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Abstract

Y = f(X) + 7/,, (1)
We propose a convex optimization approach to solv-
ing the nonparametric regression estimation prob- where X, Y are observable random variables and ,b is a zero-
lem when the underlying regression function is Lip- mean non-observable random variable. Thus,
schitz continuous. This approach is based on mini- E[YIX] = f(X). The main problem of nonlinear regres-
mizing the sum of empirical squared errors, subject sion analysis is to estimate a function f based on a sequence
to the constraints implied by the Lipschitz continu- of observations (X 1, Y 1), ... , (X,, Y,). In one particular in-
ity. The resulting optimization problem has a con- stance, we may think of variable Xi as the time ti at which
vex objective function and linear constraints, and we observed Yi. That is, at times t, < t2 < ... < t,, we ob-
as a result, is efficiently solvable. The estimating served Y1, Y2 ,.. .,Y, and the problem is to compute a time
function, computed by this technique, is proven to varying mean value E[Y(t)] of Y as a function of time t on
converge to the underlying regression function uni- the interval [ti, t,]. However, this paper also considers the
formly and almost surely, when the sample size case where the dimension of X is larger than one.
grows to infinity, thus providing a very strong form There are two mainstream approaches to the problem. The
of consistency. first is parametric estimation, where some specific form of

We also propose a convex optimization approach the function f is assumed (for example, f is a polynomial)
to the maximum likelihood estimation of unknown and unknown parameters (for example the coefficients of the
parameters in statistical models where parameters polynomial) are estimated.
depend continuously on some observable input vari- The second approach is nonparametric regression. This
ables. For a number of classical distributional forms, approach usually assumes only qualitative properties of the
the objective function in the underlying optimiza- function f, like differentiability or square integrability. Among
tion problem is convex, and the constraints are lin- the various nonparametric regression techniques, the two best
ear. These problems are therefore also efficiently known and most understood are kernel regression and smooth-
solvable. ing splines (see [2] for a systematic treatment).

Consistency (convergence of the estimate to the true func-

1 Introduction tion f as sample size goes to infinity) is known to hold for
both of these techniques. Also for the case of a one-dimensional

Nonlinear regression is the process of building a model of the input vector X, the decay rates of the magnitudes of expected
form errors are known to be of order O( ) forkernel regression
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is to minimize the sum of the empirical squared errors subject
to constraints implied by Lipschitz continuity. This method
is therefore very close in spirit to the smoothing splines ap-
proach which is built on minimizing the sum of squared er-
rors and penalizing large magnitude of second or higher or-
der derivatives. But, unlike smoothing splines, our technique



does not require differentiability of the regression function Regression algorithm
and, on the other hand, enforces the Lipschitz continuity con-
straint, so that the resulting approximation is a Lipschitz con- Step 1. Choose a constant K and solve the following con-
tinuous function. strained optimization problem in the variables fl,, fn. ,

The contributions of the paper are summarized as follows:

1. We propose a convex optimization approach to the non- minimize (Yi _ -)2

linear regression problem. Given an observed sequence m=i
of inputs X 1, X 2,..., X, and outputs Y1, Y2 ,..., Y, subject to (2)
we compute a Lipschitz continuous estimating function
fn f (X1, Y1, . .. , Xn, Yn) with a specified Lipschitz
constant K. Thus our method is expected to work well Ifi -fj < KIIXi - Xjl, i,j= 1,2,...,n.
when the underlying regression function f is itself Lips-
chitz continuous and the constant can be guessed within This step gives the prediction of the output
a reasonable range (see simulations results in Section 5 fi _ f(Xi), i = 1, 2,..., n at the inputs X1, X2,..., Xn.
and Theorem 6.1 in Section 6). Step 2. In this step, we extrapolate the values fl, ., n

2. In Section 3, we outline the convex optimization approach obained in Step 1, to a Lipschtitz continuous function f
to the maximum likelihood estimation of unknown pa- X R with the constant K as follows: for any E X,
rameters in dynamic statistical models. It is a modifica- let
tion of the classical maximum likelihood approach, but f(x) = max <iAf- KllJz-X1-i}.
to models with parameters depending continuously on

some observable input variables. The following proposition justifies Step 2 of the above al-

3. Our main theoretical results are contained in Section 6. gorithm.
For the case of bounded random variables X and Y, we
establish a very strong mode of convergence of the esti- Proposition 2.1 The function f defined above is a Lips-
mating function fnf to the true function f, where n is the chitz continuous function with Lipschitz constant K. It satis-
sample size. In particular, we show that fn converges fies
to f uniformly and almost surely, as n goes to infinity. f (Xi) = fi, i = 1,2,... , n.
We also establish that the tail of the distribution of the
uniform distance lfn - fll decays exponentially fast. Proof: Let x1 , x2 E X. Let i = argmax1<j<n{fj -
Similar results exist for kernel regression estimation [3], Kxi - Xjll} i.e. f(xl) = i - Kl - Xill. Moreover,
but do not exist, to the best of our knowledge, for smooth- by the definition of f(x 2 ) f(x 2 ) > fi-Kl Ix2 -Xfl 1 There-
ing splines estimators.

