Conjugation of Extrachromosomal Replicons of
Rhodococcus erythropolis AN12

by
Joyce Chun-Yi Yang

B.A., Biochemistry
Rutgers University, 1998

SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
AT THE
MASSACHUETTS INSTITUTE OF TECHNOLOGY
MAY 2006

[ Soee 2000 \
© 2006 Massachusetts Institute of Technology. All rights reserved.

\ N
Signature of Author: yZ 4,/'\&—>

m Department of Biology
May 15, 2006

Certiﬁed by: g &L - = i LSS - z
4 / / Anthony J. %i.nskey
Professor of Microbiology
Thesis Supervisor

Accepted by: v

TR A Stephen Bell
Professor of Biology

Chairman, Committee for Graduate Students

MASSACHUSETTS INS' E

OF TECHNOLOGY

1 |
ARCHIVES JUN 0 2 2006

LIBRARIES




Conjugation of Extrachromosomal Replicons of Rhodococcus erythropolis AN12
by
Joyce C. Yang

Submitted to the Department of Biology
On May 15, 2006 in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy in Biology

Abstract.

Bacteria belonging to the Gram-positive actinomycete species, Rhodococcus
erythropolis, are diverse not only in terms of metabolic potentials but the plasmids they
encode. Pulsed-field gel electrophoresis (PFGE) revealed three previously
uncharacterized megaplasmids in the genome of Rhodococcus erythropolis AN12. These
megaplasmids, pPREA400, pREA250 and pREA100, migrate at approximately 400 kb,
250 kb and 100 kb, respectively. Genetic screening of an AN12 transposon insertion
library showed that two megaplasmids, pPREA400 and pREA250, are conjugative. It is
known for other bacterial systems that a relaxase encoded by the trad4 gene is required to
initiate DNA transfer during plasmid conjugation. Sequences adjacent to the transposon
insertion in megaplasmid pREA400 revealed a putative trad-like open reading frame. A
novel site-specific gene disruption method was developed to generate a tra4 mutation in
AN12, which allowed us to address the role of the trad gene for Rhodococcus
megaplasmid conjugation. We found that the AN12 tra4 mutant is no longer capable of
transferring the pPREA400 megaplasmid to Rhodococcus erythropolis SQ1.

It was shown previously that the R. erythropolis AN12 genome harbors a 6.3 kb
cryptic plasmid called pAN12. Here we show that pAN12 is conjugatively mobilizable
into other rhodococcal strains. A series of plasmid deletion constructs were tested for
loss of mobility to identify the pAN12 cis-acting conjugation requirement. In this way, an
approximately 700 bp region was found to be required for plasmid transmission. A small
61 bp element within this region exhibited sequence similarity to the minimal 54 bp ¢/t
region known to be required for the conjugation of the streptomycete plasmid, pIJ101.
The functionality of these cis-acting elements appears to be conserved, as the addition of
this pAN12 clt-like region confers mobility to an otherwise non-conjugative plasmid.
However, unlike pJI101 which encodes all necessary factors for transfer, pAN12 mobility
is dependent on the presence of the AN12 megaplasmid, pREA400.
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1.1. Background and motivation.

1.1.1. Introduction to the biology and versatility of Rhodococcus. Bacteria of
the genus Rhodococcus are Gram-positive, GC-rich, aerobic, non-motile members of the
order Actinomycetales. As such, they are related to clinically and industrially important
actinomycetes, such as Mycobacterium tuberculosis, the causative agent of tuberculosis,
and various strains of Streptomyces, well known as producers of antibiotics.
Actinomyces literally means “ray-fungus” in Greek, as their sometime filamentous
morphologies closely resemble small fungi. Indeed, the classification of rhodococci as a
distinct genera historically has been difficult due to their pleomorphic nature, such that
within a single isogenic strain, cells may appear as cocci, short rods, filaments, or take on
elaborately branched morphotypes (Figure 1-1A). In addition, colony morphologies
between different strains can vary; colonies may be smooth or rough edged, mucoid or

dry, exhibiting colors from white to deep orange-red (Figure 1-1B).

A. - B.
£ {0

L @
- o J

) R. ervthropolis ~ R. erythropolis ~ R. aetherivorans R. ruber
SQ! ANI2 124 DDO319

Figure 1.1. Cell and colony morphologies of Rhodococcus bacteria. (A) Morphologies
that rhodococci cells can adopt during cycles of division and growth, adapted from an
insert on pg. 91 in the Biology of Actinomycetes (49). (B) Variance of colony
morphology between indicated strains of Rhodococcus. Photos taken (SQI1 through
DDO319) after 1 month, 13 days, 1 month, and 8 days cultivation on LB agar at 30°C,
respectively.

Rhodococci belong to the nocardioform family of bacteria, which are
differentiated from other actinomycetes based on cell wall composition. Specifically,
these bacteria possess chemotype IV cell walls, consisting of tiered meshwork of
peptidoglycans, arabinogalactans, and lipoarabinomannans, atop basal lipid bilayers (92,
93, 125). Also found in these cell walls are mycolic acids, or large branched fatty acids

between 20 and 90 carbons long, existing in both bound and free forms (151). Mycolic
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acids are produced by other bacterial genera, including Corynebacteria, and
Mycobacteria; collectively, this subgroup of bacteria is referred to as the mycolata. It is
thought that the perpendicular arrangement of mycolic acids with respect to the cell’s
lipid bilayer results in a chemically recalcitrant permeability barrier (112, 113).
Consistent with this theory, rhodococci as a group are especially noted for their solvent
tolerance, being frequently isolated from contaminated soil and aquatic environments.

