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ABSTRACT

Multi-disciplinary System Design Optimization was used to design the geometry and to select
the materials for the structural fagade of a building. A multi-objective optimization model was
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“Fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.”
(Dante Alighieri, Divina Commedia, Inferno, Canto XXVI, 119 - 120)

“Avopa poi évverre Mouoa ToAUTPOTTOV, OC UAAQ TTOAAG
mAGyx6n, emrei Tpoing 1epdv mrroAicBpov émrepoey...”
(Homer, Odyssey, Book 1, 1 —2)

Preface

This study initially originated from a Project for the course of “Multidisciplinary System
Design Optimization” (MSDO), taught at M.I.T. by Prof. O. De Weck and Prof. K. Willcox.
The course introduced the author and his team-mates, Mr. Anas Alfaris and

Mr. P. Geyer, to the concepts of optimization-driven design.

Professor De Weck, in particular, encouraged the team to apply MSDO to such an
“atypical” design object as a building skin, since these techniques, widely applied to the
domains of Aeronautic & Astronautic Engineering, are seldom used in architecture and

civil engineering.



Chapter 1:

Numerical optimization can be applied to the design of structures in order to shape an
architectural body and to design its components in such a way that a number of

Introduction

objectives are optimized and certain requirements are met.

While optimization has often been intended as single-objective, i.e. with only one major
objective being optimized, this document focuses on multi-objective optimization, and
takes into account many of the aspects that are necessarily part of the design process

(Figure 1) of such a complex object as an architectural fagade.

In fact, the very nature of skin design for buildings is a multidisciplinary one: fagades

Figure 1 - The overall design procedure diagram of a fagade
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must meet, beside structural safety, numerous architectural and technical requirements,
such as transparency, sufficient light intake, minimal thermal loss, a limited cost of
building materials, and manufacturing and installation constraints.

In the traditional design approach, many actors patrticipate in different phases, each with
diverse competencies and solutions to a particular aspect: the architect drafts the
overall formal composition of the fagade and coordinates the work of the technical
teams; structural engineers design the supporting system — which in the case of a
structural fagade is a very complex task due to the critical density of many technological
systems in a very reduced portion of the building —, HVAC engineers determine the
material properties of the fagade according to thermal requirements, and lighting
consultants ensure that a sufficient amount of light penetrates in the interiors, only to

cite a few.

In this sequential approach, due to the well-defined boundaries between disciplines,
different competencies work on the design at different times, each one modifying the
product of the previous one to achieve its objective.

Thus, the final solution is not always the optimal or the one that requires the least time
to figure out. In fact, the overlapping of many decision-makers who act separately, and
often times have conflicting goals, generates recurrent changes and unnecessary
feedback loops in the design process. If all the requirements and partial objectives had
been taken into account at an earlier stage, a more suitable and economic solution
would have been found.

A multidisciplinary approach allows to gain information earlier and to retain design

freedom longer, accommodating from the very first steps of the design process all the
particular requirements coming from the many interacting disciplines (Figure 2).
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Figure 2 - Reorganization of design process in aeronautic industry to gain information earlier and

to retain design freedom longer

The design solution is not envisioned a priori, and a very wide exploration of potential
solutions is encouraged. Each solution is rated on the basis of multi-objective criteria

operating simultaneously.

Thus, given a series of objectives, such as structural safety, thermal and lighting

comfort, functional aptness, and reduced cost, via a “reverse design” procedure, the

fittest solution (or a family of fit solutions) is determined.
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Figure 3 - Sequential vs Concurrent Design (design of an aircraft wing)

It is easy to understand the advantages of optimization-driven, concurrent design
(Figure 3) with respect to the traditional sequential approach that, due to the complexity
of the design problem, envisions a very limited number of potential solutions, assesses
their efficiency and checks for feasibility. The “optimality” of the solution heavily relies, in
that case, on the experience of the designers and of the project coordinators.

However, multi-objective optimization is not a universal panacea. It is a procedure that
requires tremendous computational resources, in the attempt to explore the highest
number of potential design solutions. Design is ultimately a matter of sensibility and
intuition. It is our strong belief that, in the choice of the initial design assumptions, as
well as in the final assessment of the design solutions, critical sense and experience

always constitute a precious and irreplaceable skill for every designer.
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This document presents multidisciplinary optimization as a precious tool for the designer,
and describes how it was used to undertake the design of a self-supporting building
fagade.

1.1 The Problem

The design of a building structural fagade is a complex process that involves many
disciplines and competencies.

The skin is a crucial, active site in the building, because it constitutes its interface with
the exterior. It is meant to block or allow the flow of matter, such as rain, people or
things, and energy, in the form of light, heat (or cold), and radiation, following a number
of functional criteria. In the proposed case, the skin is also the supporting structure of
the building.