fore,
Uniform convergence coupled with the exponential bound
onthetail of the distribution of Ifn-f Ioo enables usto f(xl)- f(x 2) < fi-Kllxi-Xill - (f-Klx 2 -XXij) =
build confidence intervals around fn. However, the con-
stants in our tail distribution estimations might be too = Kllx 2 - Xit - KIIxi - Xill < Klix 2 - x111.
large for practical purposes.

By a symmetric argument, we obtain

2 A nonlinear regression model f(x2) - f(xi) • Kix 2 -xiii.

In this section, we demonstrate how convex optimization al-
gorithms can be used for nonlinear regression analysis. For x = Xi, we have fi - Kilx - Xil = fi. For all

The objective is to find an estimator f of the true func- j 5 i, constraint (2) guarantees fj - Ki - Xjll < fi. It
tion f in model (1) based on the sequence of observations follows that f(Xi) = fi. °
(xl, r~), (X2, Y2),.. *, (Xn, n) :

In Step 2, we could take instead
Yi = f(Xi) + 0i, i = 1,2,... ,n.

f(x) = min {i + Kllx - Xi I,
We denote by X C Rm and y C R the ranges of the vector X 1f<n
and the random variable Y. Let also I1 1 denote the Euclidean or
norm in the vector space 1m.

We propose the following two step algorithm. f(x) = lmax {i-KIx-Xii}+ min {fi+Kllx-Xil}.
2 Propos i<n 2 i<i<n

Proposition 2.1 holds for the both of these constructions.



Interesting special cases of model (1) include dynamic mod- 6. If the noise terms 01 , .. ., n , are identically zero, then
els. Suppose that X1,..., X, are times at which measure- the estimating function f coincides with the true func-
ments Y1 , . ., Y, were observed. That is, at times tl < t 2 < tion f on the observed input values:

· ..< tn we observe Y 1,..., Yn. To estimate the time varying
expectation of the random variable Y within the time interval = f(Xi), i = 12,... ,n.

[tl, tn], we modify the two steps of the regression algorithm
This compares favorably with the kernel regression tech-as follows:
nique, where due to the selected positive bandwidth, the

Step 1'. Solve the following optimization problem in the estimating function is not equal to the true function even
variables fl,..., fn if the noise is zero. Thus, our method is robust with re-

spect to small noise levels.
n

minimize Z2(Y -g It is clear that we cannot expect the pointwise unbiased-
i= ness condition E[f(x)] = f(x) to hold universally for all x E

subject to (3) X. However, the estimator produced by our method is unbi-
ased in an average sense as the following theorem shows.

fi+l - fi < K(ti+l - ti), i = 1,2,..., n-1
Theorem 2.1 Let estimators fi be obtainedfrom the sam-

ple (X 1, Y 1 ),..., (X,n, Y) as outlined in Step 1 of the re-
.Step 2'. The extrapolation step can be performed in the gression algorithm. Then,

following way. For any t, with ti < t < ti+l, let

t - ti E[ fi Xl , Xn = nEf(X ).
ti+l - ti '=1

and set
atand set = (1-Is) it (ti) + Is A (ti~lProof. Let the sequence f, . . , fnbe obtained using Step
f(t) = (1 - IL)f(ti) + f(t.+ 1). 1 of the regression algorithm. Observe that the sequence fi +

It is easy to see that the resulting function f defined on the c, i = 1, 2, ... , n, also satisfies the constraints in (2), for any
interval [tl, tn] is Lipschitz continuous with constant K. c E 1Z. That is, all the costs

Remarks:

1. The motivation of the proposed algorithm is to try to min-
imize the sum of the empirical squared errors between
the estimated function value fi at point Xi and the ob- are achievable. Forcost is achieved for
served one Y., in such a way that the estimations fl, .. ,fn
satisfy the Lipschitz continuity condition. nc = DYi - ,),

