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Abstract
In this thesis, we study the Ehrhart polynomials of different polytopes. In the 1960's
Eugene Ehrhart discovered that for any rational d-polytope P, the number of lattice
points, i(P,m), in the mth dilated polytope mP is always a quasi-polynomial of
degree d in m, whose period divides the least common multiple of the denominators
of the coordinates of the vertices of P. In particular, if P is an integral polytope,
i(P, m) is a polynomial. Thus, we call i(P, m) the Ehrhart (quasi-)polynomial of P.

In the first part of my thesis, motivated by a conjecture given by De Loera, which
gives a simple formula of the Ehrhart polynomial of an integral cyclic polytope, we
define a more general family of polytopes, lattice-face polytopes, and show that these
polytopes have the same simple form of Ehrhart polynomials. we also give a conjecture
which connects our theorem to a well-known fact that the constant term of the Ehrhart
polynomial of an integral polytope is 1. In the second part (joint work with Brian
Osserman), we use Mochizuki's work in algebraic geometry to obtain identities for
the number of lattice points in different polytopes. We also prove that Mochizuki's
objects are counted by polynomials in the characteristic of the base field.

Thesis Supervisor: Richard P. Stanley
Title: Levinson Professor of Applied Mathematics
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Chapter I

Introduction

1.1 Outline of the thesis

In the 1960's Eugene Ehrhart [9] discovered that for any rational d-polytope P, the

number of lattice points, i(P, m), in the mth dilated polytope mP is always a quasi-

polynomial of degree d in m. In particular, i(P, m) is a polynomial when P is an

integral polytope. Therefore, we call i(P,m) the Ehrhart (quasi-)polynomial of P.

Much work on the theory of Ehrhart polynomials has been done since then. In this

thesis, we try two approaches to study the Ehrhart (quasi-)polynomials.

Chapter II is based on the two papers [18, 17]. Motivated by a conjecture given by

De Loera [4, Conjecture 1.5] on the Ehrhart polynomial of an integral cyclic polytope,

we look for integral polytopes with the same simple form of Ehrhart polynomials. We

generalize the family of integral cyclic polytopes to a new family of polytopes, lattice-

face polytopes, and show that they have the same form of Ehrhart polynomials. The

method we use is to first reduce the problem to the simplex case, and then develop

a way of decomposing a d-dimensional simplex into d! signed sets. By summing the

number of lattice points in these sets (with signs) and using a property of Bernoulli

polynomials, we are able to show that the Ehrhart polynomial of a lattice-face poly-

tope has the desired form.

Chapter III is joint work with Brian Osserman [19]. Mochizuki's work on torally

indigenous bundles [23] yields combinatorial identities by degenerating to different

9



curves of the same genus. We rephrase these identities in combinatorial language

and strengthen them, giving relations between Ehrhart quasi-polynomials of different

polytopes. We then apply the theory of Ehrhart quasi-polynomials to conclude that

the number of dormant torally indigenous bundles on a general curve of a given type

is expressed as a polynomial in the characteristic of the base field. In particular, we

conclude the same for the number vector bundles of rank two and trivial determi-

nant whose Frobenius-pullbacks are maximally unstable, as well as self-maps of the

projective line with prescribed ramification.

In the next two sections of this chapter, we will give the basic terminology we

need for polytopes, and discuss the theory of Ehrhart polynomials in more details.

1.2 Basic definitions related to polytopes

Throughout this thesis, the notation for polytopes mostly follows [32].

Definition 1.2.1 (V-representation). A convex polytope P in the d-dimensional Euclid-

ean space Rd is the convex hull of finitely many points V = {, v2 ,.. , vn} C R . In

other words,

P= conv(V) = {Av + A2v2 + + Anvn : all Ai > 0, and A + A2 + +An = 1}.

We often omit convex and just say polytope. There is an alternative definition of

polytopes in terms of halfspaces.

Definition 1.2.2 (7--representation). A convex polytope P c Rd is a bounded inter-

section of halfspaces:

P = {x E Rd : Ax < z},

for some A Rmxd, z E Rm.

The proof [32, Theorem 1.1] of the equivalence between this two definitions is

nontrivial. We will not include it here.

10



The set of all affine combinations of points in some set S C Rad is called the affine

hull of S, and denoted aff(S):

n

aff(S) = {Alvl +A 2v2 +--' + AnVn : Vl,v 2 ,... ,vn E S, all Ai E R, and ZAi = 1}.
i=1

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a

polytope of dimension d in some Re (e > d).

Definition 1.2.3 (Definition 2.1 [32]). Let P C Rd be a convex polytope. A linear

inequality cx < co is valid for P if it is satisfied for all points x E P. A face of P is

any set of the form

F= P{xERd: cx=Co},

where cx < co is a valid inequality for P. The dimension of a face is the dimension of

its affine hull: dim(F):= dim(aff(F)).

The faces of dimension 0, 1, dim(P) -2, and dim(P) - 1 are called vertices, edges,

ridges, and facets, respectively.

It's easy to see that the convex hull of all of the vertices of a convex polytope P

is P itself.

Definition 1.2.4. Let P C Rd be a convex polytope. The boundary of P, denoted

by OP, is the union of all of the facets of P. The interior of P, denoted as I(P), is

P\OP.

A d-dimensional lattice Zd = {x = (X 1 ,... , Xd) I Vx E Z} is the collection of all

points with integer coordinates in Rd. Any point in a lattice is called a lattice point.

Now we are ready to define two important functions of polytopes.

Definition .2.5. For any polytope P C Rd and some positive integer m E N, the

mth dilated polytope of P is mP = {mx : x C P}. We denote by

i(m,P)= ImP n Zd[,

11



and

i(P, m) = I(mP) n ZdI,

the number of lattice points in mP, and the number of lattice points in the interior

of mP, respectively.

A rational polytope is a convex polytope, the coordinates of whose vertices are

all rational and an integral polytope is a convex polytope, the coordinates of whose

vertices are all integers. In next section, we will discuss Ehrhart's work on i(P,m)

and i(P, m) when P is a rational polytope, or an integral polytope.

1.3 Theory of Ehrhart (quasi-)polynomials

We first look at some examples of i(P, m) for different polytopes P.

Example .3.1 (Example of integral polytopes). (i) When d = 1, P is an interval

[a, b], where a, b E Z. Then i(P, m) = (b - a)m + 1.

(ii) When d = 2, P is an integral polygon. Recall that Pick's theorem states that

for any integral polygon P':

area(P') = II(P') n Z21 + 2 (P) n Zd -1.

Thus,

1i(P, m) = area(mP) + 2I(mP) n zdI + 12

area(fP)m2 + -19(P) n Zdm ±1

(iii) For any d, let P be the convex hull of the set {(xl,X 2 ,... ,Xd) E Rd i =

0 or 1}, i.e. P is the unit cube in Rd. Then it is obvious that

i(P,m) = (m + 1)d.

12



In the above three examples, we can see that i(P, m) are all polynomials in m.

Next, we look at an example of a rational polytope.

Example 1.3.2 (An example of a

i(P,m) =

rational polytope). When P = [, 2],

77n+ 1,

7 _17m- 6'

71
mrn+ ,

7+ 1

7m+ ,
76m+ '

ifm_O mod6

if m _ 1 mod 6

ifm-2 mod 6

if m 3 mod6

if m 4 mod6
if m 5 mod6

In this example, i(P, m) are polynomials depending on (m

kind of function quasi-polynomial.

mod 6). We call this

Definition .3.3. A function f N -* C (or f Z - C) is a quasi-polynomial if

there exists an integer N > 0 and polynomials fo, fl,., fN-I such that

f(n) = fi(n), if n=i modN.

The integer N (which is not unique) will be called a quasi-period of f.

The observation we have in examples .3.1, 1.3.2 is not a coincidence. In 1962,

Eugene Ehrhart gave his famous theorem on i(P, m) in [9].

Theorem .3.4. Given P a rational d-polytope, i(P, m) is always a quasi-polynomial

of degree n in m, whose period divides the least common multiple of the denominators

of the coordinates of the vertices of P.

In particular, if P is an integral polytope, i(P, m) is a polynomial.

Therefore, we call i(P, m) the Ehrhart (quasi-)polynomial of P.

Moreover, Ehrhart discovered there is a beautiful reciprocity relation between

i(P, m) and i(P, m) and proved it for several special cases [10]. Ian Macdonald found

a general proof in 1971 [21].

13
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Theorem .3.5 (Ehrhart-Macdonald reciprocity). Let P be a rational d-polytope.

Then

i(P,-m) = (-1)d(P,m).

There has been much study on the Ehrhart quasi-polynomials via different ap-

proaches. One of them is to determine the coefficients of the Ehrhart polynomial

i(P, m), when P is an integral polytope. In fact, the coefficients of the Ehrhart poly-

nomial play an essential role in combinatorics, discrete geometry and geometry of

numbers (cf., e.g., [2, 6, 11, 12, 14, 16, 29]). However, although it has been well

known for a long time that the leading, second and last coefficients of i(P, m) are the

normalized volume of P, one half of the normalized volume of the boundary of P,

and 1, there is no known explicit method of describing all the coefficients of Ehrhart

polynomials of general integral d-polytopes, when d > 3.

Another approach people tried is to compute the generating function of the Ehrhart

quasi-polynomial of a rational polytope. Barvinok [3] proved that the generating

function can be efficiently computed for fixed dimension. Base on his method, De

Loera et al. developed an algorithm to calculate the coefficients of the Ehrhart quasi-

polynomials (cf. [20]).

Some recent work has also been done on the roots of the Ehrhart polynomials

[4, 13] and the quasi-period of the Ehrhart quasi-polynomials [22, 31].

Despite the work mentioned above, basic questions on Ehrhart polynomials remain

poorly understood. Questions like whether there are general geometric descriptions

of coefficients of Ehrhart polynomials and when two polytopes have the same Ehrhart

polynomials are still mysteries.

14



Chapter II

Ehrhart polynomials of lattice-face

polytopes

II.1 Introduction

As we mentioned in the last section, the leading, second and last coefficients of the

Ehrhart polynomial of an integral polytope have a geometric interpretation. However,

no interpretation of this kind is known for the other coefficients for general polytopes,

except for certain special classes of polytopes (e.g. [5, 7, 8, 15, 24, 25, 28]). The

purpose of this chapter is to produce a new class of integral polytopes, lattice-face

polytopes, all coefficients of whose Ehrhart polynomials have geometric meaning.

The results of this chapter are based on the two papers [18, 17]. Instead of

presenting results separately, we will combine them together to avoid repetitions of

definitions and construction. The motivation for study of this topic is a conjecture

given by De Loera in [4, Conjecture 1.5]. It states that given P a d-dimensional

integral cyclic polytope, we have

d

i(P,m) = Vol(mP) + i(7r(P),m) = Volk(Xrd-k(P))mk (II.1.1)
k=O

where wrk is the map which ignores the last k coordinates of a point and Volk(P) is

the volume of P in k-dimensional Euclidean space Rk. In other words, the coefficient

15



of mk in the Ehrhart polynomial i(P, m) is the volume of 7rn-k(P).

We examine cyclic polytopes and find special properties which we suspect is the

important criteria that make the Ehrhart polynomial of a cyclic polytope have such

a simple form. Therefore, we define a more general family of integral polytopes,

lattice-face polytopes, and our goal becomes to prove that the Ehrhart polynomial

of a lattice-face polytope has the form of (II.1.1). We use a standard triangulation

decomposition of polytopes, and careful counting of lattice points to reduce problem

to the simplex case.

We then develop a way of decomposing any d-dimensional simplex in general posi-

tion into d! signed sets, each of which corresponds to a permutation in the symmetric

group d. When applying this decomposition to cyclic polytopes (which recovers the

decomposition we built in [18]), the sign of each of these d! signed sets has the same

sign as the corresponding permutation. By summing the number of lattice points in

these sets (with signs), we show (Theorem 11.3.2) that the Ehrhart polynomial of a

cyclic polytope is in the form of (II.1.1).

However, when we apply the decomposition to an arbitrary lattice-face polytope,

the sign of each signed set is not necessarily the same as the corresponding permu-

tation. Thus, the situation is more complicated than the case for cyclic polytopes.

We show that the number of lattice points is given by a formula (II.7.13) involving

Bernoulli polynomials and signs of permutations, and then we analyze this formula

further ((II.8.2), whose proof is relegated to Appendix A) to derive Theorem 11.3.10,

relating the lattice points to the volume. Theorem 11.3.10, together with some simple

observations in section 11.3 and 11.4, implies Theorem 11.3.8.

In the last section, we give several examples to illustrate the methods we describe

in the proofs. We also give a conjecture which connects the main theorem to the well-

known fact that the constant term of the Ehrhart polynomial of an integral polytope

is 1.

16



II.2 Preliminaries

We first recall some definitions we defined in Chapter I and give some more notation.

All polytopes we will consider are full-dimensional, so for any convex polytope P,

we use d to denote both the dimension of the ambient space Rd and the dimension of

P. Recall that we call a d-dimensional polytope a d-polytope. Also, we use OP and

I(P) to denote the boundary and the interior of P, respectively.

A d-simplex is a polytope given as the convex hull of d + 1 affinely independent

points in Rd.

For any set S, we use conv(S) to denote the convex hull of all of points in S.

The projection r: Rd --+ Rd- is the map that forgets the last coordinate. For

any set S C Rd and any point y G Rd-i, let p(y, S) = r-l(y) N S be the intersection

of S with the inverse image of y under r. Let p(y, S) and n(y, S) be the point in

p(y, S) with the largest and smallest last coordinate, respectively. If p(y, S) is the

empty set, i.e., y V ir(S), then let p(y, S) and n(y, S) be empty sets as well. Clearly,

if S is a d-polytope, p(y, S) and n(y, S) are on the boundary of S. Also, we let

p+(y, S) = p(y, S) \ n(y, S), and for any T C Rd-l, p+(T, S) = UYETP+(Y, S).

Definition II.2.1. Define PB(P) = UYE,(p) P(Y, P) to be the positive boundary of P;

NB(P) = UyEw(p)n(y, P) to be the negative boundary of P and Q(P) = P\ NB(P) =

p+(ir(P), P) = UW(p)p+(y, P) to be the nonnegative part of P.

Definition II.2.2. For any facet F of P, if F has an interior point in the positive

boundary of P, then we call F a positive facet of P and define the sign of F as

+1: sign(F) = +1. Similarly, we can define the negative facets of P with associated

sign -1. For the facets that are neither positive nor negative, we call them neutral

facets and define the sign as 0.

It's easy to see that F C PB(P) if F is a positive facet and F C NB(P) if F is

a negative facet.

We write P = [ik=l P if P = Uk=I Pi and for any i j, P n Pj is contained in

their boundaries. If F1, F2,.. , Fe are all the positive facets of P and Fe+1, . , Fk are

17



all the negative facets of P, then

e k

ir(P) = r U (Fi) = H r(Fi).
i=1 i=e+l

Because the usual set union and set minus operation do not count the number

of occurrences of an element, which is important in our paper, from now on we will

consider any polytopes or sets as multisets which allow negative multiplicities. In

other words, we consider any element of a multiset as a pair (x, m), where m is the

multiplicity of element x. Then for any multisets MI, M2 and any integers m, n and

i, we define the following operators:

a) Scalar product: iM1 i M1 = {(x,im) I (x, m) M}.

b) Addition: Ml E M2 = {(x, m + n) I (x,m) E M, (x,n)E M2}.

c) Subtraction: M1 M2 = M1 ED ((-1) M2 ).

It's clear that the following holds:

Lemma II.2.3. For any polytope P C Rd, VR1,.. , Rk C Rd-l, Vil,..., ik E Z:

k \ k

P+ ijRj, P) =e ijp+(Rj, P).
j=l j=1

Definition II.2.4. We say a set S has weight w, if each of its elements has multiplicity

either 0 or w. And S is a signed set if it has weight 1 or -1.

Let P be a convex polytope. For any y an interior point of r(P), since r is a

continuous open map, the inverse image of y contains an interior point of P. Thus

7r-l(y) intersects the boundary of P exactly twice. For any y a boundary point of

7r(P), again because r is an open map, we have that p(y,P) c OP, so p(y,P) =

r- 1(y) n OP is either one point or a line segment. We are only interested in polytopes

P where p(y, P) always has only one point for a boundary point y.

18



Lemma II.2.5. If a polytope P satisfies:

IP(Y, P)I = 1, Vy E O9r(P), (II.2.6)

then P has the following properties:

(i) For any y E I(7r(P)), r-l (y) n aP = {p(y, P), n(y, P)}.