In addition, the fagade is the “face” and the “business card” of a building toward the
exterior (Figure 4), and must therefore comply with aesthetic requirements and formal
equilibrium (or dis-equilibrium).

In this study, a number of design aspects were considered of primary importance, and
were consequently included in the optimization process:

1.7.1 Architecture

A building can and often does succeed or fail in the public realm by nothing more

than what it looks like.

Fagade design must be driven by interior results as much as exterior appearance; form,
and skin decisions strongly influence lighting performance, cooling loads, and occupant
comfort.

13



Figure 4 - Transparency in architecture: the fagcade of the Fondation Cartier in Paris, by architect
Jean Nouvel
In the design of the fagade, a fundamental architectural requirement was taken into
account: the need for the skin to be transparent at the height of the occupants’ eyes, in

order to allow a clear view on the exterior.

1.1.2 Lighting

Daylighting is the use of light from the sun and sky to complement or replace electric
light. Appropriate fenestration and lighting controls are commonly used to modulate
daylight admittance and to reduce electric lighting, while meeting the occupants' lighting
quality and quantity requirements (Figures 5 and 6). Daylighting can provide required

ambient lighting for most operating hours.

In the design procedure presented in this study, the distribution of window and cladding

in the fagade determines the nature and the amount of daylight in the interior space.

14



Figure 5 - Daylighting for a
Classroom

Figure 6 - Numerical illuminance
analysis of the above classroom

1.1.3 Thermal

The skin thermal properties have a tremendous influence on heating and cooling loads,
which account for 44% of the total consumption for a residential building in the U.S.
(Figure 7).

A good design of cladding and insulating panels reduces peak loads and individual zone
fluctuations. A smart fagade design can save operating and mechanical first costs, and
reduce mechanical pace requirements.

Reducing cooling loads provides many benefits: smaller mechanical rooms and shafts
yield more leasable space; smaller plenums allow higher ceilings or possibly additional

15



floors within building height allowance; and finally, smaller equipment is less visible on
the roof and is easier to accommodate within normal floor-to-floor heights.

Residential bldgs end-use splits (1995)

Other
21%

Space Heating

Clothes Dryers 36%

3%
Cooking
3%
Refrigeration
9%
Lighting Space Cooling
6% Water Heating 8%
14%

Figure 7 - Energy consumption in residential buildings, end-use split

1.1.4 Structural

In a self-supporting fagade, the structure plays a fundamental role, and constitutes a
critical aspect of the overall conceptual design.

Beside providing resistance and stability, with respect to both service and extreme loads,
the structure has to be minimal, while meeting a number of requirements, such as the
ease of connection to the floors and to the cladding, the need for architectural openings,

the accommodation of thermal differential deformation.

In this study, the structure is considered a major issue from the point of view of the
project feasibility.

In fact, from the perspective of a future further development and diffusion of CAD/CAM
integrated technology, which will ease constructability of any irregular structural

16



geometries, and considering the reduced cost of materials, the cost of the structural
system is not crucial.

As opposed to that, the need for a slender structure that can at the same time closely
accommodate a complex skin geometry, often characterized by large openings, plays a
major role in the overall design process.

1.1.5 Economy

High-performance claddings and glazing cost more than their standard alternatives but
may pay for themselves in four ways:

o reduced energy consumption,

o reduced first costs in mechanical equipment,

o increased occupant productivity, and

o avoided future retrofit costs in added mechanical equipment or window fixes, due

to commonly unanticipated occupant discomfort.
1.2 Definition of the design object

The fagade is a hexagonal grid, and each cell can either host a window or a cladding
panel.

It is supported by a 2D, non-planar truss of steel pipes, connecting at the nodes in
welded joints (Figure 8).

1.2.1 Geomelry

The fagade is composed of hexagonal cells organized in a “beehive” pattern.

The portion that this study focuses upon is a rectangle 5 m wide and 3 m high, and
comprises 100 cells (10 rows x 10 columns).

The topology of the “beehive” never changes during the optimization process, i.e. no
new cells can be generated and no cells can disappear, but distances between nodes
can vary, and, consequently, also the areas of the cells are variable, as well as the
lengths of the connecting segments and the amplitude of the angles.

The geometry of the grid is described by the spatial coordinates of the nodes.

17
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Figure 8 - The hexagonal grid of the structure

During the optimization process, the nodes move, driven by the “need” for optimum
performance: more light in the interior, less energy loss, increased structural

efficiency, etc.
The nodes are allowed to move on the surface of the fagade, generating cells with very

different areas and geometry, and can also move on the perpendicular direction,
causing the fagade to “bulge” outward or inward, depending on the requirements and on

the constraints.