2. The choice of the constant K is an important part of the i=
setup. It turns out that for a successful approximation, it
suffices to take K > K 0, where Ko is the true Lipschitz However, we have that Y4l (i - fi)2 is a minimal achiev-

able cost. Thereforeconstant of the unknown function f (see Section 6).
n

3. If the noise terms 4 1, ... , 0,n, arei.i.d., then this approach = E(Y - f) = 
also yields an estimate of the variance of the noise p: i=

or

n ni
i=1 i=1

4. Optimization problems (2) or (3) can be solved efficiently, It follows that
since the objective function is quadratic (convex) and all [ 1 n 1]
the constraints are linear, (see [4].) E fi X 1 ., Xn =E Y X 1 ,...,Xn

i=1 i=1

5. Setting K = 0, yields a usual sample average: n

n = f(Xi)i=
which completes the proof. 0



3 A general dynamic statistical model 4 Examples
We now propose a convex optimization approach for maxi- In this section, we apply our DMLE algorithm in several con-
mum likelihood estimation of parameters, that depend on some crete examples. We show how Step 1 of the DMLE algorithm
observable input variable. can be performed for these examples. We do not discuss Step

Given a sequence of input-output random variables 2 in this section since it is the same for all examples.
(Xi, Y1), . .., (X,, Yn), suppose the random variables Yi, i =
1,2, ... , n, are distributed according to some known proba- 4.1 Gaussian random variables with unknown mean
bility density function 5(A), which depends on some param- and constant standard deviation
eter A. This parameter is unknown and is a Lipschitz contin- Suppose that the random values Y1 ,. . , Yn are normally dis-
uous function A : X > R (with unknown constant Ko) of tributed with a constant standard deviation or and unknown
the input variable X. sequence of means /u(X 1), ... , t(Xn). We assume that the

In particular, Yi has a probability density function function 1(x) is Lipschitz continuous with unknown constant
Oq(A(Xi), Ye), i = 1, 2,..., n, where q(-) is a known func- Ko. Using the maximum likelihood approach (4) above, we.
tion, and A(.) is unknown. The objective is to estimate the estimate the function j by guessing some constant K and solv-
true parameter function A based on the sequence of i.i.d. ob- ing the following optimization problem in the variables
servations (X 1, Y1), . .. ,(X, Yn). As a solution we propose 1 , ,n:

the following algorithm

Dynamic Maximum Likelihood Estimation Algorithm maximize ]J j exp 2

(DMLE algorithm) i=l 1 22

Step 1. Solve the following optimization problem in the subject to
variables Al,...., in

Ai - -jl < K| Xi - Xj| , i,j = 1,2,...,n.
n

maximize 0(i, Xyi) By taking the logarithm of the likelihood function, the prob-
subjecti=l to lem is equivalent to

subject to (4)
n

minimize (Y - 2)2lAi - \jl < K|IXi - Xj11 ij = 1,2,.. .,n.

Step 2. To get an estimator A of the function A, repeat subject to
Step 2 of the regression algorithm, that is, extrapolate the val-
ues A1 ,..., An at X1,. .. , Xn to obtain a Lipschitz continu- Ei - 1jI < KlXi - Xj J, i,j = 1,2,...,n.
ous function A with constant K. Then, given a random ob-
servable input X, the estimated probability density function We recognize this problem as the one described in the previ-
of Y given X is q0(A(X), y). ous section for nonlinear regression. We may draw the fol-

lowing analogy with the classical statistical result - given the

Remarks: linear regression model Y = bX + e with unknown b and a
sequence of observations (X 1, Y 1),..., (Xn, Yn) the Least-

1. This algorithm tries to maximize the likelihood function, Squares estimate b is also a maximum likelihood estimate, if
in which instead of a single parameter A, there is a set of Y conditioned on X is normally distributed with finite vari-
parameters A1,. ., An, which continuously depend on the ance.
input variable X. Namely, this approach finds the maxi-
mum likelihood sequence of parameters within the class 42 Gaussian random variables with unknown mean
of parameter sequences satisfying the Lipschitz continu- and unknown standard deviation
ity condition with constant K. Consider a sequence of normally distributed random variables

Y1,... ,Yn with unknown means/~l - /2(X1),. ,~n ---2. Whether the nonlinear programming problem (4) can be Y,... Y with unknown means ii, =I(X 1), ...g(Xn) and unknown standard deviations l o-(Xi),... ,.n-
solved efficiently depends on the structure of the density a(Xn). We assume that p(x) and a(x) are Lipschitz contin-

function q$. uous with unknown constants Ko1, KJ. Using the maximum

As before, one interesting special case is a time varying sta likelihood approach (4), we estimate the mean function -t and
tistical model, where the variables X1,..., Xn stand for the the standard deviation function a by guessing constants K 1, K 2
times the outputs Yl,..., Yn were observed. and by solving the following optimization problem in the vari-

ables Al, ·.n, 6i,..., 6'n:



A(Xi), and A(X) is a Lipschitz continuous function of the
n 2 observed input variable X, with unknown Lipschitz constant

maximized JJ exp ( _ - Ko. Using the maximum likelihood approach (4) we may con-
i=l evi 2&/i struct an approximate function A based on observations

subject to (X1, Y1),..., (X,, Y,) by solving the following optimiza-
tion problem in the variables Al, .. , ,n:

lpi - /ji < KlllXi - XjlI, i, j = 1, 2,..., n, n

I&-&I1 < K211Xi- Xj 1, ij = 1,2,...,n. maximize i exp(-Aiyi)