(ii) For any y E Or(P), 7r-l (y)naP = p(y,P) =p(y,P) = n(y,P), sop+(y,P) = 0.

(iii) Let R be a region containing I(ir(P)). Then

Q (P) = p+ (R,P)= p+ (y,P).
yER

(iv) If P = Uk=l Pi, where the Pi 's all satisfy (11.2.6), then Q(P) = $fl=1 Q(Pi).

(v) The set of facets of P are partitioned into the set of positive facets and the set

of negative facets, i.e., there is no neutral facets.

(vi) ir gives a bijection between PB(P) n NB(P) and Oir(P).

The proof of this lemma is straightforward, so we won't include it here.

The main purpose of this chapter is to discuss the number of lattice points in a

polytope. Therefore, for simplicity, for any set S E Rd, we denote by

£(S) = sn Zd

the set of lattice points in S. It's not hard to see that L commutes with some of the

operations we defined earlier, e.g. p, p+, Q.

II.3 Cyclic polytopes vs. lattice-face polytopes

In this section, we will introduce the definitions of cyclic polytopes and lattice-face

polytopes, and also describe the main theorems of this chapter.

19



Definition II.3.1. The moment curve in Rd is defined by

d: - R d t d(t) = (t, t2... td) .

Let T = {tl,...,tn}< be a linearly ordered set. Then the cyclic polytope Cd(T) =

Cd(tl,..., tn) is the convex hull conv{vd(tl),Vd(t2),.. , vd(tn)} of n > d distinct points

vd(ti), 1 < i < n, on the moment curve.

The first important theorem in this chapter is the one conjectured in [4, Conjecture

1.5]:

Theorem 11.3.2. For any integral cyclic polytope Cd(T), (i.e., when T is an integral

linearly ordered set)

i(Cd(T), m) = Vol(mCd(T)) + i(Cd- I(T), m).

Hence,
d d

i(Cd(T),m) = Volk(mCk(T)) = Volk(Ck(T))m k,
k=0 k=0

where Volk(mCk(T)) is the volume of rmCk(T) in k-dimensional space, and we let

Volo(mC(T)) = 1.

Noting that Ck(T) = rd-k(Cd(T)), this theorem is equivalent to saying that the

Ehrhart polynomial of an integral cyclic polytope is in the form of (II.1.1).

In [4, Lemma 5.1], the authors showed that the inverse image under ir of a lattice

point y L(Cd_(T)) is a line that intersects the boundary of Cd(T) at integral

points, and by using this lemma, they proved Theorem II.3.2 when d < 2. In fact,

their proof of the lemma says more than what was stated. We restate their lemma

and include one additional fact:

Lemma II.3.3. Let T = {tl,t 2,...,tn}< be an integral linearly ordered set. When

d = 1, Cd(T) is just an integral 1-polytope.

For d > 2, let V be the vertex set of Cd(T). For any d-subset U of V, let H be

the affine space spanned by U. Then

20



a) r(conv(U)) is an integral cyclic polytope, and

b) r(£(Hu)) = Zd- l. In other words, after dropping the last coordinate of the

lattice of Hu, we get the (d- 1)-dimensional lattice.

Proof. When d = 1, Cd = [tl, tn] is an integral interval.

a) is clearly true and b) follows the proof of [4, Lemma 5.1]. 0

We suspect that a) and especially b), are the essential properties to make the

Ehrhart polynomial of an integral cyclic polytope have such a simple form. Therefore,

we define the following new family of polytopes.

Definition II.3.4. We define lattice-face polytopes recursively. We call a one dimen-

sional polytope a lattice-face polytope if it is integral.

For d > 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any d-subset U C V,

a) r(conv(U)) is a lattice-face polytope, and

b) r(C(Hu)) = Zd - l , where Hu is the affine space spanned by U.

By Lemma II.3.3, any integral cyclic polytope is a lattice-face polytope. Hence,

we consider the family of lattice-face polytopes as a generalization of the family of

cyclic polytopes.

To understand the definition, let's look at examples of 2-polytopes.

Example II.3.5. Let P be the polytope with vertices vl = (0,0), v2 = (2,0) and

V3 = (2,1). Clearly, for any 2-subset U, condition a) is always satisfied. When U =

{vI,v 2 }, Hu is (x,0) I x E R}. So r(L(Hu)) = Z, i.e., b) holds. When U= {Vl, V3},

Hu is {(x,y) I x = 2y}. Then £(Hu) = {(2y,y) y Z} =• r(£(Hu)) = 2Z Z.

When U = {v 2,v 3}, Ha is {(2,y) y C R }. Then 7r(L(Hu)) = 2} - Z. Therefore,

P1 is not a lattice-face polytope.

Let P2 be the polytope with vertices (0,0), (1, 1) and (2,0). One can check that

P2 is a lattice-face polytope.
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The following lemma gives some properties of a lattice-face polytope.

Lemma II.3.6. Let P be a lattice-face d-polytope with vertex set V, then we have:

(i) ir(P) is a lattice-face (d- 1)-polytope.

(ii) mP is a lattice-face d-polytope, for any positive integer m.

(iii) r induces a bijection between £(NB(P)) (or L(PB(P))) and C(r(P)).

(iv) 7r(L(P)) = L(7r(P)).

(v) Any d-subset U of V forms a (d- 1)-simplex. Thus r(conv(U)) is a (d- 1)-

simplex.

(vi) Let H be the affine space spanned by some d-subset of V. Then for any lattice

point y E Zd- l, we have that p(y, H) is a lattice point.

(vii) P is an integral polytope.

Proof. (i), (ii), (v) and (vi) can be checked directly from the conditions a) and b) of

the definition. (iii) and (iv) both follow from (vi). We prove (vii) by induction on d.

Any 1-dimensional lattice-face polytope is integral by definition.

For d > 2, suppose any (d- 1) dimensional lattice-face polytope is an integral poly-

tope. Let P be a d dimensional lattice-face polytope with vertex set V. For any vertex

v0 G V, let U be a subset of V that contains v0. Let U = {vo,vl,. . . ,Vdl}. We know

that P' = r(conv(U)) is a lattice-face (d-1)-simplex with vertices {1r(v0),... , 7r(vdl)}.

Thus, by the induction hypothesis, P' is an integral polytope. In particular, r(v0) is

a lattice point. Therefore, v0 = p(r(vo), Hu) is a lattice point. 0

Remark II.3.7. One sees that condition b) in the definition of lattice-face polytopes

is equivalent to (vi).

It turns out that our guess regarding the importance of the properties of Lemma

II.3.3 is correct. The Ehrhart polynomial of a lattice-face polytope is indeed in the

form of (II.1.1). This is the main theorem of this chapter.
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Theorem 11.3.8. Let P be a lattice-face d-polytope, then

d

i(P,m) = Vol(mP) + i(r(P),m) = EVolk(r(d-k)(P))mk. (II.3.9)
k=O

Although Theorem II.3.2 follows from Theorem II.3.8, we will prove Theorem

II.3.2 first in Section II.6, since the proof for Theorem II.3.2 is simpler and more

elegant. However, we will continue making definitions for both cases before applying

them to cyclic polytopes separately.

By Lemnna II.3.6/(iii), we have that

i(P, m) = IL(Q(mP)) + i(7r(P), m).

Therefore, by Lemma II.3.6/(i),(ii), to prove Theorem 11.3.8, it is sufficient to prove

the following theorem:

Theorem 11.3.10. For any P a lattice-face polytope,

IL(Q(P))I = Vol(P).

Note that when P is an integral cyclic polytope, although Lemma II.3.6/(i), (ii),

(iii) are all satisfied, mP is not a cyclic polytope. Thus, Theorem II.3.2 is equivalent

to the following:

Theorem II.3.11. For any integral cyclic polytope Cd(T), and any positive integer

m,

L(Q(mCd(T))) = Vol(mCd(T))I.

Remark 11.3.12. We have an alternative definition of lattice-face polytopes, which is

equivalent to Definition II.3.4. Indeed, a d-polytope on a vertex set V is a lattice-face

polytope if and only if for all k with 0 < k < d- 1,

for any (k + 1)-subset U c V, rd-k(L(Hu)) = Zk, (11.3.13)
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where Hu is the affine space spanned by U. In other words, after dropping the last

d- k coordinates of the lattice of Hu, we get the k-dimensional lattice.

II.4 A signed decomposition of the nonnegative

part of a simplex in general position

The volume of a polytope is not very hard to characterize. So our main problem is

to find a way to describe the number of lattice points in the nonnegative part of a

lattice-face polytope. We are going to do this via a signed decomposition.

II.4.1 Polytopes in general position

For the decomposition, we will work with a more general type of polytope (which

contains the family of lattice-face polytopes).

Definition II.4.1. We say that a d-polytope P with vertex set V is in general position

if for any k: 0 < k < d- 1, and any (k + 1)-subset U c V, rd-k(conv(U)) is a k-

simplex, where conv(U) is the convex hull of all of points in U.

By the alternative definition of lattice polytopes in Remark II.3.12, it's easy to see

that a lattice-face polytope is a polytope in general position. Therefore, the following

discussion can be applied to lattice-face polytopes.

The following lemma states some properties of a polytope in general position. The

proof is omitted.

Lemma II.4.2. Given a d-polytope P in general position with vertex set V, then

(i) P satisfies (11.2.6).

(ii) r(P) is a (d- 1)-polytope in general position.

(iii) For any nonempty subset U of V, let Q = conv(U). If U is has dimension

k(O < k < d), then 7rd-k(Q) is a k-polytope in general position. In particular,

for any facet F of P, ir(F) is a (d- 1)-polytope in general position.
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(iv) For any triangulation of P = Uikl Pi without introducing new vertices, Q(P) =

(k=1 Q(Pi). Thus, L(Q(P)) = ik £((P)).

(v) If F1,F2 ,...,Fe are all the positive facets of P and F+1,... , Fk are all the
negative facets of P, then Q(7r(P)) = i= 1 Q(7r(Fi)) = fk =e+1 Q(7r(Fi))9 i~~~~~~~~= = :1 ('F) ·

(vi) For any hyperplane H determined by one facet of P and any y E Rd- l, p(y, H)

is one point.

(vii) For anyk : 0 < k < d- 1, any (k + 1)-subsetU of V, any Yl,...,Yk R,

there exists a unique point w Rad, such that the first k coordinates of w are

Y1,., k and w is affinely dependent with the points in U.

Remark II.4.3. By (iv), the problem of counting number of lattice points in a polytope

in general position is reduced to that of counting lattice points in a simplex in general

position. In particular, together with the fact that Vol(Ui.k=l Pi) = il Vol(P), to

prove Theorem II.3.10 and Theorem II.3.11, it is sufficient to prove the case when P

is a lattice-face simplex and an integral cyclic polytope, respectively.

Therefore, we will only construct our decomposition in the case of simplices in

general position. However, before the construction, we need one more proposition

about the nonnegative part of a polytope in general position.

Proposition II.4.4. Let P be a d-polytope in general position with facets F1, F2 . . . Fk.

Let H be the hyperplane determined by Fk. For i: 1 < i < k, let F/ = r- (r(Fi)) n H

and Qi = conv(Fi U Fi'). Then

k-1
Q(P) = -sign(Fk) E sign(Fi)p+(Q(lr(Fi)), Qi). (II.4.5)

i=l

Proof. We are going to just prove the case when Fk is a negative facet; for the

other case we can prove it analogously. Suppose F1, F2 , .. , Fe are positive facets and

Fe+i, . , Fk are negative facets.
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A special case of Lemma II.2.5/(iii) is when R = £Q(r(P)), so we have

0 (P) = P+( (r(P)), P) = ) P+(y, P).
y61(7r(P))

Now for any points a and b, we use (a,b] to denote the half-open line seg-

ment between a and b. Then, p+(y, P) = (n(y, P),p(y, P)] = (p(y, H),p(y, P)] E
(p(y, H), n(y, P)]. Therefore,

Q(P) = E ((p(y, H),p(y, P)] E (p(y, H),n(y, P)])
yEQ(ir(P))

yE D(r(P))

(-1) (p(y, H), n(y,

By Lemma II.4.2/(v), we have Q(7r(P)) = EJil Q(7r(Fi)). Therefore,

e (p(y,H),p(y, P)]
ycQ(g~(P))

e

i=
i=l ye Q(=(F))

e

i=l yE92(-7(Fi))

(p(y, H),p(y, P)]

(p(y, F/'), p(y, Fi)]

£

= p+ (Q(ir(Fi)), Qj).
i=1

Similarly, we will have

k

$ (-1). (p(y, H),n(y, P)] = 3 (-1)p+(Q(ir(Fi)),Qi)
y6'(Ir(P)) i=£+1

Note that p+(Q(1r(Fk)), Qk) is the empty set. Thus, putting everything together,

we get (II.4.5). 0

Now, we can use this proposition to inductively construct a decomposition of the

nonnegative part Q(P) of a d-simplex P in general position into d! signed sets.
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Decomposition of Q(P):

* If d = 1, we do nothing: Q(P) = Q(P).

* If d > 2, then by applying Proposition II.4.4 to P and letting k = d + 1, we

have
d

Q(P) = - sign(Fd+1) 0 sign(Fi)p+ (Q(r(Fi)), Qi).
i=1

(11.4.6)

However, by Lemma II.4.2/(iii), each r(Fi) is a (d- 1)-simplex in general po-

sition. By the induction hypothesis, Q(ir(F)) = (D=l) Si,j where Sjj's are

signed sets.

(d- 1)!

= P+( SijQi)
j=l

(d- 1)!

= p+(SijQi)
j=l

Since each p+(S,j, Qi) is a signed set, we have decomposed Q(P) into d! signed

sets.

Now we know that we can decompose Q(P) into d! signed sets. But we still need

to figure out what these sets are and which signs they have. In the next subsection,

we are going to discuss the sign of a facet of a d-simplex, which is going to help us

determine the signs in our decomposition.

II.4.2 The sign of a facet of a d-simplex

From now on, we will always use the following setup for a d-simplex unless otherwise

stated:

Suppose P is a d-simplex in general position with vertex set V = {vI, v2 ,.. , Vd+l },

where the coordinates of vi are xi = (xi ,1, xi,2,..., Xi,d).

For any i, we denote by Fi the facet determined by vertices in V \ {vi} and Hi the

hyperplane determined by Fi.

For any ( C 6 d and k : 1 < k < d, we define matrices Xv(u, k) and Yv(a, k) to

be the matrices
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Xo(1),l Xo(1),2

Xo( 2),l XG(2),2

1 XT(k),l X(k),2

Xd+l, Xd+1,2

Xa(l),l Xa(l),2

Xa(2),l Xor(2),2

Xo(k),l Xo(k),2

*-- Xo(1),k

*-- Xo(2),k

· -'

*-- Xo(k),k

*'' X,4_l l. 
-- T,n / (k+l)x(k+l)

... Xa(1),k-1

... Xa(2),k-1
. .

*-- Xo(k),k-l kxk

We also define zv(a, k) to be

Zv(0, k) = det(Xv(a, k))/ det(Yv(, k)),

where det(M) is the determinant of a matrix M.

We often omit the subscript V for Xv(o, k), Yv(a, k) and ZV(a, k) if there is no

confusion.

Now we can determine the sign of a facet F1 of P by looking at the determinants

of these matrices, denoting by sign(x) the usual definition of sign of a real number x.

Lemma 11.4.7. We have

(i) Vi: 1 < i < d and Vo E Ed with a(d) = i,

sign(Fi) = sign(det(X(o-, d))/ det(X(a, d- 1))). (II.4.8)

(ii) When i = d + 1 and for Va E 5d,

sign(Fd+l) = - sign(det(X(a, d))/ det(Y(o, d))) = - sign(z(a, d)). (II.4.9)

Proof. For any i: 1 < i < d + 1, let vi' = p(lr(vi), Hi), i.e. vi is the unique point of
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the hyperplane spanned by Fi which has the same coordinates as vi except for the
t /, id-,~) Then Fi is a positive

last one. Suppose the coordinates of v' are (xi,, .. , Xi,d.1, Xi,d). Then F is a positive

facet if and only if Xi,d < Xid. Therefore,

sign(F) = - sign(xi,d - Xid).

Vi: I < i < d and V E 6d with a(d) = i, because vi is in the hyperplane

determined by Fi, we have that

/\

det

' 1 Xor(1),1 ... Xoy(1),d_1 Xo.(1),d

1 Xa(d-1),l ''' Xa(d-1),d-1 X(d-1),d.~~~~~~~~~~~~

1 Xa(d),l ... Xo(d),d-1 Xa(d),d

1 'Y., t . -, , * .* *.,I .A1

=0.

- "Tir -- T u uT ,.

