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Abstract image. Natural clutter for example, tends to
consist of a large number of equivalued scat-

Image segmentation represents an essential step terers, and this in contrast to the man-made
in the early stages of an Automatic Target one, mostly comprising a few prominent scat-
Recognition system. We propose two robust ap- terers. It is precisely this type of statistical
proaches fundamentally based on scale informa- characteristic that we are interested in captur-
tion inherent to a given imagery. The first ap- ing and subsequently using as the basis for our
proach is parametric in that the scale evolution classification of various terrain types in SAR.
of an image is statistically captured by a model In addressing such a problem, we have two ba-
which is in turn utilized to classify the pixels sic approaches, the first aims at characterizing
in the image. The second, on the other hand, the statistics of the image evolution in scale and
nonlinearly evolves the image along some spe- ultimately using them in the pixel classification;
cific characteristic to unravel and delineate the the second attempts to diffuse "noncomplying"
various comprising entities in it. observations via a nonlinear evolution to make

it converge to specific desired domains of attrac-
1 Introduction tion.

The goal of this paper is to address a funda-
The growing interest in Automatic Target Re- mental problem arizing in ATR, namely the ro-
congnition (ATR) is primarily due to its impor- bust and efficient segmentation of imagery into
tance in many applications ranging from manu- homogeneous regions, and in presence of per-
facturing to remote sensing and surface surveil- haps severe noise. To proceed, we introduce in
lance. Analysis and classification of various en- the next section a multiscale stochastic model-
tities of an image are often of great interest, and ing framework which affords one to capture the
its partitioning into a set of homogeneous re- evolution in scale of a given image process and
gions or objects is thus of importance. The mere to statistically characterize regions of interest.
size of some imagery constitutes a major hur- Two algorithms based on this framework will be
dle. A case in point is Synthetic Aperture Radar described and shown to lead to efficient and ac-
(SAR) imagery for which terrain coverage rates curate segmentation. In Section 4, we present
are very high (in excess of 1 km 2 /s) and which our second method based on a variational ap-
with daunting computational demands, make proach, and which consists of nonlinearly evolv-
algorithmic efficiency of central importance. ing a given image along some specific geometric

A SAR image reflects a coherent integration of constraints built around an energy functional.
scatterer returns (i.e. reflectivity characteris- Finally, in Section 5, we provide a number of ex-
tics) within a resolution cell. The number of amples substantiating the proposed algorithms
scatterers which coherently sum up within a using real data imagery and accurate estimates
cell will vary with the resolution. This leads of boudaries
to a variation in the underlying statistics of the

°This report describes research supported in part by
DARPA under contract FA49620-93-1-0604.



2 Stochastic Modeling at any node s, the processes defined on each of
the distinct subtrees extending away from node

2.1 Multiscale Stochastic Models s are mutually independent.

For pixel classification purposes, a multiscale
In this subsection, we describe a general multi- model can be constructed for each specific ho-
scale modeling framework e.g. [2] and its adap- mogeneous class. To specify each model, it is
tation to classification/identification problems. necessary to determine the appropriate coeffi-
Under this framework, a multiscale process is cients in the matrices, A(s) and B(s), and the
mapped onto nodes of a qth order tree, where statistical properties of the driving noise, w(s).
q depends upon how the process progresses in Once the models have been specified, a likeli-
scale. hood ratio test can be derived to segment the

imagery into the clutter classes.

For a binary classification problem (i.e. requir-
ing a binary hypthesis test) each pixel in the im-
age corresponds to one of two hypotheses: the
pixel is part of some texture (Hg) or another

Fig. 1: Multiresolution tree. (Hf). By exploiting the Markov property asso-
ciated with the multiscale models for imagery,As illustrated in Fig. 1, a qth order tree is a
the log-likelihood ratio test for classifying eachconnected graph in which each node, starting at
pixel can be written as,some root node, branches off to q child nodes. pixel can be written as,

