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1 Introduction

In recent years, much research has focused on hybrid systems. These are systems
that involve a combination of continuous dynamics (e.g., differential equations

or linear evolution equations) and discrete dynamics. The motivation lies in the
fact that most complex systems involve a physical layer described by continuous
variables, together with higher level layers involving symbolic manipulations
and discrete supervisory decisions. Applications range from intelligent traffic

systems to industrial process control.

Hybrid systems can be usually described by state space models, using a suit-

ably defined state space (often the Cartesian product of continuous and discrete

sets). Classical systems theory provides us with efficient methods for analyzing
and controlling certain classes of continuous-variable systems (e.g., linear sys-
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tems) and certain classes of discrete-variable systems (e.g., finite state Markov
chains). However, equally efficient generalizations are not available even for the
simplest classes of hybrid systems. This is thought to be a reflection of the
inherent complexity of such systems. The research reported in this paper is
aimed at elucidating this complexity.

As an illustration, consider a hybrid system with state (xt, qt) C R n x {1, . , m}
where xt and qt are, respectively, the continuous and discrete parts of the state.
Let Ai (i = 1,. ... , m) be square matrices and let the dynamics of xt depend on
the discrete state by

xt+1 = Aixt when qt = i.

In addition, let a finite partition of Rn be given , Rn = H1 U H2 U · U Hm, and
suppose that the discrete state qt depends only on the location of the continuous
state xt in the partition, i.e.,

qt = i when xt E Hi.

Then, the overall hybrid system can be written in the form of a nonlinear system

xt+1 = Ai xt when xt E Hi. (1)

In the case where the partition consists of two regions separated by a hyperplane,
the system becomes

1 AlXt when CTxt > (2)1. A 2Xt when cTTXt < 0

A system is stable if its state vector always converges to zero. Deciding stability
for hybrid systems as simple as (2) is already a nontrivial task. Let us illustrate
this with an example. We build a state space model for a system described by
a state vector (vt, yt, Zt), where vt and yt are scalars and zt is a vector in Rn.
The dynamics of the system is of the form

Vt+1 1/20 0 / \
yt+1 = -1/2 1 0 Yt when yt > 0,
Zt+1 0 0 A+ Zt

and (Vt+1 1/20 0 
Yt+1| = 1/2 1 0 yt when t < 
Zt+1O 0 0 A_ zt

This hybrid system consists of two linear systems, each of which is enabled in
one of two halfspaces, as determined by the sign of yt.
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Let us now look at the evolution of an initial state vector (v0 , yo, z0). Suppose
that v0 = 1 in which case we have vt = 2- t for all t. Suppose in addition, that
y0o can take any value in [-1, 1]. Then, it is easily seen that yl can take any
value in [-1/2,1/2], no matter what was the sign of yo0. Continuing inductively,
we see that yt can take any value in [-2 - t,2-t], can have either sign, and this
is independent of the signs of y, for s < t. This shows that every possible sign
sequence can be generated by suitable choice of yo. Hence, the dynamics of the
state subvector zt are of the form zt+l = Atzt, where At is an arbitrary matrix
from {A_,A+}. We conclude that the state vector converges to zero, for all
possible initial states, if and only if all sequences of products of the matrices
A_ and A+ (taken in an arbitrary order) converge to zero.

Unfortunately, a test for the stability of all possible sequences of products of
two matrices is not available. The decidability of this problem is a major open
question and is intimately related to the so-called "finiteness conjecture" (see,
e.g., Daubechies and Lagarias [5], Lagarias and Wang [11], and Gurvits [7,8]). If
the stability of all possible sequences of products of two matrices turns out to be
undecidable, it will immediately follow that the stability of the class of hybrid
systems of form (2) is also undecidable. Given the present state of knowledge,
we are unable to prove such an undecidability result. On the other hand, NP-
hardness of the stability problem for systems of the form (2) is obtained with a
straightforward adaptation of the arguments in [23].

In Section 2 we build on this last observation and prove NP-hardness of the
stability problem for many more classes of systems. Let us note that systems of
the form (2) can also be written

xt+l = (Bo + v(cTxt)Bl)xt (3)

with B0 = Al, B 1 = A2 - Al, and with the function v defined by v(a) = 0 for
oa > 0, and by v(a) = 1 for a < 0. In Theorem 1, we consider nonlinear systems
of the form (3) where v is an arbitrary scalar function. We show that for a large
class of nonconstant functions v, the stability of these systems is NP-hard to
decide. In particular, our result applies to the function defined above, and so
the stability of systems of the form (2) is NP-hard to decide.