Therefore,

det(X(a, d)) = (-1) 2 d+l (Xi,d - Xi,d) det(X(a, d - 1))

Thus,

sign(det(X(a, d))/ det(X(a, d - 1))) = - sign(xi,d - x'i,d) = sign(Fi).

We can similarly prove the formula for i = d + 1. 

II.4.3 Decomposition formulas

The following theorem describes the signed sets in our decomposition.

Theorem II.4.10. Let P be a d-simplex in general position with vertex set V =

{V1,v 2,.. . Vd+l}, where the coordinates of vi are xi = (xi,l,xi,2,... ,xi,d). For any

C E d, and k 0 < k < d- 1, let V,,k be the point with first k coordinates the

same as Vd+l and affinely dependent with v,(1), Vo( 2 ),..., Vo(k), V(k+l). (By Lemma

II.4.2/(vii), we know that there exists one and only one such point.) We also let
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Va,d = Vd+1. Then

Q(P) = E sign(a, P)S,,

where

sign(a, P) = sign(det(X(o, d))) sign (Iz(a, i))
i=1

and

S. = {s E Rd I rd-k(s) Q(1r(d-k(conv({v *,0,..., v,kj})))V1 < k < d}

is a set of weight 1, i.e. a regular set.

Hence,

L(Q(P)) = e sign(a, P)L(S).
ocE;d

(11.4.11)

(II.4.12)

(II.4.13)

Proof. We prove it by induction on d.

When d = 1, the only permutation E G1 is the identity permutation 1. One

can check that sign(1, P) = 1 and S1 = Q(conv(v1 , v2)). Thus (II.4.11) holds.

Assuming (II.4.11) holds for d = do > 1, we consider for d = do + 1. For any

i 1 < i < d, ir(Fi) is a (d- 1)-simplex in general position with vertex set W =

(Vj+l),
' Therefore, by the

j> i.

Q(=r(Fi))

induction hypothesis,

(II.4.14)Ed sign(s, r(Fi))S,
qE d-1

where
d-1

sign(s, r(Fi)) = sign(det(Xw(s, d - 1))) H sign(zw(, i)),
i=1

S = s C d- 1 7rd-1-k(s) Q(rd- -k(onv({w,0O,. .. , W,,k})))V1 k _ d- 1.

For any E Gd-1, if we let a E Ed with (j)

r j = d,

-(j) < i, then this

'(j) i,
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gives a bijection between c G d-1 and a E Ed with a(d) = i. In particular, for any

j 1 < j < d- 1, w(j) = 1r(v,(j)). Hence,

d-1
sign(c, r(F)) = sign(det(X(a, d- 1))) H sign(z(a, i)).

i=1

Note that W',d-1 = Wd = r(Vd+l) = 7r(Va,d-1), SO

S=- {S C Rd-1 I rd-l-k(S) E f(rd-k(conv(v,0,... Vo.,k})))V1 < k < d- 1}.

One can check that F' = 1r- (r(Fi)nHd+l = conv({vl,. . ., Vi-1, Vi+l .. . Vd, Va,d-l })

and Q/ = conv(Fi U F') = conv(V U {Va,d-i} \ {vi}). Hence,

p+(S', Qi) = {s E Rd I 1rd-k(s) E Q(ird-k(conv({v,,0,..., V.,k})))V1 < k < d}.

By letting S. = p+(S, Qi) and sign(a, P) = - sign(Fd+l) sign(Fi) sign(c, 7r(Fi))

and using Lemma II.4.7, we get

- sign(Fd+l) sign(Fi)p+ (r(Fi), Qi) = (] sign(a, P)S .
o'Ead,a(d)=i

Thus, together with (11.4.6), summing over all i: 1 < i _< d gives (11.4.11). 0

Corollary 11.4.15. If P is a d-simplex in general position, then

(11.4.16)IL (Q(P))I = Z sign(a, P)IL(S)I. 1
aced

Therefore, if we can calculate the number of lattice points in S's, then we can

calculate the number of lattice points in the nonnegative part of a d-simplex in general

position. Although it's not so easy to find 1L(S) 's for an arbitrary polytope, we can

do it for any lattice-face d-simplex.
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II.5 Lattice enumeration in S.

In this section, we will count the number of lattice points in Se's when P is a lattice-

face d-simplex.

We say a map from Rd -- Rd is lattice preserving if it is invertible and it maps

lattice points to lattice points. Clearly, given a lattice preserving map f, for any set

S E Rd we have that jL(S)I = 1L(f(S))I.

Let P be a lattice face d-simplex with vertex set V = {Vl,.. , vd+l}, where we use

the same setup as before for d-simplices.

Given any o E Ed, recall that S, is defined as in (II.4.13). To count the number of

lattice points in S, we want to find a lattice preserving affine transformation which

simplifies the form of S,.

Before trying to find such a transformation, we will define more notation.

For any G Ed, k 1 < k < d and x = (l,X 2 ,... Xd) E Rd, we define matrix

X(o,k;x) as

/

X(a, k;x) =

1 Xo(l),l Xa(1),2 * * Xa(1),k

1 Xa( 2),l Xa(2),2 .. Xa(2),k

1 Xo(k),l Xo(k),2 *-- Xo(k),k

ti r. 'r- ... 
\. ~' '~'l -Z I ,/ (k+1) x(k+1)

and for j 0 < j < k, let m(o-, k; j) be the minor of the matrix fX(a, k; x) obtained

by omitting the last row and the (j + 1)th column. Then

det(X(o, k;x)) = (-1)k m(o,k;O) + (-l)jm(,k;j)xj) . (II.5.1)
j-1

Note that m(a, k; k) = det(Y(or, k)). Therefore,

det(X (a, k;x)) (_1 )k m(o, k;O) k-1( )k+J k; +Xk. (.5.2)
det(Y(a,k)) det(Y(o, k)) + ()k+det(Y(a, k)) Xj-1 dtYak) + x.(I52
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We will construct our transformation based on (II.5.2). Before that, we give the

following lemma which discusses the coefficients in the right hand side of (II.5.2).

Lemma II.5.3. Suppose P is a lattice-face d-simplex. For any E d, for any

k: 1<k< d, and for any j:O<j< k-1, we have that

m(a, k;j)
det(Y(o, k))

Proof. By the definition of lattice-face polytope and Lemma II.3.6/(i), one can see

that 7rd-k(conv(v,(),... , Vo(k), Vd+l)) = conv(7rd-k(v,()),. . , 7rd- k(V,(k)) r d-k(Vd+l))

is a lattice-face k-polytope. Choose U = {1rd-k(v,(l)),... , .rd-k(V,(k))}, then ir(C(Hu)) =

Z k - l, where Hu is the affine space spanned by U. However,

Hu = x = (Xl,... ,xk) Rk det(X(o, k;x)) = }.

Therefore, we must have that

det(X(o, k; x)) = 0,

Let xi = - = xk-1 = 0, then det(X(o, k; x)) = 0 implies that

(_1) k mm(o,k;0) + xk=O =>4'
det (Y (a, k))

m(a,k;0) ( )
t(o, k0))= (--1)klxk E Z.det (Y (, )_)

For any j 1 < j < k- 1, let xi = xT(j),i + dij for 1 i < k- 1, where ij is the

Kronecker delta function. Then, det(X(a, k; x)) = 0 implies that

= (-1)k m(o, k; O)
det(Y(o, k))

+k-1k+
+ Z( 1)k+i m~er, k; i)+ E(-1) det (Y (-, k))x o(j)'~

i=1
+ Xk+ (-1 )k+j m(o, k; j)

det(Y(o, k))

= k - X,,(j),k + (1) k+j re(a, k; j)
det(Y(o, k)) '

where the second equality follows from the fact that (x,(j),1,... ,xa(j),k) is in Hu.
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Thus,
m(o, k;j) = (_ 1)k+j+l (Xk - Xa(j),k) E Z.

det(Y(oi, k))

F1

Given this lemma, we have the following proposition.

Proposition 11.5.4. There exist a lattice-preserving affine transformation Ta which

maps x = (Xl, x 2,..., xd) E Rd to

(det(X(a, 1; x))
det(Y(a, 1))

det(X(a, 2; x))
' det(Y(a, 2))

det(X(a, d; x))
"' 'det(Y(o, d))

= (m,,j,k)dxd,

1,

majk = 0.

(-1)k+J det(Y(,k))det(Y(oa,k)) '

if j = k,

if j > k,

ifj < k.

We define T0 : Rd -- Rd by mapping x to ao + xMo. By (11.5.2),

a, + xMg = (det(X(a, 1; x))
det(Y(o, 1))

det(X(a, 2; x))
' det(Y(o, 2))

det(X(o, d; x))
' " ' det(Y(a, d))

Also, because all of the entries in Ma and a, are integers and the determinant of Ma

is 1, T, is lattice preserving. 0

Corollary II.5.5. Give P a lattice-face polytope with vertex set V = {Vl, v2 ,..., Vd+1},

we have that

(i) Vi: 1 < i < d, the last d + 1 - i coordinates of T,(v,(i)) are all zero.

(ii) T(vd+l ) = (z(a, 1),z(a, 2), .. ,z(a, d)).

(iii) Recall that for k: 0 < k < d- 1, Va,k is the unique point with first k coordinates

the same as Vd+l and affinely dependent with Vo(I), Vo(2) ... Va(k), Va(k+l). Then

34

Proof. Let a =

where

( det(Y(a,1;0) det((a,Y2;0)a ) ddet(Yro, 1))'I det(Y(7, 2)) ' '' (-Xddt(Y(od))))adM



the first k coordinates of T0 (v,,k) are the same as T,(vd+l) and the rest of the

coordinates are zero. In other words, T,(v,,k) = (z(, 1),... , z(, k), o,... , 0).

Proof. (i) This follows from that fact that det(.X(o, k; x,(i))) = 0 if 1 < i < k < d.

(ii) This follows from the fact that X(a, k; Xd+l) = X (ao, k) and z((a, k) = det(X(a, k))

/det(Y(o, k)).

(iii) Because for any x E Rd, the kth coordinate of Tg(x) only depends on the

first k coordinates of x, T,(v,k) has the same first k coordinates as T.(vd+l). T, is an

affine transformation. So T,(v,,k) is affinely dependent with T.(vo(1)), T,(va( 2)), ,

T (V.(k)), Ta(v,(k+)), the last d- k coordinates of which are all zero. Therefore the

last d- k coordinates of T,(v,k) are all zero as well. [

Recalling that v,,d = Vd+l, we are able to describe T(S.) now.

Proposition 11.5.6. Let S. = T0 (Sa). Then

S = (81, 2 ... Sd) c S X VI1 < k < d, Sk E Q(conv(O, ( ))Sk_-)), (II.5.7)

where by convention we let z(o, O) = 1 and so = 1.

Proof. T is an affine transformation whose corresponding matrix Ma is upper trian-

gular. So T, commutes with Q, r and conv. Therefore,

S= {s E Rd I rd-k(s) E Q (Td-k(conv({,o,. . , va,k})))V1 < k _< d},

where vi,i = T,(v 0,i) = (z(o, 1), . . .,z(, i),O.. .,O), for 0 < i < d.

(II.5.7) follows. E

Because T is a lattice preserving map, IC(S) = LC(S,)I. Hence, our problem

becomes to find the number of lattice points in S.. However, S is much nicer than

S . Actually, we can give a formula to calculate all of the sets having the same shape

as Sa.
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Lemma II.5.8. Given real nonzero numbers bo = 1,bl ,b2 ,... ,bd, let a' = bk/bk-I

and ak = bk/Ibk+ll, Vk: 1 < k < d. Let S be the set defined by the following:

Sh (81, 2, . . , Sd) S X V1 k d, k E Q(conv(O, aSk-l)),

where so is set to 1. Then

z E
slEf(f(conv(O,a'))) s2EC(f2(conv(O,a's)))

E
8dE£(SI(conv(O,a'Sdd1)))

1. (II.5.9)

In particular, if bd > 0, then

LaiJ [a2zsJ

IL(S) = E E 
8=I1 82=1

LadSd-1J

Ed=lsd=l

1, (II.5.10)

where for any real number x, [xJ is the largest integer no greater than x and is

defined as

{x- 1, 
if x > 0,

if x < O.

Note that Lxj E C Z>0, and if any of the sums in (11.5.10) have upper bound equal

to 0, we consider the sum to be 0.

Proof. (II.5.9) is straightforward.

numbers x,

L(Q(conv(0, x))) =

(11.5.10) follows from the facts that for any real

{ E 1 z < LxJj},

{ E Z I - [xJ < z < },

the sign of si is the same as the sign of bi, and, because bd > 0, all the si's are

non-zero. 0

We want to give a formula for the number of lattice points in S. in the form of

(II.5.10). We first need the condition "bd > 0", which in our case is that "z(a, d) > 0".
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However, for any d-simplex P in general position, we can always find a way to order

its vertices into V = {vl,v 2 ,...,vd+l}, so that the corresponding det(X(1,d)) and

det(Y(1, d)) are positive, where 1 stands for the identity permutation in Gd. Note

z(o, d) is independent of o*. So it is positive.

Moreover, for lattice-polytopes, we have another good property of the z(o-, k)'s

which allows us to remove the L J operation in (II.5.10).

Lemma 11.5.11. If P is a lattice-polytope d-simplex, then

z(, k)/z(, k- 1) E ,

where by convention z(a, O) is set to 1.

Proof. Let P'= T,(P) with vertex set V' = {v...... ,vd+l}, where v' = T0 (vi) with

coordinates x = (x, 1,... , xi,d). Because Ta is an upper triangular lattice preserving

map, P' is a lattice-face d-simplex as well. Similar to the proof of Lemma II.5.3,

conv(r d-k(v (1)) . .. , d-k(v (k)), ird-k(Vd+l)) is a lattice-face k-polytope. We choose
U 7d-k(V t d-k{ 77-U = {lrd k(v( 1)),... ,k(v(kl)),rd -k(v +l)}, then 7r(L(Hu)) = k1. Note that

by Corollary II.5.5/(i),(ii), we have that

a) the last 2 coordinates of rd-k(vI(j)) are both zero, for any j: 1 < j < k - 1.

b) rd-k(vd+1) = ((o, 1), .. ,z(o, k- 1),z(o, k)).

Hence, (I,... ,xk) Hu if and only if det ( z(o k-1) z(o ) = 0, where
Xk- 1 Xk

we set x0 = 1.

We have that for any (l,.. ,xk) E Hu, if xl,. ... ,xk-1 E Z, then xk E Z. Thus,

by setting xk-1 = 1, we get z(a, k)/z(a, k - 1) = k E Z. 0

Therefore, by Lemma 11.5.8 and Lemma I1.5.11, we have the following result.

Proposition 11.5.12. Let P be a lattice-face d-simplex with vertex set V, where the

order of vertices makes both det(X(1, d)) and det(Y(1, d)) positive. Define

a(a, k) = z(ok- 1) 'Vk 1 < k < d.

z(ok-37 1)
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Then
a(a,1) a(a,2)sl a(a,d)sdl1

£(S)[ = E E -- E 1 .
Sl=1 s2=1 Sd=l

(II.5.13)

Although now we have a formula to describe the number of lattice points in S,

those bars on the top of a(r, i)'s make our calculation hard. However, when P is a

dilation of an integral cyclic polytope, (II.5.13) becomes a formula without bars. In

the next section, we will discuss this case and complete the proof for Theorem II.3.11

and thus Theorem II.3.2.

II.6 The case when P is a dilation of an integral

simplex cyclic polytope

Given positive integer m, let T = {tl,t 2,... ,td+l}< be an integral linearly ordered

set and P = mCd(T) be the simplex polytope with vertex set V = {vj, v2,..., Vd+l },

where the coordinates of vi are xi = (mti, mti2,... , mtid).

One can calculate that for any a E ed and 1 < k < d:

k

det(X(a, k)) = mk IJ (to() - t(i)) IJ(td+l -t(i)),

l<i<j<k i=1

det(Y(o, k)) = mk-1 I (t(j) - t(i))
1<i<j<k

k

z(o, k) = m IJ(td+l - t(i) )
i=1

II.6.1 Decomposition formula for Q(P)

We first want to restate the terms sign(a, P) and S, in the decomposition formula in

Theorem II.4.10. Because t < t2 < -- < td+l, both det(X(1,d)) and det(Y(1,d))
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are positive. Also, all the z(ao, k)'s are positive. Thus,

sign(a, P) = sign(det(X(a, d))) sign rz(Oz"i))

= sign(a) sign(X(a, 1))

= sign(a).

However, S is still not easy to describe. Recall S. = T(S,), so we have S. =

T;-1 (Sa). We will use T, and S0 to describe S .

