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Abstract 
Recent studies have linked hemispheric climate variability to annular modes, zonally symmet- 
ric structures that describe the horizont a1 redistribution of atmospheric mass. The resulting 
changes in the pressure patterns consequently alter the atmospheric circulation, including the 
movement of zonal jets in the atmosphere. While the literature contains much observational 
evidence describing these annular modes, the fundamental dynamics in the perpetuation of 
the annular modes still remains poorly understood. 

We investigate the dynamics of the annular modes using the MITGCM, a semi-hemispheric 
ocean model. The forcings imposed in the model are an atmospheric wind stress and re- 
laxation to a latitudinal temperature profile, which induces a baroclinically unstable flow. 
Despite such an idealized setup, the model output shows striking similarities to the observed 
atmospheric annular modes, where the leading mode of variability is associated with the 
primary zonal jet's meridional displacement. By convention, when the zonal jet is poleward 
(equatorward) of its time-mean position, the principal component (PC) of the first empirical 
orthogonal function (EOF) is positive (negative) and is referred to as the high (low) zonal 
index. 

In the model, systematic secondary (weaker) jets migrate equatorward into the primary 
jet. The total eddy forcing associated with the migrating jets aids in sustaining the primary 
jet in the presence of frictional forces. Plots of the anomalous eddy fields for both indexes 
show that the strongest eddy activity in the main jet is associated with the high zonal 
index. The zonal flow anomalies, which systematically migrate into the poleward flank of 
the main jet, are largely responsible for causing this positively anomalous eddy forcing. This 
asymmetrical forcing to the primary jet results in the zonal index variability. 

In this thesis, the dynamics associated with the secondary jets and its equatorward 
migration will be examined. We will show that when (1) the sphericity of the earth is 
accounted for, (2) the interior PV is homogenized, and (3) the width of the baroclinically 
unstable region exceeds the Rhines scale by several factors, multiple zonal jets emerge and 
migrate equatorward. 
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Title: Professor of Meteorology 
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Chapter 1 

Introduction 

1.1 Annular modes 

Modes of climate variability in the atmosphere have long been studied. Calling it the North 

Atlantic Oscillation (NAO), Walker and Bliss (1932) demonstrated negative correlations in 

pressure between the North Atlantic and the subtropics of Europe. Meanwhile, Rossby 

(1939) introduced the zonal index as a measure of the strength of the mid-latitude westerlies 

between 35" N and 55" N. Namias (1950) went further by proposing the fluctuations in 

the flow strength was associated with the "zonal index cycle,'' an oscillation owing to the 

jet's meridional displacement. Lorenz (1951) then linked the two latter ideas together by 

averaging the zonal-mean zonal flow at 55"N and using it as a proxy to measure the pressure 

oscillation. 

In more recent years, Thompson and Wallace (1998), who first used the term "annular 

modes", described the leading mode of variability as a seesaw of mass between mid- and 
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high-latitudes similar to Walker and Bliss (1932). However, Thompson and Wallace (1998) 

expanded the regional analysis to include the entire hemisphere. They showed that there 

was a stronger connection between the variability of the wintertime Eurasian surface air 

temperatures with the leading mode of the hemispheric zonal-mean sea-level pressure rather 

than to the regional fluctuations associated with the NAO. Mhermore ,  other studies (e.g. 

Limpasuvan and Hartmann 2000) have demonstrated that this leading mode of variability 

is not only annular-like, but is barotropically equivalent, i.e. the pattern extends from the 

surface up to the tropopause and amplifies with height. 

Although annular modes are observed in both hemispheres, Lorenz and Hartmann (2001), 

hereafter LHO1, analyzed the Southern Hemisphere (SH) annular mode (SAM) which is more 

zonally symmetric and provides more robust results than its northern counterpart. They 

showed that anomalously high pressure in the mid-latitudes is associated with a poleward 

shift of the jet and, conversely, anomalously low pressure in the mid-latitudes is associated 

with an equatorward shift of the jet. By convention, a poleward shift of the jet corresponds 

to a high index phase while an equatorward shift is defined as a low index phase. 

Lorenz and Hartmann (2001) described the jet displacement as the leading mode of zonal- 

mean zonal flow variability through the first empirical orthogonal function (EOF) of [u]. Its 

dipole structure, with local maximum and minimum anomalies centered about ten degrees 

north and south of the time-averaged maximum wind speeds, captures the "wobbling" or 

meridional displacement of the zonal jet. The second EOF coincided with the location of 

the mid-latitude jet representing the strengthening and weakening of the jet, or similarly the 



jet narrowing and broadening of the jet. 

The time-scales associated with these modes can range from intra-seasonal to decadal 

(Thompson and Wallace 1998). Therefore, annular modes can be helpful to describe climate 

change. For example, Hurrell (1995) showed a strong correlation with surface air temperature 

with the annular modes over the previous 30 years. Thompson and Wallace (2000) also show 

that the Northern Annular Mode (NAM) index trended toward a persistent positive phase 

in the late 1980s and throughout the 1990s, consistent with trends in the NAO (e.g. Hurrell 

1995). 

1.2 Zonal Jets 

The reasoning behind examining ring-like structures for low-frequency behavior can be at- 

tributed to many processes. But primarily, based on the theories of geostrophic turbulence in 

barotropic fluids and conservation of energy and enstrophy, kinetic energy is transferred from 

high wave numbers to low wave numbers, while enstrophy cascades from low wave numbers 

to high wave numbers, where it dissipates (Pedlosky 1987). The effect of the inverse energy 

cascade creates spatially larger eddies. In the absence of other forces such as rotational and 

frictional forces, eddies will grow to the size of the domain. 

Rhines (1975) described how the P-effect can halt the cascade of energy to larger scales. 

As the eddies grow in size, variations of planetary vorticity increase in importance, and when 

eddies are sufficiently large, the effect of Rossby wave dynamics will be approximately equal 

to nonlinear interactions. Ram the barotropic vorticity equation shown below, a scaling 



argument shows the length scale at which a turbulent regime turns more dynamically wave- 

like. 

where ( is the relative vorticity, u' is the velocity, and v the meridional speed. 

The second term scales as and the third term scales as PU. For small scales, the 

advective term dominates, and for large scales, the ,8-term dominates. When the two terms 

are in "balance", it is called the Rhines scale: 

In the meridional direction, the Rossby wave frequency is inherently anisotropic, therefore 

flows organize themselves into zonal structures (Rhines 1975). This can be attributed to the 

general tendency for the energy to seek the gravest mode and hence cascade toward low zonal 

wavenumbers (Vallis and Maltrud 1993). In essence, this process "flattens" the eddies in the 

north-south direction and turns them from isotropic to anisotropic. Therefore, the final 

process of the cascade leads to longitudinally oriented eddies producing zonally symmetric 

jet-like flows (Rhines 1975). 

Adjusting to a baroclinically unstable regime, Held and Larichev (1996) used a scaling 

argument to come up with an adjusted "baroclinic" version of the Rhines scale, &) = 9, 
where ii is the baroclinic eddy velocity and LD is the baroclinic Rossby radius of deformation. 

Therefore, if the domain size is larger than this scale, the possibility for more than one 



zonal jet can exist. Furthermore, numerical studies (e.g. Williams 1978) have shown if the 

baroclinically unstable region greatly exceeded the Rhines scale, multiple jets develop. 

Panetta (1993) imposed an unstable horizontally uniform vertical shear over several tens 

of Rossby radii wide with a quasi-geostrophic (QG) two-layer P-plane model to test for the 

existence of multiple jets. Given dissipation was sufficiently weak, multiple jets emerged 

and were demonstrated to be remarkably persistent. By using a full zonal and meridional 

spectrum, Panetta (1993) also showed the existence of multiple jets was not a consequence 

of leaving out long zonal waves i.e. low model resolution did not lead to fabrication of zonal 

jets. 

