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Abstract

The utilization of biological factors in the design, synthesis and fabrication of nano-scaled
materials and devices presents novel, large scale solutions for the realization of future technologies.
In particular, we have genetically modified the M13 Filamentous Bacteriophage for its use as a
biological scaffold in the peptide-controlled nucleation and patterning of nanoscale semiconducting
and magnetic materials. Through evolutionary phage display screening of inorganic substrates,
ftunctional peptides that influence material properties such as size, phase and composition during
nucleation have been identified. The incorporation of these specific, nucleating peptides into the
generic scaffold of the M13 coat structure provides a viable linear template for the directed synthesis
of semiconducting and magnetic nanowires. Through further modification of the remaining
proteins on the virus scaffold, other functionalities can be incorporated such as the directed
patterning of the virus/nanowires assemblies into nanoscaled devices with tunable properties as
determined by the genetic information carried within the virus scaffold. Multi-functional viruses
provide a truly self assembled system for the design and execution of a myriad of nanoscaled devices
in a green, scalable and cost effective manner.

Thesis Supervisor: Angela M. Belcher
Title: John Chipman Professor of Materials Science & Engineering and Biological Engineering.
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CHAPTER 1

1.0 Introduction

The reliance of future technologies on developing scalable and economic methods for the

fabrication of one-dimensional systems has spurred intense and rapid progress in the

interdisciplinary field of materials science. In particular, one-dimensional materials have been

enthusiastically pursued for their applications in the study of electrical transport (1), optical

phenomena (2), and as functional units in nanoscaled circuitry (3). Pursuit of "bottom up"

methods for the synthesis of semiconducting, metallic and magnetic nanowires has yielded

strategies including, but not limited to, vapor liquid solid (VLS) (4), chemical (5), solvothermal,

vapor phase, and template-directed fabrication (6). Although each method developed for the

production of nanowires has had success in achieving high quality materials, no distinct strategy

to date has yielded monodisperse, crystalline nanowires of radically different compositions. The

realization of such a system would require the combination of substrate specific ligands with the

predictability of self-assembly commonly found in nature. Recently, biological factors have been

exploited as synthesis directors for nanofibers (7, 8), virus-based particle cages (9), virus-particle

assemblies (10., 11), and non-specific peptide templates (12). This is due to the high degree of

organization, ease of chemical modification and naturally occurring self-assembly motifs

inherent in these systems.

The development of the virus based scaffold for synthesizing and assembling nanoscale

materials into function architectures is presented (figure 1.1). The ability to store information

about a material, including composition, phase, and crystallographic detail, within the genetic

code of the M13 bacteriophage virus DNA has proven to be a viable means of synthesizing and

organizing materials on the nanometer scale (13,14). The use of phage display techniques
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(utilizing peptide libraries consisting of ~ 109 random sequences) has led to the discovery of

material specific peptides having preferential binding (13), control over nanoparticle nucleation

(14), and the ability to order based on the inherent shape anisotropy of the filamentous M 13 virus

(11).

Figure 1.1 Proposed device assembly using a substrate binding peptide on the proximal tip of the virus to anchor
it specifically to pre-patterned gold electrodes. Pep tides expressed along the length of the phage can then induce
nucleation of technologically relevant materials between the electrode gap. Thermal removal of the organic
template results in continuous inorganic nanowires connected to the electrodes creating a functional device.

Because the protein sequences responsible for these attributes are gene linked and

contained within the capsid of the virus, exact genetic copies of the virus scaffold are easily

reproduced by infection into its bacterial host. The exploitation of the self-assembly motifs

employed by the M13 bacteriophage to produce a biological scaffold provides a means of

generating a complex, highly ordered, and economical template for the general synthesis of

single crystal nanowires. By introducing programmable genetic control over the composition,

phase and assembly of nanoparticles, a generic template for the universal synthesis of a variety

of materials can be realized. Further advances in the fabrication of nanoscale materials and
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devices can be achieved through modification of the remaining four proteins in the virus to

incorporate device-assembly directors. Overall, modification of biological systems by the

introduction of substrate specific peptides presents a means of achieving well ordered

nanomaterials in a cost-effective and scalable manner (15). The following chapters will discuss

the selection of functional peptides exhibiting a binding affmity for specific materials, the

genetic manipulation of these functional peptides into different areas of the M 13 bacteriophage

scaffold, and the subsequent ability to control materials SYnthesisand assembly.

1.1 Biomineralization

Nature's ability to form inorganic structures with controlled structure and properties,

developed over millions of years, provides a unique chemistry for developing inorganic-organic

materials. The field of biomineralization seeks to understand the mechanisms by which

biological systems can uptake elements from its surroundings, and organize them into complex,

highly ordered structures of defmed functionality (16). There are many types of organisms that

utilize biomineralization, ranging from single-celled coccolithophorids (figure 1.2) that assemble

calcite cages to mammals who depend on the biologically controlled mineralization of

hydroxyapetite for bones.
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Figure 1.2 Examples of biomineralization. Left: Emi/iana Huxley coccoliths Right silica diatom. Images were
taken from www.bigelow.org/images/ bulletin_coccolith.jpg and http://academics.hamilton.edu/ biology/
kbart/image/ diatom.j pg respectively.

Although these materials provide essential life functions for many organisms (17), it is their

unique physical properties and inherently green synthesis of materials with precise control that

has garnered attention from the materials community as a facile route to nanoscaled components

for next generation technologies. Biomineralized materials are ordered over multiple length

scales (18) beginning at the atomistic level with control over crystallographic phase and

orientation and composition, to nanoscaled building blocks of controlled shape and size, to

organized micro and macroscopic heterostructures( 19). The materials also exhibit desirable

material characteristics such as fracture toughness, self-correction or "healing" and single crystal

growth. Furthermore, biomineralization reactions proceed under aqueous conditions at or below

ambient temperatures, yet often produce polymorphs typically SYnthesized at elevated

temperatures and pressures. As an example, the shell of the red abalone (haliotis rufescens) has a

"brick and mortar" like construction of aragonite tablets (a metastable phase of calcium

carbonate) separated by layers of acidic glycoprotein's (figure 1.3), which gives the shell a

fracture resistance 3000 times greater than geological aragonite (20).

Figure 1.3 Scanning Electron Micrographs of the nacre component of the ha/iotis rufescens shell. The brick and
mortar structure is evident and exhibits long range ordering.
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Other examples of biomineralization systems include magnetotactic bacteria that produce 35-

120nm diameter, single-domain, ferromagnetic Fe3 04 particles, allowing for the bacteria to

migrate along the earth's magnetic field (21). Another common biomineralization product is

marine silica (SiO2) as found in diatoms and sea sponge spicules. The successful isolation of

biomineralization proteins, and their ability to maintain functionality in vitro, has provided many

successes in understanding the mechanisms behind biomineralization. However, the complexity

of natural systems has impeded the complete understanding of the biomineralization process,

which had hindered the progress in extending the classes of materials that can be processed by

this chemistry. In order to exploit the tremendous advantages of biomineralization, a rapid

method for developing functional, material-specific peptides needed to be developed in order to

extend the materials available from common minerals, to technologically relevant materials

including semiconductors, conductors, and highly anisotropic magnetic materials.

1.2 Phage Display

Almost all biological processes in living organisms rely on specific, protein-ligand

interactions. Biomineralization is no different in that the inorganic substrate serves as the ligand,

and a highly specific biomolecule dictates the organization and construction of the inorganic

structure. There are two common techniques for isolating biomolecules that exhibit the

necessary affinity for specific targets, both routinely used in the pharmaceutical industry,

Rational design and Combinatorial screening. Both of these provide pathways for developing

new biomineralization chemistries for synthesizing materials not found in nature. However,

because the exact mechanisms for biomineralization are still not fully understood, and the

complexity of biological systems, there is usually poor correlation between computer predictions
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of biomolecule functionality and that observed in vitro. Also, the computational costs of

analyzing the vast number of relevant mutants precludes this method from being a practical and

rapid method for developing bioinorganic synthesis routes for the multiple classes of materials

needed to produce the complex architectures found in today's technology. The second approach

of using a combinatorial library to screen a target provides a rapid and economical means of

identifying biomolecules that exhibit the required specificity for a given target, in this case an

inorganic substrate. Combinatorial libraries comprised of biological systems can also employ

the same evolutionary processes found in nature of mutation and selection. The main limitation

of combinatorial libraries then lies in their low complexity and sample size. There are multiple

types of libraries available including combinatorial chemistry, yeast two way systems, ribosomal

display and cell surface display however, phage display was chosen for its combinatorial size,

the complexity of its banks, the diversity of applications, and its ease of use.

Phage display libraries are systems in which a peptide or protein is expressed (displayed)

on the surface of a filamentous bacteriophage virus (22). These libraries are commercially

available with 10^9 molecules, but have been synthesized with banks as high as 10"12 (23). In

essence, phage display is performed by incubating the target substrate with the phage library,

followed by washing of the unbound phage and elution of the specifically bound phage. The

eluted phage are then amplified, creating an enriched pool for subsequent screenings. The

affinity of the selected phage for the target can be tailored either through employing more

stringent washings, method of elution, or by the desired binding constants as determined via

kinetic screening of substrates (figure 1.4).
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Figure 1.4 Introduction of the library (top left) to the substrate, is followed by washing and acid elution of the
bound phage. Bacterial amplification enriches the phage pool, which is then screened against the same target. This
process is repeated until a dominant binding sequence can be determined. (image from IEEE spectrum, Germs that
build circuits, online.)

1.3 MI3 Bacteriophage

The M13 class of bacteriophage, used in this work, is approximately 880nm long by 6nm

wide, and is comprised of five capsid proteins that encapsulate a single stranded DNA. The M 13

phage DNA has 9 genes that encode for II proteins grouped on the single stranded, covalently

closed DNA in order of their functionality during the life cycle of the virus (24). They are

classified into DNA replication proteins (gene products (gP) Il,V,X), Capsid proteins (gP III, VI,

VII, VIII, IX) and assembly proteins (gP I, IV, XI). The wild type (or naturally occurring,

unmodified M13 phage) genome is given in figure 1.5. Addition of a randomized peptide insert

on the gene III and a gene giving antibiotic resistance is added to the genome to create the gPIll

library (25).
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Figure 1.5 The wild type genome of the Ff class of filamentous bacteriophage, which includes the M1 3 phage.

The five capsid proteins create a vesicle for DNA delivery and is comprised of: approximately

five copies of the gPIII and gPVI as a complex at the proximal tip of the bacteriophage (as it is

the first part of the virus to enter the bacterial host, and the first to exit); approximately five

copies of a similar complex of the gP VII and IX and the distal tip of the bacteriophage; and

2700 copies of the gPVIII in the form of an uninterrupted alpha helix, in an overlapping shingle-

type array having a five fold symmetry rotational axis with a twofold screw axis pitch of 3.2nm

(figure 1.6). The pVIII monomer is then tilted with respect to the c-axis of the virus, allowing

for it to wrap around the axis of the virus with a right handed twist (26). By incorporating

standard combinatorial genetics to the M13 bacteriophage, chimeric proteins can be synthesized

and incorporated into the phage during assembly. There seems to be no limit as to the size and

type of peptide or protein that can be fused to the gPIII (27), however a limit of approximately

six amino acids is imposed of fusions to the gPVIII (28). Peptides larger than six amino acids, or

that are sterically bulky, and have large overall charge have deleterious effects on phage

17
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assembly and will not be present in the final phage assembly (there are of course exceptions to

this, but they require specialized DNA vectors, 29.)

PVII-PIX
ccmplex

PVIII -2700 Copies

Single stranded DNA

PIII- PVI
Adsorptioo

Major Coat

Proximal Tip

Figure 1.6. A diagram of the M13 bacteriophage showing the location of the 5 capsid proteins with respect to the
single stranded DNA (left.) Recreation of the virus capsid from fiber x-ray studies as given in the pdb file # I ifj
(center.) Transmission Electron micrograph of a negatively stained wild type M13 bacteriophage (stained with
uranyl acetate.) the virus is approximately 880nm long and 6nm wide (right.)

The ability to genetically modify the M13 bateriophage has increased the usability of

these libraries through incorporation of antibiotic resistance to reduce contamination and through

the implementation of the tittering method as a reliable assay for quantifying the number of

phage present in a system and as a simple means of harvesting single phage for DNA

sequencmg.

Tittering exploits the lacZ gene that has been incorporated into the genome of the library

phage. After infection of the phage into its bacterial host, lacZ transcription is promoted in the

18



presence of isopropyl-beta-D-thiogalactopyranoside (IPTG), producing the enzyme

galactosidase. The galactosidase enzyme specifically cleaves X-gal, producing a blue color in

the bacterial colonies grown on nutrient rich agarose plates. Titering is then the process of

dilution of the phage solution and immobilization of the infected bacterial hosts onto IPTG/X-gal

containing agarose plates. This process ensures the reporting of single infection events as

individual blue plaques on the plate, providing a quantifiable assay of isolated phage. Therefore,

all concentrations of phage as determined via tittering are given in plaque forming units (PFU),

and are reported with a single digit accuracy (i.e. xlO^x) (22).