1.2.2 Materials

Each cell is characterized by a material variable, which can assume three states:
transparent — corresponding to glass —, semi-transparent (shaded glass) and opaque

(cladding panel).
The degree of transparency of a cell determines its permeability to light and to heat.

18



During the optimization process, the need for more light in the interior and for a lower
heat loss through the skin forces the cells to turn transparent or opaque.

The goal of the optimization design process is to determine the spatial form of the
facade and the material that each cell is made of.

19



Chapter 2: The idea: using MSDO

The need to take into account all these aspects from the very earliest steps of the
design procedure suggests adopting a performance-driven, integrated approach to the

problem.
2.1 What is MSDO?

Multidisciplinary System Design Optimization (MSDO) focuses on the multi-objective
optimization of complex systems, which can be broken down into a number of
elementary sub-systems. The solving procedure for a subsystem is often well-known,
and is generally studied by a single traditional discipline (structural or mechanical
engineering, architecture, etc.) (Figure 9)

It is a methodology for the design of systems where the interaction between several
disciplines must be considered, and where the designer is free to significantly affect the

system performance in more than one discipline.

DesignVector ~ Simulation Model Objective Vector
Y - N Ji |
Discipline A Discipline B
N | J
M T —— M
x| Discipline C 7, |
Couplin 7 SR
Multiobjective
Optimization w ] <
} ¥ - Approximation |
"'_. Optimization Algorithms  Methods ]
Numerical Techniques Sensitivity !
Tradespace (direct and penalty methods) Analysis J
Exploration . TR
(DgE) Heuristic Techniques CUUPING o iao s iatio, ]
(SA.GA) | Isoperformance |

Special Techniques
Figure 9 —Multi-disciplinary System Design Optimization framework
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However, the interdisciplinary coupling inherent in MSDO tends to present additional
challenges beyond those encountered in a single-discipline optimization. It increases
computational burden and complexity, and creates organizational challenges for
implementing the necessary coupling in software systems. This explains why MSDO is
a relatively young discipline, whose expansion has been made possible by the
development of more powerful and versatile computing machines.

In addition, in MSDO of complex systems the organizational challenges become
formidable. The analysis codes for each discipline have to be made to interact with one
another for the purpose of system analysis and system optimization, the kind and
breadth of interaction being affected by the MDO formulation.

Decisions on the choice of design variables have profound effects on the coordination
and data transfer between analysis codes and the optimization code, and on the degree
of human interactions required.

2.2 History

From a historic perspective, the mathematical problem of multi-objective optimization
had already been tackled in the field of Economics.

In 1881, King's College (London) and later Oxford Economics Professor F.Y. Edgeworth
was the first to define an optimum for multi-criteria economic decision making.

He did so for the multi-utility problem within the context of two consumers, P and Tr:

“It is required to find a point (x,y,) such that in whatever direction we take an
infinitely small step, P and 1 do not increase together but that, while one
increases, the other decreases.”

Paradoxically, it was a civil engineer who first developed the theory of multi-criteria

optimum if the field of Economics, which only after a century started being applied to
engineering.

21



Vilfredo F. D. Pareto (Paris, 1848 — Lausanne, 1923) was an ltalian sociologist,
economist and philosopher. After graduation from the University of Turin in 1870 with a
degree in Civil Engineering, with a Thesis on “The Fundamental Principles of
Equilibrium in Solid Bodies”, he worked in Florence as a Civil Engineer from 1870-1893.
He took up the study of philosophy and politics and was one of the first to analyze
economic problems with mathematical tools. In 1893, Pareto became the Chair of
Political Economy at the University of Lausanne in Switzerland, where he creates his
two most famous theories, regarding the Circulation of the Elites, and the so-called
Pareto Optimum.

From his “Manuale di Economia Politica”:

“The optimum allocation of the resources of a society is not attained so long as it
is possible to make at least one individual better off in his own estimation while
keeping others as well off as before in their own estimation.”

The arrival of MSDO in engineering sciences is strictly intertwined to the recent history
of aeronautics.

Multidisciplinary System Design Optimization was introduced in Aeronautic Engineering,
starting from the 70’s. It initially was associated to disciplines such as aerodynamics,
propulsion, structures, and controls, but in a second phase was also applied to lifecycle
areas of manufacturability, supportability, and cost.

After the “big slump” in world economy in the mid-seventies, due to the “oil crisis” (1973),
the major crisis of the airline industry and the end of the Apollo program led to a
reduction in the engineering workforce of around 25%. It was not anymore possible to
“waste” enormous quantities of fuel and resources, and industrial designers were forced
to look for higher-performance design procedures and methodologies. In the meantime,
two major new events took place: the development of Computer Aided Design (CAD),
which greatly contributed to the integration of informatics and automation in the design
industry, and the procurement policy changes for airlines and the military.

