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ABSTRACT

Human yD crystallin (HyD-Crys) is a monomeric, two domain, primarily P-sheet
protein found in high concentrations in the human eye lens. HyD-Crys and other
crystallins are found in insoluble protein inclusions associated with the eye disease
cataract. HyD-Crys is expressed in utero and does not regenerate during life, thus
necessitating high stability and solubility. Covalent damage, including glutamine
deamidation, of the lens crystallins increases with age and as a result of exposure to
environmental insults. Such covalent damage may cause partial-unfolding into
aggregation-prone confomations that cause cataract.

The in vitro stability of HyD-Crys was analyzed in the denaturant guanidine
hydrochloride at pH 7.0 and 37°C. An off-pathway aggregation reaction that competed
with refolding was previously reported when HyD-Crys was refolded to less than 1 M
GuHCl. Equilibrium transitions of HyD-Crys were best fit to a three-state model
suggesting the presence of a partially-folded intermediate that likely had a structured C-
terminal domain (C-td) and unstructured N-terminal domain (N-td). Similarly, previous
analyses revealed a sequential domain refolding pathway where the C-td refolds first
followed by the N-td. These findings suggest that the inter-domain interface of HyD-
Crys is important in both folding and stability.

The domain interface of HyD-Crys contains a central hydrophobic cluster of six
residues and two pairs of peripheral interacting residues. To test this importance of these
residues in folding and stability, site-directed alanine mutants were constructed at all ten
positions and properties of the mutant proteins were analyzed. Single mutations of
hydrophobic domain interface residues caused a decrease in stability of the N-td, but did
not affect stability of the C-td. Similarly, stability of the N-td but not the C-td was
reduced as a result of single and double mutations of peripheral interface residues.
Minimal to no interaction energy was observed for the peripheral residues suggesting
they contribute to stability indirectly, perhaps by shielding the central hydrophobic
cluster from solvent.

Both the hydrophobic and peripheral domain interface alanine mutants also had
reduced rates of productive refolding for the N-td while refolding rates for the C-td were
unchanged. These results suggest a productive folding pathway where the C-td refolds
first and domain interface residues of the structured C-td act as a nucleating center for
refolding of the N-td. Effects on N-td refolding rates were most prominent for the
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hydrophobic residues indicating the importance of proper hydrophobic burial during
refolding.

The peripheral domain interface residues of HyD-Crys include a pair of two
glutamines that are targets for covalent damage during aging. Deamidation mimics at
these sites were constructed by site directed mutagenesis of glutamine to glutamate.
Properties of the mutants were analyzed to assess the affects of deamidation on stability
and folding. Similar to the alanine mutants at these sites, the deamidation mutants had a
destabilized N-td but not C-td at pH 7.0. In contrast, stabilities of the mutants were
indistinguishable from wild type at pH 3.0. The N-td of the deamidation mutants also
unfolded faster than that of wild type during kinetic unfolding. These results indicate that
deamidation of domain interface glutamines destabilizes HyD-Crys and lowers the kinetic
barrier to unfolding. A reduction in the thermodynamic and kinetic stability as a result of
domain interface deamidation could result in the population of partially-unfolded
conformations in the lens that may aggregate through mechanisms such as domain
swapping or loop-sheet insertion.

Thesis Supervisor: Jonathan King, Professor of Biology
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A. THE PROTEIN FOLDING PROBLEM

Proteins are synthesized in cells on the ribosome through the step-wise

polymerization of amino acids to construct long, linear polypeptide chains. These linear

chains must then fold to form the unique three-dimensional structure determined by the

protein's specific sequence of amino acids. The sequence control of protein folding was

first described by Christian Anfinsen in 1961 (Haber and Anfinsen 1961; Anfinsen 1973).

Many proteins fold spontaneously without aid, while other proteins require chaperones or

chain modifications in order to fold. Ultimately, the unique shape, size and chemistry of

the folded protein collectively confer function to the molecule.

The difficulty in understanding the process by which a polypeptide chain folds to

adopt a specific and unique three-dimensional structure is the protein folding problem.

Anfinsen originally proposed that the native state is the conformation with the lowest

possible free energy (Anfinsen 1973; Anfinsen and Scheraga 1975). However, for some

proteins this state is inaccessible due to a high kinetic barrier and thus they will fold into

a conformation that represents a local free energy minimum (Baker et al. 1992). Many

globular proteins are only marginally stable due to the multitude of weak attractive and

repulsive forces that are present in the native state. Thermodynamic stability is

determined by differences in the free energies of the native and unfolded states. Kinetic

stability is conferred by a high kinetic barrier to unfolding. Several exceptionally stable

enzymes from thermophilic bacteria display kinetic stabilization (Jaenicke and Bohm

1998). Many proteins that display kinetic stability are oligomeric P-sheet proteins with

rigid structure (Manning and Colon 2004).

If protein folding occurred by a random search of all possible conformations

accessible to a specific amino acid sequence, finding the free energy minimum would

require millions of years. This phenomenon is known as Levinthal's paradox (Levinthal

1968; 1969). Instead, proteins generally fold in less than minutes both in vivo and in

vitro. Rapid and efficient folding is enabled by protein folding pathways, where folding

into the final native state occurs via a series of partially folded intermediates. The free

energy landscapes of folding reactions have been described as funnels where an ensemble

of unfolded states may transition into multiple different intermediates determined by the
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kinetic and thermodynamic properties of the folding protein under the specific reaction

conditions (Bryngelson et al. 1995). The partially folded intermediates are usually

populated transiently and are under kinetic control. Lack of knowledge of the

conformations of partially-folded intermediates is one of the barriers to solving the

protein folding problem.

The utility of genomic sequence data from a variety of organisms and pathogens

would be greatly increased if it were possible to predict the three-dimensional structures

of all encoded proteins. At present, three-dimenstional protein structure predictions rely

on homology modeling to proteins of known structure (Aloy et al. 2005). This method

requires a high degree of sequence and structural similarity with the protein of known

structure. In contrast, true de novo structure prediction based solely on amino acid

sequence remains elusive. Deciphering the rules that determine the pathway by which a

protein folds may eventually allow for this true de novo structure prediction.

Furthering understanding of protein folding mechanisms will also advance

knowledge of a class of diseases that are caused by protein misfolding and aggregation

(Horwich 2002). A common feature of experimentally characterized protein aggregation

mechanisms is that the aggregation-prone precursor conformations are partially folded

states. These states exist either on the productive folding pathway or are off-pathway but

still accessible by the folding polypeptide chain (Haase-Pettingell and King 1988; Mitraki

1989; Horwich 2002). Understanding protein folding pathways will therefore inform

investigations of protein aggregation associated with disease.

Historically, protein folding was studied using model proteins that were generally

small, single domain, and primarily a-helical. In order to extract descriptive

thermodynamic parameters from the unfolding and refolding transitions, off-pathway

reactions such as aggregation were suppressed, even if it meant studying folding under

conditions far from physiological. Deciphering the rules governing the folding of larger,

more complex proteins has proven to be a difficult task.

In this thesis I describe experiments that explore the folding, stability and

aggregation of human yD crystallin (HyD-Crys), a small, two-domain, primarily f-sheet

protein located in the human eye lens and present in insoluble protein inclusions

associated with mature-onset cataract. Below I review background information on
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protein folding and unfolding, mechanisms of aggregation, and the lens crystallins with

the intention of setting a framework for the studies performed herein.

1. 4-sheet protein folding

Understanding the process by which -sheet proteins fold is complicated both

conceptually and experimentally. In contrast, consider the process of a-helix folding,

where residues that are nearby in space are also nearby in sequence. Both theoretical and

experimental results support general mechanisms of a-helix folding that involve a local

helix nucleation event followed by growth or propagation. Helix nucleation would

require formation of initial contacts that are entropically unfavorable due to constraints of

the peptide backbone, but still have a reasonably high probability of occurring given their

sequence proximity (Laurents and Baldwin 1998; Clarke et al. 1999). While the site of

nucleation almost certainly differs depending on amino acid sequence, helix length and

other factors, many if not all a-helices likely fold by such a mechanism.

Kinetic studies of a-helical peptides and small proteins have revealed folding on

the millisecond time-scale (Williams et al. 1996; Gilmanshin et al. 1997; Clarke et al.

1999). Detection of partially folded intermediates in small, single-domain proteins has

proven difficult presumably due to such extremely fast folding rates. The inability to

detect intermediates has led to two-state descriptions of folding which invoke direct

transition between the unfolded (U) and native (N) states (Jackson 1998). Partially-

folded intermediates such as the a-helix nucleus are almost certainly polulated by these

alleged "two-state folders", but detection and description of the intermediates will require

more sensitive experimental measures.

In contrast to a-helix folding, It-sheet folding has the added complexity that while

individual strands represent sequential residues, strands that hydrogen-bond in a sheet are

typically distant in sequence. A universal pathway of 1-sheet folding is more difficult to

formulate due to the obligate formation of short-range contacts between remote sequence

elements. Numerous small (<90 amino acids) P-sheet proteins have been described as

undergoing a two-state folding mechanism (N:U). These proteins include Src

homology 3 domain, cold shock protein B (Capaldi and Radford 1998) and
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apoplastocyanin (Mizuguchi et al. 2003). Further studies of these proteins with more

sensitive measures will likely reveal the presence of partially-folded intermediates. Other

13-sheet proteins have been shown to populate partially folded intermediates in

equilibrium experiments, kinetic experiments or both. Examples include the Fyn SH3

domain (Mittermaier et al. 2005), the DNA binding domain of the E2 transcriptional

regulator from human papillomavirus (de Prat-Gay et al. 2005), cellular retinoic acid-

binding protein I (CRABPI) (Clark et al. 1996), intenstinal fatty acid-binding protein

(Bums et al. 1998), Cobrotoxin (Hsieh et al. 2006), and interleukin 1- (IL1-[) (Varley et

al. 1993; Finke and Jennings 2002). For many of these proteins, conformations of the

partially-folded states remain elusive.

The conformation of partially-folded intermediates on the folding pathway of

IL1-[ have been studied in detail by hydrogen-deuterium exchange NMR, circular

dichroism (CD) and fluorescence (Varley et al. 1993). An early folding intermediate was

detected by CD that had 90% the P-sheet content of native IL1-P. In contrast, stable

intermediates detectable by NMR were not observed until later times. Thus, the

conformation of the chain was ill-defined prior to sheet formation detected by NMR. The

intermediates detected by H-D exchange had native-like P-sheets in two regions that

contributed non-polar residues to the hydrophobic core (Varley et al. 1993). The authors

propose a folding pathway where the early intermediates detected by CD have non-native

13-sheets that rearrange to form intermediates with native-like secondary and tertiary

structure. This intermediate then undergoes final stabilization into the compact native

state (Varley et al. 1993). Similarly, IL1-P unfolds through intermediates (Roy and

Jennings 2003). However, instead of populating discrete stable intermediates, IL1-13

populates a continuum of states during unfolding (Roy and Jennings 2003). First, tertiary

structure is lost, followed by central 1-sheet unfolding and finally, helix and 1-turn

unfolding (Roy and Jennings 2003).

Experimental and theoretical work has indicated the importance of 1-turns and -

hairpins in the folding and unfolding of many P-sheet proteins. These structures are often

the first structures to form during folding and last to denature during unfolding (Katou et

al. 2001; Walkenhorst et al. 2002; Rotondi and Gierasch 2003; Rotondi et al. 2003). In

the case of CRABPI, peptides corresponding to only two of the seven turns are able to
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form native-like structure in isolation (Rotondi and Gierasch 2003). These turns

participate in a network of conserved long-range interactions important for folding and

stability of CRABPI (Rotondi et al. 2003). Local sequences contributing to P-tumrns or -

hairpins may reduce the conformational freedom of intermediates during folding thus

accelerating rates of sheet formation.

2. Multidomain protein folding

Domains are discrete units of a protein that exhibit independence in one of a

number of characteristics, including structure, function, folding or genetic inheritance

(Jaenicke 1999). At least some multidomain proteins are believed to have evolved

through gene fusion events that resulted in covalently linked single domain proteins.

This phenomenon can generate countless new proteins without requiring evolution of

new independent folds (Jaenicke 1999).

The individual domains of some multidomain proteins are often capable of

independent folding and unfolding (Wetlaufer and Ristow 1973; Corbett et al. 1986;

Beechem et al. 1995). During a folding reaction in vivo off the ribosome, or in vitro out

of denaturant, domains may fold synchronously or sequentially. Synchronous domain

folding reduces the lifetime of partially-structured folding intermediates, while sequential

domain folding results in the transient population of partially-folded conformations

(Jaenicke 1999). These partially-folded species are susceptible to proteolytic degradation

and may be prone to aggregation through mechanisms such as domain swapping,

described in detail below (Liu and Eisenberg 2002).

Independent domain unfolding has been observed for numerous proteins

(Jaenicke 1999). This phenomenon has most often been observed as the presence of

multiple calorimetric transitions during the thermal denaturation of multidomain proteins

(Novokhatny et al. 1992; Kurochkin et al. 1995). For instance, thermal unfolding of the

plasma transglutaminase, factor III, proceeds via five independent transitions reflecting

independent unfolding of the five domains (Kurochkin et al. 1995). Similarly, thermal

unfolding of the heparin binding domain of fibronectin revealed independent unfolding of

the three domains (Novokhatny et al. 1992). Analysis of the isolated domains allowed
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for assignments of the transitions. The melting temperature of one of the domains was

lower in isolation than in the full-length protein, indicative of stabilization by domain-

domain interactions (Novokhatny et al. 1992).

Synergy in domain stability has also been observed for a number of othermulti-

domain interactions, such as recombinant antibody fragments (Rothlisberger et al. 2005).

Mutual thermodynamic and kinetic stabilization was observed for interaction of variable

heavy (VH) and light chains (VL) as well as interaction of constant heavy (CH) and light

chains (CL). However, no stabilization was observed for interactions of VL and CL chains

(Rothlisberger et al. 2005). Differences in the domain interfaces were likely responsible

for this disparity. First, the interface of the VL and CL chains is much less extensive than

the VH-VL and CH-CL interfaces; second, an intermolecular disulfide bond exists between

the CH-CL domains (Rothlisberger et al. 2005).

Independent kinetic domain folding has also been described for multidomain

proteins such as phosphoglycerate kinase and PapD (Beechem et al. 1995; Sherman et al.

1995; Bann et al. 2002; Bann and Frieden 2004). The periplasmic pili subunit chaperone

PapD is a two-domain, primarily -sheet protein that assists folding of its substrate

through transient donation of one of its 13-stands (Choudhury et al. 1999; Sauer et al.

1999; Barnhart et al. 2000). Kinetic folding of 6-fluorotryotophan-labeled PapD was

probed by 19F-NMR (Bann et al. 2002). A partially-folded intermediate formed early,

followed by folding into the final native state. A folding model was proposed where the

C-terminal domain (C-td) rapidly folded into an intermediate, and subsequently the N-

terminal domain (N-td) folded simultaneous with the final readjustment of the C-td (Bann

et al. 2002). Subsequent analysis of the PapD kinetic refolding mechanism expanded the

description to include the formation of domain-domain interactions (Bann and Frieden

2004). According to this analysis, the C-td and N-td both folded prior to the formation of

domain interface interactions (Bann and Frieden 2004).

A designed multidomain protein also displayed independent kinetic domain

folding (Zhou et al. 2005). Zhou et al. (2005) constructed a fusion of two small a-helical

proteins and analyzed its structure and folding. The designed protein folded into a two-

domain structure. With the exception of one a-helix, structures of the domains were

consistent with the structures of the parent proteins. Stability of the designed protein was
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similar to the parent proteins indicating there was minimal energetic synergy of the

domains. However, the designed protein folded faster than one of the parent proteins.

This observation suggests that domain interactions in the fusion protein stabilized the

transition state during kinetic refolding (Zhou et al. 2005).

The examples provided above demonstrate that domains are capable of

independent unfolding/refolding and that the role of domain-domain interactions in

folding and stability depend on individual characteristics of the domains and the domain

interfaces. To determine common characteristics of domain interfaces, Jones et al.

(2000) surveyed domain interactions in both multidomain and oligomeric proteins of the

Protein Data Bank (PDB). The amino acid composition of intra-chain domain

interactions more closely resembles that of protein surfaces rather than protein cores

(Jones et al. 2000). Despite this, hydrophobic residues are still highly prevalent in both

inter- and intra-chain domain interactions (Jones et al. 2000).

3. Protein unfolding pathways

Just as many proteins fold via multi-step pathways, the unfolding of proteins also

occurs by specific pathways. Complex in vitro unfolding transitions have been observed

for many multimeric and multidomain proteins (Chen and Smith 2000; Simmons et al.

2004; Slaughter et al. 2005). For example, single-molecule unfolding of the two domain

protein calmodulin identified a single major intermediate that may have one domain

folded and one unfolded (Slaughter et al. 2005). Similarly, sequential domain unfolding

has been observed for the three domain protein, human serum albumin (Santra et al.

2005). However, these investigations did not address the order in which structural

elements of the domains unfolded. Studies of the coiled-coil dimeric protein GCN4 have

identified unfolding intermediates at a smaller scale (Dragan and Privalov 2002). First,

the N-termini of the helices unfolded or frayed. Second, remainders of the helices

unfolded but did not dissociate, followed finally by chain dissociation (Dragan and

Privalov 2002). As described above, detailed analysis of ILl-p unfolding has identified a

rugged unfolding free-energy landscape controlled by P-turns (Roy and Jennings 2003).
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The unfolding experiments described above utilized chemical denaturants or

temperature to induce unfolding. Recently, force-induced or mechanical unfolding has

been investigated by atomic force microscopy (AFM). Two distinct unfolding pathways

were observed in one such study of the P-sandwich type III domain of fibronectin, (Li et

al. 2005). The two pathways differed in the order that f-strands were unfolded prior to

complete unfolding (Li et al. 2005). The presence of parallel unfolding pathways has

also been observed for O6 -methylguanine-DNA methyltransferase during in vitro

chemical-induced denaturation (Nishikori et al. 2005). Parallelfolding channels have

been described for the a-subunit of tryptophan synthetase (Bilsel et al. 1999).

In vivo, protein unfolding is important in degradation, aggregation and transport

(Prakash and Matouschek 2004). As described in detail below, aberrant in vivo unfolding

may result in population of partially unfolded states that may be susceptible to

aggregation. For instance, partial unfolding is sufficient for amyloid formation by

transthyretin, a protein implicated in the disease Senile Systemic Amyloidosis (Colon and

Kelly 1992). In vivo protein unfolding is generally mediated by unfoldase enzymes that

catalyze the reaction by pulling on substrate proteins thus causing local unfolding events

(Prakash and Matouschek 2004). Local stabilities of the substrate proteins are significant

in determining these catalytic unfolding pathways. Therefore, in vitro unfolding

pathways may have limited relevance to in vivo unfolding.

4. Protein aggregation and disease

Many human diseases are associated with the accumulation of insoluble protein

deposits or inclusions. Examples of such diseases and their associated proteins include

AP in Alzheimer's disease (AD), a-synuclein in Parkinson's disease, the prion protein in

Creutzfeld-Jacob disease (CJD), and the crystallin proteins in cataract (Horwich 2002).

In the case of neurodegenerative diseases such as AD, Parkinson's and CJD, it is

currently unknown if protein aggregation causes neuronal damage or acts as a protective

mechanism (Caughey and Lansbury 2003). It has been suggested that soluble protofibrils

or other non-native forms of the proteins may cause neurodegeneration, and that

aggregation into the large mature protein deposits functions as a protective mechanism to
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remove the damaging species (Caughey and Lansbury 2003). However, for other

diseases such as sickle-cell anemia, it is the mature protein polymers and not smaller

precursors that cause the disease phenotype.

Protein aggregation often occurs through interaction of partially folded proteins

(Horwich 2002). An exception to this is the polymerization of hemoglobin in sickle cell

anemia that is described in detail below. For proteins that do aggregate from a partially

folded state, in order for aggregation and disease to occur the problematic conformation

must first be populated. Experimental evidence indicates that interactions between

protein molecules in aggregates are specific and that they occur through precise

mechanisms of association (Speed et al. 1996). Outlined below are several general

mechanisms of protein aggregation that have been well-studied.

a. Amyloidosis

Amyloid deposits are insoluble protein inclusions found in a variety of diseased

tissues. Many human diseases, such as AD, transmissible spongiform encephalopathy

(TSE), senile systemic amyloidosis, and type 2 diabetes are associated with the presence

of amyloid plaques formed from unique proteins (Sipe 1994). The proteins associated

with these diseases have dissimilar primary, secondary and tertiary native structures,

suggesting that the amyloid state is accessible by a multitude of proteins (Horwich 2002).

In fact, many proteins not associated with amyloid diseases have been shown to form

amyloid fibers under mild denaturing conditions (Chiti et al. 2000; Fandrich et al. 2001).

It has also been suggested that amyloid fibers are a generic structure of the polypeptide

backbone that all proteins may adopt given the right conditions (Dobson 1999).

Amyloid deposits are composed of long, unbranched fibers that bind the dye

Congo Red. Further structural analyses revealed that amyloid fibers have a cross-I

structure with a characteristic X-ray diffraction pattern due to the regular arrangement of

P-strands perpendicular to the fiber axis (Eanes and Glenner 1968; Bonar et al. 1969).

Recent structural analyses of two amyloidgenic peptides have furthered the structural
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analysis to atomic resolution (Luhrs et al. 2005; Nelson et al. 2005). The peptide AP1(1-

42), associated with AD, was studied by quenched H-D exchange NMR (Luhrs et al.

2005). The peptide forms a strand-turn-strand structure with 17 unstructured residues at

the N-terminus. These structures interact to form elongated, twisting parallel 13-sheets

that resemble amyloid fibers observed by transmission electron microscopy (Luhrs et al.

2005). Similarly, the structure of a peptide fragment of the yeast prion Sup35 was

studied by X-ray crystallography (Nelson et al. 2005). The peptide formed both amyloid

fibers and closely related microcrystals, which were used to determine an atomic-

resolution crystal structure. The peptides of the microcrystals adopt extended

conformations that interacted to form long parallel sheets which laterally associated into a

double P-sheet (Nelson et al. 2005). Amino acid side chains of the peptide were regularly

stacked and in register, a characteristic also observed for parallel P-helix proteins

(Jenkins and Pickersgill 2001) and critical for folding of the -helical protein, P22

tailspike (Simkovsky and King 2006). In fact, the parallel -helix is also a proposed

model of a structure that meets the cross- amyloid criteria (Wetzel 2002).

The in vitro aggregation of amyloidgenic proteins follows nucleation-growth

kinetics (Harper and Lansbury 1997). Accordingly, monomer dominates below a critical

protein concentration, and at higher protein concentrations the concentration of monomer

stays the same while that of the polymer increases. This is indicative of cooperative

nucleus formation (Harper and Lansbury 1997). A simple schematic describing a

possible mechanism to explain nucleation-growth kinetics is shown in Figure 1-1.

Although the aggregation kinetics of many amlyoidgenic proteins have been well-

described, how the proteins transition into the amyloidgenic state and the process of

nucleus formation is still being elucidated. Understanding these critical steps in fiber

formation may lead to the development of novel therapeutics to combat these debilitating

diseases. Described below are two specific cases where substantial progress is being

made to understand these processes.
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Figure 1-1. Schematic model of a simple mechanism following nucleation-
growth aggregation kinetics. Structural rearrangements into the amyloidgenic
intermediate and nucleus formation correspond to slow events, whereas fiber
growth is fast.
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The prion protein, which is associated with TSE, bovine spongiform

encephalopathy, CJD, and sheep Scrapie, exists in both a soluble cellular (PrPC) and

aggregation-prone disease form (PrPSc). Transition from PrPC to PrPsc involves structural

transformations from a largely a-helical to P-sheet conformation (Nguyen et al. 1995;

Zhang et al. 1995). This transition is limited by a high kinetic barrier that can be

overcome by familial mutations, or seeding, which causes the disease to be transmissible

(Prusiner 1998). A monomeric intermediate on the in vitro kinetic refolding pathway of

PrPc has been identified (Apetri and Surewicz 2002). This compact intermediate is

stabilized at acidic pH, where transition into a PrPSc-like form is enhanced, suggesting

that the productive folding intermediate may correspond to the amyloidgenic state of PrP

(Apetri and Surewicz 2002). This intermediate state is stabilized by familial disease-

causing mutations further supporting its role in amyloid formation (Apetri et al. 2004).

However, the conformation of this intermediate has yet to be described and its in vivo

role in amyloid formation is unclear.

The mechanism of amyloid fiber formation in AD has also been studied in detail.

The amyloidgenic peptides, A13(1-42) and AP(1-40) are proteolytic cleavage products of

a larger transmembrane protein, the amyloid precursor protein (APP). There are two

proteolytic processing pathways of APP, the nonamyloidgenic pathway where benign

cleavage products are produced, and the amyloidgenic pathway which produces one of

two amyloidgenic peptides, AP[(1-42) or AP(1-40) (Buchet and Pikula 2000). On the

amyloidgenic pathway, APP is first cleaved by [-sectretase, which targets the

extracellular domain, and then by y-secretase, which cuts one of two sites in the

transmembrane domain. While API(1-40) is produced at higher levels than AP[(1-42), the

amyloid plaques of AD patients contain primarily API(1-42) and in vitro, the longer

peptide forms fibers more rapidly (Selkoe 1991; Jarrett and Lansbury 1993; Harper and

Lansbury 1997). The identity of the additional two amino acids in APf(1-42), and not just

the extra length, are responsible for these differences. Kim and Hecht (2005) created a

library of Al(1 -42) peptides with random amino acids present at the last two sites and

analyzed their aggregation potential. Peptides with residues that were hydrophobic or

had high P-sheet propensity aggregated more readily than those with hydrophilic residues
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or P-sheet breakers (Kim and Hecht 2005). This indicates that aggregation into an

amyloid state occurs by a precise process of specific interactions.

b. Domain swapping

Domain swapping is a general mechanism of protein oligomerization defined by

two or more proteins exchanging identical structural elements to form dimers or high

order oligomers (Liu and Eisenberg 2002). The exchanged structural elements of domain

swapped proteins range in complexity from single P-strands or a-helices, both of which

are observed in different domain swapped dimers of RNase A, to large domains that

constitute half of the protein, as is the case for OB2-crystallin (Liu and Eisenberg 2002).

Distinct domain-swapped oligomers exist in closed conformations where the structure of

each monomer is satisfied by interaction with another subunit such that there are no

unpaired domains (Fig. 1-2).

Domain swapping may be a general method of protein aggregation and amyloid

fiber formation (Jaskolski 2001). For example, domain swapping may occur where an

open conformation is produced that has unsatisfied domains on the oligomer termini.

These open subunits would act as sites of monomer addition, resulting in long aggregated

species (Fig. 1-2). The human prion protein and cystatin C, both of which form amyloid

fibers in vivo, have been shown to dimerize by domain swapping (Janowski et al. 2001;

Staniforth et al. 2001). Four human cystatin C dimers pack together in the crystal

structure into an octamer species that has significant P-sheet content (Janowski et al.

2001). Linkers of the domain swapped dimers act as sites of octamer interaction, thus

interconnecting an unlimited network of molecules. This structure may be related to the

amyloidgenic structure of human cystatin C (Janowski et al. 2001). The domain

swapping model of amyloid formation is not inconsistent with the amyloid structures

already known, as these structures are of short peptide fragments, not the whole disease-

related proteins. Domain swapping may help explain the conformation of protein

segments that do not directly contribute to the cross-0 amyloid structure (Sambashivan et

al. 2005).
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Monomer Closed Dimer

Open oligomer

Figure 1-2. A) Schematic model of dimerization by domain
swapping where two monomers exchange identical subunits
to form a Closed dimer. B) Unsatisfied domains at domain-
swapper oligomer termini may result in Open ends that will
act as sites for monomer addtion.
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The kinetic mechanism by which domain swapping occurs has been studied in-

depth for only a few proteins. For example, a domain-swapped dimeric mutant of the

immunoglobulin binding domain of streptococcal protein G transitions between the

dimeric and monomeric states via a partially folded intermediate (Byeon et al. 2003;

2004). This intermediate has molten globule characteristics and resembles the wild-type

monomer rather than the monomer conformation in the dimer. In contrast, for the cell

cycle regulatory protein p 1 3sucl, transition from the monomer to domain-swapped dimer

requires complete unfolding (Rousseau et al. 2001). The dimer and monomer ofpl3sucl

have two separate folding pathways and the I-strand that exchanges in the dimer is a

critical part of the folding nucleus, suggesting that association is an early event in dimer

folding (Schymkowitz et al. 2000). Rousseau et al. (2001) also observed correlation

between domain swapping and mild thermal aggregation ofpl3sucl 1, signifying a

common mechanism. Discrepancies between these studies indicate that there is not a

universal kinetic mechanism of domain swapping, and instead the process depends on the

properties of the proteins under specific reaction conditions.

c. Loop-sheet insertion

Loop-sheet insertion is a mechanism of protein polymerization and aggregation

utilized by the serpins (serine protease inhibitors). The serpins are a superfamily of

metastable proteins found in diverse organisms (Silverman et al. 2001). These a/[P

proteins adopt a highly conserved fold that includes a reactive loop of -17 residues that is

important in both protease inhibition and serpin polymerization (Fig. 1-3). The serpins

utilize a suicide mechanism to inhibit their substrate proteases. First, the serpin binds to

its substrate protease, at which point the protease cleaves the serpin backbone in the

reactive loop leading to a covalent ester linkage between the serpin and protease

(Silverman et al. 2001). The reactive loop attached to the protease then inserts into a

native P-sheet of the serpin thereby translocating the protease -70 A and altering the

order of P-strands in the sheet. The protease is distorted and inactivated in this
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conformation due to constraints imparted by the reactive loop (Silverman et al. 2001). In

a parallel reaction, if loop-sheet insertion does not occur before the covalent attachment

between the serpin and protease is broken, the serpin is transformed into an inactive form

and the active protease is released. In the inactive form, the reactive loop is inserted into

the P-sheet but not attached to the protease (Silverman et al. 2001). The conformation of

al-antitrypsin (al-AT) in the active (Elliott et al. 2000) and inactive states (Engh et al.

1989) as well as covalently bond to a substrate trypsin (Huntington et al. 2000) are shown

in Figure 1-3. The active form of the serpins is a metastable state with a melting

temperature (Tm) of-60°C while the inactive state is very stable with a Tm of greater than

100°C (Carrell and Gooptu 1998).

Intermolecular loop-sheet insertion and polymerization has also been observed for

a number of serpins due to naturally occurring mutations (Fig. 1-4). This causes disease

by either loss of serpin function or pathological effects of the aggregates. For instance,

mutations in al-AT lead to formation of aggregates that cause emphysema because a 1 -

AT function is diminished, and alternatively cirrhosis because of mal-effects of the

intracellular inclusions (Sifers 1995). The folding rate of the mutant al-AT was severely

reduced compared to wild type but stability of the mutant was unchanged (Yu et al.

