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ABSTRACT

Rising over 5 km along the border of Uganda and the Democratic Republic of the Congo,
the Rwenzori Mountains represent an extreme example of basement rift-flank uplift in the
western branch of the East African Rift, a phenomenon common throughout the East African
Rift System and characteristic of continental rift systems in general. A thermochronologic study
combining (U-Th)/He and U-Pb analysis of apatite, titanite, and zircon separated from crystalline
basement rocks was conducted across the Rwenzori block to characterize the timing and rate of
rift-flank exhumation related to continental extension in east-central Africa. The
thermochronologic data coupled with field and remote sensing observations make the case for
recent and non-steady state uplift of the massif. Uranium-lead thermochronology indicate that,
prior to Upper Neogene rifting, the rocks of the Rwenzori experienced a protracted history of
slow cooling without major tectonothermal perturbation since at least the Paleoproterozoic (ca.
1900 Ma). Stream channel steepness profiles and thermochronometry along the western slope of
the range show it to be the main active scarp that accommodates uplift. Relatively old (U-
Th)/He zircon and apatite dates (>400 Ma, >70 Ma respectively) along the high peaks and
eastern slope of the range reflect a transient lag period resulting from yet-insufficient exhumation
to remove the inherited pre-rift cratonic thermal structure. This non-steady state condition of
rapid uplift outpacing erosion has resulted in preservation of relict landsurfaces, truncated spurs,
hanging valleys, uplifted river terraces, and vast stranded bogs at high elevation. Given the low
cooling rate and geothermal gradient prior to rifting implied by U-Pb thermochronometry we
determine that no more than 1.7 km of erosion could have accompanied uplift on the order of at
least 5 km in the Rwenzori region. Biostratigraphic evidence suggests the range rose from
beneath local baselevel within the last 2.5 Ma. This requires a minimum average uplift rate of
1.6 km/Myr. Regardless of the active rock uplift rate of the Rwenzori, net exhumation cannot
yet have exceeded the depth of the (U-Th)/He closure isotherm in apatite (<1.7 km). These
results highlight the danger of modeling young orogenic systems using the simplifying
assumption of topographic steady state.
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results highlight the danger of modeling young orogenic systems using the simplifying

assumption of topographic steady state.

INTRODUCTION

Low temperature (U-Th)/He thermochronometry is used to examine the late Cenozoic
history of uplift and exhumation of the Precambrian Rwenzori massif in east-central Africa.
Reaching elevations over 5000 m, the Rwenzori have the distinction of the third highest
elevation in Africa, surpassed only by the singular volcanic peaks of Mt. Kilimanjaro and Mt.
Kenya. But unlike their constructional topography situated at the center of the East African Rift
Valley, the Rwenzori comprise a 130 km by 50 km block of uplifted Archean-Paleoproterozoic
West Nile basement--granitoids, schists, and gneisses--forming a rift-flank more than 4000 m
above the adjacent Albertine basin at the northernmost extent of the Western Branch of the East
African Rift System (EARS). Flank uplifts are characteristic features of continental rifts that
have been extensively studied by previous workers in ancient and mature active settings (e.g.
House et al., 2003; Watts et al., 1982; van der Beek et al., 1994). The Rwenzori present a unique
opportunity to study the evolution of rift-flank uplift in its nascent stages and with an unusually
large magnitude of uplift. In this study we use thermochronometry to better constrain the larger
geodynamic questions implicit in the sudden uplift of a massive block of stable cratonic
lithosphere in a setting of regional continental extension. When did they form? How fast did
they rise, and by what mechanism? What asthenosphere-lithosphere interactions are involved;
did pre-existing boundaries in the lithospheric mantle below the Rwenzori have any influence on

the size, magnitude or velocity of uplift?

THE EAST AFRICAN RIFT SYSTEM
The East African Rift System stretches more than 3500 km from the Afar triple junction

south, through the mouth of the Zambezi River in Mozambique (Figure 1). The rift system
largely follows a zone defined by anastomosing Proterozoic orogenic belts that weld together
Archean cratonic fragments, most notably bifurcating into an eastern and western branch at the
northern end of Lake Malawi to pass around the Tanzania Craton. The Eastern Branch, or
Gregory Rift, is the older (ca.20 Ma), wider (50-80 km), and better studied of these two arms,

although much of its early stratigraphic record lies buried beneath voluminous volcanic rocks



(Baker et al., 1971). In contrast, the younger (<12 Ma), narrower (40-50 km), Western Branch of
the EARS is characterized by limited extrusive volcanism though its deep, long-lived, lacustrine
basins record a nearly complete sedimentary record back through the Miocene (Laerdal and
Talbot, 2002; Pickford et al., 1992).