22



In this panorama, the earlier quest for maximum performance was quickly superseded
by the need for a “balance” among performance, life-cycle cost, reliability, and
maintainability.

These new requirements, together with the exponentially-growing technological
complexity of the aircrafts (figure 10), and with a harsher competition in the airline
industry created a demand for an increased operational efficiency. MSDO was the
offspring of these historical forces.
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Figure 10 - Design requirement growth for aerospace vehicles

Since 1990, the techniques have expanded to other industries. Globalization has
resulted in more distributed, decentralized design teams. The high-performance
personal computer has largely replaced the centralized supercomputer and the Internet
and local area networks have facilitated sharing of design information. Disciplinary
design software has become very mature. In addition, many optimization algorithms,
and in particular the population-based algorithms, have advanced significantly.
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2.3 How does MSDO work?

Given a system, or the object of the design, Multi-Objective Design Optimization
involves the following phases:
o the selection of a set of variables to describe the design alternatives;
o the selection of a series of objectives (criteria), expressed in terms of the design
variables, which are to be optimized;
o the determination of a set of constraints, expressed in terms of the design
variables, which must be satisfied by any acceptable design;
o the determination of a set of values for the design variables, which optimize the
objectives, while satisfying all the constraints.

2.8.1 Problermm formulation

Problem formulation is normally the most difficult part of the process. It comprises the
selection of the design variables, constraints, objectives, and models of the disciplines.
A further consideration is the strength and breadth of the interdisciplinary coupling in the
problem.

2.8.2 Design variables

A design variable is a numeric value that is controllable, from the point of view of the
designer. For instance, the thickness of a structural member can be considered a
design variable. Design variables can be continuous (such as a beam span), discrete
(such as the number of beam supports), or Boolean (such as whether to use pretension
or not in a concrete beam). Design problems with continuous variables are normally
solved more easily. Design variables are often bounded, that is, they often have
maximum and minimum values.

2.3.3 Constraints

A constraint is a condition that must be satisfied in order for the design to be feasible.

An example of a constraint in aircraft design is that the lift generated by a wing must be
equal to the weight of the aircraft. In addition to physical laws, constraints can reflect
resource limitations, user requirements, or bounds on the validity of the analysis models.

24



Constraints can be used explicitly by the solution algorithm or can be incorporated into
the objective using Lagrange multipliers.

2.3.4 Objectives

An objective is a numerical value that is to be maximized or minimized. For example, a
designer may wish to maximize profit or minimize weight. Many solution methods work
only with single objectives. When using these methods, the designer normally weights
the various objectives and sums them to form a single objective. Other methods allow

multi-objective optimization, such as the calculation of a Pareto front (see § 2.3.7).

2.3.6 Models

The designer must also choose models to relate the constraints and the objectives to
the design variables. These models are dependent on the discipline involved. They may
be empirical models, such as a regression analysis, theoretical models, such as from
structural mechanics, or reduced-order models of either of these. In choosing the
models the designer must trade off fidelity with analysis time.

The multidisciplinary nature of most design problems complicates model choice and
implementation. Often, several iterations are necessary between the disciplines in order
to find the values of the objectives and constraints.

2.3.6 Standard form

Once the design variables, constraints, objectives, and the relationships between them
have been chosen, the problem can be expressed in the following form:

minimize J(x)

subjectto: h(x)=0
g(x)<s0
XeXcHR
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where J is an objective vector, X is the vector of design variables, g is a vector of
constraints, and h(x) and g(x) are vectors of lower and upper bounds on the design
variables. Maximization problems can be converted to minimization problems by
multiplying the objective by -1. Constraints can be reversed in a similar manner.

2.3.7 Methodology

There are two fundamental approaches to multi-objective optimization, the scalarization
approach and the Pareto approach.

Scalarization reduces multiple objectives to a single combined objective.

Given a number of objective functions Ji, Jo, ..., Jz, @ single, scalar function U of these
functions is defined, and subsequently optimized.

The problem is therefore reduced to a single-objective optimization:

max{U(J,, J,,.... T, )}
Ji=fi(x), i=12,.,z
X€ES

Note that this approach necessarily includes preferences upfront, when the structure of
the U function is designed.

The Pareto approach consists in determining the set of the non-dominated solutions, i.e.
those vectors of solutions {J1, J2, ..., Jz} such that:

JI2Jt Vi

and J; > J? for

at least one i

These solutions are such that, if the system is optimized to that z-uple of J’s, it is
impossible to further increase one J while keeping all the other J’s as high as before.
With this approach, the preference is included a posteriori.