Recall T,: Rd -, Rd is defined in Proposition II.5.4 by mapping x to a, + xM,

where a, and Ma are both involved with entries dt(,,k) for 1 < <d,O < j <det(Y(ou,k))'- -

k- 1. Fortunately, there is a well-known result [30, Theorem 7.15.1] which simplifies

m(,,k;j) in terms of symmetric functions. Namely,
det(Y(o-,k))

m(a, k; j) 
det(Y (a, k))

ek-j(t,(i) 1 < i < k,i j),

Hi= 1 ta(i),

1 <j <k-1,
j = 0,

where ek-j is the elementary symmetric function (see [30, (7.2)] for the definition).

By the proof of Proposition II.5.6, we have

Sa = {S E Rd I 7rd-k(S) E Q(7rd-k(conv({- 0 ,,. . , V,k}))),V1 < k < d,

V a,i = (z(a, 1),. .. ,z(a,i),O ... .,O)
i

= (m(td+l -t a ( i)),... , mI(td+l-t a(j)),0, .. 0),
j=1

for 0 < i < d.

Let R = conv{va,}=0 be the convex polytope with vertices {v0,i}= 0. We know

that S C R. However, we can say even more than that.
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Lemma II.6.1.

S = Q(R,).

Proof. For anys E S,, when k = d, the condition rd-k(s) E (rd-k(conv({vo 0,..., vo,k})))

just says s E f2(R,). Thus, S. C Q(R,).

Because td+l > ti, for any 1 < i < d, the coordinates of the v,,i's are all nonnega-

tive.

For any 1 < k < d, if we let Pk = 7rd-k(conv({jovl ,... , , k})), then 7r(Pk) =

conv(7rd-k+l({v,o0 , VA,i,... ,%,k-1})). Together with the fact that the last coordinate

of ird-k(Q.,k) is m i=l(td+l -t,(i)) > 0, we have

Q(Pk) = Pkn {(Xl,.. .,xk) Rk Xk > }.

Ed V0 dFor any s = (sl,..., Sd) E Q(Ra), s can be written as i=o Ai-,i, where Zi=o Ai =

1 and all Ai > 0. Note that R, = Pd, so Sd > 0. However, since v(a, d) is the only

vertex whose last coordinate is positive, Ad > 0. Because all of the coordinates of

v(o, d) are positive, the si's are all positive. Thus the last coordinate of rd-k(s) is

positive. So

rd-k(s) E (Pk)= Q(7rd-k(conv({Jc.o,-. , , Vk}))),Vl < k < d.

Therefore, s ¢ S and Q(R,) c S,. 0

We now have everything to restate the decomposition formula.

Theorem 11.6.2. Let T = {tl, t 2 ,... ,td+l}< be an integral linearly ordered set and

m be a positive integer. Let P = mCd(T). Then,

Q(P) = (f sign(o)T-l(Q(R)), (11.6.3)
oYE Sd

where R. = conv({,V,i = (m(td+l - t(1)) * ,m =J=l(td+ - t(j)) 0,.. . , 0) d)

and T(x) = a,,+ xM,, witha, = (-mt,(),mtt(l)t (2), ... (-dMmrd 1 tL(i)) and

Ma = (m,J,k)dxd, with
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1,

mrn,j,k = 0O

(-1)k+iek- (t,(): 1 i k,i j),

if j =k,

if j > k,

if j < k.

II.6.2 The number of lattice points in Q(P)

For our dilated cyclic polytope P, the hypothesis of Proposition II.5.12 is satisfied, so

we can either use (II.5.13) or calculate the number of lattice points in So = (R,)

directly. We will take the former approach. Since Vk: 1 < k < d,

a(a, k) z(, k)
td+l - t(k)

m(td+l - t(k)),

if 2 < k < d,

if k= 1

is a positive integer, we can remove the bars in (11.5.13):

a(a,1) a(,2)sl

IL(S)l = IL(Sr) = 1C(Q(Ra))l = E E
81=1 82=1

a(a,d)sd-1

E
Sd= 1

1. (II.6.4)

Therefore, we can write the number of lattice points in Q(P) = Q(mCd(T)) using the

following formula.

Corollary II.6.5.

IL(Q(mCd(T)))- = Z sign(a)
aEGd

m(td+l-t(l)) (td+l-ta(2))Sl

sl=l
1. (II.6.6)

s2=1

Because of (II.6.4) and (II.6.6), it's natural for us to define

al a281 ad8d-l

fd(al,a2,...,ad) =E .E - Z 1,
S=1 821 Sd=l

and

h'm,d(al, a2, ... ,ad) = E sign(a) fd(ma,(l), a,(2) . .. , a(d) ),
aESn
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(td+1 -t,,,(d))Sd-I

... E

Sd=l



for any positive integers al, a 2,... , ad.

Thus, (II.6.6) can be rewritten as

IL(Q(mCd(T)))I = 'HTm,d(td+ - t(1),td+l - t( 2),' ,td+l - t(d)). (II.6.8)

We want to analyze fd and Tim,d so that we can simplify the right hand side of

(II.6.8). However, fd is closely related to power sums, so we will first discuss some

properties of power sums and use them to give lemmas on fd.

Given any x a positive integer, we define

Pk(x)= i k= {i = l X if k > 1,

i=O x+1, if k = 0.

It's well known that for k > 1,

Pk(x) is a polynomial in x of degree k + 1, (II.6.9)

the constant term of Pk(x) is 0, i.e., x is a factor of Pk(x), (II.6.10)

the leading coefficient of Pk(x) is k+1 (II.6.11)k+l'

Therefore, we can extend the domain of Pk(x) from Z>0 to R and thus we call

Pk(x) the kth power sum polynomial.

Extension of the sum operation

Given h = h(s) = Ek>o hksk a polynomial in s, the upper bound u of a sum Eu1 h

should be a positive integer in the usual definition. We extend this definition to allow

u (as well as the hk's) to be in any polynomial ring over R using the formula

U

E h = hou + E hkPk(u). (II.6.12)
s=1 k>1

One can check that this extension agrees with the case when u is a positive integer.
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Since fd is defined by (I.6.7), which recursively uses the sum operation, we can

use (II.6.12) to extend the domain of fd from (>o)d to Zd or even Rd. Hence the

domain of Hm,d is extended to Rd as well.

Lemma II.6.13. The only highest degree term of fd is 1 add-d-2 This is
d.a1a 2 a ... ad. This is

also true when we consider fd as a polynomial just in the variable al.

Proof. We will prove it by induction on d.

When d =1, fl(al) =Ea 1 = Po(al)- 1 = al. Thus the lemma holds.

Assume the lemma is true for d(> 1), and note that

al

fd+l(al,a2,... ,ad+l) = fd(a2sl,a3,.. ad+l).
Sj=1

I d d 1By assumption, aa, ... ad+lSl istheonlyhighestdegreetermoffd(a2sl,a3,...,ad+l)

when we consider it as polynomial both in y = a2sl, a3 ,.. , ad+l and in y. This implies

that adad-l ... ad+s d is the only highest degree term of fd(a2sl, a3 ,... ,ad+l) whend! 2 3 ..

we consider it both in a2, a3,.. , ad+l and in sl. Then our lemma immediately follows

from the fact that the highest degree term of Ea=l Ad = Pd(al) is d+ a . 081=1 d11

Lemma II.6.14. fd(al,... ,ad) is a polynomial in al of degree d, having a factor of
ldfl=1 ai. In particular, fd can be written as

d

fd(al, . . . , ad) = E fdk(a2, ad)ak, (II.6.15)
k=l

where fd,k(a2 .. , ad) is a polynomial in a2, ad with a factor of Hd=2a.' ' ' ' ' ' I-I~~~~~~~~~i=2a.

Proof. This can be proved by induction on d, using (II.6.9) and (II.6.10). 0

Proposition II.6.16.

d d
1-m,d(al,a2, ... ad) = d ai II (ai -aj).

i= l<i<j<d

Proof. By Lemma II.6.14, m,d(al,... ,ad) has a factor of rli a.
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For 1 < i < j < d, it's easy to check that im,,d changes sign when we switch ai

and aj, i.e.,

Hm,d(.. ai,. . . , aj,. .) = -Hm,d(.. aj,. ..,ai,... ).

Therefore, 7Hm,d(al,.. , ad) must be a multiple of

d

I ai j (ai-aj),
i=1 1<i<j<d

which has degree d(d + 1).

So now it's enough to show that Tgm,d(al, . .. , ad) is of degree d(d + 1) and the

coefficient of d d-la-2md(a,...,ad) is !, which follows from Lemmacoeficentofala2 3 .. ad in THlm,d(al,.... ad) is ., which follows from Lemma

II.6.13. 0

Proof of Theorem II. 3.11. By remark II.4.3, it is enough to prove the case that Cd(T)

is a simplex. But

IC(Q(mCd(T))) I = E sign(a)
asEd

m(td+-t(1)) (td+-t(2))sl

E E
s1=1

(td+1-to(d))d-1

d... 1

Sd= S2= 1

= '[m,d(td+l - t(1),td+l - t(2).. . ,td+l - ta(d))

di=1 l <i~j

(ti - tj) = Vol(mCd(T)).' i= - id -l_ <i<j<d+ l

0

As we argued earlier, the proof of Theorem 11.3.11 completes the proof of Theorem

II.3.2.
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II.7 Back to lattice-face polytopes

In the previous section, we applied the decomposition to a dilation of integral cyclic

polytopes and proved the theorem on the Ehrhart polynomial of an integral cyclic

polytope. One reason why we were able to carry out the proof was that the a(o, k)'s

were all positive and thus the formula (II.5.13) for the number of lattice points in S,

became a simple formula without bars on the top of a(ao, k). However, this is not true

for general lattice-face polytopes. We have to find some other way to remove the bars

in (II.5.13).

Recall we have defined fd as

al a281 adsd-1

fd(al, a2, ...,ad) = E E -. .. E 1, (II.7.1)
81 1 82=1 Sd=1

for any positive integers a,a 2 ,...,ad, and then we extend the domain from (Z>o)d

to Rd.

We define another function gd in terms of fd, with which we will rewrite (II.5.13).

Fixing b = 1, we define

gd(bl, b2, , bd) = fd(bl/bo, b2/bl,..., bd/bd-l), (II.7.2)

for any (b1 , b2 ,..., bd) E (Z>0 )d such that bi is a multiple of bi_ (V1 < i < d). As we

extend the domain of fd, the domain of gd can be extended to (R \ {0})d.

In last section, we discussed how the properties of fd follow from those of power

sum polynomials Pk(x). In this section, we will discuss the relationship between

Bernoulli polynomials and power sums, and then use a property of Bernoulli poly-

nomials to rewrite (II.5.13) in terms of gd. Please refer to [6, Section 2.4] for other

examples discussing Bernoulli polynomials and their relation to integral polytopes.

The kth Bernoulli polynomial, Bk(x), is defined as [1, p. 264]

tetx 0 tk

et- 1 = Bk(x) .

k=O45
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The Bernoulli polynomials satisfy [1, Theorem 12.19]

Bk(1 - x) = (1)kBk(x),Vk > 0,

as well as the relation [1, Theorem 12.14]

Bk(x+ 1) - Bk(x) = kxk - l,Vk > 1.

We call Bk = Bk(O) a Bernoulli number. It satisfies [1, Theorem 12.16] that

Bk(0) = 0, for any odd number k > 3.

By (II.7.4), it is easy to see that for k > 0,

Pk(x) =

(II.7.4)

(II.7.5)

Bk+l(x + 1) - Bk+l
k+1

Lemma 11.7.6. For any k > 1,

Pk(x) = (1)k+lpk(-X- 1).

Proof. It follows from (II.7.3) and (II.7.5).

Lemma 11.7.8. Given (al, a2 ,... ,ad) G Rd ,

(II.7.7)

fd(al a2, ... ,ad) =- 

-al-1 -a281 a382

811 821 31
S1=1 2=1 3=1

ad5d-1

... - 1=-
S-d=1

-al-1

iE fd-(-a2Sl,a3,. ., ad).
$1=1

By (11.6.15) and (11.7.7), we have

d-1

=E
k=1

fd-1,k(a3, ... , ad)(-a2sl)k,
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0

Proof.

ad8d-1

.. E 1.
Sd=l

-al-I -a281 a3S2

-1 s21 E31
81=1 2=1 3=1

fd-l(-a2SI, a3 .... I ad)



and

E Si = Pk(-a - 1) = (1)k+lPk(al) = (-1)k+ l

S1=l

Therefore,

-al-1 -a2s1 a382

_ E E E
Sli=l s82=1 s3=1

ai

= fd-l(a21,a3,
81

ad8d-1

Sd=l

al d-1

1 = E E f d-l,k(a3, . ,ad)(a2S1)
sl k= 

... ad) = fd(al,a2,..., ad).

Proposition II.7.9. Given b = 1, b, b2,... , bd (R \ {}) with bd > 0, let ak =

bk/Ibk-ll, then

= fd(bl, b2-,
bl'

bd ) = sign
bd-1 (d)rl bi)

i=l

U1 281E...
81=1 82=1

where we always treat si as positive when determining the meaning of ai+is. That is,

for ai+l > 0, we set ai+lis = a+Sis, and for ai+l < 0, we set ai+Isi = -ae+Sis - 1.

Note that this agrees with the original definition when the ai 's are all positive integers.

Proof. We prove the proposition by induction on d. When d = 1, it's trivial.

Assume (11.7.10) holds for d = do > 1. s1 is positive.

hypothesis,

b 3

]l, 8 1

bd
... lb l s l )

b2 b3= fd ( bSI b
lb - ,b 

Ibd ) = sign
bd-I

Thus, by the induction

i=2 s2=1/i d a251ad8d-1

Edsd=l

1.

It's clear that (11.7.10) holds when b > 0. In the case that b < 0, (II.7.10) follows

from the above equation and Lemma 11.7.8. [0

Proposition 11.7.11. Let P be a lattice-face d-simplex with vertex set V, where the
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E Si,

$1=1

[

adSd-1

E
Sd= 1

1, (II.7.10)MN, b2, - - - , bd)

9d ( b2 SI,
lb, I



order of vertices makes both det(X(1, d)) and det(Y(1, d)) positive. Then

IL(S)I = sign g( ,i) d(Z(U, 1), z(o, 2),. , z(o, d)). (II.7.12)

Therefore,

IC(Q(P))I = E sign(o-)gd(z(O, 1), z(, 2),... , z(o, d)). (11.7.13)

Proof. We can get (11.7.12) by comparing (11.5.13) and (11.7.10). And (11.7.13) follows

from (II.4.16), (II.4.12), (11.7.12) and the fact that det(X(a, d)) = sign(o) det(X(1, d)).

11.8 Proof of the Main Theorems

We now have all the ingredients but one to prove our main theorems: Theorem II.3.8

and Theorem 11.3.10. The missing one is stated as the following proposition; it is

proved in Appendix A, because the proof is self-contained and different from the rest

of the chapter.

Proposition II.8.1. Let V = {V,V 2 ,..., Vd+l} be the vertex set of a d-simplex in

general position, where the coordinates of vi are xi = (i,l,xi, 2,... ,xi,d). Recall that

X(a, k), Y(a, k) and z(a,k) are defined in §II.4.2 and gd is defined in (11.7.2). Then

1
sign(i)gd(z(a, 1), z(ao, 2),..., z(o, d)) = . det(X(1, d)), (II.8.2)

Uged

where 1 is the identity in 5d.

Given this proposition, we can prove the theorems.

Proof of Theorem II.3.8 and Theorem 11.3.10. As we mentioned in Remark II.4.3, to

prove Theorem 11.3.10, it is sufficient to prove the case when P is a lattice-face

simplex.

48



When P is a lattice-face d-simplex, we still assume that the order of the vertices

of P makes both det(X(1, d)) and det(Y(1, d)) positive. Thus, (II.7.13), (II.8.2) and

the fact that the volume of P is 1 det(X(1, d))l imply Theorem II.3.10, and Theorem

II.3.8 follows. [

Recall that we use I(P) to denote the interior of a d-polytope P. We denote by

i(P, m) = (mP) n Z d l the number of lattice points in the interior of mP.

Corollary II.8.3. For any lattice-face d-polytope P, we have that

d

i(P, m) = Vol(mP) - i(ir(P),m) = (-1)dkVolk(r(d-k)(P))mk. (II.8.4)
k=O

Thus,

i(P,-rn) = (-1)di(P, m). (II.8.5)

Proof. Since P satisfies (II.2.6), by Lemma II.2.5/(vi) and Lemma II.3.6/(vi), 7r in-

duces a bijection between £(PB(P) n NB(P)) and L(Oir(P)). Together with Lemma

II.3.6/(ii), (iii), this implies

i(P, m) = i(P, m) - i(r(P), m) - i(r(P), m).