By taking the logarithm of the likelihood function, the above i=
subject tononlinear programming problem is equivalent to

minimize~l~g(5/)+ E/ ^2)2 yi -Ail < KlXi -Xjll, ij = 1,2, ... ,n.

minimize o + Again by taking the logarithm, this is equivalent to
i=1 i=l

subject to
n n

I/i-/21 < K1iiXi - Xjii, i,j = 1, 2,...,n, maximize E log i-E AiY
aIi- aj < K2IIXi- Xjll, i,j =1,2, ... ,n. i=l i=

subject to (5)
Note that here the objective function is not convex.

43 Bernoulli random variables Ii -A l < KIIXi-XjII, i,j = 1,2,..., n.
Suppose we observe a sequence of 0, 1 random variables This nonlinear programming problem is also efficiently solv-

y1,.. , Y. Assume that p(X)PrY = 1) depends con- able, since the objective is a concave function.
tinuously on some observable variable Xi. In particular, the
function p: X :- [0,1] is Lipschitz continuous, with un-
known constant Ko. Using the maximum likelihood approach 5 Simulation results
(4) we may construct an approximate function pi based on ob- In this section, we provide some simulation results involvingservations (X1, Y1),.., (Xn, Y.) by solving the following op-iservations (X1 , in.. . ,(Xn, Y) by solving the following op- the Regression algorithm from Section 2. We also compare
timization problem in the variables/~1,..., ion the performances of the Regression algorithm and kernel re-

gression on the same samples of artificially generated data.
n The resulting approximating function fn is measured against

maximize Pi (1 - Pi) 1-Y the underlying regression function f.
i=l Let us consider a particular case of the model from

subject to Section 2,

Y = sin(X)+ b
1I3i- PijI < K|IXi -Xjj|, i,j = 1,2,... ,n. with O < X < 27r and noise term b normally distributed as

N(O, a2). We divide the interval [0, 2i7r] into n - 1 equal in-
By taking the logarithm, this nonlinear programming prob- tervals and pick end points of these intervals Xi = 27r(i -
lem is equivalent to 1)/(n - 1), i = 1,..., n. We generate n independent noise

terms 1, 1, 2..., vn with normal N(O, oa2) distribution. Af-
m~dmi~~~:ai~g~p,)ln n -ter running Step 1 of the Regression Algorithm on the values

maximizeE Yi log(pi) + (1 - Yi) log(1 - Pi) Xi, Yi = sin(X/) + Oi, i = 1, 2,.., nr we obtain approxi-
i=l i=l - mating values fl,, fn. We also compute kernel regression

subject to estimates of the function sin(z), z E [0, 27r] using the same
samples (Xi, Yi), i = 1, 2,..., n. For the estimating func-

Ipi5- PjI < K IXi - XjIl, i, j = 1, 2,..., n. tions f obtained by either the Regression algorithm or kernel
regression, we use performance measures

Note that the objective function is concave, and therefore the
above nonlinear programming problem is efficiently solvable. dl max if(Xi) - sin(Xi)j

1<i<n

4.4 Exponentially distributed random variables and
Suppose we observe a sequence ofrandom values Yi,..., Yn d, ( 1-. (i )-sin(X) )2 
Yi is assumed to be exponentially distributed with rate Ai = n =l



The first performance measure approximates the uniform (max-
imal) distance maxO0<< 21 r If(x) - sin(x) between the re- 2

gression function sin(x) and its estimate f. In Section 6 we
will present some theoretical results on the distribution of the -
distance maxo<x<2a, If(x) -f (x) for any Lipschitz continu-e 1 X K' D- .
ous function f(x). The second performance measure approx-
imates the average distance between sin(x) and f(x). > 0.5 / "- X xK

We summarize the results of these experiments in Tables X X

1 and 2, corresponding to sample sizes n = 50 and n = 

100 and performance measure dl, and in Table 3, correspond- . x 3 X X 

ing to sample size n = 100 and the performance measure _0.5 - ) 

d2 . Each row corresponds to a different standard deviation oa 
used for the experiment. The first two columns list the val- x 
ues of the performance d obtained by the Regression algo--- -X15 5 ~
rithm using Lipschitz constants K = 1 and K = 2. Note,
that the function sin(x) has Lipschitz constant Ko = 1. That -2 . , . . ...
is, Ko = 1 is the smallest value Ko, for which I sin(x) - Input variabe X 6

sin(y)l < Kolx - yj for all x, y E [0, 27r]. The last two
columns are the results of kernel regression estimation using Figure 1: The Regression algorithm
the same data samples and bandwidths 6 = 0.3 and 6 = 0.1.

