vectors Ea in so(n, C) where a takes values from among the positive

roots

A+(50(n, ¢), )= {ei ejelI1 • i < j < k, and 1 < 1 < k}

chosen with respect to our designation [ of a Cartan subalgebra for so(n, C). To

simplify notation, we refer to A+(0o(n, C) as A+ , just as in section 4. We impose an

ordering on Af+: = {E0 I a c A +} such that

Eek <Ek < <eke < Eei±ej

for any i and j such that 1 < i < j < k. The set J+ comprises an ordered basis for n+,

the Lie subalgebra of so(n, C) spanned by the set Jf+ of positive root vectors. Next,
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we take the union B of a basis for b and the set of negative root vectors. We extend

K+ to an ordered basis A+ U B for so(n, C) by choosing an arbitrary ordering for B

and stipulating Ea < b for any b in B and any a in A+ . This ordering determines a

Poincar6-Birkhoff- Witt or PB W basis for the universal enveloping algebra t(so0 (n, C)

of so(n, C). We let b be the Borel subalgebra with basis B. Now we specify a decorated

admissible tableau, Q of type A, and we define vn-l(yn-1) as above. We write

A =Al el + + kek, and

Yn-1 = ('Yn-l)lel + -+ (n-l)kek,

and we recall n = 2k + 1.

Lemma 6.1 For some k-tuple of natural numbers (ak, ak-1 .. , al) and some scalar

d, We have

Ek Ek - · ... Eel a.-l( yn-1) = dvn(A)

for some scalar d and where (Aj - (yn-x)j) = aj for each j such that 1 < j < k.

Proof Since vn(A) is a highest weight for /A, we know E 1E 2 ... Epvn-l(Yn-) = cvn(A)

for some natural number p, some scalar C, and some E1 , E2, ... Ep such that Ei is an

element of Af+ for each i such that I < i < p. By the Poincar6-Birkhoff-Witt theorem

([3] p.92), we know il(so(n, C)) is a free n+-module with basis

{I1} U U{bb 2 ... bj I bi E B for < i < j and bl < b2 < < bj}.
jeNj>l

Hence, we can express E1E2 . Ep as

m

E c(i)Eil Ei2 Eip(,)
i=1
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for some natural number m and an m-tuple of scalars (c(1),... , c(m)) where for

1 < i < m and 1 < j < p(i) the expression Eij, is an element of + and where

Eij < Eij+1 if j < p(i). We have determined

m

c(i)Eil Ei2 . . .Eip(i,)Vn-l (yn-l) = cvn(A). (21)
i=1

For any i and j such that 1 < i < j < k, we know Eei+ej is the image of a positive

root vector for so(n- 1, C) under the the differential of t mapping so(n- 1, C) to

so(n, C), and n-1(yn-1) is a highest weight for the irreducible representation /un-l

of so(n - 1, C). Hence, in the sum from Equation21, we may exclude all terms such

that Eip(i = Eet+ej for some i and j such that 1 < i < j < k. According to our

ordering for NV+ we may express the sum of the remaining terms as

m

c(i)Eea kEeai k- 1 . . Eai,
i=1

where, for each i such that 1 < i < m, we know aij is a natural number for each j

with < j < k. Furthermore,

Eeaki, k ai, k - 1
.. E a 1 i, )

has weght yn-1 + ai,kek + ai,k-lek-1 ' + ai,lel, so we may remove from Equation21

any term such that n-1 + ai,kek + ai,k-lek-1 '' + ai,lel is not A. We arrive at the

equation

C,(i)(Eak k- 1 ... Ee ial' (n-Q1)) = n(A)

for some i such that 1 < i < m and some nonzero scalar c(i). Letting d = c/c(i) and

defining aij = aj for each j with 1 < j < k gives the desired result. U

We must venture one step further into the recursive process used to define the
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vectors in L. Considering again the terminology in Equation 5, and recalling n =

2k + 1 is odd, we enumerate the positive roots of so(n - 1, C):

zx+(so(n - 1, C), ~) = {ei + ej 1 < i < j < k}.

We choose a somewhat less intuitive basis for the Lie subalgebra n+(so(n- 1)) of

so(n- 1, C) than the basis A+, defining

A+(so(n- 1)): = {Eeiej 11 < i < j < k}

U {Eei+ek + Eei-ek < i < k}

U { Eei+ek- Eei-ek I 1 < i < k}.

We order A+ (so(n- 1)) such that

Eei+ek - Eei-ek < Eej+ek + Eej-ek < Eei±ep

for any i, j, l, and p such that 1 < i, j, 1, p < k and 1 < p, while (Eei+ek - Eei-ek) <

(Eeil+ek -Eeil-ek) for any i with 1 < i < k. Next, we define B to be the union

of a basis for and the negative root vectors. We extend JAV+(so(n- 1)) to a basis

Af+ (so(n - 1)) U B(so(n - 1)) for so(n- 1, C) and impose an ordering on this basis

such that v - b for any v in f+(so(n - 1)) and any b in B(so(n - 1)). This ordering

determines a PBW basis for the universal enveloping algebra it(so(n- 1, C)). We let

b(so(n - 1)) be the Borel subalgebra of so(n - 1, C).

Lemma 6.2 We have

(Eek-l+ek - Eek-l-ek )ak- (Eek-2+ek - Eek-2-ek )ak- 2

... (Eel+ek - Eel-ek)al Vn-2('n-1, Yn-2) = dvn-l(yn-1 )
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for some scalar d and where (n-1)j -(Yn-2)j) = aj for each j such that 1 < j < k-1.

Proof The reasoning used to prove this lemma follows more or less precisely the

reasonning used to prove Lemma 6.1. Since vn-l(n-1) is a highest weight for muvnl,

we know

E1 E2. En-2(n-2, Yn-l) = cn-l(n-l)

for some natural number p, some scalar c, and some E1 , E2 ,... Ep such that Ei is an

element of M+(so(n - 1)) for each i such that 1 < i < p. By the Poincar6-Birkhoff-

Witt theorem ([31 p.92), we know £I(5o(n- 1, C) is a free n+(5so(n- 1))-module with

basis

{1} U{blb 2 ... bj bi E for 1 < i < j and bl < b2 < ... b}.
jEN
j>l

Hence, we can express E1 E2... Ep as

m

c(i)Eaij' l Eai2 a Eaip() (22)"i, "-%-'2 i",p(i)
i=1

for some natural number m and an m-tuple of scalars (c(1),...,c(m)) where for

1 < i < m and j < p(i) the expression Ej is an element of Af+ and where

Eij Ei,j+l if j p(i). Here, aij is some natural number for each i and j with

1 i < m and 1 < j k- 1. For i and j with 1 i j < k, the positive root vector

Eeiej for so(n- 1, C) is the image of a positive root vector for so(n- 3, C) under

the differential of n-1 0 tn-2 mapping so(n- 3, C) to 5o(n- 1, C). Somewhat less

obviously, for i such that 1 < i < k, the vector Eei+ek + Eeiek in Af+ is the image of

a vector in the span of the positive root spaces for so(n - 2, C) under the differential

of mapping so(n- 2, C) to so(n- 1, C). In fact, we see Eei+ek + Eei-ek is the image

of 2 Eei(so(n- 2) where Ee(5o(n- 2) is the positive root vector for so(n- 2, C)

corresponding to the root ei as described in Equation6. Since Vn-2(Yn-1, Yn-2) is a
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highest weight vector for so(n- 2, C), we know

Eei±ej Vn-2('Yn-1 'n-2) = Eei+ek + Eei-ekVn-2(yn-1, Yn-2) = 0

for i and j such that 1 < i < j < k. As such, in the sum from Expression 22, we may

exclude any term such that Eip(i) > (Eel+ek -Eel-ek). We have shown

m

'i:=i_ 
C(i)(Eek l+ek - Eek--ek)aik- (Eek_2+ek - Eek-2-ek)aik-2..