Though most Rhodococcus species are benign microbes, Rhodococcus equi has
been found to be a pathogen of foals (102) and immune-compromised human (140). A
few rhodococci have been found to be symbionts of termites (82, 101) and the insect,
Rhodnius prolixus, associated with Chagas’ disease (7, 41). Strains of Rhodococcus
fascians were discovered to cause tumor-like growths (leafy galls) near the base of the
sweet pea plants (10, 159). This pathogenistic process, known as fasciation, is due to the
presence of three genetic loci- fas, att, and Ayp- on a 200 kb linear megaplasmid,
pFiD188 (18). Over 30 species of thodococci have been taxonomically classified to date
since the discovery of the type species, Rhodococcus rhodochrous, (aka Rhodococcus
roseus) in 1891 (172).

1.1.2. Importance of Rhodococcus in applied microbiology. The veritable
treasure trove of enzymatic pathways rhodococci encode, along with natural recalcitrance
to organic solvents, makes this group of bacteria a particularly desirable resource for
biotransformations, and leading candidate in considerations for industrial bioprocesses.
Specifically, enzymes from rhodococci are capable of chiral/enantiomeric bioconversions
of such exquisite specificity- such as the conversion of indene to cis-1,2-indiandiol (12,
162) and the resolution of racemic methyl nonactate to pure enantiomers (123)- that they
could eventually augment or replace difficult chemical synthesis methods in the
production of pharmaceuticals. Rhodococcus species are also masters of biodegradation,
acting upon substrates ranging from fuels (26, 96) to halogenated organic compounds, in
the form of chlorinated alkanes (20, 85, 141) or polycyclic aromatics (polychlorinated
biphenyls or PCB) (5, 91, 107, 121, 146). As such, Rhodococcus bacteria have emerged
as important microbes for bioremediation of oil spills and xenobiotic pollutants.

It is impossible to fully review the myriad of metabolic pathways documented for

rhodococci; literally hundreds of scholarly articles have been published on this subject.
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Instead, the discussion in this section will focus on the dominant roles that Rhodococcus
plays in the biodesulfurization of fossil fuels, and the industrial production of acrylamide,
as emerging and established bioprocesses, respectively. A more detailed list of plasmid-
encoded enzymatic reactions in rhodococci and the possibility of using bacterial
conjugation as the basis of metabolic engineering- serving as the impetus for this thesis
research- will also be covered in a later section of this chapter. Readers are referred to
excellent reviews for detailed discussions of other metabolic pathways these microbes
possess (4, 27, 44, 90, 169).

1.1.2.1. Rhodococcus and biodesulfurization. This past decade bore witness to
a major surge in transportation fuel prices, from an average retail price of $1.10/gallon in
May of 1996 to the current price of $2.60/gallon (www.eia.doe.gov), an increase well
above the concurrent 27% inflation rate (www.bis.gov). Though this is largely due to the
rising demand for petroleum, increased refinery costs to desulfurize fuel to the 30 ppm
requirement mandated by the Clean Air Act of 1990, has also contributed to this price
gain at the pump. Crude oil typically contains between 0.01% to 5% sulfur (or 1000 to
30,000 ppm by weight), which largely exists in the form of an organic compound called
dibenzothiophene, or DBT (53, 72, 114). The release of sulfur from fuel combustion, and
subsequent formation of sulphur oxides in the atmosphere results in smog and acid rain,
the latter of which not only causes damage to fisheries, forests, and buildings/structures,
but also negatively impacts human health (www.epa.gov). Removal of DBT and other
sulfur compounds from crude oil is currently achieved by an energy intensive and costly
process called hydrodesulfurization, or HDS (130).

According to a 2004 U.S. Department of Energy (DOE) fact sheet,
biodesulfurization (BDS) is a promising alternative to HDS which reduces capital and
operating costs, as well as greenhouse gas emissions. BDS utilizes microbes to
metabolize the sulfur compounds in reactions that leave the hydrocarbons intact. Several
strains, Rhodococcus erythropolis IGTS8 (31, 32, 48, 51, 99, 134), R. erythropolis KA2-
5-1 (58,78, 117, 120, 156), R. erythropolis D-1 (64, 109, 128), Rhodococcus sp. ECRD-1
(53, 54, 136), and Rhodococcus sp. KT462 (155) have been identified with the desirable
properties for BDS.
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Most of these bacteria possess enzymes in the so-called 4S pathway (Figure
1.2A), in which a series of monoxygenases and a desulfinase act to transform DBT to 2-
hydroxybiphenyl (HBP) and a sulfite ion. The genes encoding these activities are
arranged in an operon. They were initially discovered by mutagenizing Rhodococcus sp.
IGTS8 with shortwave UV, then screening for mutants that no longer secreted HBP, a
fluorescent compound whose presence can easily be detected visually following
excitation with UV (32). A mutant from this screen, UV1, was then transformed with a
cosmid genomic library, and clones containing three open reading frames (sox4ABC)
spanning a 10 kb genomic region (Figure 1.2B) restored the ability to produce HBP (32).
Interestingly, subsequent analysis of the UV1 mutant by pulsed-field gel electrophoresis
(PFGE) demonstrated the nature of the sox mutation was due to the curing of a 120 kb
megaplasmid named pSOX (31). That the sox4BC locus is plasmid-borne reflects a
reccurring theme in a number of Rhodococcus metabolic pathways to be described later
in this chapter.