We use 0(x, xo) = e- 62 as a kernel function. stant K from the correct constant Ko. The values obtained

with K = 1 and K = 2 are quite close to each other. Metric
dl is a more conservative measure of accuracy than a met-

n = 50 Regression algorithm Kernel regression ric d2 . Therefore, it is not surprizing that the approximating
__ _K = 1 K =-2 16= ~.3 6= .1j errors in Table 2 are bigger then the corresponding errors in

0.5 0.5775 0.6252 0.4748 0.8478 Table 3.
0.1 0.2144 0.2114 0.2002 0.1321 Also, it seems that for each choice of the bandwidth 6 there
0.05 0.1082 0.1077 0.1523 0.1140 are certain values of a for which the performance of the two
0.01 0.0367 0.0211 0.1346 0.0503 algorithms is the same, or the performance of kernel regres-
0.001 0.0026 0.0027 0.1284 0.0453 sion is slightly better (a = 0.5, 0.1 for 6 = 0.3; o = 0.1, 0.05

Table 1. Performance measure dx for 6 = 0.1). However, as the noise level Co becomes smaller,
we see that the Regression algorithm outperforms kernel re-
gression. This is consistent with Remark 6 in Section 2: the

n = 100 Regression algorithm Kernel regression Regression algorithm is more robust with respect to small noise
0K'=1 K = 2 6 .3 6 = .1 levels.

0.5 0.2861 0.2617 0.2340 0.4762 In figure 1 we have plotted the results of running the Re-
0.1 0.1100 0.1438 0.1566 0.1061 gression algorithm on a data sample, generated using the model
0.05 0.0766 0.0810 0.1411 0.0773 above. The sample size used is n = 100, and the standard
0.01 0.0200 0.0273 0.1525 0.0682 deviation of the noise is a = .5. The piecewise linear curve
0.00 1 0.0026 0.0025 0.1475 0.0618 around the curve sin(x) is the resulting approximating func-

Table 2. Performance measure di tion f. The "*"-s are the actual observations (Xi, Y1), i =
1, 2,... , 100. We see that the algorithm is successful in ob-

________.Regressi__ a lgorithm , K erion , taining a fairly close approximation of the function sin(x).n = 100 Regression algorithm Kernel regression
a K = 1 K = 2 1 6 = .3 6 = .1 1 6 Convergence to the true regression
0.5 0.1299 0.2105 0.1157 0.1868 function; consistency result.
0.1 0.0515 0.0688 0.0618 0.0569
0.05 0.0272 0.0433 0.0574 0.0519 In this section, we discuss the consistency of our convex op-
0.01 0.0093 0.0101 0.0575 0.0575 timization regression algorithm for the case of one dimen-
0.001 0.0008 0.0010 0.0566 0.0567 sional input and output variables X, Y. Roughly speaking, we

show that for the nonlinear regression model Y = f(X) + 4bTable 3. Performance measure d2
in Section 1, the estimated function f constructed by the re-

Examining the performance of the Regression algorithm gression algorithm, converges to the true function f as the
for the choices K = i and K = 2, we see that the algorithm number of observations goes to infinity, if X and Y are bounded
is not particularly sensitive to the deviation of the chosen con- random variables and our constant K is bigger than the true



constant Ko. For any continuous function g defined on a closed obtained by varying f over W.
interval I C X, let the norm g1191 loo be defined as Let N(e, Z, (xi, Y1), · ·. , (xn,, y)) be the number of elements
maxxEl lg(x) I . (the cardinality) of a minimal e-net of this set of vectors. That

is N(e, %, (xl, Yl),..., (xn, y,n)) is the smallest integer k, for
which there exist k vectors

Theorem 6.1 Consider bounded random variables X, Y E
X, al < X < a2, bl < Y < b2 , described byjointprob- ql, 2, ... ,qk E Rn,
ability distribution function F(x, y). Suppose that f(x)
E[YIX = x] is a Lipschitz continuous function, with con- such that for any vector q in the set (7), lq - qj l < e for
stant Ko, and suppose that the distribution of the random vari- some j = 1, 2,.. ., k, where I J II is the maximum norm
able X has a continuous positive density function. in Rn. The following definition of VC entropy was used by

For any sample of i.i.d. outcomes (X 1, Y 1),..., (Xn, Y,), Haussler in [6].
and a constant K > O, let fn -- f be the estimating function
computed by the regression algorithm of Section 2.

If K > Ko, then Definition 6.1 For any e > 0, the VC entropy of Z for sam-
ples of size n is defined to be

1. fn converges to f uniformly and almost surely. That is,

lim Iln _ ll = 0, w.p.1. H'(e, n) _ E[N(e, , (X 1,Y 1), .,(Xn, Yn))]
n-+oo

The following theorem is a variation of Pollard's result (The-
2. For any e > O, there exist constants 'Y1 = y7 (e) and orem 24, page 25, [5]) and was proven by Haussler (Corollary

'72 = 72 (e) such that 1, page 11, [6]).