'' (Eel+ek - Eel-ek)ail Vn-2('n-1, 'Yn-2) = dvn-l(yn-1).

For any i such that 1 < i <n m, we see

(Eekl+ek - Eek--ek) (Eek-2+ek Eek-2-ek)aik-2

· (Eel+ek - Eel-ek)ail Vn-2(1Yn-1, _Yn-2)

is the sum of weight vectors, each one having weight

k-1

Yn-2 + E aij(ei) + z(ek)
j=l

for some integer z. For only one k - 1-tuple (a , a l) does-~~~ ak_2 ... ) does

k-1

%Yn-2 + E aj(ej) + z(ek) = Yn-I
j=l

for some integer z. Hence, we may further exclude from the sum in Expression 22

any term such that ai,j a'j for each j such that 1 < j < k- 1. There exists exaclty
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one i with 1 < i < m such that

C(i)(Eekl+ek - Eek--ek)aik-1 (Eek_2+ek Eek-2-ek)a k-

'' (Eel+ek -Eel-ek)ail bn-2('Yn-1, Yn-2) = Cvn-l(?Yn-1).

Setting a = aij for each j with 1 < j < k- 1, and letting c/c(i) = d, we arrive at

the desired result. U

Lemmas 6.1 and 6.2 give us a description of the vectors in L precise enough to

make calculating the action of M on these vectors a tractable problem for odd n.

When n is even, we will rely on Lemma 4.3. We will use these lemmas within an

inductive framework built to accomodate either parity for n. From section 3, we recall

our notation mi for the element of M having jth and j + 1 st diagonal elements equal to

-1 and all other diagonal elements equal to 1. According to the arguments in Lemma

3.1, {mJ 1 I j < - 1} generates M, so we focus on the action of elements from

this set in determining the action of M on each of the elements in L. If n = 2, we

understand completely the action of ml on vn(A) = v2(Q), and C = {vn(A)}. By our

definition for v2 (Q), we notice v2(Q) = cv2 (Q) for some scalar c where r is the map

defined in Theorem 5.4 and tQ is a decorated semistandard Young tableau admissible

for SO(n- 1, R). We may, of course, choose v2 (rQ) such that v2(Q) = v2 (fr(Q)). For

j such that 1 < j < n- 1, the element mi of M = M(SO(n)) C SO(n,R) is the

image of an element mo(n-l) in M(SO(n- 1)) C SO(n- 1, R) under the map t.

The action of mSO(nl) on the vector v2(rQ) in the representation PanllM(SO(n-))

is exactly the action of mi on the vector v2(Q) in the representation IIlM whenever

1 < j < n - 1. Hence, in the context of any inductive proof, the burden will shift to

discovering the action of mn- l1 on each of the vectors in £.



63

With an eye toward making use of Lemmas 6.1 and 6.2, we calculate

m (Ek ), (23)

n-1 (Eak- 1 ... Eal)v, and (24)

T n-((Eek-l+ek - Eek--ek)ak- (Eek-2+ek E- ek-2-ek)ak -2 (25)

(Eel+ek -Eel-ek)al)V

where v is any vector in a representation for SO(n, R). If E is any element of

so(n, C) and v is some vector in an SO(n, R)-representation, we know mn - 1 . (Ev) =

(Ad(mn- 1 )E)mn-lv. We know Ad(mn- 1 )E is conjugation of the matrix E by the

matrix m n - 1. Conjugation of Eek by Mn-1 is -E-ek, and, for j such that 1 < j k,

conjugation of Eej by mn-1 is -Eej. For any j such that 1 < j < k- 1, conjugation

of Eej+ek by mn - 1 is Eej-ek and conjugation of Eej-ek by mn- l is Eej+ek. We see

Equation23 is

((-1)akE-ek)m n-lv, (26)

while Equation24 is

((-1)ak- +1+al Eek ... Ee )mn-lv. (27)

Also, Equation24 is

(_l)ak-l+ak-l+'+a1 ((Eek+ek - E ak-1 (Eek2+ek - Eek 2ek) ak- 2 . . (28)

_J ek- 1-ekJ ek-2+ek ek2-ek

' ' (Eel+ek - Eel-ek)al )m n-l v.

For the most part, describing the action of mn-1 reduces to performing computa-

tions in so(3, C) and SO(3, IR). In order to study representations of SO(3, R), we turn

to the simply connected covering group for SO(3, R) and study explicit descriptions
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of representations for that covering group. The Lie algebra s[(2, C) has basis

(1 2)
, and Z = :3

o -y

and these basis elements obey the relations

[Z, X] = 2X, [Z, Y] = -2Y, and [X, Y] = Z.

We determine a map : s[(2, C) --, so(3,, C) by defining on basis vectors for [(2, C)

as follows:

X H Ee,Y H -E-e, and Z i- H: = 

0

-2i
0

2i 0

0 0 
Of 0)

Clearly, Eel, Eei, and H form a basis for so(3, C), and a quick calculation shows

[Eel , -E-e,] = H, [Y, Eel] = 2Eel, and [Y, -E-el] = 2Eel,

so we see s$(2, C) is isomorphic to s0(3, C). Now SL(2, C) is simply connected, hence

a covering group for S0(3, C), and there exists a unique surjective homomorphism of

Lie groups F such that the diagram

,r(2, C)

exp 

5o(3, C)

exp

SL(2, C) r SO(3, C)

0 1X =
0 0
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commutes. We construct F explicitly. First, we choose a new basis