Today much of eastern Africa comprises a broad topographic swell averaging >1000 m
elevation. However, prior to rift initiation, as far back as the early Cenozoic, much of eastern
Africa was a lowland area (<500 m) dominated by extensive peneplains (Michot, 1934; Dixey,
1945; Hepworth, 1962; Ollier, 1990; Stankiewicz and de Wit, 2006). Continentally-derived
Early Miocene sediments deposited in the Indian Ocean along the Tanzanian passive margin are
the first indication of uplift and erosion of the East African Plateau in response to the impinging
Afar plume (Saggerson and Baker, 1965). Deposition was contemporaneous with initial
volcanism in the Gregory Rift at 23 Ma (Baker et al., 1971) and preceded active rift faulting at
ca. 17 Ma (Shackleton, 1951; Drake et al., 1988). In the few cases where relative timing has
been reliably established, normal faulting and flank-uplift is found to lag behind initial volcanism
and regional uplift (Gregory Rift segments: Lotikipi Plain- Morley et al., 1992; Turkana- Baker
et al., 1988; Bellini, 1981). Volcanism in the Western Branch of the EARS began around 12 Ma
in Ruizi segment of Rwanda-Burundi, but the earliest preserved extrusive volcanism in the
Albertine segment is not until the latest Pleistocene (Kampunzu et al., 1998; Ebinger et al.,
1989a,b).

A series of en echelon asymmetric graben subdivide the EARS into segments typically
80-130 km in length, connected by oblique-slip transfer faults. Polarity of maximum
displacement generally alternates from eastern to western boundary faults along strike. Often, a
steep scarp rising hundreds to thousands of meters above the graben floor defines the dominant
boundary fault in each basin while the facing subordinate valley wall is usually a lesser scarp or
upwarp without clear surface rupture. The Rwenzori massif is the most extreme example of rift-
flank uplift in the EARS, towering more than 4 km above the eastern edge of the Semliki River
plain in the Albertine Basin. Including a buried sedimentary section exceeding 4 km in the
central axis of the rift basin, more than 8 km of structural relief is involved (Kiconco, 2005).



THE ALBERTINE BASIN AND RWENZORI MOUNTAINS
Extension began as early as 8 Ma in the Western Branch of the East African Rift (e.g.

Ebinger, 1989b; McConnell, 1972; and references therein). There is abundant evidence,
however, to suggest that the uplift of the Rwenzori block occurred even more recently. The
Albertine Rift basin is often considered the oldest segment of the Western Brach of the EARS
based on an assumption that southerly rift propagation occurred from its position at the
northernmost terminus of the Western Branch. While it is likely that early stages of extension
were underway in the Albertine basin by the end of the Miocene, it is certainly not likely that any
rift-flanks of significant topographic relief existed until well later in the rift’s evolution. The
Albertine basin exhibits a half-graben morphology typical of the Western Branch rift basins with
marked rift-flank uplift along its eastern boundary fault to form the Rwenzori massif. All known
volcanism in the Albertine Basin is younger than 0.05 Ma (Boven et al., 1998). The range is the
most seismically active region in East Africa, with seismic events occurring not only along the
major boundary faults, but also beneath the Rwenzori block itself (Maasha, 1975a,b). Major
drainage reorganization occurred in the middle Pleistocene when flank uplift in the Albertine
Rift cut off westward drainage into the Congo Basin, creating Lakes Victoria and Kyoga as flow
stagnated. Eventually the whole region was captured to become part of the north-draining Nile
Basin (Beadle, 1981; Doornkamp et al., 1966). Vicariance of fossil mollusks in the Albertine
Basin suggests that Lakes Albert and Edward/George existed as a single large lake until about
2.5 Ma, consistent the assertion that the region was relatively flat-lying prior to the development
of relief in the Rwenzori range (Van Damme and Pickford, 2003). Paleobotanical
reconstructions indicate that the East African Plateau was below 500 m elevation in this region
up until the Miocene at least (Hopwood and Lepersomme, 1953). Presently this regional plateau
surface is at ca. 1000 m elevation above which the Rwenzori rise up to 5109 m. Truncated spurs,
hanging valleys, uplifted river terraces, and vast stranded bogs at high elevation attest to the
geomorphic youth of the range (Figure 2; e.g. Egoroff, 1966; Whittow, 1966; Filippi, 1908).
Though deeply dissected by a few major rivers with boulder-choked beds, much of the eastern
slopes of the Rwenzori can be characterized by a series of gently-dipping relict surfaces often
correlated by earlier workers to the Jurassic to mid-Tertiary peneplain surfaces of Wayland

(1934) and McConnell (1959) that are prominent throughout the rest of Uganda.



THERMOCHRONOMETRY: THEORY, METHODS, SAMPLING

Thermochronometry exploits the temperature-dependent diffusion rates of radiogenic
daughter nuclides through a mineral lattice as a means of recording the duration of time an
analyzed mineral grain last cooled below its bulk closure temperature (Te). The concept of bulk
closure temperature was derived by Dodson (1973) and has been used extensively as an effective
tool for tracking the thermal evolution of orogens, the timing of metamorphic events, or for
studies of exhumation and near-surface processes. The number of useful thermochronologic
mineral-isotope systems has increased in recent years, offering the potential to obtain cooling
dates from a wide range of rock types and closure temperatures (see Hodges, 2003 for review of
systems and nominal Tcs). Despite the apparent elegance of the theory, there are many
important assumptions that must be met, and analytical complexities that must be overcome
before interpreting thermochronometric data. For example, Dodson’s approach assumes steady
monotonic cooling, transport of radiogenic daughter products through the mineral exclusively by
volume diffusion, an infinite negative chemical gradient for the daughter at the grain boundary,
and no loss of radiogenic parent isotopes except by radioactive decay. Each mineral-isotope
system has a nominal closure temperature that is critically dependent on factors such as grain

