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Abstract

This thesis examines several aspects of reduced decompositions in finite Coxeter
groups. Effort is primarily concentrated on the symmetric group, although some
discussions are subsequently expanded to finite Coxeter groups of types B and D.

In the symmetric group, the combined frameworks of permutation patterns and
reduced decompositions are used to prove a new characterization of vexillary permu-
tations. This characterization and the methods used yield a variety of new results
about the structure of several objects relating to a permutation. These include its
commutation classes, the corresponding graph of the classes, the zonotopal tilings
of a particular polygon, and a poset defined in terms of these tilings. The class of
freely braided permutations behaves particularly well, and its graphs and posets are
explicitly determined.

The Bruhat order for the symmetric group is examined, and the permutations
with boolean principal order ideals are completely characterized. These form an or-
der ideal which is a simplicial poset, and its rank generating function is computed.
Moreover, it is determined when the set of permutations avoiding a particular set of
patterns is an order ideal, and the rank generating functions of these ideals are com-
puted. The structure of the intervals and order ideals in this poset is elucidated via
patterns, including progress towards understanding the relationship between pattern
containment and subintervals in principal order ideals.

The final discussions of the thesis are on reduced decompositions in the finite
Coxeter groups of types B and D. Reduced decompositions of the longest element in
the hyperoctahedral group are studied, and expected values are calculated, expanding
on previous work for the symmetric group. These expected values give a quantitative
interpretation of the effects of the Coxeter relations on reduced decompositions of the
longest element in this group. Finally, the Bruhat order in types B and D is studied,
and the elements in these groups with boolean principal order ideals are characterized
and enumerated by length.

Thesis Supervisor: Richard P. Stanley
Title: Norman Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

This thesis studies the combinatorics of reduced decompositions, also known as re-
duced words or reduced expressions, of Coxeter group elements. The interplay be-
tween reduced decompositions, patterns, and the Bruhat order is investigated, with
particular emphasis on these relationships in the symmetric group (the finite Coxeter
group of type A). Chapters 3 and 4 thoroughly examine the combinatorics of reduced
decompositions in the symmetric group from the two viewpoints of patterns and the
Bruhat order, while Chapter 5 considers reduced decompositions of a distinguished
element in the hyperoctahedral group, and Chapter 6 discusses aspects of the Bruhat
order for the finite Coxeter groups of types B and D.

Coxeter groups have been studied from several mathematical perspectives, in-
cluding algebra, combinatorics, and geometry. The finite Coxeter groups of types A,
B, and D have combinatorial interpretations as permutations, signed permutations,
and signed permutations with certain restrictions. The combinatorial aspects of all
Coxeter groups are treated in depth in [4]. These groups are classical objects with
a bountiful literature, although there are still many open questions, particularly in
reference to patterns and the Bruhat order, as discussed in this thesis. Reduced de-
compositions of Coxeter group elements are a similarly classical topic in mathematics,
appearing throughout the literature. As evidenced in this thesis, their close relation-
ships with patterns and the Bruhat order give rise to very interesting combinatorics.

In the last two decades, subsequent to the work of Simion and Schmidt in [31],
there has been a surge of interest in permutation patterns. This field has seen exten-
sive research and yielded many intriguing results. Unfortunately, some of the most
basic questions, such as how many permutations avoid a given pattern, remain unan-
swered. However, recent work (see Chapter 3) has uncovered connections between
reduced decompositions and permutation patterns that may prove useful to resolving
some of these issues.

The Bruhat order is a partial ordering, related to reduced decompositions, of
the elements in a Coxeter group. This order plays a remarkably significant role
in the study of Coxeter groups. Somewhat surprisingly, very little is known about
the structure of this order, particularly in terms of its order ideals and intervals.
Results of Lakshmibai and Sandhya in [19], and more recently those presented in
Chapters 4 and 6, elucidate some pattern-related facts about this structure. These
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results, combined with the relationship between reduced decompositions and patterns
in Chapter 3, are significant steps towards understanding the more general structural
aspects of this partial order.

After providing necessary background material in Chapter 2, this thesis examines
reduced decompositions in four different ways. The first two examine reduced decom-
positions in the finite Coxeter group of type A, and the latter two consider types B
and D. Two of these discussions are based on [42] and [43]. The individual chapters
include more detailed introductory material pertinent to their respective topics.

Many properties of reduced decompositions are already well known, particularly
in the case of the symmetric group. For example, in [35], Stanley uses symmet-
ric functions to present a formula for the number of reduced decompositions of an
element in the symmetric group. Perhaps the earliest link between reduced decompo-
sitions and permutation patterns in the symmetric group occurs in [2]. There Billey,
Jockusch, and Stanley show that 321-avoiding permutations are exactly those per-
mutations whose reduced decompositions never contain a factor (i & 1)i. Relatedly,
Reiner shows in [26] that the number of (i £ 1)i factors in a reduced decomposition
of the longest element in the symmetric group, which has the most occurrences of the
pattern 321, is equal to the number of such reduced decompositions. These results
suggest an underlying relationship in the symmetric group between reduced decom-
positions and permutation patterns, which is examined extensively in Chapter 3.

The primary result of Chapter 3 is a new definition of vexillary permutations
in terms of principal dual order ideals in a particular poset (Theorem 3.2.8). In
broad terms, the result states that any permutation containing a vexillary p-pattern
has a reduced decomposition with a factor that is a reduced decomposition of p (a
constant may be added to each letter in this factor). The converse of this statement
is also true: if p is not vexillary, then there exists a permutation containing p that
has no such reduced decomposition. The structure of the graph of the commutation
classes of a permutation is also described, as in Theorem 3.4.10, which shows that the
number of commutation classes of a permutation is monotonically increasing with
respect to pattern containment. The work of Elnitsky in [9] is expanded upon to
describe the zonotopal tilings of a particular polygon associated with a permutation.
For example, a tiling of Elnitsky’s polygon can include a 2k-gon if and only if the
permutation has a decreasing sequence of length k (Theorem 3.5.4). Corollary 3.5.7
and Theorem 3.5.8 discuss when Elnitsky’s polygon can be tiled entirely by 2k-gons.
The latter of these results states that a centrally symmetric 2n-gon with unit sides can
be tiled by centrally symmetric 2k-gons with unit sides if and only if k € {2,n}. The
poset of zonotopal tilings of Elnitsky’s polygon is also discussed, and the permutations
whose posets have a maximal element are shown in Theorem 3.5.14 to be exactly those
permutations that avoid the patterns 4231, 4312, and 3421.

In Chapter 4, the combinatorics of reduced decompositions is studied from the
perspective of the Bruhat order for the symmetric group. The Bruhat ordering can
be defined in terms of reduced decompositions, and this chapter examines the struc-
ture of order ideals and intervals in this poset. Several of the results further relate
the concepts of reduced decompositions and permutation patterns. For example,
Therem 4.3.2 characterizes those permutations with boolean principal order ideals as
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exactly those which avoid the patterns 321 and 3412. The discussion is generalized in
a natural way to consider permutations whose principal order ideals are isomorphic
to other classes of posets, and these too can be characterized by patterns. For a fixed
k > 3, Theorem 4.4.3 shows that the permutations whose principal order ideals are
isomorphic to a power of the principal order ideal for the longest element in &, are
those permutations in which every inversion is in exactly one decreasing sequence of
length k. Additionally, the question of when the set of permutations that avoid a
pattern p or two patterns p and g will form a nonempty order ideal in this poset
is completely answered. Somewhat surprisingly, the set of permutations that avoid
a single pattern p € &, for k > 3, is never an order ideal (Theorem 4.5.1). On
the other hand, as discussed in Theorem 4.5.2, the set of permutations avoiding two
patterns p € G, and ¢ € &, for k,l > 3, is an order ideal in exactly three situa-
tions: {p,q} € {{321,3412}, {321,231}, {321,312} }. Finally, Theorem 4.6.10 shows
that if a permutation p avoids sixteen subpatterns, then every permutation contain-
ing a p-pattern has a principal order ideal in which an interval is isomorphic to the
principal order ideal for p. The reverse implication is only proved in a special case
(Theorem 4.6.11), although it is conjectured always to be true.

Chapter 5 consists of calculations for the longest element in the finite Coxeter
group of type B, analogous to Reiner’s work for type A in [26]. In this chapter, the
expected number of occurrences of each of the “interesting” Coxeter relations in an
arbitrary reduced decomposition of the longest element in the hyperoctahedral group
is computed. Unlike Reiner’s result, where the expected number of i(i + 1)i factors
was always 1, each of the expectations for this group are dependent on the cardinality
of the group. The expected number of i(i+1)i or (14 1)i(i+1) factors, for i € [n—2],
is computed to be 2 — 4/n in Theorem 5.3.1, while the expected number of 0101 or
1010 factors is computed to be 2/(n? — 2) in Theorem 5.4.1. The former result is
perhaps not surprising, as the length of the longest element in the hyperoctahedral
group is n?, which is approximately twice the length of the longest element in the
symmetric group (which is (3)).

Expanding on some of the results in Chapter 4, Chapter 6 examines the Bruhat
order for the finite Coxeter groups of types B and D. In particular, those elements
with boolean principal order ideals are precisely defined in Theorems 6.2.1 and 6.3.1.
Once again, permutation patterns emerge, although now for signed permutations, and
the avoidance of certain patterns is equivalent to having a boolean principal order
ideal. While the case for type A required avoiding only two patterns, it is necessary to
avoid ten patterns in type B, and twenty patterns must be avoided to have a boolean
principal order ideal in type D. For both types B and D, the elements avoiding these
patterns are enumerated by length in Corollaries 6.2.3 and 6.3.3.
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Chapter 2

Definitions and tools

In preparation for the examination of reduced decompositions and their combina-
torics, some background material is necessary. To define a reduced decomposition,
it is first necessary to introduce Coxeter groups. In this thesis, the primary group
considered is the finite Coxeter group of type A. Additionally, the finite Coxeter
groups of types B and D will be discussed, although in somewhat less detail. These
groups can all be defined in terms of permutations (unsigned for type A and signed
for types B and D), thus emphasizing their combinatorial nature. Much of this thesis
works with permutation patterns, either unsigned or signed, and with a partial order
structure on a Coxeter group known as the Bruhat order. Each of these concepts is
introduced in this chapter.

2.1 Permutations

This section establishes basic facts and notation for permutations. Additional infor-
mation can be found in [21].

Let &, be the group of permutations on n elements, and let [n] denote the set of
integers {1,...,n}. An element w € &,, is the bijection on [n] mapping i — w(i). A
permutation will be written in one-line notation as w = w(1)w(2) - - -w(n).

Example 2.1.1. The permutation 4213 € Gy maps 1 — 4,2+ 2,3 +— 1,and 4~ 3.

Definition 2.1.2. An inversion in w is a pair (%, §) such that ¢ < j and w(i) > w(j).
The inversion set is I(w) = {(4,7) : (4,7) is an inversion in w}.

Since I(w) C [n]?, the inversion set can also be viewed as an array.

Definition 2.1.3. The number of inversions in a permutation w is equal to the length

of w, denoted £(w). The permutation wq .2l e G, is aptly named the longest

element in G, and £(wp) = (3). If the value of n is unclear from the context, this

longest element may be denoted w(gn).

Let [£n] denote the set of integers {£1,...,+n}. For ease of notation, a negative
sign may be written beneath an integer: ¢ .

17



Definition 2.1.4. A signed permutation of the set [£n] is a bijection w : [£n] — [£n)]
with the requirement that
w(i) = w(@). (2.1)

Let G2 be the set of signed permutations on [£n].

Equation (2.1) indicates that the signed permutation w is entirely defined by
w(l),...,w(n). Therefore one-line notation will be used, although some values may
now be negative.

Example 2.1.5. The signed permutation 4213 € G2 maps +1 — F4, £2 — £2,
4+3 > &1, and +4 — F3.

As with unsigned permutations, there is a notion of length for signed permutations.
The precise definition is not necessary to this discussion, and the reader is referred
to [4] for more details. Analogous to wy € &, the longest element in type B is

wB ¥ 12 n, and £(wd) = n2.

2.2 Finite Coxeter groups of types A, B, and D

The only Coxeter groups considered in this thesis are the finite Coxeter groups of
types A, B, and D. Consequently, these are the only groups defined in this section.
For more thorough discussions of general Coxeter groups, the reader is encouraged to
read [4] and [16].

Define bijections, called simple reflections, on [£n] as follows:

si : [£n] — [£n] transposes i »i+1 (and ¢ & i+ 1) fori € [n —1]; (2.2)
so : [E£n] — [£n] transposes 1 < 1; and (2.3)
st ¥ 545180, thus this map transposes 1 < 2 (and 1 & 2). (2.4)

All other elements are fixed by these maps. For ¢ > 0, the map s; may be restricted
to [n] and considered as the bijection transposing ¢ < i 4 1 and fixing all other
elements. The maps {sy,...,s,—1} are sometimes called adjacent transpositions. Let
Sp = {51,50,51,. -+, 5n-1}-

It is not hard to see from the definitions in equations (2.2)-(2.4) that the following
relations hold for the maps in S,:

s? = efor all s €S,, where e is the identity permutation; (2.5)

8i8; = s;s;fori,j€[0,n—1]and |i —j| > 1; (2.6)
svsi = ssy fori€ ([n—1]\{2}); (2.7
8i8i418 = 8i418iSi41 for i € [n — 2]; (2.8)
50815081 = S1505180; and (2.9
S1/8281r = 8381/8a. (2.10)

18



Definition 2.2.1. The finite Coxeter group of type A is the set of permutations
of [n], for some n, denoted &,. This group is generated by the simple reflections
{s1,-..,8n-1}, subject to the relations in equations (2.5)-(2.6) and (2.8). This is also
called the symmetric group on n elements.

The symmetric group is studied from a variety of mathematical viewpoints in [29).
While the finite Coxeter group of type A is defined in terms of permutations, types
B and D require the additional structure of sign.

Definition 2.2.2. The finite Coxeter group of type B is the set of signed permutations
of [£n], for some n, denoted GB. This group is generated by the simple reflections
{s0,81,---,5n-1}, subject to the relations in equations (2.5)-(2.6) and (2.8)-(2.9).
This is also called the hyperoctahedral group.

Definition 2.2.3. The finite Coxeter group of type D, denoted G2, is the subgroup
of &2 consisting of those signed permutations whose one-line notation contains an
even number of negative values. This group is generated by the simple reflections
{s1/,81,---,5n-1}, subject to the relations in equations (2.5)-(2.8) and (2.10).

Note that the signed permutation in Example 2.1.5 has an even number of negative
values in its one-line notation. Therefore 4213 € &Y c G2.

The longest element in G2 is equal to wg if n is even, and 123- - - n if n is odd.

It is straightforward to calculate the sizes of these three Coxeter groups, as dis-
played in Table 2.1.

Group | Cardinality
S, n!
6B n!.2"
G2 nl-2n-1

Table 2.1: Cardinality of the finite Coxeter groups of types A, B, and D.

2.3 Reduced decompositions

The Coxeter groups &,, G2, and G2 are each generated by a subset of the simple
reflections S,,. Therefore, every element in these groups can be written as a product
of elements of S,,.

Definition 2.3.1. Let W be a Coxeter group generated by the simple reflections
T C Sy ForweW,ifw=s;,---s;, and £ is minimal among all such expressions,
then the string 4,4, is a reduced decomposition of w and £ is the length of w,
denoted ¢(w). The set R(w) consists of all reduced decompositions of w.

This definition of length and the definition in Section 2.1 are in fact equivalent,
as discussed in [4] and [21].
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Definition 2.3.2. A consecutive substring of a reduced decomposition is a factor.

The relations described in equations (2.5)-(2.10) are often called braid relations or
Coxeter relations. Similarly, in this thesis, certain factors in reduced decompositions
corresponding to the braid relations will be referred to by the following names.

Definition 2.3.3. Consider s;,s; € S,. If s; and s; satisfy equation (2.6) or (2.7),
then a factor of the form ¢j in a reduced decomposition is a short braid move. Fol-
lowing the terminology in [26], a factor iji in a reduced decomposition, where s; and
s; satisfy equation (2.8) or (2.10), is a Yang-Bazter move. Finally, a factor of the
form 0101 or 1010 in a reduced decomposition, corresponding to equation (2.9), is a
01 mowe.

A factor ij is a short braid move exactly when the reflections s; and s; commute.

The order of multiplication for permutations will follow the standard that a func-
tion is written to the left of its input. Thus, if ¢+ € [n — 1], the permutation s;w
interchanges the positions of the values ¢ and 7+ 1 (and 7 and ¢4+ 1 if w is a signed
permutation) in w, whereas ws; transposes the values in positions ¢ and ¢ + 1 in
w. Therefore ws; can be written as w(l)---w(i + 1)w(?) - - -w(n). Similarly, sow
transposes 1 < 1 in w, and wsp changes the sign of the first position in w, so
wsg = w(1)w(2) - - - w(n). Products involving sy» can be defined analogously.