0 i 0 1) dz (i 0 X Y ~~~~and Z'
i-1 0 0 i

for s[(2, C), and we let (,) be the symmetric inner product on s[(2, C) given by

(A, B) = tr(AB). With respect to this inner product, the basis X', Y', and Z' is

orthogonal, and each basis vector has length -2. The adjoint action of SL(2, C) on

s[(2, C) is orthogonal with respect to this inner product since conjugation leaves trace

invariant. We get a map

F': SL(2, C) 0(3, C) c Aut(s[(2, C),

determined completely by the adjoint action of SL(2, C) on the basis vectors X', Y',

and Z'. Since SL(2, C) is connected, r'(SL(2, C)) is connected, and 1SL(2,C) - 1O(3,),

so F'(SL(2, C)) c SO(3, C). In writing F'(g) as a matrix for any g in SL(2, C), we

need to order X', Y', and Z' in such a way as to ensure agreement between the Cartan

subalgebra [1(s[(2)) for s[(2, C) spanned by Z' and our choice for a Cartan subalgebra

I of s0 (3, C). We notice

Ad(exp Z')Z' = Z', Ad(exp Z')X' = (-e2i (X' + iY')) + ( e-2i(X'- iY')), and

(29)

1 e_2 i X (Y i y iX')).Ad(exp Z')Y = (e 2(Y/ X')) + + (e 2 i
2 2

Hence, we determine the matrix form of F'(g) for any g in SL(2, C) such that, if

Ad(g)(X') = a1X' + b1Y' + c1Z', Ad(g)(Y') = a2X' + b2Y' + c2Z', and Ad(g)(Z') =
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a3X' + b3Y' + c3Z', then

al b c1

F'(g)= a 2 b2 2 .
a 3 b3 c 3

By Equations 29, F' maps exp Z' to the torus for SO 0(3, C) corresponding to our

choice for . By calculating F' on exp X', exp Y', and exp Z', we see F' is the surjec-

tive map F. The irreducible representations of SO(3, R) correspond exactly to the

dominant analytically integral forms of 50so(3, C). Since SL(2, C) is simply connected,

any dominant weight for 5[(2, C) is analytically integral for SL(2, C). Every irre-

ducible representation for SO0(3, C) descends from a representation of SL(2, C) via

the map F. (This fact follows from the arguments in [5] 5.110.) We denote by In

the n by n diagonal matrix with each diagonal entry equal to 1. The kernel of F is

{f1SL(2,C)}, o SO(3, C) is the subset of SL(2, C) consisting of all representations

such that -12 acts as the identity. We take a description of SL(2, C) from [1] p.

117. We define Va to be the space of homogeneous polynomials of degree a in two

variables, z and 2. The space Va has basis

{Xj ( )zla iz 0 < < a},

and SL(2, C) acts on any polynomial P(z1, z 2) in Va by

tb c b cA
. P(z1, Z2) = P(bzl + dz2, CZ1 + ez2) for E SL(2, C).

d e d e

Any irreducible representation for SL(2, C) is, in particular, a representation for

5[(2, C). We calculate the action of the basis X, Y, and Z for 5[(2, C) on Va as in [1]
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10.7 to find

Zxj = (a- 2j)xj, Xxj = (a- j + 1)xjl, and Yxj -(j + 1)xj+1. (30)

We see x0 is a highest weight of weight a. Clearly, Va is isomorphic to the repre-

sentation of highest weight a/2el for so(3, C). For any j such that 0 j < a, we

know

-I2 (*)Zl Jjz = (.)(-1)azla-jz .
'2 1 2 i 

Hence, the representation Va descends to SO(3, C) if and only if a is even. The

element m 2 of M(SO(3, C)) has preimage{+ ( } under F because1 J

Ad( ) )X' = X', Ad( ( ) )Y' =-Y', and Ad( ( ) )Z = -Z.
I 0 -1 0 -1 0

Since S0(3, R), the group of real points in SO0(3, C), is compact, we know SO0(3, R)

is exactly the set of restrictions of SO0(3, C) to SO(3, R).

For the following two theorems, we choose A to be an analytically integral form

for SO(3,R'), and by M we mean M(SO(3,R)). We fix some Q in Ix, and we get

V2(Q) = V2(,2) in L.

Theorem 6.3 If 2 = 0 and A = a(el) for some natural number a, then

m2(v2()) = ()a(2())

Proof We work with the [(2, C) representation V2a isomorphic to the representation

of 5o(3, C) of highest weight a(el). Choosing x0 = 3(A), we find v2(Q) is some scalar

multiple c of the basis vector Xa in V2a with weight 0. Now m2x 0 = (-z 2)2 a = 
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x 2a. Using the action of s[(2, C) on V2a given by Equations 30, we find

a

E aXm = EaelXO = (i)Xa, SO

E (al M23 (A) = EaV 3()'el - el y3 ()) (31)

From Lemma 6.1 we know we can choose the scalar c such that v3 (A) = Eval 2 (Q)

The following equation holds:

Eam2v3(A) = Eeam2 E eal 2(Q)

= E(l (1)aEe m2 v2 (Q)(by Equation26)
-el ,..

()
= (1)aEealEaelm212(0)

E aElEel v2(Q)(by Equation3 1).

We want to show

Eae Ea v2 (Q) = EelE a ev 2(Q)-e el-el 'Q) (**)

Considering the expression

E-lelEE2el . . Ee2ael /2 (Q), (32)

where, for each i such that 1 < i < 2a, we have i = ±1 and i = 1 for exactly half

of the natural numbers i with 1 < i < 2a, we attempt to find the highest value for j
such that ej = -1 and j+l = 1. If no such j exists, Expression 32 is Ee Ea e V2 (Q).

I~~~~~~~e -el V Q

Otherwise, Expression 32 is

Elel . . Eej+lelEejel . . .Ee 2 aei V2 (Q)

+EElel . . .[Eejel ) Efj+lel] . . EE2ael V2(Q)-
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We induct on 2a- 1 -j to show the second term in Expression 33 is 0. If j = 2a- 1,

the second term in Expression 33 is 0 since v2 (Q) has weight 0 and [Ejel, EEj+lel] is

in the subspace of s[(2, C) spanned by Z. Otherwise, the second term in Expression

33 is

Eel ." EEj+2e [Eejel ) Eej+lel]EEj+3el .' Ee2ael v2(Q)

"-Seel .. E' - [[EEcjel, Ecj+lel], EEj+2el] Ecj+3el .. EE2aelV2(Q)·

The second term in Expression 33 has weight not equal to 0, so, since Expression 32

has weight 0, the second term in expressioin 33 must be 0. By inductive hypothesis,

the first term in Expression 33 is 0. Hence, the second term in Expression 33 is 0,

and we may freely interchange E,el and Eel+lel in Expression 32 for any I such that

I < I < 2a. Thus, Equation** holds.

To conclude, we combine Equations * and ** to see

(-1)aEea e m2 2(Q) E Eael 2(),

so m2v/2(Q)::= (1)av2(Q), as desired. A

For the next theorem, we specify Q, the admissible semistandard Young tableau

associated to Q = (Q, e), where we use the term "associated" in the sense described

by section 5

Theorem 6.4 If A = a(el) and v2 (Q, e) has weight b(ei) with 1 < b < a, we may

choose V2 (Q., e) and v2 (Q, -e) such that m2V2 (Q, e) = V2 (Q, -e).