size and shape, and cooling rate:
Te = E/(RIn (€*RD;ToY a’E (dT/dt)))

where T, = whole-grain bulk closure temperature

E = activation energy

R = universal gas constant

G,y = grain-geometry function

D; = diffusivity at infinite temperature

a = effective diffusion dimension

dT/dt = cooling rate

Parameters such as grain size and cooling rate can vary widely depending on tectonic

setting and must be addressed in order to assure proper interpretation of calculated dates. In the
case of stable cratonic lithosphere, these effects are greatly magnified because often inherently
low geothermal gradients are compounded by extremely slow exhumation rates which act
together to amplify small differences in physical diffusion parameters between individual grains
or slight spatial heterogeneities in tectonic histories that add up over a protracted period of

ingrowth to produce large disparities in measured ages. The most important example of the sorts



of complications that can arise is the concept of a partial retention zone (PRZ). Analogous to the
partial annealing zone used in fission track dating, the PRZ is a temperature interval defined for
each mineral-isotope system over which a mineral grain goes from virtually instantaneous loss of
all produced daughter isotopes to complete retention of all daughter products (House et al., 1999;
Wolf et al., 1998). Depending on the rock uplift rate, regional cooling rate, and geothermal
gradient, the PRZ can span a wide range of depth and/or temperatures. Likewise, a rock may
pass though the PRZ very quickly in the case of rapid exhumation and cooling (e.g. Batt, 2001),
or remain in it for hundreds of millions of years as in the case of cratonic interiors (e.g. Flowers

et al., submitted)

Because we are principally interested in the recent exhumation of an ancient landsurface,
it is especially important to quantify the pre-uplift thermal structure of the lithosphere in order to
determine a reasonable bulk closure temperature estimate for apatite and zircon (U-Th)/He
thermochronometry (AHe and ZHe respectively). Using high- to medium-temperature U-Pb
thermochronology we determine the long-term regional cooling rate (dT/dt) which is used, along
with individual grain size measurements, to calculate an accurate effective Tcp,. Since the West
Nile lithosphere has had a long history of stability and slow cooling since the Paleoproterozoic,
the expected Tcys for AHe and ZHe are ca. 50 °C and ca. 150 °C respectively (significantly lower
than the nominal Tes of ca. 70 °C and ca. 180-200 °C typically assumed for active convergent
orogenic settings with higher cooling rates). Figure 3 illustrates the decrease in effective bulk
closure temperature of the (U-Th)/He system caused by lowering cooling rate for a typical range

of grain sizes or the geothermal gradient.

We use the multichronometer approach described above to track the thermal evolution of
crystalline basement samples from high temperature igneous crystallization to low temperature
near-surface exposure using a combination of U-Pb and (U-Th)/He dating of zircon, titanite, and
apatite. To do this, a suite of rocks were collected during fieldwork in Uganda in 2003 and
augmented by a set of samples from the Congolese slope of the Rwenzori originally collected by
the joint British-Ugandan Geological Expedition of 1951-1952 led by WQ Kennedy. This study
focuses on a subset of seven of these samples selected for optimal geographic coverage as well
as containing the requisite mineralogy. The samples are from both sides of the range and from

elevations below the base on the East African Plateau surface at 690 m up to the edge of glacial
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cover in the central high peaks at 4600 m. Accessory minerals were separated by standard
crushing, magnetic, and density techniques prior to hand-picking of inclusion-free, euhedral
(when possible) grains for dating. Single grain (and, in some cases, subgrain) analyses were
done by ID-TIMS at MIT for U-Pb dating and by LA-ICPMS for U-Th-He at Yale University.
The approximate bulk closure temperatures for each mineral-isotope system are plotted along
with a generalized regional cooling curve derived from the compiled geochronologic data in
Table 1. Cooling dates over a wide range of closure temperatures allows us to characterize the
pre-rift geotherm with medium- to high temperature U-Pb thermochronometry while
simultaneously tracking recent perturbation of this inherited thermal structure during uplift with
the low temperature (U-Th)/He thermochronometers.