Example 2.3.4. The unsigned permutation 4213 € &4 decomposes as $3525153. This
permutation has length 4, so there is no shorter such expression. Therefore 3212 is
a reduced decomposition of this permutation, and the factor 212 is a Yang-Baxter
move.

2.4 Permutation patterns

The classical notion of (unsigned) permutation pattern avoidance is as follows.

Definition 2.4.1. Let w € G,, and p € &, for k < n. The permutation w contains the
pattern p, or contains a p-pattern, if there exist 43 < - -+ < 7 such that w(i;) - - - w(ix)
is in the same relative order as p(1)---p(k). That is, w(i,) < w(i;) if and only if
p(h) < p(j). If w does not contain p, then w avoids p, or is p-avoiding.

The study of permutation patterns has gathered much momentum in recent years,
both as mathematical objects in their own right and for their connection to other,
not always obviously related, questions. One subject in the former category concerns
the enumeration of permutations that contain or avoid a given pattern. Recently
the Stanley-Wilf conjecture was resolved affirmatively, proving an exponential upper
bound on the number of permutations that avoid a particular pattern (see [24]). An
example in the second category is the fact that (unsigned) permutations for which
no reduced decomposition contains a Yang-Baxter move are exactly those that avoid
the pattern 321 (see [2]).

In Chapter 3 of this thesis, the reduced decompositions of an unsigned permutation
are analyzed in conjunction with the notion of pattern containment. This coordinated
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approach yields significant results for both concepts, including statements about their
relationship to each other.

Suppose that w contains the pattern p, with {41,...,ix} as defined above. Then
w(iy) - - -w(i) is an occurrence of p in w. The notation (p(j)) will denote the value

w(i;). P =p@GpQG+1)---p(G +m), then (P) = w(i;)w(ijs1) - - w(ij4m). If more
than one occurrence of the pattern p is being considered, these will be distinguished
by subscripts: ( );.

Example 2.4.2. Let w = 7413625, p = 1243, and ¢ = 1234. Then 1365 is an
occurrence of p, with (1) =1, (2) =3, (4) = 6, and (3) = 5. Also, (24) = 36. The
permutation w is g-avoiding because there is no increasing subsequence of length 4
in the one-line notation of w.

The definition of patterns in signed permutations, as in types B and D, requires
an extra clause because of the additional structure that some values can be negative.

Definition 2.4.3. Let w € Gf and p € Gf for £ < n. The permutation w contains
the pattern p if there exist 0 < 4; < - -- < ig such that

1. w(i;) and p(j) have the same sign; and
2. |lw(;)]- - - |lw(ix)| is in the same relative order as |p(1)|-- - |p(k)|.
If w does not contain p, then w avoids p, or is p-avoiding.

Example 2.4.4. Let w = 4213, p = 312, ¢ = 312, and r = 132. Then 413 and 423
are both occurrences of p in w. The signed permutation w is g- and r-avoiding.

2.5 Posets

Standard terminology from the theory of partially ordered sets will be used throughout
this thesis. Good sources for information on this topic are [38] and [45].
The notation related to posets that will appear in this thesis is as follows.

e If Pis a poset and z,y € P, then z < y indicates that x is covered by y in P.
e P x @ denotes the direct product of the posets P and Q.
e P indicates the direct product of a poset P with itself r times:

r copies of P

PP Px---xP.

e The unique maximal element in a poset, if it exists, is denoted 1.

Two aspects of a poset that will be discussed in Chapters 4 and 6 are order ideals
and intervals. An order ideal in a poset P, sometimes called a down-set, is a subset
I ¢ Psuch that ify € I and z <y in P, then x € I. The principal order ideal of an
element y in P is the order ideal {# € P : < y} in which y is the unique maximal
element. If x < y in P, then the interval [z,y]is {z € P:x < z < y}.
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2.6 Bruhat order

The Bruhat order is a partial ordering that can be placed on a Coxeter group. This
order will first be defined for an arbitrary Coxeter group.

Definition 2.6.1. Let W be a Coxeter group generated by the simple reflections 7.
Let 7 = {wtw™ : w € W,t € T}. For w,w’ € W, write w < @' if both of the
following are true:

1. £(w') = ¢(w) + 1; and
2. w' =tw for somet € 7.

The partial order defined by the covering relations w < w’ gives the Bruhat order for
the Coxeter group W.

It should be noted, as discussed in [4], that neither left nor right multiplication
is favored by the Bruhat order. That is, restating the second requirement of Defini-
tion 2.6.1 as w’ = wt gives rise to the same partial order.

There is also a partial order known as the weak Bruhat order, or simply the weak
order. In that order, the clause “t € 7" in the second requirement of Definition 2.6.1
is replaced by “t € 7,” so that only simple reflections yield covering relations. The
weak order is not explicitly studied in this thesis.

In the language of unsigned permutations, the covering relation in Definition 2.6.1
means that the permutation w' covers the permutation w if and only if w’ can be
obtained from w by transposing two values (equivalently, positions) in the one-line
notation of w in such a way so as to increase the length by exactly one.

Example 2.6.2. The permutation 7314625 € &; covers the permutation 7312645.
However, it does not cover 1374625, because £(7314625) — £(1374625) > 1. Although
not a covering relation, it is true that 7314625 > 1374625 in the Bruhat order.

This partial order has many properties which are discussed and proved in [4].
The property most relevant to this thesis, the subword property, gives an equivalent
definition of the Bruhat order in terms of reduced decompositions.

Theorem 2.6.3 (Subword property). Let W be a Cozeter group and w,w’ € W.
Choose a reduced decomposition iy---ip € R(w'). Then w < w' in the Bruhat order
if and only if there exists a reduced decomposition j, - - - j¢ € R(w) which is a subword

Of’l:l R TR

The two equivalent definitions of the Bruhat order for a Coxeter group indicate
that it gives a graded poset where the rank function is equal to the length of an
element. The maximal element in &, is wo, and the maximal element in &2 is wg.
Figures 2-1 and 2-2 give the Hasse diagrams for the Bruhat order on &, and 63,
respectively.

Other properties of the Bruhat order include that it is an Eulerian poset (as shown

by Verma in [46]) and that it is CL-shellable (as shown by Bjorner and Wachs in [5]).
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Bjorner and Wachs also show that every open interval in the poset is topologically a
sphere. These properties are not defined here, as they will not be discussed in this
thesis. For more information, see [5], [38], and [46].

As mentioned in Chapter 1, there are many open questions concerning the Bruhat
order, including the structure of the intervals in this poset. This question is made
substantially simpler by Dyer’s result (see [8]) that, for any ¢, there are only finitely
many non-isomorphic intervals of length £ in the Bruhat order of finite Coxeter groups.
The length 4 intervals have been classified, as have the length 5 intervals in the
symmetric group, by Hultman in [14] and [15].

Chapter 4 of this thesis considers the Bruhat order on the symmetric group G,
and uses reduced decompositions to elucidate many facts about its structure. The
principal order ideals in particular are considered, and several facts are shown about
their structure which once again emphasize the relationship between permutation
patterns and reduced decompositions. Likewise, Chapter 6 discusses the Bruhat order
for G and G2, although in less depth than the type A discussion.
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Chapter 3

Reduced decompositions and
permutation patterns in type A

3.1 Introduction

Throughout this chapter, all permutations can be assumed to be unsigned. That is,
all permutations are in the symmetric group, not the hyperoctahedral group.

In [2], Billey, Jockusch, and Stanley related the two concepts of reduced decompo-
sitions and permutation patterns, possibly for the first time. There they showed that
321-avoiding permutations are exactly those permutations where the subsequence
(7 £ 1)i never occurs in a reduced decomposition. That is, a permutation is 321-
avoiding if and only if none of its reduced decompositions have any Yang-Baxter
moves. Reiner showed in [26] that the total number of (i = 1)i occurrences in re-
duced decompositions of the longest element in the symmetric group, which has the
maximal number of occurrences of 321, is equal to the number of such reduced decom-
positions. Stanley had previously shown that this is the number of standard Young
tableaux of a staircase shape in [35].

Inspired by these results, and more generally by the relationship they suggest be-
tween the two aspects of permutations, this chapter studies reduced decompositions
of elements of the symmetric group in relation to the concept of permutation pat-
terns. While reduced decompositions and permutation patterns appear extensively
in combinatorial literature, they are not often treated together. This chapter strives
to remedy that fact, addressing several questions where reduced decompositions and
permutation patterns together lead to interesting results.

After introducing basic terminology and notation, Section 3.2 generalizes the result
of Billey, Jockusch, and Stanley via a new characterization of vexillary permutations
in Theorem 3.2.8. This characterization is based on the reduced decompositions of
the permutations containing the permutation in question, and is strikingly different
from all previous (equivalent) characterizations. In addition to requiring that each of
the permutations containing the vexillary permutation has a certain kind of reduced
decomposition, the proof of Theorem 3.2.8 explicitly constructs such a reduced decom-
position. In the case of a non-vexillary pattern, the proof constructs a permutation,
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containing the pattern, which has no such reduced decomposition.

There are three algorithms which appear in this chapter, the first of which occurs
in the proof of Theorem 3.2.8. Tt should be noted that these are not deterministic,
and include a certain amount of choice. For instance, Example 3.2.9 describes only
one possible route that the algorithm VEX may take on a particular input.

There is an equivalence relation, sometimes known as the commutation relation, on
the set of reduced decompositions of a particular permutation. This and an associated
graph are discussed in Section 3.3. Theorem 3.3.7 and Corollary 3.3.9 characterize
permutations with graphs and commutation classes having certain properties, and
these results are later strengthened in Theorem 3.5.13.

The results in Sections 3.4 and 3.5 discuss permutation patterns with respect
to a polygon defined by Elnitsky in [9], whose rhombic tilings are in bijection with
the commutation classes of a permutation. New results include that the number
of commutation classes of a permutation is monotonically increasing with respect
to pattern containment (Theorem 3.4.10), and several facts pertaining to a poset
associated with tilings of the polygon. Finally, Section 3.6 completely describes this
poset in the case of a freely braided permutation, as defined by Green and Losonczy
in [12] and [13].

In addition to the definitions and notation in Chapter 2, a few concepts particular
to this chapter must also be defined.

Definition 3.1.1. Let w contain the pattern p, and let (p) be a particular occurrence
of p. If w(j) € (p), then w(j) is a pattern entry in w. Otherwise w(j) is a non-pattern
entry. If a non-pattern entry lies between two pattern entries in the one-line notation
for w, then it is inside the pattern. Otherwise it is outside the pattern. “Inside” and
“outside” are only defined for non-pattern entries.

Example 3.1.2. Let w = 7413625 and p = 1243, where (p) = 1365. In this example,
the pattern entries are 1, 3, 5, and 6, while the non-pattern entries are 2, 4, and 7.
Of the latter, 4 and 7 are outside the pattern, and 2 is inside the pattern.

Definition 3.1.3. Let (p) be an occurrence of p € G in w. Suppose that z is inside
the pattern, that (m) < z < (m + 1) for some m € [k — 1], and that the values
{(m},z,{(m + 1)} appear in increasing order in the one-line notation for w. Let the
non-negative integers a < m — 1 and b < k — m be maximal so that the values

{(m—a>,<m—a+1>7"-:(m)7:ﬂa(m+1)a--"<m+b_1)’(m+b)}

appear in increasing order in the one-line notation for w. The entry z is obstructed to
the left if a pattern entry smaller than (m — a) appears between (m — a) and z in w.
Likewise, x is obstructed to the right if a pattern entry larger than (m + b) appears
between = and (m + b) in w.

Example 3.1.4. Let w = 32451 and p = 3241. Then 3241 and 3251 are both
occurrences of p in w. Obstruction is only defined for the latter, with z = 4 and
m = 3. Then a = b= 0, and 4 is obstructed to the left but not to the right.
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Example 3.1.5. Let w = 21354 and p = 2143. Then 2154 is an occurrence of p in w.
Using £ = 3 and m = 2 in Definition 3.1.3 shows that a = b = 0, and 3 is obstructed
both to the left and to the right.

3.2 Vexillary characterization

Vexillary permutations first appeared in [20] and subsequent publications by Las-
coux and Schiitzenberger. They were also independently found by Stanley in [35].
There have since emerged several equivalent definitions of these permutations, and a
thorough discussion of these occurs in [21]. The original definition of Lascoux and
Schiitzenberger, and the one of most relevance to this discussion, is the following.

Definition 3.2.1. A permutation is vezillary if it is 2143-avoiding.
These permutations were first enumerated by West in [47].

Example 3.2.2. The permutation 3641572 is vexillary, but 3641752 is not vexillary
because 3175 is an occurrence of the pattern 2143 in the latter.

The following lemma is key to proving one direction of Theorem 3.2.8.

Lemma 3.2.3. Let w contain the pattern p. Let x be inside the pattern, with (m) <
z < {m+ 1) and the values {{m),z,(m + 1)} appearing in increasing order in w. If
p is vezillary then x cannot be obstructed both to the left and to the right.

Proof. Such obstructions would create a 2143-pattern in p. O

Example 3.1.5 illustrates a non-vexillary permutation which has an element z that
is obstructed on both sides.

There are several equivalent characterizations of vexillary permutations. These
concern the inversion set I(w) of Section 2.1 or the following objects.

Definition 3.2.4. The diagram of a permutation w is D(w) C [n]? where

(i,7) € D(w) if and only if i < w™!(j) and j < w(3).
Definition 3.2.5. The code of w is the vector c(w) = (c1(w),-..,cn(w)), where
c;(w) = #{j : (4,7) € I(w)}. The shape A(w) is the partition formed by writing the

entries of the code in non-increasing order.

Proposition 3.2.6. The following are equivalent definitions of vezillarity for a per-
mutation w:

(V1) w is 2143-avoiding;
(V2) The set of rows of I(w) is totally ordered by inclusion;

(V3) The set of columns of I(w) is totally ordered by inclusion;
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(V4) The set of rows of D(w) 1is totally ordered by inclusion;

(V5) The set of columns of D(w) is totally ordered by inclusion; and

(V6) Mw) = Mw™?), where A(w)' is the transpose of Mw).

Proof. See [21]. O

This section proves a new characterization of vexillary permutations, quite dif-
ferent from those in Proposition 3.2.6. A partial ordering can be placed on the set
of all permutations G&; U G, U G3 U -+, where u < v if v contains the pattern u.
Definition 3.2.1 determines vexillarity by a condition on the principal order ideal of
a permutation. The new characterization, Theorem 3.2.8, depends on a particular
condition holding for the principal dual order ideal.

Definition 3.2.7. Let @ = i; - - - 7 be a reduced decomposition of w = w(1) - - -w(n).
For a non-negative integer M, the shift of ¢ by M is

MY G M) -G+ M.
Note that this is a reduced decomposition of the permutation

12- - M(w(1) + M) (w(2) + M) - - - (w(n) + M) € Gpym.

Theorem 3.2.8. The permutation p is vezillary if and only if, for every permutation
w containing a p-pattern, there exists a reduced decomposition 3 € R(w) containing
some shift of an element 1 € R(p) as a factor.

Proof. First suppose that p € & is vexillary. Let w € &, contain a p-pattern.
Assume for the moment that there is a

W= (sr,--s1,) w(s5-55) €Sy (3.1)
such that
(R1) 4(w) = £(w) — (¢ +r); and
(R2) @ has a p-pattern in positions {1+ M, ...,k + M} for some M € [0,n — k].

Choose a reduced decomposition i € R(p). Let @' € &, be the permutation
obtained from w by placing the values {@w(1 + M),...,w(k+ M)} in increasing order
and leaving all other entries unchanged. Choose any h € R(@’). Then

(I;--- L) hi™ (J. - - - Ji) € R(w). (3.2)

It remains only to find a W € &, satisfying (R1) and (R2). This will be done by an
algorithm VEX that takes as input a permutation w € &,, containing a p-pattern and
outputs the desired permutation w € &,. Because the details of this algorithm can
be cumbersome, a brief description precedes each of the major steps.
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Algorithm VEX
INPUT: w € &,, with an occurrence (p) of the pattern p € &.
OUTPUT: w € &, as in equation (3.1), satisfying (R1) and (R2).

Step O:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Initialize variables.
f . def
Set wyy) & wand i ¥o.

Check if ready to output.
If wy) has no entries inside the pattern, then OUTPUT wy). Otherwise,
choose z; inside the pattern.

Move all inside values larger than (k) to the right of (p).
If 2;; > (k), then BEGIN

a. Let B(zp)) = {y > z}; : y is inside the pattern}.
b. Consider the elements of B(xy;) in decreasing order. Multiply wp; on the

right by simple reflections (changing positions in the one-line notation) to
move each element immediately to the right of (p).

c. Let wyyq) be the resulting permutation. Set % & + 1 and GOTO Step 1.