1.4 Materials Used

The ability of phage display to extend the repertoire of materials that can be manipulated

with biomolecules has been exploited to advance the synthesis of metallic, magnetic and

semiconducting materials on the nanometer scale. The materials explored in the following body

of work where chosen for their importance in current technologies including data storage and

components in advanced circuitry (magnetic and semiconducting), and to address the issue of

wiring these components into nanoscaled devices (metals). They also provide a basis set with

enough complexity to assemble rudimentary components in electronic circuitry. The

development of each of these systems tests the boundaries of the types of materials that can be

processed utilizing biology.
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1.4.1 Noble Metals (Au, Cu, Pt)

Noble metals serve as an integral part of today's technologies and bridge the gap between

device components and electrical input (30). Nanoscale gold systems also exhibit plasmon

properties that make them useful for detection of a variety of compounds, including DNA

(31,32). Screening of these materials using phage display will provide a biological route for

developing strategies for fabricating bio-inorganic device architectures (33). Noble metals where

also selected because of the numerous techniques that would be available for studying these

systems such as Surface Plasmon Resonance (SPR, 34) and Surfaced Enhanced Raman

Spectroscopy (SERS, 35). Other projects aimed at understanding the interaction of peptides with

the gold surface have included molecular modeling techniques (36) and Nuclear Magnetic

Resonance (NMR) studies (37).

Surface Plasmon Resonance -

Since the discovery of the optical surface plasmon resonance effect by Otto in 1968 (38),

it has found many applications in the detection of surface species. Most recently it has been

widely used for the in situ monitoring of biological molecules, providing real time information

on the binding kinetics and thermodynamics (39). The excitation of surface plasmons in a thin

metal film by a polarized optical source in a total internal reflectance (TIR) geometry shows a

dramatic dip in the reflected intensity at the resonance angle (40). This resonance angle is highly

dependant on the dielectric layer directly opposite the metal glass interface, i.e. the index of

refraction, and molecules binding to the metal surface on the length scale dictated by the

evanescent wave created by the TIR geometry (250nm) cause a dramatic shift in the resonance

angle. This angle dependant dip in intensity, which is directly proportional to the amount of

20



analyte adsorbed, is detected via a photodiode or more recently, imaged on a Charged Coupled

Device (41). SPR has proven to be an effect means of determining the time scales and

thermodynamics of surface interactions (42), but does not provide data on specific interactions

with the substrate.

NMR has produced significant results toward the understanding of ligation of gold

nanoparticles in the recent literature (43), and is a useful avenue for understanding both peptides

themselves and peptide-metal interactions.

1.4.2 Semiconducting Materials (CdS, ZnS)

The unique electrical properties of semiconducting materials on the nanometer scale,

including GaN, Si, Cd(S,Se.Te), has spurred intense research in the synthesis of the materials

with lowered dimensions including chemical (44) and biological routes (45). Most of the

organo-metallic chemistry based synthetic strategies employ high temperatures and toxic

chemical precursors. Using biological strategies has the potential for creating green synthetic

routes that can also address current thermodynamic and chemical limitations (46). Evolution of

substrate specific peptides through phage display technologies for the directed nucleation of

materials on the nanometer scale has been previously reported and serves as the basis for the

material specificity in the virus template (13). Screening of the ZnS and CdS (14, 47) systems

using commercially available bacteriophage libraries (New England Biolabs) expressing either a

disulphide constrained (Cys-Cys) heptapeptide or a linear dodecapeptide as a fusion to the gPIII

protein located at the proximal tip of the virus has yielded nucleating peptides with the

sequences: CNNPMHQNC (termed A7; ZnS), SLTPLTTSHLRS (termed J140; CdS). These

peptides were incorporated into the phage scaffold described in this work to both show the

21



generality of the synthetic scheme and the unique electrical properties needed for designing

nanoscale device elements.

It is believed that the adhesion characteristics of peptides with semiconductor surfaces

stem from both the semiconductor specific electronegativity and the acidity of the amino-acid

side groups within the peptide (48). These properties can be effected through changes in solution,

including pH and ionic strength (49), adding an element of control over peptide-semiconductor

binding events.

1.4.3 Magnetic Materials (Co, CoPt, FePt)

Biological organisms have evolved the ability to control the synthesis and assembly of inorganic

materials through proteins under environmentally benign conditions. Several examples exist in

nature of protein-mediated inorganic synthesis, and researchers have begun manipulating these

organisms and proteins to synthesize inorganic materials with controlled composition and

crystallinity (50). Most of these efforts have focused on preparing materials composed of

sulfides (51,52,53), calcium carbonate (54,55), silicon oxide (56), iron oxides (57,58), and noble

metals (59,60,61,62), but these materials are often similar to naturally-abundant, biologically

prepared inorganic materials. Here we use biological interactions to control the nucleation of

materials that are not isomorphous to materials found in nature.

In Stoner's 1936 treatise on the internal energy of ferromagnetics, it was predicted that a

crystal domain on the order of 104 atoms (10Onm diameter spheres) could only support a single

magnetic domain (63). Murray and co-workers at IBM's Watson Research Center have since

demonstrated this unique property for 2-5nm diameter FePt and Cobalt nanoparticles (64). This

1:1 correlation between NP and magnetic moment (i.e. readable bit) makes NPs ideal candidates
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for developing denser recording media. However, it has also been shown by Murray et.al. (65)

that inconsistencies in NP size, shape, surface defects, and magnetocrystalline defects lead to

magnetic anisotropies that render them useless for their implementation in the manufacturing of

recording media. Current synthesis of FePt, CoPt, Co, FeCo and other known magnetic

nanoparticles rely on the air sensitive, high temperature, and expensive polyol reduction of

organometallic salts (66). Platinum alloy particles in particular require post synthesis annealing

in order to under go a phase transition from superparamagnetic to ferromagnetic (67). The size

and flocculation of these NPs are mediated by multi-surfactant systems and precipitation

processes that lack the desired control over NP characteristics. Synthesizing NPs under peptide

control provides an inexpensive route to highly ordered, defect free particles under ambient

conditions (68).

Cobalt -

Synthesis and characterization of cobalt nanoparticles has garnered much attention in the

literature over the past six years for it many size dependant properties. Although magnetic

nanoparticles hold promise for medical applications, there has been significant research

performed for their use in magnetic storage media (68,69). There has been many proposed

synthetic routes for creating single domain magnetic cobalt, most notable has been the routes of

Bawendi (70), Murray (71), and Alivisatos (72) and are based on the polyol process. The

assembly of cobalt nanoparticles into well ordered structures is a promising route toward ultra-

high density recording media (73). However, the magnetic anisotropy of cobalt is not large

enough to overcome the superparamagnetic limit (74); the limit at which the magnetic anisotropy

energy of the particles is on par with the thermal energy. At this limit, thermal fluctuations cause
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random flipping of the magnetic moment, prohibiting any long term data storage capacities (75).

To overcome the effect of diminishing magnetic anisotropy as particle sizes shrink, alloyed

systems have been pursued due to their large magnetic moments (76).

Development of peptides that can control the nucleation of cobalt nanoparticles has been

pursued as a model system for developing the methods needed to synthesize alloyed

nanoparticles that have a more complex synthesis and chemical structure.

Magnetic Platinum Alloys -

The metal alloys FePt and CoPt are particularly interesting for ultra high density

magnetic recording because they exhibit high magnetic anisotropy (77,78) and resist chemical

oxidation. Future progress in ultra-high density magnetic data storage will depend on the

development of metal thin film media with smaller particles, tighter size distributions and

optimized compositions (79). This has lead several researchers to begin developing solution-

based synthesis techniques for ferromagnetic nanoparticles (80,81,82) as an alternative to the

sputtering techniques used for conventional media (83). These solution-based methods have

proven to be excellent tools for preparing monodisperse metal nanoparticles of FePt and CoPt

(84,85,86) . These particles have also been shown to crystallize into ordered face-centered cubic

(FCC) and hexagonally close-packed (HCP) arrays, which can function as high density memory

devices (87,88).

Although these synthetic strategies have had success in generating monodisperse, ordered

arrays of CoPt and FePt nanoparticles, they are of the chemically unordered phase. In order to

achieve the magnetic anisotropy needed for recording devices, these alloys must be in the

chemically ordered L crystal phase. Because this phase is thermodynamically stable only
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above 400°C and 500°C for FePt and CoPt respectively (67), post synthesis annealing is required.

This annealing removes the protective organic layer used to stabilize the particles, and thus

causes aggregation of the particles. Therefore a biological route that aims at exploiting nature's

ability to nucleate metastable crystal phases at room temperature to develop a direct synthesis of

Llo phase FePt and CoPt nanoparticles (figure 1.7).

ActS""

Figure 1.7 Diagmm of the Ll 0 crystal structure. Obtained from http://cst-
www.nrl.navy.mil/lattice/struk.pictslll_ O.s.png

1.5 Scope of Work

The basis of the work presented is the ability of nature to control the synthesis of highly

ordered bioinorganic structures such as bone, shells, teeth, as well as pure inorganic structures

such as metallic and magnetic nanoparticles. This work seeks to utilize the knowledge gained in

the field of biomineralization to expand upon the types and forms of materials that we can

control using biological factors. The overall goal is to discover peptides that have similar
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capabilities as naturally occurring biomineralization systems, but for materials that are not found

in nature. Creation of biomineralization organisms for technologically relevant materials can

then be achieved through incorporation of these peptides into biological systems. These

biological scaffolds can then be developed to control the synthesis and organization of

nanoscaled materials for their facile integration into next generation technologies including

integrated circuitry and chemical sensors. This text describes the process of peptide selection,

incorporation and function as laid out bellow.

Chapter 2 - discusses the experimental details in preparing and characterizing the substrates

used during the phage display screening. It also outlines the procedures used for screening the

substrates, and the results of the screening experiments. Some of the peptides discovered

through the phage display process where analyzed for their binding affinities to better understand

the level of specificity that can be achieved from the library used. Both tittering and surface

plasmon resonance where employed on two separate systems (Co and Au respectively). Lastly,

computer modeling of the peptides was performed in order to elucidate any obvious peptide-

substrate interactions that could be used to better understand the mechanism behind the peptide-

substrate interaction, and how it influences particle nucleation.

Chapter 3 - discusses the Ml 3 bacteriophage scaffold in further detail, and how manipulation of

its genome and perturbations to its life cycle can yield multifunctional scaffolds for materials

synthesis and fi:)r programmable assembly.
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Chapter 4 - discusses in detail the development of the biomineralization process used to

synthesize magnetic, metallic and semiconducting nanoparticles and wires under ambient,

aqueous conditions. It goes on to explore the effect of the scaffold on both the synthesis of

nanoparticle and their assembly into 1 dimensional nanoparticle arrays. It also discusses the

techniques developed to further process these arrays in order to produce highly crystalline free

standing nanowires.

Chapter S - explores the development of multi functional scaffolds for synthesizing, organizing

and specific placement of these structures into functional devices, testing the proof of concept

that a biological system can be designed to assemble nano-architectures for future technologies.

Chapter 6 - provides an overview of the progress made in each area of the research; peptide

selection; bioscaffold development; peptide driven nanoparticle synthesis; biologically organized

nanoparticle arrays; and genetic coding of a nanoscale material architecture into the M13

bacteriophage.
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CHAPTER 2

2.1 Introduction

Previously it has been shown that polyanionic proteins isolated from abalone shells that

possess a high affinity for CaCO3 can be used to control the crystallization of CaCO3 crystals

grown in vitro (1,2). The peptides selected in these experiments which bind specifically to the

screened materials may be able to exhibit similar control over the nucleation and growth of

nanostructures. This approach would be comparable to the arrested precipitation techniques

traditionally used to prepare inorganic nanoparticles (3). The key differences being: the

substitution of genetically engineered phage for organic ligands, aqueous solvents, room

temperature reaction conditions, and direct templating of the ordered ferromagnetic phase of

FePt.

The use of the rapid peptide selection method of phage display has been used to

determine materials specific amino acid sequences (4). Because the sequences of the peptides

displayed on the surface of the bacteriophage are encoded in its DNA, the materials properties

that can then be controlled by that peptide are gene-linked and therefore can be manipulated

using standard biological techniques (5). It is therefore necesarry to develop a database of

known materials binders in order to provide a toolkit from which researchers can design

biological scaffolds for the synthesis and organization of multiple classes of materials.

