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ABSTRACT

Object-Process Methodology and Axiomatic Design are presented as two
fundamentally different methods for representing systems. Strengths of the two
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complementary. When applied together as an integrated framework, they provide a
system architect descriptive and evaluative capability unavailable from either
methodology alone.
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1. Introduction

Representing systems well is an important task and tool for system architects. A

good representation not only communicates what the system is and how it operates, it

helps the architect develop the system, providing a means for organizing elements,

understanding functional relationships, identifying critical interfaces, and guiding

improvement. Many methods for representing systems are available, but each has its

own particular strengths and weaknesses.

Two methods that have gained some prominence during the past decade are

Object-Process Methodology and Axiomatic Design. Both provide useful

representations of systems, but in fundamentally different ways. Object-Process

Methodology is a descriptive method. It represents systems through visual diagrams

and textual descriptions. Axiomatic Design is an evaluative method. It represents

systems through matrices that depict the presence of important functional relationships.

Its axioms provide the basis for judging whether or not a design is "good."

This thesis is the first work to extensively examine the relationship between

Object-Process Methodology and Axiomatic Design. It demonstrates that they are

complementary design methodologies. When applied together as an integrated

framework, they provide a system architect descriptive and evaluative capability

unavailable from either methodology alone.

1.1 Object-Process Methodology

Professor Dov Dori has described Object-Process Methodology (hereafter

referred to as OPM) as "a system development methodology that integrates function,
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structure and behavior in one model." [Do1] OPM provides methods for representing

systems both graphically and textually. Graphical representations, known as Object-

Process Diagrams (OPDs), convey complex interconnections and non-linear

relationships according to established standards with brevity and clarity. Textual

representations, composed in Object-Process Language (OPL), provide a corresponding

English language script that expresses the contents of each OPD verbally. Together, a

set of OPDs and the corresponding OPL script, specify a system. By allowing a system

architect to articulate system function and contents as complementary visual and verbal

expressions, OPM helps manage system complexity and reduce complicatedness for

both designers and implementers.

OPM is a radical departure from the Object-Oriented approach that has been the

prevailing paradigm in software system development for the past 10-20 years. OPM

recognizes processes as stand-alone entities in addition to objects. Dori states: "The

basic premise of OPM is that objects and processes are two types of equally important

classes of things. Together, objects and processes faithfully describe the system's

structure, function and behavior in a single, coherent model, in virtually any domain."

[Do2, 1.2, p.7]

The elements of OPDs fall into three categories: entities, procedural links, and

structural relations. Dori has summarized the elements of OPD in the following tables

(reprinted here with permission).
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Entities are objects (symbolized by rectangles), processes (ellipses), and states

(rounded-corner rectangles within objects).

OPM Entities: The Building Blocks

Visual
Representation

Object

Textual Form

Nouns; first letter in
every word is
capitalized

Definition

An object is a thing
that has the potential
of stable, uncon-
ditional physical or
mental existence.

Description

Objects are static
things, which can be
generated, changed,
or consumed only by
processes.

Nouns in gerund A process is a Processes are

Process(ing) form; first letter in pattern of trans- dynamic th ns.

every word is formation that an change or consume
capitalized object undergoes. objects.

Object

state
Nouns, adjectives or
adverbs; non-
capitalized

A state is a situation
an object can be at.

An object is at some
state. A process
can change an
object's state.

Table 1.1: OPM Entities [Do2]
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Various directed lines that connect processes to objects represent procedural links.

These links express transformations arising within or from the system and may be made

possible by process enablers.

Procedural Links: Connect Objects to Processes

Name Symbol OPD OPL Description

Con- Processing Process uses object
sumptio Object consumes up entirely during its

Object. occurrence.

Process creates an
Result Pbcestgcessbng entirely new objectyields Object. during its occurrence.

Processing The object is at input
n Object hangs state prior to theIn pt &C i ut tat ) '~iit sat~ changes

InputObeinput state roe process occurrence,
Output .Object from and at output state as

Processinginput state to a result of its
output state. occurrence.

Process changes the
Effect Processing Object Processing state of the object in

affects Object. an unspecified
manner.

Object is a human
Object that is not changed

Agent Object Processing handles the process;
Procesing. process needs theProcessing. agent object in order

to occur.

Object is a non-
human that is not

Instru- Processing changed by the
mnt Object Processing requires process; process

Object. needs the instrument
object in order to
occur.

X Processing First process directly
Invo- X Processing Xnvokes Y starts up a second
cation Y Processing process, without an

Processing. intermediate object.

Table 1.2: OPM Procedural Links [Do2]
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A set of triangular symbols represents fundamental structural relations.

Fundamental Structural Relations: Reveal Entity Structure

Full Name
(Shorthand Symbol OPD OPL Description

Name in bold)

A
Aggregation- A consists of B, B, C and D are parts of
Participation C, and D. the whole A.

A B,Cand Dare
Exhibition- A exhibits B, C, attributes of A.

Characterization and D. (if B is a process, it is
an operation of A.)

Generalization- B, C, and D are B, C and D are types
Specialization As. of A.

B C D

A
Classification- AB, C, and D are B, C and D are unique
Instantiation L Y\instances of A. objects of the class A.

Table 1.3: OPM Structural Relations [Do2]
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General structural relations are denoted by tagged structural links customizable

to the specific system.

Tagged Structural Links: Typically Link Objects, but May also Link Processes

Name SymbolIOPD OPL Description

Relation from
source object to
destination object;

Tagged R Objectto R Object refers to S relation name is
Object. entered by

architect, and is
recorded along
link.

Relation from
(Null) R Object S Object R Object relates to S source object to

Object. destination object
with no tag.

Relation between
R Object precedes two objects;

Bi- R Object precede, Sobject S Object. relation names are
directional Ifollows entered by

Tagged S Object follows R architect, and are
Object. recorded along

link.

(Null) R Object and S Relation between
Bi- R Object S Object Object are two objects with no

directional equivalent. tag.

Table 1.4: OPM Tagged Structural Relations [Do2]
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The best way to learn OPM is through examples. The following diagram shows

an example of a car stopping system. The details included in the diagram are selected

to show a variety of OPM constructions.

Car A1

4 Power- Body Electrical

train System

Velocity Interior Chassis
zero non-zero )

A 2

5 6 Braking
6 System

Stopping A 3

Driver ABS

Figure 1.1: Example Object Process Diagram

Each of the links in the diagram corresponds to an OPL sentence. Numeric

annotations are included in this diagram to help identify the link with its corresponding

sentence.

1. Car consists of Powertrain, Body, Electrical System, Interior and Chassis.
(Aggregation Sentence)

2. Chassis consists of Braking System. (Aggregation Sentence)

3. ABS is a Braking System. (Specialization Sentence)

4. Car exhibits Velocity, which can be non-zero or zero. (Exhibition and State
Enumeration sentence)

5. Stopping changes Velocity from non-zero to zero. (Change sentence)

6. Stopping requires Braking System. (Instrument Sentence)

7. Driver handles Stopping. (Agent Sentence)
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1.2 Axiomatic Design

Axiomatic Design is a method for designing systems developed from an

essentially different point of view than OPM. While OPM strives to provide a rich and

flexible, yet standard, framework for describing systems, Axiomatic Design provides a

decision-making process for constructing good designs according to basic principles or

axioms. Professor Nam Suh, the developer of Axiomatic Design, states, "In order to

obtain better performance, both engineering and management structures require

fundamental, correct principles and methodologies to guide decision making in design;

... the fact that there are good design solutions and unacceptable design solutions

indicates that there exist features or attributes that distinguish between good and bad

designs... the features associated with good design may have common elements.

These common elements may then form the basis for developing a unified theory for the

synthesis process." [Sul, p.5] The synthesis process Professor Suh refers to is the

design of any system. Axiomatic Design is the unified theory he developed by

identifying the common elements of good designs.

The fundamental elements of an Axiomatic Design analysis are Functional

Requirements (FRs) and Design Parameters (DPs). The goals of a system architect

need to be translated into FRs, which define the problem to be solved in terms of desired

function. In determining FRs for an original design it is important to define them in a

solution-neutral form. DPs are the physical solutions selected to satisfy the FRs. Both

FRs and DPs have hierarchies and can be decomposed. Professor Suh argues that

"FRs at the ith level cannot be decomposed into the next level of the FR hierarchy

without first going over to the physical domain and developing a solution that satisfies

the lth level FRs with all the corresponding DPs. That is, we have to travel back and

forth between the functional domain and the physical domain in developing the FR and
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DP hierarchies." [Sul, p.36] Especially at high levels of the decomposition, DPs may be

thought of as concepts selected for embodying function in form. At lower levels of the

decomposition, DPs can be the actual parts used in the design, thus DPs describe form

directly.

In a proper Axiomatic Design decomposition, each FR at each level of the

decomposition has a corresponding DP intended to satisfy that FR. This relationship

between the functions and physical design variables is key to defining a good design. It

is the subject of the first axiom upon which Professor Suh bases his theory:

Axiom 1, The Independence Axiom

Maintain independence of FRs.

An alternate form of this axiom describes in more detail what is meant: "In an

acceptable design, the DPs and FRs are related in such a way that a specific DP can be

adjusted to satisfy its corresponding FR without affecting other functional requirements."

[Sul, p.48]

Evaluating whether the Independence Axiom is satisfied is accomplished by

constructing a design matrix that lists FRs down the left-hand side and DPs across the

top. In a simplified form of the matrix, an "ix" is entered in each square for which the

corresponding DP (listed at the top of the column) affects the corresponding FR (listed at

the left of the row). A simple example illustrates this.

DPI DP2

FRI x x

FR2 x 0

Table 1.5: Example Design Matrix
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In this design matrix, FR1 is affected by adjustments in both DP1 and DP2. FR2

is affected only by adjustments in DP1. In general, good designs can be represented by

lower-triangular matrices (all entries below the main diagonal are zero). Such designs

are called "decoupled." The design represented in Table 1.5 is such a design because

its elements can be rearranged to obtain a lower-triangular matrix. Ideal designs can be

represented by diagonal matrices (all entries off the main diagonal are zero). Such

designs are called "uncoupled."

DPI DP2 DP3 DP4 DPI DP2 DP3 DP4

FRI x 0 0 0 FRI x 0 0 0

FR2 x x 0 0 FR2 0 x 0 0

FR3 x x x 0 FR3 0 0 x 0

FR4 x x x x FR4 0 0 0 x

Table 1.6: Decoupled Design Table 1.7: Uncoupled Design

In uncoupled designs, each FR has one and only one DP whose adjustment

affects it. This means that satisfying the FRs is a straightforward task of adjusting each

DP to the proper setting. Work on each DP to achieve each FR can proceed in parallel

without worry about interactions between various DP settings. For decoupled designs,

the task of satisfying all FRs is more complicated but still achievable. Identifying DP

setting adjustments must be done in order. For example, in Table 1.6, the setting for

DP1 may be fixed first. Although this affects FR2, FR2 can still be achieved by fixing

DP2 appropriately. Both DP1 and DP2 affect FR3, but FR3 has another degree of

freedom, it can be achieved by fixing DP3. Proceeding in this order, all FRs can be

satisfied.

In a precise application of Axiomatic Design, design matrices are actually

specified by matrix equations. For a given vector {FR} of functional requirements, the

14



design process is defined as choosing a correct set (or vector) of design parameters

{DP} that satisfactorily solves the equation {FR}=[A]{DP}. In this formulation, [A] is the

design matrix:

~4A1 A2 ... An
A21 A22 A2n AFR

[A]= [. . .withA .
: : : '' DP

A, Am2 Amn 

Equation 1.1: Design Matrix Equation

1.3 Connecting OPM and Axiomatic Design

The purpose of this thesis is to advance both OPM and Axiomatic Design by

applying the strength of each to enhance the other. This includes using the descriptive

capabilities of OPM to develop better guidelines for systematically representing system

architecture in terms of FRs and DPs and using the evaluative principles of Axiomatic

Design to identify patterns in OPDs that indicate how well a design adheres to the

Independence Axiom.

Chapter 2 outlines a standardized strategy for representing system function and

architecture using OPM. It argues that adequate description of both function and

architecture requires a combination of objects and processes. In the case of functions,

the object corresponds to an operand; the process describes the intended service or

use. In the case of architecture, the object corresponds to system structure; the process

describes system behavior. These combinations of objects and processes conform to

straightforward patterns in OPM; thus it is possible to construct OPM templates for

representing function and architecture. The chapter concludes with a discussion of the

"concept mapping" between function and form. Experts in system architecture have

15



described form being mapped to function via concept. This takes on an explicit meaning

through the OPM notion of specialization.

Chapter 3 applies the conclusions of Chapter 2 regarding generic function and

architecture to develop guidelines for developing good FRs and DPs. It includes a

general discussion on writing good requirements along with a brief example of how OPM

might be used to represent system constraints. It provides an analysis of FRs and DPs

from several examples and illustrates how the FR-DP decomposition is expressed by

specializing an FR-related process describing intent to a DP-related process describing

behavior.