As described above, the appropriate represen- = E log[Px(s)1,3 (X(s) I 3)]-
tation for a multiscale SAR image sequence is
q =4, a quadtree. Each level of the tree (i.e., E log [Px(s)f (X(s) I f)] (2)
distance in nodes from the root node) can be
viewed as a distinct scale representation of a where f(.) = (X(s57),H(.)), and Px(s)l1g3 and
random process, with the resolutions proceeding Px(s)13f are the conditional distributions for the
from coarse to fine as the tree is traversed from two hypothesized models. In the next subsec-
top to bottom (root node to terminal nodes). A tion, we will show that this likelihood test can
coarse-scale shift operator, j is defined to ref- be efficiently computed in terms of the distribu-
erence the parent of node s, just as the shift tions for w(s) under the two hypotheses.
operator z allows referencing of previous states
in discrete time-series. The state elements at 2.2 Scale-Autoregressive SAR Model
these nodes may be modeled by the coarse-to-
fine recursion In this paper, we focus on a specific class of

multiscale models, namely scale-autoregressive
x(s) = A(s)x(s5) + B(s)w(s). (1) models [2] of the form

In this recursion, A(s) and B(s) are matrices of I(s) = al(s)I(s7) + a2(s)I(s7 2 ) + ... +
appropriate dimension and the term w(s) repre- aR(s)I(s77) + w(s), ai(s) C 1 (3)
sents white driving noise. The matrix A(s) cap-
tures the deterministic progression from node where w(s) is white driving noise and "s" is
sT7 to node s, i.e., the part of x(s) predictable a three-tuple vector denoting scale (or resolu-
from x(s7), while the term B(s)w(s) represents tion level), and spatial coordinates (q, n). For
the unpredictable component added in the pro- homogeneous regions of texture, the predic-
gression. An attractive feature of this frame- tion coefficients (the ai(s) in (3)) are constant
work is the efficiency it provides for signal pro- with respect to image location for any giver
cessing algorithms. This stems from the Markov scale. That is, the coefficients, al(s),... , aR(s),
property of the multiscale model class, which depend only on the scale of node s (de-
states that, conditioned on the value of the state noted by m(s)), and thus will be denoted by



al ,m(s)... , aR,m(s). Furthermore, the probabil- category to classify its center pixel, we use to
ity distribution for w(s) depends only on m(s). advantage the efficiency of multiscale likelihood
Thus, specifying both the scale-regression coef- calculation to base the classification of each in-
ficients and the probability distribution for w(s) dividual pixel "s" on a surrounding (2K + 1) x
at each scale completely specify the model. (2K + 1) window W(s), where the parameter

Following the procedure of state augmentation K is a nonnegative and judiciously selected in-
used in converting autoregressive time series teger. While a larger window provides a more
models to state space models, we associate to accurate classification of homogeneous regions,
each node s a R-dimensional vector of pixel val- it also increases the likelihood that the window
ues, where R is the order of the regression in contain a clutter boundary. Thus, keeping the
(3). The components of this vector correspond window size as small as possible is also desir-
to the SAR image pixel associated with node s able. As shown in [1] in the next section, one
and its first R - 1 ancestors. Specifically, we can determine the tradeoff between classifica-
define tion accuracy and window size by examining the

X 18 . R ]T empirical distribution of e over windows of var-
X(s) = [ I(s) I(s$) ''' I(s$R1i) i]T (4) ious size for homogeneous regions of grass and

Thus, for a model of the form (3) or equivalently forest.
(1), e in (2) can be calculated using

Px(s,)x(s57)(X(s) I X(s57)) = pw(s)(W(s))(5)

with W(s) being the vector of residuals at scale
"s". The identification of the model for each 3.1.1 Statisical Hypotheses Test
clutter class can thus be obtained for each scale
m by a standard least-squares minimization,

Xm = arg mm I E [ I (s) - Whenever a clutter boundary is present within a
amelRR { s I m(s)=m} test window the validity of the center pixel clas-