2.2 Phage Display Methods

Three M13 bacteriophage libraries displaying 10^9 random dodeca- and constrained

hepta- peptides., named Ph.D. 12 and Ph.D. 7c respectively, were obtained from New England

Biolabs (NEB) and used without further modification. All solutions used for the screening of
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materials, known as biopanning, are given in the library protocol (6). The substrates where

prepared as described in the following text and screened against both libraries to determine high

surface affinity peptide sequences. Dominant sequences, discovered after multiple rounds of

biopanning, were tested for their functionality as materials binders and materials synthesizers as

discussed in the following chapter.

Substrates where incubated with 1 OuL of the original library (10^OA 12 pfu) in Tris Buffered

Saline (TBS, pH 7.5) for one hour under orbital rocking at room temperature. Tween-20

(C5 8H 1 402 6 , M.W. 1227.54, CAS 9005-64-5), a non-ionic surfactant, was added to the solution

buffer in increasing concentrations (from 0.1-0.5%) during subsequent rounds of screening to

interrupt non specific interactions; effectively increasing the stringency of the phage selections.

After the incubation period, the substrates where removed and washed ten times with TBS

containing 0.1-0.5% Tween 20 (0.1-0.5% TBST) to remove non specific binding phage. After

thorough washing, the bound phage were removed from the substrate using lmL of a general

elution buffer, 0.2M Glycine-HCl (pH 2.2), known to nonspecifically disrupt phage binding

interactions, for 5min. (6). Rapid neutralization of the phage containing elution buffer with

150uL of 1M Tris-HCl (pH 9.1) prevented any deleterious effects of the acidic environment on

the phage. Ten fold dilutions of the neutralized eluate were prepared in TBS (10A1-10^4) using

aerosol-resistant tips to prevent cross contamination. 1OuL of each dilution was then added to

200uL of an e. coli culture having an optical density at 600nm (O.D. 600 ) of 0.5, known as the

mid-log phase. The culture was prepared by inoculating 5-lOmL of Langmuir Broth (LB),

having the appropriate antibiotic (in this case, tetracycline), with a single colony of the ER2738

strain of the bacteria Escherichia coli. The infected cells where then tittered on agarose plates

containing IPTG/x-gal. The original elution was then amplified using a one-hundred fold
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dilution of an overnight ER2738 culture in LB, and was titerd in a similar fashion (with dilutions

of 10^8-10^11) to prepare a solution of 10^12 PFU's. This enriched library was then incubated

with a fresh substrate, with the biopanning process being repeated through five rounds of

selection. In order to increase the stringency of the selection process in subsequent rounds, the

concentration of tween used during the incubation and wash steps was gradually increased.

Tween-20 is commonly used to disrupt non-specific phage interactions and phage-phage

interactions. After the third and subsequent rounds of selection, individual blue plaques from the

eluate titer where isolated and prepared for DNA sequencing of the phage genome in order to

determine the amino acid sequence of the displayed peptide. Ten Blue plaques were removed

from the agarose plate using a sterile lance (either a toothpick of pipette tip) and amplified in a

one-hundred fold dilution of an overnight culture of ER2738 in fresh LB for 4.5 hours. After

amplification, the bacterial host was separated from the phage through centrifugation. The

isolated, amplified, phage where then precipitated using the process of pegylation (7). Pegylation

is the attachment of Poly(ethylene glycol) (M.W. 8000, CAS 25322-68-3) to a biological factor,

in this case it serves to add additional drag and weight needed for the phage to be pulled down

from solution using centrifugation. Specifically addition of an aqueous solution of 20% w/v

Poly(ethylene glycol) and 2.5M NaCl at a ratio of 6:1 of the original volume, and incubated at

4"C overnight to allow for full precipitation of the phage. The phage precipitate was then isolated

from solution by centrifugation. The resulting pellet was then resuspended in a sodium iodide

buffer (10mM Tris-HCL, mM EDTA, 4M NaI) to extract the DNA from the phage. Ethanol

precipitation of the DNA, followed by centrifugation was used to isolate the DNA which was

then resuspended in sterile, type one water (having a resistivity of at least 18MOhms.) The DNA

was then sequenced by the Institute for cellular and micro biology core facilities at University of
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Texas, Austin, using a -96gIII primer (6). DNA sequences of the displayed peptide where then

translated using the standard genetic code to determine the amino acid structure. The translated

sequences where analyzed to determine dominant motifs in the sequenced peptides.

2.3 Substrates

The substrates screened were chosen as to increase the number and types of materials for

which there were known, functional peptides. Previous studies had already determined binding

sequences for the semiconducting materials GaAs; GaN; ZnS; CdS; the insulating materials

CaCo3; and the magnetic material Fe304 (4,5,8,9). Any research presented in which a

biological-materials interaction is used for any of the aforementioned materials relies on the

peptides previously discovered. The materials screened in this work had the disadvantage that

they were not isomorphous with any known naturally occurring biomineralization product. In

order to test the range of materials for which the phage display method was applicable, the

ferromagnetic metal Co, and the ferromagnetic metal alloys CoPt and FePt where chosen. As the

research progressed, it became our goal to use the phage both as a screening vehicle and as a

biological scaffold for programmable self assembly of biologically synthesized materials. To

this end it was necessary to screen contact materials used in planar technologies as a means of

wiring in the phage. The screening of the Noble metals gold, copper, and platinum provided a

materials selection for the future design of multi-component devices. The selection of a gold

binding peptide also allowed for the use of spectroscopic techniques to be used to study the

binding strengths of the peptide-substrate interactions, as a means of understanding the limits of

selectivity obtainable using phage display.
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2.3.1 Magnetic Materials

2.3.1.1 Cobalt (Co)

Cobalt substrates where prepared by drop coating silicon wafers with Co nanoparticles under

inert atmosphere, followed by thermal annealing (300°C, under 5%H 2(g)) to achieve thin films of

the ferromagnetic HCP phase. Synthesis of Cobalt nanoparticles was achieved through a

modified version of the polyol based strategy developed by Alivisatos (10). In short, this method

involves the rapid thermal decomposition of an organometallic precursor containing a zero-

valent metal center in the presence of a cooperative surfactant system. Specifically, using

standard airless techniques, a solution of Octacarbonyldicobalt (0.6g, C808Co 2, M.W. 341.9,

CAS 10210-68-1) and dichlorobenzene (3mL, C6H4C12 , M.W. 245.5, CAS 106-46-7), and

rapidly injected into a surfactant mixture of oleic acid (0.2 mL, CH3(CH2)7 CHCH(CH2)7COOH,

M.W. 282.58, CAS 112-80-1) and Trioctylphosphine Oxide (TOPO, 0.4g, [CH3(CH2)7]3PO,

M.W. 386.65, CAS 78-50-2), dissolved in dichlorbenzene (12mL), at 182°C followed by

refluxing for 3 minutes. The solution was allowed to cool to room temperature by removal of

the heating mantle. Post synthesis processing involved the ethanol induced precipitation and

centrifugation of the reaction product, followed by resuspension in hexane. This process was

repeated thrice in order to further focus the size distribution of the cobalt nanoparticles.

Verification of the synthetic process was achieved by transmission electron microscopy (TEM)

and X-ray diffraction (XRD, figure 2.1). TEM samples were prepared by direct deposition of the

cobalt particle solution onto carbon coated copper TEM grids (ted pella) and analyzed using a

JEOL 200 cx microscope. XRD samples were prepared by drop coating aliquots of the particle

solution onto 2cm2 pieces of silicon 110, followed by drying and then repeating the process
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multiple times in order to achieve the particle density necessary for achieving an accepted signal

count. Analysis was performed on a Phillips XRD using the Copper K-alpha line.
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Figure 2.1 XRD of chemically synthesized Cobalt nanoparticles.

Substrates used in the screening of the phage display library were used immediately after

removal from the furnace to prevent the onset of oxidation. All solutions used during the

selection process were deairated under house vacuum to prevent oxidation. biopanning was

performed with both the Ph.D. 12 library and yielded the sequences given in table 2.1, amino

acids are color coded according to the reactivity of their side group: Hydrophobic (red);

Hydrophilic (green); Negative (black); Positive (blue). All sequences are reported in order from

N-terminus to C-terminus.
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Table 2.1 Cobalt binding Sequences from the Ph.D. 12 library.

Se uence
Round 3 A Y Q G P A T Q T W Q L

G L S F Q R E Q L Q A S
N S Q T T A P I P L S L
G N T S S L S Y S R T G
S L Y S P A A L G I P V
I S T P L G A S A P F K

W E T N N A P G L R P A
H G S N W T H N N L G L
W E T N N A P G W R P A
S P I A S Y P P P A S P

Round 4 I ~ L S Q H A P G V S S Y
L S P H S A P L T L Y

Round 5 S H S P F E S Q R I G L
D A S Q M S S p S G M T
V Y G K H N K P P P H S
I N T P H S S K P T S I
I V Q T P P A L S P H T
T P P A P G M M I S Y R
I N T P H S S K P T S I
A P K F G P P L L Q T P
A L S P H S A P L T L Y
A L S P H S A P L T L Y

2.3.1.2 Cobalt Platinum (CoPt)

CoPt substrates of the desired Llo phase were prepared by drop coating silicon wafers

with FCC CoPt nanoparticles followed by thermal annealing (550°C). CoPt nanoparticle films

were synthesized based on the polyol derived methods of Murray et. al. (11) and involved the

simultaneous thermal decomposition of octacarbonyl dicobalt and the diol reduction of platinum

acetylacetonate in the presence of the cooperative stabilizers, oleic acid and oleyl amine.

Specifically, using standard airless techniques, Platinum acetalacetonate (O.5mM, ) and 1,2
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hexadecanediol (1.5mM) were dissolved in dioctylether(20mL) and heated to 100°C to remove

any dissolved water. A solution of oleic acid (0.5mM), oleyl amine (0.5mM) and octacarbonyl

dicobalt (0.5mM) was added to the reaction vessel and the entire contents were heated to 297°C,

under constant stirring, and allowed to reflux for 30 minutes before removal of the heating

mantle. After the solution had cooled to room temperature the reaction vessel could be opened

to the atmosphere for collection of the product. Ethanol precipitation followed by centrifugation

and resuspension in hexane removed any unwanted reaction byproducts and yielded

monodisperse CoPt nanoparticles (5nm) as confirmed by TEM and XRD analysis. Annealing

of silicon wafer coated with the CoPt nanoparticle solution was carried out at 550°C with a ramp

rate of 5 deg/rmin and a dwell time of 60min. The furnace was kept under a positive pressure of

forming gas (5% H2) to prevent the onset of oxidation of the films. Annealing at 550°C

promotes the phase transition between the FCC disordered phase of the as synthesized particles

to the ferromagnetic LI 0 phase desired for magnetic applications.

The alloying of cobalt with platinum not only increases its magnetic anisotropy, it also

adds the inert chemical properties of platinum, thus elevating the rapid oxidation commonly

found in pure cobalt systems (12). This chemical stability to oxidation allowed for easier

handling in the buffer solutions used during the panning experiments. Selection was performed

as previously described in the phage display methods section and the results of the Ph.D. 12 and

Ph.D. 7c screenings are given in tables 2.2 and 2.3 respectively.
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Table 2.2 Cobalt Platinum Binding Sequences from the Ph.D. 12 library

Se uence
Round 3 V 0 S A N T T V S S S I

D T P P T K Q M S F I F
H F K P L L Y F G G S A
H L A L H A P A W P P G
S p S M W P Y A P V R I
V I T Q H P P P L A F X

Round 4 T M G F T A P R F P H Y
H V L Q A Q H P F V A W
S L Y Q Q A P H P P T M
K T H E I H S P L L H K
H K y V H Q E S V W N L

Round 5 A G N A H K S G L N F H
T P P A P G M M I S Y R
L N L P N T L P I G T R

Table 2.3 Cobalt Platinum Binding Sequences from the Ph.D. 7c library

Se uence
Round 3 C S P T S A A L C

C N A G 0 H A N C
C N A G 0 H A N C
C p p S F H H A C
C E R G L H G N C
C D G L I K M N C

Round 4 C M P H M A R N C
C H S L R P N L C
C L H G G y R y C
C S G Q N H W H C

Round 5 C S P L M P A H C
C K P F L H A Q C
C X H N L K P T C
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2.3.1.3 Iron Platinum (FePt)

FePt substrates of the desired Llo phase were prepared by drop coating silicon wafers

with FCC FePt nanoparticles followed by thermal annealing (550°C). FePt nanoparticle films

were synthesized based on the polyol derived methods of Murray et. al. (11) and involved the

simultaneous thermal decomposition of a Iron pentacarbonyl and the diol reduction of Platinum

acetylacetonate in the presence of cooperative particle stabilizers, oleic acid and oleyl amine.