RESULTS
U-Pb and (U-Th)/He themochronometry results from samples collected from the

Rwenzori Block of the West Nile Terrane of Uganda and the Democratic Republic of the Congo
are tabulated in Tables 1 and 2. Immediately apparent in all samples is the great antiquity
recorded by all thermochronometers. In the U-Pb system, zircon preserves Late Archean
crystallization ages followed by relatively rapid cooling through the closure temperature of
titanite, and in some places apatite, prior to a thermal resetting of most apatite and a new
generation of titanite growth coincident with the Paleoproterozoic deformation of the Rwenzori
Fold Belt, followed by an extended period of slow cooling. Most surprisingly, the (U-Th)/He
ages show a similar continuation of this ancient slow cooling--ca. 400 Ma in zircon and >70 Ma
in apatite. The broad implication is that after crystallization of the West Nile Region between
2620-2510 Ma, the rocks have been below the closure temperature for Pb-diffusion in apatite (ca.
450 °C) for at least 1900 My, and below the temperature for He-diffusion in apatite (ca. 50 °C)
for more than 70 My. This suggests that the rocks of the Rwenzori block, like the rest of the
West Nile Terrane, have had a protracted history of slow cooling without major perturbation
since at least the Paleoproterozoic. Furthermore, AHe ages in excess of 70 Ma found at the
landsurface today constrain the total exhumation across the region since the Cretaceous to a
maximum limit of <2 km. This apparently slow exhumation may not be surprising for a

fragment of cratonic lithosphere in the context of the African continent, which has been
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stationary and nearly surrounded by passive margins at least through the Cenozoic, but it is not at
all expected in the context of a glaciated mountain range with more than 4000 m of local relief in

one of the wettest climates of the world.

U-Pb RESULTS

Typical of cratonic lithosphere, the history of the Archean West Nile terrane is one of
relatively rapid post-orogenic cooling followed by a long quiescent period of tectonothermal
stability characterized by a low-gradient geotherm (ca. 20 °C/km) and extremely slow
exhumation (<15 m/My). Figure 4 is a generalized regional cooling curve that integrates our
results for U-Pb analyses of zircon, titanite, and apatite grains (Table 1). Uranium-lead zircon
geochronology records Late Archean crystallization of the constituent terranes of the West Nile
lithosphere between 2620-2510 Ma, followed by moderate cooling (ca. 5-15 °C/My) (Table 1).
through the closure temperature of titanite and apatite (ca. 650 °C and 450 °C respectively).
Nearly pervasive thermal resetting (or new growth) of apatite and a new generation of titanite
growth mark the effect of a ca. 1900 Ma upper-greenschist facies regional metamorphic event
that brought a renewed episode of rapid cooling. The thermal perturbation associated with
deformation was brief enough to produce identical U-Pb apatite dates despite large grain-size
variations suggesting cooling well below ca. 450 °C. The maximum effective regional
temperature of this orogenic event is constrained to be between 450 °C and 650 °C because
extant titanite grains were unaffected by the thermal pulse. These data give a robust age to the
‘Rwenzori Fold Belt’ described by Tanner (1971) and Cahen and Snelling (1984) that stretches
across southern Uganda and well into the Congo separating the Tanzania and West Nile cratons.
This was the last major tectonothermal disturbance of the West Nile terrane before it achieved a
stable thermal structure which persisted until initiation of rifting in the late Miocene. Thus, since
the Paleoproterozoic the West Nile Terrane has remained stable--slowly cooling (<0.5 °C/My),
with no evidence of major regional reactivation during the Kibaran orogeny (ca. 1300 Ma) to the
south in nearby Rwanda/Burundi, and the Pan African (ca. 800-650 Ma) thermotectonism of the
East African Orogen to the east, in Kenya and Tanzania. This bears testimony to the remarkable
stability and longevity of cratonic lithosphere as documented similarly for other regions (e.g.

Schmitz and Bowring, 2003). Clearly, with the Rwenzori now uplifted more than 5 km above
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sea level and Lakes Albert and Edward filled with Miocene and younger sediments totaling more
than 4km, this long-lived stability has been catastrophically perturbed. Using the thermal
structure determined from U-Pb thermochronology as an initial condition, we turn to the low-
temperature sensitivity of (U-Th)/He thermochronometry to elucidate the timing and rate of

recent exhumation of this ancient stable craton to form the Rwenzori Massif.

(U-Th)/He RESULTS
U-Th-He data from seven samples with both apatite and zircon grains, indicate closure

dates that vastly exceed that of rifting in the Albertine Basin (Table 2). Apatite (U-Th)/He dates
range from 19-186Ma and zircon (U-Th)/He dates are uniformly older, falling between 238-462
Ma. Even without consideration of the punctuated pulse of exhumation caused by recent uplift of
the Rwenzori, these ages imply maximal long-term cooling rates of <0.5 °C/My and decreasing
with time. With the exception of the Miocene ages recorded by sample R416, all AHe dates are
Cretaceous in age. Similarly, ZHe ages fall into one main middle Paleozoic population of 350-
430 Ma with the exception of R416 that gives significantly younger end-Paleozoic ages ca. 250
Ma.