Pr{If- flloo - > 6} < yie-l2e, for all n.

Proposition 6.1 There holds

Proof: Let Q be the set of all Lipschitz continuous func- Pr sup Q(, y, )F(Q(X, i) >
tions f : [al, a2] -` [bl, b2] with constant K. Introduce the i=l
risk function

risk function < 4H 9 (e, n)e- e2 n/64(b2-b 1)4

Q(x, y, f) = (y - f(z))2

The key to our analysis is to show that for the case of class Q
for every (x, y) E [al, a2] x [bi, b2], f E W. Then the solu- of Lipschitz continuous functions with Lipschitz constant K,
tion fn obtained from steps 1 and 2 of the Regression algo- the right-hand side of the inequality above converges to zero
rithm is a solution to the problem as the sample size n goes to infinity. The following proposi-

tion achieves this goal by showing that the VC entropy of Q

Minimizef-i~ Q(Xi~ Yi n) (6) is finite, independently of the sample size n.
i=l

- the Empirical Risk Minimization problem (see [1],p.18). Proposition 6.2 For each e > 0 and sequence
Notice also that the regression function f is a solution to the (xl, Yl)i ... , (X., yn) from [al, a2] x [b1, b2] there holds
minimization problem

N(e, ~, (xl, Y1), ., (Xn, Yn))
Minimize]e / Q(x, y, f)dF(x, y) 6 - +

since for each fixed x E [al, a2] the minimum of e

E[(Y - f(x))2 1X = x] is achieved by f(x) = f(x). Proof: see the Appendix.

Much of our proof of the Theorem 6.1 is built on the con-
cept of VC entropy introduced first by Vapnik and Chervo- Combining Propositions 6.2 and 6.1, we conclude
nenkis. For any fixed sequence

(x1,y), YI),..., (xn, yn) E [al, a2] x [bl, b2] Proposition 63 There holds

consider the set of vectors n

Pr upQ( y dFx,y)- Q Y >
((Q(xl,ylf ),..,Q(xny,,f)), f E ZS} (7) nES n ~=x



< ( 6(b 2 - b )2 3 6K(a2-al)(b2-bl)+lef2n/ 64 (b2 bl)4 Lemma 6.2 Consider a Lipschitz continuous function g on

-e [al, a2] with Lipschitz constant K. Suppose thatfor some e >

In particular, 0 there holds IIglloo > e. Then 119112 > 1E e (e/2K) >
O. In particular, for a sequence g, g, .. , g, .. . of Lipschitz

Pr{ sup |j Q(xYJ~dFax.y)l Q(Xi, uf ) >e} continuous functions with a common Lipschitz constant K,

f - i=l Ign - 9112 - 0 implies I gn - 91g oo 0.

0. as nY -* oo.
Proof: Suppose 1191loo > e. That is, for some

a E [al, a2], Ig(a)l > e. Set 5 = e/(2K). We have

We have proved that the difference between the risk
f Q(x, y, f)dF(x, y) and the empirical risk Ig112 > / 2 (x)dF(x)

. 1i=l Q(Xi, Yj, f) converges to zero uniformly in proba- a-
bility for our class S. Let the norm II · 112 be defined for any For any x- E (a -6, a + ) we have Ig(x) -g(a) I < KS. It
function g E QW as. follows that Ig(x)l >_ e-K6 = e/2, for allx E (a-6, a+6).

[I2 1/2 Therefore,
11g112 = ( } dF(X))1/2

Ill > (E/2)2Pr{a-e/(2K) < X < a + e/(2K)}
We now use Proposition 6.3 to prove that the tail of the dis-

tribution of the difference Ilfn - fI 12 converges to zero ex- e2

ponentially fast. > 4 a(e/2K) > 0

where the last inequality follows from Lemma 6.1. 0

Proposition 6.4 There holds We use Lemma 6.2 to prove our final proposition:

Pr{llfn-f-f2 >e} (8)
Proposition 65 There holds

· 8 8 E2 + 1 3 2 +e 256(b2--bl)4'/n2 1)3
2

K( )(2 +e2 b Pr{ lIjf - fllO > e} < (10)

Proof: see the Appendix. <8(48(b2 - bl) + 1)3 4K( /2K) e-2(b2-bl)+b 4 2

Our last step is to show that Ilfn - floIK -- 0 almost
surely. For any e > 0 introduce

a (e)) inf Pr{JX - xol < e} (9) Proof: Note from Lemma 6.2
al<xo<a2

The next lemma is an immediate consequence of an assump- Pr-Ifn_ -f lio > e < Prj{1 - f 112 > 'e (E/2K) 
tion that the distribution of X is described by a positive and
continuous density function. Then the result follows immediately from the Proposition 6.4

