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ABSTRACT 

Multi-disciplinary System Design Optimization was used to design the geometry and to select 
the materials for the structural faqade of a building. A multi-objective optimization model was 
developed, capable of optimizing the design of the facade on the basis of a lighting analysis of 
the interior, of a thermal analysis of the cooling loads corresponding to the skin configuration, 
and of a finite elements analysis of the supporting structure. The system also considers the need 
for transparency in the faqade due to view requirements of the occupants, and the cost of 
cladding materials. A scalarization approach to MDO, via utility functions, was chosen, and the 
overall objective function was optimized using Genetic Algorithms. 
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"Fatti non foste a viver come bruti, 

ma per seguir virtute e canoscenza." 

(Dante Alighieri, Divina Commedia, Inferno, Canto XXVI, 1 19 - 120) 

"Avdpa pol t v v ~ m  Mociaa ~ O A ~ T ~ O T T O V ,  os paAa M a  

ITA~yxeq, E T K ~  Tp0iq~ I E ~ ~ V  ~ T O A ~ E ~ ~ O V  ~ ~ K ~ D E V . .  ." 

(Homer, Odyssey, Book 1, 1 - 2) 

Preface 

This study initially originated from a Project for the course of "Multidisciplinary System 

Design Optimization" (MSDO), taught at M.I.T. by Prof. 0. De Weck and Prof. K. Willcox. 

The course introduced the author and his team-mates, Mr. Anas Alfaris and 

Mr. P. Geyer, to the concepts of optimization-driven design. 

Professor De Weck, in particular, encouraged the team to apply MSDO to such an 

"atypical" design object as a building skin, since these techniques, widely applied to the 

domains of Aeronautic & Astronautic Engineering, are seldom used in architecture and 

civil engineering. 



Chapter 1 : Introduction 

Numerical optimization can be applied to the design of structures in order to shape an 

architectural body and to design its components in such a way that a number of 

objectives are optimized and certain requirements are met. 

While optimization has often been intended as single-objective, i.e. with only one major 

objective being optimized, this document focuses on multi-objective optimization, and 

takes into account many of the aspects that are necessarily part of the design process 

(Figure 1) of such a complex object as an architectural fa~ade. 

In fact, the very nature of skin design for buildings is a multidisciplinary one: fa~ades 

Figure 1 - The overall design procedure diagram of a fa~ade 
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must meet, beside structural safety, numerous architectural and technical requirements, 

such as transparency, sufficient light intake, minimal thermal loss, a limited cost of 

building materials, and manufacturing and installation constraints. 

In the traditional design approach, many actors participate in different phases, each with 

diverse competencies and solutions to a particular aspect: the architect drafts the 

overall formal composition of the fa~ade and coordinates the work of the technical 

teams; structural engineers design the supporting system - which in the case of a 

structural faqade is a very complex task due to the critical density of many technological 

systems in a very reduced portion of the building -, HVAC engineers determine the 

material properties of the faqade according to thermal requirements, and lighting 

consultants ensure that a sufficient amount of light penetrates in the interiors, only to 

cite a few. 

In this sequential approach, due to the well-defined boundaries between disciplines, 

different competencies work on the design at different times, each one modifying the 

product of the previous one to achieve its objective. 

Thus, the final solution is not always the optimal or the one that requires the least time 

to figure out. In fact, the overlapping of many decision-makers who act separately, and 

often times have conflicting goals, generates recurrent changes and unnecessary 

feedback loops in the design process. If all the requirements and partial objectives had 

been taken into account at an earlier stage, a more suitable and economic solution 

would have been found. 

A multidisciplinary approach allows to gain information earlier and to retain design 

freedom longer, accommodating from the very first steps of the design process all the 

particular requirements coming from the many interacting disciplines (Figure 2). 
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Figure 2 - Reorganization of design process in aeronautic industry to gain information earlier and 

to retain design freedom longer 

The design solution is not envisioned a priori, and a very wide exploration of potential 

solutions is encouraged. Each solution is rated on the basis of multi-objective criteria 

operating simultaneously. 

Thus, given a series of objectives, such as structural safety, thermal and lighting 

comfort, functional aptness, and reduced cost, via a "reverse design" procedure, the 

fittest solution (or a family of fit solutions) is determined. 
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Figure 3 - Sequential vs Concurrent Design (design of an aircraft wing) 

It is easy to understand the advantages of optimization-driven, concurrent design 

(Figure 3) with respect to the traditional sequential approach that, due to the complexity 

of the design problem, envisions a very limited number of potential solutions, assesses 

their efficiency and checks for feasibility. The "optimality" of the solution heavily relies, in 

that case, on the experience of the designers and of the project coordinators. 

However, multi-objective optimization is not a universal panacea. It is a procedure that 

requires tremendous computational resources, in the attempt to explore the highest 

number of potential design solutions. Design is ultimately a matter of sensibility and 

intuition. It is our strong belief that, in the choice of the initial design assumptions, as 

well as in the final assessment of the design solutions, critical sense and experience 

always constitute a precious and irreplaceable skill for every designer. 



This document presents multidisciplinary optimization as a precious tool for the designer, 

and describes how it was used to undertake the design of a self-supporting building 

fa~ade. 

1 .I The Problem 

The design of a building structural fa~ade is a complex process that involves many 

disciplines and competencies. 

The skin is a crucial, active site in the building, because it constitutes its interface with 

the exterior. It is meant to block or allow the flow of matter, such as rain, people or 

things, and energy, in the form of light, heat (or cold), and radiation, following a number 

of functional criteria. In the proposed case, the skin is also the supporting structure of 

the building. 

In addition, the fa~ade is the "face" and the "business card" of a building toward the 

exterior (Figure 4), and must therefore comply with aesthetic requirements and formal 

equilibrium (or dis-equilibrium). 