Specifically, using standard airless techniques, Platinum acetalacetonate (0.5mM, sigma) and 1,2

Hexadecanediol (1.5mM) were dissolved in Dioctylether(20mL) and heated to 100°C to remove

any dissolved water. A solution of Oleic acid (0.5mM), Oleyl amine (0.5mM) and Iron

pentacarbonyl (lmM) was added to the reaction vessel and the entire contents were heated to

297°C, under constant stirring, and allowed to reflux for 30 minutes before removal of the

heating mantle. After the solution had cooled to room temperature the reaction vessel could be

opened to the atmosphere for collection of the product. Ethanol precipitation followed by

centrifugation and resuspension in hexane removed any unwanted reaction byproducts and

yielded monodisperse FePt nanoparticles (5nm) as confirmed by TEM and XRD analysis

(figure2.2). Annealing of silicon wafer coated with the FePt nanoparticle solution was carried

out at 550°C with a ramp rate of 5 deg/min and a dwell time of 60min. The furnace was kept

under a positive pressure of forming gas (5% H2) to prevent the onset of oxidation of the films.

Annealing at 550°C promotes the phase transition between the FCC disordered phase of the as

synthesized particles to the ferromagnetic L10 phase desired for magnetic applications.
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Figure 2.2 XRD analysis of Pre (left) and post (right) annealed chemically synthesized FePt nanoparticles.

Selection was performed on previously described in the phage display methods section

and the results of the Ph.D. 12 and Ph.D. 7c screenings are given in tables 2.4 and 2.5,

respectively.

Table 2.4 Iron Platinum binding sequences from the Ph.D. 12 library

Se uence
Round 4 N G Q I P Q L S H F P S

S A P P T P Y Q L P A L
A H R H P I S F L S T L
G S P G H H H H H P D R
H N K H L P S T Q P L A
G P H H K N E P H R H G
H K P Q K P P S P H L L
N R N V E T P L L R N L
p L R P E P V Q T L H N
H N K H L P S T Q P L A

Round 5 L P N G Y H Q R G L L X
H N K H L P S T Q P L A
S V S V G M K P S P R P
S V S V G M K P S P R P
N G Q I P Q L S H F P S
H T K P I N P K L L R y
X S R X X F L A P L G W
L F L L X X X P S P R P
H G K I K E P R H V E A
S L W P P K A y F S F S
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Table 2.5 Iron Platinum binding sequences from the Ph.D. 7c library

Se uence
Round 3 C S F P H G T L C

C M N K S P L R C
C T A A Q N K Y C
C M N K S P L R C
C G 0 M V 0 S T C
C I W N N P V R C

Round 4 C 0 G A P R T S C
C Q A P S S L Q C
C T T P L L P R C
C R T E P G L M C

Round 5 C P S L P N K H C
C S Q L G P K S C
C H T T A S K M C
C Q S T Q A N S C

2.3.2 Noble Metals

2.3.2.1 Gold (Au)

A 111 oriented single crystal gold ingot of 1cm in diameter and 0.5 cm in thickness was

purchased from gmbh for screening with the phage display library. X-ray analysis confirmed the

orientation of the crystal surface (figure 2.3). During the selection, the crystal was cleaned

between subsequent rounds with ethanol, dried and stored under nitrogen while not in use.

Between different selections the crystal was polished using a BueWer minimet polishing system

(Buehler Ltd., 41 Waukegan Road, Lake Bluff, Illinois 60044, USA) with a fmal polish solution

of O.5um diamond paste. To obtain a surface roughness less than 0.5um, a dilute solution of

potassium iodide was used as a chemical polish.

46



Figure 2.4 XRD diffraction pattern of the gold ingot showing the III reflection of the HCP crystal structure.

The selection proceeded as previously described in the phage display methods section

with the only notable change being the selective elution from the crystal surface only. This was

done by using the surface tension of the crystal to hold an aliquot of the elution buffer. This was

done to minimize binding events due to surface defects of the rough sides of the crystal and to

enrich the specific interaction with the (Ill) surface. The results of the screening with the Ph.D.

12 and Ph.D. 7c libraries are given in tables 2.6 and 2.7, respectively.
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Table 2.6 Gold binding sequences from the Ph.D.12 library

5e uence
Round 3 A L P A A Y A H T P Q E

0 G 0 H L R Q A P N H W
N G L 5 H X V S R L P V
5 A N P E S Q L P H R P
G L E H N Q P S P G L N
0 V 5 L S K R L E R P S
L T L 0 P I A K R P y S
V N N T T V 5 P E H H T
E S 5 5 K Y 5 A L R G H
V N K T T V 5 P E H H T
L T N S T S H L T T y R
H 5 L F H Q P S K Q H R

Round 4 L Q A H L P P 5 R L W X
F 0 H T S T T L H K E V
T V S A P A I T R 5 T P
L K A H L P P 5 R L P 5
L K A H W P P 5 R L P S
L K A H W L L 5 R L P S

Round 5 F 0 H T S T T L H K E V
L K A H L P P 5 R L P 5
W K A H L P P 5 R L P 5
L K A H L P P R R L P 5
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2.3.2.2 Platinum (Pt)

Platinum foil was purchased from Alfa aesar and had a chemical purity of 99.99%. The

foil was annealed under argon at 400°C with a ramp rate of 5deglmin and a dwell time of 120

minutes to decrease surface roughness which also promoted the 220 crystal face as determined

by XRD (figure 2.4).
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Figure 2.4 XRD pattern of the Pt foil used for library screening. Full peak intensities are shown in the insert.

Cleaning of the foil between subsequent rounds of the selection was performed by

flaming the sample with a Bunsen burner followed by rinsing with ethanol and repeated three

times. Screening was carried out with the Ph.D. 12 library previously described in the phage

display methods section and the results are given in table 2.8.
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Table 2.8 Platinum binding sequences from the Ph.D. 12 library

Se uence
Round 3 T A Y H R N T L P H L A

T A Y H R N T L P H L A
P L H L P 0 T Q A R P S
S L 0 G K P L P S P G T
S L P A S T S T K N H V
G P G V P L S L M N K T

Round 4 P Q P A P T R L H H P N
V P L T M A L R N P T A
A F L A A P T S M R P V
A V P Q R M P K P P L V
G P G V P L S L M N K T

Round 5 Y L E L S S K G P G P S
P Q P A P T R L H H P N
S P R Y T S T H L P S F
G P G V P L S L M N K T

2.3.2.3 Copper (Cu)

A (Ill) oriented single crystal copper ingot of 1cm in diameter and 0.5 cm in thickness

was received as a gift from the Professor Campion, the University of Texas at Austin,

Department of Chemistry and Biochemistry, for screening with the phage display library.During

the selection, the crystal was cleaned between subsequent rounds with ethanol, and dried and

stored under nitrogen while not in use. Between different selections the crystal was polished

using a Buehler minimet polishing system with a fmal polish solution of 0.5um diamond paste.

The selection proceeded as previously described in the phage display methods section with the

only notable change being the selective elution from the crystal surface only. This was done by

using the surface tension of the crystal to hold an aliquot of the elution buffer to minimize

binding events due to surface defects of the rough sides of the crystal and to enrich the specific

interaction with the (Ill) surface. Screening of the copper surface yielded no phage. The

dissolution of copper ions into solution killed all phage activity and function. The effect of
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copper IOns from the surface was verified by UVNis absorption spectroscopy (figure 2.5).

Phage in TBS, that had been exposed to the copper crystal were compared to known

concentrations of CuCh. According to the results, copper is electrolessly dissolved into solution

on the order of IOOmM.

Absorbance Spectra for Cu(II)CI Dlllutions & Phage Exposed to Cu Crystal In TBS
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Figure 2.5 UVNis adsorption spectrum of the eluate from the peptide library screening of the Cu (111) surface
(solid) and standard dilutions ofCoC12.

2.4 Discussion

Magnetic Materials -

The magnetic materials screened were the Llo phases of CoPt and FePt, and the HCP

phase of Cobalt. After five rounds of screening, dominant sequences emerged from the phage

display process. The CoPt screening process yielded a peptide with the sequence

KTHEIHSPLLHK, for FePt the sequence was HNKHLPSTQPLA, and for cobalt the sequence
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was ALSPHSAPLTLY. The sequences for CoPt and FePt contain numerous amines, which are

known to be excellent ligands for platinum, and lysine in particular is believed to be essential in

the mechanism of the binding of HMG domain proteins to the Pt/DNA complex formed in

cisplatin-based cancer therapies (13). Additionally, there are several examples in the literature of

using Pt salts to bind histidine residues for studying protein activity (14,15) and for staining

proteins with heavy metals to facilitate x-ray crystallography. Performing BLAST searches on

these proteins yielded interesting results. Both of these proteins possess similarities with

numerous naturally occurring proteins. For example, the metal binding protein Fe (III)-coprogen

receptor of salmonella typhimurium contains the peptide sequence KHLPST (16) This sequence

is identical to the central section of the FePt-specific dodecapeptide isolated in these

experiments, and the CoPt-specific dodecapeptide contains the sequence SPLLHK, which is an

identical sequence expressed in the opposite order with the addition of an extra leucine. The

KHLPST sequence can also be found in pilin, a fiber-forming protein found in e. coli and

numerous other microorganisms (17) Additionally, Co transport proteins contain numerous,

alternating histidine residues, which are known to bind Co+2 (18), and which is a similar primary

structure to the CoPt-specific dodecapeptide isolated in these experiments. The cobalt sequence

on the other hand has no lysine residues, but does contain the H, L, P, S, T residues believed to

be responsible for the Co+2 binding in these peptides. Its side groups are dominated by hydroxyl

groups that may interact with an oxide layer on the substrate surface.

Noble Metals --

The Noble metals screened were the (111) face of both gold and copper, and the (220)

face of platinum. The reactivity of the copper surface, combined with the interference of the free
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copper ions with the phage biology, prohibited biopanning. The gold binding sequence

LKAHLPPSRLPS has numerous positive amine side groups that are forced into the same plane

by the double proline residue located in the center of the peptide. These groups are known

binders for gold, especially on the histadine residue (19). Proline residues are also known

binders for Ag-, and may also play a role in the binding mechanism (20).

2.5 Characterization offunctionalpeptides

2.5.1 Binding Affinities

In order to asses the level of selection capable using the phage display system on both the

magnetic and noble systems discussed above adsorption isotherms were obtained for cobalt and

gold using tittering and Surface Plasmon Resonance analysis, respectively. Both methods

yielded plots of equilibrium surface concentration versus solution concentration. This data was

fit using a mathematical model of the Langmuir isotherm y = (Ceq x a)/(Ceq + b) were the binding

constant KD is taken to be the ratio of b/a (21). Minimization of adsorbate-adsorbate interactions

by the use of Tween-20 was used to more accurately fit the system into the Langmuir model.

Titering Isotherms -

Because tittering provides solution concentrations of phage, the relative number of

surface binders can be determined. Phage expressing the cobalt functional sequence as a fusion

to the gPIII were amplified, tittered, and diluted to known concentrations. Interaction of these

stock solutions with cobalt substrates for one hour was followed by tittering of the solution. The

difference between the number of phage put into the system and that which was collected was

used to determine the equilibrium surface concentration. Fitting of the data with a mathematical
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model of the langmuir isotherm yielded a binding constant on the order of 17pM (figure 2.6).

Titering does not provide a highly accurate count of phage, and it is therefore difficult to achieve

a quantitative binding constant. Because of this Surface Plasmon resonance and spectroscopic

determination of phage combination was used to further understand the degree of phage-

substrate interactions.
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Figure 2.6 Adsorption isotherm of the Cobalt binding peptide as dctermincd by thc tittering method.

SPR Isotherms -

Surface plasmon resonance responses were collected on a thermally evaporated gold

substrate (biacore SPAIOO) that had been cleaned overnight in gly-HCI (pH 2.2) with

sonication( 15min) and then seasoned overnight in TBST Running Buffer with sonication

(30min). Sensograms where collected at a flow rate of 4uL/min of sonicated, filtered and

degassed TBST buffer (pH 7.5), and samples where run under the kinject method with an

injection volume of 40uL per sample. A virus expressing the gold binding dodecapeptide as

fusion to the gPIII was amplified and purified for analysis (figure 2.7). Also, a randomly selected
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phage expressing a gPIII dodecapeptide from the same library as the gold binding phage was

analyzed and used to isolate the affmity of the gPIIl fusion peptide from any binding effects of

the gPVIII capsid; solutions were prepared in the same manner. Each of the five concentrations

of the gold binding clone (0.7, 1.3, 1.9, 2.6, 7.8 nM) were repeated three times and yielded

extremely reproducible results, on the basis that the sample be thoroughly mixed before injection

(the standard deviation of the first two samples being higher than for the remainders for this

reason.) Because of the reproducibility of the biacore 2000, the control experiments where only

run once per dilution of the randomly selected peptide displaying phage. Concentration of the

stock solutions were determined both by solid weight and by UV spectrophotometry at 269nm

(22). Data was collected on a PC and analyzed using the biacore software and igor pro graphing

package.
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Figure 2.7 SPR sensograms of the bacteriophage displaying the gold binding dodecapeptide.
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The recorded sensograms where averaged and the equilibrium surface concentrations

were recorded as the maximum signal during exposure of the analyte to the surface. A fit of the

data using a mathematical representation of the langmuir isotherm showed a twenty fold increase

in binding affinity of the gold specific peptide over that of the randomly selected phage

displaying the peptide sequence SPIASYPPPASP (figure 2.8). The values calculated were KD =

860pM for the gold binding peptide and 19nM for the randomly selected peptide. This

demonstrates that multiple phage/material interactions could take place within the same synthesis'

without interference.
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Figure 2.8 Adsorption isothenns of bacteriophage expressing the gold binding dodecapeptide (solid) and a
randomly selected dodecapeptide (dashed) as a fusion to the gPIII protein on the proximal tip of the virus.
Equilibriwn surface concentrations were determined by SPR.