Move all inside values smaller than (1) to the left of (p).
If xp) < (1), then BEGIN

a. Let S(z) = {y < xp) : y is inside the pattern}.
b. Consider the elements of S(zy;) in increasing order. Multiply wy; on the
right by simple reflections to move each element immediately to the left

of (p).

c. Let w4y be the resulting permutation. Set % & i +1and GOTO Step 1.

Determine bounds in the pattern for the inside value.
Let m € [1,k — 1] be the unique value such that (m) <z < (m+1).

Change the occurrence of (p) and the inside value so that it does not lie between
its bounds in the pattern.

If the values {(m), zj;), (m+1)} appear in increasing order in wy), then define
a and b as in Definition 3.1.3 and BEGIN

a. If zy is unobstructed to the right, then BEGIN

i. Let R(zy;)) be the set of non-pattern entries at least as large as z[;) and
appearing between x; and (m 4 b) in the one-line notation for W)

ii. Consider the elements of R(xj)) in decreasing order. For each y €
R(zy;;), multiply on the right by simple reflections until y is to the right
of (m + b), or the right neighbor of ¥ is 2 > y. In the latter case,
z = (m + b') for some b’ € [1,b] because all larger non-pattern entries
are already to the right of (m + b). Interchange the roles of y and
(m+ V), and move this new y to the right in the same manner, until it
is to the right of (the redefined) (m + b).
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iii. Let wyi4q) be the resulting permutation, with (p) redefined as indicated.
Let xj;+1) be the non-pattern entry in the final move after any inter-
change of roles. This is greater than zj; and the redefined (m+b), and
occurs to the right of the new (m+b). If 2,y is outside of the pattern,

GOTO Step 1 with i % 4+ 1. Otherwise GOTO Step 2 with § & i + 1.
b. The entry zp; is unobstructed to the left (Lemma 3.2.3). BEGIN

i. Let L(zy)) be the set of non-pattern entries at most as large as zj; and
appearing between (m — a) and zp; in the one-line notation for wy).

ii. Consider the elements of L(zy;) in increasing order. For each y € L(zyp),
multiply on the right by simple reflections until y is to the left of (m—a),
or the left neighbor of y is z < y. In the latter case, z = {m — a') for
some o’ € [0, a] because all smaller non-pattern entries are already to
the left of (m — a). Interchange the roles of y and {(m — o), and move
this new y to the left in the same manner, until it is to the left of (the
redefined) (m — a).

iii. Let wy11) be the resulting permutation, with (p) redefined as indicated.
Let xj41 be the non-pattern entry in the final move after any inter-
change of roles. This is less than zy; and the redefined (m — a), and
occurs to the left of the new (m — a). If z};,y is outside of the pattern,

GOTO Step 1 with ¢ % 5 + 1. Otherwise GOTO Step 3 with i & i + 1.

Step 6: Change the occurrence of (p), but not its position, so that the value of the inside
entry increases but the values of (p) either stay the same or decrease.
If wy(s) = (m 4+ 1) and wy(t) = zp with s < ¢, multiply wy on the left
by simple reflections (changing wvalues in the one-line notation) to obtain
w+1) with the values [z, (m 4 1)] in increasing order. Then wy41j(s) is in
the half-open interval [z, (m 4 1)), and w4 q)(2) is in the half-open interval
(zgi), (m +1)]. GOTO Step 2 with zj;4q o wii+1)(t), the pattern redefined so
that (m + 1) O wii+1)(s), and ¢ .

Step 7: Change the occurrence of (p), but not its position, so that the value of the inside
entry decreases but the values of (p) either stay the same or increase.
If wy(s) = (m) and wy(t) = zp) with s > ¢, multiply wy) on the left by
simple reflections to obtain wy4y with the values [(m),z};] in increasing
order. Then wy41)(s) is in the half-open interval ({(m), zy)], and wj+(t) is

in the half-open interval [(m), zp)). GOTO Step 3 with x4y & wii4+1)(t), the
pattern redefined so that (m) & wii+1)(s), and @ 41

Each subsequent visit to Step 1 involves a permutation with strictly fewer entries
inside the pattern than on the previous visit. Each multiplication by an adjacent
transposition indicated in the algorithm removes an inversion, and so decreases the
length of the permutation. This is crucial because of requirement (R1).

Consider the progression of VEX:

30



Step 1 = HALT or begin a pass through VEX;

Step 2 = Step 1;

Step 3 = Step 1;

Step 5a => Steps 2 or 6;

Step 5b = Steps 3 or 7,

Step 6 = Steps 2, 5, or 6; and
e Step 7 = Steps 3, 5, or 7.

Step 5a concludes with zj;1;) to the left of its lower pattern bound, and smaller
pattern elements lying between z;,1) and this bound. Therefore, no matter how often
Step 6 is next called, the algorithm will never subsequently go to Step 5b before going
to Step 1. Likewise, a visit to Step 5b means that Step 5a can never be visited until
Step 1 is visited and a new entry inside the pattern is chosen.

Steps 2 and 3 do not change the relative positions of (p).

Steps 5a and 6 imply that xj11) > x};), while 234y < zp) after Steps 5b and 7.
Let m be as in Step 4. Until revisiting Step 1, the values (m'), for m’ > m + 1,
do not increase if zj;41] > zp;. Nor do the values (m'), for m’ < m, decrease if
Z(i+1] < Tf)- The other pattern values are unchanged. The definition of m means that
the reordering of values in Steps 6 and 7 does not change the positions in which the
pattern p occurs. Additionally, these steps change the value of the entry inside the
pattern (that is, zj;41) # z[;}), but not its position.

These observations indicate not only that VEX terminates, but that it outputs
w € &, as in equation (3.1) satisfying (R1) and (R2). This completes one direction
of the proof.

For the other direction, suppose that p € & is not vexillary. There is an occur-
rence of 2143 such that

p=---(2)- ()@ +1)(2) +2) - (8) = 2)((3) = 1){4)--- 3) - -~ .

Define z to be the index such that p(z) = (1). Define w € &, by

p(m) ¢ m < zand p(m) < (2);
p(m)+1 : m<zand p(m) > (2);
w(m) = (2)+1 : m=2z+1;
p(m—1) : m>z+1andp(m) < (2); and

pm—=1)+1 : m>z+1and p(m) > (2).

For example, if p = 2143, then w = 21354.
If there is a reduced decomposition j € R(w) such that j = j13™ 5 for i € R(p)
and M € N, then there is a @ € Gy as in equation (3.1) satisfying (R1) and (R2).
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Keeping the values (1), (2), (3), and (4) as defined above, the permutation w was
constructed so that

w=---(2)--- ()2 +1) ({2 +2)--- (3) —=2) (3Y — 1) BY((4) +1) - - ((8) +1) - - - .

One of the values in the consecutive subsequence ((2) + 1)({2) + 2)---(3) must
move to get a consecutive p-pattern in w. However, the values {(2),...,(3) + 1}
appear in increasing order in w, and the consecutive subsequence

M@ +1)(2)+2)--- (8 —2)((3) — 1) 3)((4) + 1)

in w is increasing. Therefore, there is no way to multiply w by simple reflections,
always eliminating an inversion, to obtain a consecutive p-pattern.

Hence, if p is not vexillary then there exists a permutation w containing a p-pattern
such that no reduced decomposition of w contains a shift of a reduced decomposition
of p as a factor. O

Example 3.2.9. If w = 314652 and p = 231, with the chosen occurrence (p) in bold,
the algorithm VEX may proceed as follows.

o wp & 314652.
e Step 1: zg e 1.

o Step 3: wyg > wigs1 = 134652 & ).

e Step 1: zqy s

o Step 6: wyy — sswp = 134562 & wyy; L 6.

e Step 2: wig) > w85 = 134526 def wa)-

Step 1: z3 &y,

Step 5a: wz) > wg) = 134526 def W4); Ty o 5.

Step 2: wiy — wigse = 134256 = wy).
e Step 1: output 134256.

Therefore w = 134256 = ssws18554, and W' = 123456. Keeping the notation of
equation (3.2), h = 0 and M = 1. The unique reduced decomposition of 231 is 12,
and indeed

(5)0(12)"(451) = 523451 € R(w).

The progression of VEX on this example is also displayed in Table 3.1. The table
gives a slightly clearer depiction of which steps affect only the permutation wy; or
only the non-pattern entry zj;, and which affect both.
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1 | Step W) Z[)
0] 1 314652 1
1 3 134652

1 1 5
2|1 6 134562 6
3| 2 134526

31 1 4
4| ba 134526 5
5] 2 134256

51 1 OUTPUT

Table 3.1: The progression of VEX on Example 3.2.9.

For an example of how Theorem 3.2.8 acts on a non-vexillary permutation p,
consider the smallest non-vexillary permutation p = 2143. The permutation w defined
in the proof of Theorem 3.2.8 is 21354, where (p) = 2154.

Example 3.2.10. Let w = 21354 and p = 2143. No element of R(w) = {14, 41}
contains a shift of any element of R(p) = {13,31} as a factor.

Suppose that j € R(w) contains a shift of 2 € R(p) as a factor,
J =55 (3.3)

The factor ¢ € R(p) can be replaced by any %’ € R(p) in equation (3.3).

Some care must be taken regarding factors in reduced decompositions. This is
clarified in the following definition and lemma, the proof of which is straightforward
and omitted here.

Definition 3.2.11. Let w be a permutation and ¢ € R(w). Write i = abc, where a €
R(u) and ¢ € R(v). Suppose that b contains only lettersin S = {1+ M, ... k—1+M}.
If no element of R(u) has an element of S as its rightmost character and no element of
R(v) has an element of S as its leftmost character, then b is isolated in 2. Equivalently,
the values {1+ M, ..., k+ M} must appear in increasing order in v, and the positions
{14+ M,... ,k+ M} must comprise an increasing sequence in u.

Ifbe R(wék)) and a shift b appears as a factor in a reduced decomposition of
some permutation, then b is necessarily isolated. This is because b has maximal
reduced length in the letters {1,...,k — 1}, so any factor of length greater than (';)
in the letters {1+ M,...,k — 14 M} is not reduced.

Lemma 3.2.12. If a reduced decomposition of w contains an isolated shift of a reduced
decomposition of p, then w contains the pattern p.

The converse to Lemma 3.2.12 holds if p is vexillary.
The characterization of vexillary in Theorem 3.2.8 differs substantially from those
in Proposition 3.2.6. There is not an obvious way to prove equivalence with any of
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the definitions (V2)-(V6), except via (V1). This raises the question of whether more
may be understood about vexillary permutations (or perhaps other classes, such as
Grassmannian or dominant permutations) by studying their reduced decompositions
or the permutations that contain vexillary permutations as patterns.

Theorem 3.2.8 has a number of consequences, and will be used often in the subse-
quent sections of this chapter. Most immediately, notice that it generalizes the result
of Billey, Jockusch, and Stanley mentioned earlier. The permutation 321 is vexillary
and every factor i for i € R(321) must be isolated. Thus, containing a 321-pattern
is equivalent to some reduced decomposition containing a factor that is a shift of an
element of R(321) = {121,212}, which is a Yang-Baxter move.

3.3 The commutation relation

Recall the definitions of short braid moves and Yang-Baxter moves in a reduced
decomposition, as well as the braid relations described in equations (2.6) and (2.8).
It is well known that any element of R(w) can be transformed into any other element
of R(w) by successive applications of these braid relations.

Because the short braid relation represents the commutativity of particular pairs
of simple reflections, the following equivalence relation is known as the commutation
relation.

Definition 3.3.1. For a permutation w and 4,j € R(w), write ¢ ~ J if 4 can be ob-
tained from j by a sequence of short braid moves. Let C(w) be the set of commutation
classes of reduced decompositions of w, as defined by ~.

Example 3.3.2. The commutation classes of 4231 € G4 are {12321}, {32123}, and
{13231,31231,13213,31213}.

For a given permutation w, there is a representation of its commutation classes
C(w) by a particular graph. This graph also takes into account the Yang-Baxter
moves that may occur between elements of R(w).

Definition 3.3.3. For a permutation w, the graph G(w) has vertex set equal to
C(w), and two vertices share an edge if there exist representatives of the two classes
that differ by a Yang-Baxter move.

Example 3.3.4. As shown in [2],
{w : G(w) is a single vertex} = {w : w is 321-avoiding}.

Elnitsky gives a very elegant representation of the graph G(w) in [9], which will
be discussed in depth in Section 3.4. A consequence of his description, although not
difficult to prove independent of his work, is the following.

Proposition 3.3.5. The graph G(w) is connected and bipartite.
Proof. See [9]. O
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Despite Proposition 3.3.5, much remains to be understood about the graph G(w).
For example, even the size of the graph for wp (that is, the number of commutation
classes for the longest element) is unknown.

Billey, Jockusch, and Stanley characterize all permutations with a single commuta-
tion class, and hence whose graphs are a single vertex, as 321-avoiding permutations.
A logical question to ask next is: for what permutations does each reduced decom-
position contain at most one Yang-Baxter move? More restrictively: what if this
Yang-Baxter move is required to be a specific shift of 121 or 212? Moreover, what
are the graphs in these cases?

Definition 3.3.6. Let U, = {w € &, : no j € R(w) has two Yang-Baxter moves}.

Theorem 3.3.7. U, is the set of permutations such that every 321-pattern in w has
the same mazimal element and the same minimal element.

Proof. Assume w has a 321-pattern. Suppose that every occurrence of 321 in w
has (3) = z and (1) = y. Suppose that j € R(w) has at least one long braid move.
Choose k so that jxjk+1jk+2 is the first such. Each adjacent transposition in a reduced
decomposition increases the length of the product. Then by the supposition,

Sjk+2Sik+1Sik " S W

is 321-avoiding, so jx+s - - - j¢ has no Yang-Baxter moves. It remains only to consider
when jxi27k+3jk+4 1S also a Yang-Baxter move. The only possible reduced configura-
tions for such a factor jijk+1jk+27k+3Jk+4 are shifts of 21232 and 23212. If either of
these is not isolated, then it is part of a shift of 212321, 321232, 123212, or 232123.
Notice that

e 212321,321232, 123212, 232123 € R(4321);
e 23212 € R(4312); and
o 21232 € R(3421).

If jkir+1ik+2dk+3dk+a is isolated in j then w contains a 4312- or 3421-pattern by
Lemma 3.2.12. Otherwise, w contains a 4321-pattern. However, every 321-pattern in
w has (3) = z and (1) = y. Therefore jgjr+1jk+2 is the only Yang-Baxter move in j,
sow € U,.

Now let w be an element of U,. If w has two 321-patterns that do not have
the same maximal element and the same minimal element, then they intersect at
most once or they create a 4321-, 4312, or 3421-pattern. These three patterns are
vexillary. Thus by Theorem 3.2.8 and the examples above, containing one of these
patterns would imply that some element of R(w) has more than one long braid move.
If the two 321-patterns intersect at most once, their union may be a non-vexillary
pattern, so Theorem 3.2.8 does not necessarily apply. However, a case analysis shows
that it is possible to shorten w by simple reflections and eliminate one 321-pattern
(via a Yang-Baxter move) without destroying the other 321-pattern. Thus an element
of R(w) would have more than one Yang-Baxter move, contradicting w € U,. O
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Note that if a permutation has k distinct 321-patterns, and they all have the same
maximal element and the same minimal element, then these k patterns together form
a ((k+2)23---k(k + 1)1)-pattern.

Definition 3.3.8. Let U,(j) consist of permutations with some 321-pattern, where
every Yang-Baxter move that occurs must be j(j + 1)j or (j + 1)j(5 + 1).

Observe that U,(j) is a subset of U,. For if it were not, then an element of
U, (7) would have a reduced decomposition with two Yang-Baxter moves as in Def-
inition 3.3.8. However, to be reduced, these would have to be separated by j — 1
or j + 2, and it would be possible to perform Coxeter relations to get a reduced de-
composition of the same permutation, containing the Yang-Baxter move j(j — 1)j or
(j +1)(F +2)(j + 1). This contradicts the assumption that the element is in Uy,(3).

Corollary 3.3.9. U,(j) = {w € 6,, : w has a unique 321-pattern and (2) = j + 1}.
If w has a unique 321-pattern, then w((2)) = (2).

Proof. A unique 321-pattern implies that {1,...,(2) — 1} \ (1) all appear to the left
of (2) in w(1)---w(n), and {(2) +1,...,n} \ (3) all appear to the right of (2), thus
(2) must be fixed by w.

Consider the Yang-Baxter moves that may appear for elements of U, D U,(j). Let
w € U, have k distinct 321-patterns. These form a pattern p = (k+2)23---k(k+1)1 €
Gk42 in w. The permutation p is vexillary, so there exists M € N and a reduced
decomposition j1i™j, € R(w) for each 4 € R(p). There are elements in R(p) with
Yang-Baxter moves (i + 1) for each 7 € [1,k]. For example, 12---k(k+ 1)k---21 €
R(p). Therefore, if w € U,(j), then k = 1. Hence w has a unique 321-pattern.