In this study, a number of design aspects were considered of primary importance, and 

were consequently included in the optimization process: 

1.1. 1 Architecture 

A building can and often does succeed or fail in the public realm by nothing more 

than what it looks like. 

Fa~ade design must be driven by interior results as much as exterior appearance; form, 

and skin decisions strongly influence lighting performance, cooling loads, and occupant 

comfort. 



Figure 4 - Transparency in architecture: the fa~ade of the Fondation Cartier in Paris, by architect 

Jean Nouvel 

In the design of the faqade, a fundamental architectural requirement was taken into 

account: the need for the skin to be transparent at the height of the occupants' eyes, in 

order to allow a clear view on the exterior. 

1 . I  .2 Lighting 

Daylighting is the use of light from the sun and sky to complement or replace electric 

light. Appropriate fenestration and lighting controls are commonly used to modulate 

daylight admittance and to reduce electric lighting, while meeting the occupants' lighting 

quality and quantity requirements (Figures 5 and 6). Daylighting can provide required 

ambient lighting for most operating hours. 

In the design procedure presented in this study, the distribution of window and cladding 

in the fa~ade determines the nature and the amount of daylight in the interior space. 



Figure 5 - Daylighting for a 

Classroom 

Figure 6 - Numerical illuminance 

analysis of the above classroom 

1 .I .3 Thermal 

The skin thermal properties have a tremendous influence on heating and cooling loads, 

which account for 44% of the total consumption for a residential building in the U.S. 

(Figure 7). 

A good design of cladding and insulating panels reduces peak loads and individual zone 

fluctuations. A smart fa~ade design can save operating and mechanical first costs, and 

reduce mechanical pace requirements. 

Reducing cooling loads provides many benefits: smaller mechanical rooms and shafts 

yield more leasable space; smaller plenums allow higher ceilings or possibly additional 



floors within building height allowance; and finally, smaller equipment is less visible on 

the roof and is easier to accommodate within normal floor-to-floor heights. 

Residential bldgs enduse splits (1 995) 
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Figure 7 - Energy consumption in residential buildings, end-use split 

1 .I .4 Structural 

In a self-supporting fapde, the structure plays a fundamental role, and constitutes a 

critical aspect of the overall conceptual design. 

Beside providing resistance and stability, with respect to both service and extreme loads, 

the structure has to be minimal, while meeting a number of requirements, such as the 

ease of connection to the floors and to the cladding, the need for architectural openings, 

the accommodation of thermal differential deformation. 

In this study, the structure is considered a major issue from the point of view of the 

project feasibility. 

In fact, from the perspective of a future further development and diffusion of CADICAM 

integrated technology, which will ease constructability of any irregular structural 



geometries, and considering the reduced cost of materials, the cost of the structural 

system is not crucial. 

As opposed to that, the need for a slender structure that can at the same time closely 

accommodate a complex skin geometry, often characterized by large openings, plays a 

major role in the overall design process. 

1 .I .5 Economy 

High-performance claddings and glazing cost more than their standard alternatives but 

may pay for themselves in four ways: 

o reduced energy consumption, 

o reduced first costs in mechanical equipment, 

o increased occupant productivity, and 

o avoided future retrofit costs in added mechanical equipment or window fixes, due 

to commonly unanticipated occupant discomfort. 

1.2 Definition of the design object 

The fagade is a hexagonal grid, and each cell can either host a window or a cladding 

panel. 

It is supported by a 2D, non-planar truss of steel pipes, connecting at the nodes in 

welded joints (Figure 8). 

1.2.1 Geometry 

The fagade is composed of hexagonal cells organized in a "beehive" pattern. 

The portion that this study focuses upon is a rectangle 5 m wide and 3 m high, and 

comprises 100 cells (1 0 rows x 10 columns). 

The topology of the "beehive" never changes during the optimization process, i.e. no 

new cells can be generated and no cells can disappear, but distances between nodes 

can vary, and, consequently, also the areas of the cells are variable, as well as the 

lengths of the connecting segments and the amplitude of the angles. 

The geometry of the grid is described by the spatial coordinates of the nodes. 



Figure 8 - The hexagonal grid of the structure 

During the optimization process, the nodes move, driven by the "need" for optimum 

performance: more light in the interior, less energy loss, increased structural 

efficiency, etc. 

The nodes are allowed to move on the surface of the fapde, generating cells with very 

different areas and geometry, and can also move on the perpendicular direction, 

causing the fapde to "bulge" outward or inward, depending on the requirements and on 

the constraints. 

1.2.2 Materials 

Each cell is characterized by a material variable, which can assume three states: 

transparent - corresponding to glass -, semi-transparent (shaded glass) and opaque 

(cladding panel). 

The degree of transparency of a cell determines its permeability to light and to heat. 



During the optimization process, the need for more light in the interior and for a lower 

heat loss through the skin forces the cells to turn transparent or opaque. 

The goal of the optimization design process is to determine the spatial form of the 

faqade and the material that each cell is made of. 



Chapter 2: The idea: using MSDO 

The need to take into account all these aspects from the very earliest steps of the 

design procedure suggests adopting a performance-driven, integrated approach to the 

problem. 

2.1 What is MSDO? 

Multidisciplinary System Design Optimization (MSDO) focuses on the multi-objective 

optimization of complex systems, which can be broken down into a number of 

elementary sub-systems. The solving procedure for a subsystem is often well-known, 

and is generally studied by a single traditional discipline (structural or mechanical 

engineering, architecture, etc.) (Figure 9) 

It is a methodology for the design of systems where the interaction between several 

disciplines must be considered, and where the designer is free to significantly affect the 

system performance in more than one discipline. 
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Figure 9 -Multi-disciplinary System Design Optimization framework 



However, the interdisciplinary coupling inherent in MSDO tends to present additional 

challenges beyond those encountered in a single-discipline optimization. It increases 

computational burden and complexity, and creates organizational challenges for 

implementing the necessary coupling in software systems. This explains why MSDO is 

a relatively young discipline, whose expansion has been made possible by the 

development of more powerful and versatile computing machines. 