A paper which appeared a few months following Denome et al. (129) by an
independent group described the cloning and characterization of the same operon in
Rhodococcus IGTSS, in which the sox genes were renamed dsz4ABC (134). The second
nomenclature has since been adopted to avoid confusion with previously identified
mammalian SOX genes. At about the same time, it was determined that molecular
oxygen, the NADH reduced pyridine nucleotide, and the FMN flavin, along with the
actions of a flavin oxidoreductase (DszD) are required in the reactions catalyzed by the
DszC and DszA monoxygenases (51, 127, 129). Furthermore, an ir vitro desulfurization
system using purified enzymes allowed for detailed kinetic studies of this process, which
showed that the reaction catalyzed by the desulfinase in the last step of this pathway is
rate-limiting (51). Later studies which elucidated the gene regulatory region upstream of
the dsz operon (99), and analyzed the desulfurization potential of modified strains that

overexpressed dsz genes aimed at optimizing this reaction for commercial purposes (46).
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Figure 1.2. The proposed Rhodococcus enzymatic pathway for biodesulfurization of
fossil fuels. (A) A simplified schematic of the pathway for bioconversion of
dibenzothiophene (DBT) to 2-hydroxybiphenyl (HBP) adapted from Folsom et al. (1999).
DBT is first converted to intermediates, dibenzothiophene sulfoxide (DBTO) and
dibenzothiophene sulfone (DBTO;) by the soxC/dszC encoded monoxygenase. DBTO,
is then converted by the sox4/dszA monoxygenase to hydroxyphenyl sulfonate (HPBS), a
reaction which opens the thiophenic ring. HPBS is then acted upon by the soxB/dszB
gene product, a desulfinase, to release 2-hydroxybiphenyl back into the oil, and sulfite
ion for cellular metabolism. (B) Operon structure of the central Rhodococcus
desulfurization enzymes. Drawing represents the first cloned and sequenced
desulfurization (sox) gene locus (Genbank No. U08850) found on a megaplasmid of
Rhodococcus erythropolis IGTSS8. soxA, soxB, and soxC are 1,362 bp, 1,098 bp, and
1,254 bp, respectively. These genes were subsequently renamed the dsz cluster.

The idea to use microbes for desulfurization reactions is not new. A study
published in 1961 examined the use of Thiobacillus ferrooxidans to oxidize iron pyrite,
FeS,, from coal (148). Despite this early discovery, it took roughly 40 years for the first
microbially catalyzed biodesulfurization patent to be filed (24). Certain strains of
Rhodococcus appear well-poised to be the most ideal biocatalysts in fossil fuel
biodesulfurization (114). It is anticipated that the significant challenges related to poor
reaction kinetics and regeneration of the biocatalysts, also pointed out in this review, will
be overcome in the near future to make Rhodococcus-mediated BDS platform a reality.

1.1.2.2. Use of Rhodococcus rhodochrous J1 in acrylamide production.
Chemical production of the acrylamide and its versatile polymer, polyacrylamide, began
in the 1950’s, and now exceeds 400,000 metric tons per year (62). Because
polyacrylamides can be made cationic, anionic, or neutral in charge, they are central to
many industrial applications, the largest uses of which include the potable/sewage water

treatments and the manufacturing of paper. Microbial synthesis of acrylamide was
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prompted by the discovery of two different microbial pathways (Figure 1.3) to degrade
nitriles (6, 13, 62, 76). The first pathway is mediated by a nitrilase which directly breaks
down nitriles (R-CN) to carboxylic acids (R-COOH) and ammonia (NH;). The second
pathway is mediated stepwise by a nitrile hydratase (NHase), which converts R-CN to
amides (R-CONH,), followed by the action of an amidase, which converts amides to R-
COOH and NHj. The latter pathway has been investigated more thoroughly since

nitrilases were found to be more labile.

2H,0 NHg /O

nitrilase Y/

R—C=N ~ T, R—C_
OH

"0 Y NHg
nitrile / H.O
hydratase R—C\ 2Y  amidase
NH,

Figure 1.3. The two microbial nitrile degradation pathways schematic, adapted from
Warhurst and Fewson (1994).

The Rhodococcus ( previously known as Brevibacterium) strain R312 was
initially considered for the microbial synthesis of acrylamide (17) since it yields 2.3M
acrylamide every 30 minutes at room temperature. However, this enzymatic conversion
was severely inhibited once the acrylamide concentration exceeded 2.8M. The nitrile
hydratase of Rhodococcus rhodochrous J1 was found to be superior since it did not show
significant inhibition by product concentration; indeed, it could produce up to 9.2M of
acrylamide within 72 hours, and was thermostable up to 50°C (76). Furthermore, the
amidase activity was found to be very low, thus contaminating quantities of acrylic acid
was not an issue for this bioprocess.