1995). From this observation it was postulated that a folding intermediate was the

aggregation prone state (Yu et al. 1995). The intermediate may be common to both the

productive folding and aggregation pathways.
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Active
(metastable)

Inactive
(stable)

Complexed with
Trypsin

Trypsin

Figure 1-3. Ribbon structures of aI-AT: 1) in the active state with a mobile
reactive loop (PDB 1QLP), 2) in the inactive state with a cleaved reactive
loop inserted in the ~-sheet (PDB 7API) and 3) in complex with trypsin (PDB
1EZX).
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Aggregate/Polymer

Figure 14. Schematic model of loop-sheet insertion. The
Reactive Loop of one monomer may either insert as a n-strand
into its own ,1-sheet or insert into the P-sheet of another
molecule thereby causing polymerization.
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d. Native state polymerization

In contrast to the aggregation mechanisms described above, the aggregation of

mutant hemoglobin in sickle cell anemia occurs through interaction of native protein

molecules. Sickle cell anemia is disease of erythrocytes that is caused by a single amino

acid substitution, E6V, of hemoglobin (Ingram 1956). The Glu6 side chain is located on

the surface of the wild-type hemoglobin p-subunits. Substitution with the hydrophobic

valine side chain causes the native hemoglobin molecules to polymerize by interaction

with a surface hydrophobic pocket made of Phe85 and Leu88 on the P-subunit of another

molecule (Bihoreau et al. 1992). The mutant side chain of the second protein is then able

to interact with the hydrophobic pocket of a third protein and these interactions proceed

ad nauseam to form long polymers of native hemoglobin that stretch the erythrocyte

membranes into a sickle shape.

B. THE HUMAN EYE

Cataract is a major disease of the human eye lens associated with the presence of

insoluble protein inclusions that scatter light (Hoenders and Bloemendal 1983). The

human eye lens is a complex and highly specialized tissue and is a principal component

of the eye. In simple terms, the biological function of the eye is to sense light in order to

provide information about an organism's environment. According to this definition, the

light-sensitive pigments of unicellular organisms may reflect the ancient ancestors of the

complex modem eyes (Oyster 1999). In multicellular organisms the eye is composed of

a group of cells that can detect light by way of similar light-sensitive pigments.
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1. Optic systems and vision

In order for light information to be converted into visual information, the eye

must have an array of photosensitive cells and an optic system that allows for

discrimination of light direction (Oyster 1999). Animals have evolved many types of

eyes, the three general classes being: 1) simple eyes with a single optic system, 2)

compound eyes with multiple optic systems that act independently and 3) optical

superposition eyes with multiple cooperating optical systems (Oyster 1999). The more

complex optic systems are further classified by whether reflection or refraction is utilized

for focusing light onto the photosensitive cells.

The human eye is a simple eye that utilizes a refracting optic system (Fig. 1-5).

The approximate 100 million photoreceptor cells of the human eye are found in a single

layer in the posterior of the eye (Oyster 1999). Underlying the single layer of

photoreceptor cells are several layers of neuronal cells that convey visual information to

the brain via the optic nerve. Collectively, the photoreceptor and nerve cells make up the

retina. The major volume of the eye corresponds to the vitreous humor, which fills the

large aqueous vitreous cavity. The vitreous humor is composed of a highly hydrated

collagen and proteoglycan matrix with a gel-like consistency (Oyster 1999). The vitreous

has little refractive abilities but must still remain transparent to visible light. Most light

refraction in the human eye occurs in the cornea. Transparency of the cornea is

established by spatially ordered collagen fibrils. The opaque sclera which surrounds the

cornea also has high levels of collagen, but the fibrils are not ordered in comparison. The

eye lens is positioned posterior to the cornea and is also transparent to visible light.

While the cornea is the principal refractive tissue in the eye, the lens is responsible for

fine-tune focusing of light on the retina and performs about one third of the refraction in

the eye (Oyster 1999).
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Figure 1-5. A) Schematic drawing of the human eye in cross-section. The
path that light takes to reach the retina is shown and the major parts of the
eye are labelled. B) Schematic drawing of the human eye lens in cross-
section. The lens nucleus, cortex and epithelium are labelled.
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2. The human eye lens

The human lens has an overall spherical shape and is composed of terminally

differentiated, elongated, and enucleated fiber cells (Fig. 1-5). There are three cell types

in the lens classified according to age, location and morphology: 1) nuclear cells are in

the center of the lens, 2) cortical cells surround the nucleus, and 3) a single layer of

epithelial cells covers the anterior portion of the lens. The nuclear and cortical cells are

elongated and enucleated while the epithelial cells are nucleated and undifferentiated.

The nuclear cells and major mass of cortical cells differentiate in utero and during

infancy and new layers of cortical cells are added throughout life via differentiation of

cells from the epithelial layer. All proteins in the nuclear and cortical cells were

synthesized prior to differentiation, and since there is essentially no protein turnover in

these cells, most cells of the adult eye contain proteins synthesized in utero or during

infancy (Oyster 1999).

Crystallins are the major protein component of the lens and are present in fiber

cells at concentrations of 200-400 mg/ml. Short-range ordering of crystallins renders the

lens transparent to visible light and gives it a high refractive index necessary for focusing

light on the photoreceptor cells of the retina (Delaye and Tardieu 1983; Femrnald and

Wright 1983). In order to maintain lens transparency, the crystallins must remain stable

and soluble in the continued presence of oxidative stress, and without the possibility of

regeneration for a lifetime. Cataract is an opacification of the lens to visible light.

3. Cataract

Cataract is a major global health problem as it is the leading cause of blindness in

the world and costs the United States government over $3.4 billion per year by way of

surgery (National Eye Insitute (U.S.) 2002). Pathologically, cataract is associated with

the presence of insoluble inclusions of crystallin proteins. The prevalence of cataract is

similar among both males and females and several different ethnic groups. In the United

States, one in six people over age 40 and one in two over age 80 have cataract (National

Eye Insitute (U.S.) 2002). A striking feature of cataract is the extreme rise in prevalence
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with increasing age. The current method of treatment for cataract is surgery to remove

the diseased lens and replacement with a plastic intraocular lens. The side-effects of

cataract surgery are minimal, the operation is generally performed as an outpatient

procedure, and the cost to the patient is low. These factors make surgery a viable choice

for individuals with access to modem health care. However, surgery is generally not an

option for afflicted individuals from developing nations, thus making it vitally important

to understand the molecular basis of cataract formation.

C. EYE LENS CRYSTALLIN PROTEINS

The classes of crystallins found ubiquitously in vertebrate lenses are the a-, f-,

and y-crystallins. Collectively, theses proteins account for approximately 80-90% of total

protein in the lens and are present in concentrations of 200-400 mg/ml (Oyster 1999). In

addition to the three ubiquitous crystallins, there are several taxon-restricted crystallins

found in a smaller subset of vertebrates that are related to "housekeeping" enzymes

(Slingsby 1997). Given the very high concentrations of crystallins in the fibrous lens

cells, the presence of multiple proteins that adopt different structures and oligomeric

states is vital for preventing protein crystallization.

1. a-crystallin

Two unique a-crystallin proteins are present in the lens, aA and aB, which

display approximately 60% sequence identity (Bloemendal and de Jong 1991). aA-

crystallin is limited to the lens, while aB-crystallin has been found in other tissues

including the brain, heart and muscle (Iwaki et al. 1990). In the lens, aA- and aB-

crystallin interact to form large polydisperse complexes that range in molecular mass

from 300 to 1200 kDa, corresponding to 15 to 55 monomers per complex. Due to the

polydisperse nature of the lens a-crystallins, thus far it has not been possible to determine

an X-ray crystal structure of the human a-crystallins. However, X-ray structures of small

heat shock proteins (sHSPs) have been solved that contain "a-crystallin domains" linked
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to variable N-terminal regions (Kim et al. 1998; van Montfort et al. 2001; Stamler et al.

2005). The "a-crystallin domain" fold has two P-sheets arranged into a sandwich that are

connected by long loops containing both a-helical and unstructured regions. In the case

of wheat HSP 16.9, the monomers associate to form dimers by strand exchange and these

dimers further associate into a dodecameric structure (van Montfort et al. 2001).

While the crystal structure of the human a-crystallins remains elusive, some

insight into the structure of the multimeric species has been gained using cryo-electron

microscopy. These analyses have led to a micellar-like structural model where the a-

crystallin subunits interact to form a hollow sphere (Haley et al. 1998; Haley et al. 2000).

The shell of the complex has an overall diameter of -19 nm while the hollow internal

cavity has a diameter of 8 nm.

In addition to a structural role in the lens, the oligomeric a-crystallins possess

molecular chaperone activity in vitro, which has been observed in interaction with several

other crystallins as well as non-lens proteins (Clark and Muchowski 2000; Horwitz 2000;

MacRae 2000). The a-crystallins have also been shown to be phosphorylated in lenses,

which likely influences their activity as chaperones (Wang et al. 2000; Ueda et al. 2002;

Sathish et al. 2004). Chaperone activity of the a-crystallins may be significant in

preventing or delaying cataract by binding and sequestering other partially unfolded or

damaged crystallin proteins and thus preventing their aggregation.

Several a-crystallin knock-out mice have been generated and their lens

phenotypes analyzed to assess the role of a-crystallin in maintaining lens transparency.

The aA-crystallin knock-out mouse had premature cataract caused by the presence of

insoluble inclusions of aB-crystallin and the y-crystallins (Brady et al. 1997; Horwitz

2003). The aB-crystallin knock-out mouse had a shortened lifespan thus preventing

analysis of effects on mature-onset cataract formation (Brady et al. 2001). The double

knock-out mouse of aA/aB has smaller than normal lenses with altered cellular structure

suggesting that the a-crystallins may also contribute to lens development (Boyle et al.

2003).
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2. fi- and y-crystallins

In contrast to the a-crystallins, the 13- and y-crystallins do not have any detectable

enzymatic or chaperone activity and are thought to function solely as structural proteins

in the lens. The 13- and y-crystallins are primarily P-sheet, two-domain proteins that are

evolutionarily related (Wistow and Piatigorsky 1988; Wistow et al. 2005). The domains

of the 13- and y-crystallins each have eight P-strands (A-H) that are arranged into two

Greek key motifs (Fig. 1-6). The Greek key motifs further associate to form a 13-

sandwich structure characterized by O-strands wrapped around a central hydrophobic core

(Fig. 1-6). This double Greek key P-sandwich fold defines the 13y-crystallin structural

superfamily. The Greek keys and domains of the P3- and y-crystallins are hypothesized to

have originated from consecutive gene duplication events (Wistow and Piatigorsky

1988).

Despite analogous domain folds, structural differences do exist between the 13-

and y-crystallins. The y-crystallins are strictly monomeric while the 13-crystallins form a

range of multimeric states ranging from dimers to octamers (Wistow et al. 1983; Bax et

al. 1990; Slingsby and Bateman 1990). As shown in Figure 1-6, the domains of the y-

crystallins pair intramolecularly through amino acid side chain interactions across a

domain interface, giving the proteins overall pseudo-twofold symmetry (Wistow et al.

1983). The domain interface interactions are characterized by non-covalent contacts

between a central hydrophobic cluster and peripheral polar amino acid side chains. As

shown in Figure 1-7, the major bovine 13-crystallin, 13B2-Crys, forms a dimer by domain

swapping where the N-td of one monomer packs against the C-td of the other monomer

(Bax et al. 1990). The domains of the domain-swapped dimer interact in a manner

identical to that described for the domains of the y-crystallins.
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Figure 1-6. A) Two-dimensional topology diagram of the two-domain double
Greek key motif fold characteristic of the ~- and y-crystallins. The strands are
lettered A through H in each domain. B) Ribbon diagram of monomeric HyD-Crys.
Amino acids making contact across the domain interface are shown in stick
representati on.
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Figure 1-7. (A) Ribbon structure of monomeric HyD-Crys where the domains
interact intramolecularly (Basak et al. 2003). Locations of the four buried
tryptophans are shown in spacefill representation. (B) Ribbon structure of the
domain swapped dimer of B~B2-Crys where the N-td of one monomer pairs
with the C-td of the other monomer (Bax et al. 1990).
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There are seven y-crystallins genes in the human genome, the yA-F and yS genes.

The yD and yC genes are expressed early in lens development and thus their

corresponding proteins are found primarily in the aged lens nucleus. The yS gene is

expressed post-natally and thus the yS protein is localized in the lens cortex (Wistow et

al. 2002). Neither yA nor yB are expressed at appreciable levels in the human lens and in

the human genome the genes for yE and yF are pseudogenes (Brakenhoff et al. 1990).

There is also evidence of non-lens and possibly stress-related expression of yS-crystallin

(Sinha et al. 1998; Bloemendal et al. 2004).

Several non-lens proteins also belong to the Py-crystallin structural superfamily.

Among these are the two domain spore coat protein, Protein S from Myxococcus xanthus

and the single domain, homodimeric protein Spherulin 3a from Physarum polycephalum

(Wistow et al. 1985; Wistow 1990). Other members are the human protein AIM1, the

amphibian protein EDSP, yeast-killer toxin WmKT from Williopsis mrakii and protease

inhibitor SMPI from Streptomyces nigrescens (Bloemendal et al. 2004). These non-lens

proteins almost certainly share an evolutionary ancestor with the 13- and y-crystallins that

possibly had a stress-response function (Wistow 1990). This ancestral protein was likely

recruited to the lens in an early vertebrate, where the gene encoding it underwent a series

of duplication events giving rise to the vertebrate 01- and y-crystallins recognized today

(Shimeld et al. 2005; Wistow et al. 2005).

The 1- and y-crystallins display relatively low overall sequence identity of-30%

(Bloemendal et al. 2004). However, there are regions of high sequence conservation

between the proteins that contribute to important structural elements. First, the tyrosine

corner is a conserved feature of the double Greek key 13-sandwich fold (Hemmingsen et

al. 1994). The tyrosine corner is formed by the hydroxyl group of a tyrosine on one side

of the 1-sandwich forming a hydrogen bond with a backbone atom of a 13-strand from the

opposite side of the sandwich. There are two tyrosine corners in the P- and y-crystallins,

one each in the N-td and C-td. Tyrosines are conserved in these positions at 100%

identity in y-crystallins and the N-td of the 3-crystallins, and 67% identity in the C-td of

43



the -crystallins. The tyrosine corners are also conserved in Protein S but not in

Spherulin 3a.

The second region of high sequence conservation in the - and y-crystallin is the

domain interface. As mentioned above, the domain interface residues are made of a

central cluster of hydrophobic residues abutted by two pairs of peripheral polar residues

(Fig. 1-6). These domain interface residues are highly conserved among A- and y-

crystallins from diverse vertebrates suggesting that they are important in determining and

maintaining the folds of these two-domain proteins (Table 1-1 and 1-2). The [ty-

crystallin domain interface residues are not well conserved in Protein S and Spherulin 3a,

which have different modes of domain interaction (Bagby et al. 1994; Rosinke et al.

1997; Clout et al. 2001 ). The intramolecular domain interactions in Protein S are

assymetrical and occur between strand G from the N-td and B from the C-td. The

intermolecular domain interactions in the Spherulin 3a dimer, occur through interaction

across the face of an additional P-strand not found in the - and y-crystallins (Rosinke et

al. 1997).

Residues contributing to the [t-hairpins between the A/B and E/F strands of each

domain also show high sequence conservation (Fig. 1-6). There are conserved glycines

present at the beginning of the B and F strands and conserved serines at the beginning of

the D and H strands that hydrogen bond to mainchain atoms of the A and E strands. This

hairpin results in precise positioning of two interacting aromatic amino acids.

Collectively, these features are believed to stabilize this -hairpin (Blundell et al. 1981;

Wistow et al. 1985; MacDonald et al. 2005). These residues are also conserved to 100%

identity in both Protein S and Spherulin 3a.

The [3- and y-crystallins have high numbers of conserved aromatic amino acids,

including four tryptophans buried in the domain cores (Fig. 1-7). Additionally, there are

many well conserved tyrosines (13 in HyD-Crys), which are primarily surface-exposed

and distal from the linker peptide. Interestingly, these aromatics are not well conserved

in the non-lens proteins Spherulin 3a and Protein S. There are only six tyrosines and no
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tryptophans in Protein S, and only one tryptophan and two tyrosines in Spherulin 3a. The

high percentages of aromatics may have evolved in the lens proteins or alternatively,

were present in the ancestral protein and lost in the non-lens proteins. In either case, the

evolutionary pressure for lens proteins to have high percentages of aromatics may be

related to continuous exposure of the lens proteins to visible and UV light.

Table 1-1. Conservation of domain interface residues among 35 vertebrate y-crystallins

determined by sequence alignment (see Appendix A for full alignments).

Residue in human yD Other amino
% Identity % Similarity

crystallin acids'

Met43 74 91 Val, Ala

Gln54 89 97 Met, Pro

Phe56 74 100 Ile, Val, Leu

Arg79 83 91 Lys, His, Cys

Ile81 77 97 Val, Leu, Pro

Val132 54 100 Ile, Leu

Gln143 80 80 Met, Leu

Leul45 71 83 Phe, Tyr

Metl147 0 0 Arg, Asp, Glu, Lys

Val 170 49 97 Ile, Met, Leu, Ala

'Other amino acids found in the position listed by decreasing frequency.
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Table 1-2. Conservation of domain interface residues among 32 vertebrate P-crystallins

determined by sequence alignment (see Appendix A for full alignments).

Residue in human
% Identity % Similarity Other amino acids'

¥D crystallin

Met43 0 100 Val, Leu, Ile

Gln54 78 78 Met

Phe56 0 100 Val, le

Arg79 100 100

11e81 53 97 Val, Leu, Phe, Ala

Val132 100 100

Gln143 100 100

Leul45 34 100 Val, Ile

Metl47 0 0 Asp

Vall70 22 100 Ile, Leu

'Other amino acids found in the position listed by decreasing frequency.

3. Human congenital cataracts and the p-crystallins

There are several cases of heritable congenital cataracts caused by single amino

acid substitutions in the gene encoding HyD-Crys and one case caused by a mutation in

the gene encoding HyC-Crys (Heon et al. 1999; Stephan et al. 1999; Kmoch et al. 2000;

Santhiya et al. 2002). In HyD-Crys the mutations are R14C, P23T, R36S and R58H.

Studies of recombinant proteins containing these mutations led to the hypotheses that the

R58H and R36S mutants cause cataract by crystallization (Kmoch et al. 2000; Pande et

al. 2001; Basak et al. 2003), the R14C mutant by intermolecular disulfide bonding (Pande

et al. 2000) and the P23T mutant by precipitation (Evans et al. 2004). Interestingly, none

of these mutations appeared to alter the conformation or stability of HyD-Crys,

suggesting that polymerization or association of native HyD-Crys occurred in the lenses

of affected individuals (Pande et al. 2000; Pande et al. 2001; Evans et al. 2004). In
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contrast, the congenital mutant T5P of HyC-Crys caused an altered native state fold,

reduced stability and an increased tendency to interact with aA-Crys (Fu and Liang 2002;

Liang 2004). The T5P mutation of HyC-Crys may have caused cataract by aggregation

of partially unfolded chains.

4. Folding stability and oligomerization of the /- and y-crystallins

The in vitro stabilities of the crystallin proteins have been intensively studied as a

means of understanding how the proteins remain folded for a lifetime in vivo. The

monomeric y-crystallins have relatively high free energies of unfolding in the absence of

denaturant (AG°) that are generally greater than that of the multimeric a- and P3-

crystallins (Bloemendal et al. 2004). Additionally, some y-crystallins have high kinetic

barriers to unfolding that may aid in maintenance of their native folds (Das and Liang

1998; Jaenicke and Slingsby 2001). As outlined below, several of the P3- and y-crystallins

studied to date have complex equilibrium unfolding/refolding transitions that suggest the

population of partially folded intermediates.

a. yB crystallin

The initial comprehensive studies addressing the folding and stability of the y-

crystallins focused on bovine yB crystallin (ByB-Crys). A two-state equilibrium

unfolding transition was observed for ByB-Crys at pH 7.0 (N<>U), but at pH 2.0 a three-

state transition was observed signifying population of an intermediate (I) in equilibrium

with N and U (NI<:U) (Rudolph et al. 1990). This intermediate was theorized to have

one domain folded and the other unfolded (Rudolph et al. 1990; Sharma et al. 1990). To

test this, recombinant proteins that corresponded to the isolated domains of ByB-Crys

were constructed and their stabilities were analyzed (Mayr et al. 1997).

At pH 7.0, the isolated N-terminal domain (yBN-td) was only marginally more

stable than the isolated C-terminal domain (yBC-td). At pH 2.0, however, yBN-td was

notably more stable than yBC-td (Mayr et al. 1997). Comparing these data to that of
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wild-type ByB-Crys, the authors concluded that in the full-length protein, domain

interface interactions stabilized the C-td at pH 2.0. Additionally, it was observed that

stability of yBC-td decreased with decreasing pH, while stability of yBN-td was

independent of pH (Mayr et al. 1997). BC-td has three more basic residues than yBN-td

so that at pH 2.0 its net charge was +16 versus +13 for yBN-td. It was hypothesized that

differences in stabilities of the domains at pH 2.0 was due to the greater number of

charged residues on the surface of yBC-td, which may have destabilized the protein by

charge repulsion (Mayr et al. 1997).

To confirm that the domain interface interactions of ByB-Crys were stabilizing

the C-td, site-directed mutants of the domain interface residue Phe56 were constructed

and stabilities of the mutant proteins were analyzed (Palme et al. 1997). Phe56 is one of

six hydrophobic residues clustered in the center of the domain interface that is highly

conserved among 0- and y-crystallins from various species (Fig. 1-6; Tables 1-1 and 1-2).

Mutating this residue to alanine, aspartate or tryptophan caused significant destabilization

of the C-td at pH 2.0 (Palme et al. 1997). Crystal structures of the mutant proteins were

also determined and contrary to expectations, no changes in domain core structures or

domain interface pairing were observed. This suggests that the fold was too rigid to

adjust to the mutant residues (Palme et al. 1998).

b. S and $C crystallins

yS crystallin differs from the other y-crystallins as it is expressed post-natally in

the lens, exhibits non-lens expression and has a longer domain linker (Bloemendal et al.

2004). Thus far it has not been possible to crystallize full-length human yS crystallin

(HyS-Crys), however, the crystal structure of a HyS-Crys C-td homodimer has been

determined and an NMR structure of wild-type murine yS-Crys was also recently solved

(Purkiss et al. 2002; Wu et al. 2005). Despite the additional linker residue, the domains

of HyS-Crys display the typical intrachain domain interactions characteristic of the y-

crystallins.
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The stability of wild-type HyS-Crys, wild-type bovine yS crystallin (ByS-Crys)

and their independent domains have been studied by Wenk et al, (2000). The equilibrium

transitions of both wild-type HyS-Crys and ByS-Crys were best fit to two-state models

(N<>U) at pH 7.0, suggesting that the domains unfolded cooperatively in the full-length

protein (Wenk et al. 2000). However, the isolated N-td of HyS-Crys was less stable that

the isolated C-td suggesting that domain interface interactions were stabilizing in the full-

length protein (Wenk et al. 2000). The differences in N-td and C-td stability were not as

great for ByS-Crys as they were for HyB-Crys.

In contrast to the other y-crystallins which displayed two-state transitions (N<=>tU)

at pH 7.0, human yC crystallin (HyC-Crys) displayed a three-state equilibrium transition

(N<=I>U) at physiological pH (Fu and Liang 2002). The equilibrium intermediate

likely had one domain folded and the other unfolded. However, because stabilities of the

isolated domains of HyC-Crys were not studied, it was not possible to predict which

domain was folded and which was unfolded in the intermediate.

c. Protein S and Spherulin 3a

The domains of Protein S and Spherulin 3a each bind two Ca2+ molecules via

surface patches. While sequences of the [3- and y-crystallins do not appear to be

conserved for Ca2+-binding (Clout et al. 2001), recent investigations have suggested that

the y-crystallins are capable of binding four Ca2+ molecules at gM affinities (Rajini et al.

2001) The tertiary structures of Spherulin 3a and Protein S were altered in the absence

of Ca2+ and the domains were stabilized by Ca2+ binding (Kretschmar et al. 1999; Wenk

et al. 1999). Spherulin also displayed an increase in kinetic stabilization upon binding

Ca2 +, and Protein S displayed kinetic stabilization as a result of domain interactions

(Wenk et al. 1998; Kretschmar et al. 1999).

The stability of Protein S has been studied in depth as a function of pH in the

presence and absence of Ca2+. A partially folded intermediate was observed in

equilibrium experiments performed at pH 2.0, at which the protein does not bind Ca2+

(Wenk and Mayr 1998). Two major thermal transitions were also observed at both pH
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2.0 and 7.0 in the absence of Ca2+ suggesting independent unfolding of the two domains

(Wenk and Jaenicke 1999). In contrast, at pH 7.0 and in the presence of Ca2 +, wild-type

Protein S unfolded very cooperatively by both chemical and thermal denaturation (Wenk

and Mayr 1998; Wenk and Jaenicke 1999).

The isolated domains of Protein S were studied to further describe the

intermediates observed for the full-length protein. No homo- or hetero-dimerization was

observed for the isolated domain proteins. The isolated N-td was more stable than wild-

type Protein S and the isolated C-td was less stable than wild-type Protein S (Wenk et al.

1999) Both of the isolated domain proteins were stabilized by Ca2+, however, stabilities

of the domains responded differently to pH (Wenk et al. 1999; Wenk and Jaenicke 1999).

These results suggest that the C-td was stabilized by domain interactions in the full-

length protein while the N-td was slightly destabilized in the full-length protein.

The structure of the isolated N-td of Protein S in the absence of Ca2+ was also

investigated by NMR spectroscopy (Bagby et al. 1998). The protein formed two

equilibrium intermediates with slightly different structures. The first intermediate had a

core group of residues that were in a native conformation and surrounding residues

fluctuating between native and near-native states. In the second intermediate the core and

the surrounding residues all appeared to be in a native conformation. This Ca2+-

insensitive core region was composed of the tyrosine corner, the E/F -hairpin and the a-

helix found in the loop that connects the C and D strands (Bagby et al. 1998). Although

there are differences in the motif arrangement and domain interactions of Protein S and

the 13- and y-crystallins, these experiments may provide insight into potential folding

nuclei or exceptionally stable regions of the double Greek key folds.

d. -crystallins

Both rat and human PB2-Crys were shown to be less stable than the monomeric y-

crystallins and their equilibrium unfolding transitions were best fit to a three state model

(N<*IU) at physiological pH (Wieligmann et al. 1999; Fu and Liang 2002) For rat

P3B2-Crys, the first transition was concentration dependent suggesting that dimer

dissociation occurs during this step (Wieligmann et al. 1999). Properties of the isolated

domains of rat PB2-Crys were also analyzed to probe for differential domain stability.
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The isolated N-td, but not C-td was capable of forming homodimers in solution where

dimer dissociation was observed at less than 50 gg/ml protein concentrations

(Wieligmann et al. 1999). The isolated N-td was also less stable than the isolated C-td

(Wieligmann et al. 1999). These data suggested that the partially folded intermediate was

a monomeric species with a folded C-td and unfolded N-td. Similar to the ByB-Crys and

Protein S results, domain interface interactions stabilized the domain of PB2-Crys with

lower intrinsic stability.

Despite analogous domain structures, the P-crystallins form oligomeric structures

but the y-crystallins do not. B2-Crys dimerizes by domain-swapping where the domain

linker sequence is in a extended conformation compared to the bent linker of the y-

crystallins (Bax et al. 1990). The linker of the 3-crystallins lack a conserved glycine and

proline found in the y-crystallin linkers. It was originally hypothesized that variation in

quaternary structure may be due to differences in the linker peptide connecting the

domains or the N- and C-terminal extensions of the P-crystallins. To test this, a P3B2-

Crys mutant without the N- and C-terminal extensions was constructed, which, unlike

wild type formed of both dimeric and tetrameric species (Trinkl et al. 1994). Therefore,

the extensions likely function to prevent higher order association and do not control

dimerization.

To test the role of linker sequences in dimerization, another mutant was

constructed that had the wild-type PB2-Crys domains connected by the linker sequence of

ByB-Crys. This protein formed monomers only (Trinkl et al. 1994). In a mirror

experiment, a mutant was constructed that had the linker of P3B2-Crys connecting the

wild-type domains of ByB-Crys (Mayr et al. 1994). This mutant also formed monomers

only (Mayr et al. 1994). Together these data indicate that the PB2-Crys linker was

necessary but not sufficient for dimer formation. The domain interface interactions of

[3B2-Crys may also contribute to dimer formation. In contrast, introducing the linker of

ByB-Crys into the wild-type PA3-Crys sequence did not prevent oligomerization (Hope

et al. 1994; Sergeev et al. 2000). Similarly, deleting the extensions of PA3-Crys did not

abolish dimer formation and in fact, the modified proteins formed a tighter dimer than

wild type (Sergeev et al. 2000).
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e. yD crystallin

Folding and stability of HyD-Crys, one of the most abundant y-crystallins of the

human lens, have been intensively studied using fluorescence as a probe of conformation

(Kosinski-Collins and King 2003; Evans et al. 2004; Kosinski-Collins et al. 2004). The

tryptophans of HyD-Crys are quenched in the native protein such that fluorescence

intensity of HyD-Crys is lower in the native state than the unfolded state (Kosinski-

Collins and King 2003; Kosinski-Collins et al. 2004). Native state quenching has also

been observed for a number of other p- and y-crystallins suggesting that this phenomenon

is a general property of the Py-crystallin fold (Kim et al. 2002; Bateman et al. 2003).

The equilibrium unfolding transition of HyD-Crys at pH 7.0 and 37°C appeared

largely two-state (N<>U) in the denaturant guanidine hydrochloride (GuHCl) (Kosinski-

Collins and King 2003). At 37°C, the equilibrium unfolding and refolding transitions

overlaid at concentrations of GuHCl above 1.0 M, indicating that HyD-Crys was able to

productively refold under these conditions. However, refolding to lower denaturant

concentrations (<1.0 M) resulted in accumulation of a high molecular weight aggregate

that competed with productive refolding (Kosinski-Collins and King 2003). The

morphology of the aggregate was probed with AFM and found to have an elongated,

fibrillar morphology different from amyloid fibers (Kosinski-Collins and King 2003).

The aggregates were capable of binding the hydrophobic dye bisANS, indicating the

presence of exposed hydrophobic surfaces in the aggregate (Kosinski-Collins and King

2003). Similar aggregation results were observed at 25°C, however, the equilibrium

unfolding and refolding transitions at this lower temperature exhibited marked hysteresis

(Kosinski-Collins and King 2003). Compared to the 37°C data, the 25°C unfolding

transition was shifted to lower concentrations of GuHCl whereas the refolding transition

was unchanged. These data suggest that there was a kinetic barrier to unfolding that was

exaggerated at 25°C.

The unfolding and productive refolding kinetics of HyD-Crys were also measured

at pH 7.0 and 37°C (Kosinski-Collins and King 2003). Both transitions were best fit by

multiple exponentials suggesting population of partially folded/unfolded kinetic

intermediates. To probe the conformations of the kinetic intermediates, triple tryptophan
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mutant proteins were constructed that each had one endogenous tryptophan and the other

three tryptophans substituted for phenylalanine (Kosinski-Collins et al. 2004). These

mutant proteins, termed W42-only, W68-only, W130-only and W156-only, were studied

by equilibrium and kinetic unfolding/refolding to independently monitor structural

transitions of the two domains. In contrast to the isolated domain experiments described

above for other 3- and y-crystallins, these experiments had the advantage of being able to

independently monitor the domains while still maintaining them in the context of the full-

length protein.