In addition, in MSDO of complex systems the organizational challenges become 

formidable. The analysis codes for each discipline have to be made to interact with one 

another for the purpose of system analysis and system optimization, the kind and 

breadth of interaction being affected by the MOO formulation. 

Decisions on the choice of design variables have profound effects on the coordination 

and data transfer between analysis codes and the optimization code, and on the degree 

of human interactions required. 

2.2 History 

From a historic perspective, the mathematical problem of multi-objective optimization 

had already been tackled in the field of Economics. 

In 1881, King's College (London) and later Oxford Economics Professor F.Y. Edgeworth 

was the first to define an optimum for multi-criteria economic decision making. 

He did so for the multi-utility problem within the context of two consumers, P and rr: 

"It is required to find a point (x,y,) such that in whatever direction we take an 

infinitely small step, P and rr do not increase together but that, while one 

increases, the other decreases. " 

Paradoxically, it was a civil engineer who first developed the theory of multicriteria 

optimum if the field of Economics, which only after a century started being applied to 

engineering. 



Vilfredo F. D. Pareto (Paris, 1848 - Lausanne, 1923) was an Italian sociologist, 

economist and philosopher. After graduation from the University of Turin in 1870 with a 

degree in Civil Engineering, with a Thesis on 'The Fundamental Principles of 

Equilibrium in Solid Bodies", he worked in Florence as a Civil Engineer from 1870-1 893. 

He took up the study of philosophy and politics and was one of the first to analyze 

economic problems with mathematical tools. In 1893, Pareto became the Chair of 

Political Economy at the University of Lausanne in Switzerland, where he creates his 

two most famous theories, regarding the Circulation of the Elites, and the so-called 

Pareto Optimum. 

From his "Manuale di Economia Politicd': 

"The optimum allocation of the resources of a society is not attained so long as it 

is possible to make at least one individual better off in his own estimation while 

keeping others as well off as before in their own estimation." 

The arrival of MSDO in engineering sciences is strictly intertwined to the recent history 

of aeronautics. 

Multidisciplinary System Design Optimization was introduced in Aeronautic Engineering, 

starting from the 70's. It initially was associated to disciplines such as aerodynamics, 

propulsion, structures, and controls, but in a second phase was also applied to lifecycle 

areas of manufacturability, supportability, and cost. 

After the 'big slump" in world economy in the mid-seventies, due to the "oil crisis" (1 973), 

the major crisis of the airline industry and the end of the Apollo program led to a 

reduction in the engineering workforce of around 25%. It was not anymore possible to 

"waste" enormous quantities of fuel and resources, and industrial designers were forced 

to look for higher-performance design procedures and methodologies. In the meantime, 

two major new events took place: the development of Computer Aided Design (CAD), 

which greatly contributed to the integration of informatics and automation in the design 

industry, and the procurement policy changes for airlines and the military. 



In this panorama, the earlier quest for maximum performance was quickly superseded 

by the need for a "balance" among performance, life-cycle cost, reliability, and 

maintainability. 

These new requirements, together with the exponentially-growing technological 

complexity of the aircrafts (figure lo), and with a harsher competition in the airline 

industry created a demand for an increased operational efficiency. MSDO was the 

off spring of these historical forces. 

Figure 10 - Design requirement growth for aerospace vehicles 

Since 1990, the techniques have expanded to other industries. Globalization has 

resulted in more distributed, decentralized design teams. The high-performance 

personal computer has largely replaced the centralized supercomputer and the Internet 

and local area networks have facilitated sharing of design information. Disciplinary 

design software has become very mature. In addition, many optimization algorithms, 

and in particular the population-based algorithms, have advanced significantly. 



2.3 How does MSDO work? 

Given a system, or the object of the design, Multi-Objective Design Optimization 

involves the following phases: 

o the selection of a set of variables to describe the design alternatives; 

o the selection of a series of objectives (criteria), expressed in terms of the design 

variables, which are to be optimized; 

o the determination of a set of constraints, expressed in terms of the design 

variables, which must be satisfied by any acceptable design; 

o the determination of a set of values for the design variables, which optimize the 

objectives, while satisfying all the constraints. 

Problem formulation is normally the most difficult part of the process. It comprises the 

selection of the design variables, constraints, objectives, and models of the disciplines. 

A further consideration is the strength and breadth of the interdisciplinary coupling in the 

problem. 

2.3.2 Design variables 

A design variable is a numeric value that is controllable, from the point of view of the 

designer. For instance, the thickness of a structural member can be considered a 

design variable. Design variables can be continuous (such as a beam span), discrete 

(such as the number of beam supports), or Boolean (such as whether to use pretension 

or not in a concrete beam). Design problems with continuous variables are normally 

solved more easily. Design variables are often bounded, that is, they often have 

maximum and minimum values. 

Constraints 

A constraint is a condition that must be satisfied in order for the design to be feasible. 

An example of a constraint in aircraft design is that the lift generated by a wing must be 

equal to the weight of the aircraft. In addition to physical laws, constraints can reflect 

resource limitations, user requirements, or bounds on the validity of the analysis models. 



Constraints can be used explicitly by the solution algorithm or can be incorporated into 

the objective using Lagrange multipliers. 

2.3.4 Objectives 

An objective is a numerical value that is to be maximized or minimized. For example, a 

designer may wish to maximize profit or minimize weight. Many solution methods work 

only with single objectives. When using these methods, the designer normally weights 

the various objectives and sums them to form a single objective. Other methods allow 

multi-objective optimization, such as the calculation of a Pareto front (see 5 2.3.7). 

2.3.5 Models 

The designer must also choose models to relate the constraints and the objectives to 

the design variables. These models are dependent on the discipline involved. They may 

be empirical models, such as a regression analysis, theoretical models, such as from 

structural mechanics, or reduced-order models of either of these. In choosing the 

models the designer must trade off fidelity with analysis time. 