26



2.3.8 Problemn solution (Scalarization approach)

Scalarization approach was selected, due to the ease of implementation and to the
possibility of expressing a preference on the importance of the single objectives.

The problem is normally solved using appropriate techniques from the field of
optimization. These include gradient-based algorithms, population-based algorithms, or
others. Very simple problems can sometimes be expressed linearly; in that case the
techniques of linear programming are applicable.

Some of the traditional algorithms include:

Gradient-based methods:
o Newton's method
Steepest descent

o

Conjugate gradient

o

Sequential quadratic programming

(o]

Population-based methods:
o Genetic algorithms
o Particle swarm optimization

Other methods:
o Random search
o Grid search
o Simulated annealing

Most of these techniques require large numbers of evaluations of the objectives and the
constraints. The disciplinary models are often very complex and can take significant
amounts of time for a single evaluation, and the solution can therefore be extremely
time-consuming. Many of the optimization techniques are adaptable to parallel
computing.

Much current research is focused on methods of decreasing the required time.
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2.3.9 Genetic Algorithms

A genetic algorithm (GA) is a search technique used to find approximate solutions to
optimization and search problems. Genetic algorithms are a particular class of
evolutionary algorithms that use techniques inspired by evolutionary biology such as
inheritance, mutation, natural selection, and recombination (or crossover).

A brief history and the basic concepts about Genetic Algorithms are provided in
Appendix A.
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Chapter 3: Design Optimization

An analytical model of the design process was developed, following a disciplinary

breakdown (Figure 11).
A set of suitable design variables was identified, and the aspects of design that were
previously discussed (architecture, lighting, thermal, structural, economy) were

separately analyzed by “satellite” modules.

;
, |

w_

Figure 11 Working scheme of the optimization system

Each module returns an objective function, which a performance module rates via utility

functions and collects into an overall utility objective.

Optimization is then run to maximize the overall objective, and the fittest design vector

is returned.
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3.1 Architecture of the Model

The architecture of the model is composed of the initializing modules (Initialization and

Design Vector), the five evaluating modules (Lighting, Thermal, Architecture, Structures

and Economy), the performance module (Performance), and the Optimizer (Figure 12).

All the modules are described in the following paragraphs.

Consmi_eaornetry _test

Figure 12 — Complete architecture of the optimization system

3.1.1 Design Vector
3.1.1.1 Geometry

The geometry of the fagade is completely described by its nodes.
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There are 242 nodes, their positions being defined by three Cartesian coordinates (X, Y,
and Z) in space, and by “deformed” coordinates on the skin (u, v). Due to the
constraints on the displacement of the nodes, the Jacobian of the transformation
between the two sets of coordinates (X, Y) and (u, v) is always nonzero, i.e. the
transformation is non-singular.

Given the computational complexity, however, only a subset of the nodes was chosen

to describe the geometry of the skin. These points are called Control Points.

The displacement of each point on the grid is uniquely defined by the position of the
Control Points.

There are 16 Control Point (four rows and four columns) plus another 16 on the borders,
and the geometry is therefore fully described by 48 design variables (2 coordinates [u, V]
per Control Point plus 1 coordinate for CP’s on the border).

— - -

Xgit  Xg2l . Xgil
- - -
T [ Xel2 Xg22 ... Xgi2
g =
Xgl,j Xg2.j o Xgij

X €{0.1P; i,j=1.6

Figure 13 — Graphical representation of the geometric Design Variables
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3.1.1.2 Materials

Each cell can be made of glass, shaded glass, or opaque cladding. These materials

correspond to three degrees of transparency (Figure 14).

The distribution of materials on the skin is therefore described by 100 discrete variables,
which can assume 3 states each.

Xmll me] xmil ;“ l’ : CH 2 v o s 3 3

| Emiz Xm22 Xmin 202020 2 2 Rk R 2l P
Xn = 2 21 R 2 3 2 R % A 7
21 24 24 4 3 2% 3 N . 2

xml J 'xm2j ‘xml J 2 2 2 2 2 2 2 2 2 2
2128 W 21 21 21 2F 22k 02

. o i e P R el e e

x,€{1,2,3}; i,j=1..6 R T e B T
1 1 1 1 G ] 1 Il

Figure 14 — Graphical representation of the materials Design Variables

As a consequence, the design is controlled by a total of 148 variables.