The free gold specific peptide (LKAHLPPSRLPS) was ordered for further studies from

the core facilities at MJ.T'J and prepared into solutions of known concentration. The free

peptide was also analyzed by SPR and had a binding constant of 17uMJ which is approximately

four orders of magnitude less than that of the phage (figure 2.9). This is in agreement with the
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fact that there are approximately three to five copies of the gPIII fusion for every phage particle.

Confirmation of the binding affmity of the free peptide further validates the SPR technique as a

facile route for determining the substrate affmities of gPIII fusion peptides (23) .

•
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Figure 2.9 Adsorption isotherm of the Au 12-4-4 free peptide as determined by SPR.

2.5.2 Computational Analysis

Molecular mechanics simulations of the gold binding peptide LKAHLPPSRLPS in a

50A3 periodic solvent box (2014 water molecules) using the AMBER force field (Hyperchem

6.0) were run on an Athalon 2100 personal computer running at 1.7 GHz; clock times where on

the order of 3-5 days. Molecular mechanics modeling of the gold specific peptide revealed that

the Pro-Pro residue has a dramatic effect on the secondary structure of the peptide bringing the

reactive side groups in plane with each other, providing a possible means of attachment to the

gold surface (figure 2.10).
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Figure 2.10 Molecular Mechanics simulation of the gold binding peptide in a periodic solvent box. The Pro-Pro
residue in the center of the peptide has a dramatic effect on the overall peptide structure.
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CHAPTER 3

3.1 Introduction

The same genetic versatility of the Ml13 phage that makes its advantageous for use as a

screening vehicle also provides the ability to develop a biological scaffold for synthesizing and

organizing materials on the nanometer scale (1). Peptides displayed on the proximal tip of the

phage (gPIII) discovered during the phage display screening of inorganic substrates can be

displayed on three other proteins that make up the bacteriophage (gPVI, VII, VIII). This genetic

flexibility can enable the virus with multiple functionalities based on placement and copy

number of expressed peptides (2). The synergy between using the phage as a screening device

and as a bioscaffold expedites the time in which a completely new material can be screening and

implemented into functional devices.

3.2 Display of Peptides

3.2.1 Proximal Tip Display

The M 13 bacteriophage used in the library has been genetically altered in their native

DNA to express specific peptides which are randomly generated during transcription. Because of

this, phage isolated during the selection process need no further modification in order to express

functional pept-ides as fusions to the gPIII protein. Further, by having the peptide fusion

incorporated into the complete M13 genome, expression occurs at 100% efficiency. That is,

every copy of the gPIII protein on the phage particle will display a copy of the functional

peptide. It should be noted that peptides not discovered through phage display can be displayed

by incorporating the appropriate oligos into the M13 genome or via a phagemid system,

discussed in the next section. Concentrated stock solutions of phage expressing a desired gPIII
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fusion peptide are obtained by isolation of a single bacterial plaque that has experienced only a

single infection event during the tittering process, followed by amplification using standard

techniques (3).

3.2.2 Capsid Display

Display of functional peptides, discovered through phage display screening, as a fusion

onto the gP VIII phage capsid protein was achieved using the pMoPac33 vector phagemid

system constructed by Andrew Hayhurst (Gergiou Laboratory, University of Texas, Austin,

ICMB). In general, a modified phage DNA plasmid (phagemid), coding for the production of

the gPVIII protein, with the addition of a fusion peptide, is inserted into a bacterial host that can

be infected by the M13 bacteriophage. The sequence of the fusion peptide is determined by a

region of the vector that is easily changed using standard restriction and ligation procedures (4).

As the modified DNA does not contain the entire phage genome, a helper phage, that does

include all of the genes necessary for phage production, must be introduced into the bacterial

host through an infection event. After infection with the helper phage, which begins expression

of the native (or wild type) gPVIII protein, expression of the modified DNA is induced by

activation of the lacZ gene by IPTG. This begins expression of the modified gPVIII protein that

has the functional peptide fusion. During the assembly process gPV DNA sequestering proteins

are replaced by the gPVIII protein as extrusion of the phage particle occurs through the cell

membrane (5). Because there are now both modified and unmodified gPVIII proteins available

during assembly, both will be incorporated into the phage particle. The degree to which

incorporation of the modified gPVIII protein will occur is then only dependant on any
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deleterious effects that the fusion peptide has on the stability of the phage capsid. These effects

are typically steric and or electrostatic in nature, and thus limit the size and charge of peptides

that can be fused to the gPVIII protein (6, 7).

Specifically, the pMoPac33 vector is based on the pAK400 vector developed by Krebber

et aI, with the exceptions; ampicilin resistance marker; a HuCk domain for scAb (scFv-HuCk)

expression; a his6-myc tag of pHEN2; a skp cistron (figure 3.1). The pMoPac33 phagemid was

received from A. hayhurst in an e. coli host.

lacI

f1

tetA

Figure 3.1 pMoPac33 vector (-6760 base pairs) used for expressing pep tides as a fusion to the gPVIII capsid
protein. The region in black is the peptide insert region and is flanked by gene VITIand the SFi Irestriction site.

The pMoPac33 vector was prepared for ligation with the oligos by amplifying it in its bacterial

host, followed by purification using gel electrophoresis. A Qiagen DNA miniprep (QIAprep@

Miniprep) kit was used for DNA purification and involved an alkaline lysis of the amplified

bacteria, followed by adsorption of the pMoPac33 DNA onto a silica membrane, allowing for the

thorough removal of lysate via washing. A single colony of bacteria containing the pMoPac 16

vector was isolated from a bacterial lawn and amplified in LB medium at 37°C under vigorous
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shaking for -12 hours. The cells were collected by centrifugation at 10,000 rpm at 4°C for 10

minutes. The bacteria are then lysed using an alkaline buffer followed by neutralization, and

adjustment of the DNA containing solution to high-salt binding conditions using the appropriate

buffers provided in the kit. Isolation of the DNA from the lysate was carried out using the

QIAprep silica membrane. DNA selectively binds to the membranes under high-salt conditions.

After immobilization of the DNA onto the membranes, lysate is removed by washing of the

membrane with a guanidine hydrochloride / isopropanol containing buffer. Elution of the DNA

is achieved by reducing the salt concentration of the solution, typically by incubation of the

membrane in type 1 water adjusted to a pH of 7.5; maximum elution efficiency is achieved in the

pH range 7.0-8.5, according to the QIAprep handbook (8). The isolated DNA was prepared for

ligation by reaction with the Sfil restriction enzyme. 2uL of the mini prep DNA was added to

5uL NE Buffer 2; 0.5uL BSA; luL SfiI; and water to a final volume of 50uL. This was

incubated at 50°C for four hours. After the restriction digest, gel electrophoresis was used to

verify the SfiI/DNA interaction and to isolate the desired DNA fragment. 1OuL of the digest

product was mixed with equal amounts of gel loading buffer and run on a 1% agarose (ethidium

bromide) gel at 120V for -30min ( will vary and should be monitored closely during the first

attempt to gage running time.) A lkb DNA ladder was also loaded into the gels as a marker for

determining the molecular weights of the isolated digest products. The DNA band at

approximately 4700kb was cut from the gel using a uv light box for visualization. A gel

extraction kit (Qiagen) was used to separate the DNA from the agarose gel by dissolution of the

gel using the QC buffer, followed by isopropanol induced precipitation of the DNA. The DNA

precipitate was collected by centrifugation of the solution through a membrane. A wash fluid
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was placed above the membrane and centrifuged through to remove any residue from the DNA.

After washing, the DNA was eluted from the membrane using the appropriate buffer provided.

Appropriate oligos were ordered that encoded for the desired peptide fusion, and

followed the form of...

5' - CGGCCATGGCG ... TCGG - 3'

3' - TCGGCCGGTACCGC ... A - 5'

where the underlined spaces represent the standard genetic code of the amino acids in the fusion

peptide. Preparations of the oligos for ligation into the prepared DNA discussed above involved

the preparation of 50pM/uL solutions in TBS. The oligos solution was then annealed in ligation

buffer at 80°C for 5 minutes, followed by cooling to room temperature. Ligation proceeded by

reaction of the annealed oligos with the gel purified DNA in ATP containing ligation buffer, and

was initiated by the addition of T4 DNA ligase; ATP is a co-enzyme to the T4 DNA ligase, and

is necessary for ligation to occur. Transformation of the plasimid into the e. coli host was

achieved using competent cells, either electro or chemical (Ca2+), which were grown from a

glycerol stock solution stored at -80°C. Cells that have not been cryogenically stored have

greater transformation efficiency, and should always be prepared immediately prior to

transformation. Ligated plasmid containing the oligo insert, along with ligated plasmid not

containing an insert and non-digested pMopacl16 plasmid (as negative and positive controls,

respectively) were spread onto ampicilin containing agarose plates and incubated overnight at

37°C. Digestion of the amplified plasimid and negative control plasmid is performed for gel

electrophoresis analysis of the two systems. The bands in the two systems should be identical
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with the exception of the insert size. Sequencing of the DNA using the AHX167 primer ( 5' -

GCCTACGGCAGCCGCTGG - 3' confirmed the presence of the oligos.

Amplification --

Amplification of the modified gPVIII phagemid bacteria was carried out by selection of a

single colony fom the ampicilin plates and incubating it with 50mL of LB media at 37°C for 12

hours under vigorous shaking; this is referred to as an overnight culture (OC). A 100-fold

dilution of the OC into cell growth media is prepared and incubated at 37°C for approximately

two hours under vigorous shaking (300-500 RPM), or until the solution has reached the mid-log

phase. Infection of the culture with helper phage at the optimum infection ratio of cells to phage

(5:1) is followed by incubation without shaking for 45 minutes. The infection process is allowed

to occur at 37°C without shaking, to prevent shearing of the phage particle in the cell wall due to

the forces generated by the shaking. After the initial infection event has occurred, chemical

induction of the phagemid is achieved by addition of 1 OOuM/uL of IPTG. The culture is then

allowed to grow at 37°C under vigorous shaking for four to six hours. For large scale

amplification (volumes greater than 500mL) one can use either LB or Glucose containing terrific

broth (TB). Terrific broth supports greater cell densities, producing a higher yield of phage, but

the phage seem to have a lower expression of the modified peptide than when grown in LB. The

choice of growth media is then determined by the end application of the phage. For solution

based applications (such as mineralization.) the use of TB is advantageous, as it produces a

greater overall number of functional peptides. If it is imperative that each phage have a high

expression number of functional peptides, than it is suggested that LB be used as the cell growth

medium.
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Isolation of the amplified phage is achieved by removal of the e. coli by centrifugation at

10,000 rpm (4°C) for 15 minutes. This process is repeated and the upper 80% of the supernatant

is collected for further purification of the phage. Addition of 1/6 by volume of 20% PEG-NaCl

at 4°C for 12 hours induces precipitation of the phage. The phage is then removed from solution

by centrifugation (10,000rpm, 4°C, 10 min.) and resuspended in TBS. This process is repeated,

with the exception that the phage precipitation occurs at 0° C for two hours. After resuspension

of the phage pellet into TBS, an equal amount of chloroform is added to remove any residual cell

lysate and to further purify the phage stock. Separation of the two phases is completed by

centrifugation at low speeds (300-500 rpm) for five minutes. Removal of the aqueous phase

without disturbance of the chloroform layer results in a clean phage stock; failure to fully remove

e. coli cells and cell lysate dramatically reduces the shelf life of amplified phage stocks.

Although it is imperative for phage viability that they be stored, in the short term, in TBS pH 7.5

at 4°C, the high salt concentration of the TBS often interferes with the experiments discussed in

later chapters. Therefore, dialysis of the amplified phage stock against 4L of type 1 water using

15mL dialysis cassettes (promega) was performed for 4 hours with the water being changed out

every hour. Complete removal of the TBS buffer results in the precipitation of the phage, which

is reversible under addition of TBS. Phage stocks can be stored for long periods at -20°C.