The multidisciplinary nature of most design problems complicates model choice and 

implementation. Often, several iterations are necessary between the disciplines in order 

to find the values of the objectives and constraints. 

2.3.6 Standard form 

Once the design variables, constraints, objectives, and the relationships between them 

have been chosen, the problem can be expressed in the following form: 

minimize J(x) 

subject to: h(x) = 0 

g(x) 0 

x € X c 9 t n  



where J is an objective vector, x is the vector of design variables, g is a vector of 

constraints, and h(x) and g(x) are vectors of lower and upper bounds on the design 

variables. Maximization problems can be converted to minimization problems by 

multiplying the objective by -1. Constraints can be reversed in a similar manner. 

2.3.7 Mefhodo/ogy 

There are two fundamental approaches to multi-objective optimization, the scalarization 

approach and the Pareto approach. 

Scalarization reduces multiple objectives to a single combined objective. 

Given a number of objective functions J1, J2, . . ., Jz, a single, scalar function U of these 

functions is defined, and subsequently optimized. 

The problem is therefore reduced to a single-objective optimization: 

Note that this approach necessarily includes preferences upfront, when the structure of 

the U function is designed. 

The Pareto approach consists in determining the set of the non-dominated solutions, i.e. 

those vectors of solutions {J1, J2, . . ., JS such that: 

J: 2 J: v i 
and J: > J: for 
at least one i 

These solutions are such that, if the system is optimized to that z-uple of J's, it is 

impossible to further increase one J while keeping all the other J's as high as before. 

With this approach, the preference is included a posteriori. 



2.3.8 Problem solution (Scdlarization approach) 

Scalarization approach was selected, due to the ease of implementation and to the 

possibility of expressing a preference on the importance of the single objectives. 

The problem is normally solved using appropriate techniques from the field of 

optimization. These include gradient-based algorithms, population-based algorithms, or 

others. Vety simple problems can sometimes be expressed linearly; in that case the 

techniques of linear programming are applicable. 

Some of the traditional algorithms include: 

Gradient-based methods: 

o Newton's method 

o Steepest descent 

o Conjugate gradient 

o Sequential quadratic programming 

Population-based methods: 

o Genetic algorithms 

o Particle swarm optimization 

Other methods: 

o Random search 

o Grid search 

o Simulated annealing 

Most of these techniques require large numbers of evaluations of the objectives and the 

constraints. The disciplinary models are often very complex and can take significant 

amounts of time for a single evaluation, and the solution can therefore be extremely 

time-consuming. Many of the optimization techniques are adaptable to parallel 

computing. 

Much current research is focused on methods of decreasing the required time. 



2.3.9 Genetic Algorithms 

A genetic algorithm (GA) is a search technique used to find approximate solutions to 

optimization and search problems. Genetic algorithms are a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such as 

inheritance, mutation, natural selection, and recombination (or crossover). 

A brief history and the basic concepts about Genetic Algorithms are provided in 

Appendix A. 



Chapter 3: Design Optimization 

An analytical model of the design process was developed, following a disciplinary 

breakdown (Figure 1 1 ). 

A set of suitable design variables was identified, and the aspects of design that were 

previously discussed (architecture, lighting, thermal, structural, economy) were 

separately analyzed by "satellite" modules. 

Optimization 

/"\ 
Figure 1 1 Working scheme of the optimization system 

Each module returns an objective function, which a performance module rates via utility 

functions and collects into an overall utility objective. 

Optimization is then run to maximize the overall objective, and the fittest design vector 

is returned. 



3.1 Architecture of the Model 

The architecture of the model is composed of the initializing modules (Initialization and 

Design Vector), the five evaluating modules (Lighting, Thermal, Architecture, Structures 

and Economy), the performance module (Performance), and the Optimizer (Figure 1 2). 

All the modules are described in the following paragraphs. 

I*,. ..--..-- '.""" ---*-.--*.--.--I 

Economy .- - 1 

Figure 12 - Complete architecture of the optimization system 

3.1. I Design Vector 

3.1 .I .I Geometry 

The geometry of the fapde is completely described by its nodes. 



There are 242 nodes, their positions being defined by three Cartesian coordinates (X, Y, 

and Z) in space, and by "deformed" coordinates on the skin (u, v). Due to the 

constraints on the displacement of the nodes, the Jacobian of the transformation 

between the two sets of coordinates (X, Y) and (u, v) is always nonzero, i.e. the 

transformation is non-singular. 

Given the computational complexity, however, only a subset of the nodes was chosen 

to describe the geometry of the skin. These points are called Control Points. 

The displacement of each point on the grid is uniquely defined by the position of the 

Control Points. 

There are 16 Control Point (four rows and four columns) plus another 16 on the borders, 

and the geometry is therefore fully described by 48 design variables (2 coordinates [u, v] 

per Control Point plus 1 coordinate for CP's on the border). 

Figure 13 - Graphical representation of the geometric Design Variables 



3.1 .I .2 Materials 

Each cell can be made of glass, shaded glass, or opaque cladding. These materials 

correspond to three degrees of transparency (Figure 14). 

The distribution of materials on the skin is therefore described by 100 discrete variables, 

which can assume 3 states each. 

Figure 14 - Graphical representation of the materials Design Variables 

As a consequence, the design is controlled by a total of 148 variables. 

3.1.2 Geometly module 

The geometry module, developed in CATIATM, is responsible for the construction of the 

skin geometry. Modelcenter passes to CATlA the coordinates of the Control Points, and 

CATlA calculates the positions of all nodes via parametric design. It also produces the 

measures of the cells areas, and all other geometric, parametrically-defined properties 

of the fa~ade. In addition, CATlA parametrically designs all the structural and non- 

structural fa~ade components, such as the shaders, the steel pipes, the joints, etc., and 

renders the design (Figure 15). 