Panetta recognized the earth's ocean, where the Rossby radius of deformation is an order 

of magnitude smaller than the atmosphere, would allow for multiple jets to be observed e.g. 

the Antarctic Circumpolar Current (ACC). Using a QG channel model forced by a surface 

wind stress, Treguier and Panetta (1994) found multiple jets would emerge given a limited 

amount of curvature to the meridional wind stress. 

These numerical studies by Williams (1978), Panetta (1993) and Treguier and Panetta 

(1994) were all done using a quasi-geostrophic (QG) model. Expanding upon the hierarchy of 

models simulating multiple jets, Lee (2005) utilized a primitive equation model on a spherical 

planet. Varying the size of the planetary radius and baroclinic intensity, Lee demonstrated 

the meridional scale of the jet was consistent in each case with the Rhines scale. 



1.3 Motivation 

The above studies of multiple jets have been based on simplified models such as QG models on 

a ,@-plane. Only through modelling multiple jets with different levels of model complexity can 

theories be rigorously tested. Our use of the MITGCM serves multiple purposes. Since the 

MITGCM uses spherical coordinates, the model captures the earth's latitudinal variations 

of the earth's curvature. It can be shown that the group velocity is proportional to eddy 

momentum fluxes (Andrews et al. 1987). Therefore, Rossby waves have a bias in propagating 

equatorward (e.g. Whitaker and Snyder 1993; Limpasuvan and Hartmann 2000). Under this 

framework, this will lead to asymmetric forcing in relation to the zonal jet that models using 

a ,@-plane omit. 

This work was primarily motivated by the output from a ocean model run from the MIT- 

GCM. Similar to previous studies, the setup is such that width of the baroclinic region is 

much larger than the baroclinic Rossby radius of deformation. However, secondary (weaker) 

jets are observed to systematically migrate equatorward. The author is not aware of such 

behavior being reported previously. Since the model-imposed forcings are constant in time 

with flat-bottom topography, it is the internal dynamics most likely responsible for estab- 

lishing the remarkable persistence of the migrating zonal jets. This equatorward bias in the 

zonal anomalies is in contrast to the poleward propagation of the zonal anomalies observed 

in the atmosphere (Feldstein 1998). 

Along with addressing this issue, another goal of this work is to describe and explain the 

annular mode-like behavior associated with this model run. The leading mode of variability of 



the zonally-averaged zonal flow describes the meridional displacement of the primary jet, very 

similar to the observed atmosphere (e.g. Lorenz and Hartmann 2001). The model-imposed 

forcings here are constant in time, but yet, there is still temporal variability associated with 

the zonal jets. The most likely explanation can be attributed to the eddy effects on the 

zonal-mean flow. 

Yu and Hartmann (1993) conducted a modelling study with a GCM and determined the 

convergence of the transient eddy momentum flux is important in not only maintaining a 

meridionally displaced jet, but also in the transition from one zonal index to another. This 

implies a momentum budget analysis is important to show that the eddy momentum flux 

convergence is the major forcing in both the extreme and transitional phases. It would be 

of interest to compare eddy statistics given our regime of migrating jets. 

We note that the two forcings to the model have been idealized. The model-imposed wind 

stress does not account for easterlies in the tropical atmosphere, i.e. there are only westerlies 

in mid-latitudes and the wind stress tapers off equatorward. The requirements needed for 

such conditions (if even plausible) will not be discussed here. However, a cursory description 

of the model will be presented in section 2, and in section 3, we will perform a time-average of 

certain diagnostics in order to examine the climatology of the model. Then, we will analyze 

the spatial and temporal variability by utilizing empirical orthogonal functions (EOFs) in 

section 4. Descriptions of the eddy properties will be presented and discussed in section 5. 

In section 6, a comparison will be made between some our GCM results and simple models. 

A discussion on our results will be given in section 7. Finally, we conclude with a summary 



of our important findings and discuss potential future work in section 8. 



Chapter 2 

Setup 

2.1 Model 

The data in this study were generated from the MIT General Circulation Model (MITGCM). 

A more complete description of the MITGCM can be found in Marshall et al. (1997a, 1997b). 

Here we provide just a cursory description of the model setup. 

This is a semi-hemispheric model ranging from 50.67"s to 0.17's and OOE to lo0 E 

periodic in the zonal direction on a i0 x i0 latitude/longitude grid. There are 15 vertical 

layers with each layer's depth ranging from approximately 22m in the first top six layers 

to approximately 400m for the bottom nine layers. A two-dimensional sketch is shown in 

Figure 2.1. 

The simulated ocean varies from the actual ocean in a number of ways. Boundaries such 

as continents and topography that could potentially influence the flow have been ignored. 

The model does not account for trade winds, i.e. only westerlies with the wind tapering off 
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towards the equator are considered. 

In the absence of such boundaries, the model has been setup to be a zonally reentrant 

channel. The periodic boundary conditions in the zonal direction are, in general, more rep- 

resentative of the atmosphere than the ocean and may facilitate annular mode-like structure 

similarly observed in the atmosphere. However, unlike the atmosphere, the fluid is chan- 

nelled between two walls. Free-slip and no-slip boundary conditions are used at the equator 

and at 50.5OS, respectively. 

The model-imposed forcings include a wind stress (Figure 2.2a) and a heat forcing (Figure 

2.2b). Both forcings are constant in time, a function of latitude only, and applied only to 

the top layer of the ocean. Compared with the oceanic Rossby radius of deformation (which 

is in the order of 50 km), the width of the forcings are extremely broad. 

For our oceanic case, this wind stress acts as our source of momentum from the at- 

mosphere into the ocean's top layer, with the peak located at 33's. When the model starts 

integrating, the wind stress will cause the top layer's zonal flow to increase with time. After 

a sufficient length of time, the flow becomes baroclinically unstable, perturbations grow, and 

eventually, eddies transfer moment um equat orward and downward, until eventually momen- 

tum is then removed out of the system at the ocean's bottom due to bottom drag. 

The second applied forcing is a model-imposed temperature profile. The restoring time 

for this heat forcing, shown in Figure 2.2b, to return to the specified temperature profile is 

of order 1 month. Thus this heat forcing is associated with warming close to the equator and 

cooling to the south. This semi-realistic forcing is also constant in time and independent of 



Figure 2.1: Model's domain ranges from 50.67"s to 0.17OS and OOE to 10" E and periodic in 
the zonal direction on a $" x $" latitude/longitude grid. See text for details. 
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Figure 2.2: Model-prescribed forcings. (a) Atmospheric wind stress. (b) Specified tempera- 
ture profile with a relaxation time of order one month. Note: both forcings are constant in 
time, only a function of latitude, and applied to the top surface layer (22m). 



longitude. 

The size of any eddies is always limited to size of the particular model's domain. Part 

of the model's domain size is shown in Figure 2.3. In certain parts, the 10" width of the 

channel likely stopped the inverse energy cascade. Between 12"s and 17"S, an eddy fills the 

entire latitude circle and has most of its energy in wave number 1. It is likely if given a 

sufficiently larger zonal domain, the eddy would have been horizontally larger and appear 

less isotropic i.e. more zonal as described by Rhines (1975). 

The depth of the ocean is 4083m, and the model's bottom drag is specified to be: 

where A, is the vertical viscosity, UM is the zonal velocity at the bottom of the ocean, rbot 

is the thickness of the bottom layer, KE is the kinetic energy and CD is the bottom drag 

coefficient. 