In Section 3 we consider classes of elementary hybrid systems similar to (2) but
with an additional control variable. The nth-dimensional sign system associated
with A+,Ao,A_ E Rnxn and b,c E Rn is the system

Xt+l = Asgn(cTxt)Xt + but, t = 0, 1, ...

where sgn(-) is the sign function defined by

+, when x > ,O
sgn(x) = 0O, when x = 0,

-, when x< 0.
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In Theorem 2, we establish that null-controllability and complete reachability
are both undecidable for such systems. A related result is given by Toker [22]
who considers a class of systems similar to sign systems. He shows that the ques-
tion of deciding whether all possible control actions drive a given initial state
to the origin is undecidable. Theorem 2 is also related to our earlier work on
the complexity of certain questions involving products of matrices coming from
a given finite family [2], [23]. In our earlier work, matrices could be multiplied
in an arbitrary order. The present work is different in that the choice of the
next matrix in the product is determined by a feedback mechanism involving
the state of the system.

Systems of the form (1) are the piecewise linear systems introduced by Sontag
in [18], and for which some complexity results are already available, see [19]
for a survey of these results together with results for other type of nonlinear
systems. The systems (1) are also similar to the piecewise constant derivative
systems analyzed by Arasin, Maler and Pnueli. A piecewise constant derivative
system is given by a finite partition of R n , Rn = H1 U H2 U ... U Hm, and by
slope vectors bi for every region Hi of the partition. On any given region of the
partition, the state x(t) of a piecewise constant derivative system has a fixed
constant derivative,

d x(t)
d) = bi when x E Hi.

The trajectories of such systems are continuous broken lines, with breaking
points occurring on the boundaries of the regions. In [1] Asarin et al. show
that, for given states xb and xe, the problem of deciding whether Xb is reached
by a trajectory starting from xb, is decidable for systems of dimension two, but is
undecidable for systems of dimension three or more. This undecidability result
is obtained by simulating Turing machines. Similar Turing machine simulations
by hybrid systems are possible with other type of hybrid systems; see, e.g.,
Bournez and Cosnard [3] for simulation by analog automata, Siegelmann and
Sontag [17] for simulation by saturated systems, and Branicky [4] for simulation
by differential equations. (See also the general reference, Henzinger et al. [9].)
In all these constructions, the "partition" of the state space is used to encode
the configuration of a Turing machine. Simulation of arbitrary Turing machines
is therefore possible only if there is no apriori limit on the "size" of the partition.
An original aspect of our results, when compared with those mentioned above,
is that they are valid for hybrid systems with very few regions.
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2 Autonomous systems

A discrete-time autonomous system f: Rn i- R' is said to be globally asymp-
totically stable (or, for short, asymptotically stable) if the sequences defined by

t+l = f(xt), t = 0, 1,...,

converge to the origin for all initial states x0o E R ' .

Let A be an n x n real matrix. It is well-known that the linear system xt+l = Axt
is asymptotically stable if and only if all eigenvalues of A have magnitude strictly
less than one. Furthermore, asymptotic stability can be decided efficiently, e.g.,
by solving a Lyapunov equation. No such simple and computationally efficient
test exists for general nonlinear systems.

In this section, we define particular classes of systems involving a single scalar
nonlinearity, and we prove that algorithms for deciding asymptotic stability of
systems in any one of our classes are inherently inefficient. Unless P=NP, the
running time of any such algorithm must increase faster than any polynomial
in the size of the description of the system. (See, e.g., Garey and Johnson [6]
or Papadimitriou [14] for the definitions of P, NP, and the implications of NP-
hardness.) Some of our classes are elementary and can be viewed as the "least
nonlinear" systems. In particular, one of our classes corresponds to the class of
systems that are linear on each side of a hyperplane that divides the state space
in two.

Systems with a single scalar nonlinearity. Let us fix a scalar function
· : R - R. The v-system associated with n > 1, A(,Al E RnXn, and c E R n,
is defined by

Xt+1 = (Ao + v(cT2t)Al)xt, t = 0,1 ....

(Here, the superscript T denotes matrix transposition.) When v is a constant
function, v-systems are linear and their stability can be decided easily. We
show in Theorem 1 below that for a broad variety of nonconstant functions v,
the stability of v-systems is NP-hard to decide.