In equilibrium unfolding/refolding experiments, the mutants maintaining N-td

tryptophans (W42-only and W68-only) both had transition midpoints of-1.3 M GuHCl,

while the proteins maintaining C-td tryptophans (W130-only and W156-only) both had

transition midpoints of -2.0 M GuHCl (Kosinski-Collins et al. 2004). It is important to

note that transition midpoints of the triple mutants were significantly lower than the

transition midpoint of wild-type HyD-Crys (2.8 M GuHCl) indicating the triple mutations

were detrimental to stability (Kosinski-Collins et al. 2004). Nonetheless, differences

between the transition midpoints of the mutants imply that the N-td of HyD-Crys is less

stable than the C-td. These data also suggest that there may be an equilibrium

intermediate present during the unfolding/refolding of wild-type HyD-Crys not

previously detected.

Differences between the unfolding and refolding kinetics of the triple tryptophan

mutants were also observed. During productive kinetic refolding to 1.0 M GuHCl, the

mutants with N-td tryptophans refolded slower than the mutants with C-td tryptophans

(Kosinski-Collins et al. 2004). Comparing these data to the refolding rates of wild-type

HyD-Crys it was observed that refolding rates of the mutants with C-td tryptophans

agreed well with the first kinetic transition of wild-type HyD-Crys and refolding rates of

the mutants with N-td tryptophans agreed well with the second kinetic transition of wild

type (Fig. 1-8) (Kosinski-Collins et al. 2004). Similarly, mutants with N-td tryptophans

unfolded faster than mutants with C-td tryptophans (Kosinski-Collins et al. 2004). These

observations led to a model of kinetic unfolding and refolding where a single major

intermediate is populated that has intact tertiary structure in the C-td but not the N-td

(Fig. 1-8).
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Figure 1-8. (A) Productive refolding kinetics of HyD-Crys triple-tryptophan
mutants monitored by fluorescence (Kosinski-Collins et al. 2004).
(B) Schematic diagram of the productive refolding pathway of wild-type
HyD-Crys where the C-td refolds first followed by the N-td.
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Differences in the equilibrium and kinetic unfolding/refolding behavior of the

triple tryptophan mutants suggest that domain interface interactions in HyD-Crys may

contribute to folding and stability. This is in accord with previous observations of the

importance of domain interactions in the two domain 13Py-crystallin fold.

5. Molecular mechanism of mature-onset cataractformation

Mature-onset cataract is a unique protein aggregation disease. Protein inclusions

of cataract can be localized in any region of lens and by unknown mechanisms

aggregation is able to "communicate" across or traverse cell membranes. Additionally,

the protein inclusions contain all members of the a-, 13-, and y-crystallins (Hanson et al.

2000; Searle et al. 2005). Structures of crystallins in the insoluble inclusions and the

detailed molecular mechanisms of mature-onset cataract formation are completely

unknown. Models of cataract formation have been informed by well-studied mechanisms

of aggregation and in vitro studies of the crystallin proteins.

The lens crystallins do not regenerate or turnover in the lens thus necessitating

life-long stability and solubility to ensure lens transparency (Oyster 1999). This task is

particularly challenging given the continued presence of oxidative and radiative stress.

The crystallin proteins in the aged lens are covalently damaged presumably as a result of

age and environmental and cellular insults (Hanson et al. 1998; Hanson et al. 2000;

Searle et al. 2005). The major forms of damage in the insoluble crystallins of aged lenses

are deamidation, non-native disulfide bonds, methionine oxidation, and truncations

(Hanson et al. 2000). Glycation and carbamylation are also common forms of crystallin

modifications observed in the lens (Harding 2002). It is currently unknown if covalent

damage causes the protein aggregation and insolubilization associated with cataract, or if

covalent damage is enhanced in the insoluble inclusions.

Several in vitro studies have addressed the effects of covalent damage on

properties of the crystallins (Lampi et al. 2001; Kim et al. 2002; Gupta and Srivastava

2004b; 2004a; Harms et al. 2004; Lampi et al. 2006). The effects of such damage ranged

from formation of higher order oligomers, increased tendency of thermal aggregation,

destabilization and partial unfolding for the 3-crystallins (Lampi et al. 2001; Kim et al.
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2002; Harms et al. 2004; Lampi et al. 2006), to changes in secondary and tertiary

structure and decreased chaperone activity for a-crystallin (Gupta and Srivastava 2004b;

2004a). These results indicate that effects of covalent damage are context dependent, and

that some damage may be detrimental enough elicit in vivo changes that could cause

cataract formation.

One model for the molecular mechanism of cataract formation is crystallin liquid-

liquid phase separation (Clark and Clark 2000). High concentration of the crystallins and

their short-range order are responsible for lens transparency and refraction. Crystallin

phase separation has been observed as a result of congenital cataract mutations in HyD-

Crys (Pande et al. 2000; Pande et al. 2001; Pande et al. 2005), age-associated covalent

modifications of [B1 -Crys (Annunziata et al. 2005), changes in temperature, and as a

result of X-ray irradiation (Clark et al. 1983). During these phase transitions,

cytoplasmic crystallins separate into micovolumes of differing protein concentrations

(Clark et al. 1983). Phase separation may cause light scattering and thus lens opacity and

cataract (Clark and Clark 2000). However, the phase separation hypothesis does not

explain the presence of insoluble protein fractions pathologically associated with cataract.

An alternative model of cataract formation is protein insolubilization as a result of

covalent damage. According to this hypothesis, changes in surface properties of the

crystallins may disrupt short-range order in the highly-concentrated lens cells and cause

reactions akin to native-state polymerization or association (Delaye and Tardieu 1983).

The major types of covalent damage of aged crystallins including deamidation, oxidation,

glycation, and carbamylation, are all capable of changing the surface properties of

proteins. In further support of this hypothesis, reduced solubility has been observed for

the congenital cataract mutant P23T of HyD-Crys (Evans et al. 2004). Similarly, other

congenital mutants of HyD-Crys appear to cause in native-state polymerization in the lens

cells of affected individuals (Pande et al. 2000; Pande et al. 2001).

Finally, mature-onset cataract formation may be caused by protein aggregation

induced by covalent damage. Unlike many protein aggregation diseases, protein

insolubilization and cataract occur long after the crystallins were initially synthesized.

Therefore, aggregation-prone states of the crystallins that may cause cataract are most

likely populated as a result of destabilization and partial unfolding rather than during
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productive refolding off of the ribosome. Studies of lysozyme and soybean trypsin

inhibitor have demonstrated that protein unfolding and aggregation can result from in

vitro oxidation of histidine, tryptophan and tyrosine residues (Hawkins and Davies 2005).

Potential partially unfolded crystallin species may be prone to aggregate in the densely

packed lens cells through mechanisms such as loop-sheet insertion or domain swapping.

These two mechanisms are particularly intriguing models given the two-domain nature of

the - and y-crystallins and the high [P-sheet content of the proteins.

Amyloid fiber formation is a less likely explanation for crystallin aggregation

given the lack of pathological data suggesting the presence of amyloid fibers in mature-

onset cataract. However, a-, - and y-crystallins have been shown to form amyloid fibers

under mild denaturing conditions (Meehan et al. 2004). Similarly, mouse congenital

cataract mutations in the gene for yfl-crystallin cause formation of in vivo inclusions that

are stained by the amyloid-detecting dye, Congo Red (Sandilands et al. 2002).

Recombinant proteins with these congenital mutants also formed amyloid fibers in vitro

under mildly denaturing conditions (Sandilands et al. 2002).

Understanding the molecular basis of mature-onset cataract is a daunting task

considering the number of proteins involved and the complexity of the interactions that

could form between them. In order to understand the phenomena leading to

cataractogenesis, it is first necessary to understand the individual proteins involved. In

particular, characterization of partially folded conformations adopted by the crystallins

may elucidate potential aggregation-prone conformations that are significant in the aged

lens. Additionally, understanding the effects of covalent damage on crystallin stability

and aggregation may give insight into the role of damage in cataract formation.

D. SUMMARY OF THESIS

In this thesis I have analyzed the contributions of domain interface residues of

HyD-Crys to folding, stability and aggregation (Chapters 2 and 3). Following this is an

analysis of the effects of domain interface glutamine deamidation on physiologically

important properties of HyD-Crys (Chapter 4). These experiments have important
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implications for understanding how HyD-Crys remains stable and folded for a lifetime in

vivo, and how these properties are affected by covalent damage. These experiments also

probe for partially folded states on the unfolding and refolding pathways of HyD-Crys

that may provide insight into conformations important in aggregation and cataract

formation. More broadly, these studies have general applications to understanding 13-

sheet protein folding, assembly and aggregation.
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CHAPTER TWO:

CONTRIBUTIONS OF HYDROPHOBIC DOMAIN INTERFACE

INTERACTIONS TO THE FOLDING AND STABILITY OF HUMAN

yD CRYSTALLIN 1

1 Reprinted from: Flaugh, S.L., Kosinski-Collins, M.S., and King, J. (2005)
Contributions of hydrophobic domain interface interactions to the folding and stability of
human yD crystallin. Protein Sci. 14:569-581.
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A. ABSTRACT

Human yD-crystallin (HyD-Crys) is a monomeric eye lens protein composed of two

highly homologous -sheet domains. The domains interact through inter-domain side

chain contacts forming two structurally distinct regions, a central hydrophobic cluster and

peripheral residues. The hydrophobic cluster contains Met43, Phe56 and Ile81 from the

N-terminal domain (N-td) and Vall32, Leul45 and Vall70 from the C-terminal domain

(C-td). Equilibrium unfolding/refolding of wild-type HyD-Crys in guanidine

hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2

and 2.8 M GuHCl. The two transitions likely corresponded to sequential

unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that

the C-td refolds more rapidly than the N-td. We have constructed alanine substitutions of

the hydrophobic interface residues to analyze their roles in folding and stability. After

purification from E. coli, all mutant proteins adopted a native-like structure similar to

wild type. The transitions of M43A and V170A were similar to wild type. In contrast,

the mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater

population of the single folded domain intermediate. Compared to wild type, these

mutants also had reduced rates for productive refolding of the N-td but not the C-td.

These data suggests a refolding pathway where the domain interface residues of the

refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain

interface interactions is likely important for preventing incorrect associations in the high

protein concentrations of the lens nucleus.
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B. INTRODUCTION

The transparency of the human eye lens depends on the stability and solubility of

the a-, f3- and y-crystallin proteins (Delaye and Tardieu 1983; Fernald and Wright 1983).

Crystallins are present in the enucleated fibrous lens cells at concentrations of 200-400

mg/ml with the P3- and y-crystallins accounting for over 50% of the total protein (Oyster

1999). The [P- and y-crystallins are two domain proteins that structurally define the Py-

crystallin superfamily. The oligomeric a-crystallins exhibit in vitro molecular chaperone

activity in addition to structural roles in lens transparency (Horwitz 1992; Boyle and

Takemoto 1994). The crystallin proteins of the lens nucleus are synthesized early in lens

development and do not regenerate during adulthood (Oyster 1999).

Human yD-crystallin (HyD-Crys) is a 173 amino acid protein found in the densely

packed lens nucleus. The crystal structure of HyD-Crys has recently been solved to 1.25

A (Fig. 2-1) and is consistent with the two-domain, primarily [P-sheet structure of the fry-

crystallin superfamily (Basak et al. 2003). HyD-Crys is the third most abundant y-

crystallin in young human lenses (Lampi et al. 1997). Within each domain of HyD-Crys

are two [P-sheet Greek key motifs. The domains are connected by an extended six amino

acid peptide and interact non-covalently through inter-domain amino acid side chain

contacts that form two structurally distinct regions. These are (1) a central hydrophobic

cluster and (2) polar peripheral pairwise interactions surrounding the cluster. The

hydrophobic cluster consists of Met43, Phe56 and Ile81 from the N-td and Va1132,

Leul45 and Vall70 from the C-td (Fig. 2-1). Peripheral pairwise interactions are

between Gln54/Gln143 and Arg79/Metl47.
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Figure 2-1. The crystal structure of wild-type HyD-Crys depicted in
ribbon representation (Basak et al. 2003). Amino acids contributing to
the hydrophobic cluster of the domain interface are shown in wire frame.
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The mechanisms of aggregation for many protein deposition diseases have been

elucidated by studying the in vitro unfolding and refolding of their associated proteins

(Westermark et al. 1990; DiFiglia et al. 1997). A common feature of these mechanisms

is that the aggregation-prone species adopts a partially folded or non-native conformation

(Mitraki 1989; Wetzel 1994; Booth et al. 1997; Jiang et al. 2001; Nicholson et al. 2002).

The processes that lead to loss of solubility and aggregation of crystallins are less well

understood. In contrast to the aggregation mechanisms of some other protein deposition

diseases, cataract is likely related to an unfolding and not a folding defect. The rare

inherited juvenile-onset cataracts associated with mutations of HyD-Crys are caused by

crystallization and intermolecular disulfide bonding of the native state molecules (Pande

et al. 2000; Pande et al. 2001). These mechanisms are unlikely to be related to those of

mature-onset cataract. Instead, aggregation in the aged lens is probably correlated with

destabilization of crystallin proteins. Covalent damage is profuse in the crystallins of

aged and cataractous lenses, presumably resulting from a lifetime exposure to UV and

oxidative stresses (Hoenders and Bloemendal 1983; Hanson et al. 1998; Hanson et al.

2000). This damage may generate partially unfolded species of crystallins that

polymerize through domain swapping, loop-sheet insertion or another unknown

mechanism. Though many of the damaged molecules may be bound by a-crystallin, this

process appears to break down or become saturated in older adults.

Previous analysis of the unfolding and refolding of HyD-Crys in guanidine

hydrochloride (GuHCl) identified an in vitro aggregation pathway that may provide a

model of crystallin aggregation (Kosinski-Collins and King 2003). The aggregate formed

from partially folded species after refolding to concentrations of GuHCl less than 1.0 M.

The aggregated protein had ordered morphology resembling polymerized states of

globular subunits as seen by atomic force microscopy (Kosinski-Collins and King 2003).

Subsequent experiments determined that the C-terminal domain (C-td) of HyD-Crys was

more stable than the N-terminal domain (N-td) and the C-td acquired structure more

rapidly during kinetic refolding (Kosinski-Collins et al. 2004). These results suggest that

the domain interface of HyD-Crys may play a key role in folding and stability.
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In this study we analyze the role of the hydrophobic domain interface cluster in

folding and stability. Single alanine substitutions of these residues were constructed and

the mutant proteins were analyzed for alterations in stability or refolding kinetics. The

majority of the mutations affect both thermodynamic unfolding/refolding properties and

kinetic refolding properties suggesting that the hydrophobic cluster contributes to

stability and acts as a nucleus for domain refolding.

C. MATERIALS AND METHODS

1. Mutagenesis, expression and purification of recombinant HyD-Crys

Alanine substitutions of residues Met43, Phe56, Ile81, Vall32, Leul45, and

Val 70 were constructed using PCR-based site-directed mutagenesis. Primers encoding

the site-specific alanine substitutions (IDT-DNA) were used to amplify a pQE. 1 plasmid

encoding the HyD-Crys gene with an N-terminal 6-His tag (Kosinski-Collins et al. 2004).

All resulting plasmids were sequenced to verify the substitutions and to ensure no

additional mutations were present (Massachusetts General Hospital).

Recombinant wild-type and mutant HyD-Crys proteins were expressed and

purified as described by Kosinski-Collins et al. (2004). Briefly, proteins were expressed

in E. coli and cell lysates were purified to over 98% homogeneity by affinity

chromatography with a Ni-NTA resin (Qiagen).

2. Circular dichroism spectroscopy

CD spectra of the purified proteins were collected with an AVIV model 202 CD

spectrometer (Lakewood, NJ). Proteins were present in concentrations of 100 gg/ml for

far-UV CD and 300 ig/ml for near-UV CD. Protein concentrations were determined by

absorbance at 280 nm using an extinction coefficient of 41,040 cm-' M-1 for wild type and

mutant His-tagged proteins. All samples contained 10 mM sodium phosphate, 5 mM
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DTT, 1 mM EDTA, pH 7.0. The buffer signal was subtracted from all spectra. Spectra

were collected from 200 to 260 nm to monitor secondary structure and from 260 to 340

nm to monitor tertiary structure. An internal Peltier thermo-electric temperature

controller was used to maintain the temperature at 37°C.

3. Fluorescence emission spectroscopy

Fluorescence emission spectra were recorded with a Hitachi F-4500 fluorimeter.

Intrinsic tryptophan fluorescence was measured using an excitation wavelength of 295

nm and monitoring emission from 310 to 400 nm. A slitwidth of 10 nm was used for

both excitation and emission. All samples contained 10 g/ml purified protein in 10 mM

sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0, and 5.5 M GuHCl where

appropriate. Emission spectra were corrected for the buffer signal. A circulating water

bath was used to maintain the temperature at 37°C.

4. Equilibrium unfolding and refolding

Equilibrium unfolding experiments were performed by diluting purified proteins

to 10 gg/ml in 0 to 5.5 M GuHCl (purchased as an 8.0 M solution from Sigma-Adlrich,

Saint Louis, MO). All unfolding samples contained 10 mM sodium phosphate, 5 mM

DTT, and 1 mM EDTA, pH 7.0. Unfolding samples were incubated at 37°C for 24 hours

to ensure equilibrium had been reached.

Equilibrium refolding experiments were carried out by initially preparing

unfolded stock solutions of 100 gg/ml purified protein in 5.5 M GuHCl. The unfolded

stock solutions were incubated at 37°C for five hours. The unfolded stocks were then

diluted into refolding samples to give a final protein concentration of 10 gg/ml.

Refolding samples contained 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH

7.0, and GuHCl from 0.55 to 5.5 M. The refolding samples were allowed to reach

equilibrium by incubation at 37°C for 24 hours.

Fluorescence emission spectra were recorded for each unfolding and refolding

sample using a Hitachi F-4500 fluorimeter as described above. The concentration of
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GuHCl in the unfolding/refolding samples was determined by measuring the refractive

index. Data was analyzed by plotting the concentration of GuHCl for each sample versus

the ratio of fluorescence intensities at 360 and 320 nm (FI 360/320 nm). All data were

plotted from 0 to 5.0 M GuHCl, instead of 5.5 M GuHCl to improve visual clarity of the

transitions. Equilibrium unfolding/refolding experiments of the wild-type and mutant

proteins were performed three times each.

Equilibrium unfolding and refolding data were fit to a two-state model by the

methods of (Greene and Pace 1974), or a three-state model by the methods of (Clark et al.

1993) using the curve fitting feature of Kaleidagraph (Synergy software). The model that

best fit the data was selected based on a random distribution of residuals. Transition

midpoints, AGH20 and m-values were calculated for all transitions from these fits.

5. Productive refolding kinetics

Kinetic refolding experiments were carried out by diluting purified proteins to

100 gg/ml in 5.5 M GuHCI. The solutions were unfolded by incubation at 37°C for five

hours. Refolding buffer containing 10 mM sodium phosphate, 5 mM DTT, and 1 mM

EDTA, pH 7.0 was equilibrated to 37°C with stirring. Fluorescence emission of the

refolding buffer was continually monitored in a Hitachi F-4500 fluorimeter using an

excitation wavelength of 295 nm and an emission wavelength of 350 nm. Unfolded

stocks were diluted into the refolding buffer using a syringe port injection system to give

a final protein concentration of 10 gg/ml in 1.0 M GuHCl. Fluorescence emission of the

refolding sample was monitored at 350 nm for three hours. The fluorescence emission

spectra of resulting refolded samples were measured to ensure that the proteins had

refolded into a native-like conformation. Kinetic refolding data were fit to one, two and

three exponentials using the curve fitting feature of Kaleidagraph (Synergy software).

The model with the best fit was determined by inspection. Kinetic refolding experiments

of the wild-type and mutant proteins were performed two times each.
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D. RESULTS

1. Protein expression and purification

Single alanine substitutions of the six hydrophobic domain interface residues of

HyD-Crys were constructed using PCR-based primer extension. The mutant proteins

were expressed at 37°C and purified by Ni-NTA affinity chromatography. Expression

levels of all mutant proteins were comparable to wild type. The mutants behaved

similarly to wild type during purification and were present in the soluble fraction after

cell lysis. All proteins purified to greater than 98% homogeneity as determined by SDS-

PAGE (Data not shown).

The proteins used in this study possessed an N-terminal His-tag of the sequence

MKHHHHHHQ to aid in purification. Previous analysis of wild-type HyD-Crys with

and without the His-tag confirmed that the exogenous peptide did not perceptibly alter

the structure of the native state or the thermodynamic and kinetic unfolding/refolding

properties (Kosinski-Collins and King 2003; Kosinski-Collins et al. 2004).

2. Circular dichroism andfluorescence spectroscopy

Circular dichroism (CD) and fluorescence emission spectroscopy were used to

analyze the native state structures of hydrophobic domain interface mutants. The far-UV

CD of wild-type HyD-Crys displayed a strong minimum at 218 nm in accord with

previous results (Andley et al. 1996; Pande et al. 2000). All hydrophobic domain

interface mutants had analogous spectra with a minimum at 218 nm suggesting similar 3-

sheet content as wild type (Fig. 2-2). These results indicate that the overall secondary

structure content of the mutant proteins was similar to wild-type HyD-Crys. Despite the

fact that the structures of the mutant proteins appeared to be similar to wild type, dynamic

properties of the proteins may have been altered. This phenomenon has been previously

observed in a mutational study of bovine pancreatic trypsin inhibitor (Beeser et al. 1997).

The hydrophobic domain interface mutants could have had altered domain pairing not
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detected by far-UV CD. The near-UV CD spectra of wild-type HyD-Crys and all mutant

proteins superimposed suggesting similar aromatic environments (data not shown).

Fluorescence emission spectroscopy was used to further probe the environment of

aromatic amino acids in wild-type and mutant HyD-Crys. HyD-Crys has four tryptophan

residues, two per domain, buried in the hydrophobic cores of the two domains.

Additionally, HyD-Crys has 14 tyrosines, many of which are surface-exposed. All

fluorescence experiments performed here use an excitation wavelength of 295 nm to

selectively excite the buried tryptophans and thus probe conformation of the domain

cores. Wild-type HyD-Crys displayed a native-state emission maximum of 325 nm and

an unfolded maximum of approximately 350 nm (Fig. 2-3). The fluorescence emission

intensity increased upon unfolding indicating that the tryptophans were quenched in the

native fold (Fig. 2-3). This phenomenon has been previously described for several of the

J3- and y-crystallins (Kim et al. 2002; Bateman et al. 2003; Kosinski-Collins et al. 2004).

Tryptophan emission of domain interface mutants was measured in an analogous

method as wild-type HyD-Crys. All mutant proteins displayed a native emission

maximum of 325 nm and an unfolded maximum of about 350 nm (Fig. 2-3).

Fluorescence emissions of all proteins were quenched in the native state (data not

shown). These results suggest that the hydrophobic domain interface mutations did not

disrupt the structure of the native state buried hydrophobic cores. Similar to the CD

measurements described above, tryptophan fluorescence of HyD-Crys would not report

altered domain pairing.
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Figure 2-2. Far-UV CD of wild-type (d), M43A (),
F56A (v), I81A (), V132A (), L145A () and V170A ( )
HyD-Crys. Samples contained 100 gg/ml protein in
10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA,
pH 7.0 at 37 C. A 0.25 cm pathlength cuvette was used
for all measurements. All spectra were corrected for
background buffer signal.
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Figure 2-3. A) Fluorescence spectroscopy of native () and unfolded (o)
wild-type HyD-Crys, and native N-terminal domain mutants M43A (),
F56A (v), and 81A (). B) Fluorescence spectroscopy of native () and
unfolded () wild-type HyD-Crys, and C-terminal domain mutants
V132A (), L145A () and V170A (). Protein was present at 10 tg/ml
protein in 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0,
and GuHC where appropriate at 37 C. All spectra were corrected for
background buffer signal.
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3. Equilibrium unfolding and refolding of wild type

In order to assess the stability of the wild-type and mutant proteins, equilibrium

unfolding/refolding experiments were performed. Tryptophan emission was used to

probe the conformation of the domains using GuHCl as a denaturant at 37°C, pH 7.0. To

best assess the shape of the transitions, a ratio of fluorescence intensities at 360 and 320

nm (FI 360/320 nm) was plotted as a function of GuHCl concentration.

Equilibrium unfolding/refolding of wild-type HyD-Crys has been previously

investigated (Kosinski-Collins and King 2003). The unfolding and refolding samples in

this earlier investigation were allowed to equilibrate at 25°C or 37°C for six hours prior

to measuring fluorescence emission. The transitions were best fit to a two-state model

for both temperatures. At 25°C the unfolding and refolding transitions exhibited

significant hysteresis. The unfolding transition had a midpoint of 3.7 M GuHCl while the

refolding transition had a midpoint of 2.7 M GuHCl. In contrast, at 37°C the two

transitions deviated only slightly and both had midpoints of-2.7 M GuHCl (Kosinski-

Collins and King 2003). These observations suggested that structural transformations

were controlled by a high kinetic barrier. Given that the unfolding transition but not the

refolding transition changed with temperature, the kinetically controlled step was likely

on the unfolding pathway.

In order to test for the presence of a high kinetic barrier to unfolding, we extended

the equilibration time for all unfolding and refolding samples to 24 hours. No hysteresis

was evident between the unfolding and refolding transitions of wild-type HyD-Crys at

these extended equilibration times (Fig. 2-4). Additionally, the increased times caused a

shift in the location of the unfolding transition only. This further confirms the presence

of a high kinetic barrier during unfolding. The molecular basis of the hysteresis is a

subject of current investigations.
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Compared to the data collected with a six hour equilibration time, the 24 hour

unfolding data exhibited a decreased slope in the transition region possibly reflecting

reduced cooperativity of the reaction. The m-value for a two-state fit of six hour data

was 3.6 + 0.1 while an m value of 2.7 + 0.1 was calculated for a two-state fit of 24 hour

data. This change may suggest an unfolding/refolding mechanism for the 24 hour data

that is more complicated than the two-state model previously employed. To test this,

equilibrium unfolding/refolding transitions of wild-type HyD-Crys were fit to both a two-

and three-state model and residuals of the fit were calculated (Fig. 2-4). The two-state

model assumes direct transition between the native and unfolded states, while a three-

state model allows for population of a partially folded intermediate. When fit to a two-

state model the unfolding/refolding transitions had midpoints of 2.8 M GuHCl (Fig. 2-

4A). By visual examination, the two-state fit appeared to be valid; however, the residuals

displayed a semi-regular pattern, especially in the region of 2 to 3 M GuHCl (Fig. 2-4A).

In contrast, fitting to a three-state model yielded a midpoint of 2.15 M for a transition

from native to partially folded intermediate and a midpoint of 2.8 M GuHCl for an

intermediate to unfolded transition (Fig. 2-4B). The residuals for the three-state fit had

an overall lower magnitude and a more random arrangement than those of the two-state

fit (Fig. 2-4B). This observation was reproducible in all three iterations of the

experiment.

The three-state fit of the equilibrium unfolding data suggested that an

intermediate was populated in the region of 2.5 M GuHCl. Given that the two-state fit

was particularly poor in this region, it is likely that a three-state model is a better

description of the data. The two transitions may correspond to independent

unfolding/refolding of the two domains. These results along with apparent AGH2o and m

values calculated for the transitions are reported in Table 2-1.
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Figure 2-4. Equilibrium unfolding (closed symbols) and refolding
(open symbols) of wild-type HyD-Crys in GuHCI probed by fluorescence
emission. (A) The solid black line represents a two-state fit of equilibrium
unfolding data. Residuals of the fit are shown. (B) Equilibrium unfolding
data fit to a three-state model (solid black line), including residuals of the
fit. Fluorescence spectra were recorded for each sample using an excitation
wavelength of 295 nm. Fluorescence intensity at 360/320 nm was used in
order to simultaneously monitor changes in the unfolding and native maxima.
Samples were allowed to equilibrate in GuHCl at 37°C for 24 hours prior to
recording fluorescence emission spectra. By inspection, both fits appear
suitable; however, residuals of the three-state fit are of lower magnitude and
more random than those of the two-state fit. This observation along with
other factors described in the text suggests that the three-state fit is a better
description of the data.
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4. In vitro aggregation

Consistent with previous results, wild-type HyD-Crys aggregated upon rapid

refolding out of 5.5 M GuHCl (Kosinski-Collins and King 2003). A native-like

conformation was attained when refolded to 1.0-1.8 M GuHCl. However, refolding to

less than 1.0 M GuHCl resulted in the accumulation of a high molecular weight

aggregate. This was seen as a sharp increase in FI 360/320 nm due to right angle light

scattering by the aggregate (Fig. 2-4). Association by intermolecular disulfide bonding

was prevented by inclusion of 5 mM DTT in all refolding samples.

Previous experiments investigated the morphology of the aggregate using atomic

force microscopy. The aggregate adopted a fibrillar structure which did not bind Congo

red or thioflavin T (Kosinski-Collins and King 2003). Previous results also indicate that

the levels of aggregation are consistent over a range of incubation times from 3 to 41

hours (Kosinski-Collins and King, 2003). The levels of aggregation seen here with a 24

hour incubation time were also consistent with those previously reported. Therefore, the

effect of the increased incubation time was restricted to a change in the position of the

unfolding transition.

All hydrophobic domain interface mutant chains also aggregated upon rapid

refolding to less than 1.0 M GuHCl. As with wild type, a sharp increase in FI 360/320

nm values on equilibrium refolding traces was due to light scattering by the aggregate

(Figs. 2-5 and 2-6). Since the scattering would mask the presence of productively folded

chains, the presence of native-like protein in aggregation samples was tested after

centrifugation at 12,000 rpm. The soluble protein remaining after centrifugation

displayed fluorescence emission spectra consistent with the native state spectra of the

mutants (data not shown). Therefore, these mutant proteins exhibit partitioning between

productive refolding and aggregation as previously described for wild type (Kosinski-

Collins and King 2003).
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5. Equilibrium unfolding and refolding of N-terminal domain mutants

The amino acids from the N-td that contribute to the interface hydrophobic cluster

are Met43, Phe56 and Ile81 (Fig. 2-1). Equilibrium unfolding/refolding analyses of the

single alanine substitution mutants of these residues were performed in a manner

analogous to that used for wild-type HyD-Crys. It was possible to fit the equilibrium

unfolding/refolding of M43A with both a two- and a three-state model (Fig. 2-5). The

two-state fit yielded midpoints of 2.8 M GuHCl for both transitions. The three-state fit

yielded midpoints of 2.2 M GuHCl for the first transition and 2.9 M GuHCl for the

second transition (Table 2-1). Similar to wild-type HyD-Crys, the residuals of the three-

state fit were more random and of lower magnitude suggesting that the three-state model

is a better representation of the data (data not shown). Assuming a three-state

mechanism, the mutation had minimal effect on both the native to intermediate and

intermediate to unfolded transitions.

The equilibrium unfolding/refolding transitions of F56A were significantly

different from wild type (Fig 2-5). A noticeable plateau was present in the transition

region from approximately 2.0 to 2.3 M GuHCl suggesting greater population of the

partially folded intermediate. The intermediate species had a fluorescence signal that was

distinct from that of the native and unfolded conformations (Fig 2-5). Equilibrium

unfolding/refolding data were best fit to a three-state model with transition midpoints of

1.6 and 2.9 M GuHCl for the first and second transitions, respectively (Table 2-1).