Suppose that w has a unique 321-pattern. Because w((2)) = (2), the only possible
Yang-Baxter moves in elements of R(w) are ((2) —1){2)({2)—1) or (2)({(2)—1)(2). O

Corollary 3.3.10. If w € U, and w has k distinct 321-patterns, then |C(w)| =k+1
and the graph G(w) is a path of k + 1 vertices connected by k edges.

Proof. Because w contains the pattern p = (k +2)23---k(k + 1)1 € Ggy2, there is
a subgraph of G(w) that is a path of k 4+ 1 vertices connected by k edges. Since p
accounts for all of the 321-patterns in w, this is all of G(w). a

Corollary 3.3.11. If w € U,(j), then |C(w)| = 2 and the graph G(w) is a pair of
vertices connected by an edge.

3.4 Elnitsky’s polygon

In his doctoral thesis and in [9], Elnitsky developed a bijection between commutation
classes of reduced decompositions of w € &,, and rhombic tilings of a particular 2n-
gon X (w) which he defined. This bijection leads to a number of interesting questions
about tilings of X (w) and their relations to the permutation w itself. Several of these
ideas are studied in this and the following section.
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Definition 3.4.1. For w € Gy, let X (w) be the 2n-gon with all sides of unit length
such that

1. Sides of X (w) are labeled 1,...,n,w(n),...,w(1) in order;
2. The portion labeled 1,...,n is convex; and
3. Sides with the same label are parallel.

Orient the polygon so that the edge labeled 1 lies to the left of the top vertex and
the edge labeled w(1) lies to the right. This is Elnitsky’s polygon.

Figure 3-1: The polygon X (4132).

In fact, the sides need not have unit length, provided that sides with the same
label have the same length. However, for the sake of simplicity, the assumption of
unit length is made here.

Example 3.4.2. The polygon X (w(()")) is a centrally symmetric 2n-gon.

Definition 3.4.3. The hexagon X (321) can be tiled by rhombi with sides of unit
length in exactly two ways, as in Figure 3-2. Each of these tilings is called the flip of
the other.

Figure 3-2: The two tilings in T(321). Each is the flip of the other.

Definition 3.4.4. Let T'(w) be the set of tilings of X (w) by rhombi with sides of
unit length. Define a graph G'(w) with vertex set T(w), and connect two tilings by
an edge if they differ by a flip of the tiling of a single sub-hexagon.

Unless otherwise indicated, the term tiling refers to an element of T'(w).

Theorem 3.4.5 (Elnitsky). The graphs G(w) and G'(w) are isomorphic.
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Henceforth, both graphs will be denoted G(w).

Before discussing new results related to this polygon, it is important to understand
Elnitsky’s bijection, outlined in the following algorithm. A more thorough treatment
appears in [9)].

Algorithm ELN
INPUT: T € T'(w).
OUTPUT: An element of Cr € C(w).

Step 0. Set the polygon Fy & x (w), the string jio; o @, and 7 .

Step 1. If Py has no area, then OUTPUT j;.

Step 2. There is at least one tile ¢; that shares two edges with the right side of Py

Step 3. If ¢; includes the jth and (j + 1)st edges from the top along the right side of
Py, set j+a & G-

Step 4. Let Fjyy be P with the tile ¢; removed. Set ¢ &, + 1 and GOTO Step 1.

ELN yields the entire commutation class because of the choice of tile in Step 2.

Figure 3-3: A tiling in T'(53241).

Example 3.4.6. The tiling in Figure 3-3 corresponds to the equivalence class con-
sisting solely of the reduced decomposition 12343212 € R(53241).

Corollary 3.4.7. If p is vezillary and w contains a p-pattern, then G(p) is a subgraph
of G(w).

Proof. This follows from Theorems 3.2.8 and 3.4.5. O

Elnitsky’s correspondence, described in ELN, combined with Theorem 3.3.7 and
Corollary 3.3.9, indicates that any tiling of X (w) for w € U, has at most one sub-
hexagon (every tiling has exactly one sub-hexagon if w is not 321-avoiding). Moreover,
the sub-hexagon has the same vertical position for all elements of U, (j).

Under certain circumstances, the polygon X(w) for w € &, can be rotated or
reflected to give a polygon X (w’) for another w' € G,,.
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Corollary 3.4.8. Let w = w(l)---w(n) and w® = w(n)---w(l). Then |C(w)| =
|C(wR)| and G(w) ~ G(wh).

Corollary 3.4.9. Let w =w(l)---w(n). Ifw(l)=n,w@2)=n-1,..., and w(i) =
n+1—i, then |C(w)| = |C(w®)|and G(w) ~ G(w™) where

w = (w(E+1) + 1) (wE+2) +1) - (wn) +4)ii —1)---21

and all values are modulo n.
Likewise, if w(n) = L, w(n—1) =2,..., and w(n — j + 1) = j, then |C(w)| =
|C(wj)| and G(w) ~ G(w)) where

wgy = nn—1) -+ (= +1)(w(1) = ) (@) - 3) - (wl - 5) - j)
and all values are modulo n.

Elnitsky’s result interprets the commutation classes of R(w) as rhombic tilings of
X (w), with Yang-Baxter moves represented by flipping sub-hexagons. The following
theorem utilizes this interpretation, and demonstrates that the number of commu-
tation classes of a permutation is monotonically increasing with respect to pattern
containment, thus generalizing one aspect of Corollary 3.4.7. Note that p is not
required to be vexillary in Theorem 3.4.10, unlike in Theorem 3.2.8.

Theorem 3.4.10. If w contains the pattern p, then |C(w)| > |C(p)|.

Proof. Consider a tiling T' € T'(p). This represents a commutation class of R(p). For
an ordering of the tiles in T as defined by ELN, label the tile ¢y by £(p), the tile t; by
£(p) — 1, and so on. If the tile with label r corresponds to the adjacent transposition
Si,, then iy - - - g € R(p).

Algorithm MONO
INPUT: w containing the pattern p and T' € T'(p) with tiles labeled as described.
OUTPUT: T € T(w).

Step 0. Set wy € w, Do} €, Tl e, Ty 9, and i Eo.

Step 1. If py is the identity permutation, then define T[’, +1) tO be the tiles of [’i]
together with any tiling of X (wp;). OUTPUT [’z. +1]-

Step 2. Let ji; be such that the tile labeled £(p) — i includes edges py;(j;) and
i (J) + 1) Note that py(j) > ppg (G + 1)

Step 3. Define r < s so that wy)(r) = (py(Ju)) and wy(s) = (p(Ju + 1)). Note
that wy)(t) is a non-pattern entry for ¢ € (r, s).
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Step 4. Let wy41) be the permutation defined by

‘ _Jwg®) : t<rort>s
w[z+1](t) = { ﬁ[i](t) . r<t<s

where (Wy;)(7), ..., W(s)) is {wy(r), ..., wy(s)} in increasing order.

Step 5. The right boundaries of X (wj1)) and X (wy;) differ only in the 7th, ..., sth
edges, and the left side of this difference (part of the boundary of X (wji41)))
is convex. Therefore, this difference has a rhombic tiling ;. Define T[Q +1 to
be the tiles in T} together with the tiles in ;.

Step 6. Set i % 4+ 1 and GOTO Step 1.

The algorithm MONO takes a tiling 7" € T'(p) and outputs one of possibly several
tilings 7' € T'(w) due to the choice in Steps 1 and 5. A tiling 7" € T'(w) so obtained
can only come from this 7", although possibly with more than one labeling of the tiles.
However, this labeling of the tiles merely reflects the choice of a representative from
the commutation class, so indeed |T'(w)| > |T'(p)|, and |C(w)| > |C(p)|- O

Example 3.4.11. Let p = 31542 and w = 4617352. The pattern p occurs in w as
(p) = 41752. Figure 3-4 depicts the output of MONO, given the two tilings of X (p).

MONO
—_—

Figure 3-4: The output of MONO, given each of the two elements of T'(31542). The
dotted lines indicate the choice of tiling in Steps 1 and 5 of the algorithm.
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3.5 Zonotopal tilings and the poset of tilings

Elnitsky’s bijection considers the rhombic tilings of the polygon X (w). Rhombi are
a special case of a more general class of objects known as zonotopes.

Definition 3.5.1. A polytope is a d-zonotope if it is the projection of a regular n-cube
onto a d-dimensional subspace.

Centrally symmetric convex polygons are exactly the 2-zonotopes. These neces-
sarily have an even number of sides.

Definition 3.5.2. A zonotopal tiling of a polygon is a tiling by centrally symmetric
convex polygons (2-zonotopes).

Definition 3.5.3. Let Z(w) be the set of zonotopal tilings of Elnitsky’s polygon.
Rhombi are centrally symmetric, so T'(w) C Z(w).

Figure 3-5: A tiling in Z(53241).

Theorem 3.5.4. There is a tiling in Z(w) containing a 2k-gon with sides parallel to
the sides labeled iy < --- < iy if and only if ix - - - i, is an occurrence of w((,k) in w.

Proof. Since the zonotopal tiles are convex, a 2k-gon in the tiling with sides as de-
scribed has right side labeled i,...,%; from top to bottom and left side labeled

i1,- .., % from top to bottom. Therefore Elnitsky’s bijection shows that this tile (or
rather, any decomposition of it into rhombi) transforms the sequence (iy,...,%) into
(k- ..,%). Reduced decompositions have minimal length, so no inversions can be

“undone” by subsequent simple reflections. Therefore ik - - - i; must be an occurrence
of w((,k) in w.

Conversely, suppose that @ - - - 4; is an occurrence of the vexillary pattern wék) in
w. For a decreasing pattern, the algorithm VEX can be modified slightly to produce
w as in equation (3.1), where the consecutive occurrence (w(()k)) is ¢ - - - 4;. To make
this modification, Steps 1-3 do not change, but the rest of the algorithm changes as
follows:

Step 4'. Let m be such that zj; lies between (m + 1) and (m).
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Step 5. If 23 > (m), then multiply on the right by simple reflections to move xy; to
the right of the pattern (wék)). GOTO Step 1 with i i

Step 6'. If zy;) < (m), then multiply on the right by simple reflections to move xj; to
the left of the pattern (w(?). GOTO Step 1 with i & 4 + 1.

Let t € R(wék)) and (I, Il)hz (J.---J;) € R(w) for h € R(w'). Removing the
rhombi that correspond to sy, --- sz, yxelds the polygon X (w), and the rhombi that
correspond to i form a sub-2k-g0n with sides parallel to the sides labeled {i1,...,}
in X(w).

Less specifically, Theorem 3.5.4 states that a tiling in Z(w) can contain a 2k-gon
if and only if w has a decreasing subsequence of length k.

Using a group theoretic argument, Pasechnik and Shapiro showed in [25] that
no element of Z (w(()")) consists entirely of hexagons for n > 3. Their result states
that at least one rhombus must be present in a hexagonal/rhombic tiling. Kelly
and Rottenberg had previously obtained a better bound in terms of arrangements of
pseudolines in [18].

Working with reduced decomposmons and Elnitsky’s polygons yields a different
proof that no element of Z (wo ) can consist of entirely hexagonal tiles for n > 3, and
generalizes the result to other types of tiles. The generalizations in Corollary 3.5.7
and Theorem 3.5.8, are, in a sense, counterparts to Theorem 3.5.4.

Proposition 3.5.5. If k > 4, and jM ... jM ¢ R(w) for j € R(w(k)), then the
shifts {M;} are all distinct.

Proof. Fix k > 4. Tt is straightforward to show that if 72 ... € R(w), then
wxz+M)=k+1-—x+ M, forz € 2,k—-1], (3.4)

for all ¢ € [r]. (In fact, equation (3.4) holds for k£ > 3, although the result of the propo-
sition does not.) The result follows from equation (3.4) and the fact that multiplying
by subsequent letters in a reduced decomposition must lengthen a permutation.
The result does not hold for k = 3 because equation (3.4) says only that 2+ M; is
fixed by w for all i. This does not imply any inversions among {2+ M;, ..., k—1+M;}
as when k > 4. A reduced decomposition (121)M! - .. (121)Mr where the {M;} are not

distinct appears after Corollary 3.5.7. O
Proposition 3.5.6. Fiz k > 3. Every inversion in w 13 in ezactly one w( )-pattem
if and only if there exists

i=jM ... € R(w) (3.5)

forje R(w((,k)), where the M;s are distinct. (Consequently there are r occurrences of
the pattern w(()k) in w.) Because i is reduced, |M; — M;| >k —1 for all i # j.

P'roof Fix k > 3. The result is straightforward for permutations with zero or one
wk )-pattern Suppose that w € &, has r > 1 occurrences of w(()k), and that every
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inversion in w is in exactly one wg“)—pattern. It is not hard to show that at least one

of these patterns occurs in consecutive positions. Therefore, for some M, there exists

o Ew- (1 ME+Mk—1+M)- -1+ M)(k+1+M)---n)
where every inversion in w’ is in exactly one 'w((,k)-pattern, and there are r — 1 such
patterns. Thus, by induction, there exists 7 --- M ¢ R(w) for j € R(w((,k)). If
k > 3, then this direction of the proof is complete by Proposition 3.5.5. If k = 3
and the M;s are not distinct, then the permutation w would necessarily have a 4312-,
4231-, or 3421-pattern, which contradicts the original hypothesis.

For the other direction, suppose that w has a reduced decomposition as in equa-
tion (3.5), where the M;s are distinct. Consider changing 4 via short braid and
Yang-Baxter moves. It is impossible to get an isolated factor in any #’ € R(w) equal
to the shift of any element of R(4312), R(4231), R(3421), or R(w(()k+l)). Therefore,
since all of these patterns are vexillary, Theorem 3.2.8 implies that w avoids all four
patterns. Consequently, every inversion in w is in exactly one w(gk)-pattern. O

Corollary 3.5.7. Fiz k > 4. There is a tiling in Z(w) consisting entirely of 2k-gons
if and only if every inversion in w s in eractly one w(()k)-pattern.

Proof. There being a tiling in Z(w) consisting entirely of 2k-gons is equivalent to

the existence of M -..jM € R(w), where j € R(w(()k)). The result follows from
Proposition 3.5.5 and Proposition 3.5.6. O

The implication in Corollary 3.5.7 fails for k = 3. For example, X (5274163) can be
tiled by four convex hexagons as in Figure 3-6. However, there are six inversions in this
permutation that are each in more than one 321-pattern. For example, the inversion
(1,5) appears in (321); = 521 and (321); = 541. This is because the implication in
Proposition 3.5.5 does not hold for £ = 3: (121)2(121)°(121)*(121)% € R(5274163).

Figure 3-6: A tiling of X (5274163) by four hexagons.

Theorem 3.5.8. There is a tiling in Z (w((,")) consisting entirely of 2k-gons if and
only if k € {2,n}.
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Proof. If k = 2, the result is true for all n: every X (w(()")) can be tiled by rhombi with
unit side length. For the remainder of the proof, assume that k > 3.

Suppose that there is Z € Z (w(()")) consisting entirely of 2k-gons. Then there
exists 4 = jM ... jMr ¢ R(wé")), for some j € R(w(gk)). If £ > 4, then Corollary 3.5.7
indicates that every inversion in w(()") is in exactly one wék)-pattern. Thus n = k.

Suppose that k = 3. Consider 4 as defined above. To be reduced, |M; — M; 4| > 2.
Thus it is impossible to obtain a factor (123121)™ by applying short braid and Yang-
Baxter moves to ¢. Hence w(()") is 4321-avoiding by Theorem 3.2.8, and n = 3.

Indeed, there is always a tiling Z € Z (w(()")) consisting of a single 2n-gon. O

Results similar to the above are discussed in Chapter 4, specifically Theorem 4.4.3.

There is a poset P(w) that arises naturally when studying Z(w).

Definition 3.5.9. For a permutation w, let the poset P(w) have elements equal to
the zonotopal tilings Z(w), partially ordered by reverse edge inclusion.

Example 3.5.10. In the poset P(53241), the tiling in Figure 3-3 is less than the
tiling in Figure 3-5.

Observe that for the longest element wy € &, the poset P(w,) has a maximal
element equal to the tiling in Z(wp) that consists of a single 2n-gon.

Consider the meanings of the elements and cover relations in P(w). The minimal
elements of P(w) are the rhombic tilings, which are the vertices of the graph G(w).
Moreover, edges in the graph G(w) correspond to flipping a single sub-hexagon in
the tiling. Therefore these edges correspond to the elements of P(w) that cover the
minimal elements.

These relationships are immediately apparent. Another relationship is not as
obvious. This follows from a result of Shapiro, Shapiro, and Vainshtein in [30].

Lemma 3.5.11 (Shapiro-Shapiro-Vainshtein). The set of all 4- and 8-cycles in G(w)
form a system of generators for the first homology group Hy(G(w),Z/2Z).

Additionally, Bjorner noted that gluing 2-cells into those 4- and 8-cycles yields a
simply connected complex ([3]).