3.2.3 Distal Display

Expression of the gold binding peptide as a fusion to the gPIX protein on the distal tip of

the phage particle was achieved using a similar phagemid system as discussed above. Although

this was done tlo provide a tri functional phage for device assembly, it was determined through

experiment that having only one terminus of the phage binding to the substrate was preferable
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for flow alignment. Also, multiple functionalities for the same substrate caused fouling of the

surface with phage through non-specific matting.

3.2.4 Multifunctional Display

The utilization of multiple components of the M13 bacteriophage is achievable by

combining the two strategies for expressing fusion peptides discussed above. To achieve bi- and

tri-functional phage, a gPVIII phagemid system is infected with a library selected helper phage.

Because the gPIII fusion is incorporated into the full genome provided by the helper phage. It

will be expressed with 100% efficiency and occurs without any further modification to the

system. Introduction of the phagemid into the host cell then allows for the incorporation of

modified gPVIII proteins into the capsid of the modified gPIII phage. This system can be further

extended to include functional peptide fusions to the proximal (gPIII), distal (gPVII) and capsid

(gPVIII) by incorporating both the gpVIII and gPVI1 genes into the phagemid system. This was

performed for the gold system and for the CoPt system yielding phage whose distal tip displayed

the gold specific peptide LKAHLPPSRLPS and whose capsid displayed either the gold specific

or CoPt specific peptide. The functionality of the proximal tip was then determined by the

helper phage used.

3.3 Modeling of displayed peptides

gPVlII incorporation Density-

Computational analysis was performed with help from Stephen Kottmann to obtain a clear image

of the modified capsid system in which a fusion peptide is randomly incorporated during phage

assembly. Incorporation of modified gPVIII monomers during phage assembly is highly
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dependant on the size and charge of the fusion peptide expressed. Therefore it is necessary to

determine a minimum incorporation percentage that will yield a phage capsid with sufficient

functional peptide expression so as to act as a usable bioscaffold. In order to obtain a qualitative

figure of minimum incorporation, the phage capsid was constructed with the random

incorporation of the modified gPVIII monomer and analyzed for fusion peptide density. All

structural data of the wild type capsid was obtained from the Protein Data Bank (PDB) file # 1 ifj,

authored by D.A. Marvin et al. In summary, fiber diffraction data on the filamentous

bacteriophage was obtained at a resolution of 3.3A. Hyperchem 6.0 was used to add the A7 ZnS

specific constrained heptapeptide to the gPVIII monomer as obtained from the PDB file followed

by energy minimization of the fusion peptide using the Fletcher-Reeves conjugate gradient

optimization algorithm. Because the gPVIII monomer structure was determined via x-ray

crystallography, it was not allowed to move during the energy minimization, but was present in

the calculations. The capsid was then reconstructed from the PDB data with the modified gPVIII

monomer unit added to the assembly matrix using a random number generator set to

predetermined incorporation percentage. The fusion peptide density was then calculated for

incorporation percentages between zero and one hundred. The density followed a linear trend

similar to that obtained from a 1-D test system. However, according to this method, the fusion

peptide nearest neighbor separation levels off at approximately 3.0nm at and above 20%

incorporation (figure 3.2). Consequently, high incorporation of the substrate specific fusion

peptides is not required for complete mineralization of the virus to occur.
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Figure 3.2 Nearest neighbor distance for gPVIII fusion peptides as a function of expression efficiency (left).
Surface density of the gPVIII fusion peptide as a function of expression efficiency (right).

Peptide Stability -

During assembly, stacking of the gP8 unit cell results in a five-fold symmetry down the

length (c-axis) of the virus (figure 3.3) and is the origin of the ordering of fusion peptides in a

three-dimensional structure (figure 3.4). To exam whether or not the symmetry of the phage

capsid is imparted to the fusion peptide, monte carlo calculation of a model peptide system was

performed.

Figure 3.3 Visualization of the phage capsid expressing a 7c peptide as a fusion to the gPVIII protein along the c-
axis of the virus.
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Figure 3.4 Visualization of the fusion peptide on the gPVIII capsid. Image represents a 20% expression
efficiency.

The A7 constrained heptapeptide was chosen for simulation and the overall dihedral

angle was calculated for the free unconstrained peptide; the disulphide constrained peptide; the

disulphide constrained peptide in a capsid segment after 1 million steps. The peptide inserts

were modeled in the capsid environment using Monte Carlo software MCPRO (Jorgensen, W.L.,

MCPRO, Version 1.68, Yale University, New Haven, CT, 2002.) with solvent effects accounted

for by the Poisson-Boltzmann toolkit ZAP (OpenEye Scientific Software.) The values obtained

for the overall dihedral angle of the peptides were 27.269, 18.103, and 14.267 respectively and

are visualized in figure 3.5.
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Figure 3.5 Representations of the dihedral angle of the A7 constrained heptamer peptide as a Free peptide (right)
constrained peptide (center) and as expressed in the capsid of the M13 bacteriophage. The darkest region represents
+/- cr, and the area covered by the medium dark color represents an angle of +/- 2cr.

3.5 Discussion

The dramatic decrease of the overall dihedral angle of the A7 constrained peptide

demonstrates that the peptide influences steric effects when inserted into the capsid. This is an

important aspect of the M13 bacteriophage as a bioscaffold. By being able to display peptides

along the capsid in a uniformly oriented manner, a rigid, reproducible template can be easily

synthesized through bacterial amplification. The multiple display regions, and the possibility of

incorporating functional peptides into proteins not in the phage assembly, but encoded for by the

M13 genome provide multiple pathways for exploring biomineralization.
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CHAPTER 4

4.1 Introduction

Biological organisms have evolved the ability to control the synthesis and assembly of

inorganic materials through proteins under environmentally benign conditions. Several

examples exist in nature of protein-mediated inorganic synthesis, and researchers have begun

manipulating these organisms and proteins to synthesize inorganic materials with controlled

composition and crystallinity. Examples include the use of viruses expressing material-specific

peptides to nucleate semiconducting nanoparticles(1,2), modification of the iron storage protein

ferritin (3), manipulation of bacteria and yeast to produce semiconducting materials (4), and

metal-specific polypeptides selected from combinatorial libraries (5). Biological factors have

also been used to assemble nanoscale materials into heterostructures using self-assembly motifs

commonly found in nature (6).

Here we use biological templating as a synthetic scheme to nucleate and organize

nanoparticles of technologically important materials. This biologically based synthetic strategy

has several advantages over more recent chemical synthetic methods including the direct

synthesis of the desired magnetic crystalline phase and synthesis of the magnetic materials under

ambient temperature, pressure, and atmosphere (7). In addition the viral system employed uses

bacterial amplification of the "organic" templates, making their synthesis easy and cost effective.

4.2 Methods and Materials

All peptide driven materials synthesis involved incubation of the peptide template with

aqueous metal salts. For semiconducting materials, precursors were added sequentially and

included; CdCl2 ; ZnCl2 ; NaS. For the magnetic materials studied, CdCI2; FeCl2; H2PtCl6 were

used as the precursors and were added simultaneously in the case of the alloy systems CoPt and
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FePt. Metallic and magnetic materials required the chemical reduction of the ionic precursors

into their zero valent state. Sodium borohydride (NaBH 4) was used at or bellow 50mM

concentrations. Above 100mM, phage are no longer stable and loose their ability to infect,

which is taken as a sign of disassembly of the capsid.

In the case of FePt 1 ml of phage displaying the functional dodecapeptide on the

proximal tip (1012 phage/ml) was mixed with 5 ml of 0.01mM FeCl2 and 5 ml of 0.01 mM

H2PtCl 6 . This mixture was vortexed for ten minutes to ensure mixing, and 5 ml of 0.05 M

NaBH4 was added to reduce the metals forming the desired nanoparticles. Nanoparticles of CoPt

and Co were prepared similarly by substituting the corresponding metal salts at similar

concentrations.

Particle nucleation using the synthetic peptide was accomplished by substituting 100 ml

of synthetic peptide (Sigma-Genosys) at a concentration of 10 mg/ml. Particles were

precipitated from solution by pegylation (addition of 5 ml of 20% PEG-NaCl solution (w/v),

followed by incubating at 4 C for 60 minutes.) Following precipitation, the solution was

centrifuged at 10,000 g for 10 minutes. The black pellet was resuspended in ml of H20 for

further analysis.

CoPt wires were synthesized by the interaction of lmL of CoPt specific viruses (1012

phage/mL) with 0.5mM CoCl2 and 0.5mM H2 PtCl 6 in a 1:1 ratio at 0°C overnight. In the case of

FePt I ml of phage (1012 phage/ml) was mixed with 0.01 mM FeCl2 and 0.01 mM H2PtCl 6.

These mixtures were vortexed for ten minutes to ensure proper mixing, and 0.1 M NaBH4 was

added to reduce the metals forming the desired nanoparticles. The solution was allowed to rest

for at least two hours to let the reaction go to completion as any unreacted NaBH4 will react with

the TEM grid causing it to foul. The CoPt and FePt systems were applied directly to SiO TEM
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grids. Annealing of the samples was performed under forming gas (5% H2) to prevent the onset

of oxidation for 3 hours at 350° C with a ramp rate of 5°C/min. using a Thermolyne tube furnace.

Thermal gravimetric analysis was performed on the Perkin Elmer 200 TGA/DTA, with

flow gasses consisting of air, argon, and forming gas (5% H2). Samples were prepared by

centrifugation of the virus-particle suspension into lmg pellets and allowed to dry. TEM

Thermal analysis of the CoPt system was performed in situ on the JEOL 200CX microscope

operated at 200 kV, using a Gatan heat stage.

For TEM analysis, nanoparticles were imaged using a JEOL 200CX, JEOL 2010, or

JEOL 2010F TEM microscope. To image and map the nanoparticle wires, the JEOL 2010 OF was

operated under HAADF STEM mode along with energy dispersive x-ray spectroscopy (EDS)

compositional mapping. Annealing of the TEM samples for analysis required the use of

reinforced TEM grids (200A of SiO coated with 100A of amorphous carbon), that have had the

formvar support layer removed.

For XRD measurements the concentrated particle solutions were dialyzed into 18 MOhm

H20. Following dialysis, the nanoparticles were drop-coated onto Si wafers and analyzed using

a Rigaku RU300 diffractometer. For SQUID measurements, the concentrated samples were

dried to a black powder and analyzed using a Quantum Design DC SQUID.
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4.3 Nucleation

The peptides selected in these experiments that bind specifically to metallic, magnetic

and semiconducting materials are able to exhibit control over the crystallization of

nanostructures (8). Three functional peptide systems were developed for studying the ability of

said peptides to control the shape, size, composition and morphology of nanoscaled materials

and include; gPIII fusion systems; free peptides; gPVIII fusion systems. Because the functional

peptide discovered during phage display is already encoded in the genome of the isolated phage,

amplification of the selected clone is the most economical and easily producible means of

generating the desired peptide in large quantities. However, non-specific interactions of the

capsid during materials synthesis produced materials with greater defects and without control

over their physical properties. Because of this, functional peptides were synthesized using

standard peptide chemistry and used in subsequent studies.

Utilizing the linear form and high aspect ratio of the capsid is a natural direction for both

nucleating and organizing material on the nanoscale (9). Expression of functional peptides as a

fusion to the gPVIII capsid protein was achieved using a phagmid system (10). Expression

efficiencies greater than 20% yielded phage-based bioscaffolds that could be completely

mineralized. The high crystallinity of the capsid imparts directional ordering of the peptide

fusion (11). This ordering is also imparted to the nucleated material and promotes preferential

crystallographic ordering of the nucleated material with respect to the c-axis of the phage.

Removal of the organic scaffold via thermal annealing then promotes single crystal growth

through a preferred orientation aggregation based mechanism (12), resulting in free standing

inorganic nanowires.
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4.3.1 Proximal Tip Nucleation

Low and high resolution transmission electron microscopy (TEM) images of FePt and

CoPt nanoparticles prepared using the gPIII modified phage confirm the room temperature

sYnthesis of the L10phase of these materials (figure 4.1).

Figure 4.1 Nucleation of FePt (top) and CoPt (bottom) nanoparticles using functional peptides displayed on the
gPIII protein located on the proximal tip of the phage particle. Low resolution (a,d) and High reolution (b,e) TEM
was used to image the particles. Electron dim-action patterns (c,f) confmned the presence of the L10 phase.