Proof As in Theorem 6.3, we choose 3 (A) = x0 , identifying PA with the SL(2, R)

representation V2a. We know m2v3 (A) = xm. Also, by Lemma 6.1, we may choose
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v2 (Q, e) such that v3 (A) = Ea,-bV2(Q, e). Hence, we may use Equation26 to see

(-1)a-bE ebm 2v2 (Q, ) = Xm.

This equation shows the weight of m 2v2(Q, e) is -2b (working even still within the

representation V2a). There exists only one weight space of weight -2b in V2a, and

V2(Q, -e) must have weight -2b, so we can choose m2v2 (Q, ) = 2 ( ,-6). 

Beyond the case n = 3, a complete understanding of the action of M on L proves

somewhat too complicated to pursue all at once. To continue, we narrow our focus to

a small portion of the larger project. For each Q in TA, we consider a subset La C L

defined as

L£: = { 2(Q) E L I Q is associated to Q}.

In addition, we consider a subset MQ C {mj I 1 < j < n} defined as

MO: ={mi IjCQ}, (33)

where j is an element of CQ C { 1, . . , n-1 } if and only if j is even and Q(1, -j/2) = j.

If CQl = 1, then IQ[ = 2. We fix some Q = (Q, l,... , n/2)).

Theorem 6.5 For each j in C,, the element mi in MQ acts on v2 (Q (1,.. , en/2)

according to the equation

mIv 2 (Q' (1, , [n/2]) = -2 (, (61, 6Ej/2-1, -j/2, Ej/2+1,. , 6I [n/2]) 

for some choice of elements in the set Lo.

Proof For n = 2 the statement of the theorem is empty, and for n = 3 the statement

amounts to Theorem 6.4. We suppose Cn is nonempty, as, otherwise, the statement

of the theorem is empty. We prove the result for general n by induction. If j < n- 1,
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our inductive hypothesis shows the preimage of m j under t acts on v2(t(Q)) according

to the equation

m/ v2 (7r ( Q), (1,' -, [n- 1/2])

- V2 ((Q), (1, Ej/2-1, -Ej/2, Ej/2+1, , [n-1/2]) ·

Hence, mi acts on v2 (Q) as desired.

It remains to prove the statement for j = n- 1, in which case n = 2k + 1 is odd.

In this case, we consider the subgroup SO(n -3, R) x SO(3, R) of SO(n, R) where we

identify SO(n-3, IR) with the upper left n-3 by n-3 block diagonal part of SO(n, R)

and SO(3, iR') with the lower right 3 by 3 block diagonal part of SO(n, R). We focus

on the action of the subgroup SO(3, R) of SO(n- 3, R) x SO(3, R) on vn(A) where

we identify SO(3, R) with the image of SO(3, IR) under the inclusion l: SO(3, R) 

SO(n- 3, R) x SO(3, R) given by the mapping g (o(n-3,R), g). We examine the

irreducible SO (3, R)-representation 2x, generated by vn (A). By Lemma 6.1, vn (A) =

Eak ... Ej" Va-l('yn-l). The weight vector E ak 1 ... Ea 1 (-) is a highest weight~k-1 ' E1V-l(?~n-l) is a highest weight

vector for SO(2, R) where we identify SO(2, R) with the image of SO(2, R) under the

usual inclusion . Moreover, since Q(1,-j/2) = j, we know Ek ... EVn-(-l)

has weight b(el) not equal to 0. By Theorem 6.4, the element m 2(SO(3)) of M(SO(3))

maps ...k-l E 1 vnl(yn-l) to a highest weight vector for S0(2, R) of weight -b(e1 ).
M-"k ,( 2 '1,M

Now, m2 (SO)(3)) maps under to the element (1, m 2 (S0(3))) and (1, m 2(S0(3)))

maps to m j under the natural inclusion of SO(n- 3, R) x SO(3, R) in SO(n, R). We

now consider the entirety of the SO(n, R) representation /\. In this representation,

Ek-1...E _ I 1 (yn- 1 ) has weight b (el) +-- - + bk(ek) where bk = b. According to

our understanding of the action of m 2(SO(3)) on ftA, the element mj of M maps

Eak-l .Elvn-l(yn-) to avector of weight bl(el)+-. *+bk-l(ekl)-1)bk(ek) By our
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definition for v2 (Q), and by Lemmas 6.1 and 6.2, we know

Eak-1 ... El(n) = E)ak-1 .. E ak-- 1 'n-- -- 1 ...

'' (Eekl+ek - Eekl-ek) bk -(Eel+ek- Eel-ek)b UV2(Q)

for some U in the universal enveloping algebra of the image of (so(n- 2, C)), the

complexification of the Lie algebra for n-1 0 tn-2(SO(n-2, R)), under the differential

of n-1 0 tLn-2. We know mj acts as the identity on tn-i 0 tn_ 2 (SO(n- 2, R)), so,

combining Equations 27 and 28, we see

m (Eak- .. El n (,) Eak-1 .. E . ..., -1 k -1 

(Eekl+ek - Eek-l-ek)bk-1 ... (Eel+ek - Eelek)bl UmJ-V 2 (Q)

Considering the weight of m (Eak-1 ... E 1l Vn-1(7n-), we know

mj-1v2 (Q, (l,. . , k)) = + 2 (Q (1, .,-k))

Suppose G is a finite abelian group generated by 91, g2 , .. gn where g2 = 1 for

each i such that 1 < i < n. For any subset S of {1, . . , n}, we define gs to be Hies gi.

We consider V, a 2'-dimensional representation of G with basis

/: = {gsv IS C {1,...,n}}

for some in V.

Lemma 6.6 The representation V decomposes into the sum Esc{I,... n}Vs where, if

vs is an element of Vs, we have givS = vs when i is an element of S and givS = -s
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when n is an element of SC.

Proof The representation V is the regular representation of G, so the lemma is a

special case of the Peter-Weyl theorem. We produce a simple proof so as to keep this

section self-contained. We induct on n. If n = 1, we have {v, glv} as a basis of V.

Then {v + giv, v - gjv} is also a basis of V. Moreover, g1(v + giv) = gv + v, and

g1( - g1 v) = gv - v. Hence, v + g1v generates the irreducible representation V0,

and v - g1v generates the irreducible representation V1.

In general, V has {gsv n S} U {gsv n S} as a basis. We consider the

basis 3(n)U LI o(n)' where /3(n): = {gsv + gS\{n}v n (E S} and (n)': = {gsv -

gs\{n}v n S}. If G is the subgroup of C generated by {g,... gn-1}, then consider

the representations V(n) and V(n)' of G generated by /3(n) and (n)' respectively.

For any subset S of {1, . ., n} such that n is an element of S, we let So be the set

So\{n}. Then g 0O(gnV+V) = gSov+gso\{\}.- Similarly, g9(gnV-v) = gSov-g 0 \n}V.