In [30], Lemma 3.5.11 is stated only for w = wp. However, the proof easily
generalizes to all w € &,. A straightforward argument demonstrates that a 4-cycle
in G(w) corresponds to Z € Z(w) with rhombi and two hexagons, and an 8-cycle
corresponds to Z € Z(w) with rhombi and an octagon. These are exactly the elements
of P(w) which cover those that correspond to edges of G(w).

Corollary 3.5.12. The elements of P(w) that cover the elements (corresponding to
edges of G(w)) covering the minimal elements (corresponding to vertices of G(w))
correspond to a system of generators for the first homology group Hy\(G(w),Z/2Z).

Tits had previously proved a statement such as Lemma 3.5.11 for all Coxeter
groups (see [44]).

Little is known about the structure of the graph G(w) for arbitrary w. However,
in some cases a description can be given via Theorem 3.5.4 and Lemma 3.5.11.
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Theorem 3.5.13. The following statements are equivalent for a permutation w:
1. G(w) is a tree;
2. G(w) 1s a path (that is, no vertez has more than two incident edges);
3. The mazimal elements of P(w) cover the minimal elements; and
4. w s 4321-avoiding and any two 321-patterns intersect at least twice.

Proof. 1< 3 by Corollary 3.5.12. From Theorem 3.5.4 and the discussion preceding
Corollary 3.5.12, an 8-cycle in the graph is equivalent to having a 4321-pattern.
Similarly, a 4-cycle is equivalent to two sub-hexagons whose intersection has zero
area, so some reduced decomposition has two disjoint Yang-Baxter moves. This
implies that two 321-patterns intersect in at most one position. Therefore 1 < 4.
Finally, suppose that G(w) is a tree and a vertex has three incident edges. The
corresponding tiling has at least three sub-hexagons. However, it is impossible for
every pair of these to overlap. This contradicts 1 < 34 4,50 1 & 2. O

If C, is the set of all w € &,, for which G(w) is a path, then U,(j) C U, C C, by
Corollaries 3.3.10 and 3.3.11.

Recall from Chapter 2 that the unique maximal element in a poset, if it exists, is
denoted 1. It was noted above that the poset P(wp) has a 1. In fact, there are other
w for which P(w) has a 1, as described below.

Theorem 3.5.14. The poset P(w) has a 1 if and only if w is 4231-, 4312-, and
3421-avoiding.

Proof. The definition of the poset P(w) and Theorem 3.5.4 indicate that P(w) has a
1 if and only if the union of any two decreasing subsequences that intersect at least
twice is itself a decreasing subsequence.

Suppose there are decreasing subsequences in w of lengths k;, k2 > 3 that intersect
1 > 2 times, for ¢ < k;,kz. Let k = ¢+ 1, and choose a k + 1 element subsequence
of (ky---1)U (k- --1) that includes (ki ---1) N (kz2---1) and one more element from
each descending subsequence. Let p € &gy be the resulting pattern. There being no
1 in P(w) is equivalent to there being subsequences so that

p=(k+ Dk (i +2iG+ DG —1)- 21

for some j € [1, k.

There are two ways to place a 2k-gon in a zonotopal tiling of X (p), but these
overlapping 2k-gons do not both lie in any larger centrally symmetric polygon. The
permutation p is always vexillary, so Theorem 3.2.8 implies that P(w) will not have
a 1 if w contains such a p.

Therefore, considering the permutation p for each possible j, the poset P(w) has
a 1 if and only if w is 4231-, 4312-, and 3421-avoiding. O

The permutations for which P(w) has a 1 have recently been enumerated by
Mansour in [22].
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3.6 The freely braided case

Although the graph G(w) and poset P(w) are not known in general, there is a class
of permutations for which these objects can be completely described. This chapter
concludes with a study of this special case.

In [12] and [13], Green and Losonczy introduce and study “freely braided” elements
in simply laced Coxeter groups. In the case of type A, these are as follows.

Definition 3.6.1. A permutation w is freely braided if every pair of distinct 321-
patterns in w intersects at most once. That is, every inversion in w is in at most one
321-pattern.

Equivalently, w is freely braided if and only if w is 4321-, 4231-, 4312-, and 3421-
avoiding. The poset of a freely braided permutation has a unique maximal element
by Theorem 3.5.14.

Example 3.6.2. The permutation 35214 is not freely braided because 321 and 521
are both occurrences of the pattern 321, and they intersect twice. The permutation
52143 is freely braided.

Mansour enumerates freely braided permutations in [23].
In [12], Green and Losonczy show that a freely braided w with k distinct 321-
patterns has

|C(w)] = 2*. (3.6)

Moreover, in [13] they show the following fact for any simply laced Coxeter group,
here stated only for type A.

Proposition 3.6.3 (Green-Losonczy). If a permutation w is freely braided with k
distinct 321-patterns, then there exists 1 € R(w) with k disjoint Yang-Bazter moves.

Observe that Proposition 3.6.3 means that there is a tiling of X (w) with k sub-
hexagons, none of which overlap. Furthermore, equation (3.6) implies that flipping
any sequence of these sub-hexagons does not yield any new sub-hexagons. Hence
every tiling of X (w) has exactly k sub-hexagons, none of which overlap, and 1 in
P(w) corresponds to the zonotopal tiling with rhombi and k£ hexagons.

From the above facts, the structures of the graph G(w) and the poset P(w) are
clear for a freely braided permutation w € &,,.

Theorem 3.6.4. Let w be freely braided with k distinct 321-patterns. The graph
G(w) is the graph of the k-cube, and the poset P(w) is isomorphic to the face lattice
of the k-cube without its minimal element.

Example 3.6.5. The permutation 243196587 is freely braided. Its three 321-patterns
are 431, 965, and 987. Figures 3-7 and 3-8 depict its graph and poset.
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Chapter 4

Pattern avoidance and the Bruhat
order for type A

4.1 Introduction

As in the previous chapter, this chapter only considers elements of the symmetric
group. All permutations discussed here are unsigned.

Recall the definition of the Bruhat order from Section 2.6. This chapter analyzes
the structure of the symmetric group with this partial order, primarily via reduced
decompositions as in the subword property definition (Theorem 2.6.3) of the poset.
As suggested by the numerous results in Chapter 3 relating reduced decompositions
and permutation patterns, several aspects of this structure are strongly linked to
patterns.

The structural features of this poset considered here are order ideals and intervals,
as defined in Section 2.5. The first subject discussed concerns principal order ideals,
with the following notation.

Definition 4.1.1. For w € G,,, let
Bw)={ve G, :v<w}

be the principal order ideal of w in the Bruhat order.

Recent work by Sjostrand (see [32]) studies B(w) in relation to rook configura-
tions and Ferrers boards. Sjostrand also provides a polynomial time recurrence for
computing |B(w)| in some cases.

One class of posets that will be studied in this chapter is the following.

Definition 4.1.2. The boolean poset B, is the set of subsets of [r] ordered by set
inclusion. A poset is boolean if it is isomorphic to B, for some r.

Following the notation of Section 2.5, a poset is boolean if and only if it is iso-
morphic to B(21)" for some r. This is because B(21), the connected poset with
two elements, is isomorphic to B;. For example, the poset depicted in Figure 4-1 is
isomorphic to B(21)3.
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Figure 4-1: The boolean poset Bj.

Section 4.2 considers isomorphism classes of order ideals in the Bruhat order of the
symmetric group. The notion of a decomposable order ideal is introduced, and this
reappears in subsequent discussions of order ideals and intervals. Additionally, the
non-isomorphic principals order ideals of length at most 5 are completely described,
and tools for doing likewise with longer elements are indicated.

Section 4.3 of this chapter classifies all permutations w for which the principal or-
der ideal B(w) is boolean. Interestingly, as shown in Theorem 4.3.2, these are exactly
those permutations that avoid two specific patterns. Using this, the permutations
with this property are enumerated by length in Corollary 4.3.5. Additionally, permu-
tations with “nearly boolean” principal order ideals are discussed, along with the size
and description of their ideals.

A more general classification is made in Section 4.4. There, the permutations
with principal order ideals isomorphic to a power of B (w(()k)), for k > 3, are entirely
classified. This characterization (Theorem 4.4.3) is again stated in terms of patterns,
although not exactly pattern avoidance.

Section 4.5 examines sets of permutations avoiding either one or two patterns
and determines exactly when these sets are order ideals in the Bruhat order. This
property holds in only a few situations, each of which can be enumerated by length.

Finally, Section 4.6 addresses the following question: If w contains a p-pattern, is
there necessarily a relationship between B(w) and B(p)? Theorems 4.6.10 and 4.6.11
provide some insight into this question, although they do not answer it completely.
The chapter concludes with the conjecture that a particular relationship exists if and
only if the permutation p avoids sixteen patterns.

4.2 TIsomorphism classes of principal order ideals

Prior to classifying permutations with principal order ideals of particular forms, this
section examines the issue of isomorphism classes of principal order ideals in the
Bruhat order of the symmetric group.

Definition 4.2.1. A permutation w € &, is decomposable if B(w) = B(u) x B(v)
for some u € &, and v € &,y where m,m' < n. If w is not decomposable then it is
indecomposable.

The following proposition is straightforward to show, and its proof is omitted.
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Proposition 4.2.2. A permutation w € &, is decomposable if and only if there exist
M € [n — 2] and gh or hg in R(w), such that g consists only of letters in [M] and
h consists only of letters in [M + 1,n — 1]. Equivalently, a permutation w € &, is
indecomposable if and only if there is a substring M(M + 1)M or (M +1)M(M +1)
in every element of R(w), for all M € [n — 2].

Suppose that w is decomposable, and keep the notation of Proposition 4.2.2. Let
H be such that H® = h, and let u € Spr41 and v € G,_y be such that g € R(u)
and H € R(v). Then B(w) = B(u) x B(v).

The following easy consequence states that the decomposable permutations in &,,
form an order ideal.

Corollary 4.2.3. If w € &,, is decomposable, and v < w, then v € G,, is decompos-
able as well.

Proposition 4.2.2 and the subsequent remark greatly simplify the problem of deter-
mining the non-isomorphic principal order ideals in the Bruhat order of the symmetric
group, as indicated in Table 4.1. Entries for greater lengths can be similarly deduced.

Length 01 2 3 4 )
Reduced 0 1 12 123 1234 12345
decompositions 121 1214 12146
2132 21325

12321

21232

Table 4.1: Representative reduced decompositions giving all non-isomorphic principal
order ideals of length at most 5 in &,,.

Due to Proposition 4.2.2, the entries in Table 4.1 correspond to principal order
ideals that can be described by only a few posets. In addition to the boolean posets
already mentioned, the principal order ideals in this table are depicted in Figures 4-2,
4-3, 4-4, and 4-5. Table 4.2 indicates the isomorphism class for the principal order
ideal of the permutation represented by the corresponding entry in Table 4.1. For
example, the top row of Table 4.2 are the boolean posets.

Length 0o 1 2 3 4 5
Principal | By B; Bs B3 By Bs
order B(321) B(321) x By B(321) x B,
ideals B(3412) B(3412) x By
B(4231)
B(3421)

Table 4.2: The non-isomorphic principal order ideals of length at most 5 in &,,. The
entries correspond to those in Table 4.1.
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ideal B(4231).

Figure 4-2: The principal order

cipal order ideal B(3421).

Figure 4-3: The prin
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It must be noted that not all intervals that can appear in &,, can appear as prin-
cipal order ideals. To be specific, the discrepancies in the number of non-isomorphic
intervals that can appear and the number of non-isomorphic principal order ideals
that can appear are displayed in Table 4.3. The theorem that there are only finitely
many non-isomorphic intervals of a given length in the Bruhat order is due to Dyer
in [8], and the quantitative results for small lengths are due to Jantzen (see [17]) and
Hultman (see [14] and [15]).

Length |0|1]2]3(4] 5
# Non-isomorphic intervals | 1 {1} 1]3]7 |25
# Non-isomorphic B(w) {1 |1|1}2([3]| 5

Table 4.3: Comparing the number of non-isomorphic intervals and the number of
non-isomorphic principal order ideals of length at most 5 in &,,.

4.3 Boolean principal order ideals

The goal of this section is to determine exactly when the principal order ideal B(w)
is boolean, for w € G,,.

Definition 4.3.1. Let w be a permutation in &,,. If the poset B(w) is boolean, then
w is a boolean permutation.

Theorem 4.3.2. The permutation w is boolean if and only if w s 321- and 3412-
avoiding.

Proof. The subposet B(w) is graded with rank equal to the length of the permutation,

¢ £(w). Thus, if B(w) is boolean, it must be isomorphic to B,.

Let ¢ = ¢, - - -4 € R(w). By the definition of the Bruhat order in Theorem 2.6.3, it
must be possible to delete any subset of {i1,...,%} from ¢ and obtain a decomposition
which is still reduced.

Recall the braid relations for type A, as described in equations (2.5)-(2.6) and
(2.8). These indicate that if a decomposition is not reduced, then there must be a
letter which occurs more than once. If there exist j; < j; such that %; = i;,, then it
would be possible to delete all letters except ¢;, and ¢;, from 4 and obtain %; %;, which
is not reduced. On the other hand, if all the letters in ¢ are distinct, then removing
any subset of the letters will always leave a reduced decomposition.

Therefore boolean permutations are exactly those which have a reduced decom-
position with no repeated letters. (In fact, if one reduced decomposition has this
property, then all reduced decompositions do, because only short braid moves can be
performed and these do not change the multiset of letters appearing.)

Suppose that the permutation w is not boolean. Then there is a reduced decom-
position of w with a repeated letter. Therefore, there exists a reduced decomposition
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of w with one of the following factors, for some M.

(121)M (4.1)
(2132)M (4.2)

A factor as in equation (4.1) is necessary isolated. Thus, by Lemma 3.2.12, such
a factor would indicate that w has a 321-pattern.

A factor as in equation (4.2) is not necessarily isolated. If it were, then it would
indicate a 3412-pattern. Otherwise, it would indicate a 4312-, 3421-, or 4321-pattern.
These latter three all contain the pattern 321, so a repeated letter in a reduced
decomposition implies that w has a 321- or a 3412-pattern.

On the other hand, 321 and 3412 are both vexillary. Thus, by Theorem 3.2.8, if
either occurs in w then a reduced decomposition of w has a repeated letter.

This completes the proof. O

Boolean permutations were enumerated by the author, although they had previ-
ously been enumerated by West in [48] and Fan in [10]. West actually enumerates
the number of permutations which avoid the patterns 123 and 2143, but an easy
transformation shows that this set of permutations has the same cardinality as the
set of boolean permutations.

Definition 4.3.3. The Fibonacci numbers are {Fy, F1, Fy, ...}, where Fy =0, F; =1,
and F,; = Fi—l + Fi—2 for ¢ > 2.

The Fibonacci numbers are sequence A000045 in [34].

Corollary 4.3.4. The number of boolean permutations in G, is equal to Fy,_;.
The numbers Fy,_; are sequence A001519 in [34].
The boolean permutations can also be enumerated by length. That is, the numbers

L(n,k) &f #{w € &, : £(w) = k and w is boolean} (4.3)

have an explicit and concise form.

Corollary 4.3.5. Let L(n, k) be as defined in equation (4.3). Then

=507 )6

i=1

where the (empty) sum for k =0 is defined to be 1.

Proof. Equation (4.4) is proved by induction. First, observe that there is exactly one
permutation in &, of length 0, and it is boolean. The case k = 1 is slightly less
trivial. There are n — 1 permutations in &,, of length 1, and these are all boolean as
well. Letting £ = 1 in equation (4.4) yields

() ()= (7)) -
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so the corollary holds for £ < 1 and any n > k.

Suppose that
Lin. k) = k n—1 k-1
, )_g k+1—i)\i—1

for all k € [0, K) and n € [1, N). A boolean permutation avoids the patterns 321 and
3412. Suppose w € Gy is a boolean permutation with £(w) = K, and consider the
location of N in the one-line notation of w.

o If w(N) =N, then w(l)---w(N — 1) € Gy_; can be any boolean permutation
of length K.

o If w(N —1) = N, then w(l)---w(N — 2)w(N) € SGy_; can be any boolean
permutation of length K — 1.

o Ifw(N—2)= N, then w(N) = N—1. Thus, w(1)---w(N-3)w(N—1) € Gy_o
can be any boolean permutation of length K — 2.

o If w(N —3) = N, then w(N) = N —1 and w(N — 1) = N — 2. Therefore
w(l) - w(N — 4)w(N — 2) € Gy_3 can be any boolean permutation of length
K -3.

K
This breakdown of cases indicates that L(N,K) = L(N-1,K)+ Y  L(N —i, K —1),
i=1

and a bit of work turns this into
L(N,K) =L(N—I,K—1)+L(N—1,K—l)+L(N——2,K—1)+---+L(K,K—1).