Therefore, (11.8.4) and (11.8.5) follow from Theorem 11.3.8. []

Note that (II.8.5) recovers the Ehrhart-Macdonald reciprocity law (Theorem 1.3.5).

II.9 Examples and Further discussion

II.9.1 Examples of lattice-face polytopes

In this subsection, we use a fixed family of lattice-face polytopes to illustrate our

results. Let d = 3, and for any positive integer k, let Pk be the polytope with the

vertex set V = {v = (0, 0, 0),v2 = (4, 0, 0),v3 = (3, 6, 0),v 4 = (2, 2, 10k)}. One can

check that Pk is a lattice-face polytope.
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Example 11.9.1 (Example of Theorem II.3.8). The volume of Pk is 40k, and

i(Pk, m) = 40km3 + 12m2 + 4m + 1.

ir(Pk) = conv{(0, 0), (4, 0), (3, 6)}, where

i(lr(Pk), m) = 12m2 + 4m + 1.

So

i(Pk, m) = 40km3 + i(lr(Pk), m),

which agrees with Theorem 11.3.8.

Example II.9.2 (Example of Formula (II.4.5)). F4 = conv(vl,v 2 ,v 3) is a negative

facet. The hyperplane determined by F4 is H = {(X1 ,X 2 ,X 3 ) I X3 = 0}. Thus, v4 =

r-(7r(v4)) n H = (2,2, ).

F3 = conv(vl, V2 , V4) is a positive facet. r(F3) = conv((0, 0), (4, 0), (2,2)). Q(7r(F3)) =

r(F3) \ conv((0, 0), (4, 0)). F3 = 7r-1 (r(F 3)) nF H = conv(vl, v2, V4). So

Q3 = conv(F3 U F3) = conv(v, V2, V4 , V4),

p+ (Q(ir(F3)), Q3) = Q3 \ F3.

F2 = conv(vl, v 3, v4) is a positive facet. ir(F2 ) = conv((0, 0), (3, 6), (2,2)). Q(7r(F2 )) =

ir(F2)\(conv((0, 0), (2,2))Uconv((2,2), (3,6))). F2' -= 7r- (r(F 2))nH = conv(vl, 3 , V4).

So

Q2 = conv(F2 U F2) = conv(vl,v 3 ,v4 ,v4),

p+(Q (r(F2)), Q2) = Q2 \ (F2 U conv(vl, 4 , V) U conv(v 3, V4, V)).

F1 = conv(v2 , v3 , v4) is a positive facet. 7r(FI) = conv((4, 0), (3,6), (2,2)). Q(r(Fl)) =
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7r(F) \ conv((4, 0), (2,2)). Fl' = r-l(r(Fl)) n H = conv(v2 , V3 , V4). So

Q1 = conv(F U F) = conv(v2, V3, V4 , V4),

p+(Q(r(F)), Qi) = Ql \ (F U conv(v2, v4 , V4)).

Therefore,

3

Q(Pk) = Pk \ F4 = -sign(F 4) sign(Fi)p+(Q(lr(Fi)), Qi),
i=l

which agrees with Proposition II.4.4.

Example II.9.3 (Example of decomposition). In this example, we decompose Pk

into 3! sets, where 5 of them have positive signs and one has negative sign, which is

different from the cases for cyclic polytopes, where half of the sets have positive signs

and the other half have negative signs.

Recall that v, 3 = 4 = (2,2, 10k), for any a' E 63.

When a = 123 E 3, V123,2 = V4 = (2,2,0), v123,1 = (2,0,0) and v123,0 = V =

(0,0,0). Then

S123 = conv({v123,i}o0<i<3) \ conv({vI 23,i }o0<i<2),

with sign(123, Pk) = +1.

When a' = 213 E E53, 213, 2 = = (2,2,0), 213,1 = (2,0,0) and v21 3,0 = v2 =

(4, 0, 0). Then

S2 1 3 = conV({V21 3 ,i}0<i<3) \ (conv({V21 3 ,i}0<i< 2 ) U ConV({V2 1 3 ,i}1<i<3)),

with sign(213, Pk) = +1.

One can check that

S1 23 f S213 = p (Q(7r(F3)), Q3).

When a' = 231 E 3, v 23 1,2 = = (2, 2, 0), v231 ,1 = (2, 12, 0) and v231,0 = v2 =
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(4,0,0). Then

S2 31 = conv({v231,i }0<i<3)\ (conv({v 2 31,i }0o<i<2 )Uconv({v2 31,i}io, 2 , 3Uconv({v 2 3 i,i } 1<i<3)),

with sign(231, Pk) = +1.

When a- = 321 E 63, V321,2 = V4 = (2,2, 0), V321,1 = (2, 12, 0) and V321,0 = V3 =

(3,6,0). Then

S321 = COnV({V321,i, }O<i<3)\ (conv({v32l,i }o<i<2)Uconv({v32 1i, }i=0,2,3Uconv(f 32 l,i } l<i<3)),

with sign(321, Pk) = -1.

One can check that

S231 9 S321 -= p+ (Q(r(F)), Q).

Similarly, we have that

S132 S312 - p(Q(Ir(F 2)), Q2)

Therefore, Q(Pk) = (e0 E sign(a, Pk)S, which coincides with Theorem II.4.10.

II.9.2 Further discussion

Recall that Remark II.3.12 gives an alternative definition for lattice-face polytopes.

Note that in this definition, when k = 0, satisfying (II.3.13) is equivalent to saying

that P is an integral polytope, which implies that the last coefficient of the Ehrhart

polynomial of P is 1. Therefore, one may ask

Question II.9.4. If P is a polytope that satisfies (II.3.13) for all k E K, where K is a

fixed subset of {0, 1, ... , d- 1}, can we say something about the Ehrhart polynomials

of P?

A special set K can be chosen as the set of consecutive integers from 0 to d',
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where d' is an integer no greater than d- 1. Based on some examples in this case, the

Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 11.9.5. Given d' < d- 1, if P is a d-polytope with vertex set V such

that for any k: 0 < k < d', (11.3.13) is satisfied, then for 0 < k < d', the coefficient

of mk in i(P, m) is the same as in i(rd-d' (P), m). In other words,

d

i(P, ) = i(r d- d' (P), m) + E cimi.
i=d I + 1

When d' = 0, the condition on P is simply that it is integral. And when d' = d- 1,

we are in the case that P is a lattice-face polytope. Therefore, for these two cases,

this conjecture is true.
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Chapter III

Mochizuki's Indigenous Bundles

and Ehrhart Polynomials

This chapter is joint work with Brian Osserman [19].

III.1 Introduction

In this chapter, we bring together work of Mochizuki in algebraic geometry and the

theory of Ehrhart quasi-polynomials in combinatorics, obtaining results in both fields.

There is already a combinatorial result implicit in [23]; we strengthen it and state it

explicitly in terms of familiar combinatorial objects: namely, we obtain in Theorem

III.2.4 below an infinite family of polytopes with Ehrhart quasi-polynomials agreeing

at all odd values. As we said in Chapter I, Ehrhart quasi-polynomials are not in

general well-understood. For instance, criteria for two polytopes to have the same

Ehrhart quasi-polynomial have not been well studied. Thus, one might hope that a

family of non-trivial identities such as these could help to shed light on the situation.

Additionally, we use the theory Ehrhart quasi-polynomials to conclude in Theorem

III.2.1 below that the number of dormant torally indigenous bundles of Mochizuki's

theory (see the following section for references and discussion, including relationships

to certain rational functions and Frobenius-destabilized vector bundles) may be ex-

pressed as a polynomial in the characteristic of the base field. Both these phenomena
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are observed (but not pursued) in [23, p. 46] in a slightly different case, so this work

may be considered a more complete exploration of these phenomena in the case of

dormant torally indigenous bundles.

In fact, the ideas of this chapter make no use of the precise definition of dormant

torally indigenous bundles, but rather of formal properties which one might expect

to find in a number of other settings in the geometry of algebraic curves. The basic

idea of Mochizuki's work is that he counts the dormant torally indigenous bundles on

general curves of a given type (g, r) (that is, having genus g and r marked points) by

degenerating to totally degenerate curves (Definition III.3.9); such curves are deter-

mined entirely by the combinatorial data of their dual graphs (Definition III.3.10). He

shows that the number of dormant torally indigenous bundles on a totally degenerate

curve can be described combinatorially, essentially as the number of lattice points in-

side a polytope whose dimensions depend on the characteristic of the base field, and

he also shows that the number of dormant torally indigenous bundles on a general

curve of type (g, r) is equal to the number on any totally degenerate curve of the same

type. In particular, the number agrees for any two totally degenerate curves, which

is how we obtain our combinatorial formulas. In addition, the relationship to lattice

points of polytopes allows the application of the theory of Ehrhart quasi-polynomial

to conclude that these numbers are given by polynomials in the characteristic of the

base field.

We remark that for any situation where enumerative invariants are associated to

curves in such a way that the invariant for a general curve can be computed at totally

degenerate curves, one can expect the computations at totally degenerate curves to be

of a combinatorial nature, and then one can hope to obtain non-trivial combinatorial

identities by comparing these formulas at different totally degenerate curves, as is done

here. Thus, the easiest generalizations of our combinatorial results are likely to arise

not from attempting to generalize dormant torally indigenous bundles (although that

possibility is discussed briefly at the end of the final section below), but from finding

examples of completely unrelated algebro-geometric objects which are associated to

curves and satisfy the same formal properties with respect to degeneration.
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III.2 Statements

We first state our theorem in algebraic geometry. Dormant torally indigenous bundles

are algebro-geometric objects associated to curves with marked points, and their

precise definition, which is rather technical and given in [23, Def. 1.1.2, p. 89, Def.

1.4.1, p. 113, Def. II.1.1, p. 127], is not relevant to this chapter. However, for the

purposes of motivating our Theorem III.2.1, we remark on two important cases in

which dormant torally indigenous bundles correspond to more concrete and widely-

studied objects. In the case of a smooth curve of genus g 2 with no marked points,

dormant torally indigenous bundles are equivalent up to a factor of 2 2g to semistable

vector bundles of rank 2 with trivial determinant whose pullbacks under the relative

Frobenius morphism are maximally unstable - specifically, contain a line-bundle of

degree g - 1. In the case that C is smooth with g = 0 and r general marked points,

dormant torally indigenous bundles are equivalent up to a factor of 2 r -1 to rational

functions on P1 ramified to order less than p at the marked points, and unramified

elsewhere, up to linear fractional transformation. For both these assertions, see [26].

Theorem III.2.1 is new and no easier to prove in both these special cases, and we state

the general case partly because it is the most natural level of generality given the

arguments, and partly because the phenomenon of invariants in algebraic geometry

being expressible by polynomials in the characteristic of the base field is ubiquitous

and poorly understood, and rather than simply providing two apparently unrelated

examples of this phenomenon, it seems preferable to have a single example which

simultaneously generalizes the special cases.

We now state our first theorem, denoting by F the relative Frobenius morphism:

Theorem III.2.1. Fix g, r > 0 with 2g- 2 + r > O. Then there exists a polynomial

fg,r(n) E Q[n] such that if k is an algebraically closed field of characteristic p > 2, and

C a general smooth curve over k of genus g with r general marked points, then the

number of dormant torally indigenous bundles on C is given by fg,r(P). Furthermore,

fg,r (n) has degree 3g -3 + 2r, is even or odd as determined by its degree, and is always

strictly positive for n > 2.
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In particular, if r = 0 we have that the number of semistable vector bundles of

rank two and trivial determinant on C such that F*$ contains a line bundle of degree

g-1 is given by 22g fg,o0(p). If g = 0 we have that the number of maps f: C = P1 P1

ramified to order less than p at the marked points and unramified elsewhere, counted

modulo automorphism of the image, is given by 2r - 1fo,r(P).

The combinatorial result will require some preliminary definitions. We have:

Definition III.2.2. Let V, E be sets, and suppose that we are given T a map from

E to V U ((V)). We then call G = (V, E, T) a quasi-graph. The standard notions of

edges, vertices, and edges being adjacent to vertices generalize immediately to quasi-

graphs. The set of edges E is naturally subdivided into free edges, which are p- (V),

and fixed edges, given by (- ((V)).

Thus, a quasi-graph may be thought of simply as a graph where some edges - the

free edges - are allowed to be attached to only a single vertex. A quasi-graph which

consists of only fixed edges is simply a standard graph. Quasi-graphs arise naturally

as the dual objects to nodal curves with marked points, where the marked points

correspond to free edges of the dual quasi-graph; see Definition III.3.10. The usual

notions of connectedness, regularity, loops, and simplicity for graphs immediately

make sense in the context of quasi-graphs as well. When there is no ambiguity, we

will denote by V and E the vertex and edge sets of a quasi-graph G.

We next associate a polytope to certain special quasi-graphs, denoting by A(v)

the set of edges adjacent to a vertex v:

Definition III.2.3. Let G be a quasi-graph which is regular of degree 3. The convex

polytope YG associated to G is defined to be the space of real-valued weight functions

w: E -+ R on the edge set of G satisfying the following inequalities:

(i) for each e E E, w(e) > 0;

(ii) for each v E V, ZeeA(v) w(e) < 1;

(iii) for each v G V and e E A(v), w(e) < Ze'A(v){e} w(e').
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Note that condition (iii) is just the triangle inequality for the edges adjacent to

any given vertex. Note also that (i) and (ii) bound all the w(e) between 0 and 1, so

in particular G is in fact a polytope.

With these definitions, we can now state the combinatorial result:

Theorem III.2.4. Let G, G' be any two quasi-graphs, connected, regular of degree

three, and having the same number of vertices and edges. Then the Ehrhart quasi-

polynomials for YG and ~9 G' agree at all odd values.

When presented with cross-disciplinary results such as these, one naturally won-

ders whether they can be obtained more directly by further exploration of the situa-

tion. In algebraic geometry, it is a general phenomenon that answers to enumerative

questions are given as polynomials in the characteristic, but as often as not, as in the

case here, the only way to show this is to compute the answer and show a posteriori

that it is a polynomial. We are thus motivated to ask:

Question III1.2.5. Can one show a priori by methods of algebraic geometry that the

number of dormant indigenous bundles must be given by a polynomial in p? Can

such an argument be given covering a wider range of enumerative problems?

Correspondingly, we wonder:

Question III.2.6. Can one demonstrate directly a combinatorial relationship be-

tween the polytopes YG for G as in Theorem III.2.4 which implies agreement of their

Ehrhart quasi-polynomials?

We discuss additional, more concrete combinatorial questions in the final section.

III.3 Proofs

We start by associating a second polytope to any quasi-graph which is regular of

degree 3, which is affinely isomorphic to YG, but imbedded in a larger-dimensional

space:
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Definition 111.3.1. Let G be a quasi-graph which is regular of degree 3. We describe

a second polytope YaG associated to G, defined to be the space of real-valued weight

functions w: E U V - R on the edges and vertices of G satisfying the following

inequalities:

(i) for each e c E, w(e) 0;

(ii) for each v E V, -eEA(v) w(e) = 2w(v);

(iii) for each v E V and e E A(v), w(e) < w(v);

(iv) for each v E V, w(v) 1.

Indeed, one checks that points of YaG' correspond to points of 2YG, by leaving

the w(e) unchanged and setting w(v) as determined by (iii) above. The w(v) act as

'dummy variables' to insure that lattice points of nyaG are merely lattice points of

2n~G with w(e)'s having even sum at any v.

We also specify:

Definition III1.3.2. Let G be a quasi-graph. A sub-quasi-graph H of G is a quasi-

graph obtained by restricting the adjacency function (o for G to subsets of the vertex

and edge sets on which p remains well-defined.

In particular, a sub-quasi-graph may not change a fixed edge to a free edge.

Lemma III.3.3. Let G be a quasi-graph which is connected and regular of degree 3.

Then the odd values of the Ehrhart quasi-polynomials for aYG and ERG differ by an

integer multiple determined by G.