2.2 Methodology 

With the lack of any longitudinally asymmetric forcing, it is appropriate to consider zonal 

mean budgets. Therefore, since we are interested in the low-frequency behavior, unless 

otherwise noted hereafter, quantities displayed in this paper have been annually and zonally- 

averaged and will be denoted with square brackets. 

In the literature, there are many possible definitions of the zonal index. For this study, 



Figure 2.3: Snapshot of the horizontal temperature distribution. For visual purposes, since 
the model is periodic in the zonal direction, the graphical output between 10" and 30" are 
duplicates of that for 0 - 10". L .  



we use the principal component (PC) of the leading empirical orthogonal function (EOF) 

of the zonally-averaged zonal flow to define the "zonal index." As we shall see, the first 

EOF describes the north-south displacement of the jet. Positive (negative) values of the PC 

indicate a poleward (equatorwasd) shift of the jet and will be referred to as a high (low) 

phase of the zonal index. 

Figure 2.4 displays the time series of the annually and zonally-averaged flow over a nine- 

year period. The flow is strongest between 15"s and 20"s and closest to the surface with 

peak values approximately 2.5 ms-'. Poleward of 20°S, weaker zonal jets develop around 

35"s and migrate equatorward. The zonal jet between 15"s and 20"s will be referred to as 

the primary jet, and zonal jets poleward of 20"s will be called secondary jets. 



Zonally averag - d zonal flow (m s-I) 

Figure 2.4: Time series of [u(y , z, t )]  . Time stamps (in years) are located on bottom left 
corner of each plot. 



Chapter 3 

Climatology of the MITGCM 

The 313-year time series of the zonal-mean zonal flow [u(y, 2, t )]  shown in Figure 2.4 can be 

split into two parts: the time mean [fi(y, z) ]  and its deviations, [uf(y, 2, t ) ] .  In this section, 

we focus on the former. The top plot of Figure 3.1 shows the latitude-depth plot of the 

zonal-mean zonal flow. This time-averaged plot shows the highest zonal flow values located 

between 15"s and 20°S, with the primary jet centered at 17's. Poleward of this primary jet, 

time-averaged zonal flow speeds appear to be about an order of magnitude less. As shown 

in Figure 2.3, the period for secondary jets migrating into the primary jet is approximately 

10 years. Therefore, because of the migrating jets, such a long time-average (313 years) 

smooths out the zonal flow south of 20"s. Nevertheless, there is still a hint of another zonal 

jet at 27's. 

The mean meridional temperature gradient, shown in the second plot of Figure 3.1, 

has its largest values coinciding with the strong jet as expected by thermal wind balance. 

The meridional temperature gradient extends through the vertical, damping as we progress 
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Figure 3.1: Model's, , w e  and zonally-averaged values for (a) zonal flow, (b) me 
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one would expect this region to be stable. This is consistent with the applied wind and 

heat forcings (Figure 2.la and 2.lb) as they are both tapered off towards the equator. With 

no westward wind stress towards the equator, there is no upwelling (significant enough) 

to disturb the isopycnals in this equatorial region. In addition, since the heat forcing is 

rather smooth equatorward of 10°S, the westerly wind stress was tapered to prevent inertial 

instability and upwelling near the equator. This region, equatorward of 10°S, is stable. 

Poleward of 14"S, the time-averaged isopycnals have significant slopes with comparison 

to height surfaces. Therefore, there is available potential energy for any perturbations to 

grow. This region is baroclinically unstable, and we expect baroclinic eddies to develop, and 

through processes explained in section 1.2, will funnel momentum into jets. 

The top plot of Figure 3.2 shows Ertel's potential vorticity, q, in relation to the isopycnals. 

In regions of instability, contours of q are remarkably parallel to the isopycnals, especially in 

the interior of the domain. In this part of the domain, Ertel's potential vorticity has become 

homogenized along the time-averaged isopycnals. The likely mechanism in smoothing q can 

be attributed to eddies transporting PV downgradient (see Rhines and Young 1982; Kuo et 

al. 2005 ). The bottom plot emphasizes the point that Ertel's PV gradient (along isopycnals) 

is virtually zero in the interior. 

The time-mean of the eddy momentum flux is shown in Figure 3.3a and Figure 3.3b. 

Poleward (equatorward) of the primary jet, momentum is being transferred equatorward 

(poleward.) Figure 3 . 3 ~  and Figure 3.3d shows that almost all of the time-mean horizon- 

tal momentum flux converges at the primary jet. There is a hint of another convergence 



maximum region centered at 27's where another secondary jet is observed (see Fig 3. la).  

This is consistent with a study done by Held and Andsews (1980). The authors' have 

shown that flows with a horizontal jet structure broader than the Rossby radius of deforma- 

tion will have a vertically-integrated momentum flux into the jet. For our study, the Rossby 

radius of deformation (see Fig 3.4) is on the order of about 100 km, while the primary jet 

length scale is about 500 km and as shown, in Fig 3.3d, there is a convergence of eddy mo- 

mentum flux. This is likely to be the mechanis~n that sustains the jet even in the presence 

of frictional forces. This will be discussed further i11 section 5.3. 
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Figure 3.3: Time and zonally-averaged values for (a) the eddy momtu rn  flux (b) vertically- 
integrated eddy momentum flux (c) eddy momentum flux divergence (d) vertically-integrated 
eddy momentum flux divergence. 
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Chapter 4 

Description of Variability 

Figure 4.1 shows the vertically-integrated, zonally-averaged zonal flow anomalies as a func- 

tion of latitude and time. Once again, the equatorward migration can be clearly seen pole- 

ward of the primary jet, especially between the latitudes of 20"s and 30"s. From the emer- 

gence of the secondary jet around 30"s to the time it takes to reach the primary jet ranges 

from 8 to 12 years. In other words, the translation of the zonal jets are not constant, i.e. the 

migration speed of the zonal jets fluctuate. Although most of our focus is between the above 

mentioned latitudes, it is interesting to note that an equatorward bias in the anomalous 

zonal-mean flow anomalies isn't restricted to this region. Poleward of 30°S, there are weak 

zonal anomalies that also show an equatorward bias and exhibit similar migration speeds as 

the stronger secondary jets. 
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Figure 4.1: Time series of the iuiomalous vertically-integrated zonally-averaged zonal flow. 
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EOjF Analysis 

The spatial and temporal variability of the zonally-averaged zonal flow can be best summa- 

rized by the use of empirical orthogonal functions (EOFs) as shown in Figure 4.2. The data 

was weighted to account for the decrease in area around latitude circles toward the pole, but 

was not weighted to account for the varying vertical layer depths. However, this shall not 

be important as we are interested in the horizontal variations of the zonal flow. Using the 

North et al. (1982) test, the first and second EOFs are-well separated. 



EOFl shows an equivalent barotropic structure with maximum anomalies at 19's and 

14's. The black line represents the time-averaged location of the jet's maximum value 

(17.2'5). By comparing the variability of this mode and the mean location of the jet, we 

determine that EOFl physically represents the meridional fluctuations of the main jet, or 

in other words, EOFl captures the jet "wobbling" in the north-south direction. This mode 

constitutes the largest amount (39.5 percent) of the total variability. 

In EOF2, the maximum anomalies are coincident with the mean location of the jet. 

Therefore, this mode physically represents the intensifying and weakening of the main jet. 

With this mode capturing twenty-seven percent of the total variance, EOFl and EOF2 

together account for over sixty-six percent of variability. 