Figure 15 - A screenshot of a solution, from CATIA. 

Note the parameters on the left, which control the design 

3.1.3 lnitial~zafl'on Module 

For the initialization of the model, the calculation of the exterior illuminances for vertical 

sky Exvk, horizontal sky E&k, and ground EWk for the given location and orientation, is 

run solely once at the beginning of the optimization procedure. 

3.1.4 Lighting Module 

This module (Figure 16) calculates the actual illuminance at 70% of the room depth, 

using the IESNA method, and based on four reference dates of the year. 

The following calculations are performed: 

o Look up the Coefficient of Utilization in a table embedded in an Excel file. The 

table is implemented as an approximation function for better performance 

(maximum error *lo%): 

CUk = ( 0 . 3 6 2 - ~ ~ ~  + - 5 . 9 8 . ~ ~ '  + 33.1 -RW + 0.0253) * 0.01 07-RR - 1.49 

Cup = ( 0 . 2 6 . ~ ~ ~  + -4.1 =RW* + 21 -RW + 1 55) . 0.0093-W-RR - 1.28 



Calculate Illuminance I 

Room dimensions - I Illuminance 

Glass total height I, --- Chrck on min value 

Glass total width 

Figure 16 - Scheme of the Lighting module 

With: 

room - depth RR = 
window - height 

window - width RW = 
window - height 

CUk,, : Coefficients of Utilization for lighting calculation (sky, ground) 

o Calculate the illuminance for each single cell 

Where: 

lux llluminance indoor at 70% of the room depth 

lux llluminance outdoor (vertical, ground) 

% Light transmittance of the glazing 

o Sum up the cells results in order to obtain an overall illuminance (ERO) 

o Check the constraint on minimum total illuminance 

Ei70 2 300 IUX 

This module (Figure 17) calculates the energy consumption due to heating and cooling. 



Thermal t 

Figure 17 - Scheme of the Thermal module 

I 

Cell Materials 

Cell areas C ~ a l c u l a t e  Heat Transfer 

I Calculate Cooloing Loads [ 

I Calculate Total Energy I 

The energy flows are calculated as follows: 

QH = (Utr Atr +Uop A,,) AT DDH 

Qc = (Utr Atr +Uw A,) AT DDc + SHG SHFC . Atr 

Energy Consurr 

and finally: 

Qtot = QH + QC 

Where: 

QH,C 

Utrlop 

Atrap 

DDHSC 

SHG 

SHGF 

Qtot 

kwh/y1m2 Energy required for heating I cooling 

w1m2~ Coeff. for heat transmission (transp I opaque) 

m2 Area (transparent I opaque) 

dC Degree days for heating and cooling 

w1m2ly Solar heat gain per one summer 

YO Portion passing through the chosen glazing 

kwh/y/m2 Total energy consumption 

3.1.6 Architecture 

The module (Figure 18) makes sure that the density of transparent cells increases 

toward the center of the fapde, for the occupants to have a view on the exterior. 



Cell Materials - Zoning Rating 

Figure 18 - Scheme of the Architecture module 

The zone of preference for transparency is defined by a matrix with as many elements 

as the cells are (1 0 x lo), whose values are higher where more transparency is needed. 

Multiplying this preference matrix by the actual transparency distribution on the fa~ade, 

and summing up the terms, provides the rating for architecture. 

where: 

is the degree of transparency of cell i (l,2, or 3) 

is the desired zoning preference for that cell. 

3.1.7 Structure 

The structural module (Figure 19) assesses the physical feasibility of the design. 

It is developed in AnsysTM 10.0, and is run in batch mode directly by Modelcenter. 



Structure 

Geometry 
Qply vertical loads 

Figure 19 - Scheme of the Structure module 

The input consists of the coordinates of all the nodes of the "beehive" grid. 

From this set of points, Ansys creates the spatial grid of pipes connecting the nodes, 

sets the restraints on lateral nodes and applies the loads on top of the fapde. 

A static solution is then calculated and, based on the ratio stresslcapacity in the 

members, an overall rating is returned. 

The choice of the structural system was a controversial issue, and ended in a trade-off 

between structural optimality and minimization of computational time. 

Initially, a statically determinate 3D truss-shell was conceived, which was composed of 

two connected parallel layers (grids) of members. 

In this case, stability is ensured by the spatial structure, but the distance between the 

two layers heavily impacts on the thickness of the fagade and on the skin appearance 

from the interior. 

A single-layer solution was by far preferable, but needed rigid connections between the 

members, i.e. welded joints rather than pins, to provide stability. 

This solution allows a very thin skin, but presents some drawbacks, due to the 

monolithic overall behavior of the structure, namely with respect to thermal differential 

deformation. 



In addition, a major challenge concerning the optimization of a statically undetermined 

structure, such as a welded-joints 2D grid, consisted in the optimization of member 

sizing. In fact, given a determinate structure and a set of loads, it is immediate to 

calculate the forces distribution and the displacement of every member, regardless of 

size and material. As opposed to that, an undetermined structure cannot be solved 

without drawing upon its elastic (or more generally rheologic) properties. 

Thus, in order to optimize an indeterminate structure, given a spatial geometry and a set 

of loads, it is necessary to adopt a recursive approach, iterating until convergence is 

achieved, because after changing the size of members the stress distribution has to be 

calculated anew. 

As it can be imagined, setting up an internal, nested structural optimization loop within 

the overall multidisciplinary optimization process required humongous computational 

effort, and consequently a very long time, that was not available. 

A trade-off was then achieved: the structural module works as a checker rather than as 

an optimizer: it receives the geometry and the loads, and checks for structural 

resistance given a constant size of members. All the pipes have a constant diameter, 

regardless of length. 

Ansys calculates the stresses in the members and returns to the optimizer a rating 

function, which "grades" the input geometric pattern from a structural point of view. 