Chapter 4 explores how certain patterns in OPDs reveal a design's adherence to

Suh's Independence Axiom. Objects and processes in OPDs are connected by links

indicating various effects. Paths of links that form loops correspond to coupled designs

that violate the axiom. Paths comprised of a single link appear in the OPDs of

uncoupled designs that comply with the axiom. The chapter concludes with a general

discussion of how the existence in OPDs of lengthy and looping effect paths indicates

undesirable complexity in a design.

16



2. Representing Function and Architecture through OPM

2.1 The WHATs and HOWs of Design

The "WHAT-HOW' decomposition is a classic approach to system design

problems. WHAT refers to what is desired-an objective or requirement. HOW refers

to how the objective or requirement is fulfilled. An entire system can be detailed by

successively identifying the WHATs and HOWs at each level of the design hierarchy.

Among the system development methods that employ this paradigm are Quality

Function Deployment and Axiomatic Design.

The QFD Framework for Design

Quality Function Deployment (QFD) was conceptualized in Japan in the 1960's,

applied in Japanese industries in the 1970's, and applied in US industries in the 80's. It

is a method for systematically identifying and implementing customer-desired

functionality in designs.

"QFD starts with a list of objectives, or the WHATs that we want to
accomplish. In the context of developing a new product, this is a list of
customer requirements and is often called the Voice of the
Customer.. .Once the list of WHATs is developed, each will require further
definition. We refine the list into the next level of detail by listing one or
more HOWs for each WHAT..." [ASI, p. 3-5, 3-6]

QFD relates WHATs to HOWs through use of a series of interconnected matrices, often

referred to as "Houses of Quality." WHATs are listed down the left-hand side of the

matrix, HOWs are listed across the top. The extent to which each HOW is capable of

influencing or satisfying each WHAT is recorded at their intersection cell in the matrix. In

practice, there are many methods for doing QFD, championed by a variety of

practitioners. There are also a variety of descriptions of WHATs and HOWs. WHATs
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are designated by titles such as "Customer-desired Qualities," "Customer Wants",

"Customer Needs," or "Requirements". "Think of them as what the customer wants-the

individual characteristics of the product, service, or problem... Qualities, attributes, and

requirements are all Whats." [GP, p. 48]. The corresponding HOWs are designated by

titles such as "Technical System Expectations", "Functional Requirements", "Company

Measures", or any of several others. One particularly expansive definition of HOWS

reads, "Hows are ways of achieving Whats. Virtually any idea that can help solve a

problem is a How. Hows consist of processes, facilities, and methods. They are also

people, departments, and functions in organizations." [GP, p. 67] From the many

interpretations and labels, it would be difficult to distill an exact, agreed definition of

these terms and clear guidelines for what kind of items ought to be captured in these

categories.

Axiomatic Design Framework

One of the purposes of Suh's Axiomatic Design is to make the design process

more rigorous. He states: "[a] rigorous design approach must begin with an explicit

statement of 'what we want to achieve' and end with a clear description of 'how we want

to achieve it."'

What we 1110 How we

want to want to

achieve * achieve

it

Figure 2.1 Suh's Mapping that Defines Design [Su2, p.3]

Suh expands on the ideas in QFD to try to make clear the domains in which the

WHATs and HOWs reside: "Design involves a continuous interplay between what we

want to achieve and how we want to achieve it... the objective of design is always stated

18



in the functional domain, whereas the physical solution is always generated in the

physical domain." [Sul, p.25, 26] It is corresponding to these two domains that Suh

establishes his version of WHATs and HOWs: FRs and DPs. "Once we understand the

customer's needs, this understanding must be transformed into a minimum set of

specifications, which will be defined later as functional requirements (FRs) that

adequately describe 'what we want to achieve' to satisfy the customer's needs. The

descriptor of 'how we want to achieve it' may be in the form of design parameters (DPs)."

[Su2, p. 4]

Existing Definitions of FRs and DPs

Suh says that FRs must be established "from the needs the final product or

process must satisfy." [Sul, p. 30] He defines FRs as "[a] minimum set of independent

requirements that completely characterize the functional needs of the product (or

software, organizations, systems, etc.) in the functional domain." In order to make the

Independence Axiom operational, he adds "[b]y definition, each FR is independent of

every other FR at the time the FRs are established." [Su2, p. 14] Thus, for original

systems, the top-level FRs are defined to be independent automatically. The

Independence Axiom then requires that architects maintain this independence as they

select DPs to satisfy the FRs and further decompose the system. In practice,

independence is demonstrated using the design matrix. In improving an existing

system, the architect may find that independence was not maintained. In this case, an

analysis of coupling in the system using the design matrix reveals areas in which the

design may be improved.

Suh places DPs in the physical domain. In his first book, he describes DPs as

the "physical embodiment... chosen to satisfy the FRs." (Sul, p. 26] He clarifies, "by the

word physical we include all things that generate desired output." [Sul, p. 38] Suh's
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definition in his second book is slightly more precise: "Design Parameters are the key

physical variables (or other equivalent terms in the case of software design, etc.) in the

physical domain that characterize the design that satisfies the specified FRs." [Su2, p.

14]

Constraints

In addition to FRs, a system architect must satisfy constraints, which Suh

describes as "Bounds on an acceptable solution." [Sul, p. 39] As Pahl and Beitz

observe: "The fulfillment of the technical function alone does not complete the task of

designers... the solution of technical tasks imposes certain constraints or requirements

resulting from ergonomics, production methods, transport facilities, intended operation,

etc." [PB, p. 45] Other constraints arise from considerations of economic feasibility,

safety, and environmental concerns. Under the Axiomatic Design framework,

constraints do not have to be independent of other constraints or FRs; thus the ability to

clearly distinguish FRs from constraints is important for setting up the design problem.

Chapter 3 discusses the distinctions between FRs and constraints in more detail.

WHATs, HOWs and OPM

Suh's definitions of FR and DP help clarify the meaning of WHAT and HOW and

add rigor to the design process, but there is an opportunity to introduce even more rigor.

The definitions contain the terms function, functional need, and physical embodiment.

These are terms that could be more precisely defined via OPM. OPM supplies the

fundamental building blocks of objects and processes and formal rules for combining

them that provide more precise and consistent definitions.

What is the correspondence between Objects and Processes and FRs and DPs?

Our first impulse may be to think of simple answers to the questions WHAT and HOW?

One might reasonably think that WHATs should be expressed as objects (typically

20



associated with nouns) and HOWs should be expressed as processes (typically

associated with verbs). However, this association is exactly opposite of a

recommendation by Suh: "It should be noted here that all FRs are stated starting out

with verbs. This is a good way of distinguishing a FR from a DP, which should start with

a noun, if possible." [SCL, p.3]

Many techniques for identifying system function employ the "verb-noun" rule,

which specifies that a function be described by an active verb together with a noun.

Examples might be "support weight," "control speed," "lift object," etc. The implication

of this for representing WHATs in OPM is that a fully expressed FR ought to be

portrayed by at least one object and one process together with an effect link. In fact, in

OPM "no process exists unless it is associated with at least one object, for the

transformation of which it is responsible," (Do2, p. 70].

In distinguishing FRs from constraints, Suh says "a specific range of design

values must be maintained for each FR at all times," [Sul, p.29]. Maintaining the level of

design values within the desired range is the requirement. In OPM, the level of the

design value is an object that can be represented with various attribute values or states.

Changing the level is accomplished by a process, for only a process can change the

attribute values or states of objects.

While characterization of an FR requires both an object and process, it might

seem that because a DP is a physical concept, it could be sufficiently characterized by

objects alone. However, such a characterization would neglect a fundamental

relationship between FRs and DPs. The Design Matrix equation (Equation 1.1)

expresses elements A4 of the design matrix as partial derivatives of FRs with respect to

DPs.
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A aFR

This formulation implies that some characteristic of a DP is changeable, and this change

can affect the FR. Thus as an answer to the question HOW? the physical aspect of a

DP, represented by objects, is inseparably connected to a dynamic aspect represented

by processes.

Dori suggests a HOW is properly expressed as an architecture-a

structure/behavior combination that attains the WHAT, i.e., the function. In OPM,

structure is represented by objects connected by structural links; behavior is represented

by processes that affect objects depicted through the connection of these processes and

objects by transformation links.

The observations made so far suggest that both WHATs and HOWs ought to be

defined as combinations of objects and processes. In order to arrive at this conclusion

rigorously, it is necessary to now review and settle on clear definitions of function and

architecture using the language and rules of OPM.
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2.2 What is Function?

The word "function" has a variety of meanings depending on its context. It is

useful to review these definitions in order to arrive at a working definition for this thesis.

Standard English Language Definitions

The Oxford English Dictionary provides the following definitions of function:

1. In etymological sense: The action of performing; discharge or
performance of (something).

2. Activity; action in general, whether physical or mental.

3. The special kind of activity proper to anything; the mode of action by
which it fulfils its purpose. Also in generalized application, esp. (Phys.) as
contrasted with structure.

These definitions contain three key elements that generally appear in more

specialized definitions: action, performance, and fulfilling a purpose.

Mathematics Definition

The mathematical definition of a function is perhaps the most specialized and

restrictive: "An association of exactly one object from one set (the range) with each

object from another set (the domain)." [JJ, p.153] The key idea here is that a function

relates or associates entities with other entities and only one entity in the range may be

associated with any item in the domain.

Programming Definitions

Function used in the context of computer programming generalizes the

mathematical definition: "Functions are among the most common kinds of relationship.

In functional relationships, at least one direction of the relation associates a single

element of one domain to those in the other." [De, p. 53] Sometimes function is used

interchangeably with operation or subroutine. For example, an operation can be defined

as, "[t]he action of an operator or function, which takes one or more pieces of data and
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produces a new piece of data." [CST, p. 372, 629] This definition suggests the idea of

input and corresponding output, which is represented in OPM by processes that

transform objects.

Axiomatic Design Definition

In the realms of system and product design, definitions of function become less

precise. Suh defines the word function rather generally: "By the word function we mean

the desired output." [Sul, p. 38] Again, this definition emphasizes output, but it also

includes the element of desire (i.e., intent). In creating a system, the architect intends to

provide a service for the system users and beneficiaries. Of course, what is a service to

one may be a disservice to another. From this point of view, a system's function is

subjective-perhaps identified differently by the architect and individual users.

System and Product Development Definitions

In the context of explaining system architecture, Crawley describes function as

"The activities, operations and transformations that cause, create or contribute to

performance (i.e., meeting goals), or the actions for which a thing exists or is employed."

[Cr2, 1/19, p. 6] This definition preserves the key ideas of action, performance, and

fulfilling a purpose and is generally applicable to all kinds of systems.

As people have devised specific approaches to developing systems, more formal

definitions and rules for stating functions have been developed. This is especially true in

the area of product development. For example, identifying function is a key step in the

beginning of Failure Mode and Effects Analysis (FMEA) applied to the development of

new products. The Ford Motor Company FMEA handbook gives the following rules for

identifying functions:
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A description of the Function should answer the question: "What is this
item supposed to do?" Functions are design intent or engineering
requirements. Functions are:
* Written in Verb/Noun/Measurable format.
* Measurable...
* Design intent or engineering requirement
* Representation of all wants, needs and requirements, both spoken

and unspoken for all customers and systems
[Fol, p. 4-21]

These rules maintain key elements seen in the preceding definitions, but they

extend too broadly to be considered rigorous. For example, an engineering requirement

should stem from a function but should not be confused with the function itself.

Furthermore, describing functions as representations of all "wants, needs and

requirements..." is simply too expansive to be useful.

A better set of rules for describing function is provided by Otto and Wood who

follow the guidelines of Pahl and Beitz:

"A function of a product is a statement of a clear, reproducible relationship
between the available input and the desired output of a product,
independent of any particular form... The product function is the overall
intended function of the product-what it is to do; [it] is the simplest
representation of the product, usually just a noun and an active verb."
[OW, p. 151]

This description captures two important ideas. First, function is independent of form.

This is important because it distinguishes function from the behavior of a particular

design solution. It means more than one design solution can fulfill the same function.

Second, functions can be stated using a noun-active verb combination. This

corresponds nicely to an object-process classification of functions that will be developed

rigorously using OPL and OPDs.

Pahl and Beitz, who have developed an extensive methodology for engineering

design, apply the term function specifically to the conversion of energy, material, or

signals in engineering applications. They capture the flow of these items within a system

in diagrams known as function structures. Examples of functions recorded in these
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diagrams might be "increase pressure," "transfer torque," or "reduce speed." While

OPM is capable of depicting a much broader range of function, the discipline of this

approach can be helpful to any architect developing an engineered system.