The R. rhodochrous J1 nitrile hydratase activity can be attributed to two cobalt
containing metalloenzymes; one of a lower molecular mass (L-NHase) (77), and one of a
higher molecular mass (H-NHase) (115). Both enzymes are hetero-oligomers composed
of two subunits named o and p (77), encoded by genes nhhA, nhhB, nhi4 and nhiB. The
crystal structure of a related Rhodococcus sp. R312 nitrile hydratase was later determined
to 2.65 A resolution (61). This study showed that the o and B subunits of the R312

NHase form a tight dimer. The catalysis occurs within a cavity, mediated by an
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activating metal ion bound by thiol groups of three cysteines found in the o subunit. In
the case of R312 the metal ion is iron, but evidence suggests that cobalt is the equivalent
metal in R. rhodochrous J1 (9). Huang et al. proposed that the metal ion acts as a Lewis
acid, activating the carbon in nitrile to form a hydroxyl bond.

Because many Fe- and Co-type nitrile hydratase activities have been detected in
diverse bacterial genera, a group of investigators recently completed a study examining
the nitrile hydratase gene clusters in two different strains of Rhodococcus erythropolis
(AJ270 and AJ300) and a strain of Microbacterium (AJ115) to address the possibility of
horizontal gene transfer of these loci in the environment (124). They found that the
nitrile hydratase gene clusters are indeed identical in these three bacteria. While linear
and circular plasmid were detected, unlike the megaplasmid-encoded dsz genes discussed
previously, the NHase genes in AJ270, AJ300 and AJ115 are chromosomally located.
O’Mahony et al. did determine that a complete copy of transposable element, IS/166, lies
upstream of the NHase cluster, and concluded these genes most likely spread via
transposition. Ironically, the IS/166 element was identified originally within the soxABC
operon of desulfurizing bacteria, Rhodococcus erythropolis IGTS8 (33).

1.1.3. Genetic analysis of Rhodococcus and tools development. Bacterial
genetics begins with mutagenesis and recombination. For rhodococci, this was initiated
by Adams et al. in the 1960°s when UV-induced auxotrophic mutants- deficient for the
production of various amino acids- of two different strains of Rhodococcus erythropolis
(originally called Nocardia erythropolis and Nocardia canicruria) were mated to each
other and prototrophic progenies were observed (1, 2). Importantly, this series of work
demonstrated both that genetic material can be transferred between Rhodococcus strains,
and that irradiation can be used for mutagenesis. However, it was puzzling that unlike
Escherichia coli in which homologous recombination occurs readily between cells of the
same strain, recombination in rhodococci occurs readily only between different strains
(1). It was suggested later that this phenomenon of self-incompatibility may be due to
conjugation determinants located on plasmids (50, 89). Complications in the genetic
analysis of rthodococci have been compounded by the facts that: 1) no isogenic strain has
been recognized as a type or reference strain; and 2) to date, there is no publicly available

database with the complete and annotated genome sequence of any Rhodococcus, though
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encouragingly, several groups are nearing this goal (J.-F. Tomb, J. Davies, and J. Archer,
personal communication). Nevertheless, early genetic linkage maps of 65 traits were
assembled for strains of R. erythropolis (11).

Besides UV mutagenesis, which was used to generate the auxotrophs above, and
the dsz mutants mentioned previously, chemical mutagenesis has been successfully
employed to study rhodococci (55, 134, 168). However, by far the most popular way to
generate Rhodococcus mutants for genetic analysis has been transposition. One of the
first reports of transposon-based mutagenesis used an endogenous insertion sequence
element, IS7415, found proximal to the cobalamin synthesis genetic loci in R.
erythropolis N186/21 (116). Insertion sequence (IS) elements were initially identified in
Rhodococcus fascians using an entrapment system (65), in which the Bacillus subtilis
sacB gene encoding sucrose sensitivity can be inactivated via an IS transposition event.
Subsequently, they have been found in other Rhodococcus species either by accident
through the study of nearby genes, as in the case of IS1166 (33), or by intention via the
sacB method (97). The IS1415 or the resulting Tn5561, was found to have little, if any,
sequence bias; however, Tn5561 transposition appeared to be infrequent (1 event per pg
vector DNA) and was not pursued further for mutagenesis. Since then, other transposon-
based systems, commercial and otherwise, have been used successfully to generate
mutants in a variety of Rhodococcus strains (3, 43, 103, 139, 156).

Study and utilization of bacterial plasmids, through the advent of recombinant
DNA technology (14), have enabled many modern molecular biology techniques.
Almost all strains of rhodococci harbor at least one plasmid (89), and study of their
replication regions led to the development of shuttle vectors, generally chimeric plasmids
that contain both an E. coli and a Rhodococcus replicon. The first of such, pMVS301,
was generated by Singer and Finnerty in 1988 (149), using a 3.8 kb region of the
endogenous pMVS300 plasmid found in Rhodococcus sp. strain H13-A. It carries a
thiostrepton resistance cassette cloned from Streptomycetes (157), and was found to be
replicate stably as an independent replicon in Rhodococcus equi, Rhodococcus
globulerus, and Rhodococcus erythropolis. Since then, a dozen or so Rhodococcus
cryptic plasmids and derivative shuttle vectors have been constructed (21, 29, 30, 39, 56,
69, 83, 98, 134, 147, 167), some of which include novel features such as; 1) the ability to
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be mobilized directly from E. coli to Rhodococcus, bypassing often problematic
rhodococci transformations (167); and 2) selective curing or integration of the plasmid
based on replicon temperature sensitivity (98).