In analytical terms, the rating function has the following form: 

Where: 

O , i  MPa is the maximum stress (absolute value) in member i 

N is the number of elements 

f, MPa is the yield stress of steel 



It could be argued that, following this procedure, the design solution that eventually is 

produced by the optimization process is inherently vitiated by an unintelligent use of 

material, since the diameter of the pipes is constant. In addition, this study does not 

approach member buckling, which would have required a subroutine solving the 

associated eigenvalue problem. 

However, beside the benefits coming from shorter computational time, this solution 

respects and achieves the goal of the structural module, i.e. it provides a balancing 

counterweight that limits the maximum size of cells. In fact, by pushing the value of the 

stress toward the yield limit (since the size of the members is constant, the module 

indirectly sets an upper bound on their maximum length. 

In the framework of this study, therefore, structural design was not developed beyond 

the stage of a feasibility study, both due to the central interest in the multidisciplinary 

aspect of design and because of the heavy computational constraints. 

3.1.8 Economy 

The economy module (Figure 20) calculates the cost of glass and cladding materials 

associated with the design vector. 

The cost is linearly evaluated with respect to areas and depends on the type of 

materials. 

Material Area 

Economy 

Cell Material 1 1  
Cost of Materials 

( Linear calculation on areas / 

Figure 20 - Scheme of the Economy module 



3.1.9 Performance 

Because of the multi-objective nature of the architectural design of a fapde, each of our 

modules produces some functions (total illuminance, energy required for heating and 

cooling, etc.. .). 

Each single objective Ji is then "filtered" through a utility function Ui, that assigns a low 

score to an undesirable value of J and a high score to a desirable one (0 5 U 5 1). 

The Utility Functions have the form shown in Figure 21 : 

Figure 21 - Structure of the Utility Functions 

The Utility Functions are scaled in such a way that an unacceptable performance has a 

utility rating less than 0.1, while an excellent performance is rated more than 0.9. 

A performance is considered Unacceptable, Acceptable, Good or Excellent with respect 

to the optimum value that the output can assume, as shown in Table 1. 

An overall objective function U takes into account all the multi-objective particular 

utilities Ui. The U function has the following form: 

where wl, w*, w3, w4, w5 are weighting coefficients that depend on the importance of 

each single objective function. 



Table 1 - Threshold values for the utility functions 

Max 

This overall utility function reflects the trade-off between sufficient natural lighting in a 

Thermal 
(Total Energy Min 10; 701 
Consumption) 

Lighting 
(Illuminance) Max [O; 20001 300 

room, the energy balance due to wolinglheating of the faqade, the intent to have 

Architecture 
(Match with 

zoning 
preference) 
Structure 

(Rating function) 

windows in view height, the requirement for structural safety, and limited cost. 

3.1.10 OpO'rn~zer 

The central optimizer is the "brain" of the system: it is charged of coordinating all the 

"satellite" modules - by directing the input and output flows of variables -, of checking 

the constraints, and running the solving algorithm. 

1 

3.1 .I 0.1 A note on constraints 

Economy (T 1 Min 1 [o; 1500] 1 1000 1 300 
-- 

otal cost) 
-- -- 

There are several types of constraints: 

Firstly, each Control Point must lie in a specific region, delimited by red lines in 

Figure 22. Each red line is obtained by offsetting the corresponding gray line by an 

amount d. 

[O; 1.11 

[O; 1.11 

- 

0 

0.85 

0.85 - 



These constraints prevent each quadrilateral region from assuming a non-convex shape, 

a fact that would create computational problems and would result in unaesthetic design. 

Figure 22 - Graphical representation of the geometric constraints 

This kind of constraint is defined by the following equations (in the case of quadrant NE): 

Where: 

UC, VC are the coordinate of the point subject to the constraint 

UE,S,W.N, and VE.S,W,N are the coordinate of the adjacent points that lies 

respectively to the East, South, West and North of point C 

Thus, there are 64 constraints of the first type (geometric constraints [GC] in the 

following), considering the Control Points on the borders. Each of these constraints only 

apply to the correspondent geometric design variable. 



Secondly, a constraint on the overall illuminance sets: 

providing a lower bound for the amount of light measured at 70% of the room depth. 

Note that this illuminance constraint [IC] affects all the design variables with different 

sensitivity. 

3.2 Software & Hardware Tools 

The software architecture closely reflects the breakdown structure of the problem into 

disciplines. 

A central Optimizer is linked to CATIA, which produces and updates the geometry of the 

fa~ade, and to the "satellites" Modules, one per discipline (lighting, thermal, etc.. .). 

ModelCenter 6.1 TM, from Phoenix Integration Software, Inc., was chosen as the central 

Optimizer. 

It is a very versatile and young program, it can easily interface with most CAD software, 

spreadsheets and programming languages, and has a very user-friendly interface. 

Communication between the Optimizer and the Modules is ensured by the wrappers. 

These pieces of code translate variable formats and manage the flow of input/output 

files that written and read by the communicating programs. 

The Lighting, Thermal and Economy Modules were programmed on MS Excel XPTM, for 

which ModelCenter has a built-in integration module. 

The Structural Module, as was pointed out in 5 3.1.7, was built in AnsysTM 10.0, from 

Ansys, Inc., a very powerful FE modeler, solver and post-processor. 

The computational burden generated by such an onerous process as the multi-objective 

optimization of more than a hundred variables, subject to hundreds of constraints, and 

the use of Genetic Algorithms for the solution of the problem, required the use of a bi- 

3.2 GHz processor machine in order to cut down computational time. 



3.3 Multi-objective Optimization 

The Scalarization approach (5 2.3.7) was chosen, due to the nature of the objective 

functions. 

3.3.1 Optimization Algorithm 

Genetic Algorithms were chosen because they have experimentally been proven to be 

robust in their application to many search problems, and are ideally suited for design 

problems with discrete design variables. 