OPM Definition: Function vs. Behavior and Structure

The key elements of action, performance, and fulfilling a purpose seem to appear

in some form in each of the design-related definitions of function. Dori captures these

elements in his OPM-based definition: "Function is an object attribute that describes

what the object does, what phenomenon it exhibits, what service it supports, or what it is

used for. ... [Its definition] emphasizes the 'what' aspect and is not concerned with the

'how.' This distinguishes function from dynamics, as dynamics is about how the object

operates, while function is about what it does." [Do2, p. 97, 4.1.2]

Dori goes on to distinguish function further from structure and behavior. "...the

system's function dictates the structure of the system and the way this structure

operates-its behavior, or dynamics. A unique combination of structure and behavior

enables the system to function-to achieve the goal for which it is designed." [Do2,

p.110, 4.4.2]

These explanations are in line with Otto and Wood's observation: "[Function] is

what a system does as opposed to what it is." [OW, p. 165] Dori would elaborate even

further using OPM:

* What the system does is its dynamics (or equivalently, its behavior)

" What the system is, is its structure.

* What purpose the system serves for the beneficiary is its function.

This perspective allows function to be defined subjectively-relative to intent. So,

depending on the purpose they wish to achieve, a system architect or system user may

state function differently for the same system. Dori contends that the term "system" itself
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is subjective. "Whether or not an object is a system is in the eye of the beholder." [Do2,

p. 101] Formally he defines a system as "an object that carries out or supports a

significant function." [Do2, p. 99]

Although this subjectivity might be confusing when trying to represent a system

via OPDs, it is necessary to address these different perspectives unless portions of the

system's purpose or use are to be ignored. For example, Chapter 3 includes a

discussion on how to incorporate intent and perspective in OPDs in order to preserve

this information for future architects or users to whom this information may be unclear.

The Dynamic and Static Aspects of Function

The groundwork has been laid for discussing how function should be represented

in OPM. Certainly the "action" element of function relates to processes. Otto and Wood

make this connection explicit: "A function is defined in terms of a description of a

process." [OW, p. 165] Thus, functions have a dynamic aspect, represented by

processes. These processes describe the architect's intended service to be provided by

the system or the user's intended use of the system. Consider a freezer, one of Nam

Suh's basic examples: the intended service to be provided by the freezer is Food

Preserving, which is a process in OPM. The process is accomplished through

subprocesses that freeze the food and ensure air temperature is kept within desired

limits.

Crawley acknowledges the "process element" of function, but also identifies the

other critical element that has appeared frequently in our discussion: intent. "Function is

process with intent." [Cr1, 9/9, p. 24] However, intent expressed as a process is

incomplete without an associated object. This follows a basic tenet of OPM: "no process

exists unless it is associated with at least one object, for the transformation of which it is

responsible." [Do2, p. 70] Thus functions have a static aspect, represented by an object,
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which is the function operand. In OPM an operand is called a "transformee" in order to

emphasize that some process transforms the object. Related attributes and parts of the

object are also static aspects of the function. In the freezer example, food is the

operand; the freezing process transforms it so that its spoilage rate is significantly

slowed.

A Generic OPM Template for Function

In general, OPM can be used to portray functions, capturing both their dynamic

and static aspects. Figure 2.2 portrays an OPM template for a generic function. (Note

that in OPDs throughout this thesis, elements drawn with dotted lines and words in bold

italic font are annotations that are not part of the actual diagram.)

Function

Operand

Attribute

Original (Iintendd
Value Value

Attribute
Transforming

Intent

Process

Figure 2.2 OPD and OPL Script for a Generic Function

The dynamic aspect of function appears in the OPD in Attribute Transforming, a

process. The static aspect appears in the Operand and Attribute, objects. Intent

appears in these objects through values of Attribute. It is possible to simplify the OPD

28

Function exhibits Attribute
Transforming and Operand.

Operand exhibits Attribute with
values Original Value and Intended
Value.

Attribute Transforming changes
Attribute of Operand from Original
Value to Intended Value.



by omitting Attribute and drawing an effect link directly between Attribute

Transforming and Function Operand. However, Attribute is included explicitly in this

general case because it often corresponds to a metric that is important to the system

architect or user.

Based on definitions in the system engineering and product development

literature, this template should lead to valid representations of function in OPM.

Certainly there is a correspondence between the "noun-verb" concept of a function and

the Operand Attribute/Attribute Transforming structure in the OPD. The description

of what a system does as opposed to what it is is also clear: Attribute Transforming

describes what the system does, while the diagram includes no description of any

system. Finally, Suh's notion of "desired output" is represented by the intended value of

Attribute.

However, the only way to really validate the template is to develop examples.

Many authors have classified various types of function. Pahl and Beitz summarize some

of these classifications and make use of one based on the work of Krumhauer. These

"generally valid functions" [PB, p. 34] are formulated with specific input-output

relationships, useful for their ability to be represented in computer applications during the

conceptual design phase. The following table lists these functions:

Input(l)/Output(O) Generally Valid Explanation
Characteristic Function

Type Change Type and outward
form of I and O differ

Magnitude Vary I < 0
1 > 0

Number Connect Number of I > 0
Number of I < 0

Place Channel Place of I $ 0
Place of I = 0

Time Store Time of 1$ 0

Table 2.1: Pahl and Beitz List of Generally Valid Functions [PB, p.36]
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The correspondence between each of these functions and the generic OPM

template is straightforward. The Input/Output Characteristic listed in the table

corresponds to an attribute of an operand; the Generally Valid Function corresponds to a

process; the Explanation describes the change in states of the attribute. The "Store"

function might be considered problematic because Time is listed as a characteristic, and

in OPM time is typically associated with processes and not used to characterize objects.

In this case, Time may be considered to characterize the "time spent by an object in a

certain state." The Storing process belongs to a class of processes Dori calls "State

Maintaining Processes." These processes are associated with verbs whose meaning is

to maintain an object as it is for some more time, e.g., maintaining, containing,

prolonging, etc. Representation of these processes in OPM includes the use of a

special "state-maintaining" link that will appear in some upcoming examples.

Little, et al, have prepared a similar "Limited Syntax" classification of function that

includes several subcategories for each of the classes: Channel, Support, Connect,

Branch, Provision, Control Magnitude, Convert, and Signal. [Cr2, 1/19/01]

Correspondence between these functions and the generic OPM template would be

similar to that outlined above. OPM is flexible enough to model these functions as well

as more general functions that convey even high-level intent of system architects.

Presented here are some OPD renderings of function based on simple systems

mentioned by Suh and Dori. These examples capture the initial idea in a system's

development, displaying intent with an associated process. Design solutions to achieve

the intent are not included in the diagrams, but will be added in future extensions of the

examples. Each example identifies the perspective from which the intent is being

modeled (system architect or user), the function operand, the service or use intended,

the attribute being affected, and the target value of the attribute.
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Example 2.1: Food Preserving

A person desires a system to preserve food. Is this a function? Can this desire

be described as a "process with intent?" One may argue whether "preserving" properly

conveys a "pattern of transformation" [Do2, p. 70] that defines a process. However, it is

not hard to formulate the desire in terms of the change intended. Process-oriented

descriptions for preserving food include slowing spoilage rate or extending shelf life. For

this example, Spoilage Slowing is selected as the process. The intent is to change the

Spoilage Rate from fast to slow as illustrated in the following OPD.

Food Food exhibits Spoilage Rate, which can be fast or slow.

Spoilage Slowing changes Spoilage Rate of Food from fast
to slow.

Spoilage Rate

fast ' slow

Spoilage
Slowing

Figure 2.3 OPD and OPL Script for Food Preserving

Several alternatives exist for fulfilling this function, including dehydration,

freezing, sealing in an airtight container, etc.

Summary
Modeling Perspective System Architect or User
Operand Food
Service or Use Slow Food Spoilage (Preserve Food)
Attribute (Metric) Food's Spoilage Rate
Target Value Slow
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Example 2.2: Material Separating

A person desires to separate material. Although continuity could be identified

explicitly as the attribute the person would like to change, it is implicit in the states

assigned to Material in this OPD:

Material

(undivided divided

Separating

Material can be undivided or divided.

Separating changes Material from undivided to divided.

Figure 2.4: OPD and OPL Script for Material Separating

Possible alternatives for fulfilling this function include using an existing tool to

such as a pair of scissor to cut the material or a knife to slice the material. If there is no

tool available, one might choose to use oneself as a material separating system and tear

the material.

Summary
Modeling Perspective System Architect or User
Operand Material
Service or Use Separate Material
Attribute (Metric) Material's "Dividedness" or Continuity
Target Value Divided
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Example 2.3. Paper Holding

A person desires to hold paper in a fixed location so it doesn't blow away or

become separated from its pile.

Paper Paper exhibits Position, which can be movable or fixed.

Holding changes Position of Paper from movable to fixed.

Holding maintains fixed Position of Paper.
Position

movable fixed

Holding

Figure 2.5: OPD and OPL Script for Paper Holding

Possible alternatives for fulfilling this function include applying weight with a

paperweight, fastening the paper to a surface with a pin or staple, gluing the paper to a

surface with adhesive, etc. Other requirements of the beneficiary will determine which

alternative to select. For example, if the paper needs to be easily removed from its fixed

position, then the paperweight may be most desirable.

Summary
Modeling Perspective System Architect or User
Operand Paper
Service or Use Hold Paper
Attribute (Metric) Position
Target Value Fixed
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Example 2.4: River Crossing, Step 1

A person desires to cross a river, but no system for crossing the river is available.

In order to fulfill the desire to cross the river, the person must fulfill a preliminary step.

He/she decides to become a system architect with the desire to provide a means of .

crossing the river. "Provide" is a nondescript word to describe a function. Keeping the

definition of process in mind, is it possible to select a better word? What transformation

is taking place? The river is changing states: from uncrossable to crossable.

River River can be uncrossable or crossable.

\uncrossable crossable Crossing Means Creating changes River from uncrossable
to crossable.

Crossing
Means

Creatin

Figure 2.6: OPD and OPL Script for River Crossing Enabling

Possible alternatives for fulfilling this function include building a bridge, instituting

a ferry service, providing helicopter service, etc. These kinds of system creation

activities precede the fulfillment of system user desires. In contrast to Examples 2.1-2.3,

this example includes both the system creation step and the system operating step in

order to explicitly show that each step may generate different OPDs from different

perspectives. The OPD model for Step 1 will represent the domain of system design,

while the OPD for Step 2 will represent the domain of system operation.

Summary
Modeling Perspective System Architect
Operand River
Service or Use Create a Means of Crossing
Attribute (Metric) River's "Crossability"
Target Value Crossable
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Example 2.4: River Crossing, Step 2

A person desires to cross a river. A means for crossing the river is available.

Instead of capturing the intent to change states of the river, the OPD captures the intent

to change states of the river crosser, i.e., changing their location from one side of the

river to the other.

Person Person exhibits Location with values Initial Bank and
Opposite Bank.

River Crossing changes Location of Person from Initial
Bank to Opposite Bank.

Location

Initial Bank

River
Crossing

Figure 2.7: OPD and OPL Script for River Crossing

Possible alternatives for fulfilling this function include swimming, or using a

bridge, ferry, or helicopter.

Summary
Modeling Perspective User (Person)
Operand User
Service or Use Cross River
Attribute (Metric) Location
Target Value River's Opposite Bank
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2.3 What is Architecture?

Standard English Language Definitions

The Oxford English Dictionary provides the following definitions:

ARCHITECTURE:

1. The art or science of building or constructing edifices of any kind for
human use.

5. Construction or structure generally;

ARCHITECT:

1. A master-builder.

2. One who designs and frames any complex structure; esp. the Creator;
one who arranges elementary materials on a comprehensive plan.

3. One who so plans, devises, contrives, or constructs, as to achieve a
desired result (especially when the result may be viewed figuratively as
an edifice); a builder-up.

These definitions emphasize the building of edifices. The OED says an edifice is

"[a] building, usually a large and stately building, as a church, palace, temple or fortress;

a fabric or structure." Another dictionary extends the definition to include "elaborate

conceptual structures." [AHD, 4th Ed.] It would be fair to say that a standard English

description of "an architecture" is "a complex structure," and the work of the architect

involves managing complexity of the structure.