Proof. Let el,. , ed be the edges of G, and vl,,..., vm be the vertices. Then the nth

value of the Ehrhart quasi-polynomial of 9aG (respectively, YaG') is by definition the

number of possible integer values for the w(ei) (respectively, the w(ei) and w(vj))

lying inside the (closed) polytope nYaG (respectively, nGb&), which is obtained by

replacing the 1 in the definition of .YG (respectively, aG,) by n. We claim that for n

odd, both of these are equivalent (up to constant integer multiple) to:
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#{(A,-' ,Addl,. . . ,d) E Zd+m: ViO < Ai < n+2; Vj,dj < n+2;

Vi,jsuchthatei E A(vj),Ai<dj; Vj,2dj+ 1 = E Ai} (III.3.4)
i:eiEA(vj)

First, note that the conditions Ai < n + 2 are superfluous. If we set Ai = w(ei) + 1

for each i and d = w(vj) + 1 for each j, we recover the description of the nth

value of the Ehrhart quasi-polynomial of G. Next, it is easily checked that if

we set Ai = 2w(ei) + 1 (at which point the dj are all uniquely determined) as the

w(ei) range over all possibilities for the nth value of the Ehrhart quasi-polynomial of

YG, we recover all possible assignments of the Ai, dj for which Ai are all odd. The

key observation is that for n odd, the number of possibilities with all Ai odd is LNG

times the total number of possibilities, where NG is the number of (not necessarily

spanning) sub-quasi-graphs of G which are regular of degree 2. Indeed, if one starts

with an arbitrary assignment of Ai, dj, the edges ei for which Ai are even gives such

a sub-quasi-graph, and if all Ai which are even are replaced by n + 2- Ai (and the

dj adjusted accordingly), one can check that all conditions are preserved, and one

obtains an assignment with all Ai odd. This sets up a natural, visibly invertible

correspondence between arbitrary assignments of Ai and dj satisfying the required

inequalities, and pairs of assignments with all Ai odd together with an arbitrary sub-

quasi-graph of G which is regular of degree 2. This completes the proof of the claim,

and the lemma. 0

We now proceed to describe the vertices of the polytopes we have constructed.

We start with:

Lemma 111.3.5. Let G be a regular quasi-graph of degree 3. Then any vertex of YG

whose coordinates are all non-zero has coordinates equal to or 2. More precisely, for

any vertex of G, the weights associated to the three edges adjacent to any vertex of

G are { , 4, }. Moreover, given such a vertex w of Y¢c, let H be the sub-quasi-graph

of G with edge set E(H) = {e I w(e) = }. Then H consists of cycles of odd length.

61



Proof. Denote by E2 and E1 the sets of fixed and free edges of G respectively. Then

one has 3(#V) = 2(#E 2 ) + #E1. A vertex of YaG must satisfy all of the inequalities

listed in Definition III.2.3; moreover, by replacing the inequalities with equalities, one

obtains a collection of linear constraints, and among these, the vertex must satisfy

some #E independent constraints. By hypothesis, none of these constraints are of

the form w(e) = 0, so they are chosen from the 4(#V) constraints of the form w(e) +

w(e') + w(e") = 1 or w(e) = w(e') + w(e") where e, e', e" are the three edges (possibly

with multiplicity) adjacent to some vertex of G. We note that for any given vertex of

G, we cannot have two constraints of the second form, since that would force one of

the weights to be 0. Therefore, each vertex of G can supply at most two constraints,

and in the case of two, one of the two is necessarily w(e)+w(e')+w(e") = 1. Moreover,

since we need #E = #E1 + #E 2 constraints, we must have at least (#E 2 ) + (#E 1 )

vertices of G with two constraints; denote these vertices by V2. For any given such

vertex in V2, we may write the two constraints as w(e) + w(e') + w(e") = 1 and

w(e) = w(e') + w(e"), which yields w(e) = . Let E2 denote the set of edges e forced
1~~~~~~~~~~

to have weight in this manner.

Now, by the hypothesis that all weights are non-zero, for any given vertex of G we

cannot have two edges with weight , so every vertex in V (and in particular in V2) is

adjacent to a unique edge of E2. The next observation is that conversely, every edge

e E E2 is adjacent to a unique vertex of V2. Indeed, if both vertices adjacent to e

were in V2, the two constraints at each would both necessarily force e to have weight

2, which would imply that they were linearly dependent. We claim that in fact every

vertex of G is adjacent to an edge in E 2; that is, E2 gives a perfect matching of G. We

subdivide V2 into V21 and V22, according to whether the corresponding edge of E2

is free or fixed, respectively. We therefore want to show that #V 21 + 2(#V 22) > #V.

But 2(#V21 ) + 2(#V22) = 2(#V2) > 2(#E 2) + (#E1), and by definition #V 21 <
3~~~~ 3

#El, so subtracting we find that #V21 + 2(#V 22) > (#E 2) + (#E1 ) = #V, as

claimed. Finally, we can conclude that #V 21 + 2(#V 22) = #V, and it follows that we

must have had #V2 1 = #E1, and no vertices of G without any associated constraints.

The next step is to show that given our description so far, if one assigns to all
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edges not in E2 , then this assignment satisfies every constraint which is permissible

based on the hypotheses that all weights are non-zero and that the weights of E 2

are predetermined as 1. Indeed, let v be any vertex of G, and e, e', e its adjacent

edges. Suppose without loss of generality that e G E 2. Then under the assignment

w(e') = w(e") = , both constraints w(e)+w(e')+w(e ' ) = 1 and w(e) = w(e')+w(e")
4~~~~~~~~~~~~~~~

will be satisfied. All that remains is to note that with w(e) = , no valid assignment

of w(e') and w(e") can achieve w(e') = w(e) + w(e") or w(e") = w(e) + w(e'), since

with all three weights positive, their sum would have to be greater than 1. Thus,

our assignment satisfies any possible choice of constraints associated to the vertices

of G not in V2 , and we conclude that our chosen vertex of gaG has coordinates of the

desired form.

We prove the last assertion by contradiction. Suppose the statement is false for

a given vertex w of YG, and H is the corresponding sub-quasi-graph. Since each

vertex of G must have assignments (1, 4, ) to the three edges attached to it, H is

a regular quasi-sub-graph of G of degree 2. Thus, H consists of cycles or paths. By

assumption, H either has a cycle of even length or a path. In either case, we can

replace the weight on the path or the even length cycle with alternating values of 8 '

Then the new assignment still satisfies every constraint satisfied by the old values.

Therefore, this contradicts the fact that in order to be a vertex, w must be uniquely

determined by those constraints. So H must only consists of odd cycles. 0

We can now conclude:

Proposition III.3.6. Let G be a regular quasi-graph of degree 3. Then any vertex of

.G has each of its coordinates equal to 0, or 2, with the only possible weights asso-4 2

ciated to the edges adjacent to a given vertex of G being {0, ) 0,}1, { , o, 1 44},

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 1and {4, 4, }. Any vertex of Y' has each of its coordinates equal to 0, 2 or 1.

Proof. We begin with the assertion for aG, working by induction on the number

of coordinates of a given vertex which are equal to 0. The base case is that all

coordinates are non-zero, which we handled in the previous lemma. Now, suppose we

have an edge e of G whose weight is zero for our chosen vertex of YAG. Suppose e is a
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fixed edge, and let vIl, v2 be the two adjacent vertices; note that it suffices to consider

the case that v1 and v2 are distinct, since if e is a loop, the triangle inequalities in

the definition of EYG will force the other edge adjacent to vl = v2 to have weight

0 as well, and we could instead choose this edge to be e. Next, note that if e,e'

and e2, e' are the adjacent edges other than e at v1, v2 respectively, then the triangle

inequalities at v1 and v2 force w(el) = w(e') and w(e2) = w(e). We define a new

graph G' obtained by removing e, v1, and v2, and replacing each pair e1 , e' and e2, e'

by single edges e' and e in the obvious way: that is, if ei, e'i are each adjacent to

vertices other than v1 or v2, replace them with an edge adjacent to those two vertices;

if only one is adjacent to a vertex other than v or v2 , replace them by a single free

edge; if neither is adjacent to a vertex other than v1 or v2, remove them entirely.

Now, we claim that we obtain a vertex of wG, by assigning weights to the edges

of G' which are the same as G where the graphs are the same, and which assign the

common weight of ei, ei to the new edges et' for i = 1, 2. It suffices to show that we can

provide constraints from the definition of Ga,' to replace any constraints that were

lost when v1 and v2 were removed. The constraints coming from triangle inequalities

at vi are easily replaced: they can either require w(ei) = w(ei), or w(ei) = w(ei) = 0.

The first condition is superfluous, while the second can be replaced by the constraint

w(e') = 0. So we need only show that we can effectively replace the condition that
1the sum of the weights at a vi be equal to 1, which gives w(ei) = w(ei) = 2, so is

equivalent to requiring w(e'i') = . Choose v3 to be a vertex adjacent to e''; without

loss of generality, suppose this was the vertex adjacent to ei in G. Since we had

w(ei) = 1 in G, the inequality requiring the sum of the three weights at v3 to be at

most 1, together with the triangle inequality for w(ei), implies that in fact both of

these inequalities are sharp, giving corresponding constraints satisfied in G, so we can

then require them also in G' in order to force the weight of ei ' to be , as desired.

By the induction hypothesis, we can assume that the vertex of G, we have

constructed has weights only equal to 0, or , with the weights of the asserted form

for edges adjacent to a particular vertex. One checks easily that our description of

weights of the edges adjacent to a given vertex is preserved by the construction, as

64



long as we verify that if in constructing G' we removed an edge of G other than e, its

weight must also have been one of 0, 1, 1. Such a removal only occurred if both ei and4 2

el were both adjacent only to v1l, v2 for i = 1 or 2. There are only two possibilities:

either ei = e is a loop, or ei and e are both adjacent to both vl and v2, in which

case these three edges and two vertices are necessarily all of G. In the first case, one

checks that in order for the weight of the loop to be uniquely determined, given that

w(e) = 0, its weight is necessarily either 0 or 2. In the second case, one can check the

assertion of the Proposition directly for G (see also Example III.4.1). Finally, note

that although we carried out this process in the case that e was fixed, the argument

works equally well (and is in fact simpler) in the case that e is free. This completes

the induction argument for oaG .

We may now conclude the desired statement for YG: for finding vertices of our

polytopes, we work over R, and in this setting, as mentioned above, the introduction

of the w(v) coordinates are irrelevant, and if we ignore these coordinates, the polytope

Y' is the same as 2 YG. In particular, with the possible exception of the w(v), all
G~~~~~~~~~~~~~~~

coordinates of vertices of G are equal to 0, or 1. But the same follows for w(v)2

from our sharp description of the possible weights associated to edges adjacent to a

vertex of G in the case of a vertex of YG. 0

This gives us our key result:

Corollary III.3.7. The odd values of the Ehrhart quasi-polynomial of YG, and hence

3;aG, are given by a single polynomial, of degree equal to #E.

Proof. We note that the dimension of aG (and hence Ga) is equal to #E: indeed, it

is easily verified that the (#E)-cube with all weights between and lies inside g.

The assertion for ~4ab is then immediate from Proposition III.3.6 and the existence

theorem for Ehrhart-quasi-polynomials. The assertion for aG then follows by Lemma

III.3.3. 0

In Proposition III.3.6, we state that the coordinates of any vertex of G can be

0, or . Because the appearance of 4 allows the quasi-period to be 4, we wonder in4 2 ~~~~~~~~4
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which cases does not appear in the coordinates. The following lemma answers this4

question.

Lemma III1.3.8. Let G be a connected regular quasi-graph of degree 3, associated to

a curve of type (g, r). If g = 0, fJG has no vertices with quarter-integer coordinates.

If g > 0, we have following two cases.

(i) If r > 0 or G has a "bridge" edge e (i.e., removing e makes G disconnected),

then Y9 G has a vertex with quarter-integer coordinates.

(ii) If r = 0 and G does not have a "bridge", when g = 2,3, or 4, there is only one

graph G such that gG does not have vertices with quarter-integer coordinates;

when g > 5 (or equivalently #V > 8), YG always has a vertex with quarter-

integer coordinates.

Proof. By Lemma III.3.5 and the construction in Proposition III.3.6, it is clear that

vertices with quarter-integer coordinates appear only if there are cycles in G, which is

equivalent to g > 0. Thus, when g = 0, 9 G does not have vertices with quarter-integer

coordinates.

Now we assume g > 0.

We prove (i) by induction on the number of vertices in G. The base case is when

V = 1: the only graph G that satisfies the conditions is the one with a single vertex

attached to a free edge and a loop. One can check that jG has a vertex (, ). We

now assume #V > 2, and (i) holds for any G' with #V(G') < #V.

If G has a bridge e, we can cut e into two free edges, and obtain two graphs G1

and G2. If both of g(Gj) and g(G 2) are positive, let wl and w2 be vertices in YG,

and YG2 with quarter-integer coordinates, respectively. If one of w1(e) and w2 (e) is

0, without loss of generality we may assume w1(e) = 0. Then if we assign weights w

to the edges of G by w(e) = wi(e) for e in G1 and w(e) = 0 for e in G2 , we obtain

a vertex in gaG with quarter-integer coordinates. If neither of wl(e) and w2(e) is 0,

then w1 (e) = w2 (e) = . Combining wl and w2 gives the desired vertex in aG. If

one of g(GI) and g(G2) is 0, without loss of generality we may assume g(GI) > 0 and
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g(G2) = 0. Let wl be a vertex in 9G, with quarter-integer coordinates. We know

wi(e) = 0 or . Since g(G2 ) = 0, we have that G2 is a tree. One can check that YG2

has a vertex w 2 such that w2 (e) = wI(e). Once again, combining wl and w2 gives the

desired vertex in 9G.

If G does not have a bridge and r > 0, let e be a free edge adjacent to a vertex

v, and let e and e2 be the other two edges connecting to v. There exists a cycle C

(without repeated edges) in G starting from el and ending at e2. 9aG has a vertex

with w(e) = , with w(e') = for all e' in C, and with w(e') = 0 for all remaining2 ~~~4

edges e'. This completes the proof for (i).

For (ii), suppose r = 0 and G does not have a bridge. When = 2, there are

only two graphs associated to this type (see example III.4.1). Only G1, the one with

two vertices connected by three edges, does not have vertices with quarter-integer

coordinates in 9YG,. When g = 3, suppose G is a graph such that none of the vertices

of YG have quarter-integer coordinates. Then each vertex of EG must have an edge

e with weight 0. Suppose e is attached to vertices vl and v2. We do the same thing as

in Proposition III.3.6. We define a new graph G' obtained by removing e, v and v2

and merging the other two edges connecting to vl and v2. Since e is not a bridge, G'

is still connected. Because w(e) = 0, the weights of the two other edges adjacent to

vl or v2 are the same. Therefore, we have a natural way to give a weight assignment

to the edges of G' and clearly it gives a vertex of 9G'. Thus, we conclude that G'

has to be G1. One checks that the only G which can be changed to G1 in this way

is the graph with four vertices, each of which connects to the other three vertices.

When g = 4, by a similar argument, we find that the only graph G not having

vertices with quarter-integer coordinates in 9YG is the one with V = {vl, v2,..., v6}

and E = {vivi+l(1 < i < 5),v6vl,VjVj+3(1 < j < 3)}. Finally, similar arguments help

us to confirm that when g = 5, all of the graphs have a vertex with quarter-integer

coordinate in 9G, and the case that g > 5 follows. 0

Recall the following:

Definition III.3.9. A nodal curve C is a curve obtained from a (not necessarily
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connected) smooth curve by gluing together pairs of points transversely, creating

nodes at these points. The smooth curve from which C is obtained is unique, and

called the normalization of C, and will be denoted C. When considering curves with

marked points, we set the marked points of C to be the points lying above marked

points or nodes of C. Finally, a totally degenerate curve is a nodal curve such that C

consists of disjoint copies of 1P1 with three marked points each.

Because any three points on p' are equivalent up to automorphism, a totally

degenerate curve is determined by combinatorial data, and specifically by the dual

quasi-graph:

Definition 111.3.10. Let C be a nodal curve with marked points. Then the dual

quasi-graph associated to C is defined to be the quasi-graph whose vertices are the

components of C, whose fixed edges correspond to nodes of C and are adjacent to the

components intersecting at a given node, and whose free edges correspond to marked

points of C, and are adjacent to the component on which the marked point lies.

One checks directly that a C such that C is a disjoint union of Pl's is totally

degenerate if and only if its dual quasi-graph is regular of degree 3, and that conversely

given a quasi-graph which is regular of degree 3, there is a unique totally degenerate

curve having the chosen dual quasi-graph. Finally, one checks that the type (g, r) of

the curve is related to the number of vertices and edges of the dual quasi-graph by

the formulas #V = 2g - 2 + r, #E = 3g - 3 + 2r.

The theorem we will use which is implicit in Mochizuki's work may be stated as:

Theorem 111.3.11. (Mochizuki) Fix g,r > 0 with 2g - 2 + r > 0, and p an odd

prime. Then the number of dormant torally indigenous bundles on a general curve of

type (g, r) over an algebraically closed field of characteristic p is given as the (p- 2)nd

value of the Ehrhart quasi-polynomial of _RG, where G is any connected regular quasi-

graph of degree 3 satisfying #V = 2g - 2 + r, #E = 3g - 3 + 2r; in particular, these

values depend only on #V and #E.