Similar to F56A, the mutant I81A also displayed a plateau from 2.0 to 2.3 M

GuHCl where the fluorescence emission spectrum was different from both the native and

unfolded states (Fig. 2-5). The unfolding/refolding transitions were best fit to a three-

state model with a transition midpoint of 1.5 M GuHCl for the transition from native to

intermediate and a midpoint of 2.9 M GuHCl for the intermediate to unfolded transition

(Table 2-1).
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Figure 2-5. Equilibrium unfolding (closed symbols) and refolding (open
symbols) ofthe N-terminal domain mutants M43A (), F56A (), and
I81A (L) as probed by fluorescence emission. Protein was present at
10 jg/ml in 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0
and GuHCI from 0 to 5.5 M. All samples were allowed to equilibrate for
24 hours at 37°C before recording fluorescence emission. Data was
analyzed by fluorescence intensity at 360/320 nm using an excitation
wavelength of 295 nm. Transitions for all mutants were best fit by a three-
state model.
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6. Equilibrium unfolding and refolding of C-terminal domain mutants

The amino acids of the C-td that participate in the interface hydrophobic cluster

are Val132, Leul45 and Vall70 (Fig. 2-1). The mutant protein V132A displayed

transitions similar to those described for F56A and I81A above (Fig. 2-6). The

unfolding/refolding transitions were best fit to a three-state model with a partially folded

intermediate populated in the region of 2.3 M GuHCl. A transition midpoint of 1.3 M

GuHC1 was calculated for the native to intermediate transition and a midpoint of 2.5 M

GuHCl was calculated for the intermediate to unfolded transitions, respectively (Table 2-

1).

Equilibrium unfolding/refolding of L145A also displayed a three-state transition

where the intermediate was populated at 2.3 M GuHCl (Fig. 2-6). The native to

intermediate transition had a midpoint of 1.6 M GuHC1 and the intermediate to unfolded

transition had a midpoint of 2.6 M GuHCl (Table 2-1). The partially folded intermediate

had a unique fluorescence spectrum similar to the intermediate conformation populated

by all other domain interface mutants (data not shown).

The equilibrium unfolding/refolding transitions of V170A were best fit to a two-

state transition with a random pattern of residuals (Fig. 2-6). The two transitions overlaid

identically and displayed transition midpoints of 2.5 M GuHCl (Table 2-1). Unlike wild

type and M43A, it was not possible to fit the transitions of V170A to a three-state model.

However, it is not possible to rule out a three-state mechanism based on this observation

alone. Further analysis will be performed to elucidate the unfolding/refolding mechanism

of this mutant.
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Figure 2-6. Equilibrium unfolding (closed symbols) and refolding (open symbols)
of the C-terminal domain mutants V132A (), L145A () and V170A (e).
Fluorescence spectroscopy was used to probe the solvent accessibility of tryptophans
in each sample using an excitation wavelength of 295 nm. Data was analyzed by
fluorescence intensity at 360/320 nm. Protein was present at 10 g/ml in 10 mM
sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0 and GuHCl from 0 to 5.5 M.
Samples were incubated at 37°C for 24 hours prior to measuring fluorescence emission.
Transitions of all mutants, except V170A, were best fit by a three-state model. The
transitions of V170A were best by a two-state model.
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7. Productive refolding kinetics of wild type

In order to assess the role of hydrophobic domain interface residues in kinetic

refolding, structural transformations of the mutant proteins were monitored over time

using fluorescence as a probe of conformation. To allow for comparison, these

experiments were performed similarly to our previous analyses of kinetic refolding of

HyD-Crys (Kosinski-Collins et al. 2004). Unfolded proteins were diluted from 5.5 to 1.0

M GuHCl and the decrease in fluorescence intensity at 350 nm was monitored to follow

burial of tryptophan residues. A syringe injection port was used instead of a stopped-

flow apparatus since the major structural transformations of HyD-Crys occur on a second

timescale (Kosinski-Collins et al. 2004). These experiments did not address folding

intermediates that may have been populated on a sub-second timescale.

Previous analysis of wild-type HyD-Crys showed that refolding kinetics were best

fit to two exponentials suggesting an intermediate was populated on the kinetic refolding

pathway (Kosinski-Collins and King 2003; Kosinski-Collins et al. 2004). The partially

folded intermediate was more fluorescent than the native state and less fluorescent than

the unfolded state at 350 nm. The transition from unfolded to intermediate occurred with

a half-time (ta/2) of 15 seconds and the transition from intermediate to native occurred

with a t1/2 of 190 seconds (Kosinski-Collins et al. 2004).

Triple tryptophan mutant proteins were used to further analyze the structural

transformations corresponding to the two kinetic fits of wild-type HyD-Crys (Kosinski-

Collins et al. 2004). As mentioned previously, wild-type HyD-Crys has four intrinsic

tryptophans, two per domain, buried in the hydrophobic cores. Triple tryptophan mutants

were constructed where three of the endogenous tryptophans were substituted with

phenylalanines. The four mutant proteins retained one endogenous tryptophan so that

unfolding/refolding of the N-td and C-td could be followed independently of each other.

This technique has been previously employed to elucidate the folding pathways of

cellular retinoic acid binding protein I and phosphoglycerate kinase (Beechem et al.

1995; Sherman et al. 1995; Clark et al. 1998).

Kinetic refolding of mutant proteins retaining a tryptophan in the C-td were best

fit to a three-state model (two exponentials) with ti/2 values of 30 seconds for the first
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transition and 150-300 seconds for the second transition. In contrast, kinetic refolding

of mutant proteins retaining a tryptophan in the N-td were best fit to a two-state model

with t1,2 values of approximately 200 seconds. This data suggests that tryptophans in the

C-td were buried first, followed by burial of tryptophans in the N-td.

Productive refolding experiments of wild-type HyD-Crys were repeated here to

ensure the measurements were comparable to those reported previously. Kinetic

refolding of wild type was best fit by two exponentials where a partially folded

intermediate (I) was populated on the productive refolding pathway (Figs. 2-7 and 2-8).

ki k2

Denatured - [I] - Native

In excellent agreement with previous results, a tm/2 of 15 seconds was calculated for the

transition from unfolded to intermediate and a t1/2 of 190 seconds was calculated for the

transition from intermediate to native (Kosinski-Collins et al. 2004). The kinetic

refolding parameters calculated for wild-type and mutant HyD-Crys are reported in Table

2-2.

Productive kinetic refolding experiments were performed on interface mutants in

a manner analogous to that described for wild-type HyD-Crys. Kinetic refolding curves

for all mutant proteins were best fit to two exponentials. The kinetic fits in the early part

of the curve were not particularly good (data not shown). While the fits were improved

with the inclusion of additional exponentials, it was unclear whether these additional

variables represented actual intermediates or were due to experimental, instrumental or

human error. From the triple tryptophan studies, the spectroscopic changes during kinetic

refolding of wild-type HyD-Crys were shown to correspond to sequential domain

refolding (Kosinski-Collins and King 2003). Since fitting the data to two exponentials

yielded phases that could be defined in terms of major structural transformations,

discussion of the refolding kinetics has been limited to these clearly defined

intermediates.
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Table 2-2. Kinetic refolding parameters for wild-type and mutant HyD-Crys.

Protein kl (seconds' l) t1a (seconds) k2 (seconds' l) t/2 (seconds)

Wild type 0.048 0.001 15 + 1 0.0037 + 0.0001 190 + 10

M43A 0.009 0.001 79 + 8 0.0004 0.0001 1700 + 20

F56A 0.030 0.002 23 + 1 0.0002 + 0.0001 2700 + 320

I81A 0.034 + 0.001 21 + 1 0.0003 + 0.0001 2100 + 80

V132A 0.016 + 0.002 45 + 6 0.0005 +± 0.0001 1400 + 80

L145A 0.014 + 0.001 52 + 5 0.0004 + 0.0001 1600 + 240

V170A 0.018+0.001 38+ 1 0.0026+0.0004 300+50

8. Productive refolding kinetics of N-terminal domain mutants

Kinetic refolding of the mutant protein M43A was best fit by a three-state model

(two exponentials) suggesting the population of a partially folded intermediate similar to

wild type (Fig. 2-7). Upon dilution out of GuHCl, the fluorescence intensity of M43A at

350 nm rapidly decreased with a tm/2 of 79 seconds (Table 2-1). This change presumably

corresponded to a transition from the unfolded to intermediate state. The t2 value for

M43A was less than that calculated for the first transition of wild-type HyD-Crys. After

the initial phase, a slower decrease in fluorescence was observed with a t2 of 1700

seconds. This loss of fluorescence correlated with a transition from the intermediate to

the native state. The t2 value for M43A differed by an order of magnitude from that

calculated for the second transition of wild type.

Kinetic refolding of F56A was also best fit by a three-state model. An initial

rapid decrease in fluorescence intensity with a tl 2 of 23 seconds was followed by a

slower decrease in fluorescence with a tlj2 of 2700 seconds (Fig. 2-7). By inspection, the

transition from unfolded to intermediate for F56A was indistinguishable from that of wild

82



type and had a tl/2 value similar to that calculated for wild type. In contrast, the second

transition from intermediate to native did not overlay with wild type and had a t/ 2 value

more than 14 times greater.

I81A also underwent kinetic refolding that was best described by two

exponentials. An initial rapid decrease in fluorescence occurred with a tj/2 of 21 seconds

and was followed by a slower phase that occurred with a tj 2 of 2100 seconds (Fig. 2-7).

Similar to the results described for M43A and F56A, the transition from unfolded to

intermediate was indistinguishable from wild type while the rate of transition from

intermediate to native was significantly reduced.

9. Productive refolding kinetics of C-terminal domain mutants

Productive refolding kinetics of the mutant protein V132A were best fit to a three-

state model (Fig. 2-8). The initial rapid decrease in fluorescence occurred with a tj/2 of 45

seconds (Table 2-2). This value differs slightly from that calculated for wild-type HyD-

Crys but is still within the same order of magnitude. In contrast, the rate of transition

from intermediate to native was greatly reduced compared to that of wild type. The

second transition of V132A occurred with a t/ 2 of 1400 seconds (Table 2-2).

Kinetic refolding of L145A proceeded in a manner identically to that described

for V132A and was best fit to a three-state model (Fig. 2-8). The first transition had a t 2

of 52 seconds and the second transition a t/ 2 of 1600 seconds. The tl/2 value for unfolded

to intermediate was similar to that for wild type while the t 2 value for intermediate to

native was appreciably larger (Table 2-2).

Of all mutants examined here, refolding kinetics of V170A were the most similar

to wild-type HyD-Crys. Changes in fluorescence intensity at 350 nm during refolding

overlaid that of wild type almost identically (Fig. 2-8). The initial transformation from

unfolded to intermediate occurred with a t2 of 38 seconds and the second transition to

native occurred with a t/ 2 of 300 seconds (Table 2-2).
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Figure 2-7. Productive kinetic refolding of wild-type () HyD-Crys and N-terminal
domain mutants M43A (), F56A (v), and I81A (). Black lines represent data points
taken every 1 second with symbols included for ease of viewing. Fluorescence
emissions were normalized for ease of viewing and comparison. Wild-type and
mutants proteins were initially unfolded for three hours at a concentration of 100 gg/ml
in 5.5 M GuHCI, 37 C. Refolding was initiated by dilution of unfolded proteins into
10 mM sodium phosphate, 5 mM DTT, and 1 mM EDTA, pH 7.0 using a syringe
injection port. The final concentration of GuHCl in refolding samples was 1.0 M and
the final protein concentration was 10 jLg/ml. The temperature was maintained at 37°C
during refolding using a circulating water bath. Refolding was monitored by changes
in fluorescence emission at 350 nm for three hours. The data were fit to two
exponentials to calculate rate constants. Fits were improved by inclusion of additional
exponentials; however, it was unclear whether these additional variables actually
represented population of further intermediates.
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Figure 2-8. Productive kinetic refolding of wild type () HyD-Crys and C-terminal
domain mutants V132A (), L145A (A) and V170A (e). Black lines represent data points
taken every 1 second with symbols included for ease of viewing. Fluorescence emissions
were normalized for ease of viewing and comparison. The proteins were first unfolded at
100 gg/ml in 5.5 M GuHCl, 37 C for three hours. Refolding was initiated by dilution of
unfolded proteins into 10 mM sodium phosphate, 5 mM DTT, and 1 mM EDTA, pH 7.0
using a syringe injection port, to give a final concentration of 1.0 M GuHCl and 10 pig/ml
protein. Structural changes during refolding were monitored by changes in fluorescence
emission at 350 nm for three hours. The temperature was maintained at 37°C during
refolding using a circulating water bath. The data were fit to two exponentials to
calculate rate constants. Inclusion of extra exponentials improved the fits. It was not
possible to determine if the extra exponentials characterized the genuine population of
further intermediates.
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E. DISCUSSION

HyD-Crys is two-domain protein of the eye lens that must remain stable for an

entire human lifetime without the possibility of regeneration. Along with other lens

crystallins, HyD-Crys is found in the insoluble aggregates associated with mature-onset

cataract. HyD-Crys is composed of two domains that share approximately 34%

sequence identity and adopt highly similar, primarily P-sheet folds (Fig. 2-1). The two

domain nature of HyD-Crys and the other - and y-crystallins is hypothesized to have

arisen from a gene duplication event (Wistow et al. 1983).

The domains of HyD-Crys interact non-covalently through interdomain side chain

contacts forming two structurally distinct regions (Basak et al. 2003). These include a

highly conserved hydrophobic cluster of Met43, Phe56, Ile81, Val132, Leul45, and

Vall70 and polar peripheral pairwise interactions between Gln54/Gln143 and

Arg79/Metl47 (Fig. 2-1). The domain interface of HyD-Crys is relatively similar in

amino acid composition to domain interfaces of other proteins. Overall, the amino acid

composition of domain interfaces more closely resembles that of protein surfaces rather

than protein cores (Jones et al. 2000). However, hydrophobic residues are still highly

prevalent in both inter- and intra-chain domain interactions (Jones et al. 2000).

1. Differential domain stability of the f- and y-crystallins

Many of the - and y-crystallins studied to date exhibit differential domain

stability. Bovine yB-crystallin (ByB-Crys) displayed a three-state transition in urea at pH

2.0, 20°C (Mayr et al. 1997). At pH 2.0, the isolated N-td of ByB-Crys was much more

stable than the C-td presumably due to the abundance of positively charged residues on

the surface of the C-td at this acidic pH. At pH 7.0 the domains had similar stabilities

and equilibrium unfolding of the full-length protein was two-state (Mayr et al. 1997).

Bovine B2-crystallin also displayed differential domain stability (Wieligmann et al.

86



1999). The crystal structure of PB2-crystallin is a domain-swapped dimer where the N-td

of one monomer pairs with the C-td of the other (Bax et al. 1990). The isolated C-td of

bovine PB2-crystallin was significantly more stable than the isolated N-td (Wieligmann

et al. 1999).

Studies of triple tryptophan mutants of HyD-Crys suggest that the C-td is more

stable than the N-td (Kosinski-Collins et al. 2004). The transition midpoint of proteins

retaining tryptophans in the N-td was 1.3 M GuHCl while the midpoint of mutants

retaining tryptophans in the C-td was 2.0 M GuHCl. These data suggest that an

intermediate would be populated during equilibrium unfolding/refolding of the wild-type

protein. Previous analyses using an incubation time of six hours could not distinguish a

three-state transition for wild-type HyD-Crys (Kosinski-Collins and King 2003; Kosinski-

Collins et al. 2004). In the experiments described here, the incubation time was increased

to 24 hours which altered the equilibrium transition and eliminated the

unfolding/refolding hysteresis (Fig. 2-4). At these extended equilibration times, the

transition had reduced cooperativity which may reflect a more complex transition such as

would be expected for a three-state mechanism. When fit to a three-state model the first

transition had a midpoint of 2.2 M GuHCl and the second transition a midpoint of 2.8 M

GuHCl. Overall, the three-state model was a better description of the data than the two-

state model, especially in the region of 2.0 to 2.5 M GuHCl. From these observations, we

hypothesize that wild-type HyD-Crys populates a partially folded intermediate in

equilibrium unfolding/refolding experiments at approximately 2.3 M GuHCl. Based on

the stabilities of the domains elucidated by triple tryptophan mutants, we hypothesize that

these two transitions correspond to unfolding/refolding of the N-td (at lower

concentrations of GuHCl) and the C-td (at high concentrations of GuHCl). The transition

midpoints of triple tryptophan mutant proteins were considerably lower than these values

potentially due to loss destabilizing effects of the triple mutations.
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2. Domain interface interactions are crucialfor stability

Contribution of domain interface interactions to the stability of ByB-Crys has

been previously studied (Palme et al. 1997; Palme et al. 1998). The domain interface of

ByB-Crys is comprised of a central hydrophobic cluster including a phenylalanine at

position 56 and peripheral pairwise interactions (Wistow et al. 1983). Palme et al.

mutated Phe56 to alanine, aspartate or tryptophan and analyzed the effects on the

structure and stability of ByB-Crys in urea at pH 2 and 20 °C (1997; 1998). All proteins

displayed reduced stability of the C-td that varied with the mutation. Substitution with

aspartate or alanine resulted in considerable destabilization while substitution with

tryptophan had less of an affect (Palme et al. 1997). Domain core structures of the

mutants were indistinguishable from the wild-type protein and local structure around

residue 56 was unchanged (Palme et al. 1998). These results suggest that, despite the

destabilizing effects, the global structure of ByB-Crys was too rigid to adjust to the

altered size or hydrophobicity of the mutations.

Similar to the results described above for ByB-Crys, the hydrophobic domain

interface residues of HyD-Crys are also critical for stability. All mutants except V170A

were best fit to a three-state model where the first transitions likely corresponded to

unfolding/refolding of the N-td and the second transition to unfolding/refolding of the C-

td. According to this hypothesis, C-td unfolding/refolding for the mutants F56A, I81A,

V132A, and L145A, occurred with a midpoint between 2.5 and 2.9 M GuHCl. These

values are relatively similar to that calculated for the second transition of wild type (2.8

M GuHCl) further supporting a three-state mechanism for the wild-type protein.

Substitution of Met43, Phe56 and Ile81 from the N-td resulted in an increased midpoint

of 2.9 M GuHCl for transitions of the C-td. If the intermediate had a folded C-td and

unfolded N-td as hypothesized, interface residues from the N-td would not be expected to

stabilize the intermediate. Increased stability of the intermediate as is seen with M43A,

F56A and I81A may be due to a favorable decrease in solvent exposed hydrophobics

compared to wild type because of the alanine substitutions. In contrast, mutation of

Val132 and Leul45 resulted in decreased stability of the intermediate. The domain
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interface of the C-td is likely structured in the intermediate conformation. Consequently,

mutations that disrupt correct intra-domain hydrophobic packing would be expected to

decrease stability of the intermediate.

In contrast to the marginal affect on stability of the C-td, the N-td was

significantly destabilized by mutations of Phe56, Ile81, Vall31 and Leul45. For these

mutants, unfolding/refolding of the N-td occurred with a midpoint between 1.3 and 1.6 M

GuHCl (Table 2-1). These values were significantly lower than that calculated for the

first transition of wild type when fit to a three-state model (2.2 M GuHCl). Therefore,

mutation of residues located in the C-td affected stability of the N-td but not vice versa.

From these results we postulate that the stability of the N-td is dependent on correct

domain interface contacts while stability of the C-td is not enhanced by domain pairing.

Destabilization of the N-td resulted in population of the intermediate over a greater range

of GuHC1 concentrations than was seen for the wild-type protein.

Mutation of Met43 and Vall70 had significantly different effects on the stability

of HyD-Crys. The equilibrium unfolding/refolding transitions of M43A did not differ

dramatically from wild type, and had AGH20, mrn-values and transition midpoints very

similar to wild type. In contrast, the transitions of V170A were best fit to a two-state

model with midpoints of 2.5 M GuHC1. This may suggest that unfolding/refolding of

V170A occurs with a direct transition between the native and unfolded states. An

alternative interpretation is that the mutant did unfold/refold by a three-state mechanism,

but that the two transitions were not discernible. This may have been caused by a shift of

the first transition to higher concentrations of GuHCl or shift of the second transition to

lower concentrations of GuHCl. One of these phenomena or a combination of the two

would effectively merge the transitions. From comparison to the transitions of wild type,

we hypothesize that mutation ofVall70 had both effects described above. That is, the

first transition was stabilized relative to wild type and the second transition was

destabilized relative to wild type. Further experiments will be done determine which, if

either of these hypotheses can explain this data.
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3. Kinetic refolding pathway of HyD-Crys

We have previously studied the productive refolding pathway of HyD-Crys using

triple tryptophan mutant proteins (Kosinski-Collins et al. 2004). Previous investigations

of the 0- and y-crystallins analyzed behavior of the domains by studying polypeptides that

corresponded to isolated N- and C-td's of the proteins (Sharma et al. 1990; Mayr et al.

1994; Wieligmann et al. 1999; Wenk et al. 2000). This approach does not reveal

properties of the domains in context of the full-length proteins. This limitation has been

circumvented in our analysis of triple tryptophan mutants since we were able to

independently follow folding of the two domains while still maintaining a full-length

protein.

During kinetic refolding of HyD-Crys the tryptophans of the C-td were buried

before those of the N-td (Kosinski-Collins et al. 2004). These results suggest a

productive refolding pathway where the C-td refolds first followed by the N-td. Given

that the domain interface of HyD-Crys does not contain any fluorescent amino acids, it

was impossible to determine when the domain interface became structured in these

experiments.

Three simple models are illustrated in Figure 2-9 to describe the potential role of

domain interface residues in the sequential domain refolding pathway of HyD-Crys. In

the first model, the domain interface residues initially collapse and form a nucleating

center for refolding of the C-td and subsequently the N-td. If HyD-Crys refolded by this

first pathway, domain interface mutations would be expected to decrease the refolding

rates for both the C-td and the N-td. In the second model, the two domains refold

independently and subsequently come together to form interface contacts. Mutations of

domain interface residues would likely not reduce refolding rates of the N-td or the C-td
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in this model. In the third model, the C-td refolds first and the interface amino acids of

the C-td act as a nucleating center for refolding of the N-td. By this model, mutations of

domain interface residues would likely result in decreased rates for refolding of the N-td

only.

Kinetic refolding of all interface mutants was best fit to a three-state model

similar to wild type. Comparing these data to the triple tryptophan mutant data, it was

possible to correlate the two transitions to sequential refolding of the C-td and N-td

(Kosinski-Collins et al. 2004). Assuming that the domains of the mutant proteins

refolded in the same order as wild type, the mutants M43A, F56A, I81A, V132A, and

L145A all had similar t2 values for refolding of the C-td but greatly increased t,/2 values

for refolding of the N-td. These results suggested a productive refolding pathway

consistent with model three described above in which the interface residues of the

refolded C-td act as a nucleating center for refolding of the N-td (Fig. 2-9).

From the perspective of in vitro domain folding, a sequential nucleation-based folding

pathway as was exhibited by HyD-Crys may be considered detrimental for productive

folding. This is because sequential domain folding results in an increased lifetime of

partially folded intermediates that may partition into kinetically-trapped aggregates

(Jaenicke 1999). The single folded domain conformer populated during equilibrium and

kinetic unfolding/refolding experiments is an attractive target for the aggregation-prone

species in the in vitro aggregation pathway of HyD-Crys (Kosinski-Collins and King

2003; Kosinski-Collins et al. 2004).

91



Figure 2-9. Schematic diagram of three models to describe the role of the
domain interface during sequential domain refolding of wild-type HyD-Crys.
Model three was consistent with the data presented here. The C-td of
HyD-Crys refolded first, resulting in an intermediate that had an unpaired,
solvent-exposed domain interface. This surface likely acted as a nucleating
center for refolding of the N-td.
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4. Implications for understanding stability and oligomerization in the lens

In this investigation the hydrophobic domain interface residues were substituted

with alanine resulting in a loss of hydrophobic surface area. If residues of the cluster

contributed uniformly to stability by hydrophobic burial, differences in effects of the

mutations would be expected to correlate with buried accessible surface area of the wild-

type residue (Rose et al. 1985; Zhou and Zhou 2004). Greater accessible surface area

was buried for Phe56 than Val132, but the mutant protein V132A was more destabilized

than the mutant F56A. This indicates that the locations of the hydrophobic domain

interface residues are important in determining their role in stability and folding of HyD-

Crys. This may reflect different packing densities around the residues. Additionally,

unique identity and position of domain interface residues are thought to be important in

determining the oligomeric states of the - and y-crystallins (Hope et al. 1994; Mayr et al.

1994; Trinkl et al. 1994).

The two domain - and y-crystallins comprise over 50% of the protein in the lens

nucleus and adopt highly similar domain topology with domain interactions that are

predominated by a central hydrophobic cluster (Lapatto et al. 1991; Slingsby 1997;

Oyster 1999). Protein concentration in the lens nucleus is extremely high (200-400

mg/ml) necessitating precise control of folding and oligomerization in order to prevent

aberrant intermolecular associations. Due to the hydrophobic nature of the domain

interfaces and the ability of 1- and y-crystallins to adopt single folded domain

conformers, the domain interfaces may be regions of the molecules that are particularly

prone to incorrect protein-protein interactions. Given these factors, it is reasonable to

assume that the - and y-crystallins may have evolved for specificity of domain interface

residues in folding, stability and oligomerization in order to prevent incorrect domain

interactions in the crowded lens nucleus.
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5. Aggregation and cataract

It is currently unknown which conformations of crystallin proteins are the

aggregation-prone species that lead to cataract. Crystallins in the lens nucleus are subject

to a lifetime of oxidative and radiative stress. The crystallin proteins of both young and

old lenses are covalently damaged as a result of these insults (Hoenders and Bloemendal

1983; Hanson et al. 1998; Hanson et al. 2000). Covalent damage may result in

destabilization and partial unfolding into the aggregation-prone species that are

precursors to cataract formation. These partially folded species may be sequestered by a-

crystallin in order to prevent aggregation. In fact, it has been shown that partially

structured conformations of P3- and y-crystallins are capable of binding to a-crystallin in

vitro as a result of mutation or after exposure to heat (Lampi et al. 2002; Liang 2004;

Sathish et al. 2004). We are currently testing whether a-crystallin is able to bind the

single folded domain conformer of HyD-Crys described here. The age-onset nature of

non-congenital forms of cataract may reflect accumulation of sufficient levels of damage

to induce unfolding or saturation of a-crystallin.
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CHAPTER THREE:

INTER-DOMAIN SIDE CHAIN INTERACTIONS IN HUMAN yD

CRYSTALLIN INFLUENCING FOLDING AND STABILITY2

2 Reprinted from: Flaugh, S.L., Kosinski-Collins, M.S., and King, J. (2005) Interdomain

side chain interactions in human yD-crystallin influencing folding and stability. Protein
Sci. 14:2030-2043.
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A. ABSTRACT

Human yD crystallin (HyD-Crys) is a two domain, P-sheet eye lens protein that is

synthesized early in lens development and must remain soluble throughout life. Single

amino acid substitutions of HyD-Crys are associated with juvenile-onset cataracts.

Features of the interface between the two domains are conserved among y-crystallins, and

are likely important in folding and stability. The domain interface of HyD-Crys includes

a central hydrophobic cluster and two pairs of interacting residues peripheral to the

cluster, Gln54/Glnl43 above and Arg79/Metl47 below. We previously reported the

contribution of the hydrophobic cluster residues to protein stability (Flaugh et al. 2005a).

In this study, single and double alanine substitutions of the peripheral residues were

constructed to assess their contributions to folding and stability. Equilibrium

unfolding/refolding experiments at 37°C revealed a plateau in the transitions at 2.3 M

guanidine hydrochloride for the wild-type and mutant proteins, suggesting population of

a partially folded intermediate with a folded C-terminal domain (C-td) and unfolded N-

terminal domain (N-td). The N-td was destabilized by substituting residues from both

domains. In contrast, the C-td was not significantly affected by substitutions of either

domain. The Arg79/Metl47 pair did not display favorable interaction energy, while the

Gln54/Glnl43 pair had a small interaction energy of 0.7 kcal*mol1. We suggest that

these residues act as structural boundaries shielding the central hydrophobic cluster from

solvent. Refolding rates of the N-td were significantly decreased for mutants in both

domains. In contrast, refolding rates for the C-td of mutants from both domains were

similar to wild type. Therefore, domain interface residues of the folded C-td probably

nucleate refolding of the N-td. Glutamine and methionine side chains are among the

residues covalently damaged in aged and cataractous lenses. Damage to Gln54, Glnl43

or Metl47 may generate partially unfolded, aggregation-prone conformations of HyD-

Crys that could be significant in cataract.
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B. INTRODUCTION

The a-, [5- and y-crystallins are structural proteins of the vertebrate eye lens

whose solubility and stability are required to maintain eye lens transparency throughout

life. The [3- and y-crystallins act solely as structural proteins in the lens, while the a-

crystallins are related to small heat shock proteins and probably have an additional in situ

function as passive chaperones (Horwitz 1992; Boyle and Takemoto 1994). The a-

crystallin subunits associate in the lens to form polydisperse, high molecular weight

complexes (Haley et al. 1998; Aquilina et al. 2005).

Lens transparency is established via short-range ordering of natively folded

crystallins in the fibrous cells of the lens (Delaye and Tardieu 1983; Femrnald and Wright

1983). The protein concentration in these cells approaches 70% g/g wet weight, with the

crystallins accounting for over 90% of the total protein (Oyster 1999). The major mass of

crystallin proteins in the lens are expressed in utero, do not turnover during adulthood,

and thus must remain soluble and stable in the continued presence of environmental

stresses for a lifetime. The crystallins in aged and cataractous lenses are covalently

damaged, presumably as a result of age and exposure to radiative and oxidative stress

(Hoenders and Bloemendal 1983). Covalent damage found in the crystallins of aged and

cataractous lenses include non-native disulfide bonding, backbone cleavage, methionine

oxidation and glutamine and asparagine deamidation (Hanson et al. 1998; Lampi et al.

1998); (Ma et al. 1998; Hanson et al. 2000; Lampi et al. 2001); (Lampi et al. 2002;

Harms et al. 2004). The eye disease mature-onset cataract is associated with the

aggregation and condensation of such damaged crystallin proteins (Hoenders and

Bloemendal 1983).
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C-terminal domain N-terminal domain

Figure 3-1. The crystal structure of wild-type HyD-Crys (Basak et al. 2003)
shown in ribbon representation with the peripheral interface residues in
spacefill (PDB code IHKO).

98



The fry-crystallin superfamily comprises greater than 50% of the crystallins in the

vertebrate lens (Wistow et al. 1983; Slingsby 1997). Members of this superfamily exhibit

a conserved two-domain, primarily f3-sheet fold that likely arose from a gene duplication

event (Lubsen et al. 1988; Wistow and Piatigorsky 1988; Norledge et al. 1996). The

highly homologous N- and C-terminal domains are composed of two Greek key motifs

each and exhibit pseudo-2-fold pairing. The domains are covalently linked by a six to

eight amino acid linker and interact non-covalently through inter-domain side chain

contacts. The y-crystallins are monomeric, with the N- and C-terminal domains pairing

intra-molecularly, while the [I-crystallins associate into multimers (Wistow et al. 1983)

(Bax et al. 1990; Slingsby and Bateman 1990). For instance, bovine B2 crystallin forms

dimers by domain swapping where the N- and C-terminal domains pair in a similar

manner as in the y-crystallins, except that paring occurs between domains from different

subunits (Bax et al. 1990). Despite differences in oligomeric state, side chains that make

contact across the domain interfaces of the [3- and y-crystallins play a critical role in intra-

or inter-molecular domain interactions.