A first-order conclusion that can be drawn from these data is that they record a
continuation into at least the uppermost Mesozoic of the same slow cooling determined by U-Pb
thermochronometry. Taken at face value, the ages imply maximal long-term cooling rates of
<0.5 °C/My, consistent with maturation of Archean lithosphere. However, the Rwenzori
Mountains, as we see them today, are anything but a typical expanse of flat continental shield.
Unfortunately, despite their extremely steep relief, they are in such a nascent stage of
topographic development that they do not yet expose ‘young’ (U-Th)/He ages set at the time of
uplift initiation. This is well illustrated by a complete lack of correlation between cooling age
and sample elevation within the range (Figure 5). Most low-temperature thermochronometric
studies equate initiation of uplift with a break in slope in a linear age-elevation plot (e.g. Braun,
2002; Reiners and Brandon, 2006). In doing so, they abide by the assumption that orogenesis is
a steady-state process--spatially, temporally, and, most importantly, thermodynamically through
all levels of the lithosphere. In many ancient and mature convergent orogens these assumptions
are acceptable approximations, and age-elevation plots serve us well, but in situations of

constructive topography and significant advective heat transfer, these assumptions do not hold.
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DISCUSSION & IMPLICATIONS

Implication of ‘old’ He-dates for Rwenzori Uplift/Exhumation - 3 Models
Figure 6 shows three basic conceptual models depicting possible combinations of uplift

and erosion responsible for the formation of the present landscape of the Rwenzori massif.
Based on U-Pb mineral-pair thermochronometry (and further substantiated by (U-Th)/He
thermochronometry) we take 0.5 °C/My as a reasonable upper estimate of the long term cooling
rate experienced by rocks of the West Nile Terrane in order to calculate appropriate AHe and
ZHe bulk closure temperatures taking the radius of a single grain as the effective diffusion
dimension. With a typical cratonic geothermal gradient of 20 °C/km and average surface
temperature of 15 °C, an approximate depth to their respective closure isotherms is then

determined at ca. 1.7 km for AHe and ca. 6.7 km for ZHe.

In order to account for the (U-Th)/He data, we must select a scenario that limits the
magnitude of net exhumation since uplift to less than the depth to the AHe closure isotherm prior
to uplift (<2 km). Model A depicts a scenario whereby large magnitude exhumation is achieved
by a combination of high rock uplift rates and high erosion rates--a regime often invoked for
mountain ranges with high relief and erosive potential like the Rwenzori (e.g. Batt et al., 2001;
Willet, et al., 2001). Because we do not find evidence for deep exhumation at the present-day
surface anywhere in the Rwenzori (e.g. no young ages reflecting Upper Neogene uplift), such a
model can be ruled out. In order to satisfy the constraint of <2 km total exhumation while still
accounting for uplift on the order of 5 km, we are left with two diametrically opposed scenarios
that could fit the thermochronolifc results. First, Model B is a topographic steady state scenario
which describes the Rwenzori as an ancient mountain range being slowly exhumed.
Alternatively, Model C is a non-steady state condition where erosion across the Rwenzori block
has been outpaced by rapid, recent uplift. Both the latter models result in broadly similar thermal
structure exposed at the present-day landsurface despite their completely different tectonic
histories and thermal structures at depth. The critical difference between these two possible
models lies in the structure of the geotherm. In Model B, the rate of rock uplift is sufficiently
slow to allow for continual equilibration of a conductive geotherm in which the depth beneath

the geoid to the 50°C AHe closure isotherm remains fixed through time despite long-term rock
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uplift, erosion, and exhumation at the landsurface. In contrast, the non-steady state Model C
depicts upward advection of isotherms because the timescale for conductive thermal relaxation
of the geotherm is exceeded by the rate of uplift of the landsurface. This has the effect of
physically translating the ancient geotherm upwards within the ascending rift-flank without
exposing ‘young’ (U-Th)/He ages at the landsurface until sufficient erosion has occurred to

exhume their paleo-closure isotherm.

Given the physical evidence of the youth of the range outlined above, and the
exceptionally slow rate of erosion required to retain >70 Ma He-apatite ages at the landsurface
(<25 m/Myr), it seems more likely that the apparently ‘old’ surface ages of the Rwenzori merely
represent a transient lag period before sufficient exhumation has occurred to erode away the
inherited pre-rift thermal structure. For a typical cratonic geothermal gradient of 20 °C/km, a
long-term cooling rate of 0.5 °C/My, and average surface temperature of 15 °C, ca. 1.7 km of
denudation must occur in order to exhume apatite from below its 50 °C closure isotherm with a
cooling rate of 0.5 °C/My, while ca. 6.7 km is required for zircon to ascend from its 150°C
closure isotherm. This requires that <2 km of erosion has accompanied uplift on the order of 5-8
km in the Rwenzori region--a plausible scenario if the absolute rate of rock uplift vastly exceeds
erosion to allow for the initial development of relief. These results highlight the danger of

modeling young orogenic systems using the simplifying assumptions of topographic steady state.

Effect of protracted, slow cooling on (U-Th)/He thermochronometry
Simplified assumptions of a nominal closure temperature are not valid in regimes where

cooling rates are slow. The effective bulk closure temperature of a mineral decreases sharply (in
situations of protracted slow cooling at rates of <1 °C/My, AHe closure temperatures as low as
30 °C have been reported {(Flowers et al., submitted; Soderlund et al., 2005), and grain size
effects also become increasingly important as longer residence in the PRZ leads to larger
disparities in calculated dates between large and small grains. We have tried to minimize this
effect by selecting grains of similar size, petrographic characteristics, and morphology, but no
two grains are ever identical, and U,Th zonation, while invisible to the eye can exert a large
effect on the accuracy of the alpha ejection correction. The depth interval of the PRZ expands
and contracts depending on the steepness of the crustal geotherm, which, in turn, is controlled by

many unquantified parameters like radiogenic heat production, fluid circulation, and topographic
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evolution. Additionally, in slowly-cooling, stable cratonic geotherms, the depth extent of the
PRZ expands with a decrease in geothermal gradient such that the cumulative effect of partial
He-retention during slow passage through this zone can contribute a significant percentage of the
measured date. This serves to add larger uncertainty to the already theoretical notion of a bulk

closure temperature for a whole mineral grain.