System and Product Development Definitions

The most basic definitions of architecture in the context of system design

emphasize structure. For example, Rechtin and Maier describe architecture as "[t]he

structure-in terms of components, connections, and constraints-of a product, process

or element. [RM, p. 251] But other definitions go beyond mere structure. Crawley

defines architecture as "[t]he embodiment of concept and the allocation of functionality
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and definition of interfaces among the elements. [Cr1, 9/8, p. 11] Otto & Wood describe

architecture as the mapping of function to form:

"The challenge in [the Concept Development stage of product design] is
to translate the customer needs and business case into a realizable
product concept(s). This translation is what we define as the product
architecture, which is the mapping from the product function to the
product form. It is the division into parts and assemblies of a product and
how the functional network matches or cuts across these physical
divisions and interfaces. [OW, p. 358]

The term mapping is somewhat abstract in this definition. Ulrich and Eppinger capture a

similar idea, but more concisely. "The architecture of a product is the scheme by which

the functional elements are arranged into physical chunks and by which the chunks

interact." [UE, p. 183, italics added]

This last definition identifies both static (physical chunks) and dynamic

(interaction) elements. The recognition by Dori that accurate representation of systems

requires equal status of objects and processes leads to a definition of system

architecture that clearly recognizes both the static and dynamic aspects of an

architecture: "System architecture is the overall system's structure/behavior

combination, which enables it to attain its function while embodying -the architect's

concept. ... In fact, the system is no more and no less than its structure/behavior

combination." [Do2, p. 110, 4.4.2]

Returning to the traditional view of architecture for a moment, it is interesting to

note that Frank Lloyd Wright, the most celebrated civil architect in twentieth century

America, agreed with this combination. "Form follows function-that has been

misunderstood. Form and function should be one, joined in a spiritual union." [W]

Translating this quote into the language of OPM, one might reasonably conclude,

"architecture is the embodiment of structure and behavior."
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The Static and Dynamic aspects of Architecture

The typical description of architecture is structural. Naturally, the static aspect of

architecture is structure, represented in OPM by the objects that comprise it. These

objects are essentially the physical elements of a system: "the parts, components, and

subassemblies that ultimately implement the [system's] functions." [UE, p. 183] For

example, in the freezer, a sensor and compressor operate to maintain air temperature.

This sensor/compressor combination is part of the refrigerator structure.

The dynamic aspect of Architecture includes the operations and transformations

that comprise system behavior, represented in OPM by processes. These process are

the operational elements of a system: "the individual operations and transformations that

contribute to the overall performance of the [system]." [UE, p. 182] For example, in the

freezer, the sensor senses air temperature and signals the compressor if the

temperature gets too high; the compressor operates to cool the air.

Terms such as "operations and transformations" were also used to describe

function. Is it proper to re-use them to describe architecture? Such duplication is likely

unavoidable given that function and architecture are both dualistic, i.e., each has static

and dynamic aspects. An architect's intent is stated as a system function. That function

is achieved through an architecture. Boundaries between the two become a matter of

perspective. However, at each stage of system development, boundaries can be made

clearer using a WHAT-HOW framework and applying the concepts of OPM.

38



2.4 Function vs. Architecture

Dori makes a distinction between Function and Behavior that aligns Function with

the question 'What is the system supposed to do?" and Behavior with "How does the

system do it?" He has described architecture as a "structure/behavior combination."

Our discussion of the dualistic nature of function leads to an analogous description of

function as an "operand/service combination." The service is what the system is

supposed to do; the operand is what is affected. A user may not use the system for the

intended service, so from his/her perspective a function may be an "operand/use

combination." In fact, the concept of use is broader than that of service. The intended

service of a system is usually just one of the system's possible uses. So it is appropriate

in general to describe function as an operand/use combination, which corresponds well

to the OPM description of function established previously.

Table 2.2 shows a summary of the ideas presented so far for expressing the

WHATs and HOWs of system development. WHATs are functions and HOWs are

architectures:

WHAT? HOW?
What result do you desire? How does the system achieve it?

Function: Architecture:
Operand/Use Combination Behavior/Structure Combination

Static Aspect Dynamic Aspect Dynamic Aspect Static Aspect
(Object-related) (Process-related) (Process-related) (Object-related)

What should the What effect should How does the How is the system
system affect? the system cause? system behave? structured?

Operand-State, Service, Behavior, Structure,
Transformee Use Operation Form

Table 2.2: Organizing HOWs and WHATS by OPM Concepts
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The answers to each of the questions in the table may differ depending on who is

answering. In practice these differences determine whether the system is effective and

safe. For example, to the question, "How will you achieve your desired result?" the

architect may answer: "By devising an architecture that will fulfill the perceived, desired

function. Among the possible architectures, the one that best meets the constraints

related to creation, distribution, and application will be selected for implementation." The

user may answer: "By selecting and applying a system that will fulfill my purpose.

Among the possible alternatives, the one that best meets my constraints for application

will be selected."

The table subdivides each of the two high-level WHAT and HOW questions into

two sub-questions related to static and dynamic aspects. Together, these four sub-

questions elicit the basic information required for a good WHAT-HOW decomposition of

a system:

1. What should the system affect?

2. What effect should the system cause?

3. How does the system behave?

4. How is the system structured?

The order of the questions is important. Question 3 follows Question 2 because

the dynamic aspect of the HOW is a specific solution to dynamic aspect of the WHAT.

Once Question 2 is asked, it is natural and most productive to answer Question 3 before

moving on to addressing structure in Question 4. In OPM terms, the answer to Question

3 is a "specialization," of Question 2. This concept will become clear in the example

OPDs that follow.

Suh's books provide many examples of FR-DP decompositions, but neither his

examples nor his definitions provide a completely clear delineation of essential versus
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non-essential elements of FRs and DPs. Axiomatic Design practitioners know that

properly formulating FRs and DPs is one of the most challenging aspects of applying the

methodology. Fortunately the framework and questions captured in Table 2.2 provide a

tool for improved formulation of FRs and DPs based on templates easily constructed in

OPM.

Many frameworks for system decomposition have been developed, but few

incorporate the formalism found in OPM. In general however, there will be similarities

between the questions generated by various frameworks. For example, the four

questions highlighted here correspond reasonably to three of Crawley's questions for

system architects: What, How, and Where [Cr1]. This correspondence is outlined in

Table 2.3.

WHAT? HOW?
What result do you desire? How does the system achieve it?

What should the What effect should How does the How is the system
system affect? the system cause? system behave? structured?

What? How? Where?

Goal-Operand, Solution-Neutral Solution-Specific Form,
Attribute-Metric Function Process Structure

Table 2.3 Alignment of OPM-based Questions for Architects with Crawley's Questions for
Architects

Crawley's two other questions for architects, When and Who, don't show up in

the WHAT-HOW decomposition, but they are addressed in OPM. "When" corresponds

to the flow of time represented by the vertical placement of processes in OPDs. "Who"

corresponds to operators, users, and "affectees" represented via objects and agent and

effect links in OPDs.
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Examples

It is now possible to expand on the examples presented at the end of Section

2.2. Each example of function described a WHAT-an answer to the question, " What

result do you desire?" For each example, an architecture is selected that fulfills the

function and describes a HOW-an answer to the question, "How does the system

achieve it?" In the OPM representation of these architectures, objects that exhibit

behavior or act as instruments describe system structure. A process attached to those

object describes system behavior. In each case this process is a specialization of the

more general process represented in the function. In the case of the OPD for Example

2.1, a variety of architectures is also shown, each representing a different alternative for

fulfilling the function.
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Example 2.1, continued: Food Preserving via Various Systems

Food
Food exhibits Spoilage Rate, which can

A be fast or slow.

Spoilage Slowing changes Spoilage
Spoilage Rate Rate of Food from fast to slow.

fast slow Freezing, Dehydrating, and Canning
are Spoilage Slowing.

Spoilage Freezing requires Freezer.
Slowing

Dehydrating requires Dehydrator.

Freezing Freezer Canning requires Cannery.

De Dehy
drator

Cannery

Figure 2.8: OPD and OPL Script for Food Preserving via Various Systems

Summary (for the freezer system)

What result do What should the system Spoilage Rate of Food
you desire? affect?

What effect should the system Slowing
cause?

Elements of
Function Spoilage Rate/Slowing Combination

How does the How does the system behave? By freezing
system achieve it?

How is the system structured? As a freezer

Elements of Freezing/Freezer Combination
Architecture
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Example 2.2, continued: Material Separating via Scissors

Material Material can be undivided or

divided Scissors-
Operator Separating changes Material
Complex undivided to divided.

Operator-Scissors Complex
Separating Scissors Cutting.

A/
Operator-Scissors Complex

Cutting Operator Scissors and Operator.

Cutting is Separating.

Cutting requires Scissors.

Operator handles Cutting.

Figure 2.9: OPD and OPL Script for Material Separating via Scissors
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divided.

from

exhibits

consists of

Summary

What result do What should the system "Dividedness" of Material
you desire? affect?

What effect should the system Separating
cause?

Elements of
Function Material/Separating Combination

How does the How does the system behave? By an operator using
system achieve it? scissors to cut

How is the system structured? As an operator and pair of
scissors

Elements of
Architecture Cutting/Scissors/Operator Combination



Example 2.3 continued: Paper Holding via

Paper

Position
Weight

movable fixed

A

Holding Stone

A
Weight

Person Applying

a (Stone) Paper Weight

Figure 2.10: OPD and OPL Script for Paper Holding via a Paper Weight

Summary

What result do What should the system Position of paper
you desire? affect?

What effect should the system Holding: keeping it fixed
cause?

Elements of
Function Paper Position/Holding Combination

How does the How does the system behave? By applying weight
system achieve it?

How is the system structured? As a stone

Elements of
Architecture Weight Applying/Stone Combination

In this system, the architect and user are likely the same person and part of the

system. The user places and removes the stone and once it is in place, the system

exhibits no dynamics.
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Paper exhibits Position, which can be movable
and fixed.

Holding changes Position of Paper from
movable to fixed.

Holding maintains fixed Position of Paper.

Weight Applying is Holding.

Weight Applying requires Weight.

Stone is a Weight.

Person handles Weight Applying.



Example 2.4 continued: River Crossing via a Bridge, Step I

River

uncrossable crossable

Installation
Team

Bridgerossng Elements

Creatin A

A
Bridge

Installin

Figure 2.11: River Crossing Enabling via Bank Connecting by a Bridge
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River can be uncrossable or crossable.

Crossing Means Creating changes River
from uncrossable to crossable.

Bank Connecting is Crossing Means
Creating.

Bridge Installing is Bank Connecting.

Bridge Installing requires Bridge Elements.

Installation Team handles Bridge Installing.

Summary

What result do What should the system Crossability of River
you (bridge affect?

builder) desire?
What effect should the system Creating a means of river

cause? crossing

Elements of
Function River/Crossing Means Combination

How does the How does the system behave? By connecting banks by
system achieve it? installing a bridge

How is the system structured? As a bridge-installation
team combination

Elements of
Architecture Bridge Installing/Team/Bridge Elements Combination



Example 2.4 continued: River Crossing via a Bridge, Step 2

Person Person exhibits Loc
Bank and Opposite

River Crossing char
frnm Initial Rank tM

Location

Initial Bank1, Opposite_
Bank

Bridge

River
Crossing

Bridge
Traversin

Figure 2.12: OPD and OPL Script for River Crossing via a Bridge

Summary

What result do What should the system Location of Person
you (river crosser) affect?

desire?
What effect should the system Crossing River

cause?

Elements of
Function Location/River Crossing Combination

How does the How does the system behave? By a person traversing the
system achieve it? bridge

How is the system structured? As a bridge-person
complex

Elements of
Architecture Traversing/Bridge & Person Combination

This system includes not only the bridge, but the beneficiary users as well. The

system is operating when users traverse the bridge.
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ation with values Initial
Bank.

nges Location of Person
pnnnpita Rank

Person exhibits Bridge Traversing.

Bridge Traversing is River Crossing.

Bridge Traversing requires Bridge.



Generic OPM Template for Functional WHATs and HOWs

Based on the examples shown, the generic OPM template for a function can be

expanded to a generic template for a function with an associated architecture. As with

functions, the template captures both the static and dynamic aspects of architecture in

the objects and processes depicted. The template appears in Figure 2.3:

Function Function Operand exhibits AttributeOperand with values Original Value and
Intended Value.

Attribute Attribute Transforming changes
System Attribute of Function Operand from

Original (1 d _Original Value to Intended Value.

ISystem Operating is Attribute

Attribute Agents Transforming.

Transformin Designed System consists of Agents, Designed
Object, and Supporting Objects.

System
Operating Agents handle System Operating.

Supporting System Operating requires Designed
Objects Object and Supporting Objects.

Figure 2.3 OPD and OPL Script for a Generic Function and Architecture

In the template, a HOW consists of a system that fulfills the function. The system

represented is a general system that may include

. Agents: humans such as operators or controllers that enable the system

. Designed Object: the object designed by the system architect as a solution

to fulfill the function within the system

. Supporting Objects: additional objects-not designed by the architect-

required for the system to fulfill the function.

48



In a typical WHAT-HOW decomposition it is the designed object that gets most

attention as the HOW. It is what the architect is focused on producing. However, the

architect should always be mindful of the other elements of the system that affect

successful fulfillment of the function. It may not be necessary to include all these

elements in a particular OPD. For example, not all HOWs will include agents, and

supporting objects may or may not be relevant in a particular model. On the other hand,

it will often be important to model the broader supersystem in which the system

operates. For example, this would include modeling the environment-those external

surroundings and situations that may affect and be affected by the system. The choice

of how to apply the template depends on the modeler's need and the context of the

model.

A key idea represented in the template is that a HOW ought to include both

processes and objects. In this representation, the "HOW process" is System

Operating, which is a specialization of Attribute Transforming identified in the WHAT.