Let us note that stability can be difficult to check for the simple reason that
v may be difficult to compute. For this reason, the result that we present be-
low is of interest primarily for the case where v is an easily computable function.

Theorem 1. Let us fix a nonconstant scalar function v R i- R such that

lim v(x) < v(x) < lim v(x)
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for all x E R. Then, the asymptotic stability of v-systems is NP-hard to decide.

Proof. Our proof relies on a construction developed in [23], which in turn
is based on a reduction technique introduced in [15]. Rather than repeating
here the construction in [23], we simply state its conclusions, in the form of the
lemma that follows. The lemma makes reference to 3SAT, which is the Boolean
satisfiability problem with three literals per clause, and is a well-known NP-
complete problem.

Lemma 1. Given an instance of 3SAT with n variables and m clauses, we can
construct (in polynomial time) two matrices Ao and Al, of dimensions r x r,
where r = (n + 1)(m + 1), whose entries belong to {0, 1}, and with the following
properties:

(a) If we have a "yes" instance of 3SAT, there exist indices k1, k 2, kn+2 E
{0, 1}, and a nonnegative nonzero integer vector x such that Ak, +2 · Ak 2Ak 1 =
mx.

(b) If we have a "no" instance of 3SAT, then IIAk,+ 2 ... Ak 2Aklxll < (m- 1)IIxll,
for every vector x, and for every choice of indices kl, k2,..., c k+2 E {O, 1}. Here,
and throughout the paper, I1 II1 stands for the maximum (£O) norm.

Let us now fix a nonconstant function v(-) with

lim v(x) < v(x) < lim v(x),
32---00 X +-- OO

for all x E R, and let a_ = lim_,,_O v(x) and a+ = lim__+,. For simplicity
we assume that a_ and a+ are rational numbers. This restriction is not essential
and can be removed with a slightly more complicated proof.

Since we have assumed that v(.) is not constant, we have a_ < a+. Given an
instance of 3SAT, we construct the matrices Ao and Al as in Lemma 1. We
then let

B =a+Ao - _A BA Al - Ao
a+ - a_ a+ - a_

It is seen that for any a E R, we have

= a+ -a a - a-Bo + aBl = - a Al, (4)
a+ - a_ a+ - a_

and that for any a E [a_, a+], Bo + aB 1 is a convex combination of Ao, Al.

We will now define the dynamics of a v-system. The system we construct has
a state vector xt = (Zt, yt), consisting of a subvector zt E R' and a subvector
Yt E Rn+ 2 . Let yi and zi stand for the ith component of Yt and Zt, respectively,
and let the vector c in the definition of a v-system be such that cTxt = tl.
Next, we describe the dynamics of the state vector.
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Regarding zt, we let
Zt+l -- Y(Bo + v(ytl)Bl)zt (5)

Here, g is a rational number such that

(m 1 <- gn+2 <(m -2) (6)

Such a rational number exists whose size (number of bits in a binary encoding) is
polynomial in m and n, and can be constructed in polynomial time. Regarding
yt, we have the following equations:

Yt+1 = Yt+, i =1,..., n + 1, (7)

and
n+2 (
pt+2 = ( t() a- + )a+ z t (8)

We will show that the resulting v-system is asymptotically stable if and only if
the instance of 3SAT that we started with is a "no" instance.

Suppose that we have a "no" instance of 3SAT. By the construction of Lemma
1, we have IIAkn+,.. AAkzll < (m - 1)[[z]I, for any vector z, and any choice
of indices k1 ,..., k,+ 2 . Because of Eq. (4), we see that for every value of yl,
Bo+v(y1 )Bl is a convex combination of the matrices Ao, A 1, i.e., Bo+v(y')Bl =

7 A0 + (1 - -)A 1, for some y E [0, 1]. Hence, using Eq. (5),

lIZn+211 < gn+2 max {(7n+2Ao + (1 - 7 n+ 2 )A1 ) (7 1Ao + (1 -yl)Al)zo[

9n+2 max IIAk +2 ... Ak 2AkzoII
kl,...,kn+2

< gn+2(m- 1)IIzolI.