The lattice spacing in the image of the FePt particle is 0.22 nm, which is in good

agreement with the literature value of 0.219 nm for the (111) facet of L10 FePt (PcDF # 65-

1051). The lattice spacing of the CoPt nanoparticle in this image is 0.27 nm, and is good

agreement with the value of 0.269 nm for the (110) facet of CoPt (PDF # 3-1358). Additionally,

the selected area electron diffraction pattern (Figure 1c) indicates these nanoparticles are

composed of L10 FePt. The rings corresponding to the (110), (111), (201), (220) and (222)

facets are labeled and the (110) and (220) are especially indicative of L10 FePt. Previous
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experiments with FePt nanoparticles have demonstrated that the (110) band is not present in

films prepared from preannealed, disordered FePt nanoparticles (13,14), and its presence here

suggests the nanoparticles are nucleated as the LI0 phase of FePt. The selected area electron

diffraction pattern of these nanoparticles also confirms the presence of the Llo phase of CoPt,

and the reflection rings can be assigned to the same facets as the L10 FePt.

The proximal tip directed synthesis of these materials also exhibited relatively good

control over particle size. The FePt nanoparticles have an average diameter of 4.0 + 0.6 nm,

which is above the theoretical limit for sustaining a magnetic moment. The minimum size of

FePt nanoparticle that can act as a ferromagnet at room temperature is 2.8 nm (15). The CoPt

nanoparticles have an average diameter of 3.5 + 0.7 nm. Only non-crystalline and

polycrystalline nanoparticles could be found in control experiments involving phage that express

a random peptide, wild-type phage that do not express any insert, and no phage.

The magnetic properties of the nucleated nanoparticles were characterized using vibrating

sample magnetometry (VSM) and super conducting quantum interference device magnetometry

(SQUID). To accomplish this, the as-prepared FePt nanoparticles were pressed into a pellet and

characterized using a Quantum Design dc-SQUID magnetometer. The hysteresis loop taken at

300 K shown in Figure 4.2 shows the nanoparticles have a high saturation magnetization (Ms)

and a small amount of coercivity (10 Oe). To determine the cause of the low coercivity, Ms vs

T measurements were taken. Ms initially decreases quite rapidly with temperature. One possible

explanation for the behavior is the existent of a low Curie temperature phase. However, the

composition of such a phase is currently not clear. The initial reduction in Ms with temperature

is followed by a more gradual decrease for T>20K, and attempts to model this more gradual

decrease in Ms using the Brillouin function lead to a rather poor fit.
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Figure 4.2 SQUID analysis of the FePt particles synthesized by the FePt specific peptide displayed on the
proximal tip of the phage particle.

4.3.2 Free peptide Nucleation

The less than optimal magnetic conditions and presence of non-L10 FePt particles is

believed to be caused by the relatively low concentration of FePt-specific peptide in solution

since the peptide is expressed in low numbers at the proximal tip of the M1 3 bacteriaphage (16).

To investigate the effect of peptide concentration on nanoparticle nucleation, the FePt-

specific dodecapeptide was prepared synthetically. Figure 4.3a is a TEM image of the

subsequent narnoparticles. These nanoparticles have an average diameter of 4.1 + 0.6 nm, and

high resolution imaging (figure 4.3) shows the presence of lattice fringes. The spacing of the

fringes is 0.22 nm, which corresponds with the literature value of 0.2197 nm for the (111) facet

of L10 FePt. Figure 4.3c is an x-ray diffraction spectrum of these samples, showing the (110),

(111), (200), (202), and (112) peaks of L10 FePt (additional peaks in the spectrum correspond to

residual NaCl). The x-ray data indicates that these nanoparticles truly are composed of Llo FePt.

SQUID characterization at 300K (figure 4.3e) indicates that these nanoparticles are
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ferromagnetic at room temperature, possessing a coercivity of 300 Oe. This value of coercivity

is much higher than the coercivity found for as-prepared FePt nanoparticles synthesised using a

solution chemistry approach , which only become ferromagnetic at room temperature after

annealing (13,1 7). The nanoparticles prepared using biological templates do not require

subsequent annealing to achieve the desired ferromagnetic properties and this synthetic approach

represents the first synthetic strategy for preparing L1o FePt nanoparticles that are dispersed in

solution rather than immobilized on a substrate. This new approach can be used to prepare L 0lo

nanoparticles at room temperature, achieving the face-centered tetragonal structure, which is

typically only thermodynamically possible above 500 °C. In addition, these experiments show

the ability of genetically engineered bacteriophage to bind a non-biologically prepared surface

grown under non-aqueous conditions and template that same material under biological

conditions.
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Figure 4.3 Low (a) and high (b) resolution images of FePt nanoparticles grown using synthetically prepared FePt
specific dodecapeptide as a template with diffraction characterization, including X-ray diffraction (c) and selected
area electron diffraction (d). SQUID characterization of similar particles (e) taken at 300 K, and I 1m _ I 1m

4.3.3 Capsid Nucleation

All of the nanoparticles described above were prepared using phage that express the

peptide of interest on their P3 protein, a protein expressed on one end of their linear coat

structure, or with the free synthetic peptide. To achieve higher density nanoparticle synthesis,

the CoPt-specific peptide was expressed on the gPVIII protein of the phage, since the main body

of the wild-type phage is composed of 2700 copies of the gPVIII protein. This also provided a

linear template for organizing the nanoparticles.
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The general synthesis of 1-D nanostructures based on a genetically modified virus

scaffold for the directed growth and assembly of crystalline nanoparticles into 1-D arrays,

followed by annealing of the virus-particle assemblies into high aspect ratio, crystalline

nanowires through oriented, aggregation-based crystal growth (18). The synthesis of analogous

nanowire structures from fundamentally different materials, the II-VI semiconductors ZnS and

CdS and the L ferromagnetic alloys CoPt and FePt, demonstrates both the generality of the

virus scaffold and the ability to precisely control material characteristics through genetic

modification. In contrast to other synthetic methods, this approach allows for the genetic control

of crystalline semiconducting, metallic, oxide, and magnetic materials with a universal template.

Incorporation of these peptides into the highly ordered, self assembled capsid of the M13

bacteriophage virus provides a linear template that can simultaneously control particle phase and

composition, while maintaining an ease of material adaptability through genetic tuning of the

basic protein building blocks.

Mineralization of the ZnS and CdS systems have been described previously (1,10) and

involved incubation of the viral template with metal salt precursors at reduced temperatures to

promote uniform orientation of the peptide molecules during nucleation (19), leading to the

preferred crystallographic orientation of nucleated nanocrystals. Prior to annealing, wurtzite ZnS

and CdS nanocrystals (3-5nm) grown on the virus surface were in close contact and

preferentially oriented with the [001] direction and the (100) (ZnS) and (001) (CdS) planes

perpendicular o the wire length direction, and is supported by electron diffraction, high

resolution transmission electron microscopy (HRTEM), high angle annular dark-field scanning

transmission electron microscopy (HAADF-STEM), and dark-field diffraction-contrast imaging

(figure 4.4). Particles attached to the virus were prohibited from fusing under initial synthesis
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conditions due to the blocking effects of the nucleating peptides, and therefore required removal

of the template in order to form single crystal nanowires.

Electron microscopy of both the pre- and post-annealed ZnS and CdS viral nanowires

confirmed the preferential orderin prior to annealing and the retention of the crystallographic

direction after annealing. Dark-field Diffraction-contrast imaging of the pre-annealed ZnS

system using the (100) reflection reveals the crystallographic ordering of the nucleated

nanocrystals, were contrast stems from satisfying the (100) Bragg diffraction condition. The ED

pattern of the polycrystalline pre-annealed wire shows the wurtzite crystal structure and the

single crystal type [001] zone axis pattern, suggesting a strong [001] zone axis preferred

orientation of the nanocrystals on the viral template (figure 4.5a). Bright-field TEM image of an

individual ZnS nanowire formed after annealing confirms that the synthetic strategy can yield

single crystal nanowires. ED pattern along the [001] zone axis shows a single crystal wurtzite

structure of the annealed ZnS nanowire (figure 4.4b).

Figure 4.4 ZnS nanopartic1e-phage assemblies before (left) and after (right) annealing. (a) Dark-field image
showing the preferential alignment of the nanocrystals with respect to their crystallographic orientation. Insets show
ED patterns of the wurtzite structure.
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High Resolution TEM (HRTEM) of a ZnS single crystal nanowire shows a lattice image

that continually extends the length of the wire, further confrrming the single crystal nature of the

annealed nanowire (figure 4.5). The measured lattice spacing of 0.33 nm corresponds to the

(0 I0) planes in wurtzite ZnS crystals. A 30° orientation of (0 10) lattice planes with respect to the

nanowire axis is consistent with the (100) growth direction determined by ED. SYnthesis of CdS

wires also yielded single crystal wires confirmed by the HRTEM lattice image of an individual

CdS nanowire. The experimental lattice fringe spacing, 0.24 nm, is consistent with the unique

0.24519 run separation between two (102) planes in bulk wurtzite CdS crystals.

Figure 4.5 High Resolution TEM of the CdS annealed nanowires.

Annealing of the mineralized viruses at temperatures below the ZnS and CdS particle

melting point (400-500° C) allowed the polycrystalline assemblies to form single crystal

nanowires through removal of the organic template and minimization of the interfacial energy

(20). Electron diffraction and HRTEM revealed the single crystal nature of individual nanowires

that inherited the preferred orientation seen in the precursor polycrystalline wires through

removal of the grain boundaries (figure 4.6, 21,22). The [100] direction and (001) plane
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orientations of the observed ZnS nanowires were consistent with common elongation directions

for II-VI nanowires, even though these are thermodynamically high energy planes (12,18,23).

HRTEM of the single crystal CdS nanowires revealed a lattice spacing of 2.4 A that was

consistent with the unique 2.4519 A separation between two (102) planes in bulk wurtzite CdS

crystals (JCPDS #41-1049). The 43.1 ° orientation of (102) lattice planes with respect to the

nanowire axis indicated that the nanowire was elongated along the [001] direction and again

confirmed the wurtzite structure.

Extending the virus-directed synthesis approach to the ferromagnetic L 1o CoPt and FePt systems

was a natural direction for demonstrating both the diversity of applicable materials and to

address current technological issues regarding the development of low-dimensional magnetic

materials. Platinum alloyed magnetic materials of the chemically ordered L10 phase have been

of recent interest due to their high coercivity, resistance to oxidation, and inherent magnetic

anisotropy necessary for ultrahigh density recording media (24). Although synthetic routes such

as VLS yield exquisite 1-D semiconducting structures and non-specific template schemes are

applicable to a range of materials, both have faced difficulties in producing high-quality,

crystalline, metallic and magnetic nanowires in free standing form (25).

The M13 bacteriophage was modified by fusing either the CP7 CoPt specific or FP12

FePt specific peptide into the virus capsid. Nucleation of the CoPt and FePt particles was

achieved via the chemical reduction of metal precursor salts in the presence of gPVIII modified

phage. CoPt wires as synthesized by the modified virus template were soluble in water and

reduction of Co and Pt salts without the presence of the virus yielded large precipitates which

immediately fell out of solution (figure 4.6). TEM images of the unannealed CoPt nanoparticle-
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virus system showed a mesh like structure, believed to be caused by the magnetic interactions

between particles (figure 4.7).

100nm

Figure 4.7 CoPt nanowire synthesis with (right) and without (left) phage (a). Low resolution TEM image of
crystalline Llo CoPt wires (-650nm x 20nm), insert shows STEM image of the unannealed CoPt wires. Both scale
bars shown are IOOnm.

Figure 4.8. Unannealed CoPt nanoparticle-phage assemblies. Scale bars are 50nm and 20nm for the images on
the left and right respectively.

Annealing of the CoPt and FePt assemblies at 3500 C was necessary for the removal of

the virus template and promoted growth of crystalline nanowires that retained the L 10 phase of
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the as-prepared particles and were uniform in diameter (1Onm +/- 5%). The crystalline nature of

the wires can be seen in the selected area ED pattern (figure 4.8a, insert), which also shows the

characteristic (001) and (110) L 10 peaks, and by HRTEM lattice imaging. The (Ill) plane

perpendicular to the long axis of the CoPt wires with a lattice spacing of 2.177 A was in

agreement with the reported value of 2.176 A, and again confirmed the highly crystalline nature

of the material (figure 4.8 b, JCPDS #43-1358). Electron diffraction of the annealed CoPt wires

reveals the superlattice structure unique to the Llo phase (figure 4.8 b, insert). The persistence of

the L10 phase, which has been traditionally accessible only above 5500 C (26), was attributed to

the propensity of particles to maintain their original orientation during aggregation-based

annealing.

Figure 4.8 Annealed CoPt nanowires. Contious inorganic structures exhibit the characteristic Llo peaks in the
ED pattern (left, insert). HRTEM shows continuation of the crystal direction beyond the grain boundary (right). The
superlattice structure of the LI0 phase is evident by the ED pattern (insert).