Add to this scenario a stochastic component of sudden advective heat transport (i.e.
catastrophic uplift of the Rwenzori Massif as in Figure 6, Model C) and the inherent danger of
steady-state (conductive) thermal equilibrium assumptions is plainly illustrated. Because the
PRZ is so close to the landsurface in a slowly-cooled terrane (<1 km for AHe) the onset of rapid
exhumation driven by sudden uplift (e.g. due to delamination of dense lower crust or brittle
crustal failure) would instantaneously disrupt an equilibrium geotherm, advecting it upwards
without a chance for conductive thermal relaxation, where it would be exposed at the landsurface
as a paleo-PRZ. (U-Th)/He dates from this section would, in effect, represent a quenched
measure of some unknown period of partial He-retention accumulated in the pre-disturbance
thermal structure. In order to measure dates reflecting the age of a punctuated disturbance, the
magnitude of subsequent exhumation must be at least equal to the initial depth of the PRZ. In
areas of recently initiated active surface uplift like the Rwenzori, this minimum condition is
often not met, leaving a misleading impression at the present-day active landsurface of ancient

continuous slow cooling--a relict throwback to the ancient thermal structure it upended.

In the Rwenzori there is ample evidence for the approximate timing of major uplift to
substantiate Model C. A preponderance of evidence dictates that extension did not begin in the
Albertine Basin until ca. 8 Ma, and uplift of the Rwenzori followed after ca. 2.5 Ma. Even
though we do not see sufficient exhumation to expose young ages anywhere in the range yet,
sample R416 provides a tantalizing hint that they are close to the surface today. Whereas all the
other AHe dates measured throughout the Rwenzori are Cretaceous, those from R416 date from
the Miocene. Its ZHe dates show similarly distinctive young ages relative to the rest of the
range. This is an expected result of its structural position at the base of the active scarp that
forms the western slope of the massif; of all our sample locations it is here that we expect
maximal denudation to have occurred. In this case, the ages still predate uplift despite their
relative youth, suggesting that either they have experienced partial resetting due to recent

shallow thermal perturbation related to extension and volcanism in the Albertine Basin while
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residing in the shallow crust above the cratonic PRZ. Alternatively, they could have come from
a deeper structural level, having recently penetrated through the base of the PRZ before initiation
of uplift accelerated their passage through the PRZ to the surface.

The interesting corollary to the young ages of R416 is that the uniformly old ages
measured for the rest of the samples suggest that they all shared similar cooling and exhumation
histories regardless of their structural location within the Rwenzori block. While there are many
small factors that we can expect to lead to large disparities in measured ages under conditions of
protracted slow cooling (e.g. spatial or temporal variations in exhumation, heat production,
chemical zonation, He-saturation), when considered broadly, the consistency of AHe and Zhe
dates across the range indicate that the likeliest explanation is a regionally uniform thermal
evolution--from slow cooling to rapid uplift and erosion while maintaining spatially uniform
exhumation rates in order to exposure comparable structural depths across the upper slopes and
entire eastern flank of the range (Figure 7). These results also lend support to the notion that the
massif has the structure of a bent plate as it was described by early workers rather than a true

horst with opposing active scarps as it has often been referred to more recently.

Even though the (U-Th)/He ages do not directly record the timing and rate of Rwenzori
uplift/exhumation, they still place a robust upper bound on the magnitude of erosion that has
occurred since the Cretaceous. This, in turn, enables us to better constrain estimates of
exhumation rate based on other temporal observations. The first evidence of extension in the
Albertine Basin is marked by ca. 8 Ma fluvial sedimentation within a subsiding shallow axial
basin that eventually became the site of paleolake Obwerka extending over the entire region
encompassing today’s Lakes Albert, Edward, and George (Laerdal, 2000; Hopwood and
Lepersonne, 1953). Based on the biostratigraphic work of Pickford et al. (1992), the Rwenzori
rose from beneath this local base level to their present altitude within the last 2.5 My, requiring a
minimum average uplift rate of 1.6 km/My. In all likelihood, major uplift occurred even more
recently, related to initiation of volcanism and drainage reversal in the middle Pleistocene. This
would require a time averaged exhumation rate of 35 km/My--a rate comparable to that of
horizontal plate motions. Our thermochronological data is consistent with such recent and rapid
uplift of the Rwenzori block, but it cannot constrain the timing any better than setting a
maximum limit of total exhumation that has occurred since the closure of He-diffusion in

apatites.
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Because uplift occurred so recently and rapidly, erosion has not yet had a chance to
‘catch up,’ resulting in preservation of trademark high-elevation relict surfaces and the muted
local relief often observed on the Rwenzori. The fact that erosion has not kept pace with uplift
over the brief lifespan of the Rwenzori does not imply that the massif is not eroding at a rapid
rate. Rather, it should be taken as further testament to the incredible rate and magnitude of uplift
that has created the Rwenzori massif. Given its climate, high relief, huge annual rainfall, and
glacial activity, the erosive potential of the Rwenzori is enormous and easily observed in the
field in the form of bedrock landslides, thin (or no) soil cover, and steep, narrow, bouldery river
channels. The younger the topography of the range, the higher a rate of erosion that could be

accommodated while still keeping net exhumation under 2 km.