Hence, both V(n) and V(n)' are 2n--dimensional representations of G, and

/3(n) = {g9(gnv + v) C C {1,...n-1}}, whereas

/3(n) = {g(gnz-v)|S c {1 .... n- 1}}.

We may apply our inductive hypothesis to V(n) and V(n)' to show

V(n) = E C {1,... n- 1}V(n)j, and

V(n)'= ® C {1,... n- 1}V(n)s

where giv = v when i is an element of S and 9jV, = - when n is an element of

SC for any v in V(n) U V(n)'s. If we let VsO = V(n)j o and VSo\{n} = V(n)so for any
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subset So of {1,..., n}, the decomposition

V = sC{1 ... n} s

has the desired property. U

Remark 6.7 We suppose Cq C {1,..., n- 1} = {i 1 ,...,il}, and we fix a bijection

0: {1, ... , 21} -+ £ where £ is the set of subsets of CQ. Applying Lemma 6.6 to Theorem

6.5, we can, for each Q in ,A!, find a basis {v(Q)l,... v(A) 21} for the subspace of Ae

spanned by 4q with the following property. For each j and each p such that 1 < j < 1

and 1 < p < 2, we have

mij(Q) = { {lv(Q)p ij E (p),
-v(Q)p otherwise.

Fixing any Q in Ix, we must now consider the action of m j on each vector v2(Q)

where Q is associated to Q and for each j such that j is an element of the complement

Cc of CQ in {1, . . , n - 1}. We start with the even elements of Cc.

Theorem 6.8 If j is an even element of Cq, then

mJV2(0) = (v2(Q))

where c = (-l)al+'a[j+/ 21 for yj+1 -- yj-j = al(ei) +' + a[j+l/2](e[j+l/2])

Proof It suffices to consider the action of mJ(SO(j + 1)) on the weight vector

/2(7Tj+2 0 tj+3 0... 0 n(0))
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in the representation tyv+1 for

an-1 ° n-2 ° ... tj+ (SO(j + 1, R)),

so we may as well assume j = n- 1. We also write n = 2k + 1. As in Theorem 6.5, we

identify SO(3, R) with the image of SO(3, R) under the map l followed by the natural

inclusion of SO(n - 3, R) x SO(3, R) in SO(n, R). We study the irreducible SO(3, R)

representation jtx generated by vn(A). By Lemma 6.1, vn(A) = Ek .. E n-l(-l)

The weight vector Ekak- ... Ealvnl(_n 1) is a highest weight vector for SO(2, R)

where we identify SO(2, R) with the image of SO(2, R) under the usual inclusion .

Since j is an element of Cc, we know Eak-l ... E avl(yx) has weight equal to 0.

By Theorem 6.3,

r2 (S(3)) ( lE a k- l ' 'Saln_l(_?n_l) () ak k'ak- I · a· . · ~~_l()l)(4
m (SC)(3)) E-k1 ... = (1) k-1 ... El 1 ('-Y1). (34)

Now, m2 (SO(3)) maps under to the element (1,m 2 (SO(3))), and (1,m 2 (SO(3)))

maps to m j under the natural inclusion of SO(n- 3, R) x S0(3, R) in SO(n, R). We

consider the entirety of the SO(n, R) representation /,x. By our definition for v2 (Q),

and by Lemmas 6.1 and 6.2, we know

Eak-1 .E. vln_ (Ynl) = Eak- 1. .Eal..
k-1 I- '"-lk-1 ...

.. (Eekl+ek - Eek-1-ek)bk-i ... (Eel+e k - Eelek)b UV2 (Q)

for some U in the universal enveloping algebra of the image of (o(n- 2, C)), the

complexification of the Lie algebra for tn_ 1 0 ln_2(SO(n-2, R)), under the differential

of tn_ 0 n-2. We know mi acts as the identity on tn-1 0 tn_2(SO(n- 2, R)), so,



76

combining Equations 27 and 28, we see

mi(Ekk -1 ' ElVn-l(n-1) = (-l) a k- l+ +al+bk- l+--+blE ak- l ... a... (35)\ -'k . l Y- -1 I3 5

.. (Eekl+ek -Eek-ek) (Eel+ek - Eelek)bl UmJ V2(Q)

Combining Equations 34 and 35, we see

mJv2 (Q) = (_l)ak+'+al+bk-l+...+bl V2(Q)

Clearly, A - Yn-2= bl + al(el) + -... + bk-lak-l(ek-l) + ak(ek). e

By Theorem 6.8, ml acts by a scalar on the space spanned by Lq for any even j

in C'. Combining this observation with remark 6.7, we see the vector v(Q)p for any

p with I < p < 2 spans a representation for Meven, the subgroup of M generated by

{mj I j is even}. We want to show, for each Q in 'xF and each p such that 1 < p < 21,

the vector v(Q)p spans a representation for all of M, and we want eventually to

describe this action completely. We will do so by showing mj acts by a scalar on the

space spanned by LQ for any odd j such that 1 < j < n - 1. For even n, we do

already know the action of one element of M on any vector in ,ux. Namely, we know

the action of -In on any vector in vn(A) by the arguments in Lemma 4.3. The element

-In acts by ±1 as determined by the weight of vn(A): if A = a(el) +. an/2(en/2),

then -Inv = (-1)al++an/2v for any vector v in ,L. We define

C(A): = (-) a l + ' "+ a n/ 2 ,

and we consider any two decorated admissible tableaux and Q' such that Q is

associated to both Q and Q'.

Theorem 6.9 For any odd j with 1 < j < n- 1, the element mj of M acts on v2(Q)
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by e(Q)j where

6(Q)3 = 6tYi+i)(Yj-).

Moreover, for each odd j with 1 < j < n- 1, the element mi acts on v2 (Q') by e(Q)j

as well.

Proof For any odd j such that 1 < j < n- 1, we may calculate the action of ml on

v2(Q) by determining the action of mi(SO(j + 1)) on the weight vector

V2(j+2 tj+3 ... f))

in the representation pI1 j+1 for

Ln- 1 0 n- 2 0 ... 0 tj+l (SO(j + 1, R)),

so we may as well assume j = n- 1. Now,

-In(tn-1 tn-2(-In-2)) = m,

so the first statement follows.

As for the second statement, we compare Yj-, defined with respect to Q, and

Y3-1, defined. with respect to Q'. The weights 7j-1 and Yj-1 can differ only in the sign

of the coefficients for ej-1/2. According to the definitions for e(Yj-) and e(?Y_), we

have

6('Yj-1) =(/_)

The second statement follows. U

Remark 6.10 Theorem 6.9 provides a simple way to calculate the action of m3 on

v2(Q) for ay odd j and any Q in fTx. If j = n - 1, then, for A - Yn-2 = Cl(el) +
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· + cn1/2(en/2), we have

m3(v2(Q) = (l)C+"'cn/2

Likewise, if 1 < j < n- 1, then, for Yj+l- yjl = cl(el) +... + cj+/2(ej+l/2), we have

mJ(V2 (Q) = (- )Cl--"c¢+l /2

We have shown

/AIM 2= ® v(Q)
PAI P

and we have described entirely the action of {mJ 1 j _< n- 1}, hence the action

of M, on each vector v(Q)p with Q in TA and with p such that 1 < p < 2. Using

this information, we now introduce a map n: - Fn where Equation3 defines the

set Fn.