Human yD crystallin (HyD-Crys) is a monomeric, 173 amino acid protein and a

member of the [3y-crystallin superfamily. HyD-Crys is present at highest concentrations

in the lens nucleus, the region formed earliest in development. Mutations resulting in

single amino acid substitutions in HyD-Crys are associated in juvenile-onset cataract

(Stephan et al. 1999; Pande et al. 2001; Santhiya et al. 2002). The crystal structure of

HyD-Crys has been solved to 1.25 A resolution (Basak et al. 2003) and displays the Py-

crystallin superfamily's characteristic two-domain fold, with the domains interacting

intra-molecularly (Fig. 3-1). The two domains of HyD-Crys are covalently joined by an

extended six residue linker and the side chains of ten amino acids interact non-covalently

across the domain interface. Buried in the center of the interface is a hydrophobic cluster

of Met43, Phe56, and Ile81 from the N-terminal domain (N-td), and Val132, Leul45 and

Val 70 from the C-terminal domain (C-td). Additionally, there are pair wise interactions

on the periphery of the hydrophobic cluster between Gln54 (N-td) and Gln143 (C-td) at

the top of the interface, and Arg79 (N-td) and Metl47 (C-td) nearer to the linker peptide

(Fig. 3-1). These peripheral interactions flank the central hydrophobic cluster and
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appear to shield it from solvent. Chemical properties of the amino acids in these interface

positions are highly conserved among y-crystallins from diverse organisms suggesting

that they are critical for either folding, stability or solubility. An exception to this is

Metl47 in the human sequence, as most y-crystallins have an arginine in this position.

The amino acids Gln54, Gln143 and Metl47 are all potential sites of covalent damage in

aged lenses.

Folding and stability of the P- and y-crystallins have been extensively studied and

in general the y-crystallins display higher intrinsic stability than the -crystallins

(Bloemendal et al. 2004). During refolding, rat B2 crystallin, bovine yB crystallin

(ByB-Crys) and HyD-Crys display competing aggregation reactions (Rudolph et al. 1990;

Jaenicke 1999; Kosinski-Collins and King 2003). Aggregation may have also been

observed but not reported for other 1- and y-crystallins. The domain stability of several

13- and y-crystallins have also been studied both in the context of the full-length proteins

as well as in isolation (Rudolph et al. 1990; Sharma et al. 1990; Mayr et al. 1997;

Wieligmann et al. '1999). The domains of these proteins are often less stable in isolation

than when paired with their partner domain in the full-length proteins.

We previously investigated wild-type HyD-Crys unfolding/refolding in near-

physiological conditions (37°C, and phosphate buffer, pH 7.0) to best relate in vitro and

in vivo properties (Kosinski-Collins and King 2003; Kosinski-Collins et al. 2004; Flaugh

et al. 2005a). Refolding to concentrations of GuHCl below 1.0 M revealed an

aggregation pathway that competed with productive refolding, which may provide an in

vitro model for the involvement of HyD-Crys in cataract (Kosinski-Collins and King

2003). In productive kinetic refolding to 1.0 M GuHCl, HyD-Crys exhibited a sequential

domain refolding pathway (Fig. 3-2) where the C-td refolded first followed by the N-td

(Kosinski-Collins et al. 2004). Subsequently, a partially-folded intermediate was

detected in equilibrium unfolding/refolding experiments that likely had a folded C-td and

unfolded N-td (Flaugh et al. 2005a). Since partially folded species are often involved in

off-pathway aggregation, the single folded domain species is an attractive candidate for

the species that aggregates during refolding (Fig. 3-2).

100



N-terminal domain unfolded
C-terminal domain folded
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[ I?] Aggregate

Figure 3-2. A schematic illustration of the in vitro kinetic refolding pathway
of HyD-Crys. The C-td refolds first followed by the N-td (Kosinski-Collins et
al., 2004). The conformation of the aggregation-prone intermediate is currently
unknown, but may be related to the single folded domain conformer.

101

4-

L

U N



Given that the two domains of HyD-Crys refold sequentially and display

differential stability, association of the residues that make contact across the domain

interface may be critical in folding and stability. This has been confirmed by a

mutational study of hydrophobic domain interface residues of HyD-Crys (Flaugh et al.

2005a). Several site directed alanine mutants of the hydrophobic domain interface

residues displayed significantly reduced refolding rates for the N-td but not the C-td.

Additionally, these mutants also displayed reduced midpoints for unfolding/refolding of

the N-td (Flaugh et al. 2005a). Similarly, mutating domain interface residues of ByB-

Crys and human B1 crystallin (H3B 1-Crys) destabilizes the proteins (Palme et al. 1997;

Kim et al. 2002).

In this study we use site-specific mutagenesis to study the two pairs of peripheral

interface residues in HyD-Crys that flank the hydrophobic cluster, Gln54/Glnl43 and

Arg79/Metl47. Similar to results of the hydrophobic interface residues, substituting

these residues with alanine caused selective destabilization of the N-td and a decrease in

the rate of refolding for the N-td but not the C-td.

C. MATERIALS AND METHODS

1. Mutagenesis, expression andpurification of recombinant HyD-Crys

Site-directed single alanine substitutions of residues Gln54, Arg79, Glnl43, and

Metl47 were constructed using site-directed mutagenesis. Primers encoding the

respective alanine substitutions (IDT-DNA) were used to amplify a pQE. 1 plasmid

encoding the HyD-Crys gene with an N-terminal 6-His tag (Kosinski-Collins et al. 2004).

The double mutation Q54A/Q143A was constructed by using the primer encoding the

Q143A substitution to amplify the Q54A mutant plasmid. The double mutant

R79A/M147A was created in an analogous manner using the M147A primer with the

R79A plasmid. DNA sequencing of all constructs was performed to verify the

substitutions and to ensure no additional mutations were present (Massachusetts General

Hospital).
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Recombinant wild-type and mutant HyD-Crys proteins were prepared as

previously described (Kosinski-Collins et al. 2004). Briefly, proteins extracted from E.

coli cell lysates were purified to over 98% homogeneity by affinity chromatography with

a Ni-NTA resin (Qiagen).

2. Circular dichroism andfluorescence spectroscopy

CD spectra of recombinant mutant proteins were collected with an AVIV model

202 CD spectrometer (Lakewood, NJ) using a 0.25 cm pathlength cuvette. The

temperature was maintained at 37 °C with an internal Peltier thermo-electric temperature

controller. The buffer conditions for all experiments were 10 mM sodium phosphate, 5

mM DTT, 1 mM EDTA, pH 7.0. Protein was present at 100 ,ug/ml. Protein

concentrations were determined by absorbance at 280 nm using an extinction coefficient

of 41,040 cm-l M' l for wild type and mutant His-tagged proteins. Spectra were collected

from 200 to 260 nm to monitor secondary structure and the buffer signal was subtracted

from all spectra.

Fluorescence emission spectra were collected at 37 °C using a Hitachi F-4500

fluorimeter equipped with a circulating water bath to control temperature. Intrinsic

tryptophan fluorescence was measured in the range of 310 to 420 nm using an excitation

wavelength of 295 nm. All samples contained 10 tg/ml purified protein in 10 mM

sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0, and GuHCl where appropriate.

All spectra were corrected for the buffer baseline.

3. Equilibrium unfolding/refolding

Equilibrium unfolding experiments were carried out by diluting purified mutant

proteins to 10 ig/ml into increasing concentrations of GuHCl from 0 to 5.5 M (purchased

as an 8.0 M solution from Sigma-Aldrich, Saint Louis, MO). Buffer conditions for all

unfolding samples were 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0.

The unfolding samples were incubated at 37 °C for 24 hours, by which time equilibrium

had been reached.
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Equilibrium refolding experiments were carried out by initially preparing an

unfolded stock solution containing 100 gg/ml purified protein in 5.5 M GuHCl. The

unfolded stock solution was incubated at 37 °C for six hours and then diluted into

refolding buffer to a final protein concentration of 10 pg/ml. Refolding buffer contained

10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0, and GuHCl from 0.55 to

5.5 M. The refolding samples were allowed to reach equilibrium by incubation at 37 °C

for 24 hours.

Fluorescence emission spectra were recorded for all unfolding/refolding samples

using an excitation wavelength of 295 nm and monitoring emission from 310 to 420 nm.

GuHCl concentrations were determined by measuring the refractive indexes of all

samples. Data was analyzed by plotting concentration of GuHCl versus fluorescence

intensity at 360 nm divided by fluorescence intensity at 320 nm (FI 360/320 nm). The

ratio of fluorescence intensities at these wavelengths was chosen for the analysis in order

to simultaneously monitor changes in the native and unfolded maxima. Equilibrium

unfolding/refolding experiments were performed a minimum of three times for each

protein.

Equilibrium unfolding/refolding data were analyzed to determine transition

midpoints, AG° and m values by fitting to a three-state model using the method of Clark

et al. (1993) with the curve fitting feature of Kaleidagraph (Synergy software). Averages

and standard deviations were determined for the parameters of each protein from the fits

of three separate experiments.

All transitions were fit to a three-state model described by equations (2), (3) and

(4),

Y=((YN+SN*[GuHC])+(YI*K)+((Yu+Su*[GuHCl])*KI *K2))/(l +K1+K1 *K2) (2)

Kl=exp((ml*[GuHCl]-AGI)/(R*T)) (3)

K2=exp((m 2*[GuHCl]-AG 2)/(R*T)) (4)

where Y is the observed FI 360/320 nm signal, YN and Yu are the intercepts of the native

and unfolded baselines, SN and Su are the slopes of the native and unfolded baselines, and

Yi is the signal of the intermediate. Additionally, ml and AG1 are the m value and AG°
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for the native to intermediate transition and m2 and AG2 are the m value and AG° for the

intermediate to unfolded transition. T is temperature in Kelvin and R is the gas constant

in units of kcal*mol'l *K'.

4. Productive refolding kinetics

Kinetic refolding experiments were carried out by initially preparing unfolded

stock solutions of the mutant proteins at 100 gg/ml in 5.5 M GuHCl. The unfolded stock

solutions were incubated at 37 °C for three hours to ensure complete unfolding.

Refolding buffer containing 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0

was equilibrated at 37 °C. Unfolded protein was injected into refolding buffer using a

syringe port injection system to give a final protein concentration of 10 gg/ml. The

refolding samples were continuously excited at 295 nm and fluorescence emission

monitored at 350 nm for three hours. The fluorescence spectra of refolded samples were

subsequently measured to ensure that the proteins had refolded into a native-like

conformation. Kinetic refolding data were fit to one, two and three exponentials using

the curve fitting feature of Kaleidagraph (Synergy software) and the model with the best

fit was determined by inspection. Productive kinetic refolding experiments were

performed three times for each protein, from which and averages and standard deviations

were calculated for the fitted parameters.

D. RESULTS

1. Protein expression and purification

All of the proteins used in this study had an exogenous N-terminal peptide with

the sequence MKHHHHHHQ to aid in purification. Previous studies confirmed that the

addition of the His-tag did not perceptibly affect the structure of the native protein or its

thermodynamic or kinetic refolding properties (Kosinski-Collins and King 2003;

Kosinski-Collins et al. 2004).
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The mutant proteins expressed at levels comparable to wild type and behaved

similarly to wild type during purification. The proteins were found primarily in the

soluble fraction after cell lysis (greater than 90%) and were purified by Ni-NTA affinity

chromatography to greater than 98% homogeneity (data not shown). As described

further below, the proteins were in soluble native-like conformations. Thus, these

residues were not required for the in vivo folding of HyD-Crys in E. coli.

2. Circular dichroism andfluorescence spectroscopy

The structures of single and double alanine mutants of HyD-Crys were probed by

circular dichroism (CD) and fluorescence spectroscopy. In accord with previous results,

the far-UV CD spectrum of wild-type HyD-Crys at 37 °C was reminiscent of a primarily

P-sheet protein with a prominent minimum at 218 nm (Andley et al. 1996; Pande et al.

2000). The far UV-CD spectra of the single and double mutants, Q54A, and

R79A/M147A closely resembled that of wild-type HyD-Crys (Fig. 3-3A). In contrast, the

ellipticity intensities of Q143A, Q54A/Q143A, R79A and M147A differed slightly from

wild-type HyD-Crys and the other mutants. Despite the difference in intensity, the

minima of all proteins were indistinguishable. The discrepancy in intensity may reflect

disturbances of the domain interface or other structural rearrangements that do not

grossly disrupt overall -sheet content.

Fluorescence spectra of the wild-type and mutant proteins were measured using

an excitation wavelength of 295 nm with emission monitored from 310 to 420 nm.

Consistent with previous results, the spectrum of wild-type HyD-Crys had an emission

maximum of 325 nm (Kosinski-Collins and King 2003). The fluorescence spectra of the

mutant proteins had emission maxima and similar intensities as wild-type HyD-Crys (Fig.

3-3B). These results suggest that the tryptophan side chains are buried in the

hydrophobic cores of the mutant proteins and are located in environments similar to that

of the wild-type protein. Unfolding the proteins in 5.5 M GuHCl shifted the emission

maxima to 350 nm and increased the emission intensities (data not shown). This native

state quenching has been previously described for HyD-Crys and other 3- and y-

crystallins (Kim et al. 2002; Bateman et al. 2003; Kosinski-Collins et al. 2004).
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Figure 3-3. (A) Far-UV CD spectra of wild-type (), R79A (o), M146A (),
R79A/M146A (), Q54A (), Q143A (A) and Q54A/Q143A (v) HyD-Crys.
Samples contained 100 jLg/ml protein in 10 mM sodium phosphate, 5 mM DTT,
1 mM EDTA, pH 7.0 at 37 C. A 0.25 cm pathlength cuvette was used for all
measurements. (B) Fluorescence spectroscopy of wild-type and mutant HyD-Crys.
Symbols are the same as in (A). Samples contained 10 Rg/ml protein in 10 mM
sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0 at 37 C.

107

A

I- 1010

E
0'~ 0

E
-10

0
-20

-30

-4.0

600

it 500§

.
ie 8
o 100SI0

_=o 100

n



3. Equilibrium unfolding/refolding of wild-type HyD-Crys

Previous equilibrium unfolding/refolding experiments of wild-type HyD-Crys

used fluorescence spectroscopy to monitor structural changes in GuHCl (Kosinski-

Collins and King 2003; Kosinski-Collins et al. 2004; Flaugh et al. 2005a). The

fluorescent residues of HyD-Crys include four buried tryptophans and fourteen primarily

surface-exposed tyrosines. An excitation wavelength of 295 nm was used to selectively

monitor exposure of the tryptophan side chains to solvent. Structural transitions

observable by this approach include complete unfolding of the molecule or structural

transitions of a single domain.

Previous equilibrium unfolding/refolding experiments of HyD-Crys were

performed at 37°C using an equilibration time of 24 hours, and the data was analyzed by

plotting the concentration of GuHCl versus a ratio of fluorescence intensities at 360 and

320 nm (Flaugh et al. 2005a). Using these parameters, a slight inflection in the

transitions was observed at approximately 2.3 M GuHC1 suggesting population of a

partially folded intermediate (Fig. 3-4). The transitions were best fit by a three-state

model where population of a partially folded intermediate was assumed to occur in

equilibrium with the native and unfolded states. When fit to a three-state model, the

native to intermediate transition had a midpoint of 2.2 M GuHCl and the intermediate to

unfolded transition had a midpoint of 2.8 M GuHCl (Table 3-1). The first transition

likely corresponded to unfolding/refolding of the N-td and the second transition to

unfolding/refolding of the C-td (Flaugh et al. 2005a).
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Figure 34. Equilibrium unfolding (closed symbols) and refolding (open
symbols) of wild-type HyD-Crys in GuHCl probed by fluorescence emission.
Fluorescence spectra were collected using an excitation wavelength of 295
nm and fluorescence intensity at 360/320 nm was used for data analysis.
Protein was present at 10 tg/ml in 10 mM sodium phosphate, 5 mM DTT,
1 mM EDTA, pH 7.0 and GuHCl from 0 to 5.5 M at 37 C, and samples
were incubated for 24 hours prior to measurement.. The solid line is a
three-state fit of the unfolding data. Residuals of the three-state fit are shown.
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4. Equilibrium unfolding/refolding of Arg79/Metl 4 7 mutants

In order to assess the contributions of peripheral domain interface amino acids to

the stability of HyD-Crys, equilibrium unfolding/refolding experiments were performed.

These experiments were performed on all alanine substitution mutants using analogous

methodologies as those described for wild-type HyD-Crys.

The equilibrium unfolding/refolding transitions of R79A deviated slightly from

that observed for wild-type (Fig. 3-5). Similar to wild type, a plateau was evident in the

unfolding/refolding curves at approximately 2.3 M GuHCl. However, the range of

GuHCl concentrations over which the intermediate was populated was increased for

R79A. The unfolding/refolding transitions were best fit to a three-state model similar to

wild type with a native to intermediate transition midpoint of 1.8 M GuHCl and an

intermediate to unfolded transition midpoint of 2.9 M GuHCl (Table 3-1). Alanine

substitution of Arg79 decreased the free energy of unfolding (AG°) of the native to

intermediate transition by approximately 1.0 kcal*mol1 compared to wild-type HyD-Crys

(Table 3-1).

The equilibrium unfolding/refolding transitions of M147A also displayed a

significant plateau suggesting population of a partially folded intermediate (Fig. 3-5).

Similar to R79A, the intermediate was populated over a larger range of GuHCl

concentrations than wild-type HyD-Crys. When fit to a three-state model, the native to

intermediate transition had a midpoint of 1.8 M GuHCl and the intermediate to unfolded

transition had a midpoint of 2.8 M GuHCl (Table 3-1). The AG' of the native to

intermediate transition was decreased by 1.1 kcal*mol' l compared to wild type (Table 3-

1).

The double alanine mutant R79A/M147A also populated a partially folded intermediate

during equilibrium unfolding/refolding (Fig. 3-5). The native to intermediate transition

was calculated to have a midpoint of 1.7 M GuHCl and the transition from intermediate

to unfolded had a transition of 2.8 M GuHCl (Table 3-1). The AG' of the native to

intermediate transition was decreased by approximately 2.1 kcal*mol1 compared to wild-

type HyD-Crys (Table 3-1).
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Figure 3-5. Equilibrium unfolding/refolding of R79A (), M147A (), and
R79A/M147A () HyD-Crys in GuHCI probed by fluorescence emission.
Data was analyzed by fluorescence intensity at 360/320 nm using an excitation
wavelength of 295 nm. Protein was present at 10 g/ml in 10 mM sodium
phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0 and GuHCI from 0 to 5.5 M at
37 C. Samples were equilibrated for 24 hours. The unfolding transitions are
shown as closed symbols and the refolding transition as open symbols.
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5. Equilibrium unfolding/refolding of Gln54/Gln143 mutants

Equilibrium unfolding/refolding of Q54A HyD-Crys also occurred by an apparent

three-state mechanism with population of an intermediate at approximately 2.3 M GuHCl

(Fig. 3-6). The transition from native to intermediate had a midpoint of 2.0 M GuHCl

while the intermediate to unfolded transition had a midpoint of 2.9 M GuHCl (Table 3-1).

This corresponded to a decrease in the native to intermediate AG° of 0.2 kcal*mol l

relative to wild type. In the crystal structure of HyD-Crys (Basak et al. 2003), the side

chain of Gln54 participates in a hydrogen bond with the main chain nitrogen of Leul45.

The side chain of Glnl43 lies in very close proximity to that of Gln54. However,

Gln143 does not participate in hydrogen bonding to any main chain or side chain atoms

as observed in the crystal structure. There was a plateau in equilibrium

unfolding/refolding curves of Q143A at 2.3 M GuHCl (Fig. 3-6). When fit to three-state

model, the native to unfolded transition had a midpoint of 1.9 M GuHCl and the

intermediate to unfolded transition had a midpoint of 3.0 M GuHCl (Table 3-1). The

native to intermediate transition had a AG° 0.5 kcal*mol l less than that for wild type.

The double mutant protein, Q54A/Q143A also displayed a plateau in the

equilibrium unfolding/refolding transitions (Fig. 3-6). The presence of a partially

unfolded intermediate is more obvious for Q54A/Q143A than for any of the other

mutants, as it appears to be populated over a range of 2.2 to 2.6 M GuHCl. The two

transitions were calculated to have midpoints of 1.8 and 3.1 M GuHC (Table 3-1). The

AG° of the native to intermediate transition was decreased approximately 1.4 kcal*mol1

relative to wild type.
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Figure 3-6. Equilibrium unfolding/refolding of Q54A (), Q143A () and
Q54A/Q143A () HyD-Crys in GuHCl probed by fluorescence emission.
The unfolding transitions are shown as closed symbols and the refolding
transition as open symbols. Data was analyzed by fluorescence intensity at
360/320 nm using an excitation wavelength of 295 nm. Protein was present
at 10 tg/ml in 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0
and GuHCl from 0 to 5.5 M at 37 C, with a 24 hour equilibration time.
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6. In vitro aggregation

HyD-Crys did not significantly aggregate or self-associate in the transition region

during unfolding and refolding. However, consistent with previous results, when

refolded from 5.5 M GuHCl to less than 1.0 M GuHCl, wild-type HyD-Crys aggregated

into a high molecular weight species that significantly scattered light (Kosinski-Collins

and King 2003). This causes a sharp increase in the FI 360/320 nm values of samples

refolded to less than 1.0 M GuHCl due to right-angle light scattering by the aggregates

(Fig. 3-4). All of the peripheral domain interface mutants displayed similar aggregation

behavior (Figs. 3-5 and 3-6).

Refolding to the native state below 1.0 M GuHCl is masked by the light scattering

from the aggregated chains. The aggregation samples of all the mutant proteins were

tested for the presence of native-like protein by fluorescence spectroscopy after

centrifugation at 12,000 rpm. The fluorescence spectra of the soluble protein present in

the supemrnatant after centrifugation were consistent with the presence of native protein

(data not shown). Thus, the productive refolding and aggregation pathways compete

under these conditions. All spectra displayed an emission maximum of approximately

325 nm and decreased fluorescence intensity reflecting the loss of protein molecules into

the aggregate.

7. Productive refolding kinetics of wild-type HyD-Crys

To analyze the role of peripheral domain interface residues in kinetic refolding of

HyD-Crys, productive kinetic refolding experiments were performed analogous to

previous experiments with wild type (Kosinski-Collins et al. 2004). Proteins were fully

unfolded in 5.5 M GuHCl and subsequently diluted into refolding buffer. Burial of the

tryptophan residues was monitored by observing a decrease in fluorescence intensity at

350 nm over time. Rapid dilution was performed with a syringe-injection port instead of

a stopped-flow apparatus because the major transitions in HyD-Crys refolding have been

shown to occur on a second, and not millisecond time scale (Kosinski-Collins et al.
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2004). Potential refolding intermediates populated on a millisecond time scale were not

addressed in these experiments.

Previous experiments determined that kinetic refolding of wild-type HyD-Crys

was best fit with two exponentials suggesting population of a partially folded

intermediate (Kosinski-Collins et al. 2004). Upon dilution into refolding buffer the

fluorescence intensity at 350nm rapidly decreased with a tj/2 of 15 seconds. This first

phase presumably corresponded to refolding into an intermediate conformation. The

partially folded intermediate was more fluorescent than the native state and less

fluorescent than the unfolded state at 350 nm. Following the fast phase, a second phase

was observed where the fluorescence intensity decreased slowly with a tj/2 of 190

seconds. This transition presumably corresponded to refolding into the native

conformation.

ki k2

Denatured - Intermediate - Native (1)

8. Productive refolding kinetics of Arg79/Metl 47 mutants

Kinetic refolding of R79A is shown in Figure 3-7. Consistent with previous

results of wild-type HyD-Crys, the curve was best fit with a three-state model. An initial

rapid decrease in fluorescence intensity at 350 nm occurred with a tj/2 of 19 seconds. A

second slower phase occurred with a tj/2 of 890 seconds (Fig. 3-7, Table 3-2). Similar to

wild-type HyD-Crys, the intermediate had a fluorescence emission signal at 350 nm

unique from both the native and unfolded conformations (Fig. 3-7). The tj/2 for transition

from the denatured to intermediate state was approximately equal to that of wild-type

HyD-Crys while the t 2 for the intermediate to native transition was increased more than

four fold.

Refolding of M147A was also best fit with a three-state model (Fig. 3-7). A t 2 of

21 seconds was calculated for the initial rapid decrease in fluorescence corresponding to

a transition from the denatured to intermediate state. The second transition from partially

folded intermediate to native was significantly slower with a t 2 of 680 seconds (Table 3-
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2). Similar to the results for R79A, the tl/2 for the unfolded to intermediate transition of

M147A was approximately equal to that of wild-type HyD-Crys and the tl/2 for the

intermediate to native transition was notably increased.

The double mutant, R79A/M147A displayed the most significantly altered

refolding kinetics (Fig. 3-7). The denatured to partially folded intermediate transition

was similar to that of wild-type HyD-Crys with a tl/2 of 23 seconds. Conversely, the

partially folded intermediate to native transition was markedly slower, occurring with a

tj/2 of 1700 seconds (Table 3-2).

Table 3-2. Kinetic refolding parameters for wild-type and mutant HyD-Crys.

Protein kl (seconds-) tl/ 2 (seconds) k2 (seconds') tl/2 (seconds)

Wild typea 0.048 ± 0.001 15 ± 1 0.0037 +± 0.0001 190 ± 10

R79A 0.037 + 0.006 19 ±+ 3 0.0008 ±+ 0.0001 890 ± 50

M147A 0.032 + 0.002 21 + 1 0.0010 ±+ 0.0001 680 ±+ 20

Q54A 0.040 + 0.001 17 ±+ 1 0.0023 ±+ 0.0002 310 ±+ 30

Q143A 0.041 + 0.003 17 ±+ 1 0.0016 ±+ 0.0001 430 ± 10

R79A/M147A 0.030 + 0.004 23 + 3 0.0004 + 0.0001 1700 + 20

Q54A/Q143A 0.033 + 0.004 20 2 0.0012 0.0001 600 + 40

a From Flaugh (Flaugh et al. 2005a)
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Figure 3-7. Productive kinetic refolding of wild-type (,), R79A (.),
M147A (m), and R79A/M147A (n) HyD-Crys. Proteins were initially
unfolded at a concentration of 100 ptg/ml in 5.5 M GuHCl at 37 C.
Refolding was initiated by dilution of unfolded proteins into refolding
buffer to give a final concentration of 10 pg/ml. Refolding buffer
contained 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA, pH 7.0,
and 1.0 M GuHCl at 37 °C. Refolding was monitored by changes in
fluorescence emission at 350 nm.
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Figure 3-8. Productive kinetic refolding of wild-type (4), Q54A (A),
Q143A (A) and Q54A/Q143A (v) HyD-Crys. Unfolded stock solutions
of proteins were initially prepared at a concentration of 100 gg/ml in
5.5 M GuHCl at 37 C. Refolding was initiated by diluting the unfolded
stock solutions into refolding buffer to give a final protein concentration
of 10 gg/ml. Refolding buffer contained 10 mM sodium phosphate, 5 mM
DTT, 1 mM EDTA, pH 7.0, and 1.0 M GuHCl at 37 C. Refolding was
monitored by changes in fluorescence emission at 350 nm.
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9. Productive refolding kinetics of GlnS4/Glnl 43 mutants

Productive kinetic refolding of the mutant proteins Q54A, Q143A and

Q54A/Q143A are shown in Figure 3-8. The data were best fit with a three-state model

similar to wild type. Changes in fluorescence intensity at 350 nm upon refolding were

similar to those described above for wild type. The first phase was characterized by a

rapid decrease in fluorescence intensity and was followed by a second phase with a

slower decrease in intensity. The transition from denatured to partially folded

intermediate occurred with ti,2 values of 17 seconds for both Q54A and Q143A and 20

seconds for Q54A/Q143A (Table 3-2). These values are not significantly different than

that measured for wild-type HyD-Crys. Conversely, the tl/2 values for the transition from

partially folded intermediate to native were slightly increased compared to wild-type

HyD-Crys. The t2 values were 310 seconds for Q54A, 430 seconds for Q143A, and 600

seconds for Q54A/Q143A (Table 3-2).

E. DISCUSSION

Based on crystal structure and sequence alignment data, most domain interfaces

of the P- and y- crystallins are composed of a central hydrophobic cluster surrounded by

peripheral paired interactions. The paired residues of HyD-Crys, identified by proximity

in the crystal structure, are Gln54/Gln143, and Arg79/Metl47 (Fig. 3-1). The side chains

of these amino acids are in close proximity to both the exterior of the protein and the

interface hydrophobic cluster. The side chains of Arg79 and Metl47 are located towards

the bottom of the domain interface and interact by packing the hydrophobic side chain of

Metl47 against the , y and 6 methylene groups of Arg79 (Fig. 3-1). The hydrophobic

portions of the side chains of Arg79 and Metl47 are also in close contact with the central

hydrophobic cluster of the domain interface. Gln54 and Gln143 are located at the top of

the domain interface and are in proximity of the hydrophobic cluster and the exterior of

the protein (Fig. 3-1).
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1. Destabilizing effects of alanine substitutions

The far-UV CD minima of all single and double alanine substitution mutants of

peripheral interface residues were analogous to that of wild type. These data suggest that

the mutants folded into a native-like structure with similar It-sheet content as wild-type

HyD-Crys (Fig. 3-3A). However, the far-UV CD spectra of the mutants R79A, M147A,

Q143A, and Q54A/Q143A deviated moderately in overall intensity from that of wild type

and the other mutants. Mutations of domain interface residues may disrupt or alter

domain pairing which could cause these differing CD signals. An alternative

interpretation is that the differences in the spectra are due to discrepancies in individual

solution conditions and not actual changes in the native state structures.

The fluorescence emission spectra of the mutant proteins indicated that they

adopted native-like conformations similar to wild-type HyD-Crys. All single and double

alanine mutants displayed a fluorescence emission maximum of approximately 325 nm,

and native-state quenching similar to the wild-type protein. These results suggest that the

tryptophan side chains are buried in the hydrophobic cores of all mutants. However,

native state fluorescence intensities of the mutants differed slightly from that of wild type

(Fig. 3-3B). This may be due to a structural rearrangement or relaxation around the

tryptophans responsible for the quenching (Kosinski-Collins et al. 2004). Conclusive

evidence for structural modifications will require obtaining high resolution structures of

the mutant proteins. The overall behavior of these mutant proteins suggests that,

individually, these side chains are not critical determinants of the native state fold.

Stabilities of the mutant proteins were determined by equilibrium

unfolding/refolding in GuHCl. An inflection in the unfolding/refolding curves was

evident at 2.3 M GuHCl for the wild-type and mutant proteins, suggesting population of a

partially folded intermediate in equilibrium with the native and unfolded states. Previous

investigations of triple tryptophan mutants of HyD-Crys indicated that the C-td is more

stable than the N-td (Kosinski-Collins et al. 2004). Preliminary studies of the isolated N-

and C-terminal domains of HyD-Crys have confirmed this observation (I.A. Mills, S.L.