Because they do not require objective or constraint derivative information, they are able 

to effectively search non-linear and noisy design spaces. 

Compared to traditional gradient-based optimizers, genetic optimizers are more likely to 

find the overall best (globally optimal) design. 

3.3.2 Genetic AlgonThm parameters 

When using heuristic techniques like the GA's, a fundamental part of the solving 

procedure consists in tuning the algorithm parameters, whose values can often 

determine the success or failure of the analysis. 

The GA's parameters that were controlled in this study are listed hereafter: 

General: 

Population size 

Selection scheme 

Preserved designs 

30 

Multiple Elitism 

13 

Convergence: 

Convergence method Maximum Number of Generations 

Maximum No. of generations 50 

Genetic operators: 

Mutation Probability 



On the basis of the experiments that were carried out, some recurring effects related to 

the values of these parameters could be observed. 

The population size is the number of individuals per generation. In general, the larger 

the population size, the longer the optimization process will run because of the 

increased number of component runs required. Thus, the population size was initially 

set as small as possible and then slowly increased when the optimizer could not 

converge consistently to an acceptable design. 

The genetic algorithm's selection scheme is the mechanism that determines which 

designs from the parent population and newly created child population will be chosen to 

make up the next generation of designs. The selection scheme ensures that the 

optimization procedure continually progresses towards an optimal solution by allowing 

the best design(s) in each generation survive in the next generation. 

The "Multiple Elitism Selection" selection scheme was retained all throughout the 

optimization procedure. This selection method is more effective for problems like the 

proposed one, for which the search space has multiple global optimum points or for 

problems where the global optimum is surrounded by many local optimum points. 

The number of preserved designs (Np) specifies the number of best designs from the 

combined population that are passed on to the next generation, and is used to control 

the selection pressure of the genetic algorithm. 

As this number increases, though, the number of new designs entering the population 

decreases, causing the genetic search to become more localized. Thus, using large 

values of Np prevents the GA's from successfully exploring the design space and may 

cause them to get trapped in a local optimum area of the search space. Therefore, the 

value of Np was kept relatively small (13) compared to the population size, so that a 

number of good designs could be tracked while maintaining a sufficient influx of new 

individuals to continue searching other areas of the design space effectively. 

The convergence method used was the fixed maximum number of generations. 



The maximum number of generations is an important parameter, because it sets the 

limit of the optimization process. Generally, the higher the number of generations, the 

more refined the search, because each generation is likely to refine the results provided 

by the previous one. However, each generation also requires additional CPU time, and 

a trade-off between accuracy and time consumption must consequently be agreed upon. 

The selected final number of generations was 50. 

Mufation probability represents the probability that a mutation will occur in a 

chromosome, and is one of the most effective GA operator. Again, the value must 

respect a trade-off between two opposite forces: a certain amount of mutation 

probability is necessary to provide chromosomal diversity in the population, but an 

excessive rate might lead to instability in the algorithm, and to the loss of important 

genetic information. The final value of 6% appeared to be the best trade-off. 



Chapter 4: Results 

4.1 Final results 

The Genetic Algorithms were terminated after 50 generations, and the best recorded 

results were collected. 

The optimization process converged to the solution that corresponds to the following 

design vector: 

Figure 23 shows the distribution of materials corresponding to the final solution, while, in 

Figure 24, a render illustrates the final design of the fapde. 

Figure 23 - Geometry and materials distribution for final design 



Figure 24 - Render of final design 

A number of considerations can be drawn form these results: 

o The solution effectively shows a particular geometrical and material pattern: 

The cells at the center of the fagade correctly enlarge, and shrink as the 

distance from the center increases. 

In addition, in the center of the fagade a complete region turned to glass, a 

consequence of the Architectural Module action. 

Away from the center the density of semi-transparent and opaque material 

grows higher, a sign that a trade-off was reached between lighting and 

architectural requirements on one side, and thermal requirements on the 

other. To compensate a higher density of transparent cells in the center of 

the skin, which allow for a more abundant light intake, the cells close to 
'1 

the border turn opaque to limit the heat loss. 



o This configuration slowly becomes evident as the number of generations grows. 

The central pattern of transparent cells develops from an early embryo, to fully 

occupy the whole central region of the skin. 

o The distribution of the semi-transparent and opaque cells does not seem to 

follow a particular scheme. It was not possible to understand if a distinguishable 

pattern might have been achieved after more generations. In any case, the slow 

progression of the overall objective function toward the end of the process 

suggests that any further variation in the design vector cannot generate a 

substantial change in the objective. However, it is important to note that, like for 

all heuristic techniques, the convergence of the GA's cannot be mathematically 

proven. 

4.2 Diachronic evolution 

The evolution of the design all along the generations of the GA's can be mapped by 

analyzing previous solutions. 

Five solutions were chosen, evenly spaced in "time". 

The graphical rendering of the solutions is a helpful tool to visualize the formation of 

geometric trends and patterns in materials distribution. 

The graph in Figure 25 plots the improvement of the objective function against the 

number of generations. Figures 26 show the distribution of materials and the geometry 

corresponding to the chosen 

solutions. 

OBJECTIVE FUNCTION EVOLtlT1ON HISTORY 

Figure 25 - Improvement of the objective function over the GA's generations 
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Figure 26 - Evolution of design during the optimization process 



Chapter Conclusions 

Multi-disciplinary System Design Optimization was used to drive the design of a building 

structural faqade. 

The optimization system shapes the geometry of the hexagonal base-grid of the fawde, 

and decides the materials in each cell of the grid. 

The design process was analyzed and fragmented into several disciplines. 