These leading modes of variability are robust. A similar spatial pattern develops after 

splitting the 313 years into different segments (not shown). A plot of the principal component 

of EOFl and EOF2 will provide the amplitude, phases, and the duration of the variability 

associated with each mode ranges . From (Figure 4.3)) the duration of EOFl lasts anywhere 

from 1-7 years, but typically for 3-4 years and oscillates from positive to negative numbers, 

indicative of the jet "wobbling" north and south of its time-mean location. For example, this 

would physically imply that the EOFl accounts for the primary jet being shifted, while PC1 

shows that it persists for about one to six years. Similarly, EOF2 shows that usually the 

primary jet is anomalously stro~lger/weaker, while PC2 shows that is lasts anywhere from 

one to ten years. 

To demonstrate how these leading modes capture both the spatial and temporal variabil- 



Principal Component for EOF1 

1040 1050 1060 
Time (years) 

Principal Component for EOF2 

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 
Time (years) 

Figure 4.3: Principal components of the first and second EOF modes. 



ity, we reconstruct the zonal flow by using just only the first two eigenvectors (for calculations, 

see Appendix A.) A time series of the reconstructed zonal flow with the two EOFs can be 

seen in Figure 4.4. Comparing this to Figure 2.4, the reconstructed zonal flow captures the 

variability from the original data set. More specifically, the migrating jets are preserved. 

Unsurprisingly, the vertical structure throughout the time series, show the reconstructed 

zonally- and annually-averaged zonal flow to remain equivalent barotropic. The only dif- 

ference between the reconstructed zonal flow and the original is that the jets are slightly 

weaker and shallower in the former and may be the result of not accounting for the different 

layer depths, which were shallow at the top and deep at the bottom when solving for the 

eigenvectors. Layers close to the surface were weighted too much, while the bottom layers 

weighted too little. 

4.2 Description of EOF phases 

Lorenz and Hartmann (2001) analyzed the zonal-mean zonal wind variability in the Southern 

Hemispheric atmosphere and found EOF2 (eighteen percent variability) to only account for 

one-half of what EOFl captured. For our study, EOF2 accounts for more than two-thirds of 

what EOF 1 captures in the total variability. This demands the anomalous activity associated 

with the EOF2 spatial pattern to contribute Inore into the dynamics than in the LHOl study. 

A single EOF for the reconstructed [u], would simply describe jets strengthening and 

weakening, but not migrating. Thus, the need for two EOFs to capture most of the variability 

make sense since our secondary jets are not just sirnply amplifying and decaying, but they 
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are also migrating. Thus, the second EOF allows us to capture the evolution of the secondary 

jets shown in Figure 4.4. 

Therefore, in order to succinctly describe the dynamics involved, all we need are the two 

EOFs since it describes the zonal flow as either increasing or decreasing and as being displaced 

equatorward or poleward at any given time. Mathematically, the leading two principal 

components capture these characteristics. When the jet moves poleward (equatorward), PC 1 

will be positive (negative) and similarly when the zonal flow is anomalously large (weak), 

PC2 will be positive (negative). Therefore, we define Phase A as PC1<0 and PC2<0, Phase 

B as PC1<0, PC2>0 and so forth. A complete summary of the mathematical and physical 

representation can be seen in Table 1. 

The purpose of classifying each year with a particular phase allows us to perform many 

tasks. Firstly, we have now succinctly categorized the variability into just four bins as 

described in Table 1. Secondly, since there is a lot of interest in how the zonal index fluctuates 

from an equatorward to a poleward displacement of the jet (e.g. Yu and Hartmann 1993; 

Feldstein and Lee 1996) by categorizing each year into four phases, conditions for the onset 

of a particular zonal index can be analyzed. In particular, EOF phases will be used for 

diagnostic plots. This is done by compiling the years associated with each phase, then 

performing an average of that phase for that diagnostic. As we have seen in section 3, 

had we done a time-average of the entire period, the migrating jets would not be seen. 

Thus, the primary reason for utilizing EOF phases allows secondary jets to be preserved and 

analyzed. A visual representation of the zonal flow can be seen in Figure 5.1 with each phase 



corresponding to the previous description shown in Table 1. 

Using PC1 and PC2, we classify every year to one of the above four phases. For example, 

a sixty-year time series is shown in Figure 4.5. In general, the zonal flow changes adhere to 

the following sequence: Phase A -+ Phase B -+ Phase C -+ Phase D and then repeats back 

to A. This sequence is dictated by the behavior of the secondary jets. Since they migrate 

equatorward, the principal components (PC) of both modes need to change sign to allow 

the secondary jets to advance equatorward leading to the systematic clockwise progression 

through each EOF phase as shown in Fig 4.5. 

If this sequence were to be followed strictly, during the onset of a low zonal index, 

these two modes imply negative zonal flow anomalies at the location of the primary jet. 

Alternatively, there is typically positive zonal flow anomalies at the jet during the transition 

to a high zonal index. Each part of the sequence is followed by the correct phase at least 

sixty-four percent of the time, e.g. the conditions prior to the onset of Phase A were correctly 

observed to be in Phase D sixty-four percent of the time and incorrectly by Phase B or C 

thirty-six percent of the time. The conditions prior to Phase B were observed to be in Phase 

A eighty-five percent of the time. The complete statistical results describing the conditions 

prior to the onset of each phase and zonal index is given in Table 2. 

These results show that a significant percentage of the time (seventy-four percent) positive 

zonal flow anomalies were coincident with jet prior to an equatorward displacement, i.e. the 

conditions prior to the onset for a high index are described by Phase B. Alternatively, only 

sixty-one percent of the time, the jet was in Phase D prior to a negative zonal index. This 
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Figure 4.5: (a) Graphical display of the EOF phases. Note the abscissa is PC1 and the 
ordinate is PC2. (b), (c) and (d) A time series of the jet characteristics as described by the 
EOF phases. 



shows that the sequence is not symmetric, e.g. there is a stronger relation between Phase A 

and Phase B than there is between Phase D and Phase A. 

, PC1 I Regative 
PC2 / Negative / Positive 1 Positive ! ~egative 

Table 1: Physical characteristics of the lour phases dehed tbrorgh tBe hvst two 
EOFs. 

Table 2: Str&tim1 mu1b on the maditions prior to Ue ollset of each phase ard 
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Chapter 5 

Eddy Properties 

5.1 Eddy-Mean Flow Interaction 

Despite the presence of bottom drag, zonal flow anomalies (Figure 4.1) are observed to 

persist for relatively long time scales, an indication that anomalies must be maintained 

by some forcing. The forcing likely responsible arises through eddy-mean flow interaction. 

There are two ways for eddies to interact with the mean flow: (1) through the divergence of 

the eddy momentum fluxes and (2) through the divergence of the eddy heat fluxes. To show 

this, we start from the momentum equation in Cartesian coordinates: 

d i i  -1 d~ -+  f Z x i i = - V P - g Z + -  
d t  P dz 

where f  is the Coriolis parameter, ii is the velocity vector, p is the density, g is gravity and 

T is the dissipation owing to friction. Taking the zonal average, linearizing from a basic 



time-mean st ate, and written in spherical coordinates, the zonal component of equation 5.1 

is as follows: 

where square brackets indicate a zonal average, u' = u - ii, ii is the time-averaged flow, v  

is the meridional velocity, a is the earth's radius, and 6 is the latitude. In the following 

discussions, the first term on the right-hand side (RHS) will be referred to as the eddy 

forcing term. Equation 5.2 shows that the flow tendency is part of a four-way balance with 

the Coriolis force, the eddy momentum flux, and friction. 