3.1.2 Geometry moqule

The geometry module, developed in CATIA™, is responsible for the construction of the
skin geometry. ModelCenter passes to CATIA the coordinates of the Control Points, and
CATIA calculates the positions of all nodes via parametric design. It also produces the
measures of the cells areas, and all other geometric, parametrically-defined properties
of the fagade. In addition, CATIA parametrically designs all the structural and non-
structural fagade components, such as the shaders, the steel pipes, the joints, etc., and

renders the design (Figure 15).
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Figure 15 - A screenshot of a solution, from CATIA.
Note the parameters on the left, which control the design

3.1.83 Initialization Moaule

For the initialization of the model, the calculation of the exterior illuminances for vertical
sky Exk, horizontal sky Ex, and ground E,g for the given location and orientation, is
run solely once at the beginning of the optimization procedure.

3.1.4 Lighting Module

This module (Figure 16) calculates the actual illuminance at 70% of the room depth,
using the IESNA method, and based on four reference dates of the year.
The following calculations are performed:

o Look up the Coefficient of Utilization in a table embedded in an Excel file. The
table is implemented as an approximation function for better performance
(maximum error +10%):

CUx =(0.362:-RW? + -5.98:RW? + 33.1-RW + 0.0253) - 0.0107-RR - 1.49
CUg = (0.26:RW? + -4.1-RW? + 21-RW + 1.55) - 0.0093-w_RR - 1.28
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Room dimensions llluminance
> |
Glass total height § ~alculate llluminance Check on min value
g >

Glass total width

Figure 16 - Scheme of the Lighting module

With:
RR= _room_ depth
window _ height
RW = window _ width

window _ height
CUk,q : Coefficients of Utilization for lighting calculation (sky, ground)

o Calculate the illuminance for each single cell
Ei70 = (CUk . Eka + CUg * Exgk ) 8

Where:
Eizo lux  llluminance indoor at 70% of the room depth
Exvks Exgk lux  llluminance outdoor (vertical, ground)
T % Light transmittance of the glazing

o Sum up the cells results in order to obtain an overall illuminance (Ei7o)
o Check the constraint on minimum total illuminance
Eizo 2 300 lux

3.1.5 Thermal

This module (Figure 17) calculates the energy consumption due to heating and cooling.
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[ Calculate Heat Transfer |
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Figure 17 - Scheme of the Thermal module

The energy flows are calculated as follows:
On=(UyAn +U0p Aop) AT - DDy .
Qc = (Uy Ay +Uop Agp) AT - DDc + SHG - SHFC - Ay

and finally:
Quot = Qn + Qc
Where:
Qwn,c kWh/y/m?  Energy required for heating / cooling
Utrsop W/m?K Coeff. for heat transmission (transp / opaque)
Atrsop m? Area (transparent / opaque)
DDwn,c dc Degree days for heating and cooling
SHG W/m?y Solar heat gain per one summer
SHGF % Portion passing through the chosen glazing
Qrot kWh/y/m?  Total energy consumption

3.7.6 Architecture

The module (Figure 18) makes sure that the density of transparent cells increases
toward the center of the fagade, for the occupants to have a view on the exterior.
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Cell Materials Zoning Rating

>

Figure 18 - Scheme of the Architecture module

The zone of preference for transparency is defined by a matrix with as many elements

as the cells are (10 x 10), whose values are higher where more transparency is needed.

Multiplying this preference matrix by the actual transparency distribution on the fagade,

and summing up the terms, provides the rating for architecture.

#cells
J e = 2 DV (mat), - Z,

i=1

where:
DV(mat); is the degree of transparency of cell i (1, 2, or 3)
Z is the desired zoning preference for that cell.

3.1.7 Structure

The structural module (Figure 19) assesses the physical feasibility of the design.

It is developed in Ansys™ 10.0, and is run in batch mode directly by ModelCenter.
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Geometry Rating function

>

Figure 19 - Scheme of the Structure module

The input consists of the coordinates of all the nodes of the “beehive” grid.

From this set of points, Ansys creates the spatial grid of pipes connecting the nodes,
sets the restraints on lateral nodes and applies the loads on top of the facade.

A static solution is then calculated and, based on the ratio stress/capacity in the
members, an overall rating is returned.

The choice of the structural system was a controversial issue, and ended in a trade-off
between structural optimality and minimization of computational time.

Initially, a statically determinate 3D truss-shell was conceived, which was composed of
two connected parallel layers (grids) of members.

In this case, stability is ensured by the spatial structure, but the distance between the
two layers heavily impacts on the thickness of the fagade and on the skin appearance

from the interior.

A single-layer solution was by far preferable, but needed rigid connections between the
members, i.e. welded joints rather than pins, to provide stability.

This solution allows a very thin skin, but presents some drawbacks, due to the
monolithic overall behavior of the structure, namely with respect to thermal differential
deformation.
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In addition, a major challenge concerning the optimization of a statically undetermined
structure, such as a welded-joints 2D grid, consisted in the optimization of member
sizing. In fact, given a determinate structure and a set of loads, it is immediate to
calculate the forces distribution and the displacement of every member, regardless of
size and material. As opposed to that, an undetermined structure cannot be solved
without drawing upon its elastic (or more generally rheologic) properties.