This synthetic route also proved effective for the FePt system with Electron diffraction

of the unannealed FePt wires and annealed FePt wires confirming the L 10 nature of the FePt

wires and showing the crystalline nature of the material (figure 4.9).
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Figure 4.9 FePt nanoparticle-phage assemblies before (left) and after (right annealing). Electron diffraction of the
post annealed assemblies (at a 350°C, below the Llu transition temperature) confirms the presence of the Llu phase.

Magnetic analysis of the unannealed CoPt nanoparticles showed superparamagnetic

behavior, suggesting that even though the presence of the L 10 magnetic phase is present as

confirmed by electron diffraction, either the particle size is below the critical limit or that there is

a majority formation of non-chemically ordered CoPt particles (figure 4.10). Particles having an

effective size below the critical limit is believed to be caused by oxidation, and their intrinsically

smaller size compared to the FePt system.

-2 "
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Figure 4.10 SQUID of the CoPt nanoparticles synthesized using the CoPt specific dodecapeptide at 300K
(dashed) and 5K (solid).
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Thermal gravimetric analysis of the virus-particle system was used to obtain a critical

temperature for the synthesis of crystalline nanowires and showed removal of the organic

materials by 350°C. Although the analysis was performed under forming gas, there seemed to

evidence of continual material loss above 700°C, and is believed to be actual loss of the

inorganic material. No known mechanism for this loss is known, but it has been observed in the

laboratory of T. Thompson at IBM Almaden and communicated through personal

correspondence (figure 4.11).

This agreed well with the minimum temperature observed for the fusion of adjacent

particles by TEM with annealing performed in situ using a thermal stage (figure 4.12). Thermal

TEM analysis also revealed the importance of the temperature ramp rate. Rapid temperature

increases causes the particle assemblies to form large aggregates rather than wires, as the energy

shock promotes the lower energy confirmations of the system (figure 4.13).
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Figure 4.11 TGA analysis of the CoPt nanoparticle-phage assemblies under forming gas (5%H2, dashed) and
Nitrogen (solid). The reducing effect of the forming gas is evident by the lack of an oxide peak around 450°C.
Confirmation of the removal of the phage structure through a NaI/ethanol wash is observed by a significant
reduction of the lost material for the sample that had been treated to remove the virus from the system (dashed).

Figure 4.12 in situ thermal anlysis of a CoPT nanoparticle-phage assembly performed in the TEM.
Transformation of the nanoparticlcs into continuos structures occurs at approximately 3000 C.
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Figure 4.13 TEM micrograph of a CoPt nanoparticle-phage assembly at 400°C.

4.4 Discussion

Nature has evolved numerous proteins to control the crystallization of ionic solids, like

CaC03. The ferromagnetic materials synthesized in these experiments are radically different

from ionic solids prepared using precipitation reactions. These materials are metallic alloys and

are prepared by the reduction of metallic ions. The application of this technology to radically

different materials and different chemical reactions suggests that peptides have the potential to

fabricate a variety of inorganic materials that are not naturally evolved to coexist with biological

systems. However, this control over organization and length scale that biology has fine tuned

can be applied to these technologically important materials. This approach to synthesizing

inorganic materials is more environmentally friendly because it does not require halogenated

organic solvents like the alternative preparations. Additionally, the protocol is very robust and

could be applied to alternative magnetic materials.

The exploitation of the self-assembly motifs employed by the M 13 bacteriophage to

produce a biological scaffold provides a means of generating a complex, highly ordered, and

economical template for the general sYnthesis of single crystal nanowires. By introducing
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programmable genetic control over the composition, phase and assembly of nanoparticles, a

generic template for the universal synthesis of a variety of materials can be realized. Further

advances in the fabrication of nanoscale materials and devices can be achieved through

modification of the remaining four proteins in the virus to incorporate device-assembly directors.

Overall, modification of biological systems by the introduction of substrate specific peptides

presents a means of achieving well ordered nanomaterials in a cost-effective and scalable

manner.
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CHAPTER 5

5.1 Introduction

Development of genetically modified virus-based scaffolds for the patterning and

assembly of nanoscaled materials for their incorporation into functional devices relies on every

aspect of the previous research (1,2). Assembly and nucleation directing peptides, selected

through the combinatorial screening process of phage display, that exhibit substrate specificity

and control of nanoparticle formation, have been simultaneously expressed on the proximal tip

and capsid of the highly ordered filamentous M13 bacteriophage virus. This allows for the

directed placement of the virus onto pre-patterned electrodes and the subsequent growth of

ordered, liner arrays of nanoparticles of controlled composition, phase and size. Removal of the

viral template via thermal annealing leaves purely inorganic nanowires that bridge the electrode

gap (figure 5.1). The unique ability to interchange substrate specific peptides into the proximal

and remote tips of the filamentous construct of the M13 virus, while controlling materials

synthesis along the capsid, provides a unique means of patterning nanostructures for their use in

electronic devices.

--

Figure 5.1 Phage directed assembly of nanoscale electronics .. (image from IEEE spectrum, Germs that build
circuits, online.)
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Physical (3,4), chemical (5,6) and biological (7) strategies have all had success in

controlling the physical shape, size, composition and phase of advantageous materials at the

nanometer scale. However, the incorporation of these building blocks into functional, multi-

component devices has proven to be more difficult. Reliance on methods such as direct contact

(e-beam), flow deposition (Lieber), polymer dispersions (Alivisatos, Bawendi/Bulovich) and

grafting chemistries (gold thiol/ Merkin, s-oligos/DNA, Israely) do not offer the needed

specificity for developing multi-component structures in parallel self-assembly synthesis. The

inability to incorporate unique assembly moieties into individual nanocomponents has limited

the development of more sophisticated heterostructures. In order to multiplex the self-assembly

process a complex, materials specific linking scheme must be developed. Nature provides one of

the most diverse assembly schemes, wherein a small basis set of amino acids can be combined in

an almost infinite way, which allows multiple processes to occur in parallel. We have previously

shown the versatility of biological based systems for processing multiple classes of materials

within a single synthetic strategy (science), and have now extended the M13 bacteriophage

system to include compound functionalities. Development of a gene-linked scaffold that allows

for the synthesis and directed assembly of nanoscale materials and devices presents a new

paradigm for the one-pot synthesis of complex, multi-component nanoscale heterostructures.

5.2 Methods and Materials

Patterned gold electrodes having a gap spacing of 550nm, less than the length of the

modified virus (-600nm, due to encapsulation of a shorter DNA vector), were prepared using

standard lithographic techniques and used without further modification. The mask was prepared

by benchmark technologies and is shown in figure 5.2.
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Figure 5.2 Mask of the pre-patterned gold electrodes.

The electrodes where incubated in 1mL of a solution of phage based scaffolds (I xl OA12

pfu) that expressed the gold binding motif (LKAHLPPSRLPS) on the proximal tip and the CdS

constrained heptapeptide along the capsid for 5-30min, depending on desired surface

concentration with constant rocking. After the incubation period the substrate was washed with

a directional flow of TBST I% followed by thorough rinsing with type 1 water, also in a

directional flow. The virus bridged electrodes were then dried for imaging by Atonnc Force

Microscopy (AFM) using compressed nitrogen followed by vacuum desiccation. Images were

collected on a Digital Instruments multimode nanoscope IV.

Nucleation of the viruses was achieved by placing the substrate into a ImM solution of

Cd(N03)2 at O°Cfor Ihour prior to the introduction of HS(g) via a bubbler, and was performed

in a hood with a sulfide scrub before and after the reaction vessel (water was used as a scrub

before the RV and water plus excess Cd(N03)2 was used after.) HS gas was chosen to limit the
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formation of salt on the substrate. pH effects of the dissolved HS never drop below 4, higher

than the elution buffer (pH 2.3), and should therefore not dramatically effect phage binding.

Processed substrates were then annealed to remove the phage template using a

ThermolYne tube furnace operating at 300°C under atmospheric conditions. Annealing at

temperatures used during the nanowire synthesis reported in chapter 4 causes dewetting of the

CdS from the gold and results in large crystallite formation (figure 5.3).

Figure 5.3 CdS aggregation after annealing at 425°C for 1 hour.

Electrical measurements were performed at a probe station using an Agilent 4156c

semiconductor parameter analyzer.

5.3 Specific attachment of Bacteriophage

Genetically programmed bacteriophage, designed to locate pre-patterned electrodes and

bridge them with functional materials have been prepared using standard biological techniques

discussed previously. AFM imaging of substrates incubated with the engineered phage scaffold

shows the ability to attach the bacteriophage to pre-patterned electrodes. The evident flaring of

the viruses off of the gold electrodes, and lack of viruses elsewhere on the substrate demonstrates

the specificity of the virus (figure 5.4).
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Figure 5.4 AFM Amplitude micrographs of electrode bound phage.

The directionality of the virus also confrrms the effectiveness of the flow alignment for bridging

the electrode gap. By controlling the deposition conditions (ionic strength, phage concentration)

and the wash conditions (wash time, surfactants) the number of phage bridging the gap can be

varied from complete coverage to single viruses and is consistent across the wafer (lcm x lcm)

(Figure 5.5 b,c,d).

Figure 5.5 Bridging density of the phage is controlled by deposition time and wash conditions.
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Incorporation of other binding moieties on the distal tip, or design of a different scaffold

can be used to develop more complex devices, but is limited here to simple bridging events as a

proof of concept system.

5.4 Nucleation

After deposition of the modified virus onto the pre-patterned electrodes, nucleation of

materials could take place. CdS specific peptides are utilized in the presented work, but this

system can be extended to the previous systems reported (ZnS, CoPt, FePt). Confrrmation of

nucleation was achieved using AFM and SEM. The localization of the nucleated material to

phage rich regions of the substrate both on and surrounding the electrodes confirms the ability of

the virus to direct the nucleation of material in a prescribed fashion (figure 5.6).

Figure 5.6 Specific binding of the bacteriophage (left) is followed by site specific nucleation of CdS.

Matting of the phage on the electrodes was allowed to develop a large enough bridging

density for making reasonable electrical measurements. Mineralization of this phage matt is
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shown in figure 5.7. If the phage were not mineralized they would not be visible under the

electron microscope. A control in which no phage were added to the process, shows no signs of

CdS nucleation.

Figure 5.7 Matting of the phage on the electrodes followed by CdS nucleation creats a high bridging density
across the electrode gap. As a control, a substrate was processed in a similar manner, with the only exception being
the lack of phage.

5.5 Device Characteristics

Prior to mineralization, no current is able to pass through the virus bridges (figure 5.8 a).

Post nucleation(figure 5.8b), the CdS nanoparticle field present ,in the electrode gap is able to

pass current on the Picoamp scale (figure 5.9).

Figure 5.8 AFM height images of pure phage (left) and CdS nucleated phage (right) bridging prepattemed
electrodes.
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As the particles are not fused and do not form a continuous electrical connection we

believe that this current is due to a hopping effect through the particle field as evident by the

linear IV curve and the lack of a breakdown current within the 10v range.

1.5
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Figure 5.9 IV characteristics of pure phage and as synthesized CdS nanoparticles.

Annealing of the matted phage mineralized with CdS formed large sheets of CdS that

dewetted from the gold electrodes. Again, electrodes not exposed to phage prior to interaction

with the CdS precursors show no materials growth (figure 5.10).
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Figure 5.10 SEM micrographs of phage/CdS incubated electrodes after nucleation (left) and a sontrol not
incubated with phage.

Initial electrical measurements on the annealed system demonstrate the ability to pass a

minimal, but repeatable and realistic current. However, semi-conducting behavior has not been

achieved on the current samples, and should be explored further using more in depth probing

techniques .

.
1SO ....

\.
100 \

\ ,....so \
\
\

$
,,,

c 0 '"

~
::J
()

-so

-100

-150x10.12

-2 -1 o
Voltage (V)

,
\ ,.

\
\
\
\
\
\
\
\.

\

" "

2

Figure 5.11 IV measurement of CdS mineralized and annealed structures. Both current into (dashed) and out of
(solid) the structures is plotted. The passage of 50-150pA of current is expected for the size scale of the structures.
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5.6 Discussion

A straight forward approach toward introducing multiple assembly moieties within a

single scaffold for the synthesis of complex nanoscale devices has been developed. Because of

the rapid peptide selection process and ease of genetic modification, the M13 bacteriophage

provides a tunable, multifunctional template for the intelligent design of nanoscale devices. The

synergy betwe,en using the M 13 virus as both the screening vehicle and the synthesis scaffold

eases the transition between peptide discovery and utilization. It also provides a generic template

for designing nano-architectures and gene-linking of that design into the DNA of the virus. The

ability to direct the placement and synthesis of CdS nanowires using the M 13 bacteriophage in a

room temperature, aqueous environment demonstrates the potential of this technique as an

environmentally sound, generic solution towards incorporating nanoscale building blocks into

future technologies.
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