We define n inductively as follows. For n = 2, we have Q - {2} if mlv(Q) =

lIv(Q), and Q - 0 otherwise. For general n, we may assume n-l(Tr) = S where S is

some element of Sn-1 . For even n, if m-v(Q) =-v(Q), and if n- is an element of

S, then we define n such that n (Q) = S. If n- 1 is not an element of 5, we define ~n

such that (n(Q) = SU{n}. On the other hand, if mn-lv(Q) = v(Q), we define n such

that (n(Q) = S U {n} when n - is an element of S and such that n(Q) = S when

n - 1 is not an element of S. Now we suppose n is odd. We define S' to be S U {n}

if S U {n} is an element of Sn. Otherwise, we define S' to be {1, . . ., n} \ S U {n}. If

n- I is an element of C', we define n such that n(Q) = S if m-v(Q) =-v(Q)

and n- 1 is an element of S or if mn-v(Q) = v(Q) and n- 1 is not an element of S.

We define n such that n(Q) = S' if mn-v(Q) = -v(Q) and n- 1 is not an element

of S or if mn-lV(Q) = v(Q) and n- 1 is an element of S. When n is odd and n- 1 is

an element of CQ, we make an arbitrary choice. If Q = (Q, (1,., C[n/2])), we define

n such that n(Q) = S' if [n/2] = -1 and n- 1 is not an element of S or if 6[n/2] = 1
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and n- 1 is an element of S. we define (n such that &n(0) = S if E[n/2] = -1 and

n- 1 is an element of S or if [n/2] = 1 and n- 1 is not an element of S.

Proposition 6.11 The order of the preimage of S under the map n is exactly

m(Xn,s, AL).

Proof We recall the Definition 33 of MQ. For each Q in Tx and for each j in C', we

have shown ,mni acts uniformly on every vector in En. Hence, for any i and q such that

1 < i < q < 21, the MQ-representation spanned by v(Q)i is isomorphic to the MQ-

representation spanned by v(Q)q. We write v(Q, MO) to denote this representation.

If Q i- S, then we conclude Xn,SlM, is isomorphic to v(Q, MQ) from the definition of

&. For any -tuple (h, . . , se) indexed by the elements of CQ where, for each i such

that I < i < 1, we know ei = +l, the following equation holds:

I{p E {1,... , 21} mjv(Q)p = ejv(Q)p for each j E CQ}f = 1.

We know

,n (Q, (l, E[n/2])) S

where v(Q)p spans the M-representation Xn,S and p with 1 < p < 2 is such that

miv(Q)p = jv(Q)p for each j in CQ. There exists only one [n/2]-tuple (, ... , e'/2)

such that Q is associated to the element

( ( , ..., n/2]))

and ej =ej for each j in CQ. The statement of the proposition follows. A

The method given by proposition 6.11 to determine m(Xn,s, A) allows for com-

putation with much less overhead than the method given in section 4, especially for

large n. Although proposition 6.11 does call for induction in determining the action
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of M on a chosen decomposition for x into irreducible representations for M, this

proposition then allows for the calculation of m(Xn,s, ,A) for any S in Fn without

having to resort to induction.

We give a synopsis of the results in this section, focusing on the visual representa-

tion of decorated admissible semistandard Young tableaux. The set Tx corresponds

to a basis

{V2 (0)I E }

for the underlying space of the representation ,\. Using this correspondence, we see

each tableau in 'I as a basis vector. The set C comprises all even natural numbers

2k n- 1 such that the number 2k actually appears in row k of the admissible

semistandard Young tableau Q. The cardinality of CQ is 1, so 1 < [n/2]. According to

Theorem 6.8, if j is an even natural number such that 1 j < n- and such that

the number j does not appear in the j/ 2th row of Q, then mj acts on Q by - q where

q is the quantity of the numbers j + 1 and j in Q. According to Theorem 6.9, if j is an

odd natural number such that 1 j < n- 1, then mi acts on Q by - 1q where q is the

quantity of the numbers ij + 1 and j in Q. On the other hand, by Theorem 6.5, if j

is an element of CQ, then mi maps Q to Qj where every occurrence of ij in row j/2

of Q is :Fj in row j/2 of Q and all other entries are equal. The set LQ comprises each

decorated tableau Q such that taking the absolute values of every number in Q yields

Q. The order of LQ is 21, one element for each choice of sign given to the numbers j

in row j/2 of Q for every j in CQ. We define MQ to be the subgroup of M generated

by {mj I j CQ}. The group MQ has 2 distinct irreducible representations, one for

each choice of the action for mi where j is an element of CQ. (The element mj must

act by ±1.) By the Peter-Weyl theorem, the subspace spanned by LQ has a basis

such that each of the 2 basis vectors spans a unique irreducible Me-representation.
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Since

UQET,VLQ

spans the underlying space for xA, the Peter-Weyl theorem give a basis for this un-

derlying space such that each basis vector spans an irreducible representation for

M. Moreover, we understand completely the action of M on this basis because

{mi 1 j < n- 1 generates M.

This information allows for us to find m(Xn,s, A) for any S in Fn. We express

this information in terms of an algorithm for associating each Q in A with some

subset S in Fn such that the number of decorated tableaux associated to S is exactly

m(Xn,s, A). The algorithm used to associate each Q with some subset S is our map

~n, and Proposition 6.11 proves our map n does in fact map exactly m(Xn,S,/xtA)-

many decorated tableaux to the subset S. To more cleanly express the definition of

the map n, we introduce a map

*.:{1, .,n-1} x -il.

We define *(j,Q) = e where mJ(Q) e(Q) for j in C. For j in C, we define

*(j, Q) = e where = - 1q for q equal to the quantity of the numbers j + and

±j in Q if each occurrence of the number ±j in row j/2 of Q is positive and where

e= -(- 1 q) if each occurrence of the number j in row j/2 of Q is negative. In

terms of tableaux, the map n acts recursively as follows. If n = 2, then ~FA contains

only one element, a tableau having one row such that each entry is equal to 2 or such

that each entry is equal to -2. In this case, 2(Q) = {1} if the number of entries

is odd, while 2 (Q) = 0 if the number of entries is even. For n > 2, we suppose

n_l(1r(Q)) -= S for some element S of F_ 1 . If *(n- 1,Q) = -1 and S contains

In- 1}, then we define S' to be S. If *(n- 1,Q) = -1 and S does not contain
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{n- 1}, then we define S' to be S U {n}. If*(n- 1, ) = I and S contains {n- },

then we define S' to be S U {n}. If *(n - 1, Q) = 1 and S does not contain {n -1},

then we define S' to be S. Either S' is an element of Fn or the complement of S' in

{1, . . ., n} is an element of Fn. If we define S to be the element of Fn equal either to

S' or the complement of S' in {1, ..., n}, then n(Q) = S.