Post-genomic era tools for global Rhodococcus gene and protein expression
analysis include DNA microarrays and proteomics (comparison of the 2-D mobility of
expressed proteins). Studies using DNA microarrays to address questions in
Rhodococcus biology have not yet been published, though our lab is currently addressing
aromatic compound metabolism of Rhodococcus aetherivorans 124 by this method (J.
Parker et al., unpublished). Reasons why Rhodococcus DNA microarray analyses have
been so sparse include the lack of published genomic sequence, and difficulties in RNA
isolation from rhodococci (89). In contrast, protocols for the isolation of proteins- in
particular the purification of desirable enzymes- are well established for this group of
bacteria. One of the latest articles reports the purification of an alcohol dehydrogenase
from Rhodococcus ruber that is stable in the presence of 50% acetone and 80%
isopropanol (81). A proteomics approach was taken very recently to identify genes
specifically involved in phthalate metabolism in Rhodococcus sp. strain TFB (160). This
method can prove to be a powerful analytic tool, when combined with genomic sequence
information, to decipher the multitudes of seemingly redundant gene functions encoded
in some Rhodococcus genomes, as is the case with biphenyl metabolism in Rhodococcus
sp. RHA1 (132).

1.2. Bacterial plasmids and conjugation.

1.2.1. Biology of Rhodococcus extrachromosomal replicons. The term, plasmid,
was coined by Joshua Lederberg in 1952 to describe an extrachromosomal genetic
element that can replicate autonomously (94). Plasmids can adopt either circular or linear
topologies, in turn leading to differences in how they replicate and transfer. Plasmids can
also vary in size. Miniplasmids can be engineered to carry only the essential replication
region and selectible marker in less than 1,000 bp of DNA sequence. Naturally occuring
megaplasmids can exceed 1 megabasepairs in size (16, 100), comparable to the gene
coding capacity of a yeast chromosome. Plasmids profoundly influence the fitness of

their host organisms, both negatively and positively. Uncontrolled plasmid proliferation
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can be detrimental to the host, as plasmid replication is dependent on host factors (15,
165, 166). Conversely, the presence of plasmid-encoded enzymatic pathways often
confer advantages to the host organisms, enabling their survival in otherwise inhospitable
environments. In essence, bacteria that harbor plasmids exhibit dynamic genomes, which
allows for rapid adaptation under selective pressures.

It would not be an overstatement to say that horizontal gene transfer (HGT) is a
major facilitator of bacterial evolution. Nearly all bacterial species examined to date are
capable of at least one of the following modes of exogenous DNA exchange, 1) uptake
and direct transformation, 2) transposition via mobile genetic elements like transposons,
3) transduction involving phage-intermediates, and 4) conjugation, referring to the
exchange of genetic material most commonly in the form of plasmids. The exchange of
plasmids through bacterial conjugation has been, and still is, one of the intensely studied
forms of HGT with implications in human health, both negatively associated with
plasmid-borne antibiotic resistances and virulence factors, and positively associated with
plasmid-borne antibiotic production and pathways for bioremediation of xenobiotics.

Rhodococci are hosts to one of the most diverse plasmid-based horizontal gene
pool. Tables 1.1. and 1.2 summarize all plasmids and associated properties found in
rhodococci; these tables have been modified from an earlier table from the Larkin review
(1998) to include recent findings. Some of these plasmids have been found to be
conjugative, however, determinants governing their transmission are largely unknown.
As this thesis directly addresses determinants of Rhodococcus plasmid conjugation, it
will be prefaced here by what is currently known about the conjugation of a well-
characterized Gram-negative bacterial plasmid, the F factor, and how Gram-positive

conjugation, especially plasmids encoded by Actinomycetales, differ from this paradigm.

Table 1.1. Smaller (<20 kb) Rhodococcus plasmids and associated properties.

Strain Plasmid®  Size-kb Description Reference
R. opacus pHG31-b 17 Cryptic circular plasmid (145)
MR11
Rhodococcus pMVS200 20 Cryptic circular plasmid (149)
sp. H13-1A
Rhodococcus ~ pMVS300 13 Cryptic circular plasmid (149)
sp. H13-1A
R. erythropolis  pFAJ2600 6 Cryptic circular plasmid; rolling-circle replicase; 29)
NI86/21 sequenced

continued on next page
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R. rhodochrous
NCIMB13064
R. erythropolis
AN12
R. rhodochrous
B264
R. erythropolis
JCM2895
R. erythropolis
DSM8424
R. erythropolis
PR4

pKA22

pKA4

PAN12
pB264-1
pRE2895
pRE8424

PREC2

4

Cryptic circular plasmid; theta replicase; sequenced
(pKA22); cryptic circular plasmid (pKA4)

Cryptic circular plasmids; rolling-circle replicase;
sequenced

Cryptic circular plasmid; theta replicase; highly
similar to pKA22; sequenced; mobilizable

Cryptic circular plasmid; theta replicase

Cryptic circular plasmid; rolling-circle replicase;
91% identical to pAN12; sequenced
Cryptic circular plasmid; theta replicase; sequenced

(84)
(83)
(98)
(119)
(118)

(144)

a. Plasmids that can be mobilized are indicated (bold). Plasmids not indicated as such could be mobilizable
though this property may not have been assayed.

Table 1.1. Larger (>20 kb) Rhodococcus plasmids and associated properties.