However, it can be shown that the heat forcing can be just as important as the eddy 

momentum forcing in driving the zonal mean circulation through eddy heat fluxes and adi- 

abatic motion. The thermodynamic equation shown below can be manipulated to unite the 

two forcings. 

Taking the zonal average, linearizing from a basic mean state, retaining terms to that 

are of order Rossby or higher, and converting into spherical-height coordinates, we obtain: 

a~ N ~ H  ~ [ v ~ T ~ I  cos + 
- + R [ w l  d t  = [QI- acos+a+ 

where N is the Brunt-Vaisala frequency, Q represents diabatic effects such as radiation and 



latent heat release, R is the ideal gas constant, and H is the scale height. 

This shows the vertical velocity is influenced by the convergence of the eddy heat flux. 

Therefore, following Edmon et al. (1980), we redefine the vertical velocity to represent only 

the diabatic motions and remove the eddy heat flux dependence by introducing the residual 

mean velocities: 

The meridional component, G* , represents the meridional motion necessary to conserve 

mass in the residual mean meridional circulation, and the vertical component, G* , represents 

the vertical velocity without the contribution of the eddy heat flux. If we now substitute 

equation 5.5 into equation 5.1 we obtain the transformed Eulerian mean flow interaction. 

where 

We refer to @ as the Eliassen-Palm (EP) flux vector. The divergence of the EP flux, or 

more specifically, the combination of both the divergence of the eddy momentum flux and 

the eddy heat flux, shown in equation 5.7 5.8, act in concert to alter the zonal-mean zonal 

flow. 



An added benefit in analyzing plots of the EP flux offer a visual representation of wave 

motions. For example, let 

$I' = a(y ,  z, t)  cos(kx + ly + mz - wt) (5.9) 

where a is a slowly varying function of latitude, height and time. Using quasi-geostrophic 

approximations, it can be shown (e.g. Andrews et al. 1987) 

where 

are the meridional and vertical group velocity for Rossby waves respectively, A is referred 

to  as the wave activity, S is the stratification parameter and [q,] is the zonally- and time- 

averaged quasi-geostrophic potential vorticity meridional gradient. 

If A > 0, then Equation 5.10 shows that to a rough approximation 

- [u'u'] - C,, . (5.14) 

Therefore, if we assume that [q,] is dominated by P then A will be positive and 5.14 holds. 
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Since values of ,8 increase equatorward, then the group velocity, arid thus the horizontal EP 

flux will have latitudinal asymmetry. In particular, there will be a bias to have larger values 

on the equatorward side than the poleward side of the source of the eddy activity. 

Finally in this section, it may be worthwhile to give some comments about the residual 

circulation. From equation 5.7, not only do the effects of the divergence of the Eliassen-Palm 

flux alter the zonal-mean circulation, but also the residual meridional circulation. Recall in 

equation 5.5, the purpose of solving for the time-mean residual circulation is to eliminate 

the adiabatic effects and focus on the diabatic effects. In the interior of our domain, with 

no friction nor diabatic heating, the residual circulation winds up being virtually zero and 

we can conclude that effects from the residual circulation will not play an important role in 

this system and hence, will not be discussed further. Therefore, we focus our attention in 

the next couple of sections on the terms on the right hand side of 5.7 - the Eliassen-Palm 

fluxes and the role of friction in order to describe the migrating jets. 

5.2 Eddy Effects 

The arrows in Figure 5.1 represent the wave activity associated with the total EP flux in 

relation to each phase as described in section 4.2. In all cases, most of the eddy activity is 

poleward of 12"s. There is almost no eddy activity near the equator because of the model- 

imposed forcings at this region. As discussed in section 3, this region is highly stable, and 

thus, it comes as no surprise baroclinic waves are not generated. 

In all EOF phases, upward wave activity is observed, with the strongest activity near the 
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Figure 5.1: Eliassen-Palm cross sections. The total EP flux vectors for each EOF phase 
(labelled on bottom left corner) are plotted over zonally-averaged zonal flow. 



jet in Phase D and the weakest in Phase B. As described in equation 5.14, the horizontal 

eddy momentum flux is in the opposite direction as the horizontal EP flux. Using equation 

5.9, a similar procedure could be done to show that the vertical eddy momentum flux [ufwf]  

is in the opposite direction of the vertical EP flux. With the EP flux directed upward in all 

phases, it comes with little surprise that this implies that (eastward) momentum is being 

transferred downward. Furthermore, focusing on the horizontal EP flux, poleward of the 

primary jet (indicated by the white line in Figure 5.1), eastward momentum is being trans- 

ferred equatorward, while north of 17"S, momentum is being redistributed toward the jet. 

Not surprisingly, a time-averaged plot of the effect of eddies is to bring positive momentum 

both downward and toward the jet. 

Comparing the different phases, both the eddy heat flux and eddy momentum flux are 

more dominant in the high zonal index (Phase C and D) than in the low zonal index (Phase 

A and B). Also, there is only a marginal difference in wave activity between the two high 

index phases (Phase C and Phase D) and similarly for the low index phases (Phase A and 

Phase B) when especially comparing the separate two zonal indexes. 

The horizontal and vertical component of the EP flux vectors indicate different effects 

on the primary zonal jet. The vertical component reduces the vertical shear, while the 

horizontal component acts to increase the horizontal shear. Causality cannot be determined 

here, but there is a high correlation between the two components of the EP flux. Comparing 

the low and high zonal index near the primary jet, whenever stronger horizontal momentum 

gets deposited into the primary jet, the values for the downward vertical momentum flux are 



anomalously large values. Alternatively, weak downward vertical momentum flux is observed 

whenever the horizontal eddy momentum fluxes were anomalously weak. 

We speculate that the EP fluxes shown are just a consequence of the system being inher- 

ently baroclinically unstable. Due to this instability, eddy heat fluxes are generated and act 

to reduce the vertical shear by bringing positive momentum fluxes downward. Concurrently, 

since the energy cascades to the Rhines scale, which happens to be larger than the Rossby 

radius of deformation, then as shown by Held and Andrews (1980), the sign of the vertically- 

integrated eddy momentum flux must be directed into the jet. When the jet is anomalously 

strong, its baroclinicity increases and the instability acts to decrease the vertical shear more 

vigorously. 

Poleward of 30°S, the main jet shows a substantial amount of upward wave activity 

propagation. We note that the static stability is low. But in any case, since the vertical 

temperature gradient was close to zero poleward of 30"s and is in the denominator of F(,), 

this results in a large vertical EP flux. 

We will sidestep this issue by focusing on the anomalous EP flux vectors shown in Figure 

5.2. In this figure, anomalous baroclinic activity can be inferred by looking at  the contoured 

zonal flow anomalies. Areas of anomalously positive zonal flow can be equated to a positive 

deviation of the vertical shear. Because the Eady growth rate is proportional to the ver- 

tical shear, this leads to anomalous baroclinic wave activity (Eady 1949). As these waves 

propagate away from this region, momentum gets transported towards the source of wave 

activity. 
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Figure 5.2: Anomalous Eliassen-Palm cross sections. Anomalous EP flux vectors for each 
EOF phase are plotted over the zonally-averaged zonal flow anomalies. Each phase is labelled 
at the bottom left corner of plot. 



Figure 5.3: Same as Fig. 5.2 but with the flow tendency contoured instead. 



From equation 5.7, assuming no friction, the divergence of the EP flux should lead to 

an acceleration of the mean flow. Figure 5.3 shows that the divergence is not aligned with 

the flow tendency. In fact, upon a closer inspection of the divergence of and Figure 5.3 

shows that they are not synchronized in time or in space and this implies frictional forces 

cannot be neglected. We will soon show that in the presence of moderate friction, divergence 

of the EP flux will be associated with positive flow anomalies and not with a positive flow 

tendency. (This will be discussed in greater detail in section 6.1.) 