7 Application to Split Real Reductive Groups of

Type Bn and Dn

We have given a neat description of the branching law from K to M for SL(n, R),

the split real group of type An. As far as possible, we would like to use that result to

determine similarly complete descriptions of the branching laws from Ke to M n Ke

for the split real groups of type Bn and Dn. We start by identifying these groups.

We consider the group

SO(n, n)= {g E SL(2n, R) t9n,ng = Inn}

where In,n is the 2n by 2n diagonal matrix with jth diagonal entry equal to for j

such that 1 < j < n and jth diagonal entry equal to -1 for j such that n + 1 < j < 2n.

Differentiating the defining relations for SO(n, n), we see SO(n, n) has Lie algebra

so(n, n) = {X E [(2n, R) 'XInn + InnX = 0}.

Any two quadratic forms over C are equivalent. In particular, I,n is equivalent to

I2n via the transormation tgJn,ng where g is the diagonal 2n by 2n matrix with jth

diagonal entry equal to 1 for j such that 1 < i < n and th diagonal entry equal to i

for j such that n + 1 < j < 2n. We see the complexification of so(n, n) is so(2n, C),
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hence SO(n, n) is a real group of type Dn. We identify a split torus for SO(n, n) by

changing coordinates. We use as a change of basis matrix (1/V2)b where b is the 2n

by 2n matrix with upper left n by n block diagonal submatrix equal to In, with n

by n submatrix formed by each entry (i, j) where i > n + 1 and j < n equal to I,

with n by n submatrix formed by each entry (i, j) where i < n and j > n + 1 equal

to -In, and with lower right n by n block diagonal submatrix equal to In. As usual,

we define

O(p) = {g E M(n,IR) tgg = 1}.

The change of basis matrix (1/V2)b is an element of O(2n). Using the new set of

coordinates defined by (1/\/2)b, we may write

SO(n, n) = {g E SL(2n, R) tgJn,ng = Jn,n}

where Jn,n is the 2n by 2n matrix with n by n submatrix formed by each entry (i, j)

where i > n + 1 and j < n equal to In, with n by n submatrix formed by each entry

(i, j) where i < n and j > n + 1 equal to In, and with all other entries equal to 0.

Written thus, SO(n, n) has a subgroup H consisting of all matrices

/ \
tl

tn

tl -1

t-1
\l I

where t is an element of the group of units IRX in R for each i with 1 < i < n.

Clearly H is an n-dimensional split torus for SO(n, n). This torus is maximal since

,n
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each Cartan subalgebra of so(2n, C) is n-dimensional. For the remainder of our

discussion concerning SO(n, n), we revert to our original set of coordinates. According

to [5] 1.144, SO(n,n) has maximal compact subgroup K = S(O(n) x O(n)) where

S(O(n) x O(n)) is the subgroup of matrices in O(n) x O(n) having determinant equal

to 1. (Here we see O(n) x O(n) as the group of block diagonal matrices with the

upper left n by n block diagonal equal to an element of O(n) and with the lower right

n by n block diagonal equal to an element of O(n).) We know M = K n H consists

of all matrices / \
61

6n

l61\ /~~~~~~~~~~
where, for each i such that 1 < i < n, the number i is ±1.

If we consider any pair (k1, k2) such that k and k2 are elements of O(n), then

(kl, k2) is an element of K if and only if det k1 = det k2 = where = i1. We see K

has two connected components:

{(kl, k2) E O(n) x O(n) I det k = det k2 = 1}, and (36)

{(kl, k2) O(n) x O(n) det k1 =detk 2 =-1}.

Component 36 is the identity component Ke of K. Clearly, Ke is SO(n, Ri) x SO(n, R).

The closed subgroup M n Ke of Ke is simply the image of M(SO(n)) under the

diagonal map 6: SO(n, R) - SO(n, R) x SO(n, R) where M(SO(n)) is the Langlands

subgroup for SO(n). We know M Ke is a subgroup of M(SO(n)) x M(SO(n)). The

map isomorphically identifies M(SO(n)) with M n Ke, and Theorem 3.2 describes

\

X t"' j
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the set M(SO(n)) as {Xn,S S Fn where Fn takes its definition from Equation3.

We can determine a branching law from Ke to M n Ke using proposition 6.11 so long

as we can determine a branching law from M(SO(n)) x M(SO(n)) to M n Ke. For

any subset ' of {1, . . , n} we refer to the complement of S in {1, . . , n} by Sc . We

choose an irreducible representation Xn,S' 0 Xn,S" of M(SO(n)) x M(SO(n)) and an

irreducible representation Xn,S of M n Ke.

Theorem 7.1 We have m(Xn,s, Xn,S' 0 Xn,S") = 1 if and only if S = S' e S" or

S = (S' e S"I)c. Otherwise, m(Xn,S, Xn,S' 0 Xn,S") = 0.

Proof Each irreducible representation for M(SO(n)) x M(SO(n)) has dimension equal

to 1, so (n,S' 0 Xn,S,,) MlnKe is itself irreducible. We need only find the subset S in Fn

such that X,,S = (Xn,S' 0 Xn,S") MnKe- With mr defined as in Lemma 3.1, we consider

the action of (m j , mJ) on some vector (v', v") in (Xn,S' 0 Xn,S") for each j such that

1 < j < n. We have

(m', mj)(v',v") = (J(v'), mJ(v")),

so ( j , mj)(v', v") - (v', v") if

{j,j + 1} U S' = {j,j + 1} or {jj + 1} U S' = 0 and

{j,jI + 1} U S"'={ji or{j,j+ 1} U S"={j + .

Also, (m s , rdJ)(v', v") = -l(v', v") if

{jj + 1} U S= {j} or {j,j + 1} U S = {j + 1} and

{j,j + 1} U S" = {j +j + 1} or {j,j + 1} US" = 0.

Otherwise, (m, miJ)(v', v") = (v', v"). Fom this description of the action of M n Ke

on (Xn,S' 0) Xn,SI,), we know Xn,S = (Xn,S' 0 Xn,S")IMnKe if and only if S = S' e S" or
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S = (S'.e S)c .

We now choose an irreducible representation Xn,S for M n Ke and an irreducible

representation A 0 ,, .

Proposition 7.2 The branching law from Ke to M n Ke for the split real reductive

group of type Dn determines m(Xn,S, lx' 0 A") to be

E] [m(xn,S', A')m(Xn,S", [PA"))

S'I,S/ EFn
S' eS"=S

+m(Xn,S", A')m(Xn,S', [PA")]

[m(Xn,S', [Llambda' )m(Xn,S', ]lambda"))
S',S"eF.