The first maximum is subject to the constraints 0 < yi < 1. It is easily shown
that the maximum is attained with each yi equal to either zero or one, which
explains the equality. Since g,+ 2 < (m - (2/3))- 1, we conclude that IIZn+211 <
allzoll, for some constant a < 1, from which it easily follows that zt converges
to zero. In particular, =1 z converges to zero, and by inspecting Eqs. (7)-(8),
we conclude that Yt also converges to zero. Since this argument was carried out
for arbitrary initial conditions, we conclude that the v-system is asymptotically
stable.

We now consider the case where we start with a "yes" instance of 3SAT. By
the construction of Lemma 1, there exists a nonnegative nonzero integer vector
z, and some choice of indices k1 ,.. ., kn+2, such that Ak,+ 2 ... Ak2 AklZ = mZ.
Using scaling, we can assume that the components of z are nonnegative inte-
ger multiples of a positive integer constant K, whose value will be determined
shortly. We choose the initial subvector zo to be any vector that satisfies

zo > z.
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Let M be another positive integer constant to be determined shortly. Let us
say that a vector y E Rn+2 encodes kl,... . , k,,+2 if the following two conditions
hold for i = 1,..., n + 2:

yi > M, if ki = 1,

yi < -M, if ki = 0.

We let the initial subvector yo be such that it encodes kl,..., kn+2. We will
show that with a suitably large choice of K and M, we have n,+2 > z and Yn+2
also encodes kl,..., kn+2. It will then follow (by induction) that zt > Z for all
times t that are integer multiples of n + 2, and we will have completed the proof
that the v-system is not asymptotically stable.

We now set the values of the constants K and M. We first choose some e > 0
such that

( 1 Cj1 + 2 m- > 1.
a+ -- a_ m- --

We then choose M so that

v(b) > a+ - e, if b > M,

v(b) < a- + e, if b < -M.

Finally, we choose K so that

gn+2(a+ a- -a+ + n+2gn+2 a+) (i - - K_> M.
2 a+ - a-

For t = 1, ... , n + 2, Eq. (7) yields yl_ 1= yo, which implies v(yl_l) = v(yt).
Since yo encodes kl,..., kn+2, it follows that v(yl_l) is within e of a+ or a_,
depending on whether kt is 1 or 0, respectively. Suppose that kt = 1. In that
case, v(yl_l) > a+ - e, and Eq. (4) yields

B o + v(ytl_)Bl (Yt 1) Al > Al = (1- ) Akt'a+ - a_ a+ - a a+ -a_

(The inequality between matrices is to be understood componentwise.) A sym-
metric argument also shows that if kt = 0, we again have

Bo + v(ytl_)B1 > (1 a I- ) Akt

This shows that we have

Zt > (1 a - ) Akt zt- t = ,.., n + 2. (9)
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In particular,

> + gn+2 n+(1 _

1 ~/ e n+2m- + - a+ - a

= 1 Imzm_ -- a+--a_ y
> z.

The second inequality made use of the definition of g [cf. Eq. (6)]. The equality
was based on the definition of '. Finally, the last inequality relied on the
definition of c.

Recall that the matrices Ao0 , Al have nonnegative integer entries. Since the
entries of z are nonnegative integer multiples of K, we see that the entries of
Akt '" Akz have the same property, for t = 1,..., n + 2. Furthermore, for t in
that range, the vector Ak, ..- Akj must be nonzero; otherwise, we would have
mz = Akn+2 '" Akjl = 0, contradicting the fact that z is nonzero. Using Eq.
(9), and the fact g < 1, we conclude that

Zt > g+ K, t = 1,..., n+ 2. (10)a+ - a_

Suppose that yl > M. Then, v(ylt) > a+ - . Using this inequality in Eq. (8),
and using also Eq. (10), we obtain

n+2 gn+2 ( a_ + a+) (1 a n+2
· t+> a+-e 1 -a K>_M,

due to the choice of K. By a symmetrical argument, if yt < -M, we obtain
yt+2 < -M.

We have shown that starting with zo > z, and for t = 1,.. ., n+2, the dynamics
of yt amount to a cyclic shift of its sign pattern, while the magnitude of each
component of yt stays above M. After n+2 time steps, and since y has dimension
n + 2, the same sign pattern is repeated, and Yn+2 is again an encoding of
k 1,... , kn+2 Furthermore, z,+2 > 7, and the same argument can be repeated.
As argued earlier, this establishes that the v-system is not asymptotically stable.