Thus, in order to optimize an indeterminate structure, given a spatial geometry and a set
of loads, it is necessary to adopt a recursive approach, iterating until convergence is
achieved, because after changing the size of members the stress distribution has to be
calculated anew.

As it can be imagined, setting up an internal, nested structural optimization loop within
the overall multidisciplinary optimization process required humongous computational
effort, and consequently a very long time, that was not available.

A trade-off was then achieved: the structural module works as a checker rather than as
an optimizer: it receives the geometry and the loads, and checks for structural
resistance given a constant size of members. All the pipes have a constant diameter,
regardless of length.

Ansys calculates the stresses in the members and returns to the optimizer a rating
function, which “grades” the input geometric pattern from a structural point of view.

In analytical terms, the rating function has the following form:

Rf=1—i[1—l—ol];“-i‘*i}

Where:
Omaxi MPa is the maximum stress (absolute value) in member /
N is the number of elements
fy MPa is the yield stress of steel
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It could be argued that, following this procedure, the design solution that eventually is
produced by the optimization process is inherently vitiated by an unintelligent use of
material, since the diameter of the pipes is constant. In addition, this study does not
approach member buckling, which would have required a subroutine solving the
associated eigenvalue problem.

However, beside the benefits coming from shorter computational time, this solution
respects and achieves the goal of the structural module, i.e. it provides a balancing
counterweight that limits the maximum size of cells. In fact, by pushing the value of the
stress toward the yield limit (since the size of the members is constant, the module
indirectly sets an upper bound on their maximum length.

In the framework of this study, therefore, structural design was not developed beyond
the stage of a feasibility study, both due to the central interest in the multidisciplinary
aspect of design and because of the heavy computational constraints.

3.1.8 Economy

The economy module (Figure 20) calculates the cost of glass and cladding materials
associated with the design vector.
The cost is linearly evaluated with respect to areas and depends on the type of

materials.

Material Area

Cost of Materials
Cell Material | Price varies with material | >

| Linear calculation on areasj

Figure 20 - Scheme of the Economy module
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3.1.9 Performance

Because of the multi-objective nature of the architectural design of a fagade, each of our
modules produces some functions (total illuminance, energy required for heating and

cooling, etc...).

Each single objective J; is then “filtered” through a utility function U;, that assigns a low
score to an undesirable value of J and a high score to a desirable one (0 < U < 1).
The Utility Functions have the form shown in Figure 21:

Accept. Good
90% 100%
1
S0 Lx)=
1+¢70%D
100‘
0%

Figure 21 - Structure of the Utility Functions

The Utility Functions are scaled in such a way that an unacceptable performance has a
utility rating less than 0.1, while an excellent performance is rated more than 0.9.

A performance is considered Unacceptable, Acceptable, Good or Excellent with respect
to the optimum value that the output can assume, as shown in Table 1.

An overall objective function U takes into account all the multi-objective particular
utilities U;. The U function has the following form:

where wy, Wa, W3, Wa, Ws are weighting coefficients that depend on the importance of

each single objective function.
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Table 1 - Threshold values for the utility functions

Thermal

(Total Energy Min [0; 70] 30 15 [kWh]/y/m2
Consumption) ; z

Lighting
(luminance) |

~ Architecture

(Match with ) i
zoning Max [0; 1.1] 0.5 0.85

 preference) |

Structure “ — ‘ )
(Rating function) 1 | 0:11] o " ons

|
—4

Max [0; 2000] 300 450 [lux]

Economy

(Total cost) Min [0; 1500] 1000 300 -

This overall utility function reflects the trade-off between sufficient natural lighting in a
room, the energy balance due to cooling/heating of the fagade, the intent to have
windows in view height, the requirement for structural safety, and limited cost.

3.1.10 Optimizer

The central optimizer is the “brain” of the system: it is charged of coordinating all the
“satellite” modules — by directing the input and output flows of variables —, of checking
the constraints, and running the solving algorithm.

3.1.10.1 A note on constraints

There are several types of constraints:
Firstly, each Control Point must lie in a specific region, delimited by red lines in
Figure 22. Each red line is obtained by offsetting the corresponding gray line by an

amount d.
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These constraints prevent each quadrilateral region from assuming a non-convex shape,
a fact that would create computational problems and would result in unaesthetic design.