In any case, the zonal flow anomalies (overlayed in Figure 5.2) are maintained by baro- 

clinic instability processes. Positive (negative) zonal flow anomalies are generated and main- 

tained in regions where prior conditions demonstrated anomalously weak (strong) baroclin- 

icity. 
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As discussed in the previous section, friction cannot be ignored. Here in this section, we 

will take a closer look at the frictional effects in the context of the momentum budget. 
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Since the jets are equivalent barotropic, and we are more interested in how momentum gets 

redistributed latitudinally, we proceed by integrating equation 5.7 across the entire depth, 
I I 
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the vertical component of the EP flux must vanish, leaving only the horizontal component 
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of the EP flux and friction: 
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where vertically-integrated values are represented by angle brackets. The first term on the 

RHS will be called the eddy forcing. 

Equation 5.15 demonstrates that the vert ically-integrated flow tendency is balanced by 

the vertically-integrated eddy forcing and the frictional effects. Note the Coriolis term must 

vanish owing to the zonally-averaged mass conservation. 

A time-average of equation 5.15 is shown in Figure 5.4a. When time-averaging, the flow 

tendency averages to zero and the only terms that contribute are on the RHS. To a first-order 

approximation, the wind stress is inputting momentum into the fluid and being removed by 

the bottom drag. 

Forcing provided by the divergence of the horizontal EP flux peaks between 20"s and 

15"s providing evidence that the observed jet in this region is indeed eddy-driven. Physically, 

through the wind stress, momentum is being transferred into the ocean primarily between 

40"s to 30"s. Then from figure 5.4, the eddy momentum flux is directed equatorward from 

50"s to 17"s and converges at the jet. However, this forcing is counteracted by the bottom 

drag. 

By performing a time-average of equation 5.15 information cannot be gathered for anom- 

alous activity such as the flow tendency. In Figure 5.5, we remove the time-average stip- 

ulat ion, and analyze the annually averaged anomalous terms of the vertically-integrated 

momentum equation for particular years. Since the wind stress applied to the top layer is 

constant in time, this term cannot be associated with any anomalous activity. 

The flow tendency is not balanced by just the eddy forcing; instead, it is the combination 
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of eddy forcing and the friction that balances the term. The friction is the same order of 

magnitude as the eddy forcing, and the flow tendency is only about one-tenth of the forcing. 

This shows this regime is in a quasi-steady balance between the eddy forcing and friction, 

and the flow tendency is essentially a residual in equation 5.15. 



Chapter 6 

Comparison to Simple Models 

6.1 Frictional Effects 

Before continuing on the results of the MITGCM, we employ a simple model because results 

can be more meaningful and straightforward. This can also be used as a good check and 

balance between the two models. The purpose of this simple model is to prescribe a forcing 

and understand how the flow changes with varying frictional values. As we shall soon see, 

friction not only impacts the flow strength, but also the flow's phase relationship with the 

forcing. 

The simple model solves a simpler form of equation 5.15, as given below: 

where F represents the anomalous eddy forcing and D represents the anomalous bottom 



drag. 

A time series of the MITGCM shows the anomalous eddy forcing exhibits a sinusoidal 

behavior. Hence, for this simple model, we represent F as the following: 

To get an expression for D, we refer to equation 2.1, which defines how the MITGCM 

calculates the bottom drag. If we linearize equation 2.1, the anomalous bottom drag will be 

a function of both the eddy kinetic energy and the anomalous zonal flow at the lowest layer. 

If we make the assumption that the anomalous KE term is only a function of the zonal flow, 

then D depends on both uiot and u'. Furthermore, if we assume the perturbations to uiot are 

much smaller than to u', then D only depends on u', which is directly proportional to the 

vertically-integrated zonal flow because of the equivalent barotropic structure. Therefore, 

we can obtain a simple linear parametrization of the anomalous bottom drag: 

where CD is the drag coefficient and < [u'] > represents the anomalous vertically-integrated 

zonally-averaged zonal flow. 

Now that there are expressions for both F and D, we substitute them into equation 6.1 

to obtain: 



This leads to the following analytical solution for the zonal flow: 

Therefore, < [u] > depends only on the drag coefficient and the frequency of the forcing. 

Also, the above equation shows that as CD approaches zero, the zonal flow will be ninety- 

degrees out of phase with the forcing; meanwhile, as CD approaches infinity, < [u] > will be 

in phase with the forcing. 

For this model, since we are interested in the frictional effects, we vary CD, but set w = 1 

for all runs. Graphical solutions are shown in Figure 6.1. In the inviscid case, clearly the 

flow tendency is solely balanced by the eddy forcing, and thus is in phase with F. Because 

the flow tendency and the flow itself must be in quadrature, the zonal flow is out of phase 

with the forcing. 

When increasing the drag coefficient slightly, the must balance with both the eddy 

forcing and friction. This damping obviously lowers the flow's magnitude, but will always 

be in phase with the flow. The second plot contains an incremental increase in the drag 

coefficient. The flow tendency must balance both the friction and the forcing. Because 

frictional forces are strongest when the flow speed is maximum and weakest when the flow 

speed is zero, the phase of the zonal flow shifts in the direction of the forcing. In essence, 

friction counteracts the forcing resulting in a weaker flow tendency and causing the flow 

tendency to be out of phase with the forcing. 

The third run uses a drag coefficient ten times larger than the previous run. This will 
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Figure 6.1: Simple model of flow tendency balancing both the eddy and frictional forces for 
(a) the inviscid case with CD = 0, (b) "slight friction case" with CD = 0.3, (c) "moderate 
friction case" with CD = 3.0 and (d) "extreme friction case" with CD = 9.0. 



be referred to as the "moderate friction case" where the friction and the forcing are of the 

same order of magnitude. Both the flow tendency and the zonal flow have been reduced by 

a factor of two and have been phase shifted such that the zonal flow is almost in phase with 

the forcing. Since the flow tendency only changes the zonal flow anomalies, when friction 

is sufficiently large, which is the case for this run, the forcing no longer has the highest 

correlation with the flow tendency, but instead with the zonal flow anomalies. 

Finally, when friction is extremely strong, the bottom plot shows the forcing and the 

friction nearly cancelling one another. Since the flow is in phase with the friction, this 

implies that the flow is also in phase with the forcing and the flow tendency is now in 

quadrature with the forcing, consistent with the results of our analytical solution. 

6.2 Sphericity Effects 

Under symmetric circular atmospheric jets on a sphere, waves have been shown to break 

outward i .e. equatorward (Nakamura and Plumb 1994). Observations of the Eliassen-Palm 

flux in the observed atmosphere indicate that Rossby waves generally propagate equatorward 

(Edmon et al. 1980). 

From Chen and Robinson (1992), the refractive index is as follows: 

where a is the earth's radius, N2 is the buoyancy frequency, o is the wave frequency, q is the 

potential vorticity, and s is the spherical zonal wave number. 
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From equation 6.6, we can show why Rossby waves have this greater tendency to prop- 

agate equatorward. In regions of wave propagation, from WKB theory, waves are refracted 

toward larger n2. Therefore, due the two terms on the RHS of equation 6.6, the index of re- 

fraction values increases equatorward. These spherical terms are what causes Rossby waves 

to propagate more equatorward, and hence, there will be a latitudinal bias in the refractive 

properties of the Rossby waves. 