We have therefore completed a reduction of the 3SAT problem to the problem of
interest. The first step in the reduction, as described by Lemma 1, takes poly-
nomial time. The remaining steps (the definition of the matrices Ao, A1 and
the constant g) also take polynomial time. Thus, the overall reduction takes
polynomial time and the NP-hardness proof is complete. o
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Remarks:

1. Particular choices of nonconstant functions v lead to particular classes of
systems for which asymptotic stability is NP-hard to decide. Consider for
example the function

a +1 when a >0O,
) -1 when a < 0.

This function satisfies the hypothesis of the theorem. After elementary
algebraic manipulations we easily obtain:

Corollary. The problem of deciding, for given matrices A+, A_ E QnXn
and vector c E Qn, whether the system

f A+xt when cTxt > O,
xt+1 = Axt when cTxt < 0,

is asymptotically stable, is NP-hard.

2. An interesting corollary of Theorem 1 is obtained by letting v be a "sig-
moidal nonlinearity" of the type used in artificial neural networks. The-
orem 1 implies that the stability of recurrent neural networks involving
just one sigmoidal nonlinearity is NP-hard to decide.

3. Another interesting corollary is obtained for linear systems controlled by
bang-bang controllers. A linear system xt+l = Axt + But controlled by a
bang-bang controller of the type

f Koxt when yt > 0,
k = K1 xt when Yt < 0,

leads to a closed-loop system

_k (A + BKo)xt when yt > O,
xk = (A + BK1 )xt when yt < 0.

From Theorem 1 we see that the stability of such systems is NP-hard to
decide.

4. A discrete-time autonomous system f : R '
-+ R' is marginally stable

if the sequences defined by xk+l = f(xk), k = 0, 1,..., remain bounded
for all initial states x0 E Rn and it is locally stable (asymptotically or
marginally) if it is stable (asymptotically or marginally) in some neigh-
borhood of the origin. The proof of NP-hardness of asymptotic global
stability can be adapted so as to cover the other three cases in the four
possible combinations of local/global asymptotic/marginal stability.
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5. Note that we do not know whether the asymptotic stability of v-systems
is decidable for any or for some nonconstant function v. As mentioned
earlier, this is related to the decidability of the stability of all possible
sequences of products of two matrices, which is an open problem.

3 Controlled systems

A discrete-time system is a map f ·R' x R m - R : (xt, ut) - Xt+l =
f(xt, ut). Let xb, Xe E Rn (the subscripts b and e stand for beginning and end).
The state Xb can be controlled to xe, or, equivalently, xz is reachable from xb, if
there exists some p > 1 and ui E Rm (i = O,. . . ,p - 1) such that the iterates

Xt+l = f(xt, ut), t = O,...,p - 1,

drive xo = Xb to Xp = Xe.

A system is controllable to xe if all states can be controlled to Xe, it is reachable
from Xb if all states can be reached from Xb. In particular, the system is null-
controllable if all states can be controlled to the origin and it is null-reachable if
all states can be reached from the origin.

A system is completely controllable (or, simply, controllable) if all states can be
controlled to all states. This notion being symmetric with respect to time, it
coincides with the notion of complete reachability.

Asymptotic versions of these definitions are also possible by requiring the se-
quences to converge to the given state rather than reaching it exactly.

For linear systems the notions of complete controllability, null-reachability, and
reachability from a state, are all equivalent and can be proved equivalent to the
condition that the matrices A and B form a controllable pair (see, e.g., Sontag
[21]). When the matrix A is invertible, these notions furthermore coincide with
those of null-controllability and of controllability to a state. Controllability of
a pair of matrices can be decided in polynomial time using elementary linear
algebra algorithms. For general nonlinear systems no such algorithms exist.

We define below a particular family of nonlinear systems which we consider to
be the simplest possible controlled nonlinear systems, and also the simplest pos-
sible controlled hybrid systems. In Theorem 2, we analyze controllability and
reachability of these systems from a computational complexity point of view.

The nth-dimensional sign system. associated with A+, A(, A_ E Rnxn and b, c E
Rn is the system

Xt+l = Asgn(CTXt)Xt + but, t = 0, 1,...,



where sgn(.) is the sign function defined by

+, when x > 0,
sgn(x) = O, when x = 0,

-, when x < 0.

When the control variables ui are all zero or when b = 0, sign systems degener-
ate into autonomous systems of the form described in the previous section and
for which we have shown that it is NP-hard to check asymptotic stability. It is
therefore clear that asymptotic null-controllability is NP-hard to decide for sign
systems. We show in Theorem 2 below that null-controllability and reachability
are undecidable for sign systems. For proving this, we need preliminary results
on Post's correspondence problem and on mortality of sets of matrices.