Furthermore, the template provides a way for making a clear distinction between WHATs

and HOWs in an OPM model. This distinction is made explicit by the dotted line

annotations that separate the different sections of Figure 2.4.

49



Function
O d~r

- Architecture Related
.**.... ....... ........ ............. ......

Figure 2.4: Template for WHATs and HOWs in OPM, Concept Mapping Highlighted
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Concept Mapping

What is the connection between the WHAT and the HOW? Crawley has used

the term "concept" to describe this mapping. Concept is "a product or system vision,

idea, notion or mental image which maps form to function and embodies working

principles.

[A concept]...

Is created [or selected] by the architect.

* Must allow for the execution of all functions.

* Establishes the solution vocabulary

* Implicitly represents a level of technology." [Cr2, 1/23, p.16-17]

In the template, concept emerges through specialization. In Figure 2.4, a bold

dashed line marks the specialization and enabler links associated with the concept

mapping. System Operating portrays a process that fulfills the desired function.

Designed Object and Supporting Object comprise the form that "embodies working

principles." In Example 2.1 the architect has three concepts from which to select for

slowing the spoilage of food. Each is described as a process with an associated form,

expressed in OPL as follows:
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Freezing is Spoilage Slowing.
Freezing requires Freezer.

Dehydrating is Spoilage Slowing.
Dehydrating requires Dehydrator.

Canning is Spoilage Slowing.
Canning requires Cannery.



By checking Crawley's list it is possible to verify that each of these cases are

examples of concepts. Each allows for execution of the desired function, establishes the

solution vocabulary, and determines an implicit level of technology for the solution.
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3. Documenting Requirements, Design Parameters, and Intent
in OPM

3.1 Formulating Good Requirements

One of the system architect's most important tasks is to define requirements

based on the desires of intended beneficiaries. The distillation of desires into

unambiguous and useful requirements is an exercise in communication. It involves the

assimilation of knowledge through observation, reading, and listening (as well as,

perhaps, tasting, smelling, and touching). It requires the conversion of this "sensed"

knowledge into language, and thus is a process inherently susceptible to ambiguity. In

fact, the book Exploring Requirements: Quality Before Design contends that, "The

fundamental problem of requirements definition is ambiguity." [GW, p. 92] However, the

definitional discipline of OPM provides a structure for limiting ambiguity in both individual

requirement statements and overall system specifications. In the realm of Axiomatic

Design it provides assistance in formulating good FRs and DPs.

The task of formulating good requirements is a difficult one, as described in this

excerpt from a paper published by the American Institute of Aeronautics and

Astronautics:

Any contractor who has tried to respond to a set of requirements knows
the difficulty of the task. Many requirement documents contain
statements that are not requirements, but are unverifiable goals or
objectives. For example, "minimize costs" or "provide adequate margins"
are statements of design goals or objectives and should be stated as
such. Other statements found in requirements documents are actually
statement of work items, such as, "perform trade studies". Some
requirements are so grammatically incorrect that they defy interpretation.
Conflict and inconsistency between requirements are not unusual. Sets
of requirements are often incomplete.

The problem is that most engineers who are assigned the tasks of writing
requirements do not know how to do the job. Colleges do not normally
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provide training in this aspect of engineering. Everyone gets "on-the-job"
training; but often this is without guidance. Most engineers assigned such
a task simply obtain an existing requirements document and use it as an
example. Often this example is flawed, so the engineer starts with bad
information. Over several generations of documents, the problem will
compound to the point that any resemblance to valid requirements is
purely coincidental. [Ho, p. 2]

The article goes on to list many reasons why engineers typically can't write good

requirements including not knowing "what to do," not "understanding why" it is important,

desiring to be "doing something else," and seeing "no reward" in it. Although all four of

these reasons can be addressed through education, the first can be partially overcome if

the engineer has a simple and consistent framework in which to compose requirements.

Many advanced software systems are available for developing requirements, but if OPM

is to fulfill its promise as a "comprehensive modeling tool" it must be extended to better

manage this task. Its framework of formal rules applied in its combination graphic-

language environment give it advantages over other systems, but methods for

converting OPDs and OPL into practical and useful system requirements lists remain

relatively undeveloped.

Providing a framework for formulating good requirements first requires an

understanding of the characteristics of good requirements. Ford Motor Company uses

the following descriptions for good product requirements in its System Engineering

Fundamentals course:

The purpose of requirements is to focus on WHAT the system has to do,
not HOW to do it...

Well-written requirements are statements that describe
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* Function-what the system must do
* Performance-how well the system must do it
* Constraints-considerations outside of your control, such as carryover

plants, parts, methods, restraints on that function, operating
environment or usage

* Things surrounding it
* Things that keep it from performing well or to its optimum
* Interfaces-interaction with other systems
* Product Quality (quality of execution)-how well are we going to do it?

(i.e., what variation is allowed?)

A well-written requirement is

* Unambiguous-understood by everybody the same way
* Valid-accurately represents true customer, regulatory, corporate

wants / musts
* Measurable-it is possible to measure the requirement
* Objective-it can be measured by a technical means not requiring

subjective judgment
* Verifiable-we can prove that we meet the requirement
* Repeatable-many measurements produce the same answer
" Correlated-it has got to correlate back to the objective of the original

requirement
" As implementation free as possible-do not name the technology

used to implement the function, just the function itself [Fo2, p. 67, 68
notes, 69 notes]

These lists provide a description of what well-written requirements are, but they

don't sufficiently explain how to develop them. In Requirements Engineering: A Good

Practice Guide, Sommerville and Sawyer recommend five guidelines for the process of

defining requirements:

" Define standard templates for describing requirements
* Use language simply, consistently and concisely
* Use diagrams appropriately
* Supplement natural language with other descriptions of requirements
* Specify requirements quantitatively [SS, p.141]

These guidelines align extremely well with the principles of OPM, so it is reasonable to

believe that OPM can enhance the requirement formulation process. The next section

examines this process in the context of formulating FRs, although it should be similar for

formulating other types of requirements as well.
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3.2 Functional Requirements

According to Suh, FRs should characterize the "functional needs" of the system.

This has been clarified to mean the intended use or service to be provided. However,

even this description is ambiguous. To be less ambiguous, it is useful to ensure that

FRs always answer the two basic questions associated with functional WHATs:

What should the system affect?

What effect should the system cause?

Based on the OPM description of a WHAT, this means an FR should be associated with

some operand object (transformee) and be expressed as a process that changes

attribute values of the operand. An OPD output link should identify the intended attribute

value. This template for a generic FR is exhibited in Figure 3.1.

Operand

Attribute Metric

Original Tntended FR 0
Value Value Target

Attribute Transform
from Original Value

Attribute
Transforming

FR..

Figure 3.1: A Generic FR Expressed in OPM

2L Script:

ing changes Attribute
to Intended Value.

This construct addresses the first four of Sommerville's and Sawyer's guidelines

specifically: a template, consistent use of language, a diagram, and a supplement to

natural language. The fifth, quantitative specification, is a rule that can be easily

adopted for expressing the values in the Attribute object. The template not only helps
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clarify which requirements should be considered "functional," it also aligns well with the

Ulrich and Eppinger definition of specification: "A specification (singular) consists of a

metric and a value... Note that the value may take on several forms, including a

particular number, a range, or an inequality. Values are always labeled with the

appropriate units (e.g., seconds, kilograms, joules). Together, the metric and value form

a specification." [UE, p.82]

The OPL script generated from FRs in each of the examples in Chapter 2 is

compiled in Table 3.1. Note that the OPL sentences do not use the typical language of

requirements. This, however, should not pose a great difficulty. OPM users could

simply choose to adopt the OPL versions as requirement statements, or a

straightforward translator could be developed to formulate these sentences as

"requirements." For example the OPL sentence

Food Preserving changes Edible Duration of Food from short to long.

could be translated as:

The Food Preserving process shall change the Edible Duration of Food from short to
long.

In addition, words such as short and long can easily be made more explicit using the

concept of specialization, e.g., four days is short, six months is long.
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Example Function FR Expressed in OPL

2.1 Food Preserving Food Preserving changes Edible Duration of Food
from short to long.

2.2 Material Separating Separating changes Material from undivided to
divided.

2.3 Paper Holding Holding changes Position of Paper from movable
to fixed.

Holding maintains fixed Position of Paper.

2.4A Crossing Means Creating Crossing Means Creating changes River from
uncrossable to crossable.

2.4B River Crossing River Crossing changes Location of Person from
Initial Bank to Opposite Bank.

Table 3.1: FRs of Chapter 2 Examples Expressed in OPL

In addition to these examples, it is instructive to examine a list of FRs taken from

Suh's work. Table 3.2 details a list of systems studied in Axiomatic Design: Advances

and Applications and the top-level FRs associated with them.
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No. System FRs

3.1 Freezer Door 1. Provide access to the items stored
[Su2, p. 20] 2. Minimize energy consumption

3.2 Newcomen 1. Extend the piston
Steam Engine 2. Contract the piston by creating a
[p. 24] vacuum in the cylinder

3.3 Hydraulic Tube 1. Bend a titanium tube to prescribed
Shaping curvatures
[p. 27] 2. Maintain the circular cross section of the

bent tube

3.4 Refrigerator 1. Freeze food for long term preservation
[p. 32] 2. Maintain food at cold temperature for

short-term preservation

3.5 Water Faucet 1. Control the water flow rate without
[p. 119] affecting the water temperature

2. Control the temperature of the water
without affecting flow rate

Table 3.2: FRs from Systems Studied by Suh [Su2]

Suh provides the following general guidance for stating FRs and DPs: "[A]ll FRs

are stated starting out with verbs. This is a good way of distinguishing an FR from a DP,

which should start with a noun, if possible." [SCL, p.3] Suh's rule for starting FRs with

verbs is observed in these examples, however the variety in formulation of the FR

statements is noteworthy. FRI in Example 3.1 and FR2 in Example 3.3 use verbs that

are not very descriptive of function (provide, maintain). FR2 in Example 3.2 includes a

HOW. Example 3.4 includes statements of intent that elaborate beyond actual function.

Example 3.5 includes limitations on the functions. The systems considered in these

examples are all relatively simple, yet no two sets of FRs are stated in quite the same

way. If this kind of variety is exhibited in requirement statements of single author, it is

easy to imagine the significant dilemmas arising from ambiguity in requirements

statements composed by a team of authors for a complex system. OPM's definitional
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discipline can help eliminate this ambiguity in FRs. The following discussion examines

in more detail the FRs for the examples listed and determine OPM-based versions that

reduce the requirements to their essential, unambiguous elements.

Example 3.1: Freezer Door

In Example 3.1 it is important to first establish the context of the requirements.

The architect is designing a freezer system. The intentions related to Food Preserving

expressed in Example 2.1 have already been considered. The architecture has already

been chosen: a freezer-an enclosure in which temperature is maintained below

freezing. This architecture requires a source of energy that is consumed to keep the

interior of the enclosure cold; it also requires a method for accessing the contents inside.

Suh's FRs for the freezer system capture these requirements generally, but some

ambiguity remains. FR1 begins with the phrase "Provide access..." which raises a

question of perspective. Is this a requirement posed from the perspective of the

architect's development process or from the users operating process? For instance, in

Example 2.4A the intent is to provide a means for crossing, i.e., "Crossing Means

Creating"-a development task for the architect. On the other hand, in Example 2.4B

the intent is "River Crossing." Is this requirement about providing a means for access or

simply accessing? The importance of making this distinction should not be downplayed.

Besides the reduction in ambiguity that results when these distinctions are clarified,

these choices determine how to set up the Axiomatic Design Matrix and how the system

is modeled in OPM (as evidenced by the differences in Examples 2.4A and 2.4B).

From the user's perspective, the two questions are posed:

What should the system affect?

What effect should the system cause?

For FR1, the answers to these questions (without specifying design solutions) are
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The accessibility of the contents should change.

The contents should be made accessible.

Expressed in OPL, the FR becomes

Contents Contents can be inaccessible or

(inaccessible accessible.

Accessing changes Contents from
inaccessible to accessible.

Accessing

Figure 3.2: FRI from Example 3.1 Formulated in OPM

FR2 requires minimizing the energy consumption of the freezer. The concern is

about energy consumed due to heat transfer into the freezer, designated as energy loss

in this example. To formulate the FR consistently, it is again useful to ask the questions:

What should the system affect? It should affect energy loss. Energy loss occurs

over time, so the system should affect the rate of energy loss.

What effect should the system cause? The desire is to minimize energy loss.

Minimizing results from reducing or slowing, so the system should slow the rate of

energy loss (e.g., from unacceptable to acceptable levels).

Energy Loss Rate Energy Loss Rate can be

acceptable unaccept acceptable or unacceptable.
acceptable able

Energy Loss Slowing changes
Energy Loss Rate from acceptable
to unacceptable.

Energy Loss
Slowing Energy Loss Slowing maintains

Energy Loss Rate acceptable.

Figure 3.3: FR2 from Example 3.1 Formulated in OPM
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By asking the questions and formulating OPM-based FRs, each of the other

examples can be developed in a similar way.