Flaugh and J. King unpubl.). Thus, we postulate that the intermediate populated during
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equilibrium unfolding/refolding of wild-type HyD-Crys is a single folded domain

conformer with a folded C-td and unfolded N-td (Flaugh et al. 2005a). According to this

hypothesis, the native to intermediate transition corresponded to unfolding/refolding of

N-td and the intermediate to unfolded transition corresponded to unfolding/refolding of

the C-td. From here on we discuss the results according to these terms.

All single and double alanine substitution mutants displayed unfolding/refolding

transitions that differed from that of wild type. The midpoint of N-td unfolding/refolding

was consistently decreased for all mutants, thus causing the partially folded intermediate

to be populated over a larger range of GuHCl concentrations (Figs. 3-5, 3-6; Table 3-1).

Similar effects were observed with alanine substitution mutants of hydrophobic domain

interface residues (Flaugh et al. 2005a). Therefore, stability of the N-td was dependent

on correct association of both peripheral and hydrophobic domain interface residues.

In contrast to the consistent destabilization of the N-td, midpoints of C-td

unfolding/refolding remained the same or increased slightly with the mutations. Thus,

the C-td of full-length wild-type HyD-Crys was not stabilized by domain interface

contacts. The mutants Q143A had a midpoint of 3.0 M GuHCl for C-td

unfolding/refolding and Q54A/Q143A had a midpoint of 3.1 M GuHCl. If the partially

folded intermediate has a structured C-td and unstructured N-td, in the intermediate

conformation the side chain of Glnl43 would be in close proximity to hydrophobic

domain interface residues of the structured C-td. Substituting this side chain for alanine

may have increased the stability of the C-td by eliminating potentially unfavorable

interactions between the closely positioned polar and hydrophobic side chains. Two of

the other mutants, R79A and Q54A also displayed intermediate to unfolded transition

midpoints slightly greater than that of wild type (Table 3-1). These differences may be

due to slight changes in the m values of the mutants or other effects on the stability of the

intermediate that would be difficult to identify without a more detailed description of the

conformation.

Double-mutant cycle analysis has been extensively used as a method to evaluate

interaction energy between two amino acid side chains in close proximity in the native

state conformation of a protein (Horovitz 1996). By comparing the AG0 for the single

and double alanine substitution mutants of Arg79/Metl47 and Gln54/Gln143, it was
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possible to estimate their interaction energies in the native state. Destabilization of the

N-td exhibited by the single mutants R79A (-1.0 kcal*mol1) and M147A (-1.1 kcal*mol'

1) summed to equal the destabilization of the N-td exhibited by the double mutant

R79A/M147A (-2.1 kcal*moll). This suggests that the interaction of Arg79 and Metl47

does not contribute significantly to overall stability of the native state. In contrast,

destabilization of the N-td by the single mutants Q54A (-0.2 kcal*mol' l) and Q143A (-

0.5 kcal*mol-1) did not sum to equal the destabilization of the N-td by the double mutant

Q54A/Q143A (-1.4 kcal*moll). Instead, these side chains displayed a free energy of

interaction of approximately 0.7 kcal*mol1l. It is important to note that double mutant

cycle analyses are reliable measures of interaction energy only if the native state

conformations of the mutant proteins are identical to the wild-type protein. While CD

and fluorescence spectroscopy studies suggest that the conformations of peripheral

domain interface mutants are similar to wild type, these techniques have relatively low

sensitivity and would not likely detect altered domain pairing. Additionally, as seen in

Table 3-1, the error associated with the AG' values is high in some cases (R79A and

M147A), which limits the accuracy of calculated free energies of interaction. However,

interaction energies also appear minimal when estimated by transition midpoints, which

have much lower error. Together, these results suggest minimal to no interaction energy

between these side chains.

Despite the minimal interaction energies of peripheral domain interface side

chains, single and double alanine substitutions of these residues resulted in a significant

decrease in the native to intermediate AG' from 0.2 to 2.1 kcal*moli' (Table 3-1). As

described above, the hydrophobic domain interface residues are also critical for

maintaining stability of the N-td by precise positioning and burial of hydrophobic surface

area (Flaugh et al. 2005a). While both the peripheral and hydrophobic domain interface

residues act to stabilize the N-td, they likely do so by very different means. Given that the

peripheral residues are in close proximity to the interface hydrophobic cluster, we suspect

that these side chains function to shield the cluster from solvent. In this way, a decrease

in the size and polarity of the side chains by mutation to alanine would cause an

unfavorable exposure of the hydrophobic residues to solvent and thus destabilization of

the N-td through a loss of favorable domain interface contacts.
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2. Effect of interface substitutions on the kinetic refolding pathway

At 37°C and pH 7.0, wild-type HyD-Crys refolded to a native-like conformation

at concentrations of GuHCl above 1.0 M. Previous studies found that productive kinetic

refolding of wild-type HyD-Crys was best fit to two exponentials with a tj 2 value of 15

seconds for the first phase and 190 seconds for the second phase (Kosinski-Collins et al.

2004). The structural transitions that corresponded to these two kinetic phases were

elucidated using engineered triple tryptophan mutant proteins (Kosinski-Collins et al.

2004). The triple tryptophan mutant proteins had three of the four native tryptophans of

HyD-Crys mutated to phenylalanine, so that refolding of the two domains could be

independently monitored by fluorescence spectroscopy. Refolding rates of the two

mutants containing tryptophans from the C-td were comparable to the first exponential fit

of wild type, with tj,2 values of 30 seconds for both mutants. Similarly, refolding rates of

the two mutant proteins with tryptophans in the N-td were comparable to the second

exponential fit of wild type, with tl/2 values of 190 and 210 seconds. Together these data

suggest that the wild type protein refolded through a short lived kinetic intermediate, in

which the C-td was largely folded and the N-td was largely unfolded (Kosinski-Collins et

al. 2004).

Kinetic refolding of the single and double alanine mutants of peripheral interface

residues were also best fit to two exponentials suggesting a similar sequential domain

refolding pathway as wild type (Kosinski-Collins et al. 2004). By this model, the C-td of

the mutant proteins refolded first followed by the N-td. Under this assumption, refolding

of the C-td was not notably affected by mutations of the peripheral interface residues as

seen by similar t2 values as wild type. Conversely, all of the mutations resulted in a

decreased refolding rate for the N-td. These results suggest that for full-length wild-type

HyD-Crys, refolding of the C-td does not depend on correct contacts between peripheral

domain interface residues while refolding of the N-td does. Previous experiments on

single amino acid substitutions of hydrophobic domain interface residues also indicated

reduced refolding rates for the N-td but not the C-td (Flaugh et al. 2005a).
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Slow kinetic transformations during protein refolding that occur on a second to

minute time scale are often attributed to cis-trans proline isomerization (Brandts et al.

1975). Wild-type HyD-Crys has five proline residues, all of which are found in the trans

conformation in the native state. Three of the prolines are in the N-td, one is in the

peptide linking the two domains and the final proline is in the C-td. The N-td of HyD-

Crys refolds slower than the C-td suggesting that the slow refolding of the N-td may be

due to cis-trans isomerization of prolines in the connecting peptide and the N-td. The

data presented here makes this unlikely. If the slow intermediate to native transition in

HyD-Crys refolding was dependent on cis-trans proline isomerization, mutations in the

domain interface would not be expected to decrease refolding rates to the extent that is

observed here. Instead, we suggest that the slow kinetic step of HyD-Crys refolding

corresponds to domain pairing accompanied by refolding of the N-td. These results

suggest a refolding pathway where the solvent-exposed domain interface of the folded C-

td likely acts as a nucleating center for refolding of the N-td (Flaugh et al. 2005a).

For the mutant R79A/M147A, kinetic refolding of the N-td occurred with a t/2

nine times greater than that of wild type. Interestingly, the single and double mutations

of Gln54 and Gln143 did not have as significant an effect on the refolding rates as

mutations of Arg79 and Metl47. The double mutant, Q54A/Q143A had a ti/2 for the

intermediate to native transition of 600 seconds compared to 190 seconds for wild type.

Similarly, Q54A and Q143A both had t/ 2 values for intermediate to native transition that

were increased less than three-fold over that for wild type. These results suggest that the

side chains of Gln54 and Gln143 are not as critical in the kinetic refolding pathway as

those of Arg79 and Metl47. The positioning of Gln54 and Gln143 may occur later

during the kinetic pathway after the hydrophobic cluster and Arg79 and Met 147 are

brought together. By this model, mutations of Gln54 and Gln143 could still have a

significant effect on stability without severely altering kinetic refolding behavior, as is

observed here.

125



3. Domain stability and interactions

The two domains of the - and y-crystallins, composed of two Greek key motifs

each, are thought to result from a gene duplication event (Wistow et al. 1983). Folding

and stability of full-length - and y-crystallins as well as proteins corresponding to their

isolated domains have been extensively studied (Bloemendal et al. 2004). The individual

domains of many of the 13- and y-crystallins exhibit distinctly different stabilities. As

described above, the C-td of HyD-Crys is more stable than the N-td at pH 7.0 (Kosinski-

Collins et al. 2004). In contrast to this, the N-td of ByB-Crys is more stable than the C-td

at pH 2.0 (Rudolph et al. 1990; Mayr et al. 1997). This difference is presumably due to a

greater number of acidic amino acids on the surface of the C-td of ByB-Crys, which, at

pH 2.0 destabilizes the domain by charge repulsion. The different domain stabilities

exhibited by ByB-Crys and HyD-Crys may be due to discrepancies in experimental

conditions and not inherent differences in the proteins.

For some of the 13- and y-crystallins that display differential domain stability, the

domains are more stable in the full-length protein than in isolation (Sharma et al. 1990;

Mayr et al. 1997; Wieligmann et al. 1999). This suggests that for these proteins, domain

interface contacts play a significant role in the stability. Indeed, mutating domain

interface residue of ByB-Crys, HPB 1 -Crys or HyD-Crys destabilizes the proteins (Palme

et al. 1997; Kim et al. 2002; Flaugh et al. 2005a). Additional evidence indicates that

domain interface interactions are important in determining oligomeric states of these

proteins (Hope et al. 1994; Mayr et al. 1994; Trinkl et al. 1994).

4. Implications for understanding aggregation and cataract

Aged human lenses contain both water soluble and insoluble crystallin. The

amount of protein in the water insoluble fraction increases with age and in cataract

(Ringens et al. 1982). Analyses of the insoluble crystallin from aged or cataractous

lenses have confirmed the presence of covalent damage, including methionine oxidation,

and glutamine or asparagine deamidation (Hanson et al. 1998; Lampi et al. 1998; Ma et

al. 1998; Hanson et al. 2000).
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Erroneous protein aggregation is associated with a variety of human diseases, in

addition to mature-onset cataract (Sato et al. 1996; Harper et al. 1997; Prusiner 1998;

Uversky et al. 2001). A common characteristic of known aggregation processes is

polymerization from a partially folded or non-native conformation (Mitraki 1989; Wetzel

1994; Booth et al. 1997; Jiang et al. 2001). In vivo, such partially folded species often

represent incompletely folded polypeptide chains released from the ribosome (Mitraki

1989; Wetzel 1994). However, this phenomenon cannot explain the presence of

aggregation-prone crystallin species in the lens, as crystallin aggregation likely occurs

late in life, long after the proteins were initially synthesized. Instead, the aggregation-

prone conformations are probably generated by destabilization of the native state and

partial unfolding induced by covalent damage. The effects of deamidation on the

structure, stability and other in vitro properties of HO3B 1 -Crys have been comprehensively

studied by Lampi and colleagues (Lampi et al. 2001; Kim et al. 2002; Lampi et al. 2002;

Harms et al. 2004). These studies demonstrated that deamidation can cause altered

structure, altered oligomer conformation and reduced stability of H3B 1 -Crys, in vitro.

These alterations may be significant in mature-onset cataractogenesis.

Some cases of rare juvenile-onset cataracts in humans are associated with single

amino acid substitutions of the y-crystallins. The mutations R14C, P23T, R36S and

R58H of HyD-Crys all result in childhood cataract (Heon et al. 1999; Stephan et al. 1999;

Kmoch et al. 2000; Santhiya et al. 2002). Recombinant proteins with the R14C, R36S

and R58H'mutations have similar native state conformations and stabilities as wild-type

HyD-Crys, but do have reduced phase transition barriers in vitro (Pande et al. 2000;

Pande et al. 2001; Basak et al. 2003). These mutations probably cause cataract by

crystallization (R58H and R36S) and inter-molecular disulfide bonding (R14C) of the

native molecules in the lenses of affected individuals (Kmoch et al. 2000; Pande et al.

2000; Pande et al. 2001). These processes are unlikely to account for the formation of

mature-onset cataracts from aged proteins that are of a wild-type sequence aside from

covalent damage. The P23T recombinant mutant of HyD-Crys also had similar stability

as the wild-type protein, but had greatly reduced solubility in vitro, and was hypothesized

to cause congenital cataract by precipitation in the lens (Evans et al. 2004). It is unclear

how this relates to the protein insolubility found in mature-onset cataract.

127



The single amino acid substitution, T5P of human yC crystallin (HyC-Crys) is

associated with Coppock-like cataract with causes a dust-like opacity in the lens nucleus

of newborns (Heon et al. 1999; Santhiya et al. 2002). In contrast to the congenital

mutants of HyD-Crys, Fu and Liang (2002) showed that the TSP mutation of HyC-Crys

alters the native state conformation and destabilizes the protein. Liang went on to further

show that the TSP mutant also had an increased propensity to interact with the lens

chaperone, human aA crystallin (Liang 2004). The mechanism of inherited cataract for

the TSP mutant of HyC-Crys may be due to aggregation caused by the altered structure

and decreased stability or alternatively loss of native state interactions with other

crystallins due to the altered conformation (Liang 2004). Either way, the mechanism of

cataract for the mutant of HyC-Crys may more closely reflect that of mature-onset

cataract than the R14C, R36S and R58H mutants of HyD-Crys.

Our interest in identifying partially structured intermediates during HyD-Crys

unfolding/refolding reflects the possibility that such species may be related to

aggregation-prone precursors of cataract formation in the eye lens. Given that the

peripheral residues Gln54, Glnl43 and Metl47 are potential sites of covalent damage,

partially unfolded intermediates populated as a result of their modification are of

particular interest for understanding aggregation and cataract. The results reported here

indicate that these interface residues are critical for stability, and thus, covalent damage

of the side chains in aged lenses may result in native state destabilization of HyD-Crys.

This would effectively increase the probability of populating the partially unfolded

conformer with a folded C-td and unfolded N-td. One model for interactions between

such partially unfolded conformations includes domain swapping, a mechanism of

protein oligomerization that has been previously described by Liu and Eisenberg (2002).

In younger adults these damaged, partially unfolded species would likely be scavenged

by a-crystallins. However, at some point these chaperones may become saturated

resulting in the late onset of aggregation reactions from damaged crystallins.
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CHAPTER FOUR:

EFFECTS OF GLUTAMINE DEAMIDATION ON THE STABILITY

AND AGGREGATION OF HUMAN yD CRYSTALLIN 3

3 This work has been submitted to the Journal of Biological Chemistry

Collaborator Note: Ishara A. Mills performed all pH 3.0 equilibrium
unfolding/refolding experiments.
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A. ABSTRACT

The transparency of the eye lens requires life-long stability and solubility of the crystallin

proteins. The crystallins of the mature lens exhibit high levels of covalent damage,

including glutamine and asparagine deamidation, which may initiate protein aggregation

or loss of solubility leading to cataract formation. Human yD crystallin (HyD-Crys) is a

two-domain P-sheet protein located in the lens nucleus. The two domains interact

through side chain contacts across an interdomain interface, including a pair of

glutamines (Gln54 and Glnl43) distal from the linker peptide connecting the domains.

Gln54 and Gln1 43 are both important for stability and folding of the N-terminal domain

(N-td) of HyD-Crys (Flaugh et al. 2005b). To test the effects of interface deamidation on

stability, folding and aggregation of HyD-Crys, single and double glutamine to glutamate

substitutions were constructed at these positions. Equilibrium unfolding/refolding

experiments of wild type and the deamidation mutants were performed in guanidine

hydrochloride at pH 7.0, 37°C or Urea at pH 3.0, 20°C. The single and double

deamidation mutants were destabilized at pH 7.0 compared to wild type. The proteins

populated a partially unfolded intermediate that likely had a structured C-terminal

domain (C-td) and unstructured N-td. When the pH was decreased to 3.0, equilibrium

unfolding transitions of the deamidation mutants were indistinguishable from those of

wild type. In contrast, the double alanine mutant Q54A/Q143A was destabilized at both

pH 7.0 and 3.0. Thermal stabilities of the deamidation mutants were also reduced at pH

7.0. The deamidation mutants also lowered the kinetic barrier to unfolding of the N-td as

determined by kinetic unfolding and refolding experiments. The results presented here

indicate that deamidation of interface glutamnines decreased the thermodynamic stability

of HyD-Crys and lowered the kinetic barrier to unfolding as the result of introducing a

negative charge into the structurally-critical domain interface. Effects such as these may

be significant in causing cataract by inducing protein aggregation or insolubility.
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B. INTRODUCTION

Transparency of the human eye lens depends on high concentrations and short-

range order of the crystallin proteins (Delaye and Tardieu 1983; Femrnald and Wright

1983). The lens develops early in life, during which time the cells elongate and lose all

organelles, including nuclei. Thus, mature lens cells do not have the ability to synthesize

new protein and consequently the crystallin proteins of nuclear and cortical lens cells are

as old as the lens itself. This unique phenomenon necessitates life-long stability and

solubility despite elevated protein concentrations and continued exposure to

environmental stresses. As the crystallin proteins age, they accumulate high levels of

covalent damage.

Cataract is the leading cause of blindness worldwide and affects one in six people

over age 40 in the US (National Eye Insitute (U.S.) 2002). Pathologically, cataract is

associated with the presence of insoluble light scattering bodies composed of the

crystallin proteins. Formation of light scattering bodies is likely due to loss of crystallin

solubility and/or crystallin aggregation. A striking feature of cataract is the extreme rise

in prevalence with increasing age (National Eye Insitute (U.S.) 2002), suggesting that

covalent damage of the crystallins may cause or contribute to disease onset.

The three classes of crystallin proteins ubiquitous in all vertebrate lenses are the

a-, P3- and y-crystallins. The a-crystallins associate to form large polydisperse multimers

that possess in vitro molecular chaperone activity (Horwitz 1992; Boyle and Takemoto

1994). In contrast, the P3- and y-crystallins function solely as structural proteins of the

lens. The P-crystallins form a range of multimeric states while the y-crystallins are

monomeric (Wistow et al. 1983; Bax et al. 1990; Slingsby and Bateman 1990). Despite

differences in quaternary structure, the P- and y-crystallins adopt analogous two domain

13-sheet folds that are composed of four Greek key motifs, two in each of the homologous

domains. The two domains of the y-crystallins interact intramolecularly via side chain

contacts across a domain interface. In contrast, the domains of PB2-Crys interact

intermolecularly to form a pseudo domain-swapped dimer (Bax et al. 1990). Despite

whether they occur intramolecularly or intermolecularly, domain interface interactions
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are important for folding, stability and oligomerization of these two domain proteins

(Hope et al. 1994; Mayr et al. 1994; Palme et al. 1997; Flaugh et al. 2005a; 2005b).

The wild-type y-crystallins are remarkably stable and generally have free energies

of unfolding (AG° ) that are higher than the wild-type a- and [P-crystallins (Bloemendal et

al. 2004). However, the crystallins of aged lenses are not identical to the wild-type

sequences because of the high levels of covalent damage and thus it is important to study

crystallins that have been covalently modified in ways that mimic this damage.

Glutamine and asparagine deamidation is a particularly pervasive form of

covalent damage that has been observed in all of the major crystallin proteins recovered

from cataractous lenses (Groenen et al. 1994; Lund et al. 1996; Lampi et al. 1998). At

the atomic level, deamidation can cause backbone isomerization and introduces a

negative change at physiological pH because an amide group is replaced with a carboxyl

group. Deamidation of the crystallins may cause changes in structure, stability or

solubility that could instigate or contributes to cataract formation. For example, it has

been suggested that deamidation of Asnl43 in human yS crystallin is specifically

associated with mature-onset cataract formation (Takemoto and Boyle 2000). Similarly,

deamidated [P-crystallins isolated from human lenses have an increased tendency to

associate into non-covalent aggregates (Zhang et al. 2003).

Lampi and colleagues have carefully studied the effects of deamidation on the

structure and stability of human [P-crystallins (Lampi et al. 2001; Kim et al. 2002; Harms

et al. 2004; Lampi et al. 2006). The effects of glutamine deamidation of the P3-crystallins

vary according to the site of damage. Deamidation of a glutamine in the connecting

peptide of PB2-Crys caused the protein to form larger multimers and increased the

tendency for thermal aggregation (Harms et al. 2004). In contrast, deamidation of

glutamines in the domain interfaces of dimeric [PB 1 -Crys and PB2-Crys decreased

stabilities of the proteins and caused them to populate partially unfolded intermediates in

equilibrium experiments (Kim et al. 2002; Lampi et al. 2002; Lampi et al. 2006). Similar

studies on the effects of deamidation on a-crystallin structure and function have been

carried out by Gupta and Srivastava (2004a, 2004b). The a-crystallin studies also

displayed context-dependent effects, including decreased in vitro chaperone activity,

changes in secondary and tertiary structures and altered oligomerization properties
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(Gupta and Srivastava 2004b; 2004a). Specific effects of covalent damage on the

structures and stabilities of the y-crystallins have not been previously addressed.

Human yD crystallin (HyD-Crys) is one of the most abundant y-crystallins of the

lens nucleus and covalently damaged forms accumulate in aged lenses (Lampi et al.

1997; Hanson et al. 1998; Hanson et al. 2000; Searle et al. 2005). HyD-Crys adopts the

typical two domain fold of the y-crystallins where the two domains interact

intramolecularly through side chain contacts across a domain interface (Basak et al.

2003). Stability and folding of HyD-Crys has been previously studied using fluorescence

as a probe of conformation (Kosinski-Collins and King 2003; Evans et al. 2004;

Kosinski-Collins et al. 2004; Flaugh et al. 2005a; 2005b). HyD-Crys has four

tryptophans, two per domain, which are buried in analogous positions in the hydrophobic

cores of the two domains. In equilibrium unfolding/refolding experiments at pH 7.0 and

37°C, full-length wild-type HyD-Crys populates a partially folded intermediate that likely

has a folded C-terminal domain (C-td) and unfolded N-terminal domain (N-td) (Flaugh et

al. 2005a). Off-pathway aggregation competes with productive refolding when HyD-

Crys is diluted out of high concentrations of guanidine hydrochloride (GuHCl) into buffer

(Kosinski-Collins and King 2003).

As shown in Figure 4-1, the amino acid side chains that interact across the domain

interface of HyD-Crys include a pair of buried glutamines that are within hydrogen

bonding distances to four water molecules present in the crystal structure (Basak et al.

2003). A cluster of six hydrophobic residues that are buried in the domain interface are

also in close proximity to these apical glutamines. A previous alanine mutagenesis study

found that while neither Gln54 nor Gln143 are critical determinants of structure, they are

both vital for the folding and stability of HyD-Crys (Flaugh et al. 2005b). Specifically,

single and double alanine mutations destabilized the N-td and also slowed its rate of

refolding in vitro but did not perceptibly alter overall secondary or tertiary structure

(Flaugh et al. 2005b). Glutamine is conserved in these positions among 3- and y-

crystallins from diverse species at -78% identity for Gln54 and -80% identity for

Gln143.
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C-terminal domain

Figure 4-1. Structure of wild-type HyD-Crys (Basak et al. 2003) depicted in
ribbon representation showing the location of interface residues Gln54 and
Gln143 and four nearby crystallographic waters that form hydrogen bonds to
the glutamine side chains (PDB code 1HKO).
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Given the importance of Gln54 and Gln143 in stability and folding of HyD-Crys,

and that deamidation of analogously positioned glutamines in the P3-crystallins causes

destabilization, we suspected that deamidation of these residues would destabilize the

protein due to introduction of a negative charge at pH 7.0. To test this, single and double

glutamine to glutamate mutants were constructed and the in vitro properties of the mutant

proteins were studied. The deamidation mutations destabilized the proteins at pH 7.0 but

not pH 3.0. Additionally, the mutations reduced the rate of refolding and increased the

rate of unfolding of the N-td resulting in a decreased kinetic barrier to unfolding.

C. MATERIALS AND METHODS

1. Mutagenesis, expression and purification of recombinant HyD-Crys

Single and double glutamine to glutamate substitutions of residues Gln54 and

Gln143 were constructed using site-directed mutagenesis. Mutant primers (IDT-DNA)

were used to amplify the gene for HyD-Crys with an N-terminal His(6)-tag in a pQE. 1

plasmid (Kosinski-Collins et al. 2004). Substitutions were confirmed by DNA

sequencing of all amplified plasmids (Massachusetts General Hospital).

Wild-type and mutant HyD-Crys proteins were expressed and purified as

described by Kosinski-Collins et al. (2004). The proteins were expressed in E. coli and

cell lysates were purified by affinity chromatography using a Ni-NTA resin (Qiagen) and

were dialyzed into 10 mM ammonium acetate (pH 7.0). Concentrations of purified

proteins were calculated from absorbance data at 280 nm using an extinction coefficient

of 41,040 cm-1 M- for all proteins.

2. Calculating solvent accessible surface areas

Solvent accessible surface areas of Gln54 and Glnl43 were calculated from the

crystal structure of HyD-Crys, PDB ID 1HK0 (Basak et al. 2003) using the program

GETAREA 1.1 (Fraczkiewicz and Braun 1998).
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3. Circular dichroism spectroscopy

CD spectra of the wild-type and mutant proteins were recorded with an AVIV

model 202 CD spectrometer (Lakewood, NJ). Proteins were present at 100 gg/ml in 10

mM sodium phosphate (pH 7.0) and 37°C. The temperature was maintained at 37°C

using an internal Peltier thermo-electric temperature controller. Far-UV CD spectra were

collected from 195 to 260 nm in a one mm cuvette. Buffer signal was subtracted from all

spectra, after which mean residual ellipticity was calculated.

4. Fluorescence emission spectroscopy

Fluorescence spectra of the wild-type and mutant HyD-Crys proteins were

measured with a Hitachi F-4500 fluorimeter. Samples at pH 7.0 and 37°C contained 10

gg/ml purified protein in 100 mM sodium phosphate, 5 mM DTT, 1 mM EDTA (pH 7.0),

and 5.5 M GuHCl where appropriate. Samples at pH 3.0 and 20°C contained 10 .g/ml

protein in 100 mM sodium citrate (pH 3.0). Temperature was maintained at 37°C or

20°C using a circulating water bath. An excitation wavelength of 295 nm was used to

selectively monitor tryptophan fluorescence. Emission spectra were recorded over a

range of wavelengths from 310 to 400 nm using slit widths of 10 nm for both excitation

and emission. Fluorescence emission spectra were corrected for the buffer signal.

5. Equilibrium unfolding and refolding

Equilibrium unfolding/refolding experiments at pH 7.0 were performed in GuHCl

at 37°C. For equilibrium unfolding experiments, purified protein was diluted into

solutions containing 0 to 5.5 M GuHCl (purchased as an 8.0 M solution from Sigma-

Aldrich, Saint Louis, MO) to give a final protein concentration of 10 gg/ml. All pH 7.0

unfolding samples contained 100 mM sodium phosphate, 5 mM DTT, and 1 mM EDTA

(pH 7.0). Unfolding samples were incubated at 37°C for 24 hours to ensure equilibrium

had been reached. For equilibrium refolding experiments, purified proteins were first
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unfolded in 5.5 M GuHCl at a protein concentration of 100 gg/ml. These unfolded stocks

were incubated at 37°C for 5 hours to ensure complete unfolding. The unfolded stock

solutions were then diluted into refolding samples, which contained 100 mM sodium

phosphate, 5 mM DTT, 1 mM EDTA (pH 7.0) and GuHCl from 0.55 to 5.5 M.

Refolding samples were allowed to reach equilibrium by incubation at 37°C for 24 hours

prior to recording fluorescence spectra.

Equilibrium unfolding/refolding experiments at pH 3.0 were performed in Urea at

20°C. Samples were set up in a manner identical to that described above for pH 7.0

experiments where the final protein concentration was 10 gg/ml. Unfolding and

refolding samples were buffered with 100 mM sodium citrate (pH 3.0) and did not

contain DTT or EDTA due to concerns of low solubility at pH 3.0. A 24 hour incubation

time was used for both unfolding and refolding samples.

Fluorescence emission spectra were recorded for each unfolding and refolding

sample using a Hitachi F-4500 fluorimeter as described above. The concentration of

GuHCl or Urea in the unfolding/refolding samples was determined by measuring the

refractive index of each sample. Data was analyzed by plotting the concentration of

GuHCl for each sample versus the fluorescence intensity at 360 nm and the concentration

of GuHCl versus the ratio of fluorescence intensities at 360 and 320 nm (FI 360/320 nm).

Equilibrium unfolding/refolding experiments of the wild-type and mutant proteins were

performed three times each.

Equilibrium unfolding and refolding data were fit to a two-state model by the

methods of Greene and Pace (1974), or a three-state model by the methods of Clark et al.

(1993) using the curve fitting feature of Kaleidagraph (Synergy software). The model

that best fit the data was selected based on a random distribution of residuals. Transition

midpoints, AG' and m values were calculated for all transitions and averaged over the

three trials.

6. Thermal denaturation

Thermal denaturation experiments were performed using an AVIV model 202 CD

spectrometer equipped with an internal Peltier thermoelectric temperature controller
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(Lakewood, NJ). All samples contained 100 gg/ml protein in 10 mM sodium phosphate

(pH 7.0). The solution conditions differed from equilibrium experiments due to the

optical interference of EDTA and DTT and higher concentrations of sodium phosphate.

A four mm cuvette with an air-tight screw cap was used for the measurements to prevent

loss of sample at high temperatures due to evaporation or boiling over. Changes in molar

ellipticity at 218 nm were monitored every 1°C from 25 to 90°C. The samples were

allowed to equilibrate at each temperature for one minute before measuring ellipticity

over a three second averaging time. The fraction of native (EN) protein at each

temperature was calculated according to equation 1,

FN = (y - YU)/(YN - YU) (1)

where y is the ellipticity at 218 nm, Yu is the unfolded/aggregated baseline and YN is the

native baseline. Melting temperatures were calculated by determining the midpoints of

the thermal transitions. The experiments were repeated three times for each protein and

melting temperatures of the three trials were averaged.

7. Productive refolding kinetics

Kinetic refolding experiments were performed by initially unfolding in 5.5 M

GuHCl at a protein concentration of 100 ig/ml. These unfolded stocks were incubated at

37°C for five hours to ensure complete unfolding. The unfolded stocks were injected into

refolding buffer containing 10 mM sodium phosphate, 5 mM DTT, and 1 mM EDTA (pH

7.0) at 37°C with stirring. A syringe-port injection system with a dead-time of 1 second

was used. Changes in fluorescence intensity at 350 nm were monitored with a Hitachi F-

4500 fluorimeter over time using an excitation wavelength of 295 nm. The final protein

concentration of refolding samples was 10 g/ml in 1.0 M GuHCl. The fluorescence

emission spectra of the samples were measured to ensure that the proteins had completely

refolded into native-like conformations. Kinetic refolding data were fit to two and three

exponentials using the curve fitting feature of Kaleidagraph and residuals of the fits were

calculated (Synergy software). The model with the most random distribution of low-
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magnitude residuals was selected as the best fit. Kinetic refolding experiments of the

wild-type and mutant proteins were performed three times each and parameters of the fits

were averaged.