POST'S CORRESPONDENCE PROBLEM.

Instance: A set of pairs of words {(Ui, Vi): i - 1, .. ,n} over a finite alphabet.

Question: Does there exist a non-empty sequence of indices il, i2, . ., ik where
1 < ij < n, such that UiUi:2 '"Uik = Vi, V2 "'Vk?

Post's correspondence problem is trivially decidable for one letter alphabets.
Furthermore, it is easy to see that the solvability of the problem does not de-
pend on the size of the alphabet, as long as the alphabet contains more than
one letter. Post proved that the correspondence problem for an alphabet with
more than one letter is undecidable (for a proof of this classical result see,
e.g., Hopcroft and Ullman [10]). In a recent contribution Matiyasevich and
Senizergues [12] have improved this result by showing that the problem remains
undecidable in the case where there are only seven pairs of words. On the other
hand, the problem is known to be decidable for two pairs of words. The limit be-
tween decidability/undecidability is somewhere between three and seven pairs;
according to Matiyasevich [13] this limit is likely to be equal to three.

Post's correspondence problem can be used to prove a result on mortality of
matrices. Let k > 1. A set A of square real matrices of the same dimension is
k-mortal if there exist Ai E A (i = 1,..., k) such that Ak . 'A 2A 1 = 0. The
set is mortal if it is k-mortal for some finite k. In [16] Paterson uses Post's cor-
respondence problem to show that mortality of integer matrices is undecidable.
This result is improved slightly in [2] where the following can be found:

Proposition 1. Mortality of two integer matrices of size n x n is undecidable
for n = 6(np + 1) where np is any number of pairs of words for which Post's
correspondence problem is undecidable.

As mentioned earlier we can take np = 7, and thus mortality of pairs of 48 x 48
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integer matrices is undecidable. We are now able to prove our theorem.

Theorem 2. Let np be any number of pairs of words for which Post's corre-
spondence problem is undecidable (we can take np = 7).

(a) The problem of deciding, for a given nth-dimensional sign system, whether
the system is null-controllable is undecidable when n > 6np + 7.

(b) The problem of deciding, for a given nth-dimensional system and for given
states X,, b E Q", whether x, can be reached from xb, is undecidable when
n > 3np + 1.

Proof.

(a) Let Bo0 , B1 E Z'X " be two arbitrary matrices of size n x n. The sign system
we construct has a state vector xt = (Zt, yt) where zt is a scalar and Yt is a
vector in Rn . Let the vector c in the definition of a sign system be such that
cTxt = zt and let A_ = Ao = B0 and A+ = B 1. We define the dynamics of the
sign system by zt+l = ut and yt+l = Asgn(cTxt)Yt = Asgn(zt)Yt.

For a given initial state x0o E Rn+l and p > 1, the state xt is obtained by
xt = (zt, Yt) with zt = ut-1 and

Yt = Asgn(uilt1) . Asgn(ul)Asgn(uo)Asgn(cTxo)Yo.

We claim that the sign system is null-controllable if and only if the matrices
Bo, B1 are mortal.

If the matrices Bo, B 1 are mortal, then the sign system is clearly null-controllable,
and so this part is trivial. For the other direction, assume that the sign system
is null-controllable and let e, be the rth unit vector of R'. Since the system
is null controllable, there exists a kl > 0 and a sequence ji E {-, 0,+}, for
i = 1,...,k such that Aji, ...Aj 2 Ajlel = 0. Let x2 = Ajk, .. A j2A jl e 2. By
using the null-controllability assumption again, we find some k2 > 0 and a se-
quence ji E {-,0,+} for i = 1,...,k 2 such that Ajk .. .AjAjx 2 = 0. The
product A = Aj. .. AjiAjIAjkl ... Aj 2Aj1 is such that Ael = 0 and Ae 2 = 0.
Continuing in the same way for all unit vectors, we eventually obtain a product
A of matrices in {A_, Ao, A+} such that Ae, = 0 for r = 1,..., n. This implies
that the set {A_, Ao,A+} is mortal and thus so is the set {Bo, B1 }.

We have shown that null-controllability of the (n+ 1)th-dimensional sign system
is equivalent to mortality of the set {B 0 , B 1}. According to Proposition 1, the
latter problem is undecidable when n > 6(np + 1), hence the result.