-n R 2 A sification is questionable. This effect results in a
al,mI(s5)- ... - aRl,nI(syR)] 6) classification bias near boundaries. To address

where this problem, we devise a method to detect the
proximity of grass-forest boundaries and subse-

aXm = [ al,m a2,m ... **aR,m quently utilize a procedure to refine the classifi-

with R being the regression model order. For cation. Terrain boundary proximity is detected
most of the results presented in Section 5 a third via a simple modification of the decision made
order regression (R = 3) for both the grass and based on the test statistic e. Specifically, rather
the forest models was chosen. To obtain a sta- than comparing e to a single threshold to decide
tistical characterization of the prediction error on a grass-or-forest classification, we compare e
residuals (the w(s) in (3)) of the model at scale to two thresholds a and b as shown in Fig. 2,
m, we evaluate the residuals in predicting scale and where we include a defer decision.
m of a homogeneous test region. In particu-
lar, we use the am,r, found in (6) to evaluate all
{w(s)lm(s) =m} as indicated by Eq. (5) with
/u specifying "grass" or "forest". I - M ; E l

3 Model-Based Classification
Fig. 2: Initial pixel classification.

3.1 Residual-Based Classification This is tantamount to refining the decision pro-
cedure by considering smaller windows within

While we could conceivably postulate a spatial the original window until a majority rule lifts
random field model for each windowed clutter the ambiguity,



Hg: £ > a Classify as Grass. y(s) in order to classify node s as a member
of either a region of grass or of forest. These

a > e > b Defer decision hypotheses which are respectively designated
(possible boundary presence), as hypotheses Hg and Hf. The classification

of pixel mrn(s) will depend only on y(s) and
Hf: e < b Classify as Forest. the predetermined likelihoods p (y(s)lHg) and

p (y(s) Hf).

To carry out a statistically significant hypoth-
3.2 Parameter-Based Classification esis test, we need to specify the conditional

probability density for y under each hypothe-
An alternative approach to classifying a clut- sis. To do this, we extensively examined the
ter type is to evaluate an 12 distance between distribution of the evolution vectors obtained
the computed model parameters for a window from a large homogeneous region of the cor-
region W(s) and those of a template homoge- responding terrain. For both grass and forest
neous region [3]. For each pixel "s" (or equiv- terrain, it turns out that each component in
alently tree node) a model for a corresponding y approximately has a Gaussian distribution.
surrounding window W(s) is computed at sev- We consequently make the approximation that
eral scales giving rise to what we refer to as an p (ylHg) and p (ylHf) are N-variate Gaussian
evolution vector statistic, densities. They are then completely specified by

their mean vectors mg and mf and their covari-
y(S) = [Qsm(s)v, Cm(s)-l,. * *: °1], (7) ance matrices Kg and Kf all of which are calcu-

where "s" will sweep all of the three-tuple vec- lated from the training data for each hypothesis.
tors [m(s),q,n] at the m(s)th resolution weith A maximum likelihood (ML) detector is then
m(s) = 1, * ,L-I and L is the cardinality used to classify each pixel (using the ML detec-

tor assumes equal apriori probabilities for eachof the considered set of images. We should tor assumes equal apriori p
note at this point that in this approach, the hypothesis and a cost function that penalizes all

misclassifications equally). In implementing theDC component in the o(.) is included. The or- ML detector, a threshold r/ is calculated fromder of the regression associated with modeling
the likelihoods and used in the classification ofW([m(s), q, n]) from its ancestors will vary with

the level m(s) as defined by the fuinction each pixel through its comparison to a sufficient
statistic derived from the evolution vector. Be-

0m(s) = max(R. ?n (s)) cause p (ylHg) and p (ylHf) are assumed to be
Gaussian, it is straightforward to compute the

The regression vector ca(m(s)) provides a sta- threshold r7 and the sufficient statistic e' (y) for
tistically optimal description of the linear de- each evolution vector as

pendency of W(s) on {W(siyJ)}__ls), and Y(s) IK
thus being a measure of the scale evolution be- 71 = log Kl' (8)
havior of the windowed region.

and
Here again the size of the window used to com-
pute the evolution vector, is the result of a e'(y) = (y-mf) T K f K (y - mf)-
tradeoff between modeling consistency and lo- (Y - mg)T Kg 1 (y - mg). (9)
cal accuracy.