8. Unfolding kinetics

Kinetic unfolding experiments were performed by diluting purified proteins into

5.0 M GuHCl and monitoring fluorescence emission at 350 nm over time. The kinetic

unfolding samples contained proteins at final concentrations of 10 gg/ml in 5.0 M

GuHCl, 10 mM sodium phosphate, 5 mM DTT, 1 mM EDTA (pH 7.0) at 37°C.

Fluorescence emission spectra were recorded at the end of each experiment to ensure that

the proteins had fully unfolded. Kinetic unfolding data were fit to two and three

exponentials and residuals of the fits were calculated using the curve fitting feature of

Kaleidagraph (Synergy software). The best fit was chosen by a random arrangement of

residuals. Experiments were performed three times for each protein and parameters were

averaged.

D. RESULTS

1. Protein purification and structure characterization

To probe the site-specific effects of domain interface glutamine deamidation in

HyD-Crys, single and double glutamine to glutamate substitution mutants of Gln54 and

Glnl43 were constructed. The mutant proteins were purified out of E. coli and the

stabilities and folding properties of the proteins were determined in vitro.

The wild-type and mutant proteins all had exogenous N-terminal His(6)-tags that

were utilized during affinity purification. Previous studies of wild-type HyD-Crys with

and without the N-terminal His(6)-tag confirmed that the additional sequence did not

discernibly affect the structure or thermodynamic and kinetic unfolding/refolding
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properties of the protein (Kosinski-Collins and King 2003; Kosinski-Collins et al. 2004).

Therefore, the His(6)-tag was not removed for these investigations.

The single and double deamidation mutants of residues Gln54 and Gln143

expressed at levels similar to wild type and behaved like wild type during affinity

purification. The mutant proteins were found primarily in the soluble fractions of cell

lysates indicating that the mutations did not prevent in vivo folding into soluble native-

like conformations.

Structures of wild-type HyD-Crys, Q54E, Q143E and Q54E/Q143E were probed

with CD and fluorescence spectroscopy. These experiments addressed gross changes in

secondary and tertiary structure and were not aimed at distinguishing atomic resolution

differences in conformation. Similar to previous results, the Far-UV CD spectrum of

wild-type HyD-Crys at pH 7.0 displayed a distinct minimum at 218 nm, indicative of

high P-sheet content, and a small shoulder at 208 nm (Andley et al. 1996; Pande et al.

2001). The single and double deamidation mutants all displayed similar minima at 218

nm and a shoulder at 208 nm (Fig. 4-2). CD spectra of the single mutants Q54E and

Q143E were indistinguishable from that of wild type in the region analyzed, while the

spectra of Q54E/Q143E differed about 20% in intensity at lower wavelengths (Fig. 4-2).

This difference may be due to actual changes in conformation or slight differences in

solution conditions due to experimental error.

Domain tertiary structures of wild-type HyD-Crys and of the deamidation mutants

were surveyed using tryptophan fluorescence emission. HyD-Crys has four intrinsic

tryptophans, two per domain, which are buried in the hydrophobic cores of the domains.

HyD-Crys also has 14 tyrosines located throughout the protein. Tryptophan fluorescence

was selectively monitored by using an excitation wavelength of 295 nm and monitoring

emission from 310 to 400 nm. In accord with previous results, native wild-type HyD-

Crys displayed a fluorescence emission maximum at 325 nm (Fig. 4-2) and upon

denaturing in 5.5 M GuHCl, the fluorescence emission maximum shifted to 350 nm and

increased in intensity (Kosinski-Collins and King 2003). The native fluorescence

emission spectrum of Q54E was indistinguishable from wild type (Fig. 4-2). In contrast,

while the spectra of Q143E and Q54E/Q143E had identical emission maxima as wild

type, the overall intensities were increased approximately 10% (Fig. 4-2).
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Figure 4-2. (A) Far-UV CD spectra of native wild-type HyD-Crys (solid black),
Q54E (short dotted blue), Q143E (long dashed green), Q54E/Q143E (short dashed
red). All samples contained 100 gg/ml protein in 10 mM sodium phosphate
(pH 7.0) at 37 C. (B) Fluorescence spectra of native wild type and deamidation
mutants at pH 7.0 (lines are the same as in (A)) and wild-type H D-Crys denatured
in 5.5 M GuHCl (short dotted black). Samples contained 10 gg/ml protein in 100
mM sodium phosphate, 5 mM DTT, 1 mM EDTA (pH 7.0) at 37°C.
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Solvent accessible surface areas (SASA) of Gln54 and Gln143 in the crystal

structure of HyD-Crys (Basak et al. 2003) were calculated with the program GETAREA

1.1 (Fraczkiewicz and Braun 1998). The SASA of the Gln54 side chain was 20.22 2

and the SASA of Gln143 was 3.2 2. Relative to the total surface area of the glutamine

side chain (143.7 A2), 86% of the side chain surface area of Gln54 is buried and 97% of

the side chain surface area of Gln143 is buried. Despite being highly buried, the side

chain amide nitrogen of Gln54 and the side chain amide oxygen of Gln143 form

hydrogen bonds to two water molecules each as seen in the crystal structure (Basak et al.

2003).

2. Equilibrium unfolding/refolding of wild type at pH 7.0

The thermodynamic stability of wild-type HyD-Crys was analyzed by equilibrium

unfolding/refolding using the chemical denaturant GuHCl, at pH 7.0 and 37°C. GuHCl

was used in these experiments instead of Urea because wild-type HyD-Crys has been

previously shown to resist denaturation in up to 8 M Urea at pH 7.0 (Kosinski-Collins

and King 2003). The conformation of proteins in equilibrium experiments was probed

with tryptophan fluorescence. To this end, the fluorescence intensity changes at 360 nm

and changes in the ratio of intensities at 360 and 320 nm (FI 360/320 nm) were used for

data analysis. The FI 360/320 nm ratio data is shown in Fig. 4-3 instead of changes in the

intensity at 360 nm because it was visually more descriptive. Nevertheless, parameters

derived from the fits of both sets of data were indistinguishable.

Consistent with previous results, the unfolding/refolding transitions of wild-type

HyD-Crys were best fit to a three-state model suggesting the presence of a partially

folded intermediate in equilibrium with the native and unfolded states (Flaugh et al.

2005a). This intermediate was apparent as a small inflection in the transitions at

approximately 2.3 M GuHCl (Fig. 4-3). The first transition had a midpoint (Cm) of 2.2 M

GuHCl and an apparent AG° of 7.7 kcal*mol 1 (Table 3-1). The second transition had a

midpoint of 2.8 M GuHCl and AG° of 8.9 kcal*moli. The first transition likely

corresponded to unfolding/refolding of the N-td and the second transition to
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unfolding/refolding of the C-td (Flaugh et al. 2005a). At pH 7.0 and 37°C, the AG° of

wild-type HyD-Crys was approximately 16.6 kcal*moll.

Also consistent with previous results, wild-type HyD-Crys aggregated upon

refolding into buffer (Kosinski-Collins and King 2003). The aggregate was evident by

the sharp increase in fluorescence at low concentrations of GuHCl due to right angle light

scattering by the aggregate (Fig. 4-3).

3. Equilibrium unfolding/refolding of deamidation mutants at pH 7.0

Thermodynamic stabilities of the single and double deamidation mutants were

analyzed by the same method described above for wild-type HyD-Crys. Similar to wild

type, data for all mutants were analyzed by changes in fluorescence intensity at 360 nm

as well as changes in FI 360/320 nm. Parameters derived from fits of both analyses

agreed within the error of the experiments. FI 360/320 nm data for the single and double

deamidation mutants is shown in Fig. 4-3. As with wild type, the transitions of all

mutants were best fit to a three-state model indicating the population of a partially folded

intermediate. The presence of an intermediate is more apparent for the deamidation

mutants than the wild-type protein as a prominent plateau is present in all transitions.

AG°'s of the first transition were 5.8 kcal*mol'*M' for Q54E, 6.1 kcal*mol'l*M 1 for

Q143E and 5.3 kcal*mol'*M- ' for Q54E/Q143E (Table 3-1). These values are

substantially less than the AG° of the first transition for wild type (7.7 kcal*molf'*M'l).

In contrast, the AG °'s of the second transition were very similar for wild type and all

three deamidation mutants (Table 3-1). Similarly, Cm's for the first transition were

decreased for all mutants compared to wild type, while Cm's for the second transition

were identical (Table 3-1). Also similar to wild type, all deamidation mutants aggregated

upon refolding into buffer (Fig. 4-3).
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Figure 4-3. Equilibrium unfolding (solid symbols) and refolding (open symbols)
of wild-type HyD-Crys (4), Q54E (A), Q143E (e) and Q54E/Q143E (U) at pH 7.0
and 37°C in GuHCl. Conformation was probed by fluorescence spectroscopy
using an excitation wavelength of 295 nm. Changes in the ratio of fluorescence
intensities at 360/320 nm are shown. All samples contained 10 g/ml in 100 mM
sodium phosphate, 5 mM DTT, 1 mM EDTA (pH 7.0) and GuHCl from 0 to 5.5 M
at 37°C. Solid lines represent three-state fits of the unfolding data.
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4. Thermal denaturation at pH 7.0

Given that the ionic character of GuHCl may mask or interfere with the effects of

the deamidation charge change, stabilities of wild-type HyD-Crys and the deamidation

mutants were further probed in a low ionic strength buffer by thermal denaturation.

These experiments assessed stabilities by monitoring changes in ellipticity at 218 nm

every 1°C from 25 to 90°C. Wild-type HyD-Crys and all deamidation mutants

aggregated at high temperatures as seen by the presence of protein precipitate subsequent

heating to 90°C. Therefore, loss of CD signal at high temperatures was probably due to a

combination of unfolding and aggregation initiated by unfolding. Regardless of the

origin of the signal change, increase in ellipticity at 218 nm was interpreted as a loss of

native structure and therefore a satisfactory measure of stability.

Under the conditions employed here the thermal denaturation transition of wild-

type HyD-Crys appeared two-state with no significant evidence of a stable intermediate

(Fig. 4-4). The melting temperature (Tm) of wild type was 83.8 °C (Table 4-1).

Similarly, the thermal denaturation transitions of all deamidation mutants also appeared

two-state (Fig. 4-4). However, all of the mutants unfolded at lower temperatures than

wild type with Tm values of 77.4 C for Q54E, 75.7 °C for Q143E and 71.0 °C for

Q54E/Q143E (Table 4-1). Thermal unfolding of the deamidation mutants occurred over

a narrower temperature range than wild type suggesting that the mutants may have

unfolded more cooperatively.
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Figure 4-4. Thermal denaturation transitions for wild-type HyD-Crys (*),
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5. Equilibrium unfolding/refolding wild type at pH 3.0

Equilibrium experiments of wild type, Q54E, Q143E and Q54E/Q143E were

performed at pH 3.0 to test the role of charge in destabilization at pH 7.0. The

thermodynamic stability of wild-type HyD-Crys at pH 3.0 was determined by equilibrium

unfolding/refolding experiments in Urea at 20°C. These experiments were performed at

20°C rather than 37°C because HyD-Crys has been seen to form amyloid fibers at pH 3.0

and 37°C (Katerina Papanikiolopoulou personal communication). Urea was used instead

of GuHCl because at pH 3.0 and 20°C, low concentrations of GuHCl also caused

polymerization into an amyloid state (K. Papanikiolopoulou, S.L. Flaugh, I.A. Mills and

J.King, unpubl.). Finally, pH 3.0 was chosen because wild-type HyD-Crys was partially

unfolded at lower pH even in the absence of denaturant (data not shown).

There was no evidence of aggregation or amyloid fiber formation in unfolding

samples under the conditions employed here (100 mM sodium citrate (pH 3.0) plus Urea

from 0 to 6 M at 20°C). However, all proteins aggregated upon refolding into

concentrations of Urea below 2.5 M at pH 3.0 (data not shown). Fluorescence spectra of

soluble protein present in the aggregation samples subsequent a high speed spin did not

match spectra of the native proteins at pH 3.0 (data not shown). The addition of 5 mM

DTT and 1 mM EDTA did not result in recovery of native protein in refolding samples

(data not shown). The morphology of the pH 3.0 refolding aggregates and the

irreversibility of the reactions will be the subject of future investigations. Given the

irreversibility of the reaction at pH 3.0, AG° values were not calculated and instead

transition midpoints were used as an estimate of stability (Table 4-2). To reduce

complexity of the plots, equilibrium refolding data is not shown in Figure 4-5.

The equilibrium unfolding transition of wild-type HyD-Crys at pH 3.0 was best fit

to a two-state model that assumes direct transition between the native and unfolded states

(Fig. 4-5). The Cm of the pH 3.0 equilibrium unfolding transition was 2.4 M Urea (Table

4-2). Discrepancy between the number of states observed for the pH 7.0 and pH 3.0 data
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is likely due to different effects of pH on the stabilities of the N- and C-tds. For instance,

if the stability of each domain of wild-type HyD-Crys are more similar at pH 3.0 than pH

7.0, the partially folded intermediate would not be populated over as wide a range of

denaturant concentrations if at all, and thus would not be observable at pH 3.0.

6. Equilibrium unfolding/refolding of deamidation mutants at pH 3.0

Stabilities of the mutants Q54E, Q143E and Q54E/Q143E were also measured at

pH 3.0, which is below the pK. of glutamate in aqueous solution. However, the

introduced glutamate side chains are in proximity to polar main chain and side chain

atoms as well as water molecules that may alter pI. and cause the glutamate side chains

to not be fully protonated at pH 3.0 (Fitch et al. 2002; Forsyth et al. 2002). The pH 3.0

equilibrium unfolding transitions of the deamidation mutants were best fit to two-state

models similar to wild type (Fig. 4-5). The transition midpoints of the deamidation

mutants were identical or comparable to that of wild-type HyD-Crys. The Cm for Q54E

was 2.4 M, the Cm for Q143E was 2.3 M and the Cm for Q54E/Q143E was 2.1 M (Table

4-2).

Equilibrium unfolding of the double alanine mutant, Q54A/Q143A, was also

measured at pH 3.0 as a control protein that is destabilized at pH 7.0 but has the same

number of acidic residues as wild type (Flaugh et al. 2005b). At pH 3.0, the unfolding

transition of Q54A/Q143A deviated significantly from that of wild type as it was best fit

to a three state model with Cm's of 1.3 and 2.5 M for the first and seconds transitions,

respectively (Fig. 4-5, Table 4-2).
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mM sodium citrate (pH 3.0) and Urea from 0 to 5.0 M at 20°C.
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Table 4-2. Equilibrium unfolding/refolding parameters for wild-type and mutant HyD-

Crys at pH 3.0 and 20°C in Urea.

pH 3.0 Transition 1 pH 3.0 Transition 2

Protein Cma Cma

Wild type 2.4 + 0.1

Q54E 2.4 + 0.1

Q143E 2.3 + 0.1

Q54E/Q143E 2.1 ± 0.1

Q54A/Q143A 1.3 ± 0.1 2.5 ±0.1

a Transition midpoints of equilibrium unfolding transitions in units of M Urea.

7. Kinetic refolding of wild type and deamidation mutants at pH 7.0

The effects of glutamine deamidation on the refolding kinetics of HyD-Crys were

determined by performing productive kinetic refolding experiments at pH 7.0. Proteins

were diluted from 5.0 to 1.0 M GuHCl and burial of the tryptophans was monitored as a

decrease in the fluorescence intensity at 350 nm over time. Proteins were refolded to 1.0

M GuHC1 as this was the lowest concentration of GuHCl where aggregation did not

compete with productive refolding (Kosinski-Collins and King 2003). A syringe-port

injection system was used instead of a stopped-flow apparatus because the major

refolding transitions of HyD-Crys occur on a second and not millisecond time scale

(Kosinski-Collins et al. 2004). Potential sub-second refolding intermediates were not

addressed in these experiments.

Previous analyses of wild-type HyD-Crys refolding kinetics revealed the presence

of a single major intermediate that likely has a folded C-td and unfolded N-td (Kosinski-

Collins et al. 2004). It was further found that the domain interface of the folded C-td
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nucleates refolding of the N-td (Flaugh et al. 2005a; 2005b). Refolding kinetics of the

deamidation mutants did not fit well to two exponentials (three states) as was previously

described for wild type. This observation prompted a more in-depth analysis of wild-type

HyD-Crys refolding kinetics. The refolding kinetics of wild type were fit to two and

three exponentials and residuals were examined to select the best fit (Fig. 4-6). Fitting to

three exponentials (four states) resulted in a more random arrangement of residuals (Fig.

4-6). Compared to the two exponential fit, the residuals of the three exponential fit were

improved for data in the range of 0 to 200 seconds, where the major structural

transformations take place. As depicted in equation 2, wild-type HyD-Crys populated

two major intermediates during refolding.

kRI kR2 kR3

Unfolded - IRI - IR2 - Native (2)

First, a rapid decrease in fluorescence was observed with a half-time (ti/2) of 8

seconds which corresponded to refolding from the unfolded (U) state into the first

intermediate (IRI). Refolding into the second intermediate (IR2) then occurred with a t 2

of 35 seconds and finally refolding into the native (N) conformation occurred with a t1 2

of 130 seconds (Table 4-3).

Refolding rates of the deamidation mutants were analyzed in an analogous

manner as that described for wild type. All of the mutants exhibited a rapid decrease in

fluorescence upon diluting into 1.0 M GuHCl followed by a slower decrease in

fluorescence (Fig. 4-7). All of the mutant proteins required significantly longer times

than wild type to refold completely and were best fit by three exponentials similar to wild

type (Fig. 4-7). For all mutants, the rates of refolding into IRI and I2 were similar to

wild-type while the rate of the final transition from I to N was decreased (Table 4-3).

The t1/2 of the I2 to N transition was increased more than 19 times for Q54E/Q143E

(2500 seconds) as compared to wild type (130 seconds).
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Figure 4-6. Productive kinetic refolding data of wild-type HyD-Crys fit to
two (A) and three exponentials (B). Protein was initially unfolded in 5.5 M
GuHCl and diluted into 100 mM sodium phosphate, 5 mM DTT, 1 mM EDTA
(pH 7.0) at 37°C to give a final GuHCl concentration of 1.0 M. Changes in
fluorescence intensity at 350 nm were monitored over time using an excitation
wavelength of 295 nm. Fits of the data are shown as black lines and residuals
of the fits are shown above.
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8. Kinetic unfolding of wild type and deamidation mutants at pH 7.0

The effects of glutamine deamidation on the unfolding kinetics of HyD-Crys were

analyzed by performing kinetic unfolding experiments. Native proteins were rapidly

diluted into 5.0 M GuHCl at pH 7.0 and the decrease in fluorescence intensity at 350 nm

was monitored over time in order to follow the solvent-exposure of buried tryptophans.

As with the kinetic refolding experiments, a syringe-port injection system was used

because major transitions during unfolding occur on a second time-scale (Kosinski-

Collins et al. 2004). It was previously shown that the kinetic unfolding transitions of

wild-type HyD-Crys were best fit to three exponentials suggesting an unfolding pathway

with two major intermediates as depicted in equation 3 (Kosinski-Collins et al. 2004).

kul ku2 kU3

Native - Iul - IU2 - Unfolded (3)

The kinetic unfolding transitions of wild type measured here agreed well with the

previous analysis. A rapid increase in fluorescence at 350 nm corresponding to the N to

the first intermediate (Iul) transition was followed by a slower increase corresponding to

unfolding into the second intermediate (Iu2) and finally U (Fig. 4-7). The unfolding

transitions were best fit to three exponentials with t2 values of 0.79, 33 and 200 seconds

for the three phases, respectively (Table 4-4).

Kinetic unfolding rates of Q54E, Q143E and Q54E/Q143E were measured in a

manner analogous to that described for wild-type HyD-Crys. Kinetic unfolding

transitions for all mutants exhibited a rapid increase in fluorescence followed by a slower

increase, which were best fit to three exponentials (Fig. 4-7). The t2 values for

unfolding into Iul and Iu2 were increased for all mutants compared to wild type. In

contrast, the t2 values for the Iu2 to U transition were similar for the mutant and wild-

type proteins (Table 4-4).
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Figure 4-7. Normalized kinetic unfolding (gray) and productive kinetic refolding
(black) transitions of wild-type H D-Crys and deamidation mutants. For unfolding,
native proteins were diluted into 5.0 M GuHCI, and buffer described in Fig. 6 at 37°C.
For productive refolding, proteins were first unfolded in 5.5 M GuHCI and subsequently
diluted into buffer described in Fig. 6 to give a final GuHCI concentration of 1.0 M at
37°C. Insets shown for Q54E, Q143E and Q54E/Q143E display the refolding
transitions over the extended times that were required for complete refolding.
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E. DISCUSSION

Glutamine and asparagine deamidation are very common forms of covalent

damage found in the crystallins of aged and cataractous lenses. Chemically, deamidation

results in replacement of an amide group with a carboxyl group, and may cause side

chain racemization and backbone isomerization. Four products are derived from the

deamidation of L-asparagine, L- and D-aspartate and L- and D-isoaspartate (Takemoto et

al. 2001). The ratio of products formed depends on steric hindrance induced by the

protein backbone (Takemoto et al. 2001). Deamidation of glutamine likely occurs by a

similar mechanism where the four products formed are L- and D-glutamate and L- and D-

isoglutamate.

The extent of deamidation at different sites in the crystallins is highly dependent

on the structural context of the residues, such as solvent accessibility of the asparagine or

glutamine and the size and flexibility of the amino acid immediately following it (Geiger

and Clarke 1987; Lapko et al. 2002). In human yS crystallin, a close relative of HyD-

Crys, high percentages of deamidation were seen for residues with surface accessibilities

greater than 80 A2 and low percentages for residues with accessibilities less than 80 2

(Lapko et al. 2002).

Many sites of deamidation have been identified in HyD-Crys from cataractous and

non-cataractous lenses of various ages (Hanson et al. 1998; Hanson et al. 2000; Searle et

al. 2005). Gln54 was identified as a potential site of deamidation in the water-soluble

fraction of non-cataractous lenses, reaching 65% deamidation in a 45 year old lens

(Hanson et al. 1998). In contrast, another study found no damage in HyD-Crys from the

water-insoluble fraction of non-cataractous lenses (Hanson et al. 2000). A third study of

the proteins from a 93-year old cataractous lens found deamidation of HyD-Crys at a

variety of sites, some of which agreed with previous results and others which were newly

identified (Searle et al. 2005). Deamidation is a particularly difficult modification to

detect because it results in a mass change of only one Da. Given the discrepancy

between studies, the low numbers of sample sizes, and the difficulty in identifying

deamidation, it is plausible that further sites of deamidation in HyD-Crys have yet to be

identified. We focused our investigation on glutamines in the domain interface of HyD-
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Crys, a structurally significant location of the protein. While Gln54 and Gln143 are

highly buried in the native state, they are each within hydrogen bonding distances to two

water molecules, critical reactants in non-enzymatic deamidation.

1. Effects of interface glutamine deamidation on structure

Single and double glutamine to glutamate substitutions of the interface residues,

Gln54 and Gln143 did not prevent in vivo folding into soluble native-like conformations.

Additionally, the CD and fluorescence spectra of the mutant proteins were similar to wild

type suggesting that they had similar secondary and tertiary structures. Despite similar

emission maxima, native fluorescence emission spectra of Q143E and Q54E/Q143E were

increased about 10% in intensity compared to wild type (Fig. 4-2). This change in

fluorescence intensity may be due to relaxation of the anomalous native state quenching

phenomenon that causes the fluorescence intensity of HyD-Crys to be lower in the native

state than the unfolded state. Native-state fluorescence quenching has been previously

described for HyD-Crys and other p- and y-crystallins (Kim et al. 2002; Bateman et al.

2003; Kosinski-Collins and King 2003; Kosinski-Collins et al. 2004). Increase in the

fluorescence emission of Q143E and Q54E/Q143E may have been caused by relaxation

of the native state quenching phenomenon, structural changes or deviations in solution

conditions.

Overall, the data observed here suggests that deamidation of Gln54 and Gln143

into L-glutamate does not cause considerable changes in the structure of HyD-Crys. High

resolution crystal structures of the mutant proteins will be necessary to determine subtle

changes in conformation not detectable by the spectroscopic methods employed here.

2. Effects of interface glutamine deamidation on stability

At pH 7.0 and 37°C, wild-type HyD-Crys exhibits three-state equilibrium

unfolding/refolding transitions with an intermediate populated that likely has a structured

C-td and unstructured N-td (Kosinski-Collins et al. 2004; Flaugh et al. 2005a).
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According to this model the first transition represents unfolding/refolding of the N-td and

the second transition represents unfolding/refolding of the C-td (Flaugh et al. 2005a).

At pH 7.0 the single and double interface deamidation mutants were all

destabilized compared to wild type. The AG° and Cm of the first transition were

decreased for the mutants, but the second transition was not affected. Therefore,

deamidation of the interface glutamines appeared to destabilize the N-td but not the C-td.

Single and double alanine mutagenesis of Gln54 and Gln143 also caused selective

destabilization of the N-td (Flaugh et al. 2005b). Double mutant cycle analysis revealed

that Gln54 and Gln143 have very low interaction energy of-0.7 kcal/mol. However,

mutating the residues singly and doubly still resulted in notable destabilization. These

results suggest that the residues are not positioned at the top of the domain interface to

energetically clasp the domains together, but may instead function to shield the central

domain interface hydrophobic cluster from solvent (Flaugh et al. 2005b).

According to the model described above, mutating Gln54 and Gln143 to

glutamate should not have a large effect on stability because the polar nature of the

residues is maintained. However, significant destabilization was observed for the

deamidation mutants, probably due to the introduction of negative charges. To test this

hypothesis, we performed equilibrium unfolding/refolding experiments at acidic pH,

below the pKa of the free glutamate side chain in aqueous solution. The lowest practical

pH for these experiments was 3.0, because wild-type HyD-Crys partially unfolded at

lower pH even in the absence of denaturant. In addition, Urea was used instead of

GuHCl and lower temperatures were employed for the pH 3.0 experiments to avoid

amyloid fiber formation that was observed in the presence of GuHCl (K.

Papanikiolopoulou, S.L. Flaugh, I.A. Mills and J. King, unpubl.).

The pH 3.0 equilibrium unfolding transition of wild type appeared two-state under

the conditions employed here. Equilibrium unfolding transitions of Q54E, Q143E and

Q54E/Q143E at pH 3.0 were comparable to wild type with similar transition midpoints.

Thus, the glutamine to glutamate mutations did not notably affect stability when the side

chains were protonated. In contrast, the double alanine mutant Q54A/Q143A was

destabilized at both pH 7.0 and 3.0 where it was best fit to a three-state transition. These

results suggest that wild type and the deamidation mutants do populate an equilibrium

160



intermediate at pH 3.0, but it is not readily observable due to similarities in the transition

midpoints of the two domains at pH 3.0.

The results observed here indicate that subsets of the glutamates were protonated

at pH 3.0. These data suggest that the positively charged guanidinium ions present in

denaturation samples did not completely mask the negatively charged side chains of the

introduced glutamates as has been previously described for acetylated ferricytochrome c

and several coiled coil proteins (Hagihara et al. 1994; Monera et al. 1994b; 1994a; Kohn

et al. 1995). The inability of guanidinium ions to completely or partially mask the

glutamate side chains may be due to the low solvent accessibilities of these residues in

the native state. In all probability, destabilization of HyD-Crys by deamidation of the

interface glutamines occurred due to introduction of a negative charge into these buried

locations. Introducing charged residues into the hydrophobic interior of staphylococcal

nuclease has been previously shown to destabilize the protein in a pH-dependent manner

(Stites et al. 1991; Nguyen et al. 2004)

3. Thermal stability of wild-type HyD-Crys and deamidation mutants

To avoid ionic effects of GuHCl, we studied stability under low ionic conditions

using thermal denaturation. The y-crystallins exhibit high thermal stabilities (Sen et al.

1992; Fu and Liang 2002; Evans et al. 2004). Sen et al. (1992) reported a Tm of

approximately 73°C for bovine yD crystallin and Evans et al. (2004) found that HyD-Crys

resisted thermal aggregation after incubating at 70°C for up to ten minutes. We measured

thermal stabilities of wild-type HyD-Crys and the deamidation mutants by observing

changes in ellipticity at 218 nm at increasing temperatures using a CD spectometer. By

this method wild-type HyD-Crys had a very high Tm of 83.8°C. The deamidation mutants

all had lower Tm's where Q54E was the least destabilized, Q143E was in between and

Q54E/Q143E was the most destabilized.

The thermal denaturation data contradict the equilibrium data at pH 7.0 and 37°C

where, within error, Q54E and Q143E were destabilized similarily and Q54E/Q143E was

most destabilized. This discrepancy may be due to differences in the response of the N-

and C-tds to thermal denaturation and GuHCl-induced unfolding. The thermal
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denaturation transitions of the wild-type and mutant proteins all appeared two-state while

the pH 7.0 equilibrium transitions were clearly three-state, suggesting that the protein

unfolds more cooperatively in response to heat than GuHCl. This may be caused by the

N-td and C-tds having very similar Tm's or a cooperative unfolding mechanism not

demonstrated in GuHCl equilibrium experiments. Therefore, deamidation could have

very different effects on stabilities of the domains under the two denaturation conditions.

Alternatively, it is still possible that the differences are due to guanidium ion interference

in the equilibrium experiments. Similarly, unfolding and aggregation both occur in

thermal experiments, which may obscure detection of intermediates.

Thermal stabilities of wild type and the deamidation mutants were not measured

at pH 3.0 because wild-type HyD-Crys has been observed to form amyloid fibers at pH

3.0 and temperatures higher than 20°C (K. Papanikiolopoulou, S.L. Flaugh, I.A. Mills

and J. King, unpubl.).

4. Kinetic unfolding and refolding

High thermodynamic stability is a critical property of the lens crystallins, which

allows the proteins to remain folded despite advanced age. It has furthermore been

suggested that the lens crystallins also utilize kinetic stability to prevent unfolding, where

a there exists an exceptionally high kinetic barrier to unfolding (Das and Liang 1998;

Jaenicke and Slingsby 2001; MacDonald et al. 2005). The effects of deamidation on the

free-energy barrier between the native and intermediate states of HyD-Crys were

examined by performing productive kinetic refolding and unfolding experiments. As

described above the kinetic unfolding/refolding pathway of HyD-Crys has been

investigated in detail by fluorescence (Kosinski-Collins et al. 2004; Flaugh et al. 2005a;

2005b).

Kinetic refolding transitions were best fit to three transitions suggesting two

major intermediates and rates of the third transitions were the notably different for the

mutants (Table 4-3). Given the previously described nucleation-dependent sequential

domain refolding pathway, we hypothesize that the first and second transitions monitored

refolding of the C-td and the third transition monitored refolding of the N-td. Kinetic
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unfolding transitions of wild type and the deamidation mutants were all best fit by three

exponentials and the deamidation mutants had significant effects on rates of the second

unfolding transition only (Table 4-4). These data suggest that the first and second

transitions were N-td unfolding and the third transition was C-td unfolding (Kosinski-

Collins et al. 2004).