Possible driving mechanisms
(U-Th)/He thermochronology provides a powerful constraint on the timing and

mechanism(s) that can be invoked to explain the enigmatic Rwenzori uplift. For example, it is
difficult to derive an isostatic model for uplift based on feedback from accelerated glacial erosion
because the AHe ages require that the amount of surface uplift greatly exceeded the net erosion
experienced over the life of the range. Other possible mechanisms that could allow for rapid
development of local relief in an extensional setting include rebound from delamination of dense
lower crust (e.g. Ghosh et al., 2006), cracking of attenuated lithosphere (e.g. ten Brink et al.,
1997), or localized compression in the transfer zone between oblique rift segments (e.g. Ebinger
1989b). The mechanism must also allow, or better, account for initiation of late, small-volume
ultrapotassic magmatism and provide for tightly restricted uplift expression limited to the
Rwenzori horst. The young dates observed at the lowest elevation along the Congolese slope of
the Rwenzori range (representing the deepest structural level exhumed in the range) suggest the
presence of a thermal anomaly responsible for the partial resetting both the AHe and ZHe
systems. Upper Pleistocene to Holocene volcanic vents and cones as well as thermal springs
scattered around the periphery of the rift-flank attest to this. A likely explanation is that a
thermal pulse resulting (or deriving) from extension in the Albertine Basin has reached shallow
crustal levels, but the transient perturbation has not yet made it to the surface. In the end,
reconciling the thermochronometric data with realistic tectonic models can be reduced to trade-
offs between pre-rift cooling rate, assumed cratonic geotherm, and rate and duration of surface

uplift and exhumation.
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CONCLUSIONS

Thermochronologic work coupled with field and remote sensing observations make the
case for recent and rapid non-steady state uplift of the Rwenzori massif within the last 2.5 My.
Because the (U-Th)/He ages determined in this study clearly predate rift-flank uplift, they place
an upper bound on the magnitude of erosion that has occurred since the Cretaceous, but,
unfortunately, cannot directly specify when or haw fast the exhumation was actually
accomplished within that interval. For an estimation of exhumation rates we must look to
outside constraints on uplift timing in order to narrow the range of plausible rates. Less than 2
km of erosion has accompanied surface uplift on the order of 5 km, leading to apparently ‘old’
(U-Th)/He ages. These ages reflect the non-steady state upward advection of a stable pre-rift
continental geotherm documented using medium- and high-temperature thermochronometry of
the U-Pb system. Assessing the relative contribution of advective versus conductive heat
transport is critical in determining whether traditional unroofing rates based on thermodynamic
steady state can be reliably calculated. Extremely rapid surface uplift rates are corroborated by
biostratigraphic and geomorphological observations, suggesting that the Rwenzori mountains are
in a transient state of topographic development. Low-relief relict landsurfaces and low-gradient
stream channels presently preserved at high elevation are testament to the incapacity of erosion
to keep pace with uplift during the development of the Rwenzori. Nonetheless, erosion is clearly
quite a significant force on the landscape. Zones of high channel steepness observed along
active faults at the base of the range indicate that landscape adjustment is occurring locally and
may be in a transient state of upslope propagation to eventually establish a new topographic
steady state. The results highlight the shortcomings of models that automatically simulate young

orogenic systems using the simplifying assumptions of topographic steady state.
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Figure 1. Geographical location of the Albertine Rift Basin within the
Western Branch of the East African Rift System.
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Figure 2. Some typical landscapes of the Rwenzori and surroundings

A. Upper Bigo Bog- high-elevation flat valley with unique afroalpine flora and typically steep bedrock walls.
B. Giant heath biota inhabits low-relief surfaces.

C. Active mass-wasting by bedrock landslide.

D. Rift valley scarp and plain looking south from U03-02

E. High gradeint boulder bed stream
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(U-Th)/He Bulk Closure Temperature
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Figure 3. Plot shows relationship between regional cooling rate and whole-grain bulk
closure temperature for the (U-Th)/He system (after Reiners, 2005) using the equations of
Dodson (1973) and physical constants of Farley (2000) and Reiners et al. (2004). Long
dashed line marks cooling rate determined as upper limit for the Rwenzori block, dotted
line depicts a commonly selected value for active orogenic terranes.