Strain Plasmid(s)® Size-kb Description Reference
R. opacus pHG31-a 140 Cryptic; circular (145)
MR11
R. opacus MR22 pHG33 110 Cryptic; circular (145)
Rhodococcus pTE1 77 Atrazine and EPTC degradation; circular (8, 154)
sp. TE1
R. fascians PRF2 >100  Chloramphenicol and cadmium heavy metal (34)
NCPPB10675 resistance; circular
R. erythropolis pDA20 >100  Arsenic and cadmium resistance; linear (22)
ATCC12674
R. opacus pHG201, 270, Conjugative hydrogen autotrophy on (68)
MRI11 pGH302, 400, pHG201; linear
pGH203 420
R. opacus pGH204, 180,  Conjugative hydrogen autotrophy on (68)
MR22 pGH205, 280, pGH205; linear
pGH206 510
R. equi PREAT701 85 Virulence genes; circular (152, 153)
ATCC33701
R. equi pRELI1 90 Virulence genes; circular (152,153)
L1
R. rhodochrous pTC1 111 2-methylaniline degradation; circular (142)
CT™M
R. rhodochrous pTC2 20 Cryptic; circular (142)
CT™M
R. fascians pD188 138; Cadmium resistance (pD188); leafy gall (18,19, 34)
D188 pFiD188 >200  formation and fasciation loci; linear
(pFiD188)
R. erythropolis pSOX 150 Biodesulfurization genes (dsz/sox); circular (31
IGTSS8
R. erythropolis pBD2 210 Isopropylbenzene metabolism; linear; (23, 150)
BD2 conjugative; completely sequenced
R. rhodochrous pRTL1, 100,80 Circular and chloroalkane degradation (86)
NCIMB13064 PRTL2 (pRTL1); cryptic and circular (pRTL2)
R equi 103 pOTS 85 virulence genes; circular plasmid (28)

continued on next page
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Rhodococcus sp. pRHALI, 1,100,  All linear plasmids; biphenyl metabolism (106, 170)
RHA1 pRHA2, 390, (pRHAI and pRHAZ2), cryptic and sequenced
pRHA3 280 (pRHA3)
R. erythropolis pTA421 500 Biphenyl degradation; linear (82)
TA421
R. corallinus pNC10, 70,85, All linear; pNC30 associated with propene (138)
B-276 pNC20, 185, metabolism
pNC30, 235
pNC40
Rhodococcus sp. pMP50-40 40 Aromatic nitrile degradation, circular (163)
MP50
Rhodococcus pDK1, 380, Topology and conjugativity not determined; (74)
sp. DK17 pDK2 330 alkylbenzene metabolism (pDK2)
R. opacus 1CP plCP 740 Linear; chlorocatechol catabolism (79)
R. aetherivorans pNid, 50 Circular and naphthalene degradation (pNid); (135)
124 pl24 340 linear and toluene metabolism (pI24)
R. erythropolis PRELL1, 271, Linear and associated with alkane metabolism (144)
PR4 PREC1, 104,  (pREL1); circular and cryptic (pREC1);
pREC2 4 circular and cryptic (pREC2)

a. Plasmids determined to be conjugative have been highlighted (bold). Plasmids not indicated as such,

may be conjugative, though this property may not have been assayed.

1.2.2. The F-factor, a paradigm in bacterial conjugation. Bacterial
conjugation between cells of the Escherichia coli strain K-12 was discovered by J.
Lederberg and E. Tatum in 1946 (95). It was shown a few years later by B. Davis that
physical contact between the cells is necessary for bacterial mating, a core principle that
extends to virtually all genera of bacteria (25). Significantly, in 1952, W. Hayes
demonstrated another conjugation principle- that DNA transfer process proceeds
unidirectionally from a donor to a recipient cells, and is mediated by a sex factor named
F, for fertility (57). Lederberg then proposed that the F-sex factor might be a previously
unrecognized form of extrachromosomal genetic material, which he termed a plasmid
(94), and this was conclusively shown to be the case by Marmur et al. in 1961 (105).

Since these early discoveries, researchers have shown that one-third of the genes
(the tra and trb loci) on the 99 kb F plasmid encode two types of transfer functions- those
involved in initiating and stabilizing donor-recipient contact, or mating pair formation
(Mpf), and those involved in DNA transfer and replication (Dtr) (45). Mating begins
when a thin flexible extracellular filament, called a pilus, from the (F+) donor cell makes
contact with the (F-) recipient. The flexible nature of the F pilus allows for E. coli to
mate in liquid suspension. As part of the Mpf, the pilus is a polymer of homogenous
subunits called pilins, which are encoded by the F-plasmid fra4 gene (111). A number of

23



the tra genes encode pilin processing, translocation, and assembly functions (47).
Though it has been proposed in the past that the pilus is the physical bridge through
which the plasmid DNA traverses, it is now thought that the pilus brings about the
physical contact of the two cells by retraction, mediated by the depolymerization of its
subunits. The actual DNA transfer may occur through electron-dense regions of the cell
envelopes, known as conjugation junctions, established when the intimate contact of the
donor and recipient cells is achieved (40). This mating pair stability is known to involve
at least the traN gene product found at the outer membrane of the donor cell, and its
association with recipient OmpA (outer membrane protein) protein (75), as well as the
inner membrane protein, TraG (104).