By the inductive assumptions and basic facts about binomial coefficients,
K-1 . N-1K-1 , . .
N—-1—-3\(K-2 j—t\ /K -2
LN, k) = Z( K—i )(z—1>+ZZ(K~—i)<i—l)
i=1 j=K i=1
B K“(N—l—z') K—2>+K“ N—i
=\ K- i-1) S \K+1-i 2—1
B ZK:( N—i )(K—2 +"Z“ N- K-2
C Z\K+1-i)\i-2 ; K+1—z i—1
_ (N-K\(K-2 +KZ‘1 N~
B 1 K-2) Z\K+



O

The numbers L(n, k) are equal to the numbers 7'(n,n— k) in sequence A105306 of
[34]. From this equivalence, it is straightforward to compute the generating function

z(1 — 2t)

%L(n; k)tk n _ T o0 = z(] — zt) . (45)

For small n and k, the number of boolean permutations in &,, of length k are
displayed in Table 4.4.

Lin,k)|[k=0 1 2 3 4 5 6 7
n=1 1

2 1 1

3 1 2 2

4 1 3 5 4

5 1 4 9 12 8

6 1 5 14 25 28 16

7 1 6 20 4 66 64 32

8 1 7 27 70 129 168 144 64

Table 4.4: The number of boolean permutations of each length in &,, ..., &g. Missing
table entries are equal to 0.

It is interesting to note that a principal order ideal B(w) is boolean if and only
if it is a lattice. Certainly being boolean implies that a poset is a lattice, and the
other direction follows from Corollary 4.6.1. The ideal B(w) is a lattice if and only
if all of the R-polynomials are of the form (g — 1)*®)~42) a5 discussed by Brenti
in [6]. Moreover, Brenti shows that this is equivalent to all of the Kazhdan-Lusztig
polynomials equaling the g-polynomials of the duals of the corresponding subintervals.
The g-polynomials are defined in [36], and their coeflicients are the toric g-vectors.

Subsequent to Theorem 4.3.2, it is natural to ask the following questions. What
can be said about the principal order ideal of permutations with exactly one occur-
rence of exactly one of the patterns 321 or 34127 (Note that these are the permuta-
tions with reduced decompositions in which exactly one letter is repeated, and that
letter appears exactly twice.) In particular, what are the sizes of these ideals? These
questions are answered below. Generalizations allowing more occurrences of 321 and
3412 are not treated here.

e Suppose that w has exactly one 321-pattern and is 3412-avoiding. Let £ = £(w).
Then there exists 4; - - -4, € R(w) such that 4;i;417;42 is a Yang-Baxter move,
and there are no repeated letters besides i; and ¢j42. The subword property
dictates the poset B(w) as follows. Consider the poset B, of subsets of [{]
ordered by set inclusion. Delete all elements of the poset containing {j, j+2} but
not j+1, and identify all elements of the poset containing j but not {j+1, j+2}
with those that interchange the roles of j + 2 and j. The resulting poset is
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isomorphic to B(w), and |B(w)| = 3- 272
Figure 4-4 depicts the principal order ideal for the simplest permutation in this
category, w = 321.

Figure 4-4: The principal order ideal B(321).

e Suppose that w has exactly one 3412-pattern and is 321-avoiding. Let ¢ = £(w).
Then there exists ;- - -1, € R(w) such that ;111842143 = (2132)M for some
M, and there are no repeated letters besides ¢; and %;43. Again, consider the
poset By of subsets of [¢] ordered by set inclusion. Delete all elements of the poset
containing {7, 743} but not {j+1, j+2}, and identify those elements of the poset
that contain j but not {j + 1,4+ 2,7+ 3} with those that interchange the roles
of j+3 and j. The resulting poset is isomorphic to B(w), and |B(w)| = 7-2¢3.
Figure 4-5 depicts the principal order ideal for the simplest permutation in this
category, w = 3412.

Figure 4-5: The principal order ideal B(3412).

4.4 Principal order ideals isomorphic to a power of
B(’w(k))
0

The previous section characterized all permutations for which B(w) is boolean, where
a boolean poset is one which is isomorphic to some power of B(21). This section
generalizes the previous work by completely describing all permutations for which
B(w) is isomorphic to some power of B(w((,k)) for k > 3.
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Definition 4.4.1. Let £ > 3 be an integer and w € &, be a permutation. If
B(w) = B (wék))r for some r, then w is a power permutation. (Note that the specific
values of k, n, and r are not recorded.)

If B(w) = B(w(?)", then £(w) = r- (¥).

The reduced decompositions # and 121 in Table 4.1 represent the only power
permutations in the table, as all other power permutations have length at least 6.

As in the previous section, the characterization of power permutations is in terms
of patterns, although not in quite the same way as Theorem 4.3.2.

Proposition 4.4.2. For z,y € &, suppose that [z,y] = B('w(()k)) for some k. Then
there ezist i € R(x) and § € R(y) such that i is obtained by deleting a factor from j

which is the shift of an element of R(w(()k)).

Proof. Let © € R(z) and j € R(y) be, by Theorem 2.6.3, such that ¢ is a subword
of j. Consider the multiset S of the (%) letters deleted from j to form 4. Because

[u,v] = B(w(®), this S contains exactly k — 1 distinct letters.

The number of distinct letters in S equals the number of elements covering z in
[z,y]. Therefore it must be possible to find ¢ and j as above so that the factors in j
formed by S have the property that equal elements of S lie in the same factor.

Given T distinct and consecutive letters, the longest reduced decomposition that

can be formed by them has length (7}'). Observe that

T, +1 I, +1 TT'+T,+1
(2 () <)

for Ty, T> > 0. Thus, all of S comprises a single factor in j, and the result follows. [
With this groundwork, the main theorem of the section can now be stated.

Theorem 4.4.3. The permutation w is a power permutation if and only if every
inversion in w 1s in exactly one w(()k) -pattern for some fized k > 3.

Proof. Fix k > 3 and w € &,. First suppose that every inversion in w is in ex-
actly one w(()k)-pa,ttern, and that w contains R distinct occurrences of the pattern
w((,k). “Undoing” inversions in one of these patterns does not alter the other patterns.
Consequently B(w) = B(wi")R.

For the other direction of the proof, suppose that B(w) = B(w((,k))R, and proceed
by induction on R. The case R = 0 is trivial, and the case R = 1 was considered
in Proposition 4.4.2. Now suppose that the theorem holds for permutations whose
principal order ideals are isomorphic to B (w((,k))', for all r € [0, R).

There are R distinct permutations wy, ..., wg, each less than w in the Bruhat

order, with iy
B(w) = - = B(wg) = B(ug”)™.

By Proposition 3.5.6 and the inductive hypothesis, each of these R permutations has

a reduced decomposition 57 - - jMI'%—l € R(wp), where the M}s are distinct.
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The interval [wy, w] is isomorphic to B (wo )) for all h, so Proposition 4.4.2 indicates

that w has a reduced decomposition jM* ... jMr,
The distinct permutations wy, . . . , wg each satisfy the induction hypothesis. Hence
the M;s are distinct, and Proposition 3.5.6 completes the proof. O

Corollary 4.4.4. If the permutation w is a power permutation, then there is a tiling
in Z(w) consisting entirely of 2k-gons for some k > 3. The converse is true if k > 4.

Proof. There is a tiling in Z (w) consisting entirely of 2k-gons if and only if there is
a reduced decomposition j* ... € R(w), where j € R(w (k)) By Theorem 4.4.3
and Proposition 3.5.6, power permutatlons have such reduced decompositions. For
k > 4, the converse follows from Proposition 3.5.5. O

Power permutations avoid the patterns 4312, 3412, and 4231, so their posets P(w),
as defined in Chapter 3, have maximal elements by Theorem 3.5.14. Since the tiling
of such a w by 2k-gons, via the above corollary, is maximal in this poset, it is the
unique maximal element.

Theorem 4.4.3 gives a concise description of power permutations, again in terms
of patterns. Although the flavor of this description differs from that of Theorem 4.3.2,
the prominent role of patterns in the power permutation characterization is immedi-
ately apparent. It is clear that Theorem 4.4.3 must be restricted to k > 3, while the
k = 2 case is treated in Theorem 4.3.2, because to say that “every inversion in w is
in exactly one 21-pattern” provides no information.

Observe that in the case k = 3, the power permutations are freely braided per-
mutations, as in Section 3.6, that have no “extra” inversions.

It is instructive to consider what it means for every inversion in a permutation to
be contained in exactly one w(() )-pattern The following facts are straightforward to
show for w € G,,.

e Distinct occurrences of 'w(()k) either do not intersect or share exactly one entry.
e If two occurrences of 'w(()k) intersect, then either (k); = (k)2 or (1); = (1)s.

e Without loss of generality, all values in ('w((,k))l are at least as large as all values
in (’U)(k))z The non-shared values in (w((,k))l all occur to the right of the non-
shared values in (wo ))

e If m is not in any w( )-pa,ttern, then it is fixed by w, and the letter m does
not occur in any reduced decomposition of w. Moreover, the permutations
w(l)---w(m—1) € Gy and (w(m+1)—m)--- (w(n) —m) € &,_y, are both
power permutations with the same parameter k.

e For any occurrence of w((,k), the values (k — 1), ..., (2) must occur consecutively
in the one-line notation of w.

Example 4.4.5. The permutations 521436 € G¢ and 432159876 € Gy are both power
permutations.
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4.5 Patterns and order ideals

The previous two sections considered principal order ideals in the Bruhat order of the
symmetric group. This section examines order ideals, as defined in Section 2.5, that
are not necessarily principal. To be specific, the following questions are completely
answered.

1. For what p € &, where k > 3, is the set
Sn{p} = {w € 6, : w is p-avoiding}
a nonempty order ideal, for some n > k?
2. For what p € &, and g € &;, where k,[ > 3, is the set
Sn{p,q} = {w € &,, : w is p- and g-avoiding}
a nonempty order ideal for some n > k,[7

Requiring that k& and [ be at least 3 eliminates trivial cases. The questions are
uninteresting if the sets can be empty, although the first of these sets, S,{p}, can
never be empty. Additionally, if n were permitted to equal k in S,{p}, then the set
Sp{w™} = &, \ {wl™} would certainly be an order ideal.

Somewhat surprisingly, there are very few patterns that answer the above ques-
tions, and in each case the rank generating function of the resulting order ideal is
provided below. Because any principal order ideal in a boolean poset is itself boolean,
one answer to the second question is {p, ¢} = {321, 3412}.

Theorem 4.5.1. For k > 3, there is no permutation p € &y, for which there ezists
n > k such that the set S,{p} is an order ideal.

Proof. Determining whether S, {p} is an order ideal amounts to determining if there
can be w € S,{p} and v < w, where v ¢ S,{p}. If w(()") avoids p, then the set S,{p}
cannot be an order ideal because the permutation p(1) - - - p(k)(k+1) - - - n is less than
w™ but not in S,{p}. Thus p = wl.

Let w = k(k+ 1)(k - 1)(k —2)---4312(k + 2)(k + 3)---n € &,. There is no
p-pattern in w, so w € S,{p}. However, note the following covering relations that

exist in the Bruhat order:

k(k + 1) (k= 1)(k—2)---4312(k + 2)(k +3) - -
k(k+1)(k - 1)(k—2)---4132(k + 2)(k +3) - - -
k(k+1)(k—1)(k—2)---1432(k + 2)(k +3) - --n

w

3

vV V.V VYV

k(k+1)1(k—1)(k—2)---432(k + 2)(k+3)---n
1k + Dk(k —1)(k—2)---432(k + 2)(k + 3) - - -n & 0.
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The permutation v contains the pattern p, where (p) = (k+1)k---32, and v < w
as demonstrated. Therefore S,{p} is not an order ideal for any n > k. O

The set of boolean permutations in &,, denoted S,{321,3412} in this section, is
an order ideal. Thus, unlike for S, {p}, there do exist permutations p and q for which
the set S, {p, ¢} is an order ideal.

Theorem 4.5.2. Let p € G, and q € &; for k,l > 3. The only occasions when
Sn{p,q} is a nonempty order ideal for somen > k,l are S,{321, 3412}, S,{321,231},
and S,{321,312}. These sets are order ideals for all n > 4

Proof. As in the previous proof, it can be assumed that p = w((,k) € G;.

Suppose that S,{p,q} is a nonempty order ideal for some n > k,l. Then the
following permutations cannot be in S, {p, ¢}, because they are all larger in the Bruhat
order than a permutation containing a p-pattern.

k---3(k+1)12(k+2)---n
k(k+1)1(k—-1)---32(k+2)--'n
1---(n—k-1Dn-=-1)---(n—k+2n(n—k)(n—k+1)
I---(n—k-D(n-nn—kn-2)---(n—k+2)(n—-k+1)

These are all p-avoiding, so they must contain the pattern q. The only patterns
contained in all of these permutations are the following:

g € {312,231,3412,12--- (I — 1)i}.

Suppose ¢ = 12--- (I — 1)I. If Sp{p,q} is nonempty, then it cannot be an order
ideal because every element in S, {p, g} is greater than 12---n ¢ S, {p, q}. Therefore

g € {312,231,3412}. (4.6)

Suppose that k > 3. If ¢ € {231,312}, then u = 32145---n € S, {p, ¢}. However,
u > q(1)q(2)q(3)45---n ¢ S,{p,q}. Similarly, v = 342156---n € S,{p, 3412}, but
v > 341256 ---n & S, {p,3412}. Thus k = 3 if S, {p, q} is to be an order ideal.

By Theorems 3.2.8 and 4.3.2, the set S,{321,231} consists of exactly those per-
mutations that have reduced decompositions ¢; - - - % for 4; > - -+ > 4p. Thus, by The-
orem 2.6.3, 5,{321,231} is an order ideal. Similarly, the set S,{321,312} consists of
exactly those permutations that have reduced decompositions i; - - - 4y fori; < --- < 4.
Once again, this is an order ideal. As stated earlier, the set S,{321,3412} of boolean
permutations is also an order ideal. |

The elements of S,{321,3412} were enumerated by length in Corollary 4.3.5,

and their rank generating function is equation (4.5). The enumerations for the sets
Sn{321,231} and S,,{321, 312} are straightforward.
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Corollary 4.5.3. The number of elements of length k in S,{321,231} is (";1). Sim-
ilarly, the number of elements of length k in S,{321,312} is ("',;1). Consequently
these are both rank-symmetric posets, and the rank generating function for each is

> (") = e

n.k

Proof. The enumeration for S,,{321,231} is due to the fact that each length & element
of 5,{321,231} must have a reduced decomposition i, - - -3, where 4; > -+ > 7.
Therefore, each element is uniquely determined by choosing k of the n — 1 possible
letters. The enumeration for S,{321,312} is analogous.

The rank generating function follows. O

Notice that in each instance where S, {p, ¢} is an order ideal, the rank generating
function of this subposet is a rational function. For S,{321,231} and S,,{321,312},
these order ideals are actually principal: the maximal element in S, {321,231} is
nl2---(n — 1) which has a reduced decomposition (n — 1)---21, and the maximal
element in S, {321,312} is 23 - - - nl1 which has a reduced decomposition 12--- (n—1).
Results of Lakshmibai and Sandhya (see [19]) and Carrell and Peterson (see [7]) show
that the poset B(w) is rank symmetric if and only if w is 3412- and 4231-avoiding,
which shows (although it is already clear from Corollary 4.5.3) that S,{321,231} and
Sn{321,312} are both rank symmetric.

The poset of boolean permutations, S,{321,3412}, can be considered in a larger
context because of the following definition.

Definition 4.5.4. A finite poset is simplicial if it has a unique minimal element and
every B(z) is boolean. The f-vector of a simplicial poset P is (f-1, fo, f1,-.-.), where

Fr1and £, € #{z e P: B(z) = B,-+1}§ofri > 0. Let d ¥ 14+max{i : f;(P) # 0}.
(S

The h-vector of P is (hg, h1,...), where hg = 1, by &f fo—d, and h; = fi_1 — fi-a.

The poset S, {321, 3412} is simplicial, and the f-vector was computed by the rank
generating function in equation (4.4). In [37], Stanley showed that for a given vector
h, there exists a Cohen-Macaulay simplicial poset with h-vector equal to h if and
only if hg = 1 and h; > 0 for all 7. Consider the hA-vector of S,{321,3412}. The last
coordinate of this is L(n,n — 1) — L(n,n — 2). This is negative for n > 3 (the only
n for which S,{321,3412} is defined), so the simplicial poset S,{321,3412} is never
Cohen-Macaulay.

4.6 Bruhat intervals

The previous sections in this chapter have suggested several relationships between
order ideals in the Bruhat order and permutation patterns. This section moves beyond
these connections to examine the impact of permutation patterns on intervals in the
Bruhat order. For example, the following corollary to Theorem 3.2.8 suggests the
type of statement that is possible.
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Figure 4-7: The poset B(351624).

Definition 4.6.5. Let N' C &g consist of the following sixteen permutations:

N = {351624,351642,352614, 361524, 531624, 352641, 361542, 362514,
531642, 532614, 631524, 362541, 532641, 631542, 632514, 632541 }.

Note that A is the interval [351624,632541] in G¢. This interval is isomorphic to By.

Before discussing P, it is important to understand exactly what it means to avoid
the patterns in NV.