Previous analyses of proteins adopting the fy-crystallin domain fold have

established that the fI-strands contributing to the Greek key motif nearest the domain

interface, as well as a 1-hairpin between these strands are highly stabilizing and may act

as a nucleus for folding (Bagby et al. 1998; MacDonald et al. 2005). Given this, the

partially folded intermediate (IRI) that had a partially folded C-td may have be structured

in the region near the domain interface and the intermediate (Iul) with a partially folded

N-td may have been unstructured in the Greek key motif distant from the domain

interface (Fig. 4-8).

According to the hypotheses described above, and contrary to what might be

expected for a reversible folding reaction, neither Iul and IR2 nor IU2 and IR1I were

equivalent. Iul likely had a partially-folded N-td where domain interface contacts were

maintained while IR2 likely had a folded C-td and unfolded N-td. The Iu2 species was

probably analogous to the IR2 species. Finally, IRI likely had a partially folded C-td and

fully unfolded N-td. The reason for these discrepancies may be due to differences in

relative sizes of kinetic barriers on the forward and reverse pathways. For instance,

during refolding, the U to IRI transition was slow enough to detect, but during unfolding

the IRI to U transition may be too fast to detect. The reverse may be true of the N to Iu1

transition explaining why it was only observed in during unfolding. A schematic diagram

describing potential qualitative relationships between the unfolding and refolding

intermediates is shown in Fig. 4-8. It is also possible that the discrepancies are due to

inherent differences in the unfolding and refolding pathways, such as the presence of off-

pathway intermediates or parallel folding channels as has been previously described for

the alpha-subunit of tryptophan synthase, an a/3-barrel protein (Bilsel et al. 1999).

Comparing the kinetic unfolding and refolding data to thermodynamic stabilities

determined by equilibrium experiments, it was possible to describe the effects of

interface deamidation on the various stages of the unfolding and refolding pathways (Fig.
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4-8). Consistent with what would be expected for mutations that disrupt the domain

interface, the most significant effects were observed for transitions of the N-td. The

native state was markedly destabilized by the deamidation mutants (AAGN-.u= 2.0-3.0

kcal*mo'l*Ml). It was not possible to determine the stability of the kinetic unfolding

intermediate Iul. However, given that the domains were likely still making contact, we

expect that the mutants decreased the stability of Iul similar to the native state. The

height of the free energy barrier between N and Iul was decreased slightly for the

deamidation mutants (AAGt = 0.32-0.47 kcal*moll*Ml). In contrast, the height of the

free energy barrier between Iul and Iu2 was markedly decreased for the mutants (AG 2 =

0.94-1.65 kcal*moll*M'l), suggesting that this was the transition during which domain

interface contacts were lost. On the refolding pathway, the free energy barrier between

In and N was increased considerably for the mutants (0.57-1.81 kcal*mol4*M1). Since

it was not possible to unambiguously correlate intermediates on the unfolding and

refolding pathways, we were not able to quantitatively compare changes in their

respective free energy barriers. Regardless, the data here indicate that the deamidation

mutants decreased the free energy barrier between N and IU2/IR2 enough to reduce the rate

of refolding, but not as much as the native state was destabilized so that an increase in the

rate of unfolding was also observed. In other words, in the model drawn in Fig. 4-8,

AAGt2 was less than AAGN-u for all of the mutants.
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Figure 4-8. Schematic reaction coordinate diagram describing qualitative
relationships between the equilibrium and kinetic unfolding/refolding
intermediates of HyD-Crys. Theorized effects of the interface deamidation
mutations are shown as dashed lines. Line drawings of kinetic intermediates
are speculative conformations when the N- and C-terminal domains were
partially folded.
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5. Covalent damage and lens transparency

Cataract is associated with the presence of insoluble inclusions of covalently-

damaged crystallin proteins. Studying the effects of covalent damage on important

physiological properties of the crystallins may give insight into in vivo alterations that

could induce aggregation or insolubility. A general feature of many protein deposition

diseases is aggregation from a partially-folded or non-native conformation (Mitraki 1989;

Wetzel 1994; Booth et al. 1997; Jiang et al. 2001). In order for aggregation to occur, it is

first necessary to populate the problematic conformation. For the crystallins,

destabilization of the native states and lowering the kinetic unfolding barrier by covalent

damage may cause partial unfolding into aggregation-prone states. Interestingly,

deamidation has also been shown to induce aggregation of amyloidgenic peptides

(Nilsson et al. 2002; Nilsson and Dobson 2003). Alternatively, covalent damage may

alter surfaces of the crystallins in such a way that the short-range order is disrupted or

insolubility is induced. Congenital cataracts caused by mutations in the gene encoding

HyD-Crys instigate cataract formation through such mechanisms where native HyD-Crys

associates by intermolecular disulfide bond formation, crystallization or precipitation

(Kmoch et al. 2000; Pande et al. 2000; Pande et al. 2001; Evans et al. 2004). A

congenital cataract mutant of human yC crystallin (T5P) had both altered conformation

and was destabilized, suggesting that association of non-native conformations caused

cataract (Fu and Liang 2002). While the exact means by which these mutations cause

cataract almost certainly do not explain the mechanism of mature-onset cataract

formation, these examples do provide evidence that alteration of surface properties, or

native-state destabilization can promote self-association or aggregation resulting in

cataract.

Previous analyses have determined that the effects of deamidation on the

structures, stabilities and solubilities of the crystallins are dependent on the structural

context of the damage (Kim et al. 2002; Lampi et al. 2002; Gupta and Srivastava 2004b;

2004a; Lampi et al. 2006). In the P-crystallins, deamidation of domain interface

glutamines has a large effect on stability where a monomeric intermediate is populated in

equilibrium experiments (Kim et al. 2002; Lampi et al. 2006). Human B1 crystallin
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deamidated in the domain interface also had an increased tendency to aggregate at high

temperatures and required more a-crystalllin to suppress aggregation (Lampi et al. 2002).

Here we show that deamidation of the HyD-Crys domain interface glutamines

destabilizes the protein and lowers the kinetic barrier to unfolding. These in vitro

experiments generated deamidation mimics by site-directed substitution of L-glutamine

or -asparagine with L-glutamate or -aspartate. The effects of backbone isomerization

and side chain racemization that may also occur as a result of deamidation are expected

to have even severer effects on stabilities and kinetic unfolding barriers of the crystallins.

The effects of interface glutamine deamidation in HyD-Crys effectively increased

the probablility of populating partially-unfolded conformations under conditions that

favor the native state. These partially unfolded conformations may be prone to

aggregation through mechanisms such as domain swapping or loop-sheet insertion

(Carrell et al. 1994; Liu and Eisenberg 2002). For example, the single folded domain

conformer may be susceptible to aggregation by domain swapping where the unfolded N-

td of one monomer would use the C-td domain interface of another monomer during

templated refolding. The intermediate with a folded C-td and partially unfolded N-td

may be prone to aggregation through a reaction akin to loop-sheet insertion where an

unstructured loop of one monomer inserts as a P-strand into the P-sheet of another

monomer.

Rescue or repair of deamidated crystallins may be possible through the actions of

a-crystallin and the enzyme isoaspartyl protein carboxyl methyltransferase. This

enzyme, which functions to repair racemized aspartly groups, has been identified in the

lens where decreased expression appears to correlate with cataract (McFadden et al.

1983; McFadden and Clarke 1986; Kodama et al. 1995). It is unclear if there is a

corresponding enzyme in the lens that may repair damaged glutamines. The onset of

cataract may correspond to damage at regions of the crystallins particularly sensitive to

chemical or structural alterations, such as the domain interfaces of the - and y-

crystallins. Alternatively, onset may not depend on damage of these hot-spots but instead

may occur when an overall threshold of damage has been exceeded at which time the a-

crystallin chaperone complexes may be saturated or in an inactive aggregated state

themselves.
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CHAPTER FIVE:

CONCLUDING DISCUSSIONS
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A. DISCREPANCIES BETWEEN IN VITRO AND IN VIVO CONDITIONS

A major goal of these investigations was to identify partially structured

intermediates on the in vitro unfolding/refolding pathways of the eye lens protein human

yD crystallin (HyD-Crys) that may be common to the in vitro aggregation pathway

(Kosinski-Collins and King 2003). HyD-Crys is primarily localized in the densely

packed lens nucleus. Other crystallins present in the lens nucleus include human yC

crystallin and members of the a- and -crystallins. The crystallins are present in the

nuclear lens cells in concentrations of 200-400 mg/ml, where they account for 90% of the

total protein (Oyster 1999). Heterogeneity in the surface properties and oligomeric states

of the crystallins are vital for preventing protein crystallization in the lens cells.

Crystallins of the lens nucleus are expressed in utero and must remain stable and

soluble for the human lifetime to maintain lens transparency and refraction. A gradient

of protein concentrations exists in the lens that establishes the gradient of refraction

necessary for fine-tune light focusing (Delaye and Tardieu 1983). Covalent damage of

the crystallins that increases with age may be significant in causing or accelerating the

formation of insoluble crystallin inclusions that cause cataract.

Several in vitro studies of HyD-Crys have elucidated properties of the protein that

may be physiologically important in maintaining stability and solubility (Kosinski-

Collins and King 2003; Evans et al. 2004; Kosinski-Collins et al. 2004; Flaugh et al.

2005a; 2005b). HyD-Crys is a very stable protein that aggregates when refolded out of

denaturant (Kosinski-Collins and King 2003). The domains of HyD-Crys display

differential stability where the N-td is less stable than the C-td and is stabilized in the

full-length protein by inter-domain interactions (Flaugh et al. 2005a; 2005b). The C-td

also folds first during refolding and the structured domain interface of the C-td acts as a

nucleating center for refolding of the N-td (Kosinski-Collins et al. 2004; Flaugh et al.

2005a). Deamidation of domain interface glutamines decreases stability of the N-td and

reduces the kinetic barrier to unfolding (Chapter 3). Therefore, wild-type HyD-Crys

displays both thermodynamic and kinetic stability that are dependent on favorable

interactions between the domains and are reduced as a result of covalent damage to

domain interface glutamines (Chapter 3).
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While these experiments have elucidated important in vitro properties of HyD-

Crys, they were performed in dilute solutions that did not reflect in vivo conditions of the

lens. Therefore the question remains, to what extent are the in vitro refolding pathway

and partially-folded intermediates relevant in the lens? Features of the lens fiber cells

expected to have significant effects on properties of the crystallins are 1) general

excluded volume effects due to molecular crowding, and 2) continued exposure to

environmental stresses and lack of protein turnover.

1. Excluded volume and molecular crowding

Excluded volume effects of the crowded cellular environment favor native protein

conformations. These effects have been mimicked in vitro through use of crowding

agents such as the polysaccharides dextran, ficoll and polyethylene glycol.

Experimentally, macromolecular crowding has been shown to affect enzyme activity

(Minton and Wilf 1981), association constants (Reddy et al. 1995), protein stability

(Sasahara et al. 2003), folding kinetics (van den Berg et al. 2000), and aggregation

kinetics (van den Berg et al. 1999). For example, the stability of hen egg white lysozyme

(HEWL) increased in the presence of -100 g/L dextran (Sasahara et al. 2003). Similarly,

the presence of ficoll accelerated the fast folding pathway and retarded the slow folding

pathway of HEWL (van den Berg et al. 2000). Finally, crowding increased aggregation

of HEWL during refolding under reducing conditions (van den Berg et al. 1999).

In vitro experiments performed with crowding agents reflect in vivo conditions to

some extent. However, they still rely on the assumptions that crowding agents do not

specifically bind to the proteins of interest, and that the crowding agents truly mimic

conditions in the cytoplasm. A method was recently developed to assess "true" in vivo

stability by monitoring changes in fluorescence of an exogenous fluorophore bound to a

tetra-Cys motif in a protein of interest (Ignatova and Gierasch 2004). These experiments
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took advantage of the fact that E. coli cells are Urea-permeable and are viable in up to -3

M Urea. Stabilities of cellular retinoic acid binding protein I (CRABPI) measured by

fluorophore binding in the presence of increasing Urea were similar both in vivo in E. coli

and in vitro in dilute solution (Ignatova and Gierasch 2004). Nevertheless, shapes of the

transitions were different suggesting different equilibrium unfolding mechanisms.

Aggregation kinetics of a CRABPI mutant displayed similar nucleation-growth trends

both in vivo and in vitro (Ignatova and Gierasch 2004). While these experiments

represent a significant advance in understanding in vivo stability and aggregation, they

are unavoidably limited in that all cellular proteins and structure were affected

simultaneously with the test protein. Structural changes of the overall protein population

may affect results for the test protein by causing aggregation, altering crowding potential

of the cytosol, or inducing other specific attractive or repulsive forces.

Given the very high protein concentrations in the lens, the in vivo stability of

HyD-Crys is probably higher than that measured in vitro. Specific interactions mediated

by the surface properties of crystallins may also be important in the excluded volume

environment of the lens (Bloemendal et al. 2004). There are numerous potential salt

bridges in native HyD-Crys, all of which are located on the surface of the protein (Fig. 5-

1). In addition to several pairwise interactions, a network of potential salt-bridges exists

in each domain that may contribute to stability and short-range order (Salim and Zaidi

2003). Another unique feature of the y-crystallins is the high numbers of aromatic amino

acids. HyD-Crys has four buried tryptophans, fourteen tyrosines and six phenylalanines

(Fig. 5-2). Several of these are surface-exposed where they may interact with aromatics

from other monomers through edge-face or face-face ring associations.
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Figure 5-1. (A) Ribbon structure of HyD-Crys with potential salt-bridges
shown in stick representation. Pariwise salt-bridges and the two ion-pair
networks are labeled. (B) Ribbon structure of HyD-Crys with aromatic
amino acids shown in stick representation.

173



2. Covalent damage and protein aggregation

Crystallins in the insoluble protein inclusions associated with mature-onset

cataract have high levels of covalent damage. Intermolecular disulfide bonded forms of

the crystallins accumulate with age. Truscott (2005) proposed that this is due to loss of

the protective reducing agent glutathione. Deamidation of the crystallins also increases

with age (Hanson et al. 1998). Oxidation of tryptophan, tyrosine, histidine and

methionine may derive from photooxidation induced by UV irradiation (Hott and

Borkman 1992). Backbone cleavage and truncation has been proposed to occur through

the enzymatic activity of largely unidentified proteases (David et al. 1993; Chaerkady

and Sharma 2004). The full complement of enzymes in the ubiquitin-proteosome

pathway is present in the lens. However, it is unclear if they function in aged lens fiber

cells or if they are simply leftover from differentiation (Pereira et al. 2003). This would

be consistent with the notion that complete protein degradation does not occur in the lens.

Covalent damage of the crystallins may instigate aggregation by inducing partial

unfolding into aggregation-prone conformations. However, it is important to note that

covalent damage begins early in life, long before cataract formation, suggesting that a

threshold of damage or damage at crucial sites may be necessary to elicit ill-effects.

The results of Chapter 3 and those of Lampi and colleagues (Kim et al. 2002;

Lampi et al. 2006) suggest that deamidation of the 3- and y-crystallins can cause

destabilization into partially-unfolded conformations. Two partially-unfolded

conformations of deamidated HyD-Crys were identified during kinetic unfolding

(Chapter 3). The first had a structured C-td and unstructured N-td. This conformation

may be particularly susceptible to aggregation by domain swapping where the unfolded

N-td would refold using the C-td of another monomer as a template or nucleus (Fig. 5-2).

The second conformation had a folded C-td and partially-folded N-td that likely

maintained structure in the region near the domain interface. This species may be

susceptible to aggregation through a reaction akin to loop-sheet insertion where an

unstructured loop would insert as a 13-strand into a 1-sheet of another monomer (Fig. 5-2).
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Figure 5-2. (A) Schematic model of HyD-Crys aggregation by domain swapping.
The N-td refolds using the structured C-td of another monomer as a template.
(B) Schematic model of HyD-Crys aggregation by loop-sheet insertion where a
loop from one monomer inserts into the sheet of another.
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The two models of aggregation described above could occur strictly between

molecules of HyD-Crys, or between HyD-Crys and other 1- and y-crystallins. Structural

similarities of the 13- and y-crystallins would be expected to promote incorrect

intermolecular interactions of such partially-unfolded conformations. Mixed in vitro

refolding experiments were performed with HyD-Crys and HyS-Crys, which does not

aggregate during in vitro refolding (Kosinski-Collins 2004). When refolded together the

two proteins formed a mixed aggregate indicating that HyD-Crys was able to recruit HyS-

Crys into the aggregate (Kosinski-Collins 2004).

To fully understand interactions of covalently-damaged crystallins in the lens,

mixed in vitro experiments should also be performed with damaged crystallins. For

HyD-Crys this would include a commonly observed 9 kDa truncation product (residues

87 to 173) that is found in cataractous inclusions and is capable of cross-linking with a-,

13- and y-crystallins in vitro (Srivastava et al. 1992; Srivastava and Srivastava 2003).

3. Interaction with a-crystallin

Another major potential interaction ignored during in vitro experiments of single

crystallin species is binding or association with a-crystallin. The mechanism by which a-

crystallin recognizes and binds substrates in the lens in not well understood. In vitro, a-

crystallin has been shown to bind partially-folded or -unfolded conformations of

substrate proteins, possibly recognizing exposed hydrophobics (Horwitz 1992; Sathish et

al. 2004). It is probable that a-crystallin recognizes partially-folded aggregation-prone

substrates in the lens through similar means. Alternatively, a-crystallin may recognize

particular chemical changes that occur as a result of covalent damage and may precede

partial-unfolding.

Previous investigations demonstrated that a-crystallin is capable of preventing

off-pathway competing aggregation during in vitro refolding of bovine 1- and y-

crystallins (Horwitz 2003). The same may be true for HyD-Crys. Experiments should

also be performed to investigate potential interactions of a-crystallin and HyD-Crys

deamidation mutants. Similar experiments were performed with a domain interface

mutant of f3B2-Crys that caused domain destabilization (Sathish et al. 2004). The a-
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crystallins preferentially bound the destabilized mutant suggesting that the single-folded

domain conformer accessible to many 3- and y-crystallins is a specific substrate of a-

crystallin.

B. CONCLUDING REMARKS

The morphologies of cataractous crystallin aggregates have not been well

investigated. The ophthalmology community generally describes cataractous protein

inclusions as amorphous "clumps" devoid of defined morphology. However, in vitro

experiments have demonstrated that the crystallins can polymerize into well-defined

ordered structures, including amyloid fibers (Kosinski-Collins and King 2003; Meehan et

al. 2004). It is possible that such well-defined structures also exist in insoluble inclusions

of cataractous lenses. More detailed descriptions of conformations of the crystallins

present in these inclusions will give insight into the aggregation precursors. Ultimately,

the goal of such investigations would be to identify the specific structures that cause

cataract formation so that strategies for cataract prevention or treatment may be

developed.
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APPENDIX A: SEQUENCE ALIGNMENTS

1. fJ-crystaliin domain interface residues

Domain interface residues of vertebrate ~-crystallins were determined by sequence

alignment using MultAlin (Carpet 1988).

Species and
crystallin type

E

I

v

v

I
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2. Y-Clystallin domain interface residues

Domain interface residues of vertebrate y-crystallins were determined by sequence

alignment using MultAlin (Corpet 1988).
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APPENDIX B: PROTEIN PARAMETERS

Physical parameters of HyD-Crys mutants calculated using the ProtParam tool from

ExPASy (http://us.expasy.orgltools/protparam.html).

Protein

WTHyD-Crys

M43~ HyD-Grys

Q54A HyD-Crys

Q.143E HyD-Crys

L145A HyD-Crys

M147A HyD-Crys

V170A HyD-Crys

R79A/M147A HyD-CfYS

Q54A/Q 143A HyD-Crys

Q54E/Q143E HyD-Crys

Molecular Weight (Da)

21,817
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APPENDIX C: PRIMERS FOR MUTAGENESIS

Oligonucleotide primers used during site-directed mutagenesis of HyD-Crys.

Name Oligonucleotide sequence

M43A coding 5' -gga cag cgg ctg ctg ggc gct cta tga gca gcc c-3'

TM (OC)

77
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APPENDIX D: ANALYSIS OF EQUILIBRIUM UNFOLDING/REFOLDING

DATA

1. Calculating guanidine hydrochloride concentrations

The concentration of GuHCl was determined by measuring the refractive indexes

of samples and applying the following equation:

[GuHCl] = 57.147*AN + 38.68*AN 2 - 91.60*AN 3

AN is the refractive index of the sample minus the refractive index of water.

2. Two-state equilibrium unfolding/refolding

The following is a derivation of the equation that describes two-state equilibrium

unfolding/refolding transitions.

Assume a two-state mechanism where the protein undergoes a direct transition

between the native (N) and unfolded (U) states:

K 1

N Q~U

K1 is the equilibrium constant for the reaction and can be expressed in terms of the

concentration of native and unfolded protein:

(1) K = [U]/[N]

The fraction of native (fN) or fraction of unfolded (fu) protein present at any point in the

curve is equal to the concentration of native or unfolded protein divided by the total

protein concentration (PT).

200



fN = [N]/[PT]

fu [U]/[PT]

or

(2) [N] = fN*[PT]

(3) [U] = fu*[PT]

We also know that the fN and fu sum to equal one:

(4) fN + fu = 

Substituting (2) and (3) into (1), we now have an expression for the equilibrium constant

in terms fN and fu:

K1 = ([fu]*[PT])/([fN]/[PT])

Canceling out [PT], we see that:

K, = [fu]/[fN]

or

(5) fu = K*fN

(6) fN = fu/K 1

Substituting (5) and (6) into (4) and rearranging, we now have expressions for fN and fu

in terms of K1:

(7) fN = 1/( + KI)

(8) fu= /(/K+l)

The spectroscopic signal (Y) of a mixture of native and unfolded protein is equal to the fN

times the signal of the native protein (YN) plus the fu times the signal of the unfolded

protein (Yu):
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(9) Y = YN*fN + YU*fu

YN and Yu vary linearly with concentration of denaturant ([den]). These lines are known

as the native and unfolded baselines.

(10) YN = YN ° + SN*[den]

(11) Yu = Yu° + Su*[den]

YN° and Yu° are the signals of the native and unfolded proteins in the absence of

denaturant, respectively and SN and Su are the slopes of the native and unfolded

baselines, respectively.

Substituting (10) and (11) into (9) yields the following relationship:

(12) Y = (YN° + SN*[den])*(1/(1 + K1)) + (Yu° + Su*[den])*(1/(1/Ki + 1))

In equilibrium unfolding/refolding experiments, free energy of unfolding (AGi) is

determined in the transition region where the native and unfolded states are in

equilibrium. AG, varies with denaturant concentration in a roughly linear fashion.

Therefore, free energy of unfolding in the absence of denaturant (AGi°) can be

determined by plotting AGI in the transition region versus the concentration of

denaturant, fitting the data to a straight line and extrapolating back to 0 M denaturant.

The slope of this line is known as the m value (m).

(13) AG1 = AGI° - m[den]

The free energy of unfolding in the absence of denaturant (AG,°) is related to KI, the gas

constant (R) and the temperature (T) as follows:

(14) AG1
° = - RT*ln(KI)
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Substituting (13) into (14) and rearranging, we get the following expression:

(15) K1 = exp((m*[den] - AGi)/RT)

Finally, substituting (15) into (12), we arrive at an expression for Y in terms of the native

and unfolded baselines, and the AG1
° and m value of the transition:

(16) Y = (YN° + SN*[den])*(I/(1 + exp((m*[den] - AG1)/RT))) + ( Yu° +

Su*[den])*(l/(l/exp((m*[den] - AG1)/RT) + 1))

Data were fit to the two-state equilibrium model using the curve-fitting feature of

KaliedaGraph. The following algorithm was used for experiments performed at 37°C

(310 K) or 20°C (293 K). The gas constant is in units of cal*mol*K' l.

x=mO;

a=ml;

b=m2;

c-=m3;

d=m4;

e=m5;

f=m6;

Kl( = exp((c*x-d)/(1.987*310))

twost(aO, bO, cO, dO, eO, fO) = (a+b*x)*(1l/(l+K))+(e+f*x)*(1l/(1/Kl+l))\;

a=aO\; b=bO\; c=cO\; d=dO\; e=eO\; f=fO\;
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3. Three-state equilibrium unfolding/refolding

The following is a derivation of the equation that describes three-state equilibrium

unfolding/refolding transitions.

Assume a three-state mechanism where a partially folded intermediate (I) is

populated in equilibrium with the native (N) and unfolded (U) states:

K K2

N X I qU

K and K2 are the equilibrium constants for the native to intermediate and intermediate to

unfolded transitions, respectively. They are related to the concentration of native,

intermediate and unfolded protein in the following manner:

(1) K1 = [I]/[N]

(2) K2 = [U]/[I]

The fraction protein found in the native (fN), intermediate (fl) or unfolded (fu)

conformation is related to the total protein (PT) concentration as follows:

fN = [N]/[PT]

fi= [I]/[PT]

fu = [U]/[Pr]

or

(3) [N] = fN*[PT]

(4) [] = fI*[PT]

(5) [U] = fu*[PT]

The sum of fN, f and fu is 1:

(6) fN+ f + fu= 1
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Substituting (3) and (4) into (1), and (4) and (5) into (2), yields expressions for Kl and K2

in terms of fN, f and fu:

K1 = (fI*[PT])/(fN*[PT])

K2 = (fu*[PT])/(fl*[PT])

Canceling [PT] out of both expressions, we get the following relationships:

K1 = fI/fN

K2 = fu/fI

or

(7) f = Kl*fN

(8) fu = K2*fI

Substituting (7) and (8) into (6) and rearranging, we obtain expressions for fN, f and fu in

terms of K1 and K2:

(9) fN = 1/(1 + K + K*K2)

(10) fi = KI/(l + K1 + Kl*K2)

(11) fu = KI*K2/(1 + KI + K1*K2)

As with the two-state mechanism described above, the spectroscopic signal (Y) of a

mixture of N, I and U is equal to the fN times the signal of the native protein (YN) plus the

fi times the signal of the intermediate protein (YI) plus the fu times the signal of the

unfolded protein (Yu):

(12) Y = fN*YN + f*YI + fu*Yu

YN and Yu vary linearly with concentration of denaturant ([den]). These lines are known

as the native and unfolded baselines.
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(13) YN = YN° + SN*[den]

(14) Y = Yu° + Su*[den]

YN° and Yu° are the intercepts of the native and unfolded conformations in the absence

of denaturant, respectively and SN and Su are the slopes of the native and unfolded

baselines, respectively. The signal of the intermediate was treated as a single value to

reduce numbers of unknown variables during the fitting.

Substituting (9), (10), (11), (13), and (14) into (12) yields the following relationship:

(15) Y = (YN° + SN*[den])*(1/(1 + K1 + Kl*K2)) + Yi*(KI/(1 + K1 + KI*K2 )) +

(Yu° + Su*[den])*((KI*K 2)/(1 + Kl + Ki*K 2))

Free energies of unfolding for the native to intermediate (AG,) and intermediate to

unfolded transition (AG2) are determined in the transition regions where the different

conformations are in equilibrium. AG, and AG2 vary with denaturant concentration in a

roughly linear fashion. Free energy of unfolding in the absence of denaturant (AG,° and

AG2
° ) can be determined by plotting AG1 and AG2 in the transition region versus the

concentration of denaturant, fitting the data to a straight line and extrapolating back to 0

M denaturant. The slope of this line is known as the m value (n).

(16) AG1 = AG1
° - ml[den]

(17) AG2 = AG2° - m2[den]

AG1
° and AG2

° are related to Kl, K2, the gas constant (R) and the temperature (T) as

follows:

(18) AGI = - RT*ln(KI)

(19) AG2
° = - RT*ln(K 2)
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Substituting (16) and (17) into (18) and (19) and rearranging, we get the following

expressions:

(20) K1 = exp((ml*[den] - AGI)/RT)

(21) K2 = exp((m 2*[den] - AG2)/RT)

Finally, substituting (20) and (21) into (15), we arrive at an expression for Y in tennrms of

the native and unfolded baselines, the signal of the intermediate, AG1
° AG2

° and m values

of the transitions:

(16) Y = (YN° + SN*[den])(1/(1 + exp((ml*[den] - AG1)/RT) + exp((ml*[den]

- AG1)/RT)* exp((m2*[den] - AG2)/RT)) + Yl*(exp((ml*[den] -

AG1)/RT)/( 1 + exp((ml*[den] - AG1)/RT) + exp((ml*[den] - AGi)/RT)*

exp((m2*[den] - AG2)/RT))) + (YuO + Su*[den])((exp((ml* [den] -

AG1)/RT)* exp((m2*[den] - AG2)/RT))/(1 + exp((ml*[den] - AGI)/RT) +

exp((ml*[den] - AGI)/RT)* exp((m2*[den] - AG2)/RT))
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Data were fit to the three-state equilibrium model using the curve-fitting feature of

KaliedaGraph. The following algorithm was used for experiments performed at 37°C

(310 K) or 20°C (293 K). The gas constant is in units of kcal*molf'*K 'l.

x =mO;

a=ml;
b =m2;

c =m3;

d =m4;

e =m5;

f=m6;

g =m7;

h =m8;

i =m9;

K1( = exp((c*x-d)/(1.987*310));

K2() = exp((e*x-f)/(1.987*310));

threest(aO, bO, cO, dO, eO, fO, gO, hO, iO) =

((a+b*x)+g*Kl o0+((h+i*x)*Ko10*K20))/(1 +K1 (+K10*K20)

\;a=aO\; b=bO\; c=cO\; d=dO\; e=eO\; f=fD\; g=gO\; h=hO\; i=iO;
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APPENDIX E: ANALYSIS OF KINETIC DATA

1. Two-state kinetics

The following equation was used to describe a kinetic reaction with no intermediates:

kl

A B

Y = YB - (YB - YA)*exp(-kl*t)

Data were fit to the two-state kinetic model with the curve-fitting feature of

KaliedaGraph using the following algorithm.

x-=mO;

a=ml;

b=m2;

c-m3;

Twokin(aO, bO, cO)=

a*exp(-b*x)+c

\; a=aO\; b=bO\; c=cO\;
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2. Three-state kinetics

The following equation was used to describe a kinetic reaction with one intermediate:

kl k2

Y = Yc - (YB - YA)*exp(-kl*t) + (Yc - YB)*exp(-k2*t)

Data were fit to the three-state kinetic model with the curve-fitting feature of

KaliedaGraph using the following algorithm.

x=mO;

a=ml;

b=--m2;

c=m3;

d=m4;

e-=m5;

Threekin(aO, bO, cO, dO, eO)=

a*exp(-b*x)+c*exp(-d*x)+e

\; a=aO\; b=bO\; c=cO\; d=dO\; e=eO\;
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3. Four-state kinetics

The following equation was used to describe a kinetic reaction with two intermediates:

k2 k3

C -D

kl

A B

Y = YD- (YB - YA)*exp(-kl*t) + (Yc- (Yc- YB)*exp(-k2*t) + (YD- Yc)*exp(-k3*t)

Data were fit to the four-state kinetic model with the curve-fitting feature of

KaliedaGraph using the following algorithm.

x=m-O;

a-=ml;

b=m2;

c=m3;

d=m4;

e=m5;

f=m6;

g=m7;

Threekin(aO, bO, cO, dO, eO)=

a*exp(-b*x)+c*exp(-d*x)+e*exp(-f*x)+g

\; a=aO\; b=bO\; c=cO\; d=dO\; e=eO\; f=fD\; g=gO\;

"Did it get funny? Because the part I saw was just weird."
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