N(un,vn)

E(ue,ve)

Cluc,ve),” ‘

/
S/
7

S(us,vs)

Figure 22 - Graphical representation of the geometric constraints

This kind of constraint is defined by the following equations (in the case of quadrant NE):

Where:
U, V¢ are the coordinate of the point subject to the constraint
Ug,sw.N, and vg sw,n are the coordinate of the adjacent points that lies
respectively to the East, South, West and North of point C

Thus, there are 64 constraints of the first type (geometric constraints [GC] in the

following), considering the Control Points on the borders. Each of these constraints only

apply to the correspondent geometric design variable.
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Secondly, a constraint on the overall illuminance sets:
Ei7o > 300 |UX,

providing a lower bound for the amount of light measured at 70% of the room depth.
Note that this illuminance constraint [IC] affects all the design variables with different
sensitivity.

3.2 Software & Hardware Tools

The software architecture closely reflects the breakdown structure of the problem into
disciplines. |

A central Optimizer is linked to CATIA, which produces and updates the geometry of the
fagade, and to the “satellites” Modules, one per discipline (lighting, thermal, etc...).
ModelCenter 6.1™, from Phoenix Integration Software, Inc., was chosen as the central
Optimizer.

It is a very versatile and young program, it can easily interface with most CAD software,
spreadsheets and programming languages, and has a very user-friendly interface.
Communication between the Optimizer and the Modules is ensured by the wrappers.
These pieces of code translate variable formats and manage the flow of input/output
files that written and read by the communicating programs.

The Lighting, Thermal and Economy Modules were programmed on MS Excel XP™, for
which ModelCenter has a built-in integration module.

The Structural Module, as was pointed out in § 3.1.7, was built in Ansys™ 10.0, from
Ansys, Inc., a very powerful FE modeler, solver and post-processor.

The computational burden generated by such an onerous process as the multi-objective
optimization of more than a hundred variables, subject to hundreds of constraints, and
the use of Genetic Algorithms for the solution of the problem, required the use of a bi-
3.2 GHz processor machine in order to cut down computational time.
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3.3 Multi-objective Optimization

The Scalarization approach (§ 2.3.7) was chosen, due to the nature of the objective
functions.

3.3.1 Optimization Algorithrm

Genetic Algorithms were chosen because they have experimentally been proven to be
robust in their application to many search problems, and are ideally suited for design
problems with discrete design variables.

Because they do not require objective or constraint derivative information, they are able
to effectively search non-linear and noisy design spaces.

Compared to traditional gradient-based optimizers, genetic optimizers are more likely to
find the overall best (globally optimal) design.

3.8.2 Genetic Algorithm paramelers

When using heuristic techniques like the GA’s, a fundamental part of the solving
procedure consists in tuning the algorithm parameters, whose values can often
determine the success or failure of the analysis.

The GA’s parameters that were controlled in this study are listed hereafter:

General:
Population size 30
Selection scheme Multiple Elitism
Preserved designs 13
Convergence:
Convergence method Maximum Number of Generations

Maximum No. of generations 50

Genetic operators:
Mutation Probability 6%



On the basis of the experiments that were carried out, some recurring effects related to
the values of these parameters could be observed.

The population size is the number of individuals per generation. In general, the larger
the population size, the longer the optimization process will run because of the
increased number of component runs required. Thus, the population size was initially
set as small as possible and then slowly increased when the optimizer could not
converge consistently to an acceptable design.

The genetic algorithm's selection scheme is the mechanism that determines which
designs from the parent population and newly created child population will be chosen to
make up the next generation of designs. The selection scheme ensures that the
optimization procedure continually progresses towards an optimal solution by allowing
the best design(s) in each generation survive in the next generation.

The “Multiple Elitism Selection” selection scheme was retained all throughout the
optimization procedure. This selection method is more effective for problems like the
proposed one, for which the search space has multiple global optimum points or for
problems where the global optimum is surrounded by many local optimum points.

The number of preserved designs (Np) specifies the number of best designs from the
combined population that are passed on to the next generation, and is used to control
the selection pressure of the genetic algorithm.

As this number increases, though, the number of new designs entering the population
decreases, causing the genetic search to become more localized. Thus, using large
values of Np prevents the GA’s from successfully exploring the design space and may
cause them to get trapped in a local optimum area of the search space. Therefore, the
value of Np was kept relatively small (13) compared to the population size, so that a
number of good designs could be tracked while maintaining a sufficient influx of new
individuals to continue searching other areas of the design space effectively.

The convergence method used was the fixed maximum number of generations.
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The maximum number of generations is an important parameter, because it sets the
limit of the optimization process. Generally, the higher the number of generations, the
more refined the search, because each generation is likely to refine the results provided
by the previous one. However, each generation also requires additional CPU time, and

a trade-off between accuracy and time consumption must consequently be agreed upon.
The selected final number of generations was 50.

Mutation probability represents the probability that a mutation will occur in a
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