A multi-objective optimization model was developed, encompassing a number of 

analysis Modules, which comprises: 

o a Lighting Module, evaluating the illuminance in the interior, 

o a Thermal Module, capable of calculating the cooling loads corresponding to the 

skin configuration, 

o an Architectural Module, charged of turning to transparent the central cells, due 

to view requirements, 

o a Structural Module, which rates the structural efficiency of the design, 

o an Economy Module, in order to calculate the cost of materials (cladding, glass). 

A scalarization approach to MDO, via utility functions, was followed, and the overall 

objective function was optimized using Genetic Algorithms. 

The fittest design solution, coherently with the requirements expressed by the Analysis 

Modules, shows a clearly distinguishable geometric pattern. In particular, the cells 

located at the center of the faqade tend to enlarge and to turn transparent, to allow a 

clear view of the occupants on the exterior (as suggested by the Architectural Module), 

while the cells close to the boundaries turn opaque and shrink, to counteract the 

consequent thermal loss. 



5.1 Openings 

The study confirmed that MDSO is an interesting tool for design of complex systems, 

being particularly valuable when many disciplines concur in the design procedure. 

Future research should definitely approach the problem of constructabi/ity, that was 

omitted in this study. 

In fact, an uncontrolled optimization-driven design tends to generate a non-modular 

product, whose components do not follow any symmetry or geometric rule. 

It follows that, from the point of view of cost, the design is often unfeasible. 

The future development of CAD/CAM integrated technology should provide the designer 

a larger freedom, but it is undeniable that the cost of a product is dramatically cut down 

by some degree of modularity or symmetry of its components. 

A "constructability module" would, therefore, penalize or set constraints on "non- 

constructable" solutions. 

Also, a potential field of exploration concerns the extension of MSDO-driven design to 

larger, more complex objects, such as a complete building skin, or to a building itself. 

Some concerns arise, though, namely due to the computational burden that such an 

analysis would imply. 

However, many techniques are being explored in recent literature, about how to define 

"smarter" design variables, or to develop more efficient system architectures. 

Besides, it must be pointed out that the computational capacity of both single machines 

and of "diffuse" computing units is constantly increasing, permitting the analysis of more 

and more articulated and complex designs. 



Appendix A: Genetic Algorithms 

Genetic algorithms are typically implemented as a computer simulation in which 

a population of abstract representations (called chromosomes) of candidate 

solutions (called individuals) to an optimization problem evolves toward better 

solutions. Traditionally, solutions are represented in binary as strings of 0s and 

1 s, but different encodings are also possible. The evolution starts from a 

population of completely random individuals and happens in generations. In each 

generation, the fitness of the whole population is evaluated, multiple individuals 

are stochastically selected from the current population (based on their fitness), 

modified (mutated or recombined) to form a new population, which becomes 

current in the next iteration of the algorithm. 

A.2 History 

Genetic algorithms originated from the studies of cellular automata, conducted by 

John Holland and his colleagues at the University of Michigan. Research in GAS 

remained largely theoretical until the mid-1 9809, when The First International 

Conference on Genetic Algorithms was held at The University of Illinois. As 

academic interest grew, the dramatic increase in desktop computational power 

allowed for practical application of the new technique. In 1989, The New York 

Times writer John Markoff wrote about Evolver, the first commercially available 

desktop genetic algorithm. Custom computer applications began to emerge in a 

wide variety of fields, and these algorithms are now used by a majority of Fortune 

500 companies to solve difficult scheduling, data fitting, trend spotting and 

budgeting problems, and virtually any other type of combinatorial optimization 

problem. 



A.3 Operation of a GA 

Two elements are required for any problem before a genetic algorithm can be 

used to search for a solution: First, there must be a method of representing a 

solution in a manner that can be manipulated by the algorithm. Traditionally, a 

solution can be represented by a string of bits, numbers, characters or by a 

special struct. Second, there must be some method of measuring the quality of 

any proposed solution, using a fitness function. 

A.4 Initialization 

Initially many individual solutions are randomly generated to form an initial 

population. The population size depends on the nature of the problem, but 

typically contains several hundreds or thousands of possible solutions. 

Traditionally, the population is generated randomly, covering the entire range of 

possible solutions (the search space). Occasionally, as in the present study, the 

solutions may be "seeded" in areas where optimal solutions are likely to be found. 

A.5 Selection 

During each successive epoch, a proportion of the existing population is selected 

to breed a new generation. Individual solutions are selected through a fitness- 

based process, where fitter solutions (as measured by a fitness function) are 

typically more likely to be selected. Certain selection methods rate the fitness of 

each solution and preferentially select the best solutions. Other methods rate 

only a random sample of the population, as this process may be very time- 

consuming. 

Most functions are stochastic and designed so that a small proportion of less fit 

solutions are selected. This helps keep the diversity of the population large, 

preventing premature convergence on poor solutions. Popular and well-studied 

selection methods include roulette wheel selection and tournament selection. 



A.6 Reproduction 

The next step is to generate a second generation population of solutions from 

those selected through genetic operators: crossover (or recombination), and 

mutation. 

For each new solution to be produced, a pair of "parent' solutions is selected for 

breeding from the pool selected previously. By producing a "child" solution using 

the above methods of crossover and mutation, a new solution is created which 

typically shares many of the characteristics of its "parents". New parents are 

selected for each child, and the process continues until a new population of 

solutions of appropriate size is generated. 

These processes ultimately result in the next generation population of 

chromosomes that is different from the initial generation. Generally the average 

fitness will have increased by this procedure for the population, since only the 

best organisms from the first generation are selected for breeding, along with a 

small proportion of less fit solutions, for reasons already mentioned above. 

A.7 Termination 

This generational process is repeated until a termination condition has been 

reached. Common terminating conditions are: 

o a solution is found that satisfies minimum criteria; 

o fixed number of generations reached; 

o allocated budget (computation timelmoney) reached; 

o the highest ranking solution's fitness is reaching or has reached a plateau 

such that successive iterations no longer produce better results; 

o manual inspection; 

o combinations of the above. 
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