(b) Let an instance of Post's correspondence problem be given by the pairs
of words {(Ui, I) : i = 1,...,n} over the alphabet {1,2}. We construct a
sign system of dimension (3n + 1) and states xb and xe such that xe can be
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reached from Xb if and only if the correspondence problem has a solution. Our
construction is similar to the one given by Paterson in [16].

Let lal denote the length of the word a. Note that every word Ui or Vi over the
alphabet {1, 2} can also be viewed as a nonnegative integer ui or vi, respectively.
For each pair (Ui, Vi) we construct a matrix

qiO O
Wi = 0 si 0

ui Vi 1

were ui and vi are as described above, qi = 10lu il , and si = 10lvil. The product
of the matrices Wi and Wj is given by

qiqj O O0
WiWj = o sisj O

7ui ( Tj Vi 0 Vj 1

were a ®( b denotes the positive integer resulting from the concatenation of the
positive integers a and b. It is therefore clear that the correspondence problem
admits a solution if and only if there exist a product Bk . · B1 with Bj E W :=
{Wi: i = 1,..., n} such that

10-PB ..B1[ - 1 = -1 .

for some p > 1 (the integer p is equal to the length of the word resulting from
the correspondence). We transform this problem into a reachability problem for
sign systems.

Let Im denote the identity matrix of size m and define

V1 = diag(Wl , W2,..., W,,),

(The reason for the notation V1 will appear shortly.)

S = 10-113n,

and

T- r~0 ° 3(.- 1) 8T= I3 0 

All these matrices have size 3n x 3n. We define a sign system of dimension
(3n + 1) by A+ = diag(O, V1 ),Ao = diag(O, S),A_ = diag(O,T) and b = c =
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( 1 0 ... 0 )T. Finally, we define the beginning and end states by

1 0
o 0

Xb = and e = 

1 1
--1 -1

o 0

and claim that the sign system

Xt+l = Asgn(cTx,)Xt + but

can be driven from xb to x, if and only if the correspondence problem has a
solution.

For notational convenience, let us partition the state vector xt by xt = (zt, Yt)
where zt is a scalar and yt is a subvector of dimension 3n. We use the cor-
responding decompositions of the beginning and end states xb = (zb, Yb) and
x, = (e,,Y,). The dynamics of zt is given by z0 = 1 and zt+l = ut. The
dynamics of yt is given by yl = Vlyo and

f V yt when ut-1 > 0,
Yt+ i Syt when Utl = 0,

Tyt when ut_l < 0.

The matrix S commutes with T and V1 and so we obtain

Yt = SS V1 q Ttq . Vlt 1Ttl V yo

for some s, ti,wii > O. Notice that T n = I3, and define

Vk = Tk-l V Tn-(k- 1)

We have then

Vk = diag(Wk, Wk+1,..., W, W1,... , Wk-1)

for k = 1 .... n. Using the property T n = 13, we arrive, after elementary
manipulations, at

Yt = SSTt* VYo

where V is a nonempty product of matrices Vi and s,t. _> 0. The matrices Vi
are block-diagonal and so the blocks of V are obtained by forming non-empty
products of matrices from the set W. We can now conclude. If the Post corre-
spondence problem has a solution, then xe can be reached from Xb by choosing
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the control ui such that yt = SSVyo where the last block in V is constructed
from the solution of the correspondence problem and s is equal to the length of
the word resulting from the correspondence. Conversely, if y, = SSTt* Vyb for
some nonempty product V and s, t, > 0 then, since all 3(n- 1) first components
of Yb are equal to zero, and V is block-diagonal, we must have t. = kn for some
k E Z. But then Ye, = SSVyb and the correspondence problem has a solution.

Remarks:

1. In the proof of the first part of the theorem we use matrices and vectors
that have integer entries. Therefore null-controllability remains undecid-
able when matrices and vectors are constrained to have integer entries. For
an integer valued sequence, convergence to zero is equivalent to equality
with zero after finitely many steps. From this it follows that the asymp-
totic version of null-controllability is undecidable for sign systems.

2. The class of piecewise linear systems is arguably the smallest possible class
of systems that contains the classical linear systems, the finite automata,
and that is closed under interconnection of such systems, see Sontag [20].
A sign systems is a piecewise linear system with elementary partitions
cTx > 0, cTx- = 0 and cTx < 0, and the results stated in Theorem 2
therefore apply to the class of piecewise linear systems.
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