25



U-Pb Apatite Concordia

0.5

206 P b I238 U

1 3 5 7 9
207 Pbl235U
Color Key for U-Pb Samples
ﬁ U03-02 ﬂ U03-40
ﬁ U03-12 ﬂ U03-42
y U03-19A & U03-48
y U03-021A ﬂ R416
y U03-34 R511

Figure 4a. U-Pb concordia diagram for apatite thermochronometry. Sample locations
can be found in Figure 7.
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U-Pb Titanite Concordia

2600
0.45 +
2200 * st
0.35 +
1800
>
0
&
—
EE ‘
g 0257 1400 'A/
N
10004 ,
0.15 +
R (]
0.05 +—4— } - } : : 4 " : :
0 2 4 6 8 10 12
207 P b I235 U

Color Key for U-Pb Samples

U03-02

U03-12

U03-19A

U03-021A

AN

U03-34

MMM

u03-40

U03-42

U03-48

R416

R511

Figure 4b. U-Pb concordia diagram for titanite thermochronometry. Sample locations
can be found in Figure 7.
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Thermal Evolution of the Rwenzori Basement
fromm Combined U-Pb and (U-Th)/He Chronometry
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Figure 5. Generalized cooling curve generated from thermochronometric data in Tables 1 and 2.
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Figure 6. Plot of (U-Th)/He age of sample versus its elevation in the landscape
shows lack of coherent trend.
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Figure 8. 3D rendering of SRTM DEM showing Rwenzori sample localities with U-Pb
and (U-Th)/He cooling ages color-coded by mineral isotope system. Data can be found
in Tables 1 and 2.
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Table 2. (U-Th)/He data for zircon and apatite

Mass U Th  Sm Th/U 4He

Raw Age Est 20 HAC Corr. Ag Est 20

Sample (ug) ppm ppm ppm (nmol/g) (Ma) +/- (Ma) (Ma) +/- (Ma)
Apatite Analyses

U03-02 Butiaba granite (690 m)

al 096 39 1 81 0.015 19.41 91.03 241 061 148.61 3.94

a2 113 74 27 201 0375 36.30 82.90 204 065 128.21 3.16
U03-19A Kilembe paragneiss (1300 m)

aA 239 12 19 1.65 61.95 111 0.70 88.49 5.31

aB 1.45 11 18 1.58 58.02 115 063 92.10 5.53
U03-34 Bwamba grey granite (1310 m)

aA 1.29 4 1 0.18 67.13 3.24 0.62 108.46 6.51

aB 3.26 10 1 0.10 53.57 118 0.74 72.88 4.37
U03-40 Mt. Speke gneiss (4620 m)

at 0.91 3 3 15 11 1.19 58.76 589 0.61 96.41 9.66

a2 1.61 6 13 30 235 4.33 91.20 6.87 0.66 138.58 10.44
U03-42 Stuhlmann Pass quartzite (4140 m)

a9 13.60 5 4 42 0.826 1.07 33.16 075 0.84 39.36 0.89

a8 7.57 3 1 98 0422 0.96 53.67 141 0.78 69.03 1.82
U03-48 Mt. Baker amphibolite (4505 m)

aA 227 17 8 0.49 85.25 165 069 123.91 7.43

aB 1.70 13 5 0.38 51.10 1.1  0.66 77.19 4.63
R416 Lower Luzilubu Valley gneiss (1535 m)

al 230 18 5 34 031 1.37 13.36 036 0.71 18.87 0.50

a2 145 24 5 82 0.21 1.90 14.03 037 066 21.38 0.57
R511 Roccati Pass gneiss (3960 m)

a1l 2.19 16 32 27 222 2141 176.14 429 067 26252 6.39

Zircon Analyses

U03-02 Butiaba granite (690 m)

z4 266 755 93 0.126 794.24 186.59 450 073 256.71 6.19

z5 201 720 446 0.635 1466.00 320.49 741 0.69 462.09 10.68
U03-19A Kilembe paragneiss (1300 m)

zZA 3.18 394 190 0.48 288.09 8.47 071 405.19 32.42
U03-34 Bwamba grey granite (1310 m)

z8 201 162 24 0.151 22283 240.69 580 0.69 348.06 8.38

z9 1714 203 58 0.291 43438 359.92 8.64 0.84 42836 10.28
U03-40 Mt. Speke gneiss (4620 m)

zA 745 243 180 0.74 314.35 861 0.77 40719 32.58

z5 587 368 234 0.653 80259 341.72 792 079 43296 10.03

z6 6.17 312 171 0.561 630.84 322.79 773 0.78 413.73 9.90
U03-42 Stuhlmann Pass quartzite (4140 m)

z6 10.23 347 221 0.654 691.30 312.69 724 0.81 385.34 8.93
R416 Lower Luzilubu Valley gneiss (1535 m)

z4 249 419 35 0.085 44159 188.79 456 0.72 263.71 6.37

z6 489 626 74 0.121 633.92 179.99 433 076 23797 5.72
R511 Roccati Pass gneiss (3960 m)

z4 450 354 208 0.601 688.94 308.57 720 074 416.77 9.73

z5 1217 257 160 0.639 49402 302.81 6.97 0.82 369.86 8.51
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