Example 3.2: Newcomen Engine

FR1: "Extend the piston."

What should the system affect? It should affect the position of the piston.

What effect should the system cause? The position of the piston should change

from the bottom of the cylinder to the top of the cylinder.

FR2: "Contract the piston by creating a vacuum in the cylinder."

What should the system affect? It should affect the position of the piston.

What effect should the system cause? The position of the piston should change

from the top of the cylinder to the bottom of the cylinder.

Piston Piston exhibits Position.

Position of Piston can be bottom or
top.

Position Extending changes Position of
bottom X top Piston from bottom to top.

Contracting changes Position of
Piston from top to bottom.

Extending

Contracting

Figure 3.4: FRs from Example 3.2 Formulated in OPM
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Example 3.3: Hydraulic Tube Shaping

A challenge in this example is that FR2 uses the verb "maintain." This word does

not indicate an effect, i.e., a change that is inherent in a process. Trying to understand

exactly what effect should occur will help the architect do a better job of determining

architecture and communicating requirements.

FR1: "Bend a titanium tube to prescribed curvatures."

What should the system affect? It should affect the curvature of the tube.

What effect should the system cause? It should bend the tube, changing its

curvature from its initial to its prescribed position.

FR2: "Maintain the circular cross section of the bent tube."

What should the system affect? The bending process in FR1 creates a force that

distorts the cross sectional shape of the tube. The system should affect force that

distorts the cross sectional shape.

What effect should the system cause? It should prevent distortion, i.e., change

the distorting force from an unacceptable to an acceptable level.

Tube Tube exhibits Curvature with values Initial
and Prescribed.

Bending changes Curvature of Tube from
Curvature Distorting Force Initial value to Prescribed value.

Initia 'Prescribed acceptable \unacceptable, Bending yields Distorting Force, which can
be acceptable or unacceptable.

Bending Distortion Distortion Preventing changes Distorting
reventin Force from acceptable to unacceptable.

Figure 3.5: FRs from Example 3.3 Formulated in OPM
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Example 3.4: Refrigerator

FRI: "Freeze food for long term preservation."

What should the system affect? It should affect the food, in particular the rate at

which it spoils.

What effect should the system cause? It should change the spoilage rate from

fast to very slow (several months).

FR2: "Maintain food at cold temperature for short-term preservation."

What should the system affect? It should affect the spoilage rate of food.

What effect should the system cause? It should change the spoilage rate from

fast to slow (several days).

Food Food exhibits Spoilage Rate, which
can be fast, slow, or very slow.

Chilling changes Spoilage Rate of
Spoilage Rate Food from fast to slow.

fast slow (very slow) Freezing changes Spoilage Rate of
Food from fast to very slow.

Chilling

Freezing

Figure 3.6: FRs from Example 3.4 Formulated in OPM
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Example 3.5: Water Faucet

FR1: "Control the water flow rate without affecting the water temperature."

What should the system affect? It should affect the water flow rate.

What effect should the system cause? It should change the water flow rate from

"maintained" to "changed."

FR2: "Control the temperature of the water without affecting flow rate."

What should the system affect? It should affect the water temperature.

What effect should the system cause? It should change the water temperature

from "maintained" to "changed."

Water Water exhibits Flow Rate, which can be
maintained or changed and
temperature, which can be maintained
or changed.

Flow Rate Temperature Flow Controlling changes Flow Rate of
mntained changed -maintained changed Water from maintained to changed.

Temp Controlling changes
Flow Temp Temperature Rae of Water from

Controllin Controllin maintained to changed.

Figure 3.7: FRs from Example 3.5 Formulated in OPM
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3.3 Constraints

Not all system requirements are FRs. In Axiomatic Design Suh categorizes

system requirements as either FRs or Constraints. Other methodologies do not

necessarily make the same distinctions. For example, QFD does not distinguish

"functional" WHATs from "non-functional" WHATs. On the other hand, some authors

divide requirements into several categories, with FRs being one among many. In any

case, the utility of OPM for formulating standard, unambiguous requirements is not

limited to formulating FRs. It can be useful for representing constraints and other

requirement types as well as distinguishing between functional and non-functional

requirements.

Otto and Wood provide a useful rule of thumb for distinguishing constraints from

functions. "A constraint is a statement of a clear criterion that must be satisfied by a

product and requires consideration of the entire product to determine the criterion

value... Functions are satisfied by subsets of the product through their operation;

constraints are satisfied by properties of the entire product." [OW, p. 152] Thus, unlike a

function, a constraint is not something a system "does." Also, unlike the ability to add

functionality to a system by adding a new assembly or part, one typically can't meet a

constraint by adding a new part to a system.

This description helps clarify how a constraint should be represented in OPM.

Since a constraint is not something satisfied by what a system does, it will not

necessarily include a process in its OPM representation. Instead, the representation will

be typically be structural in nature, expressed through OPM's exhibition-characterization

relation. Furthermore, the constraint may be attached to a process or an object:
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Attribute

Attribute Transforming changes
Vau ' Value Designed Attribute from Original Value to

Object Characteristic Intended Value.
satisfacto n 

Attribute < - '\atisfactory/

Transformin System Operating is Attribute
A t Transforming.

System Aacceptable r Designed
Sypemtng Metr e System Operating requires DesignedOperating Metric Object.

Designed Object and System
Operating exhibit Characteristic.

Characteristic can be satisfactory or
unsatisfactory.

Characteristic exhibits Metric with
values Acceptable and Unacceptable.

Characteristic is satisfactory when
value of Metric is Acceptable.

Characteristic is unsatisfactory when
value of Metric is Unacceptable.

Figure 3.8: A Generic Constraint Expressed in OPM

Suh considers two types of constraints

. Input Constraints: constraints in design specifications, e.g., bounds
on size, weight, material, cost.

. System Constraints: imposed by the system in which the design
solution must function, e.g., interfacial bounds, geometric shape,
machine capacities, laws of nature. [Sul, p. 39]

Suh also notes that constraints do not normally have tolerances associated with them,

although they may have an associated upper or lower bound. An example of the first

kind of constraint for the weight of the freezer system is shown below.
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Freezer Weight
un(satisfactory (

rysatisfaCtofy

<< 250 o250

Pounds

Figure 3.9: Weight Constraint for a Freezer

An example of the second type of constraint, relating to the kind of power the

freezer must use is shown below.

4
Freezer Power 3ource

unsatisfactory ~ ~watisfactory

110 220

Voltage

Figure 3.10: Power Source Constraint for a Freezer
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Freezer exhibits Weight, which can be
satisfactory or unsatisfactory.

Weight is satisfactory when Pounds is
less than 250.

Weight is unsatisfactory when Pounds
is greater than 250.

Freezer exhibits Power Source, which
can be satisfactory or unsatisfactory.

Power Source is satisfactory when
Voltage is 110.

Power Source is unsatisfactory when
Voltage is 220.



3.4 Design Parameters

The actual design and development of a complex system requires decomposition

of the WHATs and HOWs into a useful hierarchy. In the QFD framework, HOWs at an

upper level become the WHATs at the next lower level. Suh calls this process

"zigzagging" because one must move repeatedly back and forth between answering the

WHATs and answering the HOWs. He describes the process in the following way:

To decompose FR and DP characteristic vectors, we must zigzag
between the domains. That is, we start out in the 'what' domain and go to
the 'how' domain... From an FR in the functional domain, we go to the
physical domain to conceptualize a design and determine its
corresponding DP. Then, we come back to the functional domain to
create FR1 and FR2 at the next level that collectively satisfies the
highest-level FR. FR1 and FR2 are the FRs for the highest level DP.
Then we go to the physical domain to find DP1 and DP2 by
conceptualizing a design at this level, which satisfies FR1 and FR2,
respectively. This process of decomposition is pursued until the FR can
be satisfied without further decomposition... [Su2, p.30]

What exactly is a DP? Suh defines DPs as "key physical variables (or other

equivalent terms in the case of software design, etc.) in the physical domain that

characterize the design that satisfies the specified FRs." [Su2, p. 14] Even though Suh

describes DPs as HOWs, this definition actually makes DPs a subset of HOWs, because

properly formulated HOWs describe both behavior and structure. Nevertheless, in

describing the zigzagging decomposition process, Suh speaks of finding DPs by

"conceptualizing a design." For this conceptualization to be useful, it will need to provide

answers to the two basic questions associated with functional HOWs:

How does the system behave?

How is the system structured?

In casual descriptions it is fair to use the term DP for the system solution arrived

at through this conceptualization. However, Axiomatic Design still requires the

identification of a DP as a particular characteristic of the system that can be evaluated in
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the design matrix (Equation 1.1). In fact, in their most limited sense, FRs and DPs are

both characteristics that can be quantified and expressed as variables. This is how they

are represented in the design matrix in which elements are partial derivatives of FRs

with respect to DPs.

The implication of this for system decomposition in OPM is that good models will

include all elements of properly formulated WHATs and HOWs as well as identification

of the characteristics and effects that should be represented in the design matrix. Thus,

a template for a DP in OPM should be embodied in the template for a HOW. In addition,

the particular characteristic that affects the FR metric should be represented through an

exhibition link. A template for a generic DP is exhibited in Figure 3.11.

System

A
Agents

Designed DP OPL Script
Object

System Operating requires Designed
Objec.

System DP
rating Characteristic Designed Object exhibits DP

-........................ ........................ .P ' Characteristic.

Supporting
Objects

Figure 3.11: A Generic DP Expressed in OPM

The template includes the key elements of a HOW and its associated DP, but

does not prescribe the manner in which they must be combined in a particular model.

This template is not as general as the FR template. Agents and Supporting Objects

may or may not need to be indicated in a particular OPD. In practice, DPs might be

considered to be a characteristic these other system elements. However, the name

70



"Design Parameter" implies it should be a characteristic of the object designed by the

architect. Failing to adhere to this practice can cause confusion. For example, one of

the difficulties in modeling DPs in OPM is distinguishing between processes that occur

during system design and processes that occur during system operation. For example,

Example 3.1 presented a freezer door system for which Suh states the FRs as

" FR1: Provide access to the items stored

* FR2: Minimize energy consumption.

He identifies the following, corresponding DPs for a particular design:

" DP1: Vertically hung door

" DP2: Thermal insulation material in the door. [Su2, p.20]

The door itself fulfills FR1, but its hinge location (vertical) has an effect on FR2.

The actual parameter for which an architect must select a value is hinge location.

Similarly, although DP2 is stated as "insulation material," it should be understood that

the architect selects the material based on its insulating properties. The actual variable

is an efficiency rating that corresponds to the material's insulating capability. The

process of selecting settings for these parameters occurs during design. One way to

represent this appears in Figure 3.12. Note that the FR-related processes Energy Loss

Slowing and Accessing introduced in example 3.1 are specialized in this diagram to

Insulating and Door Opening based on the DPs selected.
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Energy Loss Rate Contents

Insulation Person

Insulating Door Opening Door

\lose ope--"
System
Operating Door Position

System 
IHneLctoDesign Efficiency Hinge Location

Domain Rating horizonta vertical

IEfficiency'
Rating

\-Selectin~g

inge Location
Selecting

Figure 3.12: OPD Combining System Design and Operating Domains

Contents, Insulation, Door, Person, Hinge Location, and Door Position are physical
objects.

Insulating and Door Opening are physical processes.

Insulating affects Energy Loss Rate.

Insulating requires Insulation.

Insulation exhibits Efficiency Rating.

Door exhibits Door Position and Hinge Location.

Door Opening affects Contents and Energy Loss Rate.

Door Opening changes Door Position from closed to open.

Door Opening requires Door.

Person handles Door Opening.

Efficiency Rating Selecting affects Efficiency Rating and Energy Loss Rate.

Hinge Location Selecting affects Hinge Location and Energy Loss Rate.
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Processes carried out by the architect during the design phase appear in the

lower portion of the diagram labeled "System Design Domain." The diagram highlights

the flexibility of OPM. Both the system design domain and operating domain can be

represented in a single model. This flexibility, however, can also be a source of

confusion if the domain boundaries are not clearly understood. Processes that occur

during design may be mistaken for processes that occur during system operation; and

objects that can vary between states during design may be mistakenly thought to vary

during system operation.

This situation is related to the imprecision in the use of the term "DP." During

design, the DP Characteristic has various states that can be assigned by the architect. It

is truly a parameter. In the design matrix, the partial derivative iFR / 8DP is expressed

as a formula or parametric relationship. Once the design is frozen and a state is

assigned, it is common to continue referring to the characteristic and its assigned state

as a DP. The column heading in the design matrix is still called a "DP" even though the

partial derivative entry is a fixed value.