Proof. The first relevant statement is that the number of dormant torally indigenous

bundles on a general curve of type (g,r) over an algebraically closed field may be

68



computed at any totally degenerate curve of type (g, r). This follows immediately

from the assertions of [23, Thm 2.8, p. 153] in the n = 0 case that the stack of

dormant torally indigenous bundles is finite and flat over Mg,,r and is tale over

points corresponding to totally degenerate curves. Next, one needs to know that a

dormant torally indigenous bundle on a totally degenerate curve C is equivalent to

dormant torally indigenous bundles on each component of C having radii which agree

at any two points which are glued together; this is immediate from [23, $ .4.4, p.

118] when one takes into account that the dormancy condition is simply a condition

of vanishing p-curvature, and will not be affected by gluing.

The final ingredient is the description of dormant torally indigenous bundles on

P1 with three marked points, given as the n = 0 case of [23, Thm. IV.2.3, p. 211].

If we are given Ai as in this last theorem (these always exist, since the radii are only

defined up to ±1, so we could choose all the A to be odd), we have to check that the

existence of a finite separable morphism from ]Pl to itself ramified to orders Ai at 0, 1,

oo and unramified elsewhere is equivalent to the conditions that the degree d, which

by the Riemann-Hurwitz formula is determined by 2d + 1 = j Ai, must also satisfy

d < p and d > Ai for all i. This is shown in [27], but could also be deduced directly

from [23, (2), p. 232]. Given all of this, one can verify directly that the dormant

torally indigenous bundles on a totally degenerate curve C are nearly counted by

setting n = p- 2 in Equation III.3.4 as applied to the dual quasi-graph G of C. The

only discrepancy is a factor of the NG of the proof of Lemma III.3.3, since radii are

only defined up to ±1 and therefore assignments of Ai which differ by ±1 mod p give

the same dormant torally indigenous bundle. Since we saw in the proof of Lemma

III.3.3 that times the value of Equation III.3.4 computed the odd values of the

Ehrhart quasi-polynomial of Ga, we thus conclude the desired result. 0

We can now easily give the proofs of our main theorems:

Proof of Theorem III.2.1. We note that given any specified (g,r) with 2g -2 + r > 0,

we can find a connected regular quasi-graph of degree 3 having the number of vertices

and edges required by Theorem III.3.11. This is equivalent to the standard algebraic
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~~-~Th- --- -
Increment r, fixing g Increment g, fixing r

geometry statement that there exist totally degenerate curves of any hyperbolic type,

but one can easily verify it directly. Indeed, the figure demonstrates how to increase

either g or r by 1 while keeping the other fixed, and given this it suffices to check

the base cases of (g,r) = (0,3), (1,1),(2,0), which is easily accomplished. Putting

together Corollary III.3.7 with Theorem III.3.11 then gives the existence and degree

of the desired polynomial. The positivity follows from the fact that for any n > 0,

.G contains the lattice point with all weights equal to 0. Lastly, to see that the

polynomial is always odd or even, we note that simply by translating all coordinates

by 1 one sees that the number of lattice points in the interior of nIYG is equal to the

number in the the closed polytope (n - 4) G. Applying the reciprocity theorem for

Ehrhart polynomials then easily gives the desired result. 0

Proof of Theorem III.2.4. This is almost the same as Theorem III.3.11, except that

it asserts agreement of the nth value of the Ehrhart quasi-polynomial for all odd n

rather than those for which n + 2 is a prime. The stronger statement then follows

from Corollary III.3.7, although in fact for this application one need not consider G

at all: it is enough to use the existence of Ehrhart quasi-polynomials once one knows

that the Ehrhart quasi-polynomial of Ygag has quasi-period 4, since Mochizuki's values

then give infinitely many values for n congruent to either 1 or 3 mod 4. Thus, to

prove Theorem III.2.4 it suffices to know the statement of Proposition III.3.6 for YaG

only. 0

Remark 111.3.12. Translating from self-maps of IPl to indigenous bundles and back in

order to obtain the statement for g = 0 of Theorem 111.2.1 may seem superfluous,
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and indeed one could argue directly using the results of [27] that the number of such

maps is counted by the Ehrhart polynomial of 4bG However, there is something to

be said for concluding the statement as a special case of a more general result.

In fact, an induction argument similar to that carried out for Proposition III.3.6

can be used to show that the number NG of Lemma III.3.3 also depends only on the

number of vertices and edges of G:

Lemma III.3.13. Let G be a quasi-graph which is connected and regular of degree 3.

NG, the number sub-quasi-graphs of G which are regular of degree 2, is 2 for r = 0

and 2g+r-1 for r > 0.

Proof. For any sub-quasi-graph H of G of degree 2, we can consider its vertex set

V(H) to be the vertex set V of G. Thus, we only care about its edge set E(H). Let AG

be the set of all of sub-quasi-graphs of G of degree 2 with a product operation defined

by setting H- H' to be the graph whose edge set is {e e E(H) or e E E(H'), but

e ¢ E(H) n E(H')}. One can check that this product operation is well-defined, i.e.,

H- H' e AG, for any H, H' E AG, and is commutative. Therefore, AG is an abelian

group with identity given by the empty graph I with vertex set V. For any H G AG,

H. H = I. Hence, the order NG of AG is 2, where s is the size of a minimal set

of generators of AG. Another observation we have for H E AG is that H consists of

loops and path, where every loop consists of fixed edges, and every path starts with

a free edge, ends with another free edge, and has fixed edges in between.

We prove the lemma by induction on the number of edges #E of G. The base

cases are (#V,#E) = (1,3),(1,2),(2,3), (equivalently, (g,r) = (0,3), (1, 1), (2,0),)

which are easy to check. Now, suppose #E > 4 and the lemma holds for all the

graphs whose edge set size is less than #E. Denote by E1 and E2 the sets of free and

fixed edges of G respectively. Recall that #V = 2g - 2 + r and #E = 3g - 3 + 2r.

Hence, g = 2#V- #E + and r = 2#E- 3#V. Also, it's easy to calculate that

#El = r.
If r = #El > 0, let e be a free edge connecting to a vertex v; then the other two

edges e, e2 connected to v cannot be both free edges since #E > 4. We construct a
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new graph G' by removing e and v and merging e and e2 into one edge. One can

check that G' is a connected regular quasi-graph of degree 3 with #E(G') = #E- 2

and #V(G') = #V- 1. Thus, g(G') = g and r(G') = r- 1. By the induction

hypothesis, NG' is 2g for r = 1 and 2 g+r-2 for r > 2. However, when r = 1, there is

no H E AG containing e as an edge. Hence, there is a bijection between AG and AG,.

Thus, NG = NG' = 29 = 2 g+r-1 . When r > 2, let e' be another free edge in G. Let H

be a path from e to e' (without using same edges more than once). Then H E AG.

One can see that H together with a minimal set of generators of AG' gives a minimal

set of generators for AG. Therefore, NG = 2NG, = 2g+r- 1.

If r = #El = 0, G is a graph without free edges. Because #E > 4, there exist

two vertices v1 and v2, such that there is one and only one edge e connecting them. If

e is a "bridge", i.e., by removing e, G becomes disconnected, then we cut e into two

free edges and disconnect G into two graphs G1 and G2. Clearly r(Gl) = r(G 2) = 1.

One can calculate that g(Gl) + 9(G2) = g. Since, e is a bridge, there are no loops

containing e. Thus, AH E AG such that e E E(H). Therefore NG = NG1 NG2 = 29.

If e is not a bridge, let H be a loop containing e (without repeating edges). Then

H cE AG. We obtain G' be removing e, vl and v2 and merging the two other edges

connecting to vi, for i = 1,2. Using the similar argument as for the case r > 2, we

can get that NG = 2NG, = 29. 0

It then follows that one also obtains identities for the odd values of the Ehrhart

quasi-polynomials of ¢Ga.

Corollary III.3.14. Let G, G' be any two quasi-graphs, connected, regular of degree

three, and having the same number of vertices and edges. Then the odd values of the

Ehrhart quasi-polynomials for 3aG and aGJ, agree to a single polynomial, of degree

#E.

We have chosen to phrase our main result in terms of aG partly for the sake

of simplicity, and partly because it seems like the more natural object, in that its

Ehrhart quasi-polynomial computes the number of dormant torally indigenous bun-

dles directly, and it is imbedded in a space of its own dimension.
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GI YGI G2 YG 2

The case (9,r) = (2, 0)

III.4 Further Remarks and Questions

In this section, we discuss some explicit examples and possible directions of further

investigation, with a particular focus towards the combinatorial side. We begin by

describing the simplest example of our results, seeing that the combinatorial identities

obtaining in Theorem III.2.4 do in fact appear to be non-trivial.

Example 111.4.1. Consider the case of (g,r) = (2,0), or equivalently graphs with

three edges and two vertices. One checks that we get only two graphs: the G1 and

G2 of the figure. The corresponding polytopes 9cG and Gc2 are, respectively: a

regular tetrahedron with vertices at (0,0,0), ) (° 2 ) and ( 0,1 ); and a

square pyramid with vertices (0,0, 0), (1, 0, 0), (0, 0), ( ) and (4, , ). One

finds that in fact not only the odd values, but the entire Ehrhart quasi-polynomials

of YG 1 and YG 2 agree, and are given by 1(n3 + 6n2 + 20n + 24) for even n and

l(n 3 + 6n2 + 11 n +6) for odd n. The number of dormant torally indigenous bundles24

in this case is thus given by (p3 _ p).

While we have not explicitly presented YG for different G in further cases, one

can compute that in the case of (g,r) = (3,0), there are five different graphs, for

which the corresponding G have 8, 10 or 14 vertices depending on G. Thus, in this

situation there are at least three polytopes which are not combinatorially equivalent

for which we obtain relations. It seems reasonable to expect that the number of

non-trivial identities obtained will grow with (g, r).

In computing further examples, there are two phenomena which stand out. The

first is that in all examples computed so far, for any two G, G' as in Theorem III.2.4

we find that not only the odd values of the Ehrhart quasi-polynomial agree, but the
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even values agree as well. This holds for examples with (g,r) up to (4,0), as well

(0, 6) and (1, 2). The data for (5, 0) is also consistent with this conclusion, although

computation of the entire Ehrhart polynomial for even a single graph in this case

appears unfeasible. We therefore conjecture:

Conjecture III.4.2. In Theorem III.2.4, the restriction to odd values of the Ehrhart

quasi-polynomials is unnecessary.

We also remark that the same seems to hold for Y's in the few examples we have

computed thus far. This is interesting in its own right, as there is no obvious relation

between the even values of the Ehrhart quasi-polynomials of YG and 9'.G

We also make some observations on the period of the Ehrhart quasi-polynomial

of 9G. First, in certain cases with r > 0 (for instance, when (g,r) = (1, 1), (1,2), or

(3,1)) one can compute that the Ehrhart quasi-polynomial in fact has quasi-period 4.

This is as expected based on the fact that for any graph G of the corresponding type,

some vertices of fYG have quarter-integer coordinates, but it is interesting in that

it means that Theorem III.2.4 is producing potentially infinitely many examples of

rational polytopes for which the Ehrhart quasi-polynomial has different quasi-periods

when restricting attention to even or odd values. In contract, we have observed that

when r = 0 the Ehrhart quasi-polynomials of ERG and 9G, always appear to have

quasi-period 2 and 1 respectively, rather than the a priori expected quasi-periods of

4 and 2. This would follow from the above conjecture for g < 4, since in this case

by Lemma III.3.8, there is always a G with all vertices of YG lying on half-integers

(and correspondingly, all vertices of Y b lying on integers). However, Lemma III.3.8

also says that for g = 5 and above every £?G must have some vertices with quarter-

integer coordinates. Yet, the data we have for g = 5 is consistent with the Ehrhart

quasi-polynomial of ERG having quasi-period 2. Thus, we seem to have a separate

pattern not explained by our previous conjecture, and we ask:

Question III.4.3. Is it true that for r = 0, the quasi-period of the Ehrhart quasi-

polynomial of G is always 2? Are there other cases where the quasi-period is

smaller than expected based on the denominators of the vertices of ZYG as G ranges
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over all quasi-graphs corresponding to (g,r)? Is the quasi-period of the Ehrhart

quasi-polynomial for Yg always half the quasi-period for G?

Finally, we would like to add that Mochizuki had already remarked on the exis-

tence of apparently non-trivial combinatorial identities implicit in his work (see [23, p.

238-239]), but in a more general setting than we have treated here. Additional fam-

ilies of combinatorial identities are obtainable by considering more general nilpotent

torally indigenous bundles than the dormant ones we have examined. For instance,

Mochizuki treats a few cases of these identities for g = 0,1 in the situation of ordi-

nary torally indigenous bundles; see [23, p. 24] and [23, Cor. V.1.3, p. 237]. He also

develops the basic combinatorial algorithms necessary to describe the intermediate

cases, called spiked torally indigenous bundles; see [23, Def. 11.3.1, p. 160], [23, Thm.

V.1.1, p. 236], as well as the diagram [23, p. 270]. Translating these identities into

combinatorial language is likely to be more complicated than for the dormant case,

but may yield correspondingly more interesting identities.
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Appendix A

Proof of Proposition II.8.1

The purpose of this appendix is to prove Proposition II.8.1 by showing both sides of

(II.8.1) are equal to
1 d

E sign(a) H z(, j)
E6d j=l

We always assume that V = {vl,v 2 ,... ,vd+1} is the vertex set of a d-simplex in

general position, where the coordinates of vi are xj = (i,l, xi, 2 ,... ,xi,d). We first give

some new notation and definitions.

For all k: I < k < d, let Xk

xk - d+l. Define

Xv(a, k) =

Yv(a, k) =

= (Xk,1 , Xk,d) = (Xk,1 - Xd+l,1,. . , Xk,d -Xd+l,d) =

Xa(1),l

Xa(2),l1

Xo(k),l1

1

1

1

A

... XU(1),k

... Xo(2),k

Xa(k),k

Xa(2),l

Xa(2),l

. .. Xa(1),k-1

... Xcr(2),k-1

... Xo(k),k-1 
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and

Zv(ao, k) = det(Xv(a, k))/ det(Yv(a, k)).

Then

v(a, k) = (-1)kzv(, k). (A.0.1)

Again, when there is no confusion, we omit the subscript V from Xv(a, k), Yv(a, k)

and v(o, k).

We define certain subsets of the symmetric group ed, which we will use in our

later proofs. We denote by GT the set of permutations on some set T and use one-line

notation for all permutations.

Definition A.0.2. a) Let (A, F, A) be a partition of [] with the sizes of A and F

to be and i, respectively. For any A E A, MY E Sr and E v, we denote

by (, y, A) the permutation (A(1),..., A(f), y(1),..., (i), (1),..., (d-e-i)).

For fixed A and , we denote by 6O,d,6 the set of all of the permutations in the

form of (A, y, 6).

b) In particular, when A is the empty set, i.e., (A, F) is a partition of [d], we simply

write 6A,d,6 as 6e,d which is the set of all of permutations in the form of (A, 'y),

for some fixed A E SA.

c) We analogously define d,6 in the case that A is the empty set, i.e., (, A) is a

partition of [d].

A.1 Right side of (II.8.1)

Because (ao-j) = (-1)jz(o, j) and det(X(1,d)) = ()d det(X(1, d)) to prove that

the right side of (II.8.1) is equal to 1. EEd sign(a)l rlz(a,j) is equivalent to

showing that
d

sign(a) II $(U, j) = (- 21) det(X(1, d)). (A.1.1)
aoed j=l

The following lemma gives a stronger statement. It involves 6d,6. For any a =
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(7, 6) G ed,6, and V1 < j < i, det(X(a,j)) and det(Y(a,j)) do not depend on 6. So

we simply write them as det(X(7, j)) and det(Y(y, j)).

Lemma A.1.2. For any 1 < i < d, let (r, A) be a partition of [d] with the size of F

equal to i. For any E Oa and E r, we have that

i '-F i~~~~(i-1)
E sign(a) H z(aj) = (-1) 2

o'Ed, j=1

sign((y, 6)) det(X(y, i)).

In particular, (A. 1.1) holds.

Proof. We prove (A.1.3) by induction on i. The base case is i = 1: there is only one

ao in d,6 and sign(a) = sign((y, 6)). Together with the fact that det(Y('Y, 1)) = 1,

(A.1.3) holds.

Now assuming that (A.1.3) holds when i = io 1, we consider i = io + 1.