Using another simple model (Figure 6.2) a demonstration on the implication of an equa- 

torward bias in wave propagation is shown. The first run shows a symmetric wave propaga- 

tion at y = 0. This causes a peak eddy momentum flux convergence at y = 0. In the second 

run, we keep the non-divergent eddy activity at y = 0, but slightly increase the equatorward 

propagation and slightly decrease the poleward propagation. Although the amplitude of the 

nlaximum convergence remains the same, it comes as no surprise, an equatorward bias in 

the eddy forcing has developed. Therefore, since the convergence of eddy momentum flux 

occurs on the equatorward flank of the jets, equatorward migration occurs. 

6.3 Sphericity and Frictional Effects 

In this final exercise, we combine the effects discussed in the two previous sections and 

examine how they impact the spatial and temporal evolution of the zonal flow. Integrating 

equation 6.1 again, but this time, we set the initial flow to have a sinusoidal one-dimensional 

spatial structure: 
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Figure 6.2: Simple model with (a) symmetric wave activity, (b) symmetric eddy forcing, (c) 
asymmetric wave activity with an equatorward bias and (d) asymmetric eddy forcing with 
an equatorward bias. 
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Figure 6.3: Simple model combining the effects of friction and sphericity. The meridional 
value of zero has been arbitrarily been defined as the equator. For all time steps, the 
maximum forcing is prescribed to have the same spatial relationship as the zonal flow, but 
shifted slightly equatorward. The top three plots show the flow tendency, the zonal flow, the 
eddy forcing and friction at the particular time frame. The bottom plot indicates the zonal 
flow as a function of space and time. 



The forcing here is prescribed to have the same spatial relationship as the zonal flow, 

but shifted slightly equatorward. This can be justified by the model results of the MITGCM 

(see Figure 5.2) and from section 6.2. We also parameterize friction as a linear function of 

the velocity, which was previously done in section 6.1 and set the drag coefficient, CD, equal 

to 0.8. 

Figure 6.3a shows the initial conditions. The zonal flow is as described in equation 6.7, 

and the forcing has been shifted slightly equatorward. The maximum flow tendency occurs 

where the zonal flow is near zero, similar to the results found in section 6.1. In Figure 

6.3b and 6.3c, the maximum speeds have shifted equatorward. Finally, in Figure 6.3d, this 

shows the time-evolution of the zonal flow. Similar to our GCM run, the zonal flows migrate 

equatorward. It is important to note that under such a simple setup, had there been no 

bias in the forcing, the frictional effects would have exactly cancelled the forcing preventing 

anomalies to ever emerge. 

Varying the frictional parameter, CD can also lead to changes in how fast the jets mi- 

grate. Increasing the friction but keeping the forcing the same, flow anomalies eventually get 

dissipated. But before they do so, the migration took longer for the jet to reach the same 

point. This proves that not only is the forcing asymmetry important, but also the amount 

of frictional forces is key in understanding how jets migrate. 



Chapter 7 

Discussion 

7.1 Migrating Jets 

Comparing the GCM and the simple model, discussed in section 6.1, the GCM results best 

matches with the "moderate friction case." The anomalous eddy forcing has a higher corre- 

lation with the zonal flow anomalies than the flow tendency. The forcing is approximately 

in phase with the frictional force, and the flow tendency is about one-tenth of the forcing as 

shown in Figure 5.5.  These are all indications that there is "moderate friction" involved. 

Assume a symmetric zonal jet with a similarly symmetric eddy forcing. At the location 

of the jet maximum, friction is greatest and counteracts the eddy forcing. However, as 

discussed in the previous section, away from the jet where the zonal flow anomalies are at a 

minimum, friction will be small, thus allowing the forcing to accelerate the mean flow. This 

method explains the means in how zonal flow anomalies could migrate, but doesn't explain 

the cause for such a migration. 
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Referring back to Figure 5.2, the spherical effects described in section 6.2, can be ob- 

served. In regions of positive zonal flow anomalies, horizontal EP flux is stronger on the 

equatorward flank of the secondary jets. In Figure 7.1, snapshots of the zonal flow anom- 

alies and the anomalous horizontal EP flux are shown. It is clear between 35"s and 20°S, 

there is an asymmetry associated with the eddy momentum flux with respect to the zonal 

flow anomalies. In each time frame, anomalous - [u'v'] is stronger on the equatorward flank 

of the secondary jets than its poleward counterpart. 

Going back to Figure 5.2, both the vertical and horizontal EP fluxes are plotted. However, 

since the eddy heat flux ultimately redistributes momentum vertically, we are only interested 

in the horizontal component when investigating the migrating jets. This can also be shown 

to be true when we vertically integrate to obtain equation 5.15. 

In Figure 7.2, once again, the zonal flow anomalies are shown, but this time, with only 

the horizontal EP  flux plotted. In phases A, B and C, the amplitude of the anomalous eddy 

momentum flux is stronger on the equatorward flank of the secondary jets. With a stronger 

forcing on the equatorward side, the zonal jets will migrate equatorward. 

Under this idealized setup, we speculate the likely reason for the asymmetries associ- 

ated with the convergence of [u'v'] fluxes can be attributed to the index of refraction values 

increasing near the equator. Waves generally propagate into regions of larger positive re- 

fractive index (e.g. Matsuno 1970). Since the interior of the fluid is roughly homogenized 

(the PV gradient is small), the index of refraction is larger near the equator and hence, the 

Rossby wave propagation is favored on the equatorward side. 
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Figure 7.1: A snapshot of a) zonal anomalies and b) of the anomalous horizontal EP flux at 
t = 1008 years. A snapshot of c )  zonal anomalies and d) of the anomalous horizontal EP 
flux at t = 1012 years. 
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Figure 7.2: Anomalous horizontal EP flux (line) for each EOF phase plotted over zondly- 
averaged zonal flow anomalies (in color). 



In terms of the PV gradient, this is somewhat similar to the analyses of the atmosphere, 

where interior gradients are near zero and the largest values are near the upper boundary. 

As we have shown from our results, given such a setup, zonal anomalies propagate equator- 

ward. However, an observational study by Feldstein (1998) have demonstrated that in the 

real atmosphere, zonal anomalies actually propagate poleward. To the author's knowledge, 

no theory has been suggested to describe this phenomenon. But in any case, any convincing 

mechanism would most likely need to counteract the argument where in regions of homog- 

enized PV, the index of refraction will have an equatorward bias leading to asymmetrical 

wave propagation. 

We conclude this section by discussing why migrating jets were observed in this particular 

study and not others (e.g. Panetta 1993). Even in this study, the primary jet did not migrate. 

Lee (2005) who modelled multiple jets on a sphere may have had a hint of migrating jets (see 

Fig 3b in Lee 2005), but for the most part, jets were steady. As discussed above, what makes 

the zonal anomalies migrate equatorward arises from larger values of the index of refractions 

with respect to the region of the instability. This leads to Rossby waves propagating more 

"efficiently" equatorward and providing a bias in the convergence of the eddy momentum 

flux. 

However, the above argument holds only, for the most part, in the presence of weak 

PV gradients. In the absence of PV homogenization, if PV gradients are sufficiently large, 

they will dominate over the spherical terms in the refractive index, and Rossby waves may 

not necessarily propagate more efficiently on the equatorward flanks. For the primary jet, 



the PV gradient is not weak (see Fig 3.2). The index of refraction is no longer necessarily 

larger on the equatorward side of the instability, and hence the jet only "wobbles" from its 

time-mean location. 

7.2 Zonal index variability 

A time series of the zonal-mean zonal flow shows the primary jet "wobbling" as a distinct 

feature. An EOF analysis shows that this jet's meridional displacement is the leading mode 

of variability. Since the model-imposed forcings are constant in time, the internal dynamics 

is likely the cause for this mode. 