The classification of I(s), denoted as C(s), is
3.2.1 Statistical Classification then given by

A characterization of the evolution vector y(s) C = $rIg if />_ e (Y[q,n]) (10)
is necessary to carry out a statistically mean- Hf if 7< e (Y[q,n])
ingful classification of various types of terrain. The construction of the evolution y and sub-
Specifically, a BHT is applied to the evolution sequent application of a BHT for each s E



Perna-Malik SIDE

{s I m(s) = m} thus provide a segmentation F()

of Im. Instead of independently generating a
segmentation for each image resolution for all Ki K

s E {s I m(s) < L}, C(s) can be obtained
by comparing r to the average of the sufficient
statistics of nodes in IL which have s as an an- Fig 3: Force function for a SIDE.
cestor, i.e. The type of force function of interest to us here

is illustrated in Fig. 3(right). More precisely,
we wish to consider force functions F(v) which,

(H if (2m(s1)-)21 2 > (> )) in addition to drving the following evolutions,

C[I,m,n] =2

Hf if (2m(s)-l)2'q < e(y(s)) I(s) = F(I)(s), (12)
s

(11) I(O) = Io,

where "s" is now a continuous scale, satisfy the
following properties:

Although this does not yield a sufficient statis-
tic for I(s), doing so is computationally more F'(v) < 0 forv $ 0, and F(O+) > 0,
efficient than calculating a sufficient statistic as
in Eq. (9) for each node at every level in the
quadtree. Note that the segmentation technique Contrasting this form of a force function to the
described here, could easily be generalized to a Perona-Malik function [4] in Fig. 3 (left), we
larger number of terrain types. see that in a sense, one can view the discon-

tinuous force function as a limiting form of the
continuous force function in Fig. 3 (left). We

4 Stabilized Inverse Diffusion Equa- therefore need a special definition of how the
tions (SIDEs) trajectory of our evolution proceeds at the dis-

continuity points F(O+) s& F(O-)). For this def-
inition to be useful, the resulting evolution must

The previous two techniques rely on modeling a satisfy well-posedness properties: the existence
linear evolution of the observed imagery with an and uniqueness of solutions, as well as stabil-
ultimate goal of pixel classification. In this sec- ity of solutions with respect to the initial data.
tion, we instead carry out a nonlinear evolution Assuming the resulting evolutions to be well-
which is driven by prescribed geometric features posed, we demonstrate that they have the qual-
underlying the process/imagery, and study its itative properties we desire, namely that they
progression. both are stable and also act as inverse diffu-

Towards that end, we introduce a discontinuous sions and hence enhance edges. We address the
force function, resulting in a system of equations issue of well-posedness and other properties in

that has discontinuous right-hand side (RHS). [5].
As shown below, the objective is to drive an Considering the evolution (12) with F(v) as in
evolution trajectory onto a lower-dimensional Fig. 3(right) in a SIDE, notice that the RHS of
surface which clearly has value in image anal- (12) has a discontinuity at a point I if and only
ysis, and in particular in image segmentation. if Ii = Ii+l for some i between 1 and N - 1.
Segmenting a signal or image, represented as a It is when a trajectory reaches such a point I(.)
high-dimensional vector I, consists of evolving that we need the following definition:
it so that it is driven onto a comparatively low-
dimensional subspace, which corresponds to a = 1ii =Ii.l = i-((F(Ii+2 - Ii+l) - F(Ii - Ii-1)).
segmentation of the signal or image domain into 2
a small number of regions.



In other words, the two observations are simply promising, albeit at a slightly higher computa-
merged into a single one, resulting in Eq. 14 for tional cost.
n = i and n = i + (the differential equations
for n / i, i + 1 do not change.).

Similarly, if q consecutive observations become
equal, they are merged into one which is
weighted by 1/q [5]. The evolution can then
naturally be thought of as a sequence of stages:
during each stage, the right-hand side of (12)
is continuous. Once the solution hits a discon-
tinuity surface of the right-hand side, the state
reduction and re-assignment of q, 's, described Fig. 4: Residual and Model-Based Segmentation
above, takes place. The solution then proceeds (b and c).
according to the modified equation until the
next discontinuity surface, etc.

Notice that such an evolution automatically
produces a multiscale segmentation of the origi-
nal signal if we view each compound observation 
as a region of the signal. The algorithm may be Fig. 6: Segmentation by Nonlinear Diffusion.
be summarized as follows:
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