For any m :1 < m < i, let r(m) = r \ {y(m)} and A(m) A U y(m)}. Then

((m), A(m)) is a partition of [], where the size of p(m) is i- 1 = i. Let (m) =

(-y(1),.... y(m-1),y(m+ 1),..., y(i)) and 6(m) = ((m),6 (1),... ,6(d-i)). We know

that sign((y(m), 6(m)) = (- 1)i+m sign((y, 6)). Then by the induction hypothesis,

i-1

E sign(a) H| z(a, j)
°E6 d,S(m)

= ()(i-1)(i-2)sign((m) (m)))det(X (m) -1))
= (-1) 2 sign ((-y('), 6('))) det (X(7y(-), i - 1))

j=l
(i-l)(i-2) ++ M

= (-1) -2) +i+msign((y, ))det(X(y(,m)i- 1))

However, (d,6(m))l<m<i gives a partition for ed,6, and for any a E ed,6, F(a, i) is an

invariant. In particular, z(a, i) = 9((y, 6), i) = det(X(y, i))/ det(Y(-y, i)). Therefore,

i

sign(aP() a =
j=1

i

: = ((1tJ),i)
m=1

i-1

E sign(a) H z(a, j)
E1d,6(i) =1

i

= (-1) (--2) +i1 sign((-y, ))z((, ), i) (- 1)m+ l det(X( y(m), i - 1))
m=1

(-1) ( sign((y, 6))((y, ), i) det(Y(y, i))

(-1) 2) sign((, 5))det(X(ty, i)).
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Therefore, (A.1.3) holds. If we set i = d, then A\ = 0, and P = [d]. Letting y = 1

be the identity in ed, we obtain (A.1.1). D

A.2 Left side of (II.8.1)

The proof that

1S sign((a)gd(z(o., 1),... , z(oa, d)) =
CYEed

E sign(a)
OeEGd

is relatively harder than what we did in the previous section. We need to use the

following lemma.

Lemma A.2.2. For any 0 < + k < d- 2, given P(yl,. . ,ye) a function on 

variables, let q(oa) =p(z(a, 1),... ,z(oa,e)),Va G ed. Then

E0( E Ed

(A.2.3)
d((o )k+sign(o)q(.) Hj=f+l z4o, j) = O.

NZO', + 1))k+ l

Given this lemma, we are able to prove the following proposition which implies

(A.2.1) when we set e= 0.

Proposition A.2.4. Define so = 1, z(a, 0) = 1. For any : 0 < t < d, we have that

Edo' E d

sign(o.)gd(z(o, 1), .. ., z(o, d))

I
(d- )! 5 sign(')

(YE Gd

z (O,O) SO

So
Si=1

z(a, se-)
-- l

Se 1

(A.2.5)

(z(a, £))d-e
-d-e
S I

Proof. We proceed by descending induction on .

When = d, (A.2.5) holds by the definition of gd.

When = d- 1, it's easy to check that (A.2.5) holds.

Assuming (A.2.5) holds for f = 0 1 < d- 1, we consider f = to < d- 2. By the
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d

j z(a, j)
j=1

(A.2. 1)

rld �+j Z(g, j)
j=



induction hypothesis,

aE d

sign(a)gd(z(a, 1), . . , z(o, d))

'1

(d- - 1)!SE

1

aEd(d- _ ) aE~ito

z(a,1) S

sign(a) E
Si=1

z(,l)
z(a,O) so

sign (l) 5
l Sl~8=1

Ij=e+ 2 Z( ' ) d-- 1.. E (Z(O, + ))d-ef- I-+'

Z (.7,£- 1) St--1 d
Z(fe-) j=1 f e+2 z(,j) z(u,.e + 1)
s= 1 (Z(,f + ))d-t-lPd-t-l( z(a, ) st)-

Recall that Pd--l(x) is the power sum polynomial. Note that d- f- 1 > 1. By

(11.6.9), (II.6.10) and (II.6.11), we can assume

Pd-e-, (x) = d-t +
mS

where cm R.

For Vm 1 < m < d- - 1, defining xo = 1, let

x1 SOx 0

Pm(xl,... ,xe)= E
Sl=l

XgXe- -

.. -

Si= 
( s )M
xt]

Then Pm is a function on f variables. Let

qm(r) = m(Z(0-, 1),... ,z(r, )).

Then

{ a,~ so

sign(or) E -
$1= 1

I Sl~~~~~lsign(a)qm (a) ( (

sign(af)qm(af) , ,

Z<4Elseil 

St=l (Z(,

1ij=e+2 z(a, j)

j=e+2 z())-
a,f + 1))d-f-I

(u, f + ))d-e- l-m

(j=e+ z( ,j)
Io, t + ))d-e m

=0.
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=oE
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z(a, f + 1) )
z(, ) St



The last equality is by (A.2.3). Therefore,

z sign(a)gd(z(o, 1),... ,z(o, d))
aEed

z(l )

~1 ~ z(,O ) 

(d-! Z sign(o) E - aEEd sl=l

(d - aE5d 81=1

sO-1~~~~~~~~~~~-z (Te-1 ) st 1 Z(O,) 1 ( + 1)I St* (z( + ))d-1- d - t V z(a, t) 

=e+l z(a,J) sd-'
sE=1 (z(, ±))d- ) d e

se=1

[]

Now we have everything we need to prove Proposition 11.8.1.

Proof of Proposition II.8.1

The proposition follows from (A.2.1), (A.1.1) and the facts that F(o, j) = (-1) z(a, j)

and det(X(1, d)) = (-1)d det(X(1, d)).

A.3 Proof of Lemma A.2.2

It remains to prove Lemma A.2.2, which is most complicated part of this section. We

will break the proof into several steps. The first lemma we need involves symmetric

polynomials.

A symmetric polynomial on d variables yl, .-., Yd is a polynomial that is unchanged

by any permutation of its variables.

Lemma A.3.1. For any k > 0, there exist symmetric polynomials /k(y1, Y2,... , Yi)

on variables yl,Y2,..,Yi for any i 1 < i < k + 2 and symmetric polynomials

~(yl, y2, .., yj) on variables yl, y2, .. , yj for any j: 2 < j < k + 2, so that

(A.3.2)
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k

k9 ((y,2) = E Yiyk-i
i=O

V1 <i< k+1, 4~k(yl, 'Y ' k+2-i k"kY,_ . ,JYi+2 -- Oi (YI,..., Yi+l)Yi+l (A.3.4)

= -)k
- +1 WI(Y, . , i+i)Yi ... Yi+,.

Proof. Proof by induction on k.

When k =o0, q01 = 1, 02 , 0 = 1 = OY2 - Y2 =-02Y1Y2-

Assume that (A.3.2),(A.3.3) and (A.3.4) hold for k = k0 > 0. We check the case

k = ko + 1.

We set

/k (yi,

1,

.. ,Yi) = Pk- (Y1,

0,

if i = 1,

... ,yi), if 2<i<k+1,

if i= k+2.

Note that k+l k- k = 1 by the induction hypothesis. Thus, (A.3.2) holds.

Now all of the O's are given. In order to satisfy (A.3.4), for V1 < i < k + 1, we

set k I( I, ., Yi+i) = q$ 'y 1 .,y)yk jl-i + q5k J(y,..., ,+i)Y w. yi. (A.3.5)

Hence, it is left to show that f+41 's are symmetric polynomials and satisfy (A.3.3).

When i= 1,y,2) = Ok (yl)y2k + Ok(yl,Y2)yI = yk '+ y k-l(yl,Y2)Y yk 

(E o Y1Y2 ) Yl = k k-i

When 2 i < k, because the right hand side of (A.3.5) is symmetric in yi, Y2,..., Yi,

it's enough to show that it is symmetric in Yi and Yi+l. However,

qbi(yl, . ,yi) = Ti-(yl. .. , yi)

= i (yl,.. ,Yi-1 )yk+ i + k 1 (yIl,...,Yi)Yl Yi-.
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Because qk is symmetric, we can switch yi and yi. So

qk(yI,... ,Yi) = k-1i ~~~~qi- (2,

Similarly,

i+-l(Yl, - ' Yi+1) = qi (Y2,..., Yi+I)1i ± qi+ 1 (YI,-, Yi+l)Y2 'Yi+l1

Therefore,

k
~/+1 (Yl, , Yi+1)

Ok-1 ~ ~k+I-i. k+l-k k-1k i-1 (Y2, ' . .,Yi)Y2 *YiYi+i +

/k- k1i (y2 ,. .. Y ±/k4l(y,...,yi- 2 yIY2bi±
q$-1(y. yi+)yk+l-iy2 . . .yi ± q$kij (y, ·· · ,Yi+i)yl 2 YYi+1

is symmetric in Yi and Yi+1

When i = k + 1, Yi) = k+1 + k 2 Yk = 1.=~~~+ -- Yk+1) k k+2YI . Yk+l

Lemma A.3.6. For any 0 < k < d - 2, 1 < i < k + 2, let (r, A) be a partition of [d]

with the size of r equal to i. For any 6 /A and ?y ECr, we have that

HfIj1 (, j)
sign(a) 7

cEed,6~a (z(, 1))k+l

UG k,6

( -1 .-) sign( (, ))q/(x(1), X(i),I)= (-I) 2j=J(7(j)'&+2-i
H=iA

det(Y(y, i)).

(A.3.7)

Proof. We prove (A.3.7) by induction on i.

When i = 1, there is only one a in 6d,j and sign(a) = sign((y, 6)). Together with

the facts that Obk = 1, 2(u, 1) = x(1), = XA(l),1 and det(Y(y, 1)) = 1, we conclude

(A.3.7).

Assuming that (A.3.7) holds when i = io > 1, consider i = io + 1.

For any m 1 < m < i, let (m) = F \ {iy(m)} and A(m) = A U {ry(m)}.

Then (F(m),A(m)) is a partition of [d], where the size of rF(m) is i- 1 = i0 . Let

?(m) = (y(1), . . . , 'y(m- 1), y(m + 1), . ., y(i)) and 6(m) = (y(m), 6(1),... , (d- i)).
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Then by the induction hypothesis, we have that

*- :F1 (07, j)
E- sign() (2(u, ))k+ l

oEEd (m)

= (-1) ' 2 -1 sign((- (y ) I("))

However, (d,(m))l<m<i gives a partition for d,,. Therefore,

m=l im=1 -r-61

sno =2 i)k j)sign(a). ~O-] ) _ )k )sn(a F(a,' 1))k+ l

But for any r C G d,(m), (, i- 1) is an invariant. In particular, (cr, i- 1) =

(((m),mli- 1) = det(-X(y(m), i- 1))/det(Y(y(m), i- 1)). Hence,

-sign(o,)L ( j)
E s M~n~ff) (Z(J, 1)) k+ l

JG E5d, ,

i

= (-1)i(i-1) 
m=1

sign((y(m), 6(m))) - i-l(q$ (j ()(m1),1, . ) ,
}_11= (X"~m()l k 3i

Note that ((),)k+3 - i i-l(X m)(j),lk+ 3 -i = Hi= (x (j),)k+3-i and sign((y(m), 6(m))) =

(-1)i+m sign((y, 6)). Therefore,

sign((Y, 6))

i=(x(j)1)k+ i

sign (o-r}- I ^( ' j )E sign(o) (z(a, 1))k+l
O7e'Xd,6

A,

where

i

A =_j -Ok 1(~~( '. ..,_X m) (ii) ( )+ det(Ak7( n), i -1))A = (--1)i((m)(),, 1(m)(i )( (rn), ) 
m=1

XY(l),
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det(Y(i(), i- 1)).

:
O-e~d 6

Ok 1pY(_)(1)'1'...'
Z- 5�^((M)(i-i)j)

i.-I (j',(m)(j)'1)k+3-i
f13=1

ft-='i j)
sign(o,). 1))k+l

- (-) i - I ).det (X (-� ,

i(i-1) - I+i
= (-I) 2

... X-Y(1)'i-1

... E��(2),i-l

. .. 2'yum- I

Ok , (i _Y(,),,)k+3-i
i - I G��(') (1) I.... _ 1), 1) p

O� 1 (5�, 2) (1), 1, - - - ,(2) (i - 1), 1) Py(2) I)k+3-i
= - det z -

� � Ot I ��m (1) I, . . . , 5FY(i) (i- 1), i )(��(,)'&+3-i



By (A.3.4), if we subtract the second column times pok(X(1), . . , X(),I1) from the

first column, then

... XY(1),i- 1

* .. Xy(2),i-1

.. Xh(i) ,i_ 1

A

-X P(aI), i, ..* ~ ) Xilzalv I * * -2(i), I

=- det - ik(Xy(1),l, .. , X-y (i), )Xy(1), ' (i) I

- i (Xy(1),l,.' -, *X*(i),l)X(1),l(i),

= X(y(1),1, ' , X-(i),1) x(1),1 XAy(i),1 det(Y(i, i)).

Therefore,

i(+1)-
= (-1) 2 -- sign((y, 6)) det(Y(y, i)).pi Y(),l, .), x(i),l )

Hj-l=(I (j) ) +

[

Corollary A.3.8. For any 0 < f + k < d- 2, i = k + 2, let (A, F, A) be a partition

of [d] with the sizes of )A and F equal to t and i, respectively.

any A E GA, we have that

EGxA,d,6

For any 6 E G, and

(A.3.9)

(A.3.10)
and

H)f+k+ )j--£+l z (O, j) 0E sign(a) ((, f + 1)) l = O.
a6XA,d,b

Proof. Proof by induction on .

When f = 0, (A.3.9) follows from Lemma A.3.6 and the fact that k+2 = 0. Thus,

(A.3.10) holds by (A.0.1).

We assume for / = o0 > 0, (A.3.9) and (A.3.10) holds. We check the case / = -o+1.

Because (A.3.9) and (A.3.10) are equivalent by (A.0.1), it's enough to show (A.3.9).

Without loss of generality, we assume that d G A and A(1) = d. For 1 < q < d- 1,
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Hi- I �F(a, j)j=1
sign (a). -MU, 1))k+l

I+k+l j)
sign (a) fIj=f+1 - 0,E (:F( g, j + 1))k+l -



define

(Xpq+ -- Xdq+I)/(XpI - Xd,1), if 1 < p < d- 1,
Yp,q - _

tXp'q+1 14p 1) if p = d.

Let W be the vertex set {wI, w 2 ,. · , Wd-1}, where the coordinates of wp are (Yp,i, Yp,2,

... , Yp,d-1). For any a Gc , let s = (a(2),a(3),. . ,a(d)). Because A(1) = d, E

Ed-- Clearly, (A \ {d},r, A) is a partition for [d- 1] and E A',d-l,y, where

A' = (A(2),... , A(e)). Therefore, for j > 2,

det(X(a, j))

Xo-(2),1 Xa(2),2

= (-1) -1 det
Xa(j),l

Xd,1 Xd,2

Xa,(2),l - Xd,1

... -- X(2),j

... ,"j '

... Xd,j 

X(2),2 - Xd,2 ...

= (-1)j-l det
Xa(j),l - Xd, 1

Xd, 1

Xa(j),2 - Xd,2 ... 

Xd,2

Xa(j),j - Xd,j

Xd,j

1

1

Yd-1,21

*-- . Y(x),j-1

*... Y(j- 1),j- 

... Yd- l,j-1

i
- (1)Jlxd,1 7 (Xa(p),l - Xd, 1) det(Xw (,j - 1)).

p=2

Similarly,
j

det(Y(a,j)) = II((cr(p),l- d, 1) det(Yw(,,j - 1)).
p=2

Hence,

z(a,j) = det(X(,j))/ det(Y(a,j)) = (-1)J-lxd, zw(,j - 1).
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Xa(2),j - Xd,j

j

= (-1)J x1d, 1 Jj(X(p),l - Xd, 1) det
p=2

Yq(1),l



Note that sign(a)= (-I)d - sign(W). Hence, by the induction hypothesis,

i+-k+l z(a, j)
sign(a) Hi j=f+ ,

( (((, e + 1))k+l

ad G6A,d ,6

][+k+l

- E~ (-1)dlsign() Hi=t+1 (-1)zw(,j - 1) .
~ee6AId-1,6 (ZW(Z ,e))k+l

Proof of Lemma A.2.2. Consider any partition (A, F, A) of [d], where the size of A is

f and the size of is i = k + 2. If we fix A G A and 6 G 5, then VW E 6A,d,6, z(a,j)

is an invariant when < j <_ or + i < j < d. Therefore, by (A.3.10),

Hj=d+Z (a j)
sign(o)q(a)(z(a -( )k+l =0.

(z(uo,, et 1))k+l
GAd,u6

But all of the 6xd, give a partition for Gd. Thus, (A.2.3) holds. Dl
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