Definition 4.6.6. Let p € 6, and w € G,, be such that w has a p-pattern. Let x be
a non-pattern entry in w inside the pattern p, as defined in Chapter 3. The entry z
is an obstacle to p, or simply an obstacle, if the following conditions all hold.

1. There exists m € [k — 1] such that (m) <z < (m + 1);

There exists an inversion (%, 7) in p such that (p(7)) > z > (p(4));
There exist @ and b such that a <m <m+1 < b;

The values p(7), a, b, and p(j) occur from left to right in p;

The values m, a, b, and m + 1 occur from left to right in p; and

IR A T o

The values (a), z, (b) occur from left to right in w.

As with the definitions of inside and outside from Chapter 3, being an obstacle is
only defined for non-pattern entries.

Definition 4.6.7. Let p be a permutation. If there is no permutation that contains
the pattern p and has an obstacle to p, then p has no obstacles.

64



Corollary 4.6.1. Let p be a vexillary permutation. For any w containing a p-pattern,
there is a permutation v < w such that the interval [e,v] = B(v) in B(w), where e is
the identity permutation, is isomorphic to B(p).

Proof. By Theorem 3.2.8, there exists j € R(w) with a factor ¢ for i € R(p). Let
j= jliM j2. Then by Theorem 2.6.3, the permutation v, for which ¥ is a reduced
decomposition, is less than w. Certainly B(p) = B(v), which completes the proof. O

The aim of this section is to state conditions for a permutation p so that it is a
member of the following set.

Definition 4.6.2. Let p be a permutation. If B(p) is isomorphic to an interval in
B(w) for every permutation w containing p, then p is a pattern-interval permutation.
Let

P = {p: p is a pattern-interval permutation}. (4.7)

Corollary 4.6.1 indicates that P contains all vexillary permutations. However, it
is not the case that P contains only vexillary permutations, as shown below.

Example 4.6.3. Let p = 2143, the smallest non-vexillary permutation. The principal
order ideal B(p) is shown in Figure 4-6. Indeed, the fact that the Bruhat order is
Eulerian implies that every interval of length two in the Bruhat order is isomorphic
to the poset in Figure 4-6. Therefore, for every w containing p, there is an interval
in B(w) isomorphic to B(p), so 2143 € P.

Figure 4-6: The form of every length two interval in the Bruhat order.

Since P contains all vexillary permutations as well as the permutation 2143, one
might suppose that P in fact contains every permutation. However, this is not the
case, as indicated in the next example.

Example 4.6.4. Let p = 351624 and w = 3614725. The pattern p occurs in w
as (p) = 361725. The posets B(p) and B(w) are depicted in Figures 4-7 and 4-8,
respectively. Stembridge’s MAPLE packages [40] and [41] indicate that no interval of
B(w) is isomorphic to B(p), so p ¢ P.

Now that P is known not to include all permutations, the characterization of its
elements becomes a more interesting question. In particular, can P be described in
terms of pattern avoidance? That is, is there a statement “p € P if and only if p
avoids all of the patterns ¢,r,...”? In fact, there is a statement that if p avoids a
particular set of patterns then p € P. Evidence suggests that the converse of this
statement may hold as well.
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Proposition 4.6.8. A permutation p has no obstacles if and only if p avoids all
patterns in the set N.

Proof. Definitions 4.6.6 and 4.6.7 indicate that there can be an obstacle to p if and
only if there are substrings wvwx and yvwz occurring from left to right in p, where
v<y<z<wandz<y< z<u. These amount to sixteen possible patterns in p,
which are exactly the elements of N. O

The previous proposition does some of the work towards defining a subset of P in
terms of pattern avoidance. As suggested by this work, the patterns which must be
avoided are exactly those in the set A'. The proof of this requires some definitions.

Definition 4.6.9. Let g be a permutation in N’ C Gg. The stretch of q by S is the
permutation gs € Ggys defined by inserting the values 4,5,...,3 + S between ¢(3)
and ¢(4), and increasing the values 4,5,6 in ¢ by S. For example,

351624, = 37145826.
Let N* = {gs:q€ N and S > 0}.

In Example 4.6.4, where it was shown that 351624 ¢ P, the w that prohibits
membership in P is exactly 351624;. The reason that B(3614725) does not have
a subinterval isomorphic to B(351624) is essentially because the 4 in 3614725 is an
obstacle to 351624:

e 3) <4< (4),

. (p(2)) > 4> (p(5)),

e 1<3<4<6,

e p(2), 1, 6, and p(5) occur from left to right in p,

e 3,1, 6, and 4 occur from left to right in p, and

e (1), 4, and (6) occur from left to right in w.
Theorem 4.6.10. If p has no obstacles, then p € P.

Proof. Suppose that p is a permutation which has no obstacles. Let w be any per-
mutation containing p. Unlike in the proof of Theorem 3.2.8, it is not required now
to be able to push the pattern p together in some w < w. Rather, it is enough to find
W < w containing p such that for each inversion (7,7) in p, there is no non-pattern

entry
z € ({(p(4)), (p(4))) (4.8)

lying between (p(7)) and (p(j)). If there are no such entries z, then there is an interval
[v, w] C B(w) isomorphic to B(p).
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Recall the algorithm VEX of Chapter 3. The only way that a non-pattern entry
z inside the pattern may be impossible to move outside of the pattern is if there is a
configuration of the form

c{ma) e {ma) e (ma) - (mg) -

in the one-line notation of w, where (m;) < (m2) < = < (m3) < (my). Tt is only
necessary to move x outside of (p(7) - - - p()), thus if p is not a pattern-interval per-
mutation then

e p(i) > mgz and p(i) occurs to the left of m, in p, and

e p(j) < my and p(j) occurs to the right of my in p.

Equation (4.8) indicates that this only happens if p has an obstacle.
Thus, if p has no obstacles, then there is no such non-pattern entry z, and p is a
pattern-interval permutation. O

While Theorem 4.6.10 gives a better idea of what sort of permutations can be in P,
note in particular that vexillary permutations are a proper subset of the permutations
that have no obstacles, it does not address what permutations are not pattern-interval
permutations. One step in this direction is the following result.

Theorem 4.6.11. N*NP = 0.

Proof. Consider gs € N*. The permutation gg;; contains a gg-pattern. Observe that

is E 214+ S5)(5+5)34---(3+5)---43(4 + 5)2 € R(351624s).

Therefore aigb € R(gs), where a,b € {0,1,5+ S,1(5 + S)}. Likewise AigB €
R(gs+1), where A is a after changing any 5+ S in @ to 6 + S, and B is defined
similarly.

Observe that £(gs+1) = #(gs) + 2. Therefore, if an interval [z,y] C B(gss1)
is isomorphic to B(gs), then £(z) < 2. Also note that the all elements of AN*, in
particular the permutation gg € Gg, 5, are indecomposable.

Keeping in mind this indecomposability, consider the reduced decompositions
aisb € R(gs) and Ais;1B € R(gs+1), and examine the three cases £(z) € {0, 1,2}.
The details are omitted here, but it is relatively straightforward to show that there
is never an appropriate y yielding an interval [x,y] & B(qgs).

Therefore the ideal B(gs4+1) never has an interval isomorphic to B(gs), and gg is
not a pattern-interval permutation.

a

Theorem 4.6.10 states that avoiding the patterns in A/ implies membership in P.
On the other hand, Theorem 4.6.11 demonstrates that containing an element of N/
as a very specific type of pattern prohibits membership in P. Taken together these
results suggest the following conjecture.

Conjecture 4.6.12. The set P is the set of permutations that have no obstacles.
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Chapter 5

Computing expected values in type B

5.1 Introduction

Recall that GZ denotes the signed permutations of [£n], the finite Coxeter group of
type B. This group is generated by the simple reflections {so, s1,...,sn—1}, which
satisfy the braid relations in equations (2.5)-(2.6) and (2.8)-(2.9). As a reminder,
these are repeated below:

8% = e for all s; (2.5)

sisj = 8;8; for |i — j| > 1; (2.6)
8i8i+18i = Si4+18iSi41 for ¢ € [n — 2]; and (2.8)
80515051 = 51505150- (2.9)

Recall further that every element in G2 can be written as a product of the simple
reflections {s; : i € [0,n— 1]}, and the minimum number of simple reflections required
for a product to equal w is the length of w, denoted £(w). The longest element in &2
is wf =12---n, and Y(wf) = n’.

The symmetric group &, of unsigned permutations is generated by the simple
reflections {s; : 2 € [n— 1]}, which are subject to the relations in equations (2.5)-(2.6)
and (2.8). The longest element in &, is wg = n(n — 1) - - - 1, which has length (}). In
[26], Reiner computes the following somewhat surprising result.

Theorem 5.1.1 (Reiner). The ezpected number of Yang-Bazter moves in a reduced
decomposition of wo € &, is 1 for alln > 3.

This chapter presents results for finite Coxeter groups of type B that are analogous
to Theorem 5.1.1. In type A, the expectation of factors corresponding to the braid
relation in equation (2.8) was computed. For the hyperoctahedral group, factors
corresponding to the braid relations in each of equations (2.8) and (2.9) will be treated.
Theorem 5.3.1 calculates that the expected number of Yang-Baxter moves in a reduced
decomposition of w® € G2 is 2 — 4/n, and Theorem 5.4.1 shows that the expected
number of 01 moves is 2/(n? — 2). Unlike Reiner’s result, both of these expectations
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are dependent upon n. Moreover, in the context of Theorem 5.1.1, the value 2 —4/n
seems quite plausible since the length of wf € &2 is approximately twice that of
wy € G,.

A variety of tools are used to prove Theorems 5.3.1 and 5.4.1, several of which are
discussed in Section 5.2. Section 5.3 computes the expected number of Yang-Baxter
moves in elements of R(wg), and Section 5.4 does the same for 01 moves.

Prior to these discussion, a few terms must be defined.

Definition 5.1.2. A shape, or partition, A is a sequence of integers (A, ..., Ar) where
A2 A2 2 A>0.

The shape A may be represented by a diagram with A\; boxes in the top row, A; boxes
in the second row, and so on, with the left sides justified. Figure 5-1 depicts the shape
(5,5,1).

—

Figure 5-1: The shape A = (5,5, 1).

Definition 5.1.3. A shifted shape AP is a sequence of integers (A2, ..., A\B) where
MBS ABs ... 0B

The shifted shape A® may be represented by a diagram with AZ boxes in the top row,
AZ boxes in the second row, and so on, with the left edge of each row shifted to the
right one unit from the left edge of the row above it. Figure 5-2 depicts the shifted
shape (5,4, 1).

L]

Figure 5-2: The shifted shape X2 = (5,4, 1).

Definition 5.1.4. A standard Young tableau, or standard tableau, is a filling of the
n boxes in the diagram of a (shifted) shape by the integers 1,2,...,n, such that the
values in each row are strictly increasing from left to right, and the values in each
column are strictly increasing from top to bottom.

A good reference for Young tableaux, with an emphasis on their connections to
representation theory, is [11].
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5.2 Vexillary elements, shapes, and hook lengths in
type B

In [35], Stanley shows that for a vexillary element v € &,,,

#R(v) = [V, (5.1)

where f2*) is the number of standard Young tableaux of a particular shape A(v).
This result is central to the proof of Theorem 5.1.1.

There are numerous definitions of vexillarity in type A, as discussed in Section 3.2.
Billey and Lam define a notion of vexillary for type B in [1]. Their definition is in
terms of Stanley symmetric functions and Schur @Q-functions, and they prove its
equivalence with a statement about pattern avoidance, now of signed permutations.
This latter statement will be given as the definition here, and it follows from the work
of Billey and Lam that it generalizes equation (5.1) to type B in the appropriate way.

Definition 5.2.1. An element w € &F is vezillary for type B if w = w(1)---w(n)
avoids the following patterns:

Recall from Section 2.4 that patterns in signed permutations must maintain their
signs. For example, 12 is not an instance of the pattern 21, even though 1 > 2.

Example 5.2.2. 2143 € G is vexillary for type B, but 2143 € &2 is not.

To each element w € &2, Billey and Lam define a shifted shape A2 (w) as follows.
Definition 5.2.3. Let w = w(1)---w(n) be in G2.

1. Write {w(1),...,w(n)} in increasing order and call this u € G5.

2. Let v € &, be the (vexillary) permutation v~ 'w.

3. Let p be the partition with (distinct) parts {|u;] : u; < 0}.

4. Let U be any standard shifted Young tableau of shape yu, and let V be any
standard Young tableau whose shape is the transpose of the shape A(v) as
defined in Chapter 3.

5. Embed U in the shifted shape 6 = (n,n —1,...,1).

6. Fill in the rest of § with 1’,... k' starting from the rightmost column and
labeling each column from bottom to top. This gives the tableau R.

7. Obtain S by adding |u| to each entry of V, and glue R to the left side of S to
obtain 7.
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8. Delete the box containing 1’ from T. If the remaining tableau is not shifted,
apply jeu de taquin to fill in the box. (The procedure known as jeu de taquin is
described at length in [39].) Do likewise for the box containing 2’, then 3', and
so on, stopping after completing the procedure for the box containing %'.

The (shifted) shape of the resulting tableau is AZ(w).

Example 5.2.4. Suppose w = 2143 € G4. Then u = 4123, v = 3214, u = (4,1), and
the tableau V has shape (2,1). Five boxes of § will be filled by primed numbers, and
the algorithm proceeds as depicted in Figure 5-3.

Ll?;;ﬁ” [il2]sTelel7] [ale[s[alel7] [al2[3[4[e]7]
R 1 Y I 7 ) I A
0 L Ki 4]

1]2[3]4]6]7] _)|T2 3[4]6]7] __)[1 2|3]4]6]7] __)|1 2|3]4]6]7]
2 5]5]8 5] L8]

Figure 5-3: Determining the shifted shape of 2143.

The final tableau has shifted shape A?(2143) = (6,2).
Proposition 5.2.5 (Billey-Lam). If w € G2 is vezillary for type B, then

#R(w) = fA°) (5.2)

where fA°®) s the number of standard tableauz of shifted shape A\B(w).

Equation (5.2) will play an analogous role in the proofs of this chapter to that
played by equation (5.1) in [26]. Hooks and hook-lengths for shifted shapes will also
be important tools, as they facilitate the calculation of f*°®). Recall the hook-length
formula for straight shapes (see [39] for a more extensive treatment).

Proposition 5.2.6. For a shape AF N,
A el
UEN
where h(u) is the number of squares in X\ that are
1. In the same column as u but no higher; or
2. In the same row as u but no farther to the left.
There is an analogous formula for shifted shapes (for more information, see [28]).
Proposition 5.2.7. For a shifted shape A\ - N,
PP N! ,
[Luers AP ()
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where hB(u) is the total number of the squares in \B that are
1. In the same column as u but no higher;
2. In the same row as u but no farther to the left; or

3. In the (k + 1)st row of B if u is in the kth column of AB.

[9]6

ot
lr—-lzc\
[

Figure 5-4: Hook lengths for A\B = (5,4, 1). 2 =56.

The final preliminary to proving the main results of this chapter is the following
lemma.

Lemma 5.2.8. For w? € 68 and i€ [0,n—1],

si'wé;s,- = ’wOB.

Proof. For i € [n — 1],

Also,

This indicates a Z/n?Z-action on the set R(w§) defined by
Sir8in """ 8i g F Sig” " Si 5 8is-

As with the other machinery discussed in this section, Lemma 5.2.8 has an anal-
ogous, although not identical, statement in type A which is used in [26].

5.3 Expectation of Yang-Baxter moves

Consider the set R(w§) with uniform probability distribution. Let X2 be the random
variable on reduced decompositions of wf € G2 which counts the number of Yang-
Baxter moves.

Theorem 5.3.1. For alln >3, E(XB)=2—4/n.

Proof. Fix n > 3 and let wf be the longest element in G2. For k > 0, let X2[j, k]
be the indicator random variable which determines whether the factor 4;¢;41%;42 in a
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reduced decomposition i; - - - inz € R(wf) is of either form k(k+1)k or (k+1)k(k+1).

Therefore
n?-2 n-2

E(X2)=>" Y EXZ[j k).

ji=1 k=1

The variables X;B[j, k] and X2[j, k] have the same distribution by Lemma 5.2.8, so
in fact

n—2
E(X7) = (n*—2) Y E(X7[1,k).
k=1
If X2[1,k])(3) =1 for i =4y - - -in2 € R(wf), then
1 € {k(k+ 1kig---in2, (k+ Dk(k+1)ig---in2}.
In both cases, 44 - - - i,2 is a reduced decomposition of

wkd=efsksk+1skw§=_l_~-(k——l) k+2) (k+1)k(k+3) --n.