OPM models of system operation will be different depending on which states are

selected for DPs because each state essentially represents a different design. Figure

3.12 shows that Hinge Location Selecting, which occurs in the system design domain,

can ultimately affect Energy Loss Rate in the system operating domain (the effect link is

dashed because it does not have to be identified in the OPD; it occurs implicitly through

OPM inheritance). Whether or not the effect actually occurs depends on the value of

Hinge Location selected by the architect. Section 4.1 will present OPDs for both hinge

locations. Though the elements of the OPDs are similar, the number and placement of

effects links are different. This allows a comparison of the two designs and an

evaluation based on the Independence Axiom.
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3.5 Preserving Intent

One of the strengths of Axiomatic design is that intent is explicitly captured in

FRs at every step of the system decomposition and success is based on achieving this

intent according to defined criteria. This helps overcome a major design problem,

described by Suh: "One of the major problems in design is that designers do not state

explicitly the FRs that their design must satisfy. They try to design intuitively. They also

do not recognize the probable need to reiterate the establishment of FRs until a

satisfactory design results." [Sul, p. 32]

Because there is such great flexibility in the ways systems can be modeled in

OPM, there is danger that the architect who uses OPM for system development will

experience this problem. Based on intuition it is possible to represent a very elaborate

system in OPM without explicitly recording requirements and their associated intent. In

the engineering world, an architect is more often than not given the task of "re-

engineering" a design. In this situation it is common to omit from system documentation

items that describe intent. Typically this is not a purposeful omission. Intent often is

often simply obvious to the engineer in the context of the engineering task and its

documentation seems extraneous. However, good system documentation not only

describes elements of the system, it also explains their purpose.

Sommerville and Sawyer recommend recording requirement rationale for all

requirements: "The rationale associated with a requirement is a link between the

problem and the requirements for the proposed solution. The rationale makes it easier

for readers to understand the requirement and to assess the impact of changes to the

requirement. Problem experts can use the rationale to check if the requirement is

consistent with the problem being solved." [SS, p. 87]
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Using the four questions for system decomposition and OPM templates for

WHATs and HOWs introduced in this thesis can provide the documentation of rationale

described by Sommerville and Sawyer. However, repeated used of the characterization

link between FR-related processes and DP-related processes may indeed become

tedious and may not always be necessary. A shorthand mechanism for capturing the

flow of intent in OPM is the function box that allows identification of functional intent,

without having to show both the more general functional process and the specialized

system behavior process every step of the way. This idea can be illustrated through a

deeper examination of Suh's Refrigerator Example (Example 3.4). [Su2, p. 32]

Suppose that an engineer was not provided the system decomposition of FRs

and DPs listed by Suh. By examining the freezer section of an existing refrigerator, the

engineer would be able to model the freezing system based on reverse engineering.

The resulting OPD might be similar to Figure 3.13.

75



Freezer Freezer, Sensor/Compressor System,
bensor/ Sensor, Compressor, Circulation

Compressor System, and Condenser are physical

System objects.

Temp Sensing, Air Cooling, Air
Temp Circulating, and Moisture Condensing

Sensor Sensing are physical processes.

Freezer consists of Sensor/ Compressor
Compressor -Air Cooling System, Circulation System, and

Condenser.

Sensor/Compressor System consists of
Circulation Air Sensor and Compressor.

System Circulatin Temp Sensing requires Sensor.

Air Cooling requires Compressor.

Cod e Moisture Air Circulating requires CirculationCondenser ndensin System.

Moisture Condensing requires
Condenser.

Figure 3.13: OPD of a Freezing System based on Reverse Engineering

The diagram and script show how the system works. The existence of a sensor

and compressor indicates temperature sensing and air cooling processes. A circulation

system indicates air circulating, and a condenser indicates moisture condensing. The

intent of these systems may be obvious to those familiar with freezers, but the diagram

does not capture it. How would the diagram look if it were developed along with the

system, in conjunction with Axiomatic Design decomposition?

Suh provides the following decomposition of the freezing system:
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FR1 1: Control temperature of the freezer section in the range of -1 8C+/-2C
FR12: Maintain a uniform temperature throughout the freezer section at the

preset temperature
FR1 3: Control humidity of the freezer section to relative humidity of 50%

DP1 1: Sensor/compressor system that turns the compressor on (off) when the
air temperature is higher (lower) than the set temperature in the freezer
section

DP1 2: Air circulation system that blows air into the freezer section and circulates
it uniformly throughout the freezer section at all times

DP1 3: Condenser that condenses the moisture in the returned air when its dew
point is exceeded.

The OPD in Figure 3.14 of the freezer system shows how the initial definition of

FRs 11, 12, and 13 could be captured. Freezer Air exhibits three characteristic

attributes that correspond to important system metrics. Effect links connect each of

these characteristics to processes that will fulfill the FRs. The effect links could be

drawn to connect directly to the parent object, Freezer Air, but this would not clearly

indicate which characteristics are affected by which processes.
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Freezer and Air are physical objects. Freezer

Air exhibits Ave Temp, Temp Deviation,
and Humidity. Air

Freezer contains Air.
......... .............. ..

Temp Controlling affects Ave Temp. Ave Ter -

Uniform Temp Maintaining affects Temp
Deviation.

Tenrp
Humidity Controlling affects Humidity. Contrli

Temp
Deviation

iform T
Maintaining

H-urnidty

Hkruidnty
.FRs Controlli

.......................................................

Figure 3.14: OPD of Freezing System Functional Requirements

The next step is to expand this diagram to include DPs. In this step, the original

and somewhat general functional processes that express intent are specialized to

system-specific processes. This is illustrated in Figure 3.15.
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Freezer

Air

Ave TempSensor/
Compressor

System 
T
Tempin eguntrollin

Sensor Temnp Sensing
Temp

Deviation
CompressorAir Cooling

niform Temn
A Maintaining

Circulation Air
System Circulatin Humidity

Condenser ode

Humidity
Controllin

Figure 3.15: OPD of a Freezing System including Intent
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Freezer, Sensor/Compressor System, Air, Sensor, Compressor, Circulation System, and
Condenser are physical objects.

Temp Sensing, Cooling Regulating, Air Cooling, Air Circulating, and Moisture Condensing
are physical processes.

Freezer consists of Sensor/Compressor System, Circulation System, and Condenser.

Sensor/Compressor System consists of Sensor and Compressor.

Air exhibits Ave Temp, Temp Deviation, and Humidity.

Freezer contains Air.

Temp Controlling affects Ave Temp.

Cooling Regulating is Temp Controlling.

Cooling Regulating zooms into Air Cooling and Temp Sensing.

Temp Sensing requires Sensor.

Air Cooling requires Compressor.

Uniform Temp Maintaining affects Temp Deviation.

Air Circulating is Uniform Temp Maintaining.

Air Circulating requires Circulation System.

Humidity Controlling affects Humidity.

Moisture Condensing is Humidity Controlling.

Moisture Condensing requires Condenser.

In the design depicted, Air Circulating is how Uniform Temp Maintaining is to

be accomplished. Once this is decided, Air Circulating could replace Uniform Temp

Maintaining altogether in the OPD, but this would omit the original intent. An alternative

is to preserve intent using Dori's function boxes, [Do2] as illustrated in Figure 3.16.
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Freezer
A

Sensor/
Compressor Air

System q

in Regu

Sensor Temp Sensing

Ave Temp

Air Cooling

Compressor

CAl Ten . . J

Circulation Air Temp
System Circulatin Deviation

r----------------------------------

Moisture Humidityntondenserondensin 

Control Humidity

Figure 3.16: OPD of a Freezing System with Intent Capture using Function Boxes

The addition of these function boxes to the OPD corresponds to the following

additions in the OPL Script:

Function Control Temp is achieved by Cooling Regulating as well as Sensor and
Compressor.

Function Maintain Uniform Temp is achieved by Air Circulating as well as Circulation
System.

Function Control Humidity is achieved by Moisture Condensing as well as Condenser.

This kind of documentation preserves the intent of system architecture that may

become obscured through time or transfer to new audiences. However, the use of a

function box may become cumbersome for complex systems. Other methods for

capturing intent have been proposed. For example, Crawley has created a specialized
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"intent object" for representing system intent. This has the advantage of a compact

representation that avoids issues of nesting in OPDs.
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4. Evaluating Independence via OPM

Suh's Independence and Information Axioms provide a systematic basis for

evaluating designs. Designs chosen based on the axioms are considered good designs

in the Axiomatic Design framework. For designs represented in OPM, is it possible to

recognize adherence to the axioms? Can patterns be identified that will help OPM

modelers recognize potential design problems? This section answers these questions

affirmatively for the Independence Axiom. The best way to begin the explanation is

through examples.

4. 1 Freezer Door Example

Suh's Freezer Door system (Example 3.1) is again a useful example. It provides

a simple illustration of the importance of independence and its expression in OPM.

Figure 4.1 captures the system in a slightly simplified version of Figure 3.12. The

evaluation of whether or not the system adheres to the Independence Axiom occurs in

the portion of the OPD representing the System Operating Domain; however, processes

in the System Design Domain affect the results of the evaluation.
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Energy Loss Rate

Insulation

Insulating

System
Operating
Domain

System
Design Efficiency
Domain Rating

SEfficiency
S Rating

Selec ing

Person

Door Opening Door

Door Position

Hinge Location
horizontal vertical

: inge Location>
Seetn

Figure 4.1: Combined Domain OPD for Refrigerator Door System

A typical refrigerator has a vertically hung door that provides access to

refrigerator contents but also affects energy loss by letting cool air escape when the door

is open. Table 4.1 shows the design matrix for the given FRs:

" FR1: Provide access to the items stored

* FR2: Minimize energy consumption.

Insulating Access via
Material Vert. Door

FRI

FR2

X

0

X

X

Table 4.1: Design Matrix for Vertically Hung Refrigerator Door

Using this design matrix, the design appears. However, it is not an acceptable

design, because the door must be opened to gain access to the contents, and this

causes an unacceptable energy loss rate. The coupling appears in the system OPD in
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the form of an effect link path connecting the two FR-related objects. This path is

highlighted in Figure 4.2, which shows the System Operating Domain part of Figure 3.12

after values for the DPs have been selected.

Energy Loss Rate Contents

Insulation Person

Insulating Door Opening Door

Specified Vertical
Efficiency Hinge

Figure 4.2: OPD for Refrigerator with Vertically Hung Door and Highlighted Effect Path

How can this coupling be remedied with a simple design change? One

suggestion given by Suh is to change the DP based on door hinge location. If the door

is attached with horizontal hinges (like a deep freeze), energy loss when the door is
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are physical objects.Contents, Insulation, Door, Person, and Vertical Hinge

Insulating and Door Opening are physical processes.

Insulating and Door Opening affect Energy Loss Rate.

Door Opening affects Contents and Energy Loss Rate.

Insulating requires Insulation.

Insulation exhibits Specified Efficiency.

Door exhibits Vertical Hinge.

Door Opening requires Door.

Person handles Door Opening.



opened is likely to meet the functional requirement because cool air does not rise out of

the refrigerator very quickly. Thus the design matrix shows an uncoupled design.

Insulating Access via
Material Horiz. Door

FRI

FR2

X

0

0

X

Table 4.2: Design Matrix for Horizontally Mounted Refrigerator Door

The corresponding OPD for this design,

between the two FR-related objects:

Energy Loss Rate

Insulation

A'& Insulating

Specified
Efficiency

Figure 4.3: OPD for Refrigerator with

does not contain the effect link path

Contents

'ii
Person

Door Opening Door

Horizontal -
Hinge

Horizontally Hung Door and no Effect Path
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Contents, Insulation, Door, Person, and Horizontal Hinge are physical objects.

Insulating and Door Opening are physical processes.

Insulating affects Energy Loss Rate.

Insulating requires Insulation.

Insulation exhibits Specified Efficiency.

Door exhibits Horizontal Hinge.

Door Opening requires Door.

Door Opening affects Contents.

Person handles Door Opening.

Figures 4.2 and 4.3 are examples of two OPDs corresponding to two different

design decisions by the architect. They are different outcomes of the processes

indicated in the "System Design Domain" in Figure 3.12. In the first case, the architect

has assigned the Hinge Location DP a value of "vertical;" in the second case, a value

of "horizontal." The consequences for independence are visually perceptible in the

resulting OPDs.
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4.2 Water Faucet Example

A classic example in the Axiomatic Design literature is the architecture of a water

faucet. Figure 4 illustrates two possible designs. Design A has a hot water valve and a

cold water valve. Design B has valve for mixing hot and cold water to control

temperature and a separate valve for controlling flow.

Hot water Cold water

H C

Hot water Cold water

nT

Design A Design B

Figure 4.4: Two Possible Architectures for a Water Faucet System

Typical functional requirements for a water faucet are

* FR1: Control the temperature of water

" FR2: Control the flow of water.

Design A is a poor design by Axiomatic Design standards, because the DPs

selected-a hot valve and a cold valve-violate the Independence Axiom. This is

illustrated in Table 4.3, which documents that adjusting either valve affects both

functional requirements.