(s'es.)c=s

+m(Xn,S", Lambda' )m(Xn,S', lambda" ))]

Proof This result follows directly from proposition 6.11 and Theorem 7.1. 0

A branching law for the split real reductive group of type Bn develops along very

similar lines. We focus on the group

SO(n + 1, n) {g E SL(2n + 1, R) I tgIn+lng = In+l,n}

where In+l,n is the 2n + 1 by 2n + 1 diagonal matrix with ith diagonal entry equal to

1 for i such that 1 < i < n + 1 and with ith diagonal entry equal to -1 for i such

that n + 2 < i < 2n + 1. Differentiating the defining relations for SO(n + 1, n), we

see SO(n + 1, n) has Lie algebra

zo(n + 1, n) = {X E st(2n + 1, R) I tXIn+ln + In+l,nX = O}.

Any two quadratic forms over C are equivalent. In particular, In,n,1 is equivalent to
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I2n+1 via the transormation tgIn,ng where g is the diagonal 2n + 1 by 2n + 1 matrix

with jth diagonal entry equal to 1 for j such that < i < n + 1 and with jth diagonal

entry equal to i for j such that n + 2 j < 2n + 1. We see the complexification

of so(n + 1, n) is so(2n + 1, C), hence SO(n + 1, n) is a real group of type Bn. We

identify a split torus for SO(n + 1, n) by changing coordinates. We use as a change

of basis matrix where the lower right 2n by 2n block diagonal submatrix of b is

(1/v2)b, where the 1st diagonal entry of b is 1, and where all other entries of b are

equal to 0. The change of basis matrix b is an element of O(2n + 1). Using the new

set of coordinates defined by b, we may write

SO(n, n + 1)= {g E SL(2n, R) I t9Jl,n,ng = Jl,n,n

where Jl,n,n is the 2n + 1 by 2n + 1 matrix with lower right 2n by 2n block diagonal

submatrix equal to Jn,n, with 1st diagonal entry equal to 1, and with all other entries

equal to 0. Written thus, SO(n + 1, n) has a subgroup H consisting of all matrices

The group SO(n, n + 1) has a subgroup H consisting of all matrices

/ \
'1

tl

tn

t~-

t-1
-nv

n

where t is an element of the group of units Rx in I for each i with 1 < i < n.

Clearly H is an n-dimensional split torus for SO(n + 1, n). This torus is maximal
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since each Cartan subalgebra of so(2n + 1, C) is n-dimensional. For the remainder of

our discussion concerning SO(n + 1, n), we revert to our original set of coordinates.

According to [5] 1.144, SO(n + 1, n) has maximal compact subgroup

K = S(O(n + 1) x O(n))

where S(O(n + 1) x O(n)) is the subgroup of matrices in O(n + 1) x O(n) having

determinant equal to 1. (Here we see O(n + 1) x O(n) as the group of block diagonal

matrices with the upper left n + 1 by n + 1 block diagonal equal to an element of

O(n+ 1) and with the lower right n by n block diagonal equal to an element of O(n).)

We know M = K n H consists of all matrices

En

e1

where, for each i such that 1 < i < n, the number 1i is ±1.

If we consider any pair (k1, k2) such that k is an element of O(n + 1) and k2 is

an element of O(n), then (k1, k2) is an element of K if and only if det k1 = det k2 = e

where e = ±1. We see K has two connected components:

{(kl, k2) E O(n + 1) O(n) detk 1 = detk 2 = 1}, and

{(kl, k2) E O(n + 1) x O(n) l detk1 = detk 2 = -1}.

(37)
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Component 37 is the identity component Ke of K. Clearly, Ke is SO(n + 1, R) x

SO(n, R). The closed subgroup M n Ke of Ke is simply the image of M(SO(n))

under the diagonal map 6: SO(n, Ri) -- SO(n, R) x SO(n, R) followed by the map

': SO(2n, 1R) -+ SO(2n + 1, R) where M(SO(n)) is the Langlands subgroup for

SO(n) and where ' is the embedding

1 0 ... O 0

0
Ax · A

A

\0

We know M n K, is a subgroup of M(SO(n)) x M(SO(n)) C M(SO(n + 1)) x

M(SO(n)). The map isomorphically identifies M(SO(n)) with M n Ke, and Theo-

rem 3.2 describes the set M(SO(n)) as {Xn,S IS E Fn} where Fn takes its definition

from Equation 3.

We can (letermine a branching law from Ke to M n Ke using proposition 6.11, so

long as we can determine a branching law from M(SO(n+ 1)) x M(SO(n)) to MnKe.

We choose an irreducible representation Xn,S" 0 Xn,S' of M(SO(n + 1)) x M(SO(n))

and an irreducible representation Xn,S of M n Ke. For any subset S" of { 1, . . , n + 1}

we denote by S" the subset S" \ {n + 1}.

Theorem 7.3 We have m(Xn,s, Xn,S" 0 Xn,S') = 1 if and only if S = S' S or

S = (S' S")c. Otherwise, m(Xn,s, Xn,S" 0 Xn,S') = .

Proof Branching from M(SO(n + 1)) x M(SO(n)) to M(SO(n)) x M(SO(n)), we

find

m(Xn,g,, 0 Xn,S', Xn+l,S" Xn,S') = 1

where we realize M(SO(n)) x M(SO(n)) as a subgroup of M(SO(n + 1)) x M(SO(n))
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via the embedding ' and where Xn+l,S" 0 Xn,S' is any irreducible representation of

M(SO(n + 1)) x M(SO(n)). Since any irreducible representation of M(SO(n + 1)) x

M(SO(n)) has dimension equal to 1, any irreducible representation of M(SO(n)) x

M(SO(n)) not isomorphic to Xng" 0 Xn,S' has multiplicity in Xn+l,S" 0 Xn,S' equal

to 0. Combining this result with the branching law from M(SO(n)) x M(SO(n)) to

M n Ke given in Theorem 7.1, the statement of this theorem follows. U

We choose an irreducible representation Px,, 0 Px, of SO(n + 1, R) x SO(n, R) and an

irreducible representation Xn,S of M n Ke

Proposition 7.4 The branching law from Ke to M n Ke for the split

group of type Bn determines m(Xn,s, PA", 0 /A') to be

real reductive

E: [m(Xn,S', P')m(Xn+l,S", PA"))

S'FS"EF+l

+m(Xn, A A)m(Xn+l,S', PA"))]

E [m(Xn,S', PAM)HM(Xn+I,S[, PA" ))
StS//EFn

(ses,)c=s

+ m (Xn seeI PA/) M (Xn+ 1, SI, PA"))]

Proof This result follows directly from proposition 6.11 and Theorem 7.3. A

For the split classical groups, then, we have determined to extensive detail the

branching law from Ke to M n Ke with respect to these classical groups. We have

done so in a manner making the multiplicities of irreducible representations for MAKe

in irreducible representations for Ke fairly easy to calculate. All the benefits these

branching laws yield for the study of principal series representations attatch.
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