F is transferred as a single-stranded (ssDNA) molecule in the 5’ to 3’ orientation
(63, 126), and is re-established as a double-stranded DNA (dsDNA) in the recipient cell
following rolling-circle like DNA replication (88). The DNA processing is initiated at a
region of the transferring strand called the origin of transfer, or oriT (158). The oriT
sequence is bound by the relaxosome, a protein complex consisting of the plasmid-
encoded tral relaxase/helicase (108, 137) and traY DNA binding protein (161), as well as
a host-encoded histone-like protein called IHF, for integration host factor (164). It is the
Tral relaxase/helicase which first recognizes a conserved 19 bp sequence
(TTTGCGTGGGGTGTGGTGC) called the nic site within oriT, then catalyses the
scission reaction at the bolded thymine residue, the molecular mechanism of which will
be discussed in greater detail in Chapter 3. TraY and IHF were found to stimulate the
nicking activity of the Tral protein by creating DNA bending (122), and are preloaded
onto the oriT before Tral (60). The TraD inner membrane gene product is a coupling
protein and DNA transporter (131), linking the relaxosome-oriT nucleoprotein complex
(Dtr) to the Mpf via its interaction with the TraM DNA binding protein, which also binds
to the oriT though it is not thought to be part of the relaxosome (35). Much is known
about the how the replacement strand is synthesized in the recipient, as well as the
organization and expression of the “early” genes located at the leader region (the first
portion of the plasmid transferred to the recipient), which aid in plasmid establishment.

For details on these processes, the readers are referred to the excellent review by Zechner
et al. (171).
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1.2.3. Important differences in Gram-positive plasmid conjugation:
Actinomycetes appear to be exceptions to the rule. It is generally thought that the
majority of Gram-positive plasmids transfer in a mechanistically conserved fashion as
their Gram-negative counterpart with respect to the DNA processing and transport (Dtr)
and the need for cell-to-cell contact (52). Indeed, plasmid-encoded components such as
the relaxase and the oriT are found to be conserved not only in sequence but in function
for Gram-positive plasmids from Streptococcus agalactiae pIP501 (80, 87) and
Enterococcus faecalis pRE25 (143). However, since no gene encoding for a pilus
component has been found in Gram-positive bacteria, it is assumed that different
mechanisms than the Mpf exist to bring cells together. Consistent with the lack of pilus,
most Gram-positive microorganisms require a solid surface for plasmid conjugation. At
least two different methods to establish cell contact are beginning to be elucidated for
Gram-positive bacteria; the pheromone-induced conjugation system exemplified by the
enterococci plasmid, pAD1 (38), and the aggregation-based conjugation systems of
Bacillus thuringienis pXO16 (66) and Lactococcus lactis pRS01 (110).

For the Gram-positive bacteria of the genus Streptomyces, genetic recombination
has been known for almost as long as that of E. coli (59). Conjugative transfer of various
streptomycete plasmids, such as pIJ101, from isolated donors to a lawn of recipients,
visibly results in the formation of pocks (73). Unlike other small mobilizable plasmids
which depend on host or other plasmid encoded genes for transmission, pIJ101 does not
appear to be dependent on the action of a relaxosome. In fact, only the function of one
plasmid encoded gene called tra is required for pIJ101 conjugation (70, 71, 133). The
pIJ101 Tra protein is a membrane protein not related to relaxases/helicases described
earlier; rather, it resembles the DNA translocators FtsK/SpolIIE, which function in
chromosome segregation in bacilli and E. coli, respectively (42). Nor does the pIJ101
cis-acting site appear to be a substrate for nicking activity (36, 37). Instead, it has been
proposed that these Streptomyces plasmids are unique in the transfer of plasmid DNA to
the recipients in a dsSDNA form (52, 171).
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1.3. Thesis objectives and chapter outline.

The existence of various rhodococci megaplasmids and associated properties
suggests that it may be possible to engineer strains which carry combinatorial metabolic
pathways through bacterial conjugation. This would aid in combining genetic traits
associated with large or spatially separated loci that would otherwise be difficult to clone

piecemeal. We have termed this concept “megapathway shuffling”, illustrated below in

Figure 1.4.
Recalcitrant Strain A Recalcitrant Strain B
§m~ I‘\ ,’\ op‘:,-onc @
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Figure 1.4. Metabolic engineering of rhodococci through megaplasmid conjugation.

With this ultimate objective in mind, we have examined the plasmid array and
conjugative properties of the Rhodococcus erythropolis strain AN12, originally isolated
from industrial wastewater sludge. AN12 utilizes the aromatic compound aniline as its
sole carbon source, and was found to encode a small cryptic plasmid called pAN12 (67).
It was not known whether the R. erythropolis AN12 genome encodes other plasmids, nor
whether any of its plasmids might be conjugative. Through characterization of AN12

plasmids, we endeavored also to understand how might the conjugation system of
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rhodococci be similar or dissimilar to those defined for Gram-negative and positive
plasmids, such as F and pIJ101, described earlier. The chapters of this thesis addresses
the following specific aims: 1) Determining whether R. erythropolis AN12 encode other
plasmids, and if so, 2) determining whether any AN12 plasmid is conjugative, and 3)
defining cis- and/or trans-acting determinants for conjugative plasmids. Chapter 2
discusses the discovery of two conjugative AN12 megaplasmids, pREA400 and
pREA250. Chapter 3 discusses generating a transfer-deficient mutant of AN12 using a
novel site specific targeted gene disruption technique. Chapter 4 discusses the
mobilization of the small cryptic pAN12 and examines its dependence on one of the

megaplasmids for its transfer. Chapter 5 outlines future experiments.
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CHAPTER 2.