FRI

FR2

H valve

X

X

C valve

X

X

Table 4.3: Design Matrix for Coupled Water Faucet, Design A
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It is instructive to examine how this design might be represented in OPM. Figure

4.5 shows an OPD for Design A that the system architect might develop if he/she were

modeling the system from scratch. The top portion captures the FRs; the bottom portion

captures the DPs and associated system operation. Concern should arise when Flow

Controlling and Temp Controlling each specialize to two processes-in fact to the*

same two processes. The OPL script identifies this situation:

C Valve Adjusting and H Valve Adjusting are Flow Controlling.

C Valve Adjusting and H Valve Adjusting are Temp Controlling.

Two HOWs jointly fulfill two separate WHATs. This is a violation of the independence

axiom.
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Wvater

...................................A,................................. -..
Flow Rate Temperature

m7iaintained> chned (aintained -,changed

s Flow Temp
FRS Controllin Controllin

AA
. ...........................

H Valve C Valve
Adjustin Adjustin

Operator

Position ~Position
Faucet

DPs HVleCVle

*..................................................................... 0

Water, H Valve, C Valve, and Operator are
physical objects.

C Valve Adjusting and H Valve Adjusting are
physical processes.

Water exhibits Flow Rate, which can be
maintained or changed and Temperature,
which can be maintained or changed.

Flow Controlling changes Flow Rate of Water
from maintained to changed. FRs

Temp Controlling changes Temperature of
Water from maintained to changed.

Faucet consists of H Valve and C Valve.

C Valve Adjusting and H Valve Adjusting are
Flow Controlling. Concept

C Valve Adjusting and H Valve Adjusting are
Temp Controlling.

C Valve Adjusting requires C Valve.

H Valve Adjusting requires H Valve.

H Valve and C Valve exhibit Position. DPs

H Valve Adjusting affects Position of H
Valve.

C Valve Adjusting affects Position of C
Valve.

Operator handles H Valve Adjusting and C
Valve Adjusting.

Figure 4.5: OPD and OPL Script for Water Faucet Design A-Design Intent

A verbal indication of coupling in the OPL script is valuable information for the

system architect, but it may not always be obvious-embedded as it is in a long OPL

paragraph. However OPM provides visual clues from the OPD as well as logical rules

for inheritance that reveal coupling more clearly. As a case of specialization, the OPD

shows that H Valve Adjusting is both Temp Controlling and Flow controlling.
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Because Temp Controlling affects Temperature and Flow Controlling affects Flow

Rate, the inheritance rules for specialization in OPM dictate that H Valve Adjusting

must affect both Flow Rate and Temperature. Similarly, C Valve Adjusting must affect

both Flow Rate and Temperature. The OPD in Figure 4.4 does not explicitly include

effect links that represent these relationships because it is a first iteration of the system,

based on intent. However, as the OPD is expanded and refined to clearly detail actual

system operation, these links will automatically appear when Temp Controlling and

Flow Controlling are replaced by their specializations: H Valve Adjusting and C Valve

Adjusting.

The OPD in Figure 4.6 shows these links along with the Faucet Operating

process. This OPD is yet another good example of OPM's ability to bridge many

domains. True to Dori's vision, it captures structure and behavior in one diagram. In

fact, as the annotations in Figure 4.6 indicate, the diagram captures structure of both the

function operand and system as well as the behavior of both the system and operator. It

would be possible to also show the architect's intent by including function boxes that

indicate Temp Controlling and Flow Controlling (as described in Chapter 3, this is a

good practice for documenting system development) but this would make the diagram

unnecessarily complex for the current discussion.
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Water

Operand(s)

Temperature

FPosition actOeti 77Positiond
H Valve C Valve S Behavior

Adjustin Adjustin

Flow is OK? Temp is OK?

no yes yes no

Operator havior

Operato~r

Water Using

Faucet] Sstem Structure

H Valve A C Valve

Figure 4.6: OPD for Water Faucet Design A-System Operation

92

Flow Rate



Water, Valve, Operator, H Valve, and C Valve are physical objects.

C Valve Adjusting, H Valve Adjusting, and Faucet Operating are physical processes.

Water exhibits Flow Rate and Temperature.

Faucet Operating zooms into H Valve Adjusting, C Valve Adjusting, Temp Sensing
and Flow Sensing, as well as 'Temp is OK?', and 'Flow is OK?'.

C Valve Adjusting and H Valve Adjusting affect Flow Rate.

C Valve Adjusting and H Valve Adjusting affect Temperature.

C Valve Adjusting affects Flow Rate, Temperature, and Position of C Valve.

H Valve Adjusting affects Flow Rate, Temperature, and Position of H Valve.

H Valve Adjusting invokes either Flow Sensing or Temp Sensing.

C Valve Adjusting invokes either Flow Sensing or Temp Sensing.

Flow Sensing determines whether Flow is OK.

Temp Sensing determines whether Temp is OK.

Water Using occurs if Flow is OK and Temp is OK.

Operator handles Faucet Operating and Water Using.

Water Using requires Faucet.

Faucet consists of C Valve and H Valve.

C Valve Adjusting requires C Valve.

H Valve Adjusting requires H Valve.

A striking aspect of this OPD and OPL is the complexity required to represent

what most people consider a fairly simple system and operation. However, it is

important to realize that much of this complexity arises from the fact that the design is

coupled. Furthermore it is possible to identify patterns in the OPD associated with this

coupling. For example, Figure 4.7 highlights a circuit of effect links that connects the
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FR-related objects and the DP-related processes. This circuit is an OPM manifestation

of a coupled design.

Water

Flow Rate Temperature

Adjustn Adstin

Figure 4.7: Circuit of Effect Links for Water Faucet Design A

A second manifestation of coupling appears in the Faucet Operating process in

which checking processes occur iteratively-perhaps repeated several times-until the

desired flow and temperature are achieved. In this case the OPD path through the

process is a circuit of effect and instrument links that proceed serially and iteratively: The

operator adjusts a valve, checks the flow and adjusts for the flow, checks the

temperature and adjusts for the temperature. But the adjustment for temperature affects

the flow, so the operator must repeat the process again until the flow and temperature

are sufficiently close to the desired levels.
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H alv ucet Operatin C Valve
A ustin dut

Flow~is OX? Terdp iiOK?

no yes s no

w\ Te
Sensing '~I Sensing

Water Using

Figure 4.8: Serial, Iterative Faucet Operating Process, Design A

Processes comprised of a series of checks that require repeated iteration

indicate complexity if not outright coupling. However, water faucet Design B removes

the need for repeated iteration by introducing valves that individually control only one of

the desired functions. The design matrix for Design B shows no coupling.

T valve F valve

FRI X 0

FR2 0 X

Table 4.4: Design Matrix for Uncoupled Water Faucet, Design B

Corresponding to this is an OPD for Design B that is cleaner than the OPD for

Design A. Figure 4.9 show the diagram, which is free of the and extra affect links and

invocation links that appeared in the OPD for Design A.
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Water

Flow Rate Temperature

Position Posto
SFaucet Operating

F Valve T Valve
Adjustin Adjustin

Flow is OK? Temp is K?

Fow Temp
Sensing Sensing

Ciperator

Water Using

-- H Valve A C Valve --

Figure 4.9: OPD for Design B
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Water, Operator, Valve, F Valve, and T Valve are physical objects.

F Valve Adjusting, T Valve Adjusting, and Faucet Operating are physical processes.

Water exhibits Flow Rate and Temperature.

Faucet Operating zooms into F Valve Adjusting, Flow Checking, T Valve Adjusting,
and Temp Sensing, as well as 'Flow is OK?' and 'Temp is OK?'.

F Valve Adjusting affects Flow Rate and Position of F Valve.

T Valve Adjusting affects Temperature and Position of T Valve.

F Valve Adjusting invokes Flow Sensing.

Flow Sensing determines whether Flow is OK.

T Valve Adjusting invokes Temp Sensing.

Temp Sensing determines whether Temp is OK.

Water Using occurs if Flow is OK and Temp is OK.

Operator handles Water Using and Faucet Operating.

Faucet consists of F Valve and T Valve.

F Valve Adjusting requires F Valve.

T Valve Adjusting requires T Valve.

The OPD for Design B in Figure 4.9 includes no circuit of effect links similar to

the circuit in the OPD for Design A. Figure 4.10, highlights this simple, disconnected

relationship-a contrast to the circuit of connections highlighted in Figure 4.7.
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Water

A

Flow Rate Temperature

F Valve TValve
kAdiustin~ kAdjustin/

Figure 4.10 Portion of OPD for Water Faucet Design B, No Effect Link Circuit

Finally, Figure 4.11 highlights the parallel nature of the Faucet Operating

process. It is composed of operations that can be carried out simultaneously without

affecting each other or causing iterative adjustments.

...... ..... ...Faucet O perating
F Valve T Valve

-Adjustin Adjustin

klow is b? Tep is 0

t yes es 0

Sensing / Sensing

Water Using

Figure 4.11: Parallel Faucet Operating Process, without Effect Link Loop, Design B

98



4.3 Generalization of Coupling in OPDs

Suh's work in Axiomatic Design demonstrates the importance of avoiding

coupling in designs. The design matrix is an abstract representation of a design that

indicates the presence of coupling, but developing a useful design matrix requires a

good understanding of the functions desired as well as the system proposed for fulfilling

them. OPM is a tool for developing this understanding in terms of objects and processes

and their relationships. Examples presented in this thesis show that coupling may be

detected by analyzing OPDs. This analysis does not replace use of the design matrix;

however it does provide help for system architects who use OPM. They should be

cautious of designs that include effect paths or loops between objects. While such paths

may not always indicate coupling of FRs, they do indicate complexity that may cause

complications in achieving the desired results.

The procedure for evaluating coupling in OPDs begins with reducing the OPD to

a basic form that includes objects and processes and procedural links but omits object

states and unnecessary structural links. This is accomplished by suppressing states in

objects, folding objects, and zooming out of processes. Once simplified in this manner

the OPD is easier to evaluate. Within the OPD is a subset graph comprised of objects

and processes connected by transformation links. This subset is a "bipartite" graph-a

graph comprised of two classes of nodes (objects and processes) in which each link has

one end in the first class and one end in the second. Paths in this graph that connect

two objects via a process indicate coupling in a general sense. If FR-related objects and

DP-related processes are identified within the bipartite graph, paths that connect FR

objects to DP processes correspond to x's in the design matrix. This procedure is
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illustrated in the following sequence of diagrams. Beginning with an initial OPD structure

represented in Figure 4.12.

Figure 4.12: Initial OPD Structure

This initial structure is simplified by suppressing states, folding objects, and

zooming out of processes.

A-i

Figure 4.13: Step 1, Simplified OPD Structure

Within this simplified OPD structure, the subset, bipartite graph consisting of

objects, processes, and effect links is identified.
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Figure 4.14: Step 2, Subset Bipartite Graph

Paths are now identified that indicate effects that connect processes to objects

and objects to objects.

Y2

ZI Z2

Y1 Y1 X X

Z2 Y2 0 X

Z1
zir

Figure 4.15: Step 3, Coupling Identified via the Graph and Corresponding Matrix
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4.4 Conclusion

This thesis has shown that there is a rich relationship between descriptive and

evaluative methods for representing systems. In particular, it has demonstrated that

there are synergies between the descriptive techniques of OPM and the evaluative

framework of Axiomatic Design.

Using the definitional framework of OPM, a standard method for representing

system function and architecture has been presented. This method includes the

decomposition of both WHATs and HOWS into a combination of objects and processes.

Using OPM templates, such combinations are represented in a standard, repeatable

way. The link that connects a WHAT to a HOW corresponds to a concept mapping.

Within templates for WHATS and HOWS, the specific elements of FRs and DPs

can be identified. The language and symbols of OPM made explicit in the templates

guide good FR and DP formulation. Templates can also be useful for representing

constraints in OPM and distinguishing constraints from FRs. Examples illustrate how the

FR-DP decomposition can be expressed using OPM by specializing an FR-related

process describing intent to a DP-related process describing behavior.

Finally, this thesis begins the exploration of how OPD patterns may reveal

adherence to Suh's Independence Axiom. Rules for identifying paths of links that

connect objects and form loops are presented. These paths and links correspond to

coupling that appears in the Axiomatic Design Matrix.

Several of the topics included here have been developed only far enough to

provide a starting point for further study. Many open areas of research in OPM and its

synergy with Axiomatic Design remain. Some of these include:
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" Refinements of OPM templates to more clearly represent a system in both its

Design Domain and Operating Domain and distinguish between these

domains.

* Alignment of the "concept" mapping with elements of OPM and development

of a representation for concept in the templates.

* Examination of the applicability of the templates for "zig-zagging" through the

entire system decomposition, beginning with system goals and ending with

process parameters.

" Determination of the best way to represent intent in OPDs.

* More complete representation of constraints and other non-functional

requirements through OPM.

* Formulation of a more formal definition for DPs in Axiomatic Design.

* Development of formal graph theory-based rules for identifying coupling in

OPDs.

* Identification of general OPD relationships that may indicate coupling or

provide measures of system complexity.

" Study of OPM's relationship to the Information Axiom.
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