A mechanism for creating this variability is the eddy-zonal flow feedback (LHO1). Eddies 

drive changes to the zonal-mean state, which then correspond (presumably later in time) 

with changes in eddy activity. Using this framework, we examine the variability of the zonal 

index. 

As discussed in section 5.2, there are distinct differences in the eddy activity between 

the high and low zonal index. Figure 5.1 shows in the region of the primary jet, in the high 

and low zonal indexes, both are dominated by upward wave activity propagation; however 

stronger upward wave activity is associated with the high zonal index. In terms of latitudinal 

wave propagation, once again, it's the high zonal index that shows the greatest wave activity. 

In the low index, Phase A shows weak wave activity equatorward of the time-mean location 

of the jet, while for Phase B, its the poleward side that is weak. But in any case, for all 

phases, the eddy forcing acts to accelerate the mean flow near the location of the primary 



jet. The primary difference is that in the high index, the eddy forcing is stronger. 

Figure 7.3 shows the vertically-integrated total eddy forcing for both the high and low 

zonal index. In the high index, it is no surprise that the vertically-integrated eddy forcing 

is much greater than in the low index. In addition, the peak of the eddy forcing has shifted 

latitudinally one degree poleward. Therefore, the jet responds by displacing poleward, con- 

sistent with how we defined the high zonal index. 

This poleward bias in the eddy forcing can be attributed to the secondary jets migrating 

into the poleward flank of the primary jet. As it enters on the southward side, the positive 

zonal anomalies will produce a region of ano~nalously positive baroclinicity. As described in 

section 5.2, this will lead to a positive eddy forcing, accelerating the jet's poleward flank and 

"shifting" the jet poleward. 

By eddies driving changes to the mean state, this so far is consistent with the proposed 

eddy feedback. We now see if the changes in the mean state correspond with changes in the 

eddy activity favorable to sustain the annular modes. 

Prior to the onset of the low index, through baroclinic instability, the vertical shear has 

been reduced right at the jet as shown by the negative zonal flow anomalies in Phase A (see 

Figure 5.2). So during the low index, this induces an anomalously negative eddy forcing, and 

therefore the largest (total) eddy forcing is now equatorward of the jet's time-mean position 

as shown in Figure 7.3. 

This shows that eddies have driven changes in the mean state such that the eddy activity 

has been displaced and favorable in the perpetuation of the annular modes. 



Latitude (degrees) 

Figure 7.3: Total eddy forcing for the high and low zonal index. As reference, the time- 
averaged total eddy forcing is also plotted. 



Chapter 8 

Conclusion 

Results from our model show the leading mode of the zonally-averaged zonal flow variability is 

an equivalent barotropic structure with largest anomalies three degrees north and south of the 

jet's time-averaged location. Physically, this represents the meridional displacement of the 

jet. The primary forcing in this leading mode of variability is associated with the anomalous 

eddy momentum flux, which ultimately drives changes to the zonal index variability. 

An analysis of the time-averaged momentum budget shows that the primary jet is eddy- 

driven. The model's prescribed wind stress transfers momentum from the  atmosphere into 

the ocean. Eddies then transfer momentum downward and equatorward. The vertical trans- 

fer of momentum eventually gets removed from the system by the bottom drag. The time- 

averaged latitudinal momentum flux converges at the location of the primary jet and sustains 

the jet despite the presence of frictional forces. 

There is a meridional asymmetry in the index of refraction in the regions of the migrating 

jets owing to sphericity effects and homogenization of the interior PV. Larger values are on 
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the equatorward side of the wave activity source. Since the secondary jets are baroclinically 

unstable, baroclinic waves will be generated and will propagate away and provide momentum 

fluxes into the jet. However, because of the higher values, the index of refraction promotes 

propagation on the equatorward side more favorably. Therefore the eddy momentum fluxes 

and its associated convergence will be stronger on the equatorward side causing the jets to 

migrate equatorward. 

The role played by friction is not negligible. Where the zonal flow is strongest, friction 

attains its maximum value and opposes any eddy forcing that could have accelerated the 

flow. Instead, positive flow tendency occurs where the zonal flow is weak (thus, friction is 

also weak) while the forcing is still prevalent. Therefore, the flow accelerates on the flanks 

of the jet. 

Since the secondary jets migrate towards and into the primary jet, the associated zonally- 

averaged zonal flow anomalies will affect the zonal index and its leading mode of variability. 

As the secondary jet approaches the poleward flank of the primary jet, anomalously positive 

eddy forcing leads to the jet being meridionally displaced poleward. During this high index 

phase, the anomalously positive vertical shear results in stronger baroclinic instability at 

the jet transporting even more momentum downward, until some point where the eddy heat 

flux, which acts downgradient, turns the vertical shear anomalously negative. This in turn, 

causes the eddy forcing to be anomalously negative poleward of the time-mean position of 

the jet. Therefore, the strongest (total) eddy forcing now appears equatorward of the jet 

causing the jet to "shift" back equatorward. At some point, the systematic migration of 



zonal flow anomalies will once again migrate into the primary jet repeating the sequence of 

events and sustaining this leading mode of variability. 

8.1 Future Work 

We have shown that migrating jets are possible when eddies homogenize the interior potential 

vorticity and when the sphericity of the earth is captured. However, on a ,@plane, assuming 

the basic state flow is zero, there would be no latitudinal variations of the refractive index. In 

theory, the refractive index can be changed by contriving a mean flow such that meridional 

biases in the refractive index would allow for zonal anomalies to propagate similar to the 

processes seen here. It would be interesting, if possible, to create a mean flow similar to 

our setup where secondary weaker jets migrate towards a primary jet, a region of high PV 

gradient. Furthermore, can these baroclinically unstable weaker jets migrate towards the 

primary jet from both the poleward and equatorward flanks? Additionally, having confirmed 

the possibility of migrating jets poleward of the primary jet, under a similar setup on a sphere 

and "moving" the primary jet's position more poleward, the possibility of migrating jets on 

the equatorward flank of the primary jet has yet to be studied. 

In regards to the meridional displacement of the jet, increased wave activity was asso- 

ciated with the high zonal index, while weak eddy activity was observed for the low zonal 

index, and perhaps as a consequence, periods associated with the onset of the low zonal in- 

dex lasted for longer durations. For our 313-year model study, Phase A constituted 95 years 

in total, nearly twenty percent more than any other phase. Using an aquaplanet GCM, 



Feldstein and Lee (1996) found similar results, where the weaker eddy activity occurred dur- 

ing the low zonal index and lasted for longer durations. Understanding what controls the 

time-scale pertaining to why certain phases last longer than others may have implications 

for extended-range weat her forecasts. 



Appendix A 

Reconstructing zonal flow 

The zonally-averaged zonal flow, u can be split into the time-mean u(6, Z) and the anomalies 

ur(y, Z ,  t ) .  The purpose of undertaking an empirical orthogonal function (EOF) analysis was 

to capture the spatial and temporal variability associated with u'. 

where f is the phase and amplitude of the spatial pattern, V, where n denotes the nth 

eigenvector. In the literature, f is often called the principal component. 

To obtain the time series of f for each eigenvector, we multiply by the mth eigenvector 

to both sides and integrate through the domain. 



Since eigenvectors are orthogonal, then the right hand side of A.2 is equal to zero unless 

Vn=Vm. Therefore, changing he subscripts from rn to n (since they are the same), we obtain 

In Figure 4.4, we have used A. 1 where k = 2 and added the time-averaged zonal flow to 

obtain the time series of the reconstructed zonally-averaged zonal flow. 
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