Notice that wy, is vexillary for type B for all k, as is wf. Therefore, by Proposi-
tion 5.2.5,
n—2 n—2 B (wy,)
By — o9(n2 _ #R(wk) _,, » _ frn
E(X;7)=2(n*-2) k{l ZR(WE) 2(n* —2) ,?:1 -_—f,\B(w{,B) (5.3)

The shifted shapes A\B(wZ) and AB(wy) are easy to determine, as the signed per-
mutation u in Definition 5.2.3 is n---1 in both cases, so no boxes contain primed
entries in the shifted tableau T'. Thus, the shifted shapes are

Mw) = (2n-1,2n-3,...,3,1) and (5.4)
Mwg) = 2n—-1,2n-3,...,2k+5,2k+1,2k,2k—1,...,3,1).

Recall the hook-length formula of Proposition 5.2.7, particularly the definition of
the hooks hZ in shifted shapes. The only hook-lengths that do not cancel in the ratio
fAP(wr) / fAP(wE) correspond to the shaded boxes in Figure 5-5.

Figure 5-5: The shifted shapes AB(wf) and A\B(wy) for n = 8 and k = 2. The shaded
boxes are where the hook-lengths are unequal.
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Consequently, equation (5.3) can be written as

1 2\ —1 n—2
Bt =5(3) > a (5.5)
where
o 35 (2k+3) 3.5 -(2n-2%—1) (%k+4)(k+6)--(4k+4)
kT T4 (2k) 2-4---(2n—2k—4) (2k+1)(2k+3)--- (4k+1)

(4k + 8)(4k +10) - -- (2n + 2k + 2)
(4k +5)(dk+7)---2n+2k - 1)’

and empty products are defined to be 1.

Notice that
Cr+1 2k+3)4k+72k+1)(n—k-2)(n+k+2)

Ce (4k+3)(k+2)2n+2k+1)2n—2k—1)(k+1)

is a rational function in k. Therefore, ZZ;? C} is a hypergeometric series. Following
the notation in [27], equation (5.5) can be rewritten as

By 1(m\7 3/2,7/4,1/2,2—1n,2+n
E(Xn)—:;(z) Co | sFa 3/4,2,1/24n,1/2 —n -1

The hypergeometric series in question can be computed via Dougall’s theorem, as
discussed in [33]. The theorem states that

F a,1+a/2,b,c,d
4 \a/2,1+a-b1l+a—cl+a—-d

_IMl+a—-bl(l+a—c)l(l+a—-d)I(1+a—b—c—d)
T TA+4+al(l+a-b—-c)(1+a-b—dIl(1+a—c—d)

It is not immediately obvious that Dougall’s theorem applies to this particular series
because of a potential pole. However, the theorem does show that

P (3/2, 7/4,1/2,2—n,2 + x) _ r@r@a/2+n)r1/2—z)ln—z —2)
PN 3/4,2,1/24n,1/2—z ) —  T(5/2T(n)T(~z)['(n — z — 3/2)
(=2)n—2(5/2)n—2
(n—1N1/2 = z)n-s’
where (y),, =y(y—1)---(y —m+1) is a falling factorial. Therefore there is no pole

in this situation. Letting x approach n shows that the desired hypergeometric series
has sum n/2.
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Finally,

which completes the proof:

n2

E(XB) = %( 0 ) i 6n(n® ~1)(n/2-1)=2—-4/n.

O

As suggested earlier, it is appropriate that Yang-Baxter moves are approximately
twice as common in elements of R(wg) as in elements of R(wy), as

twd) = ~2(; ) = 2(un)

for w2 € G2 and wy € G,.

5.4 Expectation of 01 moves

As in the previous section, consider the set R(wZ) with uniform probability distribu-
tion. Let Y;2 be the random variable on reduced decompositions of wf € G2 which
counts the number of 01 moves.

Theorem 5.4.1. For alln > 2, E(Y,B)=2/(n?-2).

Proof. Fix n > 2 and let w§ be the longest element in G2. Let Y,2[j] be the indica-
tor random variable which determines whether the factor 4;i;11%;42%;43 in a reduced
decomposition %; - - - iz € R(w) is of either form 0101 or 1010. As in the proof of
Theorem 5.3.1, Lemma 5.2.8 implies that

n2-3

E(Y,B) = _Z E(Y;Blj]) = (n* - 3)E(Y,P[1)).

If YB[1](i) = 1 for i = 4;---iy2 € R(wf), then % is either 010145---in2 or
101045 - - - 3,2. The string 45 - - - 4,2 is a reduced decomposition of

in both situations. As with wy, the signed permutation w' is vexillary for type B.
Therefore
#R(w')

#R(wf)
The shifted shape \2(wg) is as in equation (5.4). Applying Definition 5.2.3 to w’'
proceeds as follows:

AB(w')
2(n® — 3)f———

E(YnB) = 2(n2 - 3) f,\B(wg) .
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1. The signed permutation u is n---312.
The vexillary permutation v is (n — I)n(n — 2)(n — 3) - - - 21.

The partition p is (n,n —1,...,4,3).

B~ W N

The shifted tableau U has shape (n,n —1,...,4,3) and the straight tableau V'
has shape (n — 1,n—2,...,3,2).

[3]2
]/

Figure 5-6: Step (7) of Definition 5.2.3 applied to w'.

Unlike the cases of w§ or wk in the proof of Theorem 5.3.1, there will be boxes of
T containing primed numbers, specifically 1’, 2, and 3/, as in Figure 5-6. However,
removing 1’ leaves a shifted tableau so jeu de taquin is not applied. Similarly, 2’ and
then 3’ can each be removed without performing jeu de taquin. Thus

MNw)=@2n-1,2n-3,...,7,5).

Having determined AZ(w’), it remains to compute the ratio AE@) ) W) yig
Proposition 5.2.7. As in the proof of Theorem 5.3.1, many of the hook-lengths cancel.
Figure 5-7 depicts the only boxes in the two shapes where the hook-lengths differ.

Figure 5-7: The shifted shapes A®(wf) and A\B(w’) for n = 8. The shaded boxes
indicate unequal hook-lengths.

From here it is not hard to compute that

E(YE) = mﬁ-3ﬁ$ﬁ§ﬂﬂ-@m.

(2n — 2)(2n)(2n + 2)
2-4-6

n2—2
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n 2] 3 4 5 6 7 8
E(XB)|-|.6667| 1 1.2 |1.3333 | 1.4286 | 1.5
E(Y,P) [ 1].2857 | .1429 | .0870 | .0588 | .0426 | .0323

Table 5.1: The expected values of X2 and Y, for n < 8, rounded to four decimal
places.

Given Reiner’s result for the longest element in &,, and the results stated above for
G2, it is natural to try to make analogous calculations for the group GP. Some of the
framework from types A and B carries over to type D, but it is not as straightforward.
For example, the correspondence between reduced decompositions of a vexillary ele-
ment and Young tableaux of a particular shape is no longer bijective, as objects are
weighted by different powers of two.
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Chapter 6

Boolean order i1deals in the Bruhat
order for types B and D

6.1 Introduction

As Section 4.3 looks at the permutations in &,, whose principal order ideals in the
Bruhat order are boolean, this chapter answers similar questions for signed permuta-
tions.

Recall that the finite Coxeter groups of types B and D consist of signed permuta-
tions, where G2 C &P is the subset of elements that have an even number of negative
signs when written in one-line notation.

Example 6.1.1. &8 = {12,21,12,21,12,21,12,21} and &2 = {12,21,12,21}.

Like in Section 4.3, the central object in this discussion is the principal order ideal
of a signed permutation in the Bruhat order of the respective groups G2 and &P.
While the definition of this ideal is the same as earlier, it is repeated here in slightly
more generality.

Definition 6.1.2. Let W be a finite Coxeter group of type A, B, or D. Forw € W,
let
Bw)={ve W:v<w}

be the principal order ideal of w in the Bruhat order for W.
The specific group W will be apparent from the context of the discussions below.

The aim of this chapter is to describe exactly when B(w) is boolean for w € G2
and w € GP. The following definition was included in Section 4.3 for W = G,,.

Definition 6.1.3. Let W be a finite Coxeter group of type A, B, or D. The (unsigned
or signed) permutation w € W is boolean if the poset B(w) is a boolean poset.

Recall the proof of Theorem 4.3.2, which began by showing that w is boolean if
and only if some (every) reduced decomposition of w contains no repeated letter. In
fact, the argument for w € &, holds for elements of GZ and &2 as well.
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Proposition 6.1.4. Let W be a finite Cozeter group of type A, B, or D. An element
w € W is boolean if and only if some (every) reduced decomposition of w contains no
repeated letter.

There is a certain resemblance between Proposition 6.1.4 and a result of Fan’s in
[10] for an arbitrary Weyl group W. Fan showed that if the reduced decompositions
of w € W avoid factors of the form sts, then the corresponding Schubert variety X, is
smooth if and only if some (every) reduced decomposition of w contains no repeated
letter.

The classifications of the boolean elements in G2 and G2 in the subsequent sec-
tions rely on Proposition 6.1.4. The next section of this chapter examines the boolean
elements in the group &2, enumerating them for each n as well as by length. The
following section contains analogous results for the boolean elements in the group
&P, As with boolean elements in G, these characterizations are in terms of pat-
terns, although the type B case is more complicated than type A, and type D is more
complicated still.

6.2 Type B

In this section, the Coxeter group W in the definitions of Section 6.1 is equal to G5.
This section answers the question: when is the principal order ideal B(w) boolean,
for w € GB?

Theorem 6.2.1. The signed permutation w € &2 is boolean if and only if w avoids
all of the following patterns.

12 21
321 3412
321 3412
321 3412
12 321

Proof. By Proposition 6.1.4, a reduced decomposition of a boolean element can con-
tain at most one 0. Therefore boolean elements in G2 have at most one negative
value. Thus the patterns 12 and 21 must be avoided. Also by Proposition 6.1.4, the
element w € G2 is boolean if and only if there is a reduced decomposition i € R(w)
having one of the following forms:

1. An ordered subset of [n — 1];
2. 0 {an ordered subset of [n — 1]}; or
3. {an ordered subset of [n — 1]} 0.

Theorem 4.3.2 indicates that ¢ € R(v), for v € &, consists of an ordered subset
of [n — 1] if and only if v is 321- and 3412-avoiding. Multiplying such a permutation
on the left by so changes the sign of the value 1, while multiplying it on the right by
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so changes the sign of the value in the first position. Therefore, in addition to the
patterns 12, 21, 321, and 3412, a boolean permutation in G2 also avoids 321, 3412,
321, and 3412.

Finally, since a negative value can appear in a boolean permutation in G2 only if
it is 1 or occurs in the first position, the permutation must also avoid 12 and 321. O

Proposition 6.1.4 states that w € &2 is boolean if and only if it has a reduced
decomposition whose letters are all distinct. Given previous results, the enumera-
tion of these elements is straightforward. The simple reflections generating G2 are
{50,51,---,8n-1}. Since each of {0,1,...,n—1} can appear at most once in a reduced
decomposition of a boolean element, it is necessary only to understand when two or-
dered subsets of {0,1,...,n — 1} (necessarily having the same length) correspond to
the same permutation. That is, to understand when two such subsets differ only by
a sequence of short braid moves.

Recall the Coxeter relations as defined in Section 2.2. There is a natural bijection
between pairs of commuting elements in {so, s1,...,8,—1} and pairs of commuting
elements in {sy,..., 8,1, n}. Therefore, the work of enumerating boolean elements
in G2 by length was already done in Section 4.3.

Corollary 6.2.2. The number of boolean signed permutations in G2 is equal to Fo, ;.

Proof. The number of boolean signed permutations in G2 is equal to the number of
boolean unsigned permutations in &, ,, which is F,; by Corollary 4.3.4. O

The previous result was also obtained by Fan in [10].
Corollary 6.2.3. The number of boolean signed permutations in GEZ of length k is
equal to
Zk: n+1-1\ (k-1
, k+1—-¢/\i—-1)’
i=1
where the (empty) sum for k = 0 is defined to be 1.
Proof. The number of boolean signed permutations in G2 of length k is equal to the

number of boolean unsigned permutations in &,4; of length k. By Corollary 4.3.5,
this is exactly L(n + 1,k), as defined in equation (4.3). O

6.3 Type D

Throughout this section, the Coxeter group W of Section 6.1 is the finite group G2 of
type D. Once again, the boolean elements of this group are defined and enumerated.
As for types A and B, this characterization is in terms of patterns avoidance.

Theorem 6.3.1. The signed permutation w € G2 is boolean if and only if w avoids
all of the following patterns

81



123 132 213 231 312 321
321 3412

321 312 3412 3421

321 231 3412 4312

12 321

321 3412

Note that not all of these patterns are themselves in G2, as some of them have an

odd number of negative values in one-line notation.

Proof. By Proposition 6.1.4, a reduced decomposition of a boolean element can con-
tain at most one 1’. Therefore boolean elements in G2 have at most two negative
values. Thus the patterns 123, 132, 213, 231, 312, and 321 must be avoided. Also
by Proposition 6.1.4, the element w € G2 is boolean if and only if there is a reduced
decomposition © € R(w) having one of the following forms:

1. An ordered subset of [n — 1];
2. 1’ {an ordered subset of [n — 1]}; or
3. {an ordered subset of [n — 1]} 1’.

Theorem 4.3.2 indicates that ¢ € R(v), for v € &, consists of an ordered subset
of [n — 1] if and only if v is 321- and 3412-avoiding. Multiplying such a permutation
on the left by s;» maps the value 1 to 2 and the value 2 to 1, while multiplying it
on the right by si- sends the permutation v € &,, to v(2)v(1)v(3) - - -v(n). Therefore
in addition to the patterns mentioned previously, a boolean permutation in 65 also
avoids the patterns 321, 312, 3412, 3421, 321, 231, 3412, and 4312.

Finally, since negative values in a boolean permutation in G2 can only appear
either as 1 and 2 or in the first two positions, it is not hard to see that the permutation

must also avoid the patterns 12, 321, 321, and 3412. O

It is instructive to compare those patterns that must be avoided by boolean ele-
ments in the three Coxeter groups considered in this thesis. In the case of types B
and D, these fall into two categories, depending on whether or not they concern the
number of negative signs that can appear in a boolean element. Table 6.1 displays
this comparison.

Asin types A and B, the boolean elements in type D can be enumerated. However,
this enumeration is not as simple to state as in the other types. Fan computed these
values in [10], with the following results.

Corollary 6.3.2 (Fan). For n > 4, the number of boolean elements in G2 is

n

18-4b , 18-4a,,
a?(a — b) ’(b—a) ’

where a = (3 4+ v/5)/2 and b= (3 — V/5)/2.
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S, |6F | &P

Not describing signs | 321 [ 321 | 321

3412 | 3412 | 3412

321 1321 312
3412 | 3412 3421
321 321 231

3412 | 3412 4312

12 12

321 | 321

321

3412
Describing signs 12 123 132 213
21 231 312 321

Table 6.1: Patterns that must be avoided by boolean elements in &,,, G2, and G2.

Corollary 6.3.3. For n > 1, the number of boolean elements in G2 having length
k<nis

LP(n,k) ¥ L(n,k) + 2L(n,k—1) = L(n—2,k— 1) — L(n— 2,k—2),  (6.1)

where L(n, k) is as defined in equation (4.3), and L(n, k) is 0 for any (n,k) on which
it is undefined. LP(1,0) =1 and LP(1,1) = 0.

Proof. These enumerative results follow from Theorem 6.3.1 and Corollary 4.3.5. The
subtracted terms in equation (6.1) resolve the overcounting that occurs when the
reduced decompositions of a boolean element contain 1’ but not 2. In such a situation,
either the leftmost letter or the rightmost letter can be 1’. The case n = 1 must be
treated separately because the only element in GP is the identity. O

For small n and k, the number of boolean elements in G2 of length k are displayed
in Table 6.2.

LPnk)|k=0 1 2 3 4 5 6 7 8
n=1 1 0

2 1 2 1

3 1 3 5 4

4 1 4 9 13 8

5 1 5 14 26 30 16

6 1 6 20 45 69 68 32

7 1 7 27 71 133 176 152 64

8 1 8 35 105 230 373 436 336 128

Table 6.2: The number of boolean elements of each length in GP,... &P. Missing
table entries are equal to 0.
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type D, 19
Aflip, 37

hook-length formula
shifted shape, 72
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hypergeometric series, 75

hyperoctahedral group, 19

indecomposable, 50
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inversion set, 17
isolated, 33

length, 17, 19
longest element
S,, 17
G5 18
G219

move
01, 20
short braid, 20
Yang-Baxter, 20

obstruction, 26

one-line notation, 17

order ideal, 21
principal, 21

permutation
boolean, 53, 79
freely braided, 46
pattern-interval, 63
power, 58
signed, 18
unsigned, 17

permutation pattern
occurrence, 21
signed, 21
unsigned, 20

poset of zonotopal tilings, 44

reduced decomposition, 19

shape, 27, 70

shift, 28

shifted shape, 70

simple reflection, 18
simplicial poset, 62
standard Young tableau, 70
stretch, 66

subword property, 22
symmetric group, 19

tiling
rhombic, 37
zonotopal, 41

vexillary
type A, 27
type B, 71
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