The conjugative megaplasmids of Rhodococcus erythropolis AN12.*

* author’s note:
portions of this chapter have been submitted
as a manuscript under the title,

“TraA is Required for Megaplasmid Transfer in Rhodococcus erythropolis AN12”, 2006
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2.1. Introduction.

Rhodococcus sp. bacteria are Gram-positive actinomycetes that possess a variety
of biochemical and metabolic properties relevant to environmental and industrial
microbiology (6, 33). Gene clusters that enable these unique enzymatic pathways often
reside on large episomal elements called megaplasmids. Rhodococcus megaplasmids
exhibit either circular or linear topology, and range from less than 50 kb to greater than
one megabasepairs in length (22, 27, 30, 32). Though megaplasmids are common within
this genus of actinomycetes, this type of extrachromosomal replicon is not exclusive to
rhodococci. Large plasmids (>50 kb) have been found in Gram-negative bacteria (1, 21)
and other types of Gram-positive bacteria (13, 25).

Both cis and trans-acting components of plasmid conjugation have been well
characterized for many Gram-negative bacteria (18). For most of these plasmids, the
DNA processing is initiated in cis at the origin of transfer (oriT) by a trans-acting protein
complex called the relaxasome. The core enzyme of this complex is called a relaxase,
and it cleaves one strand of the plasmid at the nic site within the oriT via a
transesterification reaction. The nicked plasmid is then unidirectionally transferred to the
recipient cell as a singled-stranded DNA intermediate. In plasmid F, the relaxase is
encoded by a gene called tral (20, 31). This mechanism of plasmid conjugation appears
to be conserved in many replicons isolated from Gram positive bacteria. In plasmid
pIP501, which is found in the Gram-positive bacterium, Streptococcus agalactiae, the
relaxase is encoded by a gene called tra4 (15, 17).

Several different Rhodococcus megaplasmids are known to be conjugative (5, 8,
12, 22, 27). The completed sequence of the linear pBD2 megaplasmid from
Rhodococcus erythropolis BD2 revealed an ORF encoding a putative TraA-like relaxase
(30). More recently, sequencing analysis of a circular megaplasmid isolated from
Rhodococcus erythropolis PR4 also revealed another putative relaxase (26). This
evidence suggests that a single-stranded DNA transfer system similar to other bacterial
conjugation systems may function in transfer of Rhodococcus megaplasmids. However,
no functional analysis for any Rhodococcus TraA-like relaxase has been reported.

AN12 was first isolated and so named for its ability to use the aromatic

compound, aniline, as a carbon source. Besides the initial characterization of its small

40



cryptic plasmid, pAN12 (16), it was not known whether the genome of AN12 harbored
other extrachromosomal replicons, nor whether any of its replicons are transmissible via
bacterial conjugation. We show in this study that AN12 possesses at least three distinctly
migrating species of megaplasmids, and that at least two of the AN12 megaplasmids
(PREA400 and pREA250) can be mobilized to a closely related R. erythropolis strain,
SQ1. Limited sequence analysis of the AN12 megaplasmids pREA400 and pREA250
revealed ORFs whose gene products are predicted to be involved in plasmid stability,

transfer, and gene regulation.

2.2. Materials and methods.

2.2.1. Bacterial strains and culturing conditions. Bacterial strains used in the
present study are summarized in Table 2.1. Both strains of Rhodococcus erythropolis
AN12 and SQI, as well as strains of Escherichia coli, were grown in LB liquid media or
on LB plates with 2% agar (24) supplemented with the following antibiotics purchased
from Sigma-Aldrich (St. Louis, MO) as appropriate; gentamicin (Gm, 10 pg/ml),
kanamycin (Km, 100 pg/ml), rifampicin (Rf, 20 pg/ml), and streptomycin (Sm,150
ug/ml). R. erythropolis AN12 and SQ1 cells were cultivated at 30°C, while E. coli
strains were cultivated at 37°C. All liquid culture flasks were shaken on an orbital shaker
at 120 rpm, and small (< 5 ml) volumes of liquid cultures were agitated using a roller
drum. Frozen stocks of each strain were prepared by mixing equal volumes of saturated
liquid cultures of bacteria and sterile 40% glycerol, then storing cells at -80°C until use.
All experiments were conducted with colonies that had been cultured for fewer than ten

days from the initial frozen stock inoculum.
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TABLE 2.1. Bacterial strains, plasmids, and primers used in this study

Strain, plasmid, or Description or sequence Source or reference
primer name
DH5a Escherichia coli; supE44 AlacU169 (¢80 lacZAM15) recAl Invitrogen
endAl hsdR17 thi-1 gyrA96 reld1
EC100D pir-116 E. coli; F merA A(mrr-hsdRMS-mcrBC) ¢80dlacZAM15 Epicentre

AlacX74 recAl endAl araD139 A(ara, leu)7697 galU galK
A rpsL nupG pir-116(DHFR)
TOP10 E coli; F- mcrA A(mrr-hsdRMS-mcrBC) ®80lacZAM15 Invitrogen
Ala