Lemma 6.1 For every e > 0 there holds a(e) > 0.
^ Proposition 6.5 establishes the convergence

Proof: The function a(xo, e) - Pr{IX - xo[ < e} is IlIf - f llc O in probability. We now set

continuous and positive, since, by assumption, the distribu-
tion of X has a positive density function. Since this function yj 48(b2-b()2 + 1)3
is defined on a compact set [al, a2] it assumes a positive min- +E2 (E/2K)
imum a(e). CO and

e4 a2 (e/2K)

The following lemma proves that convergence in 112 2 212 (b2 - b)4

norm implies the convergence in KI ·* loo for the class ZS of To complete the proof of the theorem, we need to establish al-
Lipschitz continuous functions with constant K. It will allow most sure convergence of fl to f. But this is a simple conse-
us to prove the result similar to (8) but for the distanceus to prove the result similar to (8) but for the distance quence of the exponential bound (10) and the Borel-Cantelli

llftn _ fll I.. lemma.
Theorem 6.1 is proved. C



The bound (10) provides us with a confidence interval on with respect to the I l Ioo norm. Consider the set of all func-
the estimate fn . Given the training sample (X1 , Y1),..., (X,, Y,) ,tions g E 90 which satisfy the following three conditions
we construct the estimate fn= fn (X 1, Y 1,... X., Yn). Then
given an arbitrary input observation X E [al, a2] the proba- 1. g(Li) {P, P2 ,..., P, = 2,., 1.
bility that the deviation of the estimated output fn (X) from
the true output f (X) is more than e, is smaller than the right- 2. Ifg(Li)= Pj then
hand side of the inequality (10) Note, that the bound (10) de- gi
pends only on the distribution of X and not on the distribu-
tion of YIX. Unfortunately the constants y7 and 'y2 are too
large for practical purposes. Our simulation results from the 3. For all x E (Li, Li+i),

Section 5 suggest that the rate of convergence fn ~ f is
better than the very pessimistic ones in Propositions 6.4 and g(x) = ,g(L) + (1 -)g(

6.5. It would be interesting to investigate whether better rates
of convergence can be established, with corresponding upper Li+ -
bounds more practically useful. Li+ - Li'

7 Conclusions That is, the function g is obtained by linear extrapolation

We have proposed a convex optimization approach to the non- of the values g(L 1), g(I2),... , g(Lm1+l).
parametric regression estimation problem. A number of de-
sirable properties were proven for this technique: average un- It is not hard to see that the family ZŽo is a non-empty set of
biasedness, and a strong form of consistency. Lipschitz continuous functions with constant K. The latter

We have also proposed an optimization approach for the fact is guaranteed by condition 2 and the fact Li+l - Li <
maximum likelihood estimation of dynamically changing pa- 6/K, Pj - Pj < 6. The cardinality of this set satisfies
rameters in statistical models. For many classical distribu-
tional forms, the objective function in the optimization prob- I[o < m23m.
lem is convex, and the constraints are linear. These problems

since we have m2 choices for g(I1), and only three choices
are therefore efficiently solvable. It would be interesting to for each subsequent value g(2) , g(Im ) by condition

for each subsequent value g(I2), · , g(Im +l) by conditioninvestigate any consistency property of this estimation pro- 2
cedure. The other question for further investigation seems to

Consider now an arbitrary function f E 9. We will con-be the selection of the constant K. A good choice of the con-
stant K is crucial for the approximation to be practically suc- struct a function gf E 2o such that I Igf - f lo < 36. For
cessful. Finally, it is of interest to improve the rates of con- i = 1, 2, ... , ml + 1, set gf(Li) = Pj if f(Li) E Jj, j =
vergence provided by the Proposition 6.5 1, 2,..., m2. Then linearly extrapolate the values gf (Li) to

get the function gf : [al, a2] -- [bl, b2]. Clearly gf satisfies
the conditions 1 and 3 of the set 90. Also, since f is Lipschitz
continuous with the constant K, then If(Li+l) - f(Li)l <

8 Appendix 6. It follows that f(Li+l) E Jj- 1 U Jj U Jj+l. Therefore
gf(Li~l) E {Pj-x,Pj, Pj+)}. Thus condition 2 is also sat-

We provide in this appendix the proofs of the most technical isfied. Fnally suppose [L, L Theion 2 is also sat-
parts of the paper.

If() - gf (x)l < If () - f(Li)l + If(Li) - gf(Li)l
Proposition 6.2 Proof. Fixe > 0 and xl, yl,..., ,, y,n.

Let e +±gf(Li) - g(x)l < 6 + 6 + 6 = 36.
6 = 6(e) =. (11)

6(b 2- bl) We see that I f - gf Il < 36 and, as a result, the set 9o is a

Divide the interval [al, a2] into ml = [K(a2 - al)/bS + 36-net of the family Z.
1 equal size intervals. Here l[. stands for the largest integer We now show that for each fixed sequence
not bigger than x. Clearly the size of each interval is smaller (x 1, Y1), ( 2, Y2),..., (x,, y,), the set of vectors
than 3/K. Let L 1, L 2,..., L,, be the left endpoints of these
intervals and let Lm,,+ be the right endpoint of the interval (Q(xl, yi, g),... , Q(xn, yn, g), gE )
Imp. Divide also interval [bl, b2] into m2 = l(b2 - bl)/6J + (12)
1 equal size intervals J1,..., JM2 All the intervals Jj, j = = {((Y - g(x)) 2 ,.. , (n - (xn)) 2 , g E 9o}
1, 2,..., m2 have lengths less than 6. Let P1 , P2 ,..., Pm2 be
the left endpoints of the intervals J1, J2, ... Jm 2. is an e-net of the set

We prove the proposition by explicitly constructing an e-
net of the set (7). We start by building 6(e) net of the set 9 {(Q(xl,yI, f),..., Q(xn, Y, f), f E S} (13)



In fact, foreach f E Q andggf E £o satisfying IIf-gf IA , < n
36, and i = 1, 2,..., n, we have Q(fn, Xi, Y) > / 2 } (15)

i=1

(yi - f(xi))2 - (Yi - gf(~X)) 2 1 i+Pr{ JQ(x, y,f)dF(x, y)-- Q(fn, Xi, Yi) < -/2}

= ]f(xi) - f(xi) 2y - f(xi) - gf (xi) i=I
From the decomposition (14) we have

< 3621b 2 - bl = e

and the set (12) is an e-net of the set (13). The cardinality of JQ(x, y, f)dF(x, y) = Q(x, y, f)dF(x, y)+Il2f-fIlf
the set (12) is no bigger than

Therefore

m23m = 1 ) 3 +K( 1 Pr{lIfn - fIl2 + J Q(x, y, f)dF(x, y)

< (b 2 -bl +1)3 K(E;al)+i 1 5Q(fn,X Xi,Y) > e/2}6(,E) , >,/2
i=l

We have proved

~N(e~, , (x, Y1), * *· *~ (:nYn)) =PrJQ(fn ,x, y)dF(x, y)-- Q(fn, Xi, Yi)> c/2}

< ( 2 1 3( - 1) +' From Proposition 6.3
6(b2 - bl n K(~2-~

The statement of the Proposition then follows from (11). Pr Q(fn x, )dF(x, y) Q X )> /2
i=1

Proposition 6.4 Proof: The identity (16)
< 4(12(b 2 - bl) 2

+1)3'2K(a 2 -a)(b 2 -b) +l e -
2
n/256(b 2 -bl)

4

J(- f(X))2dF(x, y) Also from (6)

J(y- f(x)) 2dF(x, y) + J(f(x)- (x))2 dF(x, y) Q(i, Xi, Y) < Q(f,X, Y
(14)

= (y_ f(x))2dF(x,y) + Il - fll1 As a result

can be easily established for any f E Z3 by using the fact Pr J Q(x, y, f)dF(x, y)--E Q(fn, Xi, Yi) <-e/2}
i=1

(y- (z)) 2 = (y_ f())2 

< Pr Q(x, y, f)dF(x,y)-- E Q(f, Xi, Yi) <-c/2}
+2(y - f(x))(f - f(x)) + (f(x) - f(z))2 i=

and the orthogonality property Again from Proposition 6.3,

E[(Y - f(X))(f(X) - f(X)] =0 Pr{ / Q(f, x, y)dF(x, y) - Q(f, Xi, Yi) <-e/2}
i=1

We have (17)

Pr{ If~ _ 2 > c} < 4 ( 12(b 2 - b1)2 + 12Kt(a2a)(b -bl) +1 e- 
2
n/256(b2 -bi)

4

= Pr{iifn-f ii2 JQ(x, y, f)dF(x, y)-- 5Q(Xi,Y, fn) It follows from (15),(16), and (17)

1n1 Pr ||fn-fn 2l 12 > <
Q(/o(-,x,, n - 12K(ay, fl)(bx ybl) 2

'(JQ(xyf)dF(xy)- -5Q(Xi Yifn)) >e} 8/(12(b 2 -bi) + 1)3 +le-e6 2
n/256(b2-b)

4

The following upper bound then holds e
This completes the proof. ]

Pr( fl f 112> c} < Pr{I | i f J+/ Q(x, y